
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D2.5

Report on safe information release

Due date of deliverable: 2008-08-31 (T0+36)

Actual submission date: 2008-10-15

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: CTH

Revision (Unknown)

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

CTH 1, 2, 5, 7

INRIA 3

IoC 6

TUD 4

This document was written by Aslan Askarov (CTH), Gilles Barthe (INRIA), Daniel Hedin (CTH), Peeter
Laud (IoC), Alexander Lux (TUD), Heiko Mantel (TUD), Tamara Rezk (INRIA), Andrei Sabelfeld (CTH),
and David Sands (CTH).

2

Executive Summary:
Report on safe information release

This document summarises deliverable D2.5 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr.

Support for information-release, or declassification, policies is essential for practical use of information-
flow security. The challenge of declassification is to distinguish intended information release from unintended
leaks.

Following the goals of Task 2.2 to develop powerful policy frameworks for safe information release in
expressive programming languages, the Mobius consortium has made significant contributions to the area
of declassification. These contributions appear in diverse publication venues. This deliverable contains an
overview of selected results and serves as a chart for Mobius’ contributions to this area, including pointers
to specific contributions for further details. The following results are in the main focus of the deliverable:

• To enhance understanding of declassification we have provided a road map to the area of information
release. The classification of declassification policies according to what, who, where and when dimen-
sions has helped clarify connections between existing models and facilitate the development of new
ones. Our results are a step towards allowing combinations of policies from the individual dimensions
into a solid policy perimeter defence. Perimeter defence is a standard security principle: as systems
are no more secure than their weakest points, they must be defended in all dimensions of information
release.

• Advancing the state of the art in policy perimeter defence, we have designed type-based enforcement
mechanisms for the what and where dimensions of declassification for sequential and multi-threaded
languages. We have constructed such mechanisms for both high- and low-level code.

• We have developed an approach to tracking information flow in the presence of cryptographic oper-
ations, and proposed a treatment of cryptographic operations where attackers may not learn useful
information from ciphertexts. We have shown that this model naturally connects to computational ad-
versary models. Further, we have devised a security type system that provably and straightforwardly
enforces our security condition for a language that includes cryptographic primitives and message
passing.

3

Contents

1 Introduction 5

2 Dimensions of declassification [62] 6

3 The what and where of declassification [13] 8

4 The what and where of declassification for multi-threaded programs [43] 10

5 Cryptographically-masked flows [5] 12

6 Computational soundness of cryptographically-masked flows [37] 14

7 Conclusions 16

A Copies of Publications 21

Declassification: Dimensions and principles of declassification . 22
A. Sabelfeld and D. Sands

Tractable enforcement of declassification policies . 54
G. Barthe and S. Cavadini and Tamara Rezk

Controlling the what and where of of declassification in language-based security 69
H. Mantal and A. Reinhard

Cryptographically-masked flows . 84
A. Askarov and D. Hedin and A. Sabelfeld

On the computational soundness of cryptographically masked flows 101
P. Laud

4

Chapter 1

Introduction
Support for information-release, or declassification, policies is essential for practical use of information-flow
security. The need for declassification was emphasised at the requirements gathering stage of the Mobius
project [47]:

“The MIDP information-flow case strongly suggests the need for declassification policies.”

Traditional noninterference [32] policies are an important building block for specifying end-to-end security
(and they have served as such in Mobius’ work on information flow [48]). However, noninterference flatly
rejects programs with intentional information release. This means that some useful scenarios need policy
support beyond noninterference. For example, releasing the average salary from a secret database of salaries
might be needed for statistical purposes. Another example of deliberate information release is information
purchase: specified secret information is revealed once a condition (such as “payment transferred”) has
been fulfilled. Yet another example is a password checking program: some information is released even if a
log-in attempt fails, as the attacker learns that the attempted sequence is not the password. Releasing an
encrypted secret is another ubiquitous example of intended information release.

A principal security concern for systems permitting information release is whether this release is safe;
is it possible that an attacker compromises the mechanism for information release and extracts more secret
information than intended? In the examples above, can individual salaries be (accidentally or maliciously)
released to the attacker in the average salary computation? Can the attacker break an information purchase
protocol to extract sensitive information before the payment is transferred? Is it possible that along with
the result of password matching some other secret information is sneaked to the attacker? Might a program
accidentally reveal plaintext instead of ciphertext to an attacker?

The Mobius consortium has made significant contributions to the area of declassification. These con-
tributions appear in diverse publication venues. This deliverable contains an overview of selected results
and serves as a chart for Mobius’ contributions to this area, including pointers to specific contributions for
further details.

Chapter 2 presents an overview of declassification, by classifying the basic goals according to the dimen-
sions of declassification [61, 62]: what information is released, who releases information, where in the system
information is released and when information can be released. Chapter 3 develops the what and where di-
mensions of declassification. It also suggests enforcement mechanisms that extend type systems [48, 49, 50]
for noninterference for sequential languages to address declassification policies [13]. Chapter 4 considers the
what and where dimensions of declassification for multi-threaded languages. It suggests type-based enforce-
ment for a bytecode-like language with concurrency, which is built on top of an expressive declassification
framework [43]. Chapter 5 addresses the challenge of reasoning about information flow in the presence of
encryption. It develops cryptographically-masked flows by conservatively extending noninterference to allow
safe encryption, decryption, and key generation, and provides type-based enforcement [4, 5]. Chapter 6
bridges cryptographically-masked flows with computational security. It proves that some natural properties
of underlying cryptographic primitives are sufficient to guarantee computational security for programs that
satisfy the security condition of cryptographically-masked flows [37]. Chapter 7 concludes.

5

Chapter 2

Dimensions of declassification [62]

The state of the art in information release comprises a fast growing number of definitions and analyses
for different kinds of declassification policies over a variety of languages and calculi. Unfortunately, the
relationship between different definitions of information release is often unclear and, in our opinion, the
relationships that do exist between methods are often inaccurately portrayed. This creates hazardous
situations where policies provide only partial assurance that information release mechanisms cannot be
compromised.

For example, consider a policy for describing what information is released. This policy stipulates that
at most four digits of a credit card number might be released when a purchase is made (as often needed for
logging purposes). This policy specifies what can be released but says nothing about who controls which
of the numbers are revealed. Leaving this information unspecified leads to an attack where the attacker
launders the entire credit card number by asking to reveal different digits under different purchases.

To address this problem, we provide a road map of the main declassification definitions in current
language-based security research (as a timely update on security policies from a survey on language-based
information-flow security [57]). We classify the basic declassification goals according to four axes: what
information is released, who releases information, where in the system information is released and when
information can be released. Our classification includes attempts to outline connections between hitherto
unrelated methods, as well as mark some clear distinctions, seeking to crystallise the security assurance
provided by some known approaches. This chapter is an overview of the full version of the classification [61,
62] that includes detailed discussion of the dimensions and coverage of the state-of-the-art literature.

What Partial, or selective, information flow policies [22, 23, 33, 60, 29, 30, 43, 8, 13] regulate what
information may be released. Partial release guarantees that only a part of a secret is released to a public
domain. Partial release can be specified in terms of precisely which parts of the secret are released, or more
abstractly as a pure quantity. This is useful, for example, when partial information about a credit card
number or a social security number is used for logging.

A number of partial information flow policies can be uniformly expressed by using equivalence relations
to model attacker knowledge (or, perhaps more precisely, to model attacker uncertainty). Suppose that the
values of a particular secret range over integers (int), and that the value of the secret is not fixed—it is a
parameter of the system. Without fixing a particular value for the secret, one way to describe how much an
attacker knows (or can learn) about the secret is in terms of an equivalence relation. In this approach an
attacker’s knowledge about the secret is modelled in terms of the attacker’s ability to distinguish elements of
int. If the attacker knows nothing about the secret then this corresponds to saying that, from the attacker’s
viewpoint, any value in int looks the same as any other value. This is captured by the equivalence relation
All satisfying ∀m,n ∈ int. m All n. I.e., all values (or variations) of the secret look the same to the
attacker. Knowledge about the secret can be modelled by other, finer, equivalence relations. For example, if
the parity of a secret is to be released (and nothing else about the secret), then this knowledge corresponds

6

MOBIUS Deliverable D2.5 Report on safe information release

to a partition of the domain into the even and the odd integers, i.e., the relation Parity satisfying:

m Parity n ⇐⇒ m mod 2 = n mod 2

Thus an attacker cannot distinguish any two elements in the same equivalence class of Parity , because at
most the parity is known. At the other extreme, total knowledge of the secret corresponds to the identity
relation Id .

Suppose that we wish to express that a system leaks no more than the parity of a given secret, then we
assume that the attacker already knows the parity, and show that nothing more is learned. This is expressed
by saying that if we have any two possible values of the secret, m and n, such that m Parity n, then the
attacker-observable results of running the system will be identical for these secrets. More precisely, if s is a
function of type int→ int that models, for particular public inputs, how the system maps the value of the
secret to the observable output, then we write s :Parity⇒Id , meaning that

∀m,n.m Parity n =⇒ s(m) Id s(n)

In this notation standard noninterference (zero information flow) property corresponds to s :All⇒Id .
Several approaches to declassification can be understood (at least in part) in terms of the “equivalence

class” approaches—even though at first glance they appear to be of a rather different nature. This includes
the popular delimited release [57] and relaxed noninterference [38] policies.

Under the category “what” we also include properties which are abstractions of “what.” One extreme
abstraction is to consider the quantity of information released. Thus we consider “how much” to be an
abstraction of “what.” The most direct representation of this idea is perhaps the information-theoretic
approach by Clark et al [20], which aims to express leakage in terms of an upper bound on the number
of information-theoretic bits. The approach of Lowe [40] can be thought of as an approximation of this in
which we assume the worst-case distribution. With this approximation the measure corresponds, roughly, to
counting the number of equivalence classes in an equivalence-relation model. For a framework that integrates
attacker belief into the analysis of quantitative information flow in a language-based setting see recent work
by Clarkson et al. [21].

Who It is essential to specify who controls information release in a computing system. Ignoring the issue
of control opens up attacks where the attacker “hijacks” release mechanisms to launder secret information.
Myers and Liskov’s decentralised label model [52] is based on ownership annotations for data. Several
approaches use the decentralised label model as a starting point for semantic security conditions (e.g., [63, 53].
See, e.g., [28, 54, 12] for further ways of combining information flow and access control.

Where Where in a system information is released is an important aspect of information release. By
delegating particular parts of the system to release information, one can ensure that no other (potentially
untrusted) part can release further information. Considering where information is released, we identify
two principal forms of locality: code locality policies (e.g., [56, 51, 17, 44, 26, 27, 2, 43, 13]) describing
where physically in the code information may leak and level locality policies (e.g., [44, 43]) describing where
information may flow relative to the security levels of the system.

When The fourth dimension of declassification is the temporal dimension, pertaining to when information
is released. We identify three broad classes of temporal release specification: Time-complexity based (e.g., [65,
64, 34, 35, 39, 46]): information will not be released until certain time at the earliest. Time is an asymptotic
notion typically relative to the size of the secret. Probabilistic (e.g., [9, 25]): with probabilistic considerations
one can talk about the probability of a leak being very small per run, which implies that the adversary only
can learn useful information when rerunning the program a certain number of times. Relative (e.g., [31, 19]):
a non-quantitative temporal abstraction involves relating the time at which downgrading may occur to other
actions in the system. For example: “downgrading of a software key may occur after confirmation of payment
has been received.”

7

Chapter 3

The what and where of
declassification [13]

In this chapter we describe a modular method, proposed in [13], for building sound type systems for declas-
sification from sound type systems for noninterference, and the instantiation of this method to a sequential
fragment of the Java Virtual Machine.

We consider a declassification policy that combines the what and where dimensions, called delimited
non-disclosure (DND), that is closely related to the non-disclosure policy proposed by Almeida Matos and
Boudol [2], and to localised delimited release proposed by Askarov and Sabelfeld [8]. Informally, delimited
non-disclosure is intended to combine two dimensions in a single construct of the form

declassify e : τ in c

where e is an expression, τ is a security level (see below), and c is a statement.
The choice of the delimited non-disclosure policy is motivated by modularity; our aim is not to pro-

pose a new declassification policy but rather to propose a systematic extension of sound noninterference
type systems to sound declassification type systems. This modularity is the most distinctive feature of
our work. Existing proofs of soundness for declassification type systems proceed by induction over typing
derivations, and reproduce a large part of the proof of soundness of the declassification-free fragment of the
type system. Instead, we take advantage of the fact that delimited non-disclosure coincides with nonin-
terference for programs without declassification; showing that if the type system enforces noninterference
on the declassification-free fragment of the language, then it enforces delimited non-disclosure. In order to
show the independence of our method w.r.t. the programming language to which it is applied, we describe
the method based on a successor relation between program points, rather than on the syntactic structure of
programs, and rely on the idea of control dependence regions, which over-approximate the scope of branch-
ing instructions (MOBIUS deliverable D2.3 [49]), i.e., of instructions that have two or more successors and
that can thus yield implicit flows.

In expressing noninterference policies, it is common to model confidentiality clearances by a security
lattice (S,≤) whose elements represent the distinct confidentiality levels. Then, the expected security
behaviour of a program is captured by a single global policy Γ that assigns confidentiality levels to variables.
For expressing declassification policies, we take a simple generalisation of the noninterference setting: instead
of a single global policy Γ for the program, we assume that there is a local policy Γ[i] for each program point.
(There are correctness conditions that should be satisfied by the family Γ[i].) The use of local policies for the
specification of declassification permits more precision on what is declassified within a code fragment, which
substantially leverages the applicability of information flow type checking and supports more permissive
policies. Local policies allow us to specify when the security level of a variable x is downgraded from its
original policy.

A second distinctive feature of our approach is its application to low-level languages. In the context of
mobile code security, it is essential for code consumers to be able to verify security policies independently

8

MOBIUS Deliverable D2.5 Report on safe information release

and efficiently on the code they receive. Since mobile code applications are typically downloaded in the
form of bytecode programs, it is required that verification operates at this level. However, a large body of
existing work on language-based security focuses on source languages; in fact we are not aware of any sound
type system that supports declassification policies for unstructured languages.

Our method has been described and instantiated in a representative, but simplified, setting. Leveraging
it to the sequential fragment of the Java Virtual Machine does not pose any major difficulty, but involves
significant technicalities. Fortunately, these technicalities, linked to intrinsic object-oriented aspects, ex-
ceptions, and analyses precision, were already handled in the noninterference work on the JVM, MOBIUS
deliverable D2.3 [49].

Information flow type systems are complex mechanisms whose soundness proofs are particularly involved,
especially when considering permissive declassification policies for real programming languages such as the
JVM. As such type systems are designed to complement existing type systems for safety and lie at the heart
of the Trusted Computing Base, it is fundamental that the type system and its implementation be correct. In
our earlier work [14], we used the proof assistant Coq to formally verify the soundness of an information flow
type system that ensures noninterference for a sequential fragment of the Java Virtual Machine. In addition
to providing strong guarantees about the correctness of the type system, the formalisation serves as a basis
for a Proof Carrying Code architecture whose correctness is mechanically checked. A distinctive feature of
our architecture is that the type system is executable inside constructive higher order logic and thus can
be used use for verifying certificates within Coq, or for extraction to obtain an OCaml implementation of
a lightweight information flow checker. As compared to Foundational Proof Carrying Code [3], which is
deductive in nature, our approach exploits the interplay between deduction and computation to support
efficient verification procedures and compact certificates.

As a benefit of the modularity of our approach, we believe that it is possible to achieve a proof of
soundness for our DND information flow type system for the JVM at moderate cost, extending the for-
malisation reported in [14]. The Coq development in [14] is organised in two parts: a generic part, that
derives the soundness of the noninterference type system from unwinding lemmas, and a specific part, that
establishes the unwinding lemmas for a particular language, operational semantics, and type system. We
are confident that extending the generic part of the formalisation to accommodate DND is direct, as is
proving the soundness theorem for the DND type system in an abstract setting. Nevertheless, we anticipate
a fair amount of bookkeeping in instantiation of the generic part for the specific JVM: even if there is no
conceptual difficulty in programming a bytecode verifier in Coq that enforces DND, the specification of the
noninterference type system for the JVM is rather large, and extending its definition (even in the modular
fashion) to DND—and thus supporting a local declassification policy per program point instead of a global
policy—will be demanding.

9

Chapter 4

The what and where of declassification
for multi-threaded programs [43]

Multi-threading is an important aspect in mobile code scenarios, because it is used to avoid lock-ups caused
by expensive computations or blocking operations. The intrinsic difficulties of multi-threading for informa-
tion flow security without declassification have been investigated for high-level languages, for instance in
[59, 66]. The two main approaches are strong security [59] and observational determinism [66]. In Task 2.1
of MOBIUS, the intrinsic difficulties have been already investigated for low-level languages [49]. Here, we
focus on aspects of declassification. Guided by the dimensions of declassification presented in Chapter 2, we
consider the dimensions what and where.

To characterize information flow security in a multi-threaded setting, our approach follows the established
approach of strong security. A program is defined to be secure if it is bisimilar to itself according to a
step-wise bisimulation relation. In the case of strong security, such a bisimulation relation requires that
the public information after each execution step is independent from confidential information before the
respective execution step. The novel security properties with declassification defined in [43] build on work
that introduces intransitive non-interference [55] to language-based security [44]. The novel bisimulation
relations permit some dependence, i.e., exceptional information flow or declassification, but restrict it in the
dimensions what and where as described below. Concerning the dimension where, both principle forms of
locality from Chapter 2 are supported. The intended code locality can be specified by marking statements as
declassification statements with surrounding brackets. The intended level locality can be specified by a flow
relation which may be intransitive and which is specified in addition to the standard partially-ordered
flow relation ≤ (see Chapter 3). Concerning the dimension what, permissible declassification can be specified
by escape hatches [58]. Escape hatches are pairs of a security level and an expression, as it might appear
on the right-hand side of assignment statements in programs. The security property WHERE in [43] is
defined using a bisimulation relation that restricts declassification to statements marked as declassification
statements and permits information flow by declassification only along . The security properties WHAT1

and WHAT 2 in [43] are defined using a step-wise bisimulation relation that permits public information to
depend on the current values of escape hatch expressions (but not on any other information derived from
secrets). Further, the bisimulation requires that the values of escape hatch expressions during a computation
may themselves only depend on public information and on the values of other escape hatch expressions. The
difference between WHAT 1 and WHAT 2 is that the former requires this restriction for all escape hatches,
while the later only requires this restriction for escape hatches whose expressions actually occur in a given
program. The motivation for defining two different properties is elaborated in the following.

A main challenge for controlling declassification in the dimension what is to prevent information laun-
dering, i.e., the change of a value supposed to be declassified depending on information that must not be
declassified. For multi-threaded programs the treatment of information laundering is even more complicated
than for sequential programs, since information may be written to and declassified from a variable in shared
memory by parallel threads. For instance, consider the program consisting of the two threads h2 := 0 and

10

MOBIUS Deliverable D2.5 Report on safe information release

[l := h1 + h2], where the variable l is public and the variables h1 and h2 are confidential. Suppose we want
to permit declassification of the value of h1 + h2 (i.e., (public, h1 + h2) is an escape hatch). If the thread
h2 := 0 is executed first, the program declassifies the value of h1 + 0, i.e., the initial value of h1, but not
the initial value of the sum, and hence should be rejected as insecure (assuming that (public, h1) is not
an escape hatch). By requiring that for each step values of escape hatch expressions may only depend on
public information and the values of other escape hatch expressions, public output only depends on the
initial values of escape hatch expressions and public input. Hence, both WHAT 1 as well as WHAT 2 prevent
information laundering and correctly reject the program above.

In [43] we show that it is impossible to define a security property that provides adequate control in
the dimension what with prevention of information laundering that is both compositional (w.r.t. sequential
and parallel composition) as well as compliant with the principle monotonicity of release. Monotonicity of
release [61, 47, 62] states that adding declassification annotations cannot make a given program insecure, if
it is secure without these declassification annotations. The fundamental conflict between compositionality
and monotonicity of release led us to defining two security properties for controlling what with different
virtues: while the security property WHAT 1 is compositional, the security property WHAT 2 complies to
monotonicity of release.

Our type system for the novel security properties is based on compositionality results of the bisimulation
relations for syntactic program constructs, i.e., sequential composition, composition by control statements,
and, particularly important for multi-threading, parallel composition. The type system contains rules for
statements marked as declassification statements that permit declassification as specified by the intransitive
flow relation and the escape hatches. We have proved the soundness of the type system with respect to
the three novel security properties WHERE , WHAT 1, and WHAT 2.

Defining and enforcing the security properties from [43] not only for high-level but also for bytecode
programs requires only few adaptations and design decisions, as presented in [41]. MOBIUS deliverable
D2.3 [49] presents a type system for bytecode, including an extension to enforce the strong security prop-
erty. Since WHERE , WHAT 1, and WHAT 2 are based on strong security, this type system serves as a basis
for a sound type-based analysis of bytecode programs with respect to those security properties. The type
system from [49] is modified by adding rules to permit declassification, inspired by the rules in [43]. Con-
cerning WHERE , we decide to only allow the instructions load and store to be marked as declassification
instructions. These two instructions directly move data from variables to the operand stack or vice versa.
As for DND [13] in Chapter 3, security levels are specified for variables and elements on the operand stack.
A marked instruction load can declassify a value from a variable to the top element of the operand stack,
whereas a marked instruction store can declassify a value from the top element of the operand stack to
a variable. In bytecode, there are further instructions that are candidates to be marked as declassification
instructions. However, we opt for giving up some flexibility for a stricter marking discipline in the hope of
making the marking less error-prone. For instance, getfield or putfield, which move data from fields of
objects to the operand stack or vice versa, potentially do not only leak the moved value, but also the identity
of the object whose field is accessed. Concerning WHAT 1 and WHAT 2, we define a language for specify-
ing escape hatches, since bytecode does not have a suitable sub-language for escape hatch expressions. To
prevent information laundering, the type system imposes restrictions on calculations on the operand stack.

In summary, we define a type system for the combined control of the dimensions where and what of
declassification in multi-threaded programs. We prove the soundness of the type system according to novel
security properties for each of the two dimensions. In addition, we formalize prudent principles of de-
classification [43], introduced informally as a sanity check for security properties in [61, 47, 62], and use
them in order to argue about the adequacy of the novel security properties. We prove compliance of the
security properties with the formalized principles, with the exception of monotonicity of release in the case
of WHAT 1 (see above). We also provide compositionality results to facilitate a modular analysis, and to
simplify the soundness proof for the type system. To complement the control of the dimensions what and
where of declassification as characterized by the security properties WHERE , WHAT 1, and WHAT 2, we
provide a security property to characterize the control of the dimension who in [42].

11

Chapter 5

Cryptographically-masked flows [5]
Cryptographic operations are ubiquitous in security-critical systems. Reasoning about information flow in
such systems is challenging because typical information-flow definitions allow no flow from secret to public
data. As discussed in Chapter 1, the latter requirement underlies noninterference [32], which demands
that public outputs are unchanged as secret inputs are varied. While traditional noninterference breaks in
the presence of cryptographic operations, the challenge is to distinguish between breaking noninterference
because of legitimate use of sufficiently strong encryption and breaking noninterference by unintended leaks.

A common approach to handling cryptographic primitives in information-flow aware systems is by allow-
ing declassification of encryption results. However, as discussed in Chapter 2, declassification is a versatile
mechanism: different declassification dimensions correspond to different reasons why information is released.
Attempts at framing cryptographically-masked flows into different dimensions have been made although not
always with satisfactory results. For example, releasing the difference between two values of a secret whenever
the results of its encryption are different can be a deceptive policy when assumptions about the underlying
cryptographic primitives are not explicitly stated. If the underlying encryption function is bijective (assum-
ing the key is fixed) then releasing the result of encryption is equivalent to releasing the secret itself. This
phenomenon applies to typical policies from the what dimension, such as delimited release [57].

In essence, cryptographic primitives are small probabilistic algorithms that are supposed to satisfy cer-
tain complex security properties. Reasoning about programs using cryptographic primitives requires one
to deal with those complex properties at some point. An attractive approach is to modularise the argu-
ment: to replace the cryptographic primitives with some operations, that operate in a similar way, but use
simpler mechanisms (for example, no probabilistic steps) and have simpler security definitions. The actual
implementability of those operations is not important. Still, the level of similarity between the abstract
operations and the original cryptographic primitives must be such, that the statements derived for the
modified program would convince us in similar statements holding for the original program.

This chapter introduces modelling-level non-probabilistic cryptographic primitives into an information-
flow setting while preserving a form of noninterference property. The goal is to allow public access to
ciphertexts obtained with a secret key, while modelling that the attacker may not learn anything useful
from distinguishing such ciphertexts. This is achieved by building into the model a basic assumption that
attackers may not distinguish between these ciphertexts and that decryption using the wrong key fails.
This model has a close connection to probabilistic encryption and it naturally connects to computational
adversary models. In Chapter 6 we prove that some natural properties of underlying cryptographic primitives
(extended to hide key identities) are sufficient to guarantee computational security for programs that satisfy
our possibilistic noninterference. This chapter is an overview of the full version [4, 5] that includes the
formal details of the security condition, type system, a report from experience with a prototype and the
proofs (formalised in the proof assistant Coq).

The idea behind our approach is illustrated in Figure 5.1, where dashed and solid lines correspond
to secret and public values, respectively. Fixing some public (low) input zL and varying secret (high)
input from xH to yH may not reflect on a public output z′L of a system that satisfies noninterference
(illustrated in Figure 5.1(a)). Suppose the system in question involves encryption, such as in the program
z := encrypt (k, x) for some secret key k. Clearly, noninterference is broken: variation in the secret input

12

MOBIUS Deliverable D2.5 Report on safe information release

(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Figure 5.1: From noninterference to cryptographically-masked flows

from xH to yH may cause variation in the public output from z′L to z′′L (illustrated in Figure 5.1(b)).
However, noninterference can be recovered if the result of encryption is masked by allowing it to be any

value v. This means that variation of the high input from xH to yH does not affect the public output—any
value v is a possible public output in both cases. This form of noninterference is known as possibilistic
noninterference [45] (illustrated in Figure 5.1(c)). Overall, although low outputs might depend on low
inputs and ciphertexts, no observation about possible low outputs may reveal information about changes
in high inputs (illustrated in Figure 5.1(d)). The last figure illustrates that this kind of masking does not
mask too much: low values that are not affected by encryption are distinguishable in the normal way.

We make a case for possibilistic noninterference as a natural model for cryptographically-masked flows.
We show that a naive approach of collapsing all ciphertexts as indistinguishable opens up possibilities for
occlusion [62], where masking an intended information flow in an indistinguishability definition may also
mask other unintended leaks. The occlusion problem can be illustrated with the following example:

l1 := encrypt(k, a); if h then l2 := encrypt(k, b) else l2 := l1

where encrypt(k, a) encrypts value a with secret key k. If all encrypted values are considered indistin-
guishable by attacker then we cannot distinguish between the two low variables l1 and l2 even though it is
clear that the equality/inequality of the first and the second value reflects the secret value h. Therefore, we
propose a finer indistinguishability relation that not only avoids occlusion but also, as shown in Chapter 6,
guarantees computational security under some natural assumptions on the cryptographic primitives. With
such a result at hand, our model allows focusing on enforcing a simple possibilistic property, which comes
with a computational guarantee “for free.”

Intuitively, we introduce cryptographic masking by assuming that the result of encryption is nondeter-
ministic: it corresponds to a set of ciphertexts. Then, two commands are indistinguishable if for every pair
of attacker-indistinguishable environments (containing the memories, key-generation, and I/O streams) in
which the commands terminate it holds that there exists a possibility that each environment produced by
the first command when run in the first environment can be produced by the second command when run in
the second environment.

To demonstrate that enforcing possibilistic noninterference is straightforward, we have designed and
implemented a security type system that provably enforces possibilistic noninterference for an imperative
language with primitive cryptographic operations and communication channels. The type system prevents
dangerous program behaviour (e.g., giving away a secret key or confusing keys or non-keys), which we
exemplify with secure implementations of cryptographic protocols. Because the model is based on a standard
noninterference property, it allows us to develop some natural extensions. In particular, we consider public-
key cryptography and integrity, which accommodates reasoning about primitives that are vulnerable to
chosen-ciphertext attacks. The main soundness result (that the type system indeed guarantees security) is
based on our formalisation in the proof assistant Coq.

13

Chapter 6

Computational soundness of
cryptographically-masked flows [37]

As discussed in the previous chapter, cryptographically-masked flows are an abstraction for the cryptographic
primitive of symmetric encryption. Similarly to other abstractions of cryptographic primitives, for example
the Dolev-Yao model (which is geared towards cryptographic protocols, where one typically considers only
computational steps from a restricted set), one may ask whether the abstraction is sound — can we state a
theorem saying that a program proven secure in the abstract setting is also secure (possibly in a somewhat
different sense) in the real world? For the Dolev-Yao method, there exist results stating under which
conditions the abstraction is sound. The conditions might, e.g., restrict the operations that may be performed
with cryptographic data. The soundness result may also apply to a certain kind of security properties. For
example, the preservation of integrity properties even under active attacks can be derived quite naturally
for the Dolev-Yao model [24], as those properties are stated in the same way in the model and in the
real world. Confidentiality properties are harder to carry over — in the Dolev-Yao model a value is either
leaked fully or not leaked at all, while in the real world partial leaks are possible, too. In the results about
confidentiality properties, one typically has to restrict the operations performed with the secret values, such
that the absence of full leaks would also mean the absence of partial leaks [24, 10].

Cryptographically-masked flows are mainly used to argue about confidentiality properties. The definition
of confidentiality is somewhat similar to the one in the real world. Both definitions consider the possible
outputs for each input and require that the set / distribution of outputs does not depend on the secret inputs.
Hence we may hope that modelling (computationally) secure information flow with cryptographically-masked
flows is sound, and we have indeed obtained a result [37] to that effect. It states that if the program containing
symmetric encryption has secure information flow in the sense of the previous chapter, the used encryption
primitive is secure, and if the program uses the cryptographic data (keys and ciphertexts) in a “reasonable”
manner, then the program also has computationally secure information flow in the real world. Also, one
does not have to refer to the concrete semantics of the program (where encryption is implemented by a
probabilistic operation) to verify whether the conditions on the usage of cryptographic data are satisfied,
hence the computational security of the information flow of a program can be derived by the arguments
referring only to the abstract semantics of the program (where encryption is modeled as a possibilistic
operation, as described in the previous chapter).

The security properties we demand from the encryption primitive are the same as the ones conjectured
as necessary in the paper introducing cryptographically-masked flows [4] — the encryption must be secure
against chosen-plaintext attacks, hide the identities of keys and the lengths of plaintexts (this is called type-0
security by Abadi and Rogaway [1]) even in the presence of key-dependent messages [16]. The encryption
primitive must also preserve the integrity of plaintexts [15], also in the presence of key-dependent messages.
The latter property, which is absent from the earlier works on program analysis for computationally secure
information flow [35] is necessary for handling the decryption.

The conditions we put on the program structure are the following. We allow only good keys to be used

14

MOBIUS Deliverable D2.5 Report on safe information release

as keys (which is obvious) and the keys themselves can only be used as encryption/decryption keys or in
polymorphic operations. The polymorphic operations are those that only work with the structure of values,
for example pairing and projections. Additionally we consider the plaintext argument of encryption and the
ciphertext argument (as long as it is a ciphertext) of decryption to be polymorphic. This condition on keys
will most probably not be an issue in the real world — there should be no need to perform computations
on the actual bit-string that is the value of that key (although it is allowed in [35]). We also allow the
ciphertexts to be used only in polymorphic operations. This may be a more serious issue — for example, we
can say nothing about a program that, after computing a ciphertext and before sending it out, applies some
transformation to it, for example an error-correcting code. Obviously, the conditions that we have stated
for the usage of cryptographic data are sufficient, and maybe not necessary, but the examples we provide
suggest that at least the conditions on the usage of ciphertexts will be hard to remove. Indeed, consider the
program if lsb(encrypt(k, a)) = 1 then l := h else l := lsb(encrypt(k, a)), where h is a one-bit secret.
Here lsb(encrypt(. . .)) is basically a random-number generator outputting a single bit. In the abstract
semantics, the possible final values of l are 0 and 1, no matter what the value of h is. Hence we consider
that program secure. In the concrete semantics, l can still be both 0 and 1, but their probabilities depend
on the value of h.

The aforementioned conditions essentially turn the model of cryptographically-masked flows into the
Dolev-Yao model. Indeed, we have proposed yet another abstract semantics, closely resembling the Dolev-
Yao model, that is also computationally sound under the same conditions. The new model extends the set
of values (that are simply bit-strings even in the abstract semantics of cryptographically-masked flows) by

v ::= b | k〈i〉 | {v}r〈j〉k〈i〉 | (v1, v2), where b is a bit-string. The value k〈i〉 denotes the (formal) key produced by

the i-th invocation of the key generation. Similarly, r〈j〉 is the formal randomness of the j-th ciphertext.
The semantics of a normal operation is a deterministic function from tuples of bit-strings to bit-strings; a

normal operation can only be applied to bit-strings. The operations of pairing, projections, key generation,
encryption and decryption make use of the structure of the values. Similarly to normal operations, they
may be applied only to values of correct structure. Thanks to the conditions we have described before,
operations with forbidden arguments are never attempted. Note that key generation and encryption are
now deterministic operations, too (although dependent on the execution context that just counts the number
of generated keys and ciphertexts).

The condition for secure information flow now simply states that a program must map two initial states
differing only in their secret inputs to final states that are low-equivalent. Probably the most interesting
part of the new model is the definition of low-equivalence of states. Two states are considered low-equivalent
if their public parts are equivalent in the sense of Abadi and Rogaway [1]. To elaborate, given a state S,
we form the tuple (S(x1), . . . , S(xt)), where xi ranges over all public variables in some fixed order. We then
find the pattern of this tuple precisely as in [1]. In constructing the pattern of a formal message, if the
Dolev-Yao attacker is incapable of deriving the key k〈i〉 from that message, then we replace all submessages

of that message having the form {v}r〈j〉k〈i〉 with the message �r〈j〉. The message �r〈j〉 denotes an undecryptable

ciphertext, made with the formal coins r〈j〉. Two states S and S′ are low-equivalent if their patterns P
and P ′ are equal modulo an α-conversion of formal keys and coins. Such an α-conversion consists of two
permutations of integers, used to rename the indices of formal keys and coins, respectively.

The existing information flow analyses [35, 36] working directly on the concrete semantics can handle
more operations (computing with keys and ciphertexts) than Dolev-Yao models. Cryptographically-masked
flows, which do not abstract the structure of values, might also be expected to be more powerful than
Dolev-Yao models. Unfortunately, the conditions described here will not let this difference (if it exists) to
materialise.

15

Chapter 7

Conclusions

This chapter summarises the results and briefly discusses their impact and publications that have emerged
from work on Task 2.2 on safe information release.

Results There is rich evidence that we have achieved the task goals of developing powerful policy frame-
works for expressive programming languages:

• Seeking to enhance understanding of declassification, we have provided a road map to the area of
information release. The classification of declassification policies according to what, who, where and
when dimensions has helped clarify connections between existing models and facilitate the development
of new ones. Our results are a step toward developing policies that allow combinations of policies from
the individual dimensions into solid policy perimeter defence. Perimeter defence is a standard security
principle: as systems are no more secure than their weakest points, they must be defended across
the entire perimeter of the network. The ambition with policy perimeter is to prevent attackers from
compromising the dimensions of information release with the weakest defence.

• Advancing the state of the art in building the policy perimeter defence, we have explored the what
and where dimensions of declassification. As intended in the task goal, we have designed type-based
enforcement mechanisms for the what and where of declassification for sequential and multi-threaded
languages. We have constructed such mechanisms for both high- and low-level code.

• We have developed an approach to tracking information flow in the presence of cryptographic op-
erations, based on possibilistic noninterference. We have argued that a possibilistic treatment of
cryptographic operations leads to a natural model of attackers that may not learn useful information
from ciphertexts. We have showed that this model naturally connects to computational adversary
models. Further, we have devised a security type system that provably and straightforwardly enforces
possibilistic noninterference for a language that includes cryptographic primitives and message passing.

Impact The results of the task have been published in prestigious venues [6, 18, 53, 4, 43, 8, 37, 13, 5, 62, 42]
and have enjoyed impact both inside and outside of the project. Our declassification road map often
acts as a starting point of research in declassification and a driving force for combining the dimensions of
declassification. Several approaches to relating and combining dimensions of declassification have emerged
within the project and beyond it. Controlling and combining the what and where dimensions has become
a particularly lively area of research [43, 8, 11, 13]. We have explored the when dimension in our work on
flow locks[18] and the who dimension in our work on qualified robustness [53]. Unifying declassification,
encryption and key release policies is another area that has emerged from the project [7, 37, 5]. Treating
information-release policies in low-level languages is another example of a previously unexplored area that
has been pioneered by the project [13].

Further development within the project The results of the task serve as input for Tasks 2.6 on type
system prototypes and 3.5 on combining type and logic-based techniques for security.

16

Bibliography

[1] M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). J. of Cryptology, 15(2):103–127, 2002.

[2] A. Almeida Matos and G. Boudol. On declassification and the non-disclosure policy. In Proc. IEEE
Computer Security Foundations Workshop, pages 226–240, June 2005.

[3] A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Logic in Computer Science,
page 247. IEEE Press, June 2001. Invited Talk.

[4] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. In Static Analysis Symposium,
number 4134 in Lecture Notes in Computer Science, Seoul, Korea, August 2006. Springer-Verlag.

[5] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. Theoretical Computer Science,
402:82–101, August 2008. Special issue for TGC 2006.

[6] A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic protocols:
A case study. In European Symposium On Research In Computer Security, number 3679 in Lecture
Notes in Computer Science. Springer-Verlag, September 2005.

[7] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key release
policies. In Proc. IEEE Symp. on Security and Privacy, pages 207–221, May 2007.

[8] A. Askarov and A. Sabelfeld. Localized delimited release: Combining the what and where dimensions
of information release. In ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security, San Diego, California, June 2007.

[9] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic purposes. In Proc. IEEE
Symp. on Security and Privacy, pages 140–153, May 2003.

[10] M. Backes and B. Pfitzmann. Relating symbolic and cryptographic secrecy. In Proc. IEEE Symp. on
Security and Privacy, pages 171–182, May 2005.

[11] A. Banerjee, D. Naumann, and S. Rosenberg. Expressive declassification policies and modular static
enforcement. In Proc. IEEE Symp. on Security and Privacy, May 2008.

[12] A. Banerjee and D. A. Naumann. Stack-based access control and secure information flow. Journal of
Functional Programming, 15(2):131–177, March 2005.

[13] G. Barthe, S. Cavadini, and T. Rezk. Tractable enforcement of declassification policies. In IEEE
Computer Security Foundations Symposium. IEEE Press, June 2008.

[14] G. Barthe, D. Pichardie, and T. Rezk. A Certified Lightweight Non-Interference Java Bytecode Verifier.
In Proc. European Symp. on Programming, Lecture Notes in Computer Science. Springer-Verlag, 2007.

[15] M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm. In Advances in Cryptology - Asiacrypt 2000, volume 1976 of LNCS,
pages 531–545, January 2000.

17

MOBIUS Deliverable D2.5 Report on safe information release

[16] J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of key-dependent
messages. In Selected Areas in Cryptography, volume 2595 of LNCS, pages 62–75. Springer-Verlag,
August 2002.

[17] A. Bossi, C. Piazza, and S. Rossi. Modelling downgrading in information flow security. In Proc. IEEE
Computer Security Foundations Workshop, pages 187–201, June 2004.

[18] N. Broberg and D. Sands. Flow locks: Towards a core calculus for dynamic flow policies. In P. Sestoft,
editor, European Symposium on Programming, volume 3924 of Lecture Notes in Computer Science,
pages 180–196. Springer-Verlag, 2006.

[19] S. Chong and A. C. Myers. Security policies for downgrading. In ACM Conference on Computer and
Communications Security, pages 198–209, October 2004.

[20] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of confidential data. In
QAPL’01, Proc. Quantitative Aspects of Programming Languages, volume 59 of ENTCS. Elsevier,
2002.

[21] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In Proc. IEEE Computer
Security Foundations Workshop, pages 31–45, June 2005.

[22] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS Operating Systems
Review, 11(5):133–139, 1977.

[23] E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P. Dobkin, A. K.
Jones, and R. J. Lipton, editors, Foundations of Secure Computation, pages 297–335. Academic Press,
1978.

[24] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security protocols. In Proc.
ESOP’05, volume 3444 of LNCS, pages 157–171. Springer-Verlag, April 2005.

[25] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In Proc. IEEE Computer
Security Foundations Workshop, pages 1–17, June 2002.

[26] R. Echahed and F. Prost. Handling declared information leakage. In Proc. Workshop on Issues in the
Theory of Security, January 2005.

[27] R. Echahed and F. Prost. Security policy in a declarative style. In ACM International Conference on
Principles and Practice of Declarative Programming, pages 153–163, July 2005.

[28] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in information flow control for
object-oriented systems. In Proc. IEEE Symp. on Security and Privacy, pages 130–140, May 1997.

[29] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-interference by abstract
interpretation. In Proc. ACM Symp. on Principles of Programming Languages, pages 186–197, January
2004.

[30] R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by abstract interpretation.
In Proc. European Symp. on Programming, volume 3444 of LNCS, pages 295–310. Springer-Verlag, April
2005.

[31] P. Giambiagi and M. Dam. On the secure implementation of security protocols. In Proc. European
Symp. on Programming, volume 2618 of LNCS, pages 144–158. Springer-Verlag, April 2003.

[32] J. Goguen and J. Meseguer. Security policies and security models. In IEEE Symposium on Security
and Privacy, pages 11–22. IEEE Press, 1982.

18

MOBIUS Deliverable D2.5 Report on safe information release

[33] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow. Science of Computer
Programming, 37(1–3):113–138, 2000.

[34] P. Laud. Semantics and program analysis of computationally secure information flow. In Proc. European
Symp. on Programming, volume 2028 of LNCS, pages 77–91. Springer-Verlag, April 2001.

[35] P. Laud. Handling encryption in an analysis for secure information flow. In Proc. European Symp. on
Programming, volume 2618 of LNCS, pages 159–173. Springer-Verlag, April 2003.

[36] P. Laud and V. Vene. A type system for computationally secure information flow. In Proc. Fundamentals
of Computation Theory, volume 3623 of LNCS, pages 365–377, August 2005.

[37] Peeter Laud. On the computational soundness of cryptographically masked flows. In POPL, pages
337–348. ACM Press, 2008.

[38] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc. ACM Symp. on
Principles of Programming Languages, pages 158–170, January 2005.

[39] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework for protocol
analysis. In ACM Conference on Computer and Communications Security, pages 112–121, November
1998.

[40] G. Lowe. Quantifying information flow. In Proc. IEEE Computer Security Foundations Workshop,
pages 18–31, June 2002.

[41] A. Lux and H. Mantel. Controlling the what and where of declassification in bytecode. Submitted,
August 2008.

[42] A. Lux and H. Mantel. Who can declassify? In Preproceedings of FAST, 2008.

[43] H. Mantel and A. Reinhard. Controlling the what and where of declassification in language-based
security. In Programming Languages and Systems: Proceedings of the 16th European Symposium
on Programming, ESOP 2007, number 4421 in Lecture Notes in Computer Science, pages 141–156.
Springer-Verlag, 2007.

[44] H. Mantel and D. Sands. Controlled Declassification based on Intransitive Noninterference. In Asian
Programming Languages and Systems Symposium, LNCS 3303, pages 129–145, Taipei, Taiwan, Novem-
ber 2004. Springer-Verlag.

[45] D. McCullough. Noninterference and the composability of security properties. In Proc. IEEE Symp.
on Security and Privacy, pages 177–186, May 1988.

[46] J. C. Mitchell. Probabilistic polynomial-time process calculus and security protocol analysis. In Proc.
European Symp. on Programming, volume 2028 of LNCS, pages 23–29. Springer-Verlag, April 2001.

[47] MOBIUS Consortium. Deliverable 1.1: Resource and information flow security requirements, 2006.
Available online from http://mobius.inria.fr.

[48] MOBIUS Consortium. Deliverable 2.1: Intermediate report on type systems, 2006. Available online
from http://mobius.inria.fr.

[49] MOBIUS Consortium. Deliverable 2.3: Report on type systems, 2007. Available online from http:

//mobius.inria.fr.

[50] MOBIUS Consortium. Deliverable 3.2: Intermediate report on embedding type-based analyses into
program logics, 2007. Available online from http://mobius.inria.fr.

19

MOBIUS Deliverable D2.5 Report on safe information release

[51] J. Mullins. Non-deterministic admissible interference. J. of Universal Computer Science, 6(11):1054–
1070, 2000.

[52] A. C. Myers and B. Liskov. A decentralized model for information flow control. In Proc. ACM Symp.
on Operating System Principles, pages 129–142, October 1997.

[53] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified robustness.
Journal of Computer Security, 14(2):157–196, May 2006.

[54] F. Pottier and S. Conchon. Information flow inference for free. In Proc. ACM International Conference
on Functional Programming, pages 46–57, September 2000.

[55] J. M. Rushby. Noninterference, transitivity, and channel-control security policies. Technical Report
CSL-92-02, SRI International, 1992.

[56] P. Ryan and S. Schneider. Process algebra and non-interference. In Proc. IEEE Computer Security
Foundations Workshop, pages 214–227, June 1999.

[57] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communication, 21:5–19, 2003.

[58] A. Sabelfeld and A. C. Myers. A model for delimited information release. In Proc. International Symp.
on Software Security (ISSS’03), volume 3233 of LNCS, pages 174–191. Springer-Verlag, October 2004.

[59] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In Computer
Security Foundations Workshop, pages 200–215. IEEE Press, 2000.

[60] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential programs. Higher
Order and Symbolic Computation, 14(1):59–91, March 2001.

[61] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Computer Security Foun-
dations Workshop, pages 255–269. IEEE Press, 2005.

[62] A. Sabelfeld and D. Sands. Declassification: Dimensions and principles. Journal of Computer Security,
2007.

[63] S. Tse and S. Zdancewic. Designing a security-typed language with certificate-based declassification. In
Proc. European Symp. on Programming, volume 3444 of LNCS, pages 279–294. Springer-Verlag, April
2005.

[64] D. Volpano. Secure introduction of one-way functions. In Proc. IEEE Computer Security Foundations
Workshop, pages 246–254, July 2000.

[65] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. ACM Symp. on Principles
of Programming Languages, pages 268–276, January 2000.

[66] S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security. In Computer
Security Foundations Workshop, pages 29–43, Pacific Grove, California, USA, June 2003. IEEE Press.

20

Appendix A

Copies of Publications

21

Declassification: Dimensions and Principles∗

Andrei Sabelfeld David Sands
Department of Computer Science and Engineering

Chalmers University of Technology and the University of Göteborg
412 96 Göteborg, Sweden

www.cs.chalmers.se/˜{andrei, dave}
Abstract

Computing systems often deliberately release (or declassify) sensitive infor-
mation. A principal security concern for systems permitting information release
is whether this release is safe: is it possible that the attacker compromises the in-
formation release mechanism and extracts more secret information than intended?
While the security community has recognised the importance of the problem, the
state-of-the-art in information release is, unfortunately, a number of approaches
with somewhat unconnected semantic goals. We provide a road map of the main
directions of current research, by classifying the basic goals according to what in-
formation is released, who releases information, where in the system information
is released and when information can be released. With a general declassification
framework as a long-term goal, we identify some prudent principles of declassi-
fication. These principles shed light on existing definitions and may also serve as
useful “sanity checks” for emerging models.

1 Introduction
Computing systems often deliberately release (i.e., declassify or downgrade) sensitive
information. Without a possibility to leak secrets, some systems would be of no practi-
cal use. For example, releasing the average salary from a secret database of salaries is
sometimes needed for statistical purposes. Another example of deliberate information
release is information purchase. An information purchase protocol reveals the secret
information once a condition (such as “payment transferred”) has been fulfilled. Yet
another example is a password checking program that leaks some information about
the password. Some information is released even if a log-in attempt fails: the attacker
learns that the attempted sequence is not the same as the password.

Information release is a necessity in these scenarios. However, a principal security
concern for systems permitting information release is whether this release is safe. In
other words, is it possible that the attacker compromises the mechanism for information
release and extracts more secret information than intended? Applying this question to
the examples above: can individual salaries be (accidentally or maliciously) released to
the attacker in the average salary computation? Can the attacker break an information

∗In Journal of Computer Security, c© IOS Press.

MOBIUS Deliverable D2.5 Report on safe information release

22

purchase protocol to extract sensitive information before the payment is transferred? Is
it possible that along with the result of password matching some other secret informa-
tion is sneaked to the attacker? This leads to the following general problem:

What are the policies for expressing intentional1 information release by
programs?

Answering this question is a crucial challenge [67, 78] for information security. Be-
cause many systems rely on information release, we believe that answering this ques-
tion satisfactorily is the key to enabling technology transfer from existing information
security research into standard security practice.

While the security research community has recognised the importance of the prob-
lem, the state-of-the-art in information release comprises a fast growing number of
definitions and analyses for different kinds of information release policies over a vari-
ety of languages and calculi. The relationship between different definitions of release
is often unclear and, in our opinion, the relationships that do exist between methods are
often inaccurately portrayed. This creates hazardous situations where policies provide
only partial assurance that information release mechanisms cannot be compromised.

For example, consider a policy for describing what information is released. This
policy stipulates that at most four digits of a credit card number might be released when
a purchase is made (as often needed for logging purposes). This policy specifies what
can be released but says nothing about who controls which of the numbers are revealed.
Leaving this information unspecified leads to an attack where the attacker launders the
entire credit card number by asking to reveal different digits under different purchases.

This article does not propose any new declassification mechanisms. Instead we fo-
cus on the variety of definitions of security, in a language-based setting, which employ
some form of declassification. We do not study specific proof methods, program log-
ics, types systems or other static analysis methods. The contributions of this article are
twofold:

• Firstly, we provide a road map of the main declassification definitions in cur-
rent language-based security research (as a timely update on security policies
from a survey on language-based information-flow security [67]). We classify
the basic declassification goals according to four axes: what information is re-
leased, who releases information, where in the system information is released
and when information can be released. Our classification includes attempts to
outline connections between hitherto unrelated methods, as well as mark some
clear distinctions, seeking to crystallise the security assurance provided by some
known approaches.

• Secondly, we identify some common semantic principles for declassification
mechanisms:

– semantic consistency, which states that security definitions should be in-
variant under equivalence-preserving transformations;

1Note that in this article we will refer to both intentional, meaning deliberate, and intensional, meaning
the opposite of extensional, when discussing declassification.

2

MOBIUS Deliverable D2.5 Report on safe information release

23

– conservativity, which states that the definition of security should be a weak-
ening of noninterference;

– monotonicity of release, which states that adding declassification annota-
tions cannot make a secure program become insecure. Roughly speaking:
the more you choose to declassify, the weaker the security guarantee; and

– non-occlusion, which states that the presence of declassifications cannot
mask other covert information leaks.

These principles help shed light on existing approaches and should also serve as
useful “sanity checks” for emerging models.

This article is a revised and extended version of a paper published in the IEEE Com-
puter Security Foundations Workshop 2005 [71]. Compared to the earlier version, we
overview some new work on declassification that has appeared under 2005 [35, 34, 50,
32, 37, 43], consider “why” and “how” as other possible dimensions of declassification,
sketch challenges for enforcing declassification policies along the dimensions, discuss
dimensions of endorsement (the dual of declassification for integrity), and make other
changes and improvements throughout.

2 Dimensions of declassification
This section provides a classification of the basic declassification goals according to
four axes: what information is released, who releases information, where in the system
information is released and when information can be released.

2.1 What
Partial, or selective, information flow policies [15, 16, 38, 70, 27, 28] regulate what
information may be released. Partial release guarantees that only a part of a secret is
released to a public domain. Partial release can be specified in terms of precisely which
parts of the secret are released, or more abstractly as a pure quantity. This is useful,
for example, when partial information about a credit card number or a social security
number is used for logging.

The PER model of information A number of partial information flow policies can
be uniformly expressed by using equivalence relations to model attacker knowledge
(or, perhaps more precisely, to model attacker uncertainty). Here we outline this idea
(and where it has been used previously), before we go on to show how some recent
approaches to declassification can be understood in these terms.

Suppose that the values of a particular secret range over int, and that the value of
the secret is not fixed—it is a parameter of the system. Without fixing a particular value
for the secret, one way to describe how much an attacker knows (or can learn) about the
secret is in terms of an equivalence relation. In this approach an attacker’s knowledge
about the secret is modelled in terms of the attacker’s ability to distinguish elements of
int. If the attacker knows nothing about the secret then this corresponds to saying that,

3

MOBIUS Deliverable D2.5 Report on safe information release

24

from the attacker’s viewpoint, any value in int looks the same as any other value. This
is captured by the equivalence relation All satisfying ∀m,n ∈ int.m All n. I.e., all
values (or variations) of the secret look the same to the attacker. Knowledge about the
secret can be modelled by other, finer, equivalence relations. For example, if the parity
of a secret is to be released (and nothing else about the secret), then this knowledge
corresponds to a partition of the domain into the even and the odd integers, i.e., the
relation Parity satisfying:

m Parity n ⇐⇒ m mod 2 = n mod 2

Thus an attacker cannot distinguish any two elements in the same equivalence class of
Parity , because at most the parity is known. At the other extreme, total knowledge of
the secret corresponds to the identity relation Id .

This model of information extends to a model of information flow by describing
how systems transform equivalence relations. As shown in [70], this is equivalent
to Cohen’s selective dependency [15, 16], and is related to the so-called unwinding
conditions known from Goguen and Messeguer’s work on noninterference and its de-
scendants [30, 31].

It is worth remarking that noninterference in this paper is mostly concerned with
protecting the secret (high) part of memory from the attacker who can observe the pub-
lic (low) part of memory. This view follows the data protection view of noninterference,
as it is often used in language-based security [16, 77, 67]. This is somewhat different
from the interpretation of noninterference in event-based systems that is concerned with
protecting the occurrence of secret events from public-level observers [25, 46, 65]. For
the relation between these views, see [48, 26].

Suppose that we wish to express that a system leaks no more than the parity of a
given secret, then we assume that the attacker already knows the parity, and show that
nothing more is learned. This is expressed by saying that if we have any two possible
values of the secret, m and n, such that m Parity n, then the attacker-observable
results of running the system will be identical for these secrets. More precisely, if
s : int → int models, for particular public inputs, how the system maps the value of
the secret to the observable output, then we write s :Parity⇒Id , meaning that

∀m,n.m Parity n =⇒ s(m) Id s(n)

In this notation standard noninterference (zero information flow) property corresponds
to s :All⇒Id .

The use of explicit equivalence relations to model such dependencies appears in
several places. In the security context it was first introduced by Cohen. Also in the
information flow context, the mathematical properties of the lattice of equivalence re-
lations was explored by Landauer and Redmond [39]. Partial equivalence relations
generalise the picture by dropping the reflexivity requirement. A partial equivalence
relation (PER) over some domain D is just an equivalence relation on E such that
E ⊆ D. Hunt [36], inspired by work in the semantics of typed lambda calculi, intro-
duced the use of the lattice of PERs as a general static analysis tool, and showed that
they could be incorporated into a classic abstract interpretation framework. Abadi et
al. [3] (as well as Prost [62]) use partial equivalence relations in essentially the same

4

MOBIUS Deliverable D2.5 Report on safe information release

25

way to argue the correctness of dependency analyses. The present authors [70] showed
how the PER model can also be extended to reason about nondeterministic and proba-
bilistic systems, and also showed that not only does the PER model generalise Cohen’s
framework but also other formulations such as Joshi and Leino’s logical formulation,
including the use of abstract variables [38].

Recently, abstract noninterference [27, 28] has been introduced by Giacobazzi and
Mastroeni. The properties expressible using narrow abstract noninterference are sim-
ilar to those expressible using partial equivalence relation models. The relationship
between the two approaches is not completely straightforward, however. On the one
hand abstract noninterference is based on the general concept of a closure operator, so
can also represent classic abstract interpretations. 2

On the other hand the use of partiality in the PER setting—useful for example in
describing security properties of higher-order functions, as well as security properties
of the system as a whole—cannot be directly represented in the abstract noninterference
setting.

Clark et al. [12] suggest more concretely how abstract noninterference relates to
the PER model, and notably how nondeterminism is needed to model the notion of
weak observers—observers who cannot see all the low values in the system. The re-
lation between the two approaches is made more concrete in recent work by Hunt and
Mastroeni [37], where it is shown that information flow properties expressible with a
particular class of (total) equivalence relations can be captured by narrow abstract non-
interference (NNI). It is also shown that, at least in a technical sense, NNI is equivalent
to the equivalence relation model but the more general form of abstract noninterference
is strictly more expressive than the equivalence relation properties. The difference lies
in the attacker model. Implicitly in the deterministic PER model an attacker is as-
sumed to gain information by observing individual runs of the system, whereas in the
NNI model an attacker can be modelled as observing abstractions of sets of runs: for
example, an attacker who can only observe interval approximations of any given set of
integer results.

The abstract noninterference framework allows for the derivation of the most pow-
erful attacker model for which a given program is secure. This is achieved by either
hiding public output data (as little as possible) [27] or by revealing secret input data
(also as little as possible) [28]. Both cases contribute to the attacker’s model of data
indistinguishability: the former is concerned with the indistinguishability of the output
while the latter treats the indistinguishability of the input. Yet Giacobazzi and Mas-
troeni refer to the former as “attacker models” (which is asserted to fall into the “who”
class [50]) and to the latter—somewhat surprisingly—as “declassification” (which is
asserted to fall into the “what” class [50]). The latter is claimed to be adopted from
robust declassification [79] by removing active attackers [27, 28]. This classification
does not agree with ours because, in our view, robust declassification [79] addresses

2In the conference version of this paper we claimed that abstract noninterference could accurately repre-
sent disjunctions of properties such as “at most one of secrets A and B are leaked”. We now believe that this
is not the case. Note that there is a potential confusion of two notions of “property”. Abstract noninterfer-
ence assumes that an attacker observes the system via abstraction functions. One can, as standard in abstract
interpretation, accurately represent disjunctive combinations of arbitrary abstract domains—i.e., disjunctive
properties. But it does not follow from this that disjunctive information flow properties can be represented.

5

MOBIUS Deliverable D2.5 Report on safe information release

26

the question whether the declassification mechanism is robust against active attackers,
and therefore is a “who” property (as opposed to “what”). The key property of robust
declassification is that active attackers may not manipulate the system to learn more
about secrets than passive attackers already know. When there are no active attackers
(as in partial release), declassification is vacuously robust. We refer to the more recent
paper by Mastroeni [50] which casts more light on this matter.

The basic idea of partial release based on (partial) equivalence relations is sim-
ple and attractive. As we shall see later, the fact that it is essentially an extensional
definition means that it is semantically well behaved.

Related approaches In the remainder of this section we argue that two other recent ap-
proaches to declassification can be understood (at least in part) in terms of the “equiv-
alence class” approaches—even though at first glance they appear to be of a rather
different nature.

Delimited release Recent work by Sabelfeld and Myers [68] introduces a notion called
delimited release. It enables the declassification policy to be expressed in terms of a
collection of escape hatch expressions which are marked within the program via a
declassify annotation. This policy stipulates that information may only be released
through escape hatches and no additional information is leaked.

More precisely stated, a program satisfies delimited release if it has the following
property: for any initial memory state s and any state t obtained by varying a secret
part of s, if the value of all escape-hatch expressions is the same in both s and t, then
the publicly observable effect of running the program in state s and t will be the same.

Interestingly, this definition does not demand that the information is actually re-
leased via the declassify expressions (even though the specific type system does indeed
enforce this)—only that the declassify expressions within the program form the policy.
As a rather extreme example, consider

if true then l := h ∗ h else l := declassify(h ∗ h)
This satisfies delimited release: the secret characterised by the expression h ∗ h is
released to the public variable l, i.e., if we have two memories which differ only in h
and for which the respective values of h ∗ h are equal, then the respective final values
of l after running the above program will also be equal. This example illustrates that
even when we know what information is released, it may be useful to also know where
it is released.

To see how delimited release relates to the PER model, we note that every ex-
pression (or collection of expressions) over variables in some memory state induces an
equivalence relation on the state. For any expression e, let JeK denote the corresponding
(partial) function from states to some domain of values. Let 〈e〉 denote the equivalence
relation on states (s, t, . . .) induced by JeK as follows:

s〈e〉t ⇐⇒ JeKs = JeKt
We generalise this to a set of expressions E as

s〈E〉t ⇐⇒ ∀e ∈ E.JeKs = JeKt

6

MOBIUS Deliverable D2.5 Report on safe information release

27

If we restrict ourselves to the two-point security lattice (for simplicity) the delimited
release property can be expressed in the PER model as:

If E is the set of declassify expressions in the program, then for all memory
states s and t such that the low parts of s and t are equal, and such that
s〈E〉t, then the respective low observable parts of the output of running
the program on s and t are equal.

Sabelfeld and Myers also point out that delimited release is more general than Cohen’s
simple equivalence relation view: declassification expressions may combine both high
and low parts of the state. This provides a form of conditional release.3 For example,
to express the policy: “declassify h only when the initial value of l is non-zero” we can
just use the expression declassify(h ∗ l) since from this the low observer can always
reconstruct the value of h—except when l is zero. A more general form of conditional
release is specified by expressions such as

if (payment > threshold) then topsecret else secret

with the guarantee that the sensitive information stored in topsecret is released if the
value of the public variable payment is greater than some constant threshold . Other-
wise, the less sensitive information secret is released.

Reflecting this idea back into the equivalence relation view, this just corresponds to
the class of equivalence relations which are expressed in terms of the whole state and
not just the high part of the state.

Syntactic escape hatches for characterising what can be leaked is a convenient
feature of delimited release. It is however worth highlighting that the purpose of an
escape hatch is merely to define indistinguishability. For example, policies defined
by escape hatch expressions e and f(e) (for some bijective function f) are equiva-
lent. Indeed, they define the same indistinguishability relations because JeKs = JeKt if
and only if Jf(e)Ks = Jf(e)Kt. Interestingly, this implies, for example, that program
l := declassify(f(h)); l := h is secure for all bijective f .

It appears natural to declare encryptk(secret) and hash(pwd) as escape hatch
expressions (cf. [68]). The intuition with such a declaration is that the result of en-
cryption or hashing can be freely released. Clearly, if encryption and hashing functions
are bijective then a laundering attack along the lines above is possible. If collisions
are possible, exploiting this artifact becomes more involved. Nevertheless, suppose
noncolliding(x) is true whenever ∀y.hash(x) = hash(y) =⇒ x = y. Leaky
program

l := declassify(hash(pwd)); if noncolliding(pwd) then l := pwd

is accepted by the delimited release definition. Clearly, these examples are possible
because problematic invertability of encryption and hashing functions are outside the
delimited release model.

3The conditional noninterference notion from [31] is a predecessor to the notion of intransitive noninter-
ference discussed in Section 2.3 on “where” definitions.

7

MOBIUS Deliverable D2.5 Report on safe information release

28

Relaxed noninterference Li and Zdancewic [42] express downgrading policies by
labelling subprograms with sets of lambda-terms which specify how an integer can be
leaked.4 They show that these labels form a lattice based on the amount of information
that they leak. This is claimed to be closely related to intransitive noninterference (dis-
cussed below). Here, however, we argue that the lattice of labels from [42] is closely
related to the lattice of equivalence relations, and thus the class of declassification prop-
erties that can be expressed is similar to the equivalence-relation class. The semantic
interpretation of a label l [42][Def. 4.2.1] is closure operation:

{g′ | g′ ≡ g ◦ f, f ∈ l}

Intuitively we can think of the meaning of a given f ∈ l as an abstraction of all possible
ways in which a program might use the result of the “leaky component” f .

In [42] the equality relation (≡) in the above definition is taken to be a particular de-
cidable syntactic equivalence. We will refer to this original definition as an intensional
interpretation of labels. To relate labels to the PER model we consider an extensional
interpretation of labels in which ≡ is taken to be semantic (extensional) equality.

We can map labels to equivalence relations (over the domain of secrets) using the
same mapping as for delimited release: if l is a set of lambda-terms, each with an
integer-typed argument, then we define the equivalence relation on integers as:

m〈l〉n ⇐⇒ ∀f ∈ l.fm = fn

Without going into a detailed argument, we claim that the extensional semantic
interpretation of labels yields a sublattice of the lattice of equivalence relations. Note in
particular (as with the intensional definition) that the top and bottom points in the lattice
of labels are H ≡ {λx : int.c} (for some constant c) and L ≡ {λx : int.x}, which
following the construction above can easily be seen to yield the largest equivalence
relation (All, which relates everything to everything) and the smallest (the identity
relation Id), respectively.

Downgrading is specified by actions of the form l1
a l2. In the equivalence rela-

tion view this corresponds to saying, roughly, that the action a maps arguments related
by 〈l1〉 to results related by 〈l2〉, or, using the PER notation from [36, 70]:

a : 〈l1〉 ⇒ 〈l2〉

The intensional interpretation makes finer distinctions than the equivalence relation
interpretation, and these distinctions are motivated by the requirement to express not
only what is released, but to provide some control of how information is leaked. Take
for example the policy consisting of the single function λx.λy.x == y. In principle
this function can reveal everything about a given secret first argument, via suitably
chosen applications. In the extensional interpretation this policy is therefore equivalent
to the policy represented by λx.x. However, the intensional interpretation of labels
distinguishes these policies—the intuition being that it is much harder (slower) to leak
information using the first function than using the second.

4We focus here on the so-called local policies.

8

MOBIUS Deliverable D2.5 Report on safe information release

29

In conclusion we see that relaxed noninterference can be understood in terms of
PERs under an extensional interpretation, but provides potentially more information
with an intensional interpretation. What is missing in this characterisation is a clear
semantic motivation for which intensional equivalence is appropriate, and what gen-
eral guarantees it provides. One suggestion5 is to use a complexity preserving subset
of extensional equivalence. This should guarantee that the attacker cannot leak secrets
faster than if he literally used the policy functions. However it should be noted that the
syntactic equivalence from [42] (which include, amongst other things, call-by-name
β-equivalence) is not complexity-preserving for the call-by-value computation model
used therein. See [72] for an exploration of complexity preservation issues. The inten-
sional view of relaxed noninterference thus requires the addition of information about
the speed of computation, something which is covered by the “when” dimension.

Quantitative abstractions Under the category “what” we also include properties
which are abstractions of “what.” One extreme abstraction is to consider the quan-
tity of information released. Thus we consider “how much” to be an abstraction of
“what.” The most direct representation of this idea is perhaps the information-theoretic
approach by Clark et al [11], which aims to express leakage in terms of an upper
bound on the number of information-theoretic bits. The approach of Lowe [45] can be
thought of as an approximation of this in which we assume the worst-case distribution.
With this approximation the measure corresponds, roughly, to counting the number of
equivalence classes in an equivalence-relation model. For a framework that integrates
attacker belief into the analysis of quantitative information flow in a language-based
setting see recent work by Clarkson et al. [14].

2.2 Who
It is essential to specify who controls information release in a computing system.
Ignoring the issue of control opens up attacks where the attacker “hijacks” release
mechanisms to launder secret information. Myers and Liskov’s decentralised label
model [55] offers security labels with explicit ownership information (see, e.g., [24,
61, 6] for further ways of combining information flow and access control). Accord-
ing to this approach, information release of some data is safe if it is performed by the
owner who is explicitly recorded in the data security label. This model has been used
for enhancing Java with information flow controls [54] and has been implemented in
the Jif compiler [58].

The key concern about ownership-based models in general is assurance that in-
formation release cannot be abused by attackers. As a step to offer such an assurance,
Zdancewic and Myers have proposed robust declassification [79] which guarantees that
if a passive attacker may not distinguish between two memories where the secret part
is altered then no active attacker may distinguish between these memories.

Recent work by Myers et al. [56] connects ownership-based security labels and ro-
bust declassification by treating ownership information as integrity information in the
data security labels. In this interpretation of robust declassification, information release

5[Peng Li, personal communication]

9

MOBIUS Deliverable D2.5 Report on safe information release

30

is safe whenever no change in the attacker-controlled code may extract additional in-
formation about secrets. Interestingly, this implies that declassification annotations of
the form declassify(e) do not pertain to the “what” (the value of expression e) or
the “where” (in the code) dimensions because robust declassification accepts any leak
as intended unless the active attacker may affect it.

Furthermore, qualified robustness is introduced, which provides the attacker with
a limited ability to affect what information may be released by programs. Dually to
declassification, an endorse primitive is used for upgrading the integrity of data. Once
data is endorsed to be trusted, it can be used in decisions on what may be declassified.
Qualified robustness intentionally disregards the values of endorsed expressions by
considering arbitrary values to be possible outcomes of endorsement.

Tse and Zdancewic also take the decentralised label model as a starting point. They
suggest expressing ownership relations via subtyping in a monadic calculus and show
that typable programs satisfy two weakened versions of noninterference: conditioned
noninterference and certified noninterference [74].

2.3 Where
Where in a system information is released is an important aspect of information release.
By delegating particular parts of the system to release information, one can ensure that
no other (potentially untrusted) part can release further information.

Considering where information is released, we identify two principal forms of lo-
cality:

Level locality policies describing where information may flow relative to the security
levels of the system, and

Code locality policies describing where physically in the code information may leak.

The common approach to expressing the level locality policies is intransitive non-
interference [64, 59, 63, 47]. Recall that confidentiality policies in the absence of in-
formation release are often regulated by conventional noninterference [30, 77], which
means that public output data may not depend on (or interfere with) secret input data.
However, noninterference is over-restrictive for programs with intentional informa-
tion release (average salary, information purchase and password checking programs
are flatly rejected by noninterference). Intransitive noninterference is a flow-control
mechanism which controls the path of information flow with respect to the various se-
curity levels of the system. For standard noninterference the policy is that information
may flow from lower to higher security levels in a partial order (usually a lattice) of
security levels. The partial order relation between levels x ≤ y means that informa-
tion may freely flow from level x to level y, and that an observer at level y can see
information at level x. Since the flow relation ≤ is a partial order it is thus always tran-
sitive. Intransitive noninterference allows more general flow policies, and in particular
flow relations which are not transitive. The canonical example (but not the only use
of intransitive noninterference) is the policy that says that information may flow from
low to high, from high to a declassifier level and from the declassifier level to low,
but not directly from high to low. The definition of intransitive noninterference must

10

MOBIUS Deliverable D2.5 Report on safe information release

31

ensure that all the downgraded information indeed passes through the declassifier, and
is thereby controlled.

Mantel [47] has introduced a variant of this idea which separates the flow policy
into two parts: a standard flow lattice (≤), together an intransitive downgrading rela-
tion () for exceptions to the standard flow. This has been adapted to a language-based
setting by Mantel and Sands [49], in which both kinds of locality are addressed: in-
transitive flows at the lattice level, associated to specific downgrading points in the
code.

Code locality can be thought of as a simple instance of intransitive noninterfer-
ence based loosely on the idea of all “leaks” passing through a declassification level.
Roughly speaking, the declassification constructs in the code can be thought of as the
sole place where information should violate the standard flow policy. Thus the defin-
ition of intransitive noninterference should ensure that the only information release in
the system passes through the intended declassifications and nothing more. With this
simple view, the approaches of Ryan and Schneider (so called constrained noninterfer-
ence [66]), Mullins6 [53], Bossi et al. [8], and Echahed and Prost [22, 23] could also
be seen as forms of intransitive noninterference.

Most recently, Almeida Matos and Boudol [4] define a notion of non-disclosure.
They introduce an elegant language construct flow F in M to allow the current flow
policy to be extended with flows F during the computation of M . To define the se-
mantics of non-disclosure the operational semantics is extended with policy labels.
This could be seen as a generalisation of the “default base-policy + downgrading tran-
sitions” found in Mantel and Sands’ work. Although developed independently, the
bisimulation-based definition of security is very close to that of Mantel and Sands,
albeit less fine grained and focused purely on code locality.

Three other recent papers describe dynamic policy mechanisms whereby an infor-
mation flow policy can be dynamically modified by the program.

The first, described by Hicks et al. [35] investigates an information flow type sys-
tem for a small functional language with dynamic policies based on the decentralised
label model [55]. They coin the phrase noninterference between updates. This phrase
intuitively captures a natural security requirement in the presence of policy changes.
However in terms of semantic modelling the only precise semantic condition provided
in [35] might be more accurately described as noninterference in the absence of up-
dates—which is essentially the principle of conservativity described in Section 3.

In the second work [17], Dam describes a policy update mechanism in which the
security level of variables can be dynamically reclassified. Security is then defined,
like for Mantel and Sands [49], as an adaptation of strong low-bisimulation [69]. In-
terestingly, Dam’s definition does not coincide with that of Mantel and Sands on the
common subset of features. Consider the program

if h = 0 then [l := h1] else [l := h2]

where [. . .] denotes a declassified assignment. Unlike the definition of [49] Dam’s
definition deems this program to be secure. In [49] one would instead have to also

6Despite the similarity in terminology, there is no tight relation between Mullins’ admissible interfer-
ence [53] and Dam and Giambiagi’s admissibility [18]; in fact the two conditions emphasise different di-
mensions of declassification.

11

MOBIUS Deliverable D2.5 Report on safe information release

32

declassify the result of the boolean test, e.g.,

[l0 := (h = 0)]; if l0 then [l := h1] else [l := h2]

One might argue that Dam’s definition does not exhibit code locality—at least not to
the extent of [49]; see [17] for an alternative perspective.

In the third approach [32], Gordon and Jeffrey consider dynamically generated
security levels in the context of π-calculus. Generalising Abadi’s definition of secrecy
for spi-calculus [2], they propose a notion of conditional secrecy, which guarantees
that secrets are protected unless particular principals are compromised.

A combination of “where” and “who” policies in the presence of encryption has
been recently investigated by Hicks et al. [34]. The authors argue that declassification
via encryption is not harmful as long as the program is, in some sense, noninterfering
before and after encryption. In order to accommodate this kind of leak locality prop-
erty, they define two semantics: operations semantics whose job is to evaluate program
parts free of cryptographic functions and reduction semantics for evaluating crypto-
graphic functions. The key policy is noninterference modulo trusted functions, which
is intended to guarantee that if all encryptions are trusted (a trust relation is built in the
underlying security lattice) then the attacker is not able to distinguish secrets through a
visibility relation that ignores differences arising from the application of cryptographic
functions. They show that if no trusted cryptographic functions are used, their security
characterisation reduces to noninterference.

2.4 When
The fourth dimension of declassification is the temporal dimension, pertaining to when
information is released. We identify three broad classes of temporal release specifica-
tion:

Time-complexity based Information will not be released until, at the earliest, after a
certain time. Time is an asymptotic notion typically relative to the size of the
secret.

Examples of this category include Volpano and Smith’s relative secrecy and one-
way functions [76, 75]. In these cases the security definition says that the at-
tacker cannot learn the (entire) value of a secret of size n in polynomial time.
Putting it another way, the secret may be leaked only after non-polynomial time.
This is related to the approaches found in Laud’s work [40, 41] and Mitchell et
al.’s work on polynomial-time process calculus (see, e.g., [44, 52]). Here the at-
tacker is explicitly given only polynomial computational power, and under these
assumptions the system satisfies a noninterference property.

Probabilistic With probabilistic considerations one can talk about the probability of
a leak being very small. This aspect is also included in Mitchell et al.’s work,
and complexity-theoretic, probabilistic and intransitive noninterference are com-
bined in recent work of Backes and Pfitzmann [5]. The notion of approximate
noninterference from [21] is more purely probabilistic: a system is secure if the
chance of an attacker making distinctions in the values of secrets is smaller than

12

MOBIUS Deliverable D2.5 Report on safe information release

33

some constant ε. We view this (arguably) as a temporal declassification since it
essentially captures the fact that secrets are revealed infrequently.

Relative A non-quantitative temporal abstraction involves relating the time at which
downgrading may occur to other actions in the system. For example: “down-
grading of a software key may occur after confirmation of payment has been
received.”

The work of Giambiagi and Dam [29] focuses on the correct implementation of
security protocols. Here the goal is not to prove a noninterference property of
the protocol, but to use the components of the protocol description as a specifi-
cation of what and when information may be released. The idea underlying the
definition of security in this setting is admissibility [18]. Admissibility is based
on invariance of the system under systematic permutations of secrets.

Chong and Myers’ security policies [9] address when information is released.
This is achieved by annotating variables with types of the form `0

c1 · · · ck `k,
which intuitively means that a variable with such an annotation may be subse-
quently declassified to the levels `1, . . . , `k, and that the conditions c1, . . . , ck
will hold at the execution of the corresponding declassification points. An ex-
ample of a possible domain of conditions is predicates on the variables in the
program.

3 Some principles for declassification
In addressing the issue of what constitutes a satisfactory information release policy, it
is crucial to adequately represent the attacker model against which the system is pro-
tected. A highly desired goal is a declassification framework that allows for modelling
the different aspects of attackers, enabling the system designer to tune the level of
protection against each of the dimensions. As a first step toward such a framework,
we suggest some principles for declassification intended to serve as sanity checks for
existing and emerging declassification models.

This section discusses the semantic consistency, conservativity, monotonicity of re-
lease, non-occlusion and trailing attack principles. For convenience, a partial mapping
of these principles to some of the models from the literature is collected in Table 1. It
is not the goal of this section to be complete with respect to all definitions mentioned
in Section 2.

3.1 Semantic consistency
This principle has its roots in the full abstraction problem [60, 51], which has important
implications for computer security [1]. Full abstraction is about preserving equivalence
by translation from one language to another. Viewing equivalence as the attacker’s view
(cf. Section 2) of the system, semantic consistency ensures that the view (and hence the
security of the system) is preserved whenever some subprogram c is replaced by a
semantically equivalent program d (where neither c nor d contains declassification).
Hence, the first principle:

13

MOBIUS Deliverable D2.5 Report on safe information release

34

W
ha

t

Pr
op

er
ty

Se
m

an
tic

co
ns

is
te

nc
y

C
on

se
rv

at
iv

ity
M

on
ot

on
ic

ity
of

re
le

as
e

N
on

-
oc

cl
us

io
n

Pa
rt

ia
lr

el
ea

se
[1

6,
38

,7
0,

27
,2

8]
X

X
N

/A
X

D
el

im
ite

d
re

le
as

e
[6

8]
X

X
X

×
R

el
ax

ed
no

ni
nt

er
fe

re
nc

e
[4

2]
×

X
X

X
N

ai
ve

re
le

as
e

X
X

X
×

W
ho

R
ob

us
td

ec
la

ss
ifi

ca
tio

n
[5

6]
X∗

X
X

X
Q

ua
lifi

ed
ro

bu
st

de
cl

as
si

fic
at

io
n

[5
6]

X∗
X

X
×

W
he

re
In

tr
an

si
tiv

e
no

ni
nt

er
fe

re
nc

e
[4

9]
X∗

X
×

X

W
he

n
A

dm
is

si
bi

lit
y

[1
8,

29
]

×
X

×
X

N
on

in
te

rf
er

en
ce

“u
nt

il”
[9

]
×

×
X

X
Ty

pe
le

ss
no

ni
nt

er
fe

re
nc

e
“u

nt
il”

X∗
X

×
×

∗
Se

m
an

tic
an

om
al

ie
s

Ta
bl

e
1:

C
he

ck
in

g
pr

in
ci

pl
es

of
de

cl
as

si
fic

at
io

n.

14

MOBIUS Deliverable D2.5 Report on safe information release

35

SEMANTIC CONSISTENCY

The (in)security of a program is invariant under semantics-preserving
transformations of declassification-free subprograms.

This principle aids in modular design for secure systems. It allows for independent
modification of parts of the system with no information release, as long as these modi-
fications are semantics-preserving. A possible extension of this principle would be one
that also allows modification of code with information release, as long as new code
does not release more information.

We inspect each of the release dimensions and list some approaches that satisfy this
principle (and some that do not).

What Models capturing what is released are generally semantically consistent. Be-
cause what is released is described in terms of program semantics, changing sub-
programs by semantically equivalent ones does not make a difference from the
security definition’s point of view. This argument applies to partial release [16,
38, 70, 27, 28] and delimited release [68]7. Relaxed noninterference [42] aims
to provide more than just “what” properties, and does so through the use of a
decidable notion of equivalence (as discussed in Section 2.1). Thus semantic
consistency fails when we transform outside of this relation.

Who The attacker’s view in the robust declassification specification [56] is defined by
low-level indistinguishability of traces up to high-stuttering (traces must agree on
the sequence of assignments to low variables). Assuming that semantic equality
implies low-level indistinguishability, the end-to-end nature of robustness en-
sures that exchanging semantically equivalent subprograms may not affect pro-
gram security. This argument extends to qualified robustness [56]. This char-
acterisation is insensitive to syntactic variations of subprograms that are free of
declassification as long as their semantics are preserved (which, for example,
means that reachability is not affected).

Where The language-based intransitive noninterference condition of Mantel and Sands
[49] satisfies semantic consistency. The definition of intransitive noninterference
is built on top of a notion of k-bisimulation, where k is a security level. The basic
idea is that when a declassification step occurs between two levels l and m, then
(i) nothing other than that visible at level l is released, and (ii) it is only visible
to the observer at level k if m ≤ k (i.e., k is authorised to see information at
level m). After each step the bisimulation definition (following [69]) requires
the program parts of the configurations be again bisimilar in all states. This is a
form of “policy reset,” and the same approach is adopted in non-disclosure [4].

Bossi et al’s condition [8] is described in an extensional way which strongly sug-
gests that it also satisfies semantic consistency. Echahed and Prost’s condition
[22, 23] is based on a rather unusual general computational model (a mixture

7As elsewhere, we state this without proof (and hence with due reservations), as proofs would require a
lot of detail to be given.

15

MOBIUS Deliverable D2.5 Report on safe information release

36

of term-rewriting, constraint and concurrent declarative programming) which
makes it more difficult to assess.

When The semantic consistency principle critically depends on the underlying seman-
tics. For complexity-sensitive security definitions [76, 75, 40, 41, 44, 52], seman-
tic consistency requires complexity-preserving transformations. Otherwise, for
example, a program which cannot leak in polynomial time could be sped up by
a transformation that compromises security.

Dam and Giambiagi’s admissibility [18, 29] does not satisfy the semantic con-
sistency principle. Due to the syntactic nature of admissibility, it is possible to
replace functions in the declassification protocol with semantically equivalent
ones so that admissibility is not preserved. Take policy P that only allows leak-
ing secrets via function f (which could be, for example, an encryption function).
A program S = f(h) is then admissible with respect to P . However, suppose the
semantics of f is the identity function. Changing the program S by a semanti-
cally equivalent program S′ = h results in a program that is not admissible with
respect to P . Notice that this is an instance of a general phenomenon: syntac-
tic definitions of security are bound to violate the semantic robustness property.
In the case of admissibility, recent unpublished results [19] introduce semantic
information into admissibility policies via flow automata. This appears to be a
useful feature for recovering semantic consistency.

Chong and Myers’ noninterference “until” [9] is somewhat different, in that they
first define a base security type-system for a mini ML-like language for handling
noninterference, and then define the intended security condition, but only over
terms which are typable according to the base security type system.

No security definition which demands that terms are typed according to a se-
curity type system (or any other computable analysis) can satisfy the semantic
consistency principle with respect to all programs. This follows from a simple
computability argument: semantic equivalence is typically not recursively enu-
merable, but the set of “typable” programs is either recursive or at the very least
recursively enumerable. Thus there are pairs of equivalent terms for which one
is typable and the other is untypable. An untypable term, according to such a
definition, cannot be considered secure.

Definitions which depend on such specific analyses are not entirely satisfactory
as semantic definitions. For example, a program such as

if h > h then l := 0

would be considered insecure by the definition since the type system makes the
usual coarse approximations. In order to recover semantic consistency, the obvi-
ous fix is to lift the restriction that the definition applies to well-typed programs.
Along with our analysis of the noninterference “until” definition [9], presently
we also explore the consequences of this generalised definition, which we refer
to as typeless noninterference “until”. Most recently, a similar generalisation
has been defined by Chong and Myers in order to combine declassification and
so-called erasure policies [10].

16

MOBIUS Deliverable D2.5 Report on safe information release

37

Semantic anomalies The notion of semantic consistency is, of course, dependent
on the underlying semantic model. The base-line semantic model can be thought of
as defining the attacker’s intrinsic observational ability. In many cases the base-line
semantics is not given explicitly. However, the definition of security is often built from
a notion of program equivalence which takes into account security levels. In such
cases it is natural to induce the “base-line” semantics—the attacker’s observational
power—by considering the notion of equivalence obtained by assuming the degenerate
one-point security lattice.

Having done this we can observe whether the induced semantics is a “standard”
one. In the case that it is nonstandard we call this a semantic anomaly, which reflects
something about our implicit attacker model. The presence of semantic anomalies
means that semantic consistency only holds for that specific semantics.

We have noted that the complexity-based definitions naturally require that the se-
mantic model which preserves complexity—i.e., that the notion of equivalence must
take into account computational complexity. This is perhaps not standard, but rather
natural in this setting. We point out several examples of clear semantic anomalies,
coming from Myers et al.’s robust declassification [56], Mantel and Sands’ version of
intransitive noninterference [49], Almeida Matos and Boudol’s non-disclosure property
[4] and the typeless variant of noninterference “until.” Each of these has an attacker
model which turns out to be stronger than strictly necessary. Although it is safe to
assume that an attacker has greater powers than he actually possesses, it has a potential
disadvantage of rejecting useful and intuitively secure programs. They only satisfy se-
mantic consistency under a stronger than usual semantic equivalence: this equivalence
is extracted from the underlying indistinguishability relations by viewing all data as
low.

• In the case of robust declassification [56] the semantic model allows the attacker
to observe the sequence of low assignments (up to stuttering). This means that for
any low variable l, the command l := l is considered semantically distinct from
skip, since the former contains a low assignment and the latter does not. Under
more standard semantics, a transformation from if h then skip else skip to
if h then l := l else skip (where h is high and l is low) would be semantics-
preserving. However, the first program satisfies robust declassification whereas
the second one does not, which would break semantic consistency. Similar trans-
formation can be constructed for the following items.

• In the case of intransitive noninterference [49], the semantic model is explicitly
given as a strong bisimulation, so that only computations which proceed at the
same speed are considered equivalent. It is argued, with reference to [69], that
this allows for useful attacker models in which the attacker controls the thread
scheduler. However, with a coarser base-line model it is not immediately clear
what an appropriate definition of intransitive noninterference should be.

• The implicit semantics of Almeida Matos and Boudol [4] is arguably most anom-
alous of those considered here. This is due to the fact that their language contains
local variables. These do not fit well with the stateless bisimulation-based notion
of equivalence that is induced. Consider the following example, using the usual

17

MOBIUS Deliverable D2.5 Report on safe information release

38

two-level base policy:

let uL = ref false in

if !uL then vL := wH

where !uL returns the value that the reference uL points to. This program is
considered insecure, because the semantics induced by the notion of bisimulation
assumes that the insecure command vL := wH is reachable, even though it is
clearly unreachable in any context. Here the anomaly cannot be described in
terms of what the attacker can observe, but rather as an implicit assumption that
the attacker can even modify the value of local variables. This is clearly stronger
than necessary.

• For typeless noninterference “until,” there are technical issues with the definition
of noninterference which assumes that an attacker can distinguish what would
be normally considered equivalent functions. As a result, the program below is
considered insecure:

if xh then ref(λx.x+ 1) else ref(λx.1 + x)

This could be seen as a failure of semantic consistency, since transforming 1+x
into x + 1 would make the program secure. However, we view this problem as
a minor technical artifact that could be fixed for example by only allowing the
attacker to observe stored values of ground type.

3.2 Monotonicity of security
Declassification effectively creates a “hole” in the security policy. For a given security
definition, a program such as l := h might well be considered insecure, but by adding
a declassification annotation to get l := declassify(h) the program may well be
considered secure. So the natural starting point—the base-line policy—is that absence
of declassification in a program or policy implies that the program should have no
insecure information flows. On the other hand, the more declassification annotations
that a program contains, the weaker the overall security guarantee.

This leads to two related principles: conservativity, which says that security con-
servatively extends the notion of security for a language without declassification, and
monotonicity of release based on the monotonicity of security with respect to increase
in declassification annotations in code (the more declassifications you have the more
“secure” you become). Let us consider each of these principles in turn.

It is sensible to require that programs with no declassification annotations or dec-
larations satisfy a standard security property that allows no secret leaks, as commonly
expressed by some form of noninterference [30]. As before, we use the term nonin-
terference to refer to the standard zero information flow policy for the language. We
arrive at a principle that requires declassification policies to be conservative extensions
of noninterference:

CONSERVATIVITY

Security for programs with no declassification is equivalent to nonin-
terference.

18

MOBIUS Deliverable D2.5 Report on safe information release

39

Notice that this principle is straightforward to enforce by making it a part of security
definition, which would have the flavour of “a program is secure if either it is nonin-
terfering or it contains declassification and satisfies some information release policy.”
Often the conservativity principle holds trivially as it is built directly from a definition
of noninterference.

Nevertheless, noninterference “until” [9], in the case when there is no declassifica-
tion in either the policy or code, yields a strict (decidable) subset of noninterference.
So, taking the same example as previously, if h > h then l := 0 is considered in-
secure because the type system rejects it. Thus the definition does not strictly satisfy
conservativity.

Many mechanisms for declassification employ annotations to the code (or some
other specification) which denote where a declassification is intended. Operationally
these declassification annotations do not interfere with normal computation. At the
level of annotations, the more declassify annotations in a program, the weaker the
overall security guarantee. This common-sense reasoning justifies the monotonicity of
release principle:

MONOTONICITY OF RELEASE

Adding further declassifications to a secure program cannot render it
insecure.

or, equivalently, an insecure program cannot be made secure by removing declassifica-
tion annotations.

We now revisit the dimensions of release and apply the monotonicity of release
principle to security characterisations along the different classes.

What Most of the examples in this class (that we have considered) express policies
extensionally, so they do not rely on annotations to define the semantics of de-
classification. One exception is delimited release, which uses the collection of
annotations in the code to determine the global policy. Adding an annotation
gives the attacker more knowledge, so there is less remaining to attack. Thus if
a system is secure with respect to a given degree of attacker knowledge, adding
more knowledge will never make it insecure. In the PER interpretation this is
just a standard monotonicity property: if a system, when presented with any two
states related by some binary relation R produces equivalent observable outputs,
then the same will be true when replacing R by any S such that S ⊆ R.

Who Declassification annotations are not used by the semantic definition of robust-
ness or qualified robustness [56] (although these annotation are used in the sta-
tic analysis). Therefore, program security is invariant under the removal or
addition of declassification annotations. The situation is different with the re-
moval or addition of endorsement annotations for qualified robustness, how-
ever [56]. Endorsement statements have a scrambling semantic interpretation
that allows for arbitrary values to be the outcome of endorse. Inspired by “havoc”
commands [38], this semantic treatment allows the difference between two val-
ues of a variable to be “forgotten” by forcing this variable to take an arbitrary

19

MOBIUS Deliverable D2.5 Report on safe information release

40

value. This is justified when each endorse is preceded by a placeholder for
attacker-controlled code [57]. In this case, arbitrary values may be set to attacker-
controlled variables when the control reaches the endorse. However, in general
the scrambling interpretation of endorse (or declassify) might lead to the reacha-
bility of code that is otherwise dead. Dead code may mask security flaws, as we
will see below.

It is not necessary to introduce endorsement in order to explain these reacha-
bility issues in security definitions. Consider two types of declassification, by
scrambling the source and target of declassification, respectively. The intention
is to “forget” the effect of declassification by requiring the source h (or target l)
of a declassification operation l := declassify(h) to take any possible value.
Under the former, the semantic treatment of declassification is specified nonde-
terministically by

〈l := declassify(h), s〉 −→ s[h 7→ val , l 7→ val]

for all val , which corresponds to scrambling the values of both h and l with value
val . Under the latter, the scrambling is done at the result of declassification:

〈l := declassify(h), s〉 −→ s[l 7→ val]

which does not affect the value of h but makes any value of l a possible outcome
of declassification. With the respective semantic interpretations of declassify, the
security condition is possibilistic noninterference, requiring the indistinguisha-
bility of possibilities for low-level output as high-level input is varied. We now
see why both of these interpretations break the monotonicity of release. Consider
the program:

h := 0;
l := declassify(h);
if l = 42 then l′ := h′

The program is clearly secure if declassification is removed. In the presence of
declassification, however, the value of l might become 42 under both scrambling
semantics, and thus the insecure code l′ := h′ becomes reachable. Hence, the
program is insecure under both semantics, which would contradict the monotonic-
ity of release.

Where The annotations of [49] apply to simple assignment statements. From a lo-
cal perspective these would seem to satisfy the monotonicity principle, since
the conditions required for a normal assignment statement are strictly stronger
than for a downgrading statement. However, the fly in the ointment, as far as
monotonicity is concerned, is that the definition effectively assumes that the at-
tacker can observe the fact that a declassification operation is being performed,
regardless of its content. Thus a program such as

if h = 42 then [l := l] else l := l

where, as before, [. . .] denotes a declassified assignment, is insecure, because
an attacker observing the presence or absence of a declassification action learns

20

MOBIUS Deliverable D2.5 Report on safe information release

41

whether h was 42 or not. Removing the declassification makes the program
secure.

However, in this case the fix to the definition from [49] seems straightforward:
when nothing is leaked by the declassification then it can be viewed as a non-
declassification, and vice-versa.

When Complexity-based and probabilistic declassifications are expressed extension-
ally, so the monotonicity principle does not apply.

For other temporal declassification conditions there is potential for monotonicity
of release to fail for general reasons. Programs may contain declassifications
which are in fact harmless—i.e., they do not violate noninterference, such as
the declassification of a known constant. But if the policy refers directly to the
presence or absence of the declassification operation itself, then the very fact that
a declassification statement is present in the code—albeit harmless—may cause
it to violate the policy. Removing the declassify annotation might, by the same
token, cause the policy to be satisfied.

By this argument, it is possible to show that admissibility [18, 29] does not sat-
isfy the monotonicity of release principle. The semantics of the protocol that
specifies declassification is abstracted away, enabling harmless declassification
to be disguised by the protocol’s syntactic representation. Similar to semantic
consistency, monotonicity of release is likely to be recovered for admissibility by
introducing semantic information about declassification via flow automata [19].

Typeless noninterference “until” also fails monotonicity of release. One exam-
ple, following the general reasoning above, is when the conditions used to trigger
declassifications refer to declassifications themselves. A natural example would
be a policy that says that A can be declassified if B has not been declassified,
and vice-versa. This ensures that at most one of A and B are declassified—an
interesting policy if A is the one-time pad and B is the encrypted secret. Now
suppose that a program declassifies A, but contains a harmless declassification
for B (i.e., one that does not actually reveal anything about B). The program
is insecure according to the policy, but if the declassification is removed from
the harmless release of B, the program becomes secure. Note that monotonic-
ity of release is preserved by noninterference “until” [9] because declassification
conditions are simply assumed to always be guaranteed by typed programs.

3.3 Non-occlusion
Whenever declassification is possible, there is a risk of laundering secrets not intended
for declassification. Laundering is possible when, for example, declassification in-
tended only for encrypted data is applied to high plaintext. This is an instance of
occlusion. A principle that rules out occlusion can be informally stated as follows:

NON-OCCLUSION

The presence of a declassification operation cannot mask other covert
information leaks.

21

MOBIUS Deliverable D2.5 Report on safe information release

42

The absence of occlusion is a useful property of information release. Generally, de-
classification models along the “what” dimension satisfy this principle. Occlusion is
avoided because covert flows, by the spirit of “what” models, should not increase the
effect of legitimate declassification. An exception is the delimited release policy where
globally declassified expressions are extracted from everywhere in the code. Recall the
example:

if true then l := h ∗ h else l := declassify(h ∗ h)
Unreachable declassification in the else branch covers up the leak in the then branch.

Occlusion is prevented in robust declassification [56] because declassification an-
notations in code may not affect robustness (and hence all declassification is consid-
ered intended as long as the attacker may not affect it). Also, intransitive noninterfer-
ence [49] successfully avoids occlusion by resetting the state (and thus the effect of
each declassification), as a consequence of small-step compositional semantics.

However, qualified robustness [56] and noninterference “until” [9] (when typability
of programs is not required) are both subject to occlusion.

Occlusion in qualified robustness [56] can be illustrated by occlusion in the source-
and target-scrambling release definitions from Section 3.2 (examples for the actual
qualified robustness definition can be found in [57]). Indeed, slightly modifying the
example we receive the program:

h := 0;
l := declassify(h);
if l = 42 then l′ := declassify(h′);
l′ := h′

The program is insecure because it leaks h′ into l′, and because l′ := declassify(h′)
is not reachable. However, under the scrambling semantics, the value of l might be-
come 42 after the first declassification, implying possible reachability of the second
declassification in dead code which masks the real leak l′ := h′. Indeed, any value is
a possible final value for l′ in the above program regardless of the initial value for h′.
Hence the program is deemed secure with respect to both source- and target-scrambling
definitions.

A generalisation of security policies “until” [9] to all programs (typeless nonin-
terference “until”) leads to occlusion. Because the security condition only considers
c1 . . . ck-free traces, i.e., traces that have not reached the last declared declassification,
it is insensitive to injections of harmful code with unintended leaks after the last de-
classification. For instance, consider a password checking example from [9]:

intHsecret := . . . ;
intHpwd := . . . ;
intHguess := getUserInput();
booleanH test := (guess == pwd);
booleanLresult := declassify(test ,H L);
. . .

and inject code that leaks secret at level H after the password is checked. This leak
is not prevented despite the fact that the security condition is variable-specific (i.e.,

22

MOBIUS Deliverable D2.5 Report on safe information release

43

it states noninterference “until” for each variable separately). Note that the original
version of noninterference “until” [9] prevents such attacks by considering untyped
programs as insecure from the outset. The two programs above inspire the following
general principle (which can be viewed as an instance of non-occlusion):

TRAILING ATTACKS

Appending an insecure program with fresh variables to a secure ter-
minating program should not result in a secure program.

One way of protecting against trailing attacks could be to introduce a special level `T
that corresponds to termination and require that any declassified data be declassified to
`T at the end of overall computation.

Consider a naive release policy that states that a program is secure if for any two
runs either they preserve low equivalence of traces, or one of them executes a declassify
statement. Clearly, this policy satisfies semantic consistency as semantics-preserving
transformation of subprograms without declassification may not affect indistinguisha-
bility of traces for low-level observer. It also satisfies conservativity, by definition. Fur-
ther, monotonicity of release also holds because the removal of declassification from
an insecure program (there must exist a pair of traces without declassification that are
not low-indistinguishable) may only result in an insecure program (by the same pair of
traces). Although these principles hold, they are not sufficient for security assurance.
This is reflected by occlusion, which naive release suffers from.

A final remark on the principles is that they are not intended to be universally nec-
essary for all declassification policies. For example, sometimes policies are of syntactic
nature by choice (as, for instance, admissibility), which makes it infeasible to guaran-
tee appealing semantic principles. However, we argue that if one of the principles fails,
it is an indication of a potential vulnerability that calls for particular attention as to why
the principle can be relaxed.

4 Conclusion
Seeking to enhance understanding of declassification, we have provided a road map to
the area of information release. The classification of declassification policies accord-
ing to “what,” “who,” “where” and “when” dimensions has helped clarify connections
between existing models, including the cases when these connections were not, in our
opinion, made entirely accurate in the literature. For example, abstract noninterfer-
ence [27, 28] and relaxed noninterference [42] fall under “what” models in our classifi-
cation, which disagrees with connections to “who” and “where” definitions made in the
respective original work. Another example is the deceptively akin admissibility [18]
and admissible interference [53] that address different dimensions of declassification
(“when” and “where”).

A reasonable question is to what extent the dimensions can be made formally pre-
cise. For a given model, the “what” and “when” dimensions seem relatively straight-
forward to define formally. The “what” dimension abstracts the extensional semantics
of the system; the “when” dimension can be distinguished from this since it requires an

23

MOBIUS Deliverable D2.5 Report on safe information release

44

intensional semantics that (also) models time, either abstractly in terms of complexity
or via intermediate events in a computation. The “who” and “where” dimensions are
harder to formalise in a general way, beyond saying that they cannot be captured by the
“what” and “when” dimensions.

Why not “how” or “why”? It is natural to ask whether the interrogative words “how”
and “why” are also reasonable dimensions. Regarding specifications of “how” infor-
mation is released, we argue that these are covered by some combination of “what”
and “when” and “where”. For example, suppose that some particular functions may
be used for declassification. With an intensional view this can be modelled simply
in the “where” dimension (code locality). At the other extreme we may want a more
extensional view, in which case we are in the purely “what” dimension. In between
we have many possibilities using the “when” dimension to capture the speed of release
(the essence of the algorithm) or some other temporal constraints.

Why is information released? It is clearly important to know the reason behind the
intentional release of information. But this dimension seems inappropriate to consider
at the code level since it deals with issues that come before the coding phase. In general
the “why” dimension is application-specific, and its study is more naturally part of the
software design and development process. See, e.g., [33] for one of the few works that
aim to integrate security specification and declassification (via the decentralised label
model) into language-based security.

Dimensions for integrity From the point of view of information flow, integrity is often
seen as a natural dual of confidentiality. One wishes to prevent information flows from
untrusted (low integrity) data sources to trusted data or events. As for confidentiality,
there are many situations where we might wish to upgrade the integrity levels of data
(so-called endorsement). It seems that the dimensions for declassification could also
be applied to endorsement:

What The “what” dimension can be studied with essentially the same semantics, and
thus deals with what parts of information are endorsed. Interestingly, Li and
Zdancewic [43] in a study of the dualisation of relaxed noninterference [42],
discuss some non-dual aspects of policies, stemming from whether the code itself
is trusted or not.

When Certain temporal endorsements are very natural from an integrity perspective.
For example, if you choose to trust some low integrity data only after a digi-
tal signature has been verified. Other, complexity-theoretic notions are perhaps
less natural in the integrity setting. Although one is able to say that, e.g., “low
integrity data remains untrusted in any polynomial time computation,” it is less
obvious how this kind of property might be useful.

Where Both policy locality and code locality are natural for endorsement. For pol-
icy locality we may wish to ensure that untrusted data only becomes trusted by
following a particular path (i.e., intransitive noninterference). From the point of
view of code locality it is again natural to require that endorsement only takes
place at the corresponding points in the program.

24

MOBIUS Deliverable D2.5 Report on safe information release

45

Who The “who” dimension is interesting because the notion already embodies a form
of integrity. Robust declassification, for example, argues that low integrity data
should not effect the decision of what gets declassified [56]. For integrity we
might thus define a notion of robust endorsement to mean that the decision to
endorse data should not itself be influenced by low integrity data. This approach
can benefit from a non-dual treatment of endorsement. Because the potentially
dangerous operations like declassification and endorsement are “privileged” op-
erations, it might make sense to apply similar, not dual constrains.

Challenges for enforcement mechanisms This paper is concerned with policies for
information release. While a comprehensive treatment of declassification policy en-
forcement is outside the scope of this paper, we briefly highlight some challenges for
enforcing policies along each of the dimensions.

What Enforcement of “what” policies can be delicate, which we demonstrate by ex-
amples of delimited release and information-theoretic policies. In delimited re-
lease, declassification policies are expressed in code by declassify(e, `) an-
notations. Programmers may use these annotations in order to declare that the
value of expression e can be released to level `, naturally suggesting what is
released. However, care must be taken in order for the declaration not to open
up possibilities for leaks unrelated to e. Indeed, the value e may change as the
program is executed (and can be affected by different secrets—either explicitly
or via control flow). An enforcement mechanism that ignores what secrets can
affect e over the course of computation might be open to laundering attacks.
Preventing secret variables in escape hatches e from depending on other data is
a possibility [68] although more permissive enforcement mechanisms (which, in
general, might require human assistance) are possible (cf. [7, 20, 73]).

Information-theoretic release policies are notoriously hard to enforce. Tracking
the quantity of information through loops is particularly challenging. Known
approaches are only able to handle rudimentary loops [13].

When Enforcement of “when” policies can be particularly challenging. Such a mech-
anism needs to be able to verify that release may only take place when some
condition c is satisfied, which often requires temporal reasoning about program
behaviour. Furthermore, it is important that no leaks are introduced through de-
pendencies from secrets to condition c itself.

Where Enforcement of “where” policies is more natural. An occurrence of a declas-
sification annotation declassify(e, `) reflects both policy locality and code lo-
cality. Policy locality is represented by label `, localising the destination of in-
formation release. Code locality is represented by where in code the annotation
occurs.

Who The decentralised label model [55] is an example of a release mechanism with
explicit ownership information. Declassification declassify(e, `) is allowed
if the level of e is downgraded in a way that only affects the owner of the code

25

MOBIUS Deliverable D2.5 Report on safe information release

46

that runs the declassification command. While this is an intuitive enforcement
mechanism, only recently have there been attempts to connect this mechanisms
to semantic goals [74].

While the Jif compiler [58] provides support for declassification, its enforcement mech-
anism is only concerned with the “who” dimension of declassification via ownership
in the decentralised label model [55]. In general, it is crucial that enforcement mecha-
nisms are capable of handling release policies along each of the dimensions.

Summing up This paper is a step toward the goal of developing policies that allow
combinations of policies from the individual dimensions into solid policy perimeter
defence. Perimeter defence is a standard principle of network security: as systems
are no more secure than their weakest points, they must be defended across the entire
perimeter of the network. The ambition with policy perimeter is to prevent attackers
from penetrating systems via weakly defended dimensions of information release.

For this to be possible we must have a better understanding of the implications of
our security definitions—even more so in the presence of declassification. We have
suggested some prudent principles of declassification that further help to avoid vulner-
abilities in release policies, and provide tools for better understanding declassification
definitions. Measuring our own previous work on declassification against these princi-
ples has revealed anomalies and “artifacts” that had previously gone unnoticed, and we
suggest that the principles should serve as useful “sanity checks” for emerging models.

Acknowledgements
Thanks are due to Andrew C. Myers and Pablo Giambiagi for fruitful discussions.
The paper has also benefited from the comments of Gerard Boudol, Stephen Chong,
Mads Dam, Roberto Giacobazzi, Sebastian Hunt, Peng Li, Isabella Mastroeni, David
Naumann and the anonymous reviewers.

This work was funded in part by the Sixth Framework programme of the European
Community under the MOBIUS project FP6-015905, and by National project fund-
ing from VINNOVA (Swedish Governmental Agency for Innovation Systems), SSF
(Swedish Foundation for Strategic Research) and VR (Swedish Research Council).

References
[1] M. Abadi. Protection in programming-language translations. In Proc. Interna-

tional Colloquium on Automata, Languages and Programming, volume 1443 of
LNCS, pages 868–883. Springer-Verlag, July 1998.

[2] M. Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,
September 1999.

[3] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In Proc. ACM Symp. on Principles of Programming Languages, pages 147–160,
January 1999.

26

MOBIUS Deliverable D2.5 Report on safe information release

47

[4] A. Almeida Matos and G. Boudol. On declassification and the non-disclosure
policy. In Proc. IEEE Computer Security Foundations Workshop, pages 226–240,
June 2005.

[5] M. Backes and B. Pfitzmann. Intransitive non-interference for cryptographic pur-
poses. In Proc. IEEE Symp. on Security and Privacy, pages 140–153, May 2003.

[6] A. Banerjee and D. A. Naumann. Stack-based access control and secure informa-
tion flow. Journal of Functional Programming, 15(2):131–177, March 2005.

[7] G. Barthe, P. D’Argenio, and T. Rezk. Secure information flow by self-
composition. In Proc. IEEE Computer Security Foundations Workshop, pages
100–114, June 2004.

[8] A. Bossi, C. Piazza, and S. Rossi. Modelling downgrading in information flow
security. In Proc. IEEE Computer Security Foundations Workshop, pages 187–
201, June 2004.

[9] S. Chong and A. C. Myers. Security policies for downgrading. In ACM Confer-
ence on Computer and Communications Security, pages 198–209, October 2004.

[10] S. Chong and A. C. Myers. Language-based information erasure. In Proc. IEEE
Computer Security Foundations Workshop, pages 241–254, June 2005.

[11] D. Clark, S. Hunt, and P. Malacaria. Quantitative analysis of the leakage of con-
fidential data. In QAPL’01, Proc. Quantitative Aspects of Programming Lan-
guages, volume 59 of ENTCS. Elsevier, 2002.

[12] D. Clark, S. Hunt, and P. Malacaria. Non-interference for weak observers.
In Proc. Programming Language Interference and Dependence (PLID), August
2004.

[13] D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a While lan-
guage. In QAPL’04, Proc. Quantitative Aspects of Programming Languages,
volume 112, pages 149–166, January 2005.

[14] M. R. Clarkson, A. C. Myers, and F. B. Schneider. Belief in information flow. In
Proc. IEEE Computer Security Foundations Workshop, pages 31–45, June 2005.

[15] E. S. Cohen. Information transmission in computational systems. ACM SIGOPS
Operating Systems Review, 11(5):133–139, 1977.

[16] E. S. Cohen. Information transmission in sequential programs. In R. A. De-
Millo, D. P. Dobkin, A. K. Jones, and R. J. Lipton, editors, Foundations of Secure
Computation, pages 297–335. Academic Press, 1978.

[17] M. Dam. Decidability and proof systems for language-based noninterference
relations. In Proc. ACM Symp. on Principles of Programming Languages, 2006.

27

MOBIUS Deliverable D2.5 Report on safe information release

48

[18] M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a sim-
ple payment protocol. In Proc. IEEE Computer Security Foundations Workshop,
pages 233–244, July 2000.

[19] M. Dam and P. Giambiagi. Information flow control for cryptographic applets.
Presentation at the Dagstuhl Seminar on Language-Based Security, October 2003.
www.dagstuhl.de/03411/Materials/.

[20] Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of
secure information flow. In Dieter Hutter and Markus Ullmann, editors, Proc. 2nd
International Conference on Security in Pervasive Computing, volume 3450 of
LNCS, pages 193–209. Springer-Verlag, 2005. (A preliminary version appeared
in WITS’03).

[21] A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-interference. In
Proc. IEEE Computer Security Foundations Workshop, pages 1–17, June 2002.

[22] R. Echahed and F. Prost. Handling declared information leakage. In Proc. Work-
shop on Issues in the Theory of Security, January 2005.

[23] R. Echahed and F. Prost. Security policy in a declarative style. In ACM Interna-
tional Conference on Principles and Practice of Declarative Programming, pages
153–163, July 2005.

[24] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in infor-
mation flow control for object-oriented systems. In Proc. IEEE Symp. on Security
and Privacy, pages 130–140, May 1997.

[25] R. Focardi and R. Gorrieri. A classification of security properties for process
algebras. J. Computer Security, 3(1):5–33, 1995.

[26] R. Focardi, S. Rossi, and A. Sabelfeld. Bridging language-based and process cal-
culi security. In Proc. Foundations of Software Science and Computation Struc-
ture, volume 3441 of LNCS, pages 299–315. Springer-Verlag, April 2005.

[27] R. Giacobazzi and I. Mastroeni. Abstract non-interference: Parameterizing non-
interference by abstract interpretation. In Proc. ACM Symp. on Principles of
Programming Languages, pages 186–197, January 2004.

[28] R. Giacobazzi and I. Mastroeni. Adjoining declassification and attack models by
abstract interpretation. In Proc. European Symp. on Programming, volume 3444
of LNCS, pages 295–310. Springer-Verlag, April 2005.

[29] P. Giambiagi and M. Dam. On the secure implementation of security protocols. In
Proc. European Symp. on Programming, volume 2618 of LNCS, pages 144–158.
Springer-Verlag, April 2003.

[30] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc.
IEEE Symp. on Security and Privacy, pages 11–20, April 1982.

28

MOBIUS Deliverable D2.5 Report on safe information release

49

[31] J. A. Goguen and J. Meseguer. Unwinding and inference control. In Proc. IEEE
Symp. on Security and Privacy, pages 75–86, April 1984.

[32] A. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and
the pi-calculus. In Proc. CONCUR’05, number 3653 in LNCS, pages 186–201.
Springer-Verlag, August 2005.

[33] R. Heldal and F. Hultin. Bridging model-based and language-based security. In
Proc. European Symp. on Research in Computer Security, volume 2808 of LNCS,
pages 235–252. Springer-Verlag, October 2003.

[34] B. Hicks, D. King, and P. McDaniel. Declassification with cryptographic func-
tions in a security-typed language. Technical Report NAS-TR-0004-2005, Net-
work and Security Center, Department of Computer Science, Pennsylvania State
University, May 2005.

[35] M. Hicks, S. Tse, B. Hicks, and S. Zdancewic. Dynamic updating of information-
flow policies. In Workshop on Foundations of Computer Security, pages 7–18,
June 2005.

[36] L. S. Hunt. Abstract Interpretation of Functional Languages: From Theory to
Practice. PhD thesis, Department of Computing, Imperial College of Science,
Technology and Medicine, 1991.

[37] Sebastian Hunt and Isabella Mastroeni. The per model of abstract non-
interference. In R. Giacobazzi, editor, Proc. Static Analysis, 12th International
Symposium (SAS’05), volume 3184 of LNCS. Springer-Verlag, 2005.

[38] R. Joshi and K. R. M. Leino. A semantic approach to secure information flow.
Science of Computer Programming, 37(1–3):113–138, 2000.

[39] J. Landauer and T. Redmond. A lattice of information. In Proc. IEEE Computer
Security Foundations Workshop, pages 65–70, June 1993.

[40] P. Laud. Semantics and program analysis of computationally secure information
flow. In Proc. European Symp. on Programming, volume 2028 of LNCS, pages
77–91. Springer-Verlag, April 2001.

[41] P. Laud. Handling encryption in an analysis for secure information flow. In
Proc. European Symp. on Programming, volume 2618 of LNCS, pages 159–173.
Springer-Verlag, April 2003.

[42] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In
Proc. ACM Symp. on Principles of Programming Languages, pages 158–170,
January 2005.

[43] P. Li and S. Zdancewic. Unifying confidentiality and integrity in downgrading
policies. In Workshop on Foundations of Computer Security, pages 45–54, June
2005.

29

MOBIUS Deliverable D2.5 Report on safe information release

50

[44] P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-
time framework for protocol analysis. In ACM Conference on Computer and
Communications Security, pages 112–121, November 1998.

[45] G. Lowe. Quantifying information flow. In Proc. IEEE Computer Security Foun-
dations Workshop, pages 18–31, June 2002.

[46] H. Mantel. Possibilistic definitions of security – An assembly kit –. In Proc. IEEE
Computer Security Foundations Workshop, pages 185–199, July 2000.

[47] H. Mantel. Information flow control and applications—Bridging a gap. In Proc.
Formal Methods Europe, volume 2021 of LNCS, pages 153–172. Springer-Verlag,
March 2001.

[48] H. Mantel and A. Sabelfeld. A unifying approach to the security of distributed
and multi-threaded programs. J. Computer Security, 11(4):615–676, September
2003.

[49] H. Mantel and D. Sands. Controlled downgrading based on intransitive
(non)interference. In Proc. Asian Symp. on Programming Languages and Sys-
tems, volume 3302 of LNCS, pages 129–145. Springer-Verlag, November 2004.

[50] I. Mastroeni. On the role of abstract non-interference in language-based security.
In Proc. Asian Symp. on Programming Languages and Systems, volume 3780 of
LNCS. Springer-Verlag, November 2005.

[51] J. C. Mitchell. On abstraction and the expressive power of programming lan-
guages. Science of Computer Programming, 212:141–163, 1993.

[52] J. C. Mitchell. Probabilistic polynomial-time process calculus and security proto-
col analysis. In Proc. European Symp. on Programming, volume 2028 of LNCS,
pages 23–29. Springer-Verlag, April 2001.

[53] J. Mullins. Non-deterministic admissible interference. J. of Universal Computer
Science, 6(11):1054–1070, 2000.

[54] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc.
ACM Symp. on Principles of Programming Languages, pages 228–241, January
1999.

[55] A. C. Myers and B. Liskov. A decentralized model for information flow control.
In Proc. ACM Symp. on Operating System Principles, pages 129–142, October
1997.

[56] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification.
In Proc. IEEE Computer Security Foundations Workshop, pages 172–186, June
2004.

[57] A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification.
J. Computer Security, 14(2):157–196, May 2006.

30

MOBIUS Deliverable D2.5 Report on safe information release

51

[58] A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nys-
trom. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001–2004.

[59] S. Pinsky. Absorbing covers and intransitive non-interference. In Proc. IEEE
Symp. on Security and Privacy, pages 102–113, May 1995.

[60] G. D. Plotkin. LCF considered as a programming language. Theoretical Com-
puter Science, 5(1):223–255, December 1977.

[61] F. Pottier and S. Conchon. Information flow inference for free. In Proc. ACM
International Conference on Functional Programming, pages 46–57, September
2000.

[62] F. Prost. On the semantics of non-interference type-based analyses. In JFLA’001,
Journées Francophones des Langages Applicatifs, January 2001.

[63] A. W. Roscoe and M. H. Goldsmith. What is intransitive noninterference? In
Proc. IEEE Computer Security Foundations Workshop, pages 228–238, June
1999.

[64] J. M. Rushby. Noninterference, transitivity, and channel-control security policies.
Technical Report CSL-92-02, SRI International, 1992.

[65] P. Ryan. Mathematical models of computer security—tutorial lectures. In R. Fo-
cardi and R. Gorrieri, editors, Foundations of Security Analysis and Design, vol-
ume 2171 of LNCS, pages 1–62. Springer-Verlag, 2001.

[66] P. Ryan and S. Schneider. Process algebra and non-interference. In Proc. IEEE
Computer Security Foundations Workshop, pages 214–227, June 1999.

[67] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE
J. Selected Areas in Communications, 21(1):5–19, January 2003.

[68] A. Sabelfeld and A. C. Myers. A model for delimited information release. In
Proc. International Symp. on Software Security (ISSS’03), volume 3233 of LNCS,
pages 174–191. Springer-Verlag, October 2004.

[69] A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded pro-
grams. In Proc. IEEE Computer Security Foundations Workshop, pages 200–214,
July 2000.

[70] A. Sabelfeld and D. Sands. A per model of secure information flow in sequential
programs. Higher Order and Symbolic Computation, 14(1):59–91, March 2001.

[71] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In
Proc. IEEE Computer Security Foundations Workshop, pages 255–269, June
2005.

31

MOBIUS Deliverable D2.5 Report on safe information release

52

[72] D. Sands, J. Gustavsson, and A. Moran. Lambda calculi and linear speedups. In
The essence of computation: complexity, analysis, transformation, volume 2566
of LNCS, pages 60–82. Springer-Verlag, 2002.

[73] T. Terauchi and A. Aiken. Secure information flow as a safety problem. In
Proc. Symp. on Static Analysis, volume 3672 of LNCS, pages 352–367. Springer-
Verlag, September 2005.

[74] S. Tse and S. Zdancewic. Designing a security-typed language with certificate-
based declassification. In Proc. European Symp. on Programming, volume 3444
of LNCS, pages 279–294. Springer-Verlag, April 2005.

[75] D. Volpano. Secure introduction of one-way functions. In Proc. IEEE Computer
Security Foundations Workshop, pages 246–254, July 2000.

[76] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Proc. ACM
Symp. on Principles of Programming Languages, pages 268–276, January 2000.

[77] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analy-
sis. J. Computer Security, 4(3):167–187, 1996.

[78] S. Zdancewic. Challenges for information-flow security. In Proc. Programming
Language Interference and Dependence (PLID), August 2004.

[79] S. Zdancewic and A. C. Myers. Robust declassification. In Proc. IEEE Computer
Security Foundations Workshop, pages 15–23, June 2001.

32

MOBIUS Deliverable D2.5 Report on safe information release

53

Tractable Enforcement of Declassification Policies

Gilles Barthe
INRIA Sophia Antipolis
Gilles.Barthe@inria.fr

Salvador Cavadini
INRIA Sophia Antipolis

Salvador.Cavadini@sophia.inria.fr

Tamara Rezk
INRIA Sophia Antipolis and MSR-INRIA Joint Centre

Tamara.Rezk@inria.fr

Abstract

Formalizing appropriate information policies that au-
thorize some controlled form of information release, and
providing sound analyses for these policies is a necessary
step towards practical applications of language-based se-
curity.

We propose a modular method to enhance non-
interference type systems to support controlled forms of in-
formation release that combine the what and where dimen-
sions of declassification. As a case study, we derive from
earlier work on non-interference type systems new type sys-
tems that soundly enforce declassification policies for se-
quential fragments of the Java Virtual Machine.

Our work provides the first modular method to define
sound type systems for declassification policies, and the first
instance of a sound type system that supports declassifica-
tion policies for unstructured languages.

1. Introduction

Non-interference [18] is a baseline information flow
policy which ensures that publicly available information
does not reveal any information about sensitive data during
program execution. Non-interference policies are appeal-
ing because of the strong security guarantees they provide
(zero information leakage); however, practical confidential-
ity policies cannot be construed to non-interference, as they
almost invariably require some constrained release of infor-
mation.

An important challenge in information flow language-
based security is to capture more accurately the kind of con-
fidentiality policies that are needed in practise and to pro-
vide tractable and sound enforcement mechanisms for these
policies [37]. Declassification policies [35] are weaker
forms of information flow policies that permit some con-

strained information release along four axes regarding what
specific information is released, where within a specific
code fragment it is released, who releases it, and when it
is released.

Our contribution is in the line of designing tractable
and sound enforcement mechanisms for declassification
policies. More concretely, we provide a modular method
for achieving sound type systems for declassification from
sound type systems for non-interference, and instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine.

We consider a declassification policy that combines
the what and where dimensions, called delimited non-
disclosure, that is closely related to the non-disclosure
policy proposed by Almeida Matos and Boudol [2]
and localised delimited release proposed by Askarov and
Sabelfeld [4]. Informally, delimited non-disclosure is in-
tended to combine two dimensions in a single construct of
the form

declassify e : τ in c

where e is an expression, τ is a security level, and c is a
statement.

The choice of the delimited non-disclosure policy is mo-
tivated by modularity; our aim is not to propose a new
declassification policy but rather to propose a systematic
extension of non-interference soundness results in order
to achieve declassification soundness for extended non-
interference type systems. This modularity is the most dis-
tinctive feature of our work. Indeed, existing proofs of
soundness proceed by induction over typing derivations,
and reproduce a large part of the proof of soundness of the
declassification-free fragment of the type system. Instead,
we take advantage of the fact that delimited non-disclosure
coincides with non-interference for programs without de-
classification to build a modular proof of soundness. More
precisely, we show that if the type system enforces non-
interference on the declassification-free fragment of the

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

54

language, then it enforces delimited non-disclosure. Our
method is based on a successor relation between program
points, rather than on the syntactic structure of programs,
and relies on the idea of control dependence regions, which
over-approximate the scope of branching instructions, i.e.
instructions that have two or more successors and that can
thus yield implicit flows. Here we adopt a local view of
policies, which substantially leverages the applicability of
information flow type checking and supports more permis-
sive policies.

A second distinctive feature of our approach is its ap-
plication to low-level languages. In the context of mobile
code security, it is essential for code consumers to be able
to verify security policies independently and efficiently on
the code they receive. Since mobile code applications are
typically downloaded in the form of bytecode programs, it
is required that verification operates at this level. However,
a large body of existing work on language-based security
focuses on source languages, and in fact we are not aware
of any sound type system that supports declassification poli-
cies for unstructured languages. In fact, existing informa-
tion flow type systems for unstructured languages typically
enforce non-interference, see e.g. [6].

Contributions Our main technical contributions are:

• a modular method to define and prove soundness of
declassification type systems;

• a case study in which we define and prove soundness
of a type system that enforces delimited non-disclosure
for a fragment of the Java Virtual Machine;

• a proof of preservation of typing between a type sys-
tem that enforces delimited non-disclosure in a high-
level language and our type system for the JVM.

Organisation The remaining of the paper is organized as
follows. Section 2 discusses closely related work. The de-
limited non-disclosure policy is introduced in Section 3,
and Section 4 provides through examples of programs a
more detailed comparison with other declassification poli-
cies. Section 5 shows how to construct a sound type sys-
tem from delimited non-disclosure, starting from a type sys-
tem for non-interference. In Section 6, we instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine. Section 7 discusses extensions of our work. We con-
clude in Section 8.

2 Related work

Sabelfeld and Sands [35] analyse main trends on infor-
mation declassification, and provide a set of principles to be
used as “sanity checks” for declassification models. Here

we only focus on very closely related work and we refer to
Sabelfeld and Sands’ survey for a wider overview.

Intransitive non-interference In intransitive non-
interference policies, flows from high variables to low ones
are mediated by a declassifier (or a downgrader), this way
non-interference becomes intransitive [30].

In [26], Mantel and Sands introduce an intransitive non-
interference based approach concerned to where informa-
tion is declassified.

In this approach, flow ordering is defined by two com-
ponents: the lattice of security levels, and an “exceptions”
relation on security levels expressing special flow cases.

The use of this special relation is deliberately circum-
scribed to declassification assignments, that is, assignments
that are allowed to violate the flow ordering (defined by the
lattice structure of security levels) as long they respect the
“exceptions” relation. This way, information declassifica-
tion can take place only at specific program points, i.e. at
declassification assignments.

Mantel and Sands also present a bisimulation-based def-
inition of their security policy along with a type system to
enforce it in a multi-threaded while language.

Localised delimited release Sabelfeld and Myers [34]
present delimited release, a security policy to declas-
sify information through the special language operator
declassify(e) where e is globally considered as declas-
sified (what dimension).

Later, Askarov and Sabelfeld [4] extended delimited re-
lease into localized delimited release, a security definition
combining what and where dimensions of information de-
classification. This is made through language semantics in-
strumentation with the set of declassified expressions and
capturing the scope of declassify(e) operators.

Non-disclosure Almeida Matos and Boudol [2] pro-
posed the non-disclosure policy, a generalisation of non-
interference that supports locally induced flow policies
through the use of the special construct flow (A ≺ B) in S,
where S is a language expression into which flows from
principal A to principal B are authorised. Non-disclosure
is classified as a declassification policy of the where dimen-
sion.

Flow locks Broberg and Sands [12] introduce the notion
of flow lock to specify local information flow policies. In
this approach, each variable has attached the set of sys-
tem principals (or security levels) that can read it. For each
principal in this set it is possible to define conditions under
which a principal has the right to access to the variable’s

84848484

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

55

value. These circumstances are represented as locks. Lo-
cal changes of the global policy are specified by means of
special program instructions to open and close locks.

Generalisations of non-interference such as non-
disclosure and some forms of intransitive non-interference
can be represented by flow locks.

Information erasure Hunt and Sands [21] study the se-
mantics of information erasure, a policy aimed at provid-
ing guarantees that certain information is not retained after
its intended use. Although it is possible to define erasure
policies that cover the what and where dimensions of de-
classification, Hunt and Sands focus on the where dimen-
sion. They show that every erasure property can be encoded
as (flow-sensitive) non-interference and provide a language
construct to express erasure policies in code blocks. They
also provide a global erasure property and show that it can
be enforced by combinning global non-interference and lo-
cal (command level) non-interference; and define a type
system for enforcing the erasure property in a simple while
language with inputs and outputs.

The work of Hunt and Sands is inspired by earlier work
by Chong and Myers [13], who considered erasure in com-
bination with declassification. Recently, Chong and My-
ers [14] proposed an information flow type system that
enforces non-interference according to a generalization of
non-interference introduced by the authors in [13].

Declassification by logic Banerjee et al. [5] present a
powerful way to specify security policies including condi-
tions under which declassification is permitted. The specifi-
cation mechanism is based on flowtriples, a combination of
program specification and security typing.

The authors also describe an enforcement mechanism in-
tegrating security typing (for declassification-free segments
of the program), and relational verification and assertion
verification (for instructions sequences in flow triples).

WHERE, WHAT1 and WHAT2 In [24], Mantel and
Reinhard propose three security conditions for control-
ling the where and what dimensions of declassification.
The WHERE condition is similar to intransitive non-
interference but it satisfies monotonicity of release along
with the other three declassification principles from [35].
While both WHAT1 and WHAT2 are applicable to con-
current programs, the former is compositional but does not
satisfy monotonicity of release principle, and the later satis-
fies this principle but is not compositional.

The authors provide a type system to enforce where and
what dimensions of declassification in such a way that all
declassified expressions (what) are allowed to flow to low
variables at declassification assignments (where).

3. Delimited Non-Disclosure

In this section, we introduce delimited non-disclosure
(DND). We formulate our policy in an abstract setting that
can be instantiated to different programming languages.

Program setting We let P range over programs of a given
programming language. Each program P has an associated
set P of program points that includes a distinguished entry
point entry and a set Pexit of exit points; we let i, j, i′ . . .
range over program points. We assume that for a program
P there is a successor relation 7→ between program points.
We let 7→∗ be the reflexive and transitive closure of 7→, and
assume that, whenever i ∈ Pexit, there is no successor pro-
gram point such that i 7→ j. We let P] denote the set of
branching program points, i.e. those program points that
have at least two distinct successors.

One primary target of our work are unstructured pro-
gramming languages, and therefore we rely on control de-
pendence regions to approximate the scope of branching
statements; such control dependence regions have been in-
troduced in the context of non-interference in [22], and used
in our earlier work [6]. Formally, we assume given two
functions:

region : P] 7→ ℘(P)
junction : P] ⇀ P

that respectively provide for each branching program point
the set of program points, called region, that execute de-
pending on the branching point; and a junction point (if it
exists), that denotes the unique exit point from the region.
We assume that these functions correctly over-approximate
the scope of branching statements, as formulated in the hy-
pothesis below.

Hypothesis 1 (Exit through junction). If j ∈ region(i)
and k ∈ P and j 7→ k, then either k ∈ region(i) or
k = junction(i).

Furthermore, we assume that the junction point of a re-
gion is undefined if the region contains an exit point.

Hypothesis 2 (No return before junction). If j ∈
region(i) ∪ Pexit then junction(i) is undefined.

These hypotheses exactly correspond to the safe over ap-
proximation properties SOAP2 and SOAP3 introduced e.g.
in [6] and used in the case study of Section 6.

The semantics of programs is defined as a transition sys-
tem on states. LetM be a set of states and s, t, s′ . . . range
overM. We assume that we have a projector pc on states
that returns the program point associated to the state. For
brevity, we write si to indicate that s is a state such that
pc(s) = i. The operational semantics of programs is given

85858585

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

56

by a small-step relation ; between states; ;? is defined
as its reflexive and transitive closure. We assume that ; is
suitably related to 7→, that is if si ; tj then i 7→ j.

Without loss of generality w.r.t. the goal of this paper, we
only consider type-safe programming languages, and pro-
grams that are well-typed w.r.t. safety [29], and thus can
never be in an incorrect state. More formally, we assume
given a type system `safe which ensures that programs are
type safe. In addition, we must reason about safe states,
which intuitively are states that are compatible with the type
of the program under execution; therefore, we assume given
for each typable program a predicate safeP on states.

Hypothesis 3 (Progress and preservation of safety).
If `safe P , i.e. P is typable w.r.t. `safe, and safeP (si), then
i ∈ Pexit or there is s′ such that si ; s′ and safeP (s′).

From now on, we assume that programs are type-safe.

Policy setting In expressing non-interference policies, it
is common to model confidentiality clearances by a security
lattice (S,≤) whose elements represent the distinct confi-
dentiality levels. Then, the expected security behaviour of a
program is captured by a single global policy Γ that assigns
confidentiality levels to variables.

For expressing declassification policies, we take a sim-
ple generalisation of the non-interference setting: instead
of a single policy Γ for the program, we assume that there
is a policy Γ[i] for each program point in the program.
(We postpone to Section 5.2 the correctness conditions that
should be satisfied by the family Γ[i]). The use of local poli-
cies for the specification of declassification permits more
precision on what is declassified within a code fragment.
Different memory policies for each program point in the
program allows us to specify when the security level of a
variable x is downgraded from its original policy, as given
by the security level Γ[entry](x) for x in the initial program
point entry.

Definition of delimited non-disclosure The definition of
non-interference for sequential languages may be formu-
lated in terms of a relation between inputs and outputs
of the program, because non-interference only considers
global policies. (in some settings such as abstract non-
interference [17], there is no requirement that the initial and
final policies coincide; nevertheless, these definitions do not
aim at enforcing local policies).

When defining localised declassification policies, even
in sequential settings, the security definition cannot be given
in terms of inputs and outputs. This is because memory
policies are local and should be respected not only in in-
put/output states but also in intermediate states. Further-
more, we need to define a behavioural equivalence that does
not necessarily correspond to any program trace, since we

“reset” the memory in some intermediate states [12]. We
begin by defining a notion of bisimulation that will char-
acterise the notion of security; in order to reflect the local
nature of policies, bisimulation is defined w.r.t. an indexed
family (∼Γ[i])i∈P of symmetric and transitive relations on
states.

Definition 1 (DND Bisimulation). A DND bisimulation is
a symmetric relation R between program points in P such
that for every i, j ∈ P , if iR j then for all si, tj and s′i′ s.t.

si ; s′i′ ∧ si ∼Γ[i] tj ∧ safeP (tj)

there exists t′j′ such that:

tj ;
∗ t′j′ ∧ s′i′ ∼Γ[entry] t

′
j′ ∧ i′ R j′

This notion of bisimulation follows the work of non-
disclosure [2]: two program points i and j are related if
starting with memories that are equal according to the local
memory policy, a transition of the first memory si ; s′i′
is matched by zero or more transitions of tj and the pro-
gram points of the final memories are bisimilar, and the final
memories are related by the global memory policy Γ[entry].

Let ≈ be the largest DND bisimulation.

Definition 2 (Delimited non-disclosure). A program P sat-
isfies the delimited non-disclosure policy if entry ≈ entry.

The definition of delimited non-disclosure is
termination-sensitive, in contrast to other declassifica-
tion policies such as localised delimited release [4].
As it is usual in language-based security, the question
of whether or not to use the termination-sensitive or
termination-insensitive version of the security notion
depends on the adversary model. Nevertheless, one could
get a termination-insensitive version of DND by adding as
hypothesis to the bisimulation that executions starting in si
and tj terminate.

We conclude this section with a brief remark about the
nature of delimited non-disclosure. As announced, the pol-
icy is intended to capture declassification along the what
and where dimensions. While the use of local policies
clearly indicates that delimited non-disclosure supports the
where aspect of declassification, it is not immediate from
the definition to which extent the what dimension is sup-
ported. Clearly, local policies offer the opportunity to de-
classify variables, but do not explicitly mention the possi-
bility of declassifying expressions. However, we are target-
ing unstructured languages in which intermediate compu-
tations are stored in intermediate memories, typically vari-
ables, and therefore it is sufficient to declassify variables
instead of expressions. Furthermore, it is always possible
to rewrite programs in a semantics-preserving fashion so
that declassification of an expression e can be reduced to

86868686

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

57

declassification on a freshly introduced variable that stores
the result of e. This is further elaborated in the next section,
where we provide an example of this transformation.

4. Examples

In this section we introduce a simple sequential language
to illustrate our policy and compare it with other declassi-
fication policies. To ease comparison with previous works
where the local memory is inferred from the program syn-
tax (see e.g. [12, 2, 4]), we consider a structured language,
and include a syntactic construct for declassification.

Security lattice For the sake of simplicity, we work with
a L ≤ H security lattice. Besides, we use h (resp. l) as a
program variable whose initial memory policy is H (resp.
L).

Language The syntax of the language is defined by the
grammar in Figure 1 where n ranges over numbers N =
{0, 1, . . .}, x ranges over program variables, op ranges over
arithmetic, boolean, and relational operators. As stated
above, we include an explicit command for declassification,
namely declassify (e) in { c }, to specify local policies
by means of the program syntax.

In order to identify program points, some commands of
the language are labelled with natural numbers i. We set
entry = 1. Local policies in our language might be directly
specified by functions that map program points to memory
policies. However, one can also choose to infer local mem-
ory policies from the program syntax, as explained in Ex-
ample 1.

The language semantics is standard, and ommitted. The
only non-standard command is declassify (e) in { c }—
contrary to the introduction, we do not indicate the security
level to which an expression is declassified, since there are
only two levels. Informally, this command does not affect
the semantics (its semantics is equivalent to a skip).

e ::= n | x | e op e
c ::= [skip]i | c ; c

| [x := e]i

| [if (e) then { c } else { c }]i

| [while (e) do { c }]i
| declassify (e) in { c }

Figure 1. Expression and command syntax

The command declassify (e) in { c } is used to spec-
ify a local policy where the security level of expression e is
L in the scope of command c.

In order to capture the what dimension of declassifica-
tion accurately, the command declassify (e) in { c }
declassifies whole expressions instead of single variables.
DND can cope with this form of declassification using a
simple program transformation, as is explained in Exam-
ple 2.

Examples Our first example illustrates how local policies
may be inferred from the syntax, and from the initial policy.

Example 1 (Local memory policy inference). Consider the
program:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

For such a program, we generate local memory policies as
follows:

Γ[1](l1) = Γ[1](l2) = Γ[1](l3) = L
Γ[1](h) = H
Γ[2](l1) = Γ[2](l2) = Γ[2](l3) = L
Γ[2](h) = L
Γ[3] = Γ[1]

Program point 3 is not in the scope of the declassification
command therefore its memory policy is the same of pro-
gram point 1.

This program complies with the DND policy for Γ de-
fined above because the direct flow from h to l2 produced
by assignment at 2 is authorised by the local memory policy
Γ[2].

Our second example illustrates how delimited non-
disclosure could capture declassification of expressions by
an appropriate program transformation.

Example 2 (Declassification of expressions in DND). Ex-
pression level declassification can be accomplished in DND
by assigning the declassified expression to a fresh variable
and replacing expression occurrences by the new variable.
For example, if we are interested in declassifying the expres-
sion h > 0 in the program:

declassify (h > 0) in { [if (h > 0) then { [l := 0]2 }]1 }
we transform the program into:

[h′ := h > 0]1 ;
declassify (h′) in { [if (h′) then { [l := 0]3 }]2 }

where h′ is a fresh variable name, and generate the follow-
ing memory policies:

Γ[1](l) = L
Γ[1](h) = Γ[1](h′) = H
Γ[2](l) = Γ[2](h′) = L
Γ[2](h) = H
Γ[3] = Γ[2]

87878787

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

58

The next examples compare delimited non-disclosure
with delimited release and its localised version.

Example 3 (Complies with DR and not DND). Consider
the program:

[l := h]1 ; declassify (h) in { [l := h]2 }

The program does not comply with DND because com-
mand at program point 1 contains an explicit flow for the
initial local memory policy that says that Γ[1](l) = L and
Γ[1](h) = H . This program complies with delimited re-
lease [34], that only imposes restrictions on what is declas-
sified without considering where declassification occurs. As
discussed in [4] (p.1), a policy based only on the what di-
mension does not qualify for a declassification policy be-
cause it already assumes that secrets are known from the
program’s start. This program is not accepted by LDR.

Example 4 (Complies with LDR and DND). Consider the
program:

[h2 := 0]1 ;
[if (h1) then { declassify (h1) in { [l := h1]3 } } else {

declassify (h2) in { [l := h2]4 } }]2

After the execution of this program the final value of l is
the value of h1 even if h1 has not been declassified. Delim-
ited release accepts this program but DND and localized
delimited release reject it.

In contrast to delimited non-disclosure, localised delim-
ited release rejects programs that may lead to laundering
attacks [4] by allowing variables to be modified before their
declassification. Indeed, our policy does not provide by it-
self any protection against laundering attacks.

We have essentially two reasons for not excluding laun-
dering attacks by definition of DND. First of all, we believe
that the indistinguishability of memories property (exclu-
sively expressed by e.g. DND) and the lack of laundering
attacks safety property are independent concepts. Hence
there is no need to put both concepts together in a sin-
gle property, as is the case in LDR. Furthermore, this well
marked independence between the “indistinguishability”
part of LDR and the laundering attack part of LDR leads
as to conjecture that, given corresponding local memory
policies, programs that comply with termination-sensitive
version of LDR also comply with DND and programs that
comply with DND and do not have laundering attacks, com-
ply with LDR.

The second and most important reason is that by separat-
ing concepts of laundering attacks and DND, it is possible to
modularly extend (as shown in Section 5) type systems for
non-interference and even more important, construct a proof
of soundness of this extension that can be adapted to a se-
ries of different languages, constructs, and non-interference
type systems. Even more, laundering attacks can be avoided

`LA [skip]i : ∅, ∅

`LA [x := e]i : {x}, ∅

`LA C1 : U1, V1 `LA C2 : U2, V2 U1 ∩ V2 = ∅
`LA C1 ; C2 : U1 ∪ U2, V1 ∪ V2

`LA C1 : U, V `LA C2 : U, V

`LA [if (e) then { C1 } else { C2 }]i : U, V

`LA C : U, V U ∩ V = ∅
`LA [while (e) do { C }]i : U, V

`LA C : U, V

`LA declassify (x) in { C } : U, V ∪ {x}

`LA C : U, V U ⊆ U ′ V ⊆ V ′

`LA C : U ′, V ′

Figure 2. Effect system against laundering

by a simple effect system which ensures that variables that
are declassified were not previously updated. To show this,
we define a type system in Fig. 2 as an example of a type
system to prevent laundering attacks. The judgements are
of the form `LA C : U, V where C is a command, U
is a set of variables which meaning is variables that have
been assigned by previous commands but not yet declassi-
fied and V is a set of variables which meaning is variables
that have been declassified. The typing rules for compos-
ite commands, and in particular for loops, put disjointness
constraints on the set of previously assigned variables and
the set of declassified variables.

Example 5 (Laundering attacks).

[h := 0]1 ; declassify (h) in { [l := h]2 }

This program is rejected by localised delimited release
and accepted by DND. However, the program is rejected by
the laundering-attacks type system given in Fig. 2, since the
only V sets typing [h := 0]1 must contain h by the rule of
assingments, and the only U sets typing the declassify con-
struct must contain h by the rule of declassification con-
structs. By the rule of sequential composition the V set of
the assigment and the U set of the declassification instruc-
tion must not have common elements.

Our next example suggests that it may be possible to
encode localised delimited release using DND. We conjec-
ture that a terminating program is accepted by localized de-
limited release iff its transformation along the process de-

88888888

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

59

scribed above is accepted by delimited non-disclosure and
by the effect system against laundering.

Example 6 (Program complies with LDR but not with
DND). Localised delimited release accepts programs like:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := h]3

because it considers that assignment to l3 is “intuitively”
secure because the program can be safely transformed into:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := l2]3

For DND, assignments 1 and 2 are valid because they are
made in the scope of the declassification of variable h, but
assignment 3 does not comply with our policy.

Notice that, if necessary, the original program can be
transformed to be accepted by DND by extending the de-
classification region until the end of the program:

declassify (h) in { [l := h]1 ; [l2 := h]2 ; [l3 := h]3 }

We conclude this section by a comparison with non-
disclosure, which is closely related to DND. The main dif-
ference is that DND permits a fine-grained relaxation of
non-interference by authorising exceptional flows not from
all high variables but from user defined sets of high vari-
ables. In contrast, non-disclosure is based on a global se-
curity lattice G that dynamically evolves to interpret locally
induced flow policies. These policies introduce new flow
relations in G in the context of sets of program points. Out-
side these sets, the global security lattice remains as it was
at the beginning of the program.

The following example compares non-disclosure [2] and
delimited non-disclosure, and suggests a possible encoding
of ND in terms of DND. In contrast to non-disclosure, we
assume that the security lattice does not change at differ-
ent points of the program but variable confidentiality levels
change. Thus, our security policy is not expressed by means
of flows between principals (that determine the security lat-
tice) but rather by local memory policies.

Example 7 (Non-disclosure). The flow declaration con-
struct of non-disclosure

flow (p2 ≺ p1) in c

is introduced to express local lattice modifications. Here c is
a statement into which the original security lattice induced
by principals {p2, p1} is modified to permit flows from p2 to
p1. Let’s name elements in the original lattice as

H = {}
H1 = {p1}
H2 = {p2}
L = {p1, p2}

where ≤ is given by the subset relation. The new lattice in-
duced by the flow construct above, treats H2 as L (security
level H2 dissapears from the lattice).

In our policy the security lattice is not modified, in-
stead the initial memory policy Γ[1] is adapted at each
program point in order to reflect local relaxations of non-
interference.

Therefore, the effect of the above flow construct, in terms
of our policy, is that for all variable x such that Γ[1](x) =
H2 we have Γ[j](x) = L if j is a program point for state-
ment c.

For example, if the program has variables h and h′ with
Γ[1](h) = Γ[1](h′) = H2, then flow (p2 ≺ p1) in c can
be expressed in our language as:

declassify (h) in { declassify (h′) in { c } }

The flow construct of non-disclosure is expressed in our
setting as a declassification of all variables belonging to the
security levels induced by the new flow.

5. Enforcing delimited non-disclosure

The purpose of this section is to provide a modular defi-
nition and soundness proof of an information flow type sys-
tem that enforces delimited non-disclosure. For simplicity,
we fix the lattice of security levels to S = {L,H} with
L ≤ H and assume that security policies are functions that
attach security levels to program variables. (However the
main result applies to arbitrary lattices, the simplification to
two level lattices applies to the hypotheses on NI, and these
hypotheses can be generalized as shown in e.g. [6].)

The order on security levels can be extended pointwise
to security policies; by abuse of notation, we let ≤ denote
the order between policies.

5.1 Assumptions on NI typing

Our starting point is a type system `NI designed for
enforcing non-interference. The type system operates on
a program P annotated with control dependence regions
(region, junction), and is parameterised by a security en-
vironment se that maps program points to levels, a policy
Γ that maps variables to security levels, and a type S; the
exact nature of types does not need to be specified. For
readability, typing judgements are written in the following
form:

Γ, S `NI i

where Γ is a policy, S is a type, i is a program point. All
other parameters are left implicit.

The principal hypotheses that we make on `NI take the
form of unwinding statements. The first unwinding hypoth-
esis states that execution locally respects state equivalence,
i.e. if we start from two equivalent states that point to the
same instruction and perform one step of execution, then
the two resulting states are also equivalent. Additionally, it

89898989

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

60

makes some technical assumption about the program coun-
ters of the resulting states: either they coincide, or the initial
states were pointing to a high branching instruction.

In order to formulate the notion of high branching
instruction, we say that k has a high region, written
highregion(k), iff k is a branching point, and se(j) = H for
every j ∈ region(k). Moreover, we write i ∈ highregion(k)
to mean highregion(k) and i ∈ region(k).

Hypothesis 4 (LowNI). Assume that Γ, S `NI i, and
si ∼Γ ti, and si ; s′i′ and ti ; t′j′ . Then s′i′ ∼Γ t′j′
and one of the following holds:

• i′ = j′, or

• highregion(i), and i′, j′ ∈ region(i) ∪ {junction(i)}.
The second hypothesis states that executing an instruc-

tion in a high control dependence region does not modify
the observable part of a state. It corresponds to the step pre-
serving unwinding property of [30].

Hypothesis 5 (HighNI). Assume that highregion(k) and let
i, i′ ∈ region(k). Assume that si ; s′i′ and Γ, S `NI i.
Then si ∼Γ s

′
i′ .

Using the above lemmas, one can prove that typable pro-
grams are non-interfering.

Definition 3. A program P is typable with type S w.r.t. Γ,
written Γ, S `NI P , iff for every program point i, we have
Γ, S `NI i.

Using an adaptation of the general scheme of [7], one
can prove that, under the hypotheses of this section, typable
programs are non-interfering. More precisely, if P is ty-
pable w.r.t. Γ, then P is non interferent w.r.t. Γ, i.e. for all
sentry, tentry:

sentry ∼Γ tentry
sentry ;

? s′i
tentry ;

? t′j
i, j ∈ Pexit

⇒ s′i ∼Γ t

′
j

5.2 Typing delimited non-disclosure

The goal of this section is to formulate the DND-type
system and to prove that, under some mild hypotheses, pro-
grams that are typable by the DND-type system verify the
delimited non-disclosure policy. We begin by defining the
type system.

The type system for delimited non-disclosure is very
similar to the type system for non-interference, but is pa-
rameterised by a family of policies (Γ[i])i∈P . Like the type
system for non-interference, the type system for delimited
non-disclosure is parameterised by control dependence re-
gions (region, junction), a security environment se and a
type S.

Definition 4. Let (Γ[i])i∈P be an indexed set of local poli-
cies. A program P is typable with type S w.r.t. (Γ[i])i∈P ,
written (Γ[i])i∈P , S `DND P , iff for every program point
i, we have Γ[i], S `NI i.

The DND type system is conservative: intuitively, pro-
grams without declassification (i.e. without different lo-
cal policies) that are typable by the DND type system are
non-interferent programs. However, (Γ[i])i∈P , S `DND P
does not necessarily imply that Γ[i], S `NI P for some
i ∈ P(P).

Note that, at such an abstract level, there is a strong simi-
larity between our type system for delimited non-disclosure,
and flow-sensitive type systems [20], since they both rely
on a family of policies (Γ[i])i∈P . However, the type system
for delimited non-disclosure makes different assumptions
on this family: see Hypothesis 7.

Termination Delimited non-disclosure is termination
sensitive and the type system must reject any program that
has loops whose termination behaviour is influenced by
confidential data. Therefore, we must of a program anal-
ysis loop that detects that the branching point i is a loop,
and we assume that the type system guarantees that all high
loops terminate. In the sequel, we write loop(i) if the anal-
ysis detects that i is a loop, see e.g. [28] for a definition of
such an analysis.

Hypothesis 6 (Termination of while loops). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point such
that highregion(i) and loop(i). Then junction(i) is defined.
Besides, if j ∈ region(i), and sj is safe, i.e. `safe sj , then
there exists tj′ such that sj ;? tj′ , and j′ = junction(i).

The hypothesis states that high loops terminate normally
(in contrast to abrupt termination caused by a return in a
loop). This condition can be brutally enforced by typing
rules that reject all high loops [36, 2]. However, Gérard
Boudol [11] observed that such typing rules can be largely
improved by being parameterised by a termination analysis
(see e.g. [15] for an advanced analysis of this kind).

Note that one can strengthen the hypothesis by not re-
quiring that i is a loop, using Hypothesis 2.

Lemma 1 (Exit from high guards). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point
such that highregion(i) and junction(i) is defined. If
j ∈ region(i), and sj is safe, i.e. `safe sj , then there exists
tj′ such that sj ;? tj′ , and j′ = junction(i).

Proof. If loop(i), then we apply directly Hypothesis 6. Oth-
erwise, one can apply Hypotheses 1 and 2, together with
progress (Hypothesis 3).

We use Lemma 1 in the proof of Theorem 1 below.

90909090

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

61

Correct memory policies In order to be able to prove
soundness of the DND type system, we impose mild restric-
tions on families of local memory policies (Γ[i])i∈P . These
restrictions can be verified automatically independently of
the DND type system.

Hypothesis 7 (Correct memory policies). A family of mem-
ory policies (Γ[i])i∈P is correct if for all i, j ∈ P:

1. for every variable x, we have Γ[i](x) ≤ Γ[entry](x);

2. if highregion(i) and j ∈ region(i) ∪ {junction(i)},
then Γ[j] = Γ[i].

The first item says that a memory policy for a variable
x can be downgraded (declassified) but not upgraded. The
second item says that inside high control dependence re-
gion and up to the junction point, local policies remain
unchanged; this assumption is in line with previous work
on disallowing declassification inside high branching state-
ments, and rightfully rejects programs such as

[if (h) then { declassify (h1) in { [l := h1]2 } }]1

which leaks the value of h through the knowledge of
whether h1 has been declassified or not (see Example 4).

Hypothesis 8 (Monotonicity of ∼). If Γ[i] ≤ Γ[j] and
s ∼Γ[i] t then s ∼Γ[j] t.

The hypothesis guarantees monotonicity of ∼Γ[i] w.r.t.
the order of local memory policies.

Soundness proof To prove that the DND type system en-
forces delimited non-disclosure, we exhibit a DND bisimu-
lation B that satisfies entry B entry. The relation B is de-
fined inductively by the clauses

i B i
j B i
i B j

i, j ∈ highregion(k)

i B j
i ∈ highregion(k) j = junction(k)

i B j

Since B is reflexive, we obviously have entry B entry.
In the sequel, we assume that all aforementioned hy-

potheses are satisfied.

Theorem 1 (Soundness of `DND). If (Γ[i])i∈P , S `DND

P , then P complies with the delimited non-disclosure policy
w.r.t. (Γ[i])i∈P .

Proof. We show that B is a DND bisimulation. Assume
that iBj. There are four cases to treat:

• If i = j. Let si and ti be states s.t. si ; s′i′ and
si ∼Γ[i] ti. Suppose that safeP (tj). By progress (Hy-
pothesis 3), either i ∈ Pexit or there exists t′j′ such that
ti ; t′j′ . Since si ; s′i′ , we have i 6∈ Pexit, and thus
there exists t′i′ such that ti ; t′j′ . By locally respects
unwinding (Hypothesis 4), s′i′ ∼Γ[i] t

′
j′ and i′ = j′, or

i′, j′ ∈ region(i)∪{junction(i)}. In all cases, we have
i′Bj′.
Furthermore, by Hypothesis 7 Γ[i] ≤ Γ[entry] and by
Hypothesis 8 s′i′ ∼Γ[entry] t

′
j′ , so we are done.

• If i, j ∈ highregion(k) for some k. Let si ∼Γ[i] tj ,
and assume that si ; s′i′ . By step preserving unwind-
ing (Hypothesis 5), s′i′ ∼Γ[i] tj . By monotonicity of
local policies (Hypothesis 7), s′i′ ∼Γ[entry] t

′
j . Further-

more, exit through junction (Hypothesis 1) ensures that
junction(i) is the unique exit point of region(i), there-
fore either i′ ∈ region(k) or i′ = junction(k). In both
cases, i′Bj.

• If i ∈ highregion(k) and j = junction(k) for some
k. This case is similar to the above (except for the fact
that if i′ = junction(k) we use the reflexivity of B to
conclude that i′Bj).

• If j ∈ highregion(k) and i = junction(k) for some k.
Let si ∼Γ[i] tj , and assume that si ; s′i′ . By progress
(Hypothesis 3) and exit from high guards (Lemma 1),
and by exit through junction (Hypothesis 1), there ex-
ists a sequence

tj ; u1
k1

; . . . ; ulkl
; u′i

such that k1 . . . kl ∈ region(i). By repeatedly apply-
ing the step preserves unwinding (Hypothesis 5), ap-
pealing to the correctness of memory policy (Hypoth-
esis 7), which ensures that policy do not vary in high
regions, and the transitivity of state equivalence, we
conclude that tj ∼Γ[k] u

′
i. Since Γ[k] = Γ[i] by cor-

rectness of memory policy (Hypothesis 7), we have by
transitivity si ∼Γ[i] u

′
i, and can conclude as in the first

case.

6. Case study: Java Virtual Machine

The objective of this section is to apply our results to
a minimal fragment of the JVM. We also establish type-
preserving compilation w.r.t. a type system for the language
of Section 4. Finally, we discuss the applicability of the
method to a larger fragment of the JVM.

91919191

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

62

instr ::= binop op binary operation on stack
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump

Figure 3. JVMI instructions

6.1 Language and policy

For brevity, we consider a fragment called JVMI , whose
instruction set is given in Figure 3; we use op to range over
binary operations, v over values, x over variables, and j
over program points.

The operational semantics of JVMI programs is stan-
dard, and given by a small-step relation ; that represents
one step execution of the virtual machine. States can either
be intermediate, in which case they consist of an operand
stack, a memory, and a program counter, or final, in which
case they consist of a memory. We use 〈i, ρ, os〉 to denote
an intermediate state with program counter i, memory ρ and
operand stack os. Final states are simply identified with
memories.

To instantiate delimited non-disclosure to JVMI pro-
grams, we must first define local policies. A local policy
is simply a mapping from variables to levels. We assume
given a policy Γ[i] for each program point i.

Next, we define an indexed family of partial equivalence
relations between states. This involves defining equivalence
between memories, and between operand stacks.

Definition 5. Two memories µ and µ′ are equivalent w.r.t.
Γ, written µ ∼Mem

Γ µ′, iff µ(x) = µ′(x) for every variable
x such that Γ(x) = L.

Equivalence between operand stacks is defined relative
to stack types. (There are both weaker and stronger notions
of operand stack equivalence; see [7] for a discussion on
these notions).

Definition 6. The relation os1 ∼Stk
st1,st2 os2, where

st1, st2 ∈ S∗, is defined inductively, together with the
inductively defined auxiliary relation high(os, st), in Fig-
ure 4.

Finally, state equivalence is defined in the obvious way.

Definition 7. Let S : P → S∗. Two states s = 〈i, ρ, os〉
and s′ = 〈i′, ρ′, os′〉 are equivalent, written s ∼State s′, iff
Γ(i) = Γ(i′) and ρ ∼Mem

Γ(i) ρ
′ and os ∼Stk

S(i),S(i′) os
′.

To conclude with the definition of delimited non-
disclosure, one needs to define the notion of safe state. In

high(os1, st1) high(os2, st2)

os1 ∼Stk
st1,st2 os2

os1 ∼Stk
st1,st2 os2

v :: os1 ∼Stk
L::st1,L::st2

v :: os2

os1 ∼Stk
st1,st2 os2

v1 :: os1 ∼Stk
H::st1,H::st2

v2 :: os2

high(ε, ε)

high(os, st)

high(v :: os,H :: st)

Figure 4. Operand stack equivalence

our setting, a safety type assigns to each program point
a natural number that represents the height of its operand
stack, and a state is safe if its operand stack has the cor-
rect height w.r.t. its program counter. The safety type sys-
tem tracks the height of the operand stack, and ensures that
jumps are correct, i.e. remain within the program code. It
is easy to show Hypothesis 3, i.e. that safe states enjoy
progress. In a more general setting, one can define safe
states using the work of Freund and Mitchell [16], who for-
malized a safety type system for the JVM, and showed that
safe programs enjoy progress.

6.2 Type system

The type system is expressed by rules of the form

i
JVM

` st⇒ st′

where i is a program point and st, st′ ∈ S? are stacks types.
The rules are given in Figure 5, and assume that programs
come equipped with control dependence regions (cdr), and
a security environment. The rules exactly match the rules
of [6], except that:

• the rules for load and store use the local policy;

• the rule for ifeq rejects high loops, and is instantiated
to the case where the stack is empty after execution
(which is the case for compiled programs, see [23]).

The typing rules of JVMI can be viewed as an instance
of the generic type system. Indeed, define a type to be a
map S from program points to stack types. Then, we define
(Γ[i])i∈P , S `DND P iff the following holds:

• S(entry) is the empty stack;

• for every i s.t. se(i) = H , the stack S(i) is high (i.e.
all elements of S(i) are equal to H);

92929292

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

63

P [i] = push n

i `DND st⇒ se(i) :: st

P [i] = binop op

i `DND k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γi(x)

i `DND k :: st⇒ st

P [i] = load x

i `DND st⇒ (Γi(x) t se(i)) :: st

P [i] = goto j

i `DND st⇒ st

P [i] = return se(i) = L

i `DND k :: st⇒ ε

P [i] = ifeq j loop(i)⇒ k = L
∀j′ ∈ region(i), k ≤ se(j′)

i `DND k :: ε⇒ ε

Figure 5. Transfer rules for JVMI instructions

• if i 7→ j, then i
JVM

` S(i)⇒ st for some st ≤ S(j).

Under this definition, and restricting ourselves to constant
families of policies (i.e. families of policies (Γ[i])i∈P s.t.
Γ[i] = Γ[j] for all i and j), the notion of typable pro-
gram w.r.t. `NI coincides with the notion of typable pro-
gram in [6]. Furthermore, one can use our construction
of `DND, Theorem 1 and our earlier results in the proof
of non-interference for JVMI to conclude that `DND en-
forces delimited non-disclosure.

Theorem 2. Let (Γi)i∈P be correct policies. Let P
be a safe program such that (Γi)i∈P , S `DND P . If
(region, junction) satisfy the SOAP properties (given in Fig-
ure 6), then P satisfy delimited non-disclosure.

We briefly indicate why the hypotheses of Section 5
hold. Exit through junction (Hypothesis 1) corresponds
exactly to the property SOAP2, whereas no return before
junction (Hypothesis 2) corresponds exactly to the property
SOAP3.

Progress and preservation of safety (Hypothesis 3) hold
as explained above.

The unwinding statements (Hypotheses 4 and 5) are di-
rect consequences of the unwinding lemmas proved in [6];
note that the unwinding statements are proved using the
SOAP properties.

Hypothesis 6 holds by definition of the typing rule for
ifeq, which prevents highregion(i) and loop(i) from hold-
ing simultaneously.

SOAP1 for all program points i and all successors j, k of
i (i 7→ j and i 7→ k) such that j 6= k (i is hence a
branching point), k ∈ region(i) or k = junction(i);

SOAP2 for all program points i, j, k, if j ∈ region(i) and
j 7→ k, then either k ∈ region(i) or k = junction(i);

SOAP3 for all program points i, j, if j ∈ region(i) and
j ∈ Pexit then junction(i) is undefined.

Figure 6. SOAP properties

Finally, correctness of memories (Hypothesis 7) is an as-
sumption of the theorem, and monotonicity (Hypothesis 8)
holds trivially.

6.3 Type-preserving compilation

In this section, we focus on preservation of typability by
compilation. The benefits of type preservation are two-fold:
they guarantee program developers that their programs writ-
ten in an information flow aware programming language
will be compiled into executable code that will be accepted
by a security architecture that integrates an information flow
bytecode verifier. Conversely, they guarantee code con-
sumers of the existence of practical tools to develop appli-
cations that will provably meet the policy enforced by their
information flow aware security architecture.

We consider the source language introduced in Section 4,
and define a declassification type system. The type sys-
tem is parameterized by a family (Γ[i])i of local policies,
in this case one policy per label. As already explained in
Example 1, these local policies can be inferred from the
initial policy, and from the program syntax. (Alternatively,
one could formulate a type system that is parameterized by
a single policy, that corresponds to the policy at the entry
point of the program, and use the type system to track the
local changes in the policy.)

Furthermore, the local policies (Γi)i∈P for T (P) are
generated from the initial policy of P (that is the policy of
the entry point of P) and from the declassify (.) in { . }
constructs, as explained in Example 1.

The type system for the source language is given by the
rules given in Figs. 7 and 8. Notice that since we have local
policies (Γ[i])i for each program point, the rule for declassi-
fication corresponds exactly to typability of C and the type
system is very similar to a non-interference type system ex-
cept because it uses a set of local policies instead of a unique
global policy.

Notice furthermore that the typing rules are restricted
to programs in which only variables are declassified.
In order to extend typing to programs that do not
meet this restriction, we use the source-to-source trans-

93939393

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

64

(Γ[i])i `DND n : L

(Γ[i])i `DND x : Γ(x)

(Γ[i])i `DND e1 : k (Γ[i])i `DND e2 : k

(Γ[i])i `DND e1 op e2 : k

(Γ[i])i `DND e : k1 k1 ≤ k2
(Γ[i])i `DND e : k2

Figure 7. Typing rules for expressions

(Γ[i])i `DND [skip]i : L

(Γ[i])i `DND e : Γi(x)

(Γ[i])i `DND [x := e]i : Γ(x)

(Γ[i])i `DND e : k
(Γ[i])i `DND C1 : k (Γ[i])i `DND C2 : k

(Γ[i])i `DND [if (e) then { C1 } else { C2 }]i : k

(Γ[i])i `DND C : k

(Γ[i])i `DND declassify (x) in { C } : k

(Γ[i])i `DND e : L (Γ[i])i `DND C : L

(Γ[i])i `DND [while (e) do { C }]i : k

(Γ[i])i `DND C : k k′ ≤ k
(Γ[i])i `DND C : k′

Figure 8. Typing rules for commands

formation introduced in Example 2. This transforma-
tion replaces declassify (e) in { c } by x :=
e; declassify (x) in { c′ }, where x is a fresh vari-
able and c′ is recursively obtained from applying the same
transformation to c[e/x]. This transformation is semantics-
preserving provided variables in e are not modified in c. In
the sequel, we denote by T (P) the result of applying this
transformation to P .

We consider a non-optimizing compiler [[.]]. Its defi-
nition on programs is standard, except for the statement
declassify (x) in { c }, which is compiled to [[c]] (that
is, declassify statements are ignored by compilation). The
compiler is extended to programs that delassify expressions
by composition with the transformation T .

As the bytecode type system uses both a cdr struc-
ture (region, junction), a security environment se, and
local policies (Γ[i])i∈P , the compiler must also gener-
ate this additional information. Furthermore, the gener-

ated information must ensure that [[P]] is typable w.r.t.
(region, junction), (Γ[i])i∈P and se. The cdr structure and
security environment of the compiled programs can be de-
fined as in earlier works on type-preserving compilation,
e.g. [8].

The compiler maps every labeled statement in the source
programs to a set of program points. The local policy of
these program points is inherited from the local policy of
the label of their corresponding source statement.

Theorem 3 (Typability Preservation). Let P be a source
program with correct memory policies. Assume that T (P)
is typable by the DND source type system. Then [[P]] is a ty-
pable bytecode program (w.r.t. the generated information).

In addition, the generated cdr structure
(region, junction) satisfies the SOAP properties and
the generated local policies (Γ[i])i∈P are correct. There-
fore, one can conclude by Theorem 2 that the compiled
program verifies delimited non-disclosure w.r.t. the family
of local policies generated by the compiler.

Section 4 also presents an effect system to prevent laun-
dering attacks. Although we refrain from doing so here, it is
possible to define a similar effect system for the JVMI and
show that compilation preserves typability wr.t. this system.

7 Discussion

7.1 Objects, exceptions, and methods

Our method has been described and instantiated in a rep-
resentative, but simplified, setting. Leveraging it to the se-
quential fragment of the Java Virtual Machine does not pose
any major difficulty, but involves a significant amount of
technicalities. Fortunately, these technicalities were already
handled in the NI work on the JVM.

The first class of technicalities arises from dealing with
object-oriented features. Firstly, information flow type sys-
tems for the JVM must rely on security signatures with ex-
ception effects to support modular verification, and there-
fore to remain compatible with bytecode verification. Fur-
thermore, signatures and specifications must be compatible
with method overriding. Secondly, in presence of objects,
state equivalence is formulated in terms of heap equiva-
lence, which must be carefully handled to avoid flows based
on non-opaqueness of pointers [19]. Thirdly, exceptions in-
troduce some additional potential sources of indirect flows,
and thus must be accounted for in the type system.

In addition, further technicalities are required to achieve
an analysis with sufficient precision. Indeed, the presence of
exceptions and object-orientation yields a significant blow-
up in the control flow graph of the program, and, if no care
is taken, may lead to overly conservative type-based anal-
yses. In order to achieve an acceptable degree of usability,

94949494

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

65

the information flow type system of [6] relies on prelimi-
nary analyses that provide a more accurate approximation
of the control flow graph of the program. Typically, the pre-
liminary analyses will perform safety analyses such as class
analysis, null pointer analysis, exception analysis, and ar-
ray out-of-bounds analysis. These analyses drastically im-
prove the quality of the approximation of the control flow
graph. In particular, one can define a tighter successor re-
lation 7→ that leads to more precise control dependence re-
gions; in [6], precision is further increased by indexing 7→
and control dependence regions by a tag (an exception or a
special tag for normal execution).

7.2 Multi-threading

As multi-threading is widely used in applications to mo-
bile code, there is a strong interest in developing enforce-
ment mechanisms for multi-threaded programs. There is a
wide range of works that consider information flow poli-
cies for multi-threaded source programs, see e.g. [10, 25,
32, 33], and it would be interesting to understand how the
modular technique of this paper could be applied to this set-
ting.

Building upon earlier work by Russo and Sabelfeld [31],
[9] considers a modular method to devise sound enforce-
ment mechanisms for multi-threaded programs. The central
idea of these works is to constrain the behavior of the sched-
uler so that it does not leak information; it is achieved by
giving to the scheduler access to the security levels of pro-
gram points, and by requiring that the choice of the thread
to be executed respects appropriate conditions. As in the
present paper, the type system for the concurrent language
is defined in a modular fashion from the type system for
the sequential language, and the soundness of the concur-
rent type system is derived from unwinding lemmas for the
sequential type system.

The kind of extension presented here is orthogonal to
the multi-threaded extension shown in [9], and we believe
that modular extensions can be combined to augment pol-
icy and language expressivity in a single bytecode verifier
that enforces DND for a concurrent JVM. Understanding
the intuitive guarantees provided by the extension of DND
to concurrent languages and formalizing the details of the
combination of [9] with the results of this paper is left for
future work.

7.3 Formal proofs

Information flow type systems are complex mechanisms
whose soundness proofs are particularly involved, espe-
cially when considering permissive declassification policies
for real programming languages such as the JVM. As such
type systems are designed to complement existing type sys-

tems for safety and thus lie at the heart of the Trusted Com-
puting Base (TCB), it is therefore fundamental that their
implementation is correct, since flaws in the implementa-
tion of a type system can be exploited to launch attacks. In
our earlier work [6], we have used the proof assistant Coq to
formally verify the soundness of an information flow type
system that ensures non-interference for a sequential frag-
ment of the Java Virtual Machine. In addition to providing
strong guarantees about the correctness of the type system,
the formalization serves as a basis for a Foundational Proof
Carrying Code architecture. A distinctive feature of our ar-
chitecture is that the type system is executable inside higher
order logic and thus one can use reflection for verifying cer-
tificates within Coq, or extraction to obtain an OCaml im-
plementation of a lightweight information flow checker. As
compared to Foundational Proof Carrying Code [3], which
is deductive in nature, reflective Proof Carrying Code ex-
ploits the interplay between deduction and computation to
support efficient verification procedures and compact cer-
tificates.

As a benefit of the modularity of our approach, we be-
lieve that it is possible to achieve, at a moderate cost, a
proof of soundness for our DND information flow type sys-
tem presented, using the formalization reported in [6]. To
be more specific, the Coq development is organized in two
parts: a generic part, that derives the soundness of the non-
interference type system from the unwinding lemmas, and
a specific part, that establishes the unwinding lemmas for
a particular language, operational semantics, and type sys-
tem. We are confident that extending the generic part of
the formalization to accomodate DND is direct, as in fact
proving Theorem 1 in an abstract setting is direct. Never-
theless, we anticipate a fair amount of bookkeeping in the
instantiation: even if there is no conceptual difficulty in pro-
gramming in Coq a bytecode verifier that enforces DND,
the specification of the non-interference type system for the
JVM is rather large, and extending (even in the modular
fashion) its definition to DND—and thus to have a policy
per program point instead of a global policy—will be de-
manding.

8 Conclusion

Tractable enforcement of declassification policies for
bytecode languages is an essential step towards a practical
use of language-based security in mobile code. In this pa-
per, we have developed a modular method to extend non-
interference type systems to sound information flow type
systems for delimited non-disclosure, a security policy that
combines the what and where dimensions of declassifica-
tion, and that is closely related to policies such as delimited
release, localized delimited release, and non-disclosure. As
a case study, we have instantiated our results to a sequential

95959595

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

66

fragment JVMI of the Java Virtual Machine, yielding the
first sound information flow type system to support declas-
sification for an unstructured language. In addition, we have
argued that our approach is scalable to exceptions, objects,
and methods. As a final contribution, we have shown that
our results on type-preserving compilation readily adapt to
declassification.

As future work, we intend to spell out the details of ex-
tening our results to a richer language with object-oriented
features and concurrency, and to provide machine-checked
proofs of our results.

Acknoledgements: We thank Ana Almeida Matos,
Gérard Boudol, and anonymous reviewers for providing in-
sightful comments on the final version of this paper. This
work is partially funded by the EU project MOBIUS and by
the ANR project PARSEC.

References

[1] 18th IEEE Computer Security Foundations Workshop,
(CSFW-18 2005), 20-22 June 2005, Aix-en-Provence,
France. IEEE Computer Society, 2005.

[2] A. Almeida Matos and G. Boudol. On Declassification and
the Non-Disclosure Policy. In CSFW ’05: Proceedings of
the 18th IEEE workshop on Computer Security Foundations,
pages 226–240, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[3] A. W. Appel. Foundational Proof-Carrying Code. In LICS
’01: Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, page 247, Washington, DC,
USA, 2001. IEEE Computer Society.

[4] A. Askarov and A. Sabelfeld. Localized delimited release:
combining the what and where dimensions of information
release. In PLAS ’07: Proceedings of the 2007 workshop
on Programming languages and analysis for security, pages
53–60, New York, NY, USA, 2007. ACM.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In
29th IEEE Symposium on Security and Privacy, May 2008.

[6] G. Barthe, D. Pichardie, and T. Rezk. A Certified
Lightweight Non-interference Java Bytecode Verifier. In
Nicola [27], pages 125–140.

[7] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight
non-interference Java bytecode verifier. Technical report,
INRIA, 2007. Extended version of [6]. Available from
http://hal.inria.fr/inria-00106182/.

[8] G. Barthe, T. Rezk, and D. A. Naumann. Deriving an In-
formation Flow Checker and Certifying Compiler for Java.
In 27th IEEE Symposium on Security and Provacy, pages
230–242. IEEE Computer Society, 2006.

[9] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of
Multithreaded Programs by Compilation. In J. Biskup and
J. Lopez, editors, ESORICS, volume 4734 of Lecture Notes
in Computer Science, pages 2–18. Springer, 2007.

[10] A. Bossi, C. Piazza, and S. Rossi. Compositional informa-
tion flow security for concurrent programs. Journal of Com-
puter Security, 15(3):373–416, 2007.

[11] G. Boudol. On Typing Information Flow. In D. V. Hung and
M. Wirsing, editors, ICTAC, volume 3722 of Lecture Notes
in Computer Science, pages 366–380. Springer, 2005.

[12] N. Broberg and D. Sands. Flow Locks: Towards a Core
Calculus for Dynamic Flow Policies. In P. Sestoft, editor,
ESOP, volume 3924 of Lecture Notes in Computer Science,
pages 180–196. Springer, 2006.

[13] S. Chong and A. C. Myers. Language-based information
erasure. In aa [1], pages 241–254.

[14] S. Chong and A. C. Myers. End-to-end enforcement of era-
sure. In CSFW. IEEE Computer Society, 2008. To appear.

[15] B. Cook, A. Podelski, and A. Rybalchenko. Terminator:
Beyond Safety. In T. Ball and R. B. Jones, editors, CAV,
volume 4144 of Lecture Notes in Computer Science, pages
415–418. Springer, 2006.

[16] S. N. Freund and J. C. Mitchell. A Type System for the
Java Bytecode Language and Verifier. J. Autom. Reason.,
30(3-4):271–321, 2003.

[17] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
parameterizing non-interference by abstract interpretation.
In N. D. Jones and X. Leroy, editors, POPL, pages 186–197.
ACM, 2004.

[18] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. In IEEE Symposium on Security and Privacy,
pages 11–20, 1982.

[19] D. Hedin and D. Sands. Noninterference in the Presence of
Non-Opaque Pointers. In CSFW ’06: Proceedings of the
19th IEEE workshop on Computer Security Foundations,
pages 217–229, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[20] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 79–90, New York, NY, USA, 2006. ACM.

[21] S. Hunt and D. Sands. Just Forget it – The Semantics and
Enforcement of Information Erasure. In Programming Lan-
guages and Systems. 17th European Symposium on Pro-
gramming, ESOP 2008, LNCS. Springer Verlag, 2008.

[22] N. Kobayashi and K. Shirane. Type-Based Information
Analysis for Low-Level Languages. In APLAS, pages 302–
316, 2002.

[23] X. Leroy. Bytecode verification on Java smart cards. Soft-
ware: Practice and Experience, 32(4):319–340, Apr. 2002.

[24] H. Mantel and A. Reinhard. Controlling the what and where
of declassification in language-based security. In Nicola
[27], pages 141–156.

[25] H. Mantel and A. Sabelfeld. A Unifying Approach to the Se-
curity of Distributed and Multi-threaded Programs. Journal
of Computer Security, 11(4):615–676, 2003.

[26] H. Mantel and D. Sands. Controlled Declassification Based
on Intransitive Noninterference. In W.-N. Chin, editor,
APLAS, volume 3302 of Lecture Notes in Computer Science,
pages 129–145. Springer, 2004.

[27] R. D. Nicola, editor. Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007,

96969696

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

67

Held as Part of the Joint European Conferences on The-
ory and Practics of Software, ETAPS 2007, Braga, Portu-
gal, March 24 - April 1, 2007, Proceedings, volume 4421 of
Lecture Notes in Computer Science. Springer, 2007.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

[29] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[30] J. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical report, SRI, dec 1992.

[31] A. Russo and A. Sabelfeld. Securing interaction between
threads and the scheduler. In Computer Security Founda-
tions Workshop, pages 177–189, 2006.

[32] A. Sabelfeld. Confidentiality for multithreaded programs
via bisimulation. In Andrei Ershov International Conference
on Perspectives of System Informatics, volume 2890 of Lec-
ture Notes in Computer Science, pages 260–273. Springer-
Verlag, July 2003.

[33] A. Sabelfeld and H. Mantel. Static confidentiality enforce-
ment for distributed programs. In Static Analysis Sympo-
sium, volume 2477 of Lecture Notes in Computer Science,
pages 376–394, Madrid, Spain, Sept. 2002. Springer-Verlag.

[34] A. Sabelfeld and A. C. Myers. A Model for Delimited
Information Release. In K. Futatsugi, F. Mizoguchi, and
N. Yonezaki, editors, ISSS, volume 3233 of Lecture Notes in
Computer Science, pages 174–191. Springer, 2003.

[35] A. Sabelfeld and D. Sands. Dimensions and Principles of
Declassification. In aa [1], pages 255–269.

[36] D. M. Volpano and G. Smith. A Type-Based Approach to
Program Security. In TAPSOFT ’97: Proceedings of the 7th
International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, pages 607–621, London,
UK, 1997. Springer-Verlag.

[37] S. Zdancewic. Challenges for Information-flow Secu-
rity. In Proceedings of the 1st International Workshop on
the Programming Language Interference and Dependence
(PLID’04), August 2004.

97979797

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

68

Tractable Enforcement of Declassification Policies

Gilles Barthe
INRIA Sophia Antipolis
Gilles.Barthe@inria.fr

Salvador Cavadini
INRIA Sophia Antipolis

Salvador.Cavadini@sophia.inria.fr

Tamara Rezk
INRIA Sophia Antipolis and MSR-INRIA Joint Centre

Tamara.Rezk@inria.fr

Abstract

Formalizing appropriate information policies that au-
thorize some controlled form of information release, and
providing sound analyses for these policies is a necessary
step towards practical applications of language-based se-
curity.

We propose a modular method to enhance non-
interference type systems to support controlled forms of in-
formation release that combine the what and where dimen-
sions of declassification. As a case study, we derive from
earlier work on non-interference type systems new type sys-
tems that soundly enforce declassification policies for se-
quential fragments of the Java Virtual Machine.

Our work provides the first modular method to define
sound type systems for declassification policies, and the first
instance of a sound type system that supports declassifica-
tion policies for unstructured languages.

1. Introduction

Non-interference [18] is a baseline information flow
policy which ensures that publicly available information
does not reveal any information about sensitive data during
program execution. Non-interference policies are appeal-
ing because of the strong security guarantees they provide
(zero information leakage); however, practical confidential-
ity policies cannot be construed to non-interference, as they
almost invariably require some constrained release of infor-
mation.

An important challenge in information flow language-
based security is to capture more accurately the kind of con-
fidentiality policies that are needed in practise and to pro-
vide tractable and sound enforcement mechanisms for these
policies [37]. Declassification policies [35] are weaker
forms of information flow policies that permit some con-

strained information release along four axes regarding what
specific information is released, where within a specific
code fragment it is released, who releases it, and when it
is released.

Our contribution is in the line of designing tractable
and sound enforcement mechanisms for declassification
policies. More concretely, we provide a modular method
for achieving sound type systems for declassification from
sound type systems for non-interference, and instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine.

We consider a declassification policy that combines
the what and where dimensions, called delimited non-
disclosure, that is closely related to the non-disclosure
policy proposed by Almeida Matos and Boudol [2]
and localised delimited release proposed by Askarov and
Sabelfeld [4]. Informally, delimited non-disclosure is in-
tended to combine two dimensions in a single construct of
the form

declassify e : τ in c

where e is an expression, τ is a security level, and c is a
statement.

The choice of the delimited non-disclosure policy is mo-
tivated by modularity; our aim is not to propose a new
declassification policy but rather to propose a systematic
extension of non-interference soundness results in order
to achieve declassification soundness for extended non-
interference type systems. This modularity is the most dis-
tinctive feature of our work. Indeed, existing proofs of
soundness proceed by induction over typing derivations,
and reproduce a large part of the proof of soundness of the
declassification-free fragment of the type system. Instead,
we take advantage of the fact that delimited non-disclosure
coincides with non-interference for programs without de-
classification to build a modular proof of soundness. More
precisely, we show that if the type system enforces non-
interference on the declassification-free fragment of the

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

21st IEEE Computer Security Foundations Symposium

978-0-7695-3182-3/08 $25.00 © 2008 IEEE
DOI 10.1109/CSF.2008.11

83

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

69

language, then it enforces delimited non-disclosure. Our
method is based on a successor relation between program
points, rather than on the syntactic structure of programs,
and relies on the idea of control dependence regions, which
over-approximate the scope of branching instructions, i.e.
instructions that have two or more successors and that can
thus yield implicit flows. Here we adopt a local view of
policies, which substantially leverages the applicability of
information flow type checking and supports more permis-
sive policies.

A second distinctive feature of our approach is its ap-
plication to low-level languages. In the context of mobile
code security, it is essential for code consumers to be able
to verify security policies independently and efficiently on
the code they receive. Since mobile code applications are
typically downloaded in the form of bytecode programs, it
is required that verification operates at this level. However,
a large body of existing work on language-based security
focuses on source languages, and in fact we are not aware
of any sound type system that supports declassification poli-
cies for unstructured languages. In fact, existing informa-
tion flow type systems for unstructured languages typically
enforce non-interference, see e.g. [6].

Contributions Our main technical contributions are:

• a modular method to define and prove soundness of
declassification type systems;

• a case study in which we define and prove soundness
of a type system that enforces delimited non-disclosure
for a fragment of the Java Virtual Machine;

• a proof of preservation of typing between a type sys-
tem that enforces delimited non-disclosure in a high-
level language and our type system for the JVM.

Organisation The remaining of the paper is organized as
follows. Section 2 discusses closely related work. The de-
limited non-disclosure policy is introduced in Section 3,
and Section 4 provides through examples of programs a
more detailed comparison with other declassification poli-
cies. Section 5 shows how to construct a sound type sys-
tem from delimited non-disclosure, starting from a type sys-
tem for non-interference. In Section 6, we instantiate our
method to a sequential fragment of the Java Virtual Ma-
chine. Section 7 discusses extensions of our work. We con-
clude in Section 8.

2 Related work

Sabelfeld and Sands [35] analyse main trends on infor-
mation declassification, and provide a set of principles to be
used as “sanity checks” for declassification models. Here

we only focus on very closely related work and we refer to
Sabelfeld and Sands’ survey for a wider overview.

Intransitive non-interference In intransitive non-
interference policies, flows from high variables to low ones
are mediated by a declassifier (or a downgrader), this way
non-interference becomes intransitive [30].

In [26], Mantel and Sands introduce an intransitive non-
interference based approach concerned to where informa-
tion is declassified.

In this approach, flow ordering is defined by two com-
ponents: the lattice of security levels, and an “exceptions”
relation on security levels expressing special flow cases.

The use of this special relation is deliberately circum-
scribed to declassification assignments, that is, assignments
that are allowed to violate the flow ordering (defined by the
lattice structure of security levels) as long they respect the
“exceptions” relation. This way, information declassifica-
tion can take place only at specific program points, i.e. at
declassification assignments.

Mantel and Sands also present a bisimulation-based def-
inition of their security policy along with a type system to
enforce it in a multi-threaded while language.

Localised delimited release Sabelfeld and Myers [34]
present delimited release, a security policy to declas-
sify information through the special language operator
declassify(e) where e is globally considered as declas-
sified (what dimension).

Later, Askarov and Sabelfeld [4] extended delimited re-
lease into localized delimited release, a security definition
combining what and where dimensions of information de-
classification. This is made through language semantics in-
strumentation with the set of declassified expressions and
capturing the scope of declassify(e) operators.

Non-disclosure Almeida Matos and Boudol [2] pro-
posed the non-disclosure policy, a generalisation of non-
interference that supports locally induced flow policies
through the use of the special construct flow (A ≺ B) in S,
where S is a language expression into which flows from
principal A to principal B are authorised. Non-disclosure
is classified as a declassification policy of the where dimen-
sion.

Flow locks Broberg and Sands [12] introduce the notion
of flow lock to specify local information flow policies. In
this approach, each variable has attached the set of sys-
tem principals (or security levels) that can read it. For each
principal in this set it is possible to define conditions under
which a principal has the right to access to the variable’s

84848484

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

70

value. These circumstances are represented as locks. Lo-
cal changes of the global policy are specified by means of
special program instructions to open and close locks.

Generalisations of non-interference such as non-
disclosure and some forms of intransitive non-interference
can be represented by flow locks.

Information erasure Hunt and Sands [21] study the se-
mantics of information erasure, a policy aimed at provid-
ing guarantees that certain information is not retained after
its intended use. Although it is possible to define erasure
policies that cover the what and where dimensions of de-
classification, Hunt and Sands focus on the where dimen-
sion. They show that every erasure property can be encoded
as (flow-sensitive) non-interference and provide a language
construct to express erasure policies in code blocks. They
also provide a global erasure property and show that it can
be enforced by combinning global non-interference and lo-
cal (command level) non-interference; and define a type
system for enforcing the erasure property in a simple while
language with inputs and outputs.

The work of Hunt and Sands is inspired by earlier work
by Chong and Myers [13], who considered erasure in com-
bination with declassification. Recently, Chong and My-
ers [14] proposed an information flow type system that
enforces non-interference according to a generalization of
non-interference introduced by the authors in [13].

Declassification by logic Banerjee et al. [5] present a
powerful way to specify security policies including condi-
tions under which declassification is permitted. The specifi-
cation mechanism is based on flowtriples, a combination of
program specification and security typing.

The authors also describe an enforcement mechanism in-
tegrating security typing (for declassification-free segments
of the program), and relational verification and assertion
verification (for instructions sequences in flow triples).

WHERE, WHAT1 and WHAT2 In [24], Mantel and
Reinhard propose three security conditions for control-
ling the where and what dimensions of declassification.
The WHERE condition is similar to intransitive non-
interference but it satisfies monotonicity of release along
with the other three declassification principles from [35].
While both WHAT1 and WHAT2 are applicable to con-
current programs, the former is compositional but does not
satisfy monotonicity of release principle, and the later satis-
fies this principle but is not compositional.

The authors provide a type system to enforce where and
what dimensions of declassification in such a way that all
declassified expressions (what) are allowed to flow to low
variables at declassification assignments (where).

3. Delimited Non-Disclosure

In this section, we introduce delimited non-disclosure
(DND). We formulate our policy in an abstract setting that
can be instantiated to different programming languages.

Program setting We let P range over programs of a given
programming language. Each program P has an associated
set P of program points that includes a distinguished entry
point entry and a set Pexit of exit points; we let i, j, i′ . . .
range over program points. We assume that for a program
P there is a successor relation 7→ between program points.
We let 7→∗ be the reflexive and transitive closure of 7→, and
assume that, whenever i ∈ Pexit, there is no successor pro-
gram point such that i 7→ j. We let P] denote the set of
branching program points, i.e. those program points that
have at least two distinct successors.

One primary target of our work are unstructured pro-
gramming languages, and therefore we rely on control de-
pendence regions to approximate the scope of branching
statements; such control dependence regions have been in-
troduced in the context of non-interference in [22], and used
in our earlier work [6]. Formally, we assume given two
functions:

region : P] 7→ ℘(P)
junction : P] ⇀ P

that respectively provide for each branching program point
the set of program points, called region, that execute de-
pending on the branching point; and a junction point (if it
exists), that denotes the unique exit point from the region.
We assume that these functions correctly over-approximate
the scope of branching statements, as formulated in the hy-
pothesis below.

Hypothesis 1 (Exit through junction). If j ∈ region(i)
and k ∈ P and j 7→ k, then either k ∈ region(i) or
k = junction(i).

Furthermore, we assume that the junction point of a re-
gion is undefined if the region contains an exit point.

Hypothesis 2 (No return before junction). If j ∈
region(i) ∪ Pexit then junction(i) is undefined.

These hypotheses exactly correspond to the safe over ap-
proximation properties SOAP2 and SOAP3 introduced e.g.
in [6] and used in the case study of Section 6.

The semantics of programs is defined as a transition sys-
tem on states. LetM be a set of states and s, t, s′ . . . range
overM. We assume that we have a projector pc on states
that returns the program point associated to the state. For
brevity, we write si to indicate that s is a state such that
pc(s) = i. The operational semantics of programs is given

85858585

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

71

by a small-step relation ; between states; ;? is defined
as its reflexive and transitive closure. We assume that ; is
suitably related to 7→, that is if si ; tj then i 7→ j.

Without loss of generality w.r.t. the goal of this paper, we
only consider type-safe programming languages, and pro-
grams that are well-typed w.r.t. safety [29], and thus can
never be in an incorrect state. More formally, we assume
given a type system `safe which ensures that programs are
type safe. In addition, we must reason about safe states,
which intuitively are states that are compatible with the type
of the program under execution; therefore, we assume given
for each typable program a predicate safeP on states.

Hypothesis 3 (Progress and preservation of safety).
If `safe P , i.e. P is typable w.r.t. `safe, and safeP (si), then
i ∈ Pexit or there is s′ such that si ; s′ and safeP (s′).

From now on, we assume that programs are type-safe.

Policy setting In expressing non-interference policies, it
is common to model confidentiality clearances by a security
lattice (S,≤) whose elements represent the distinct confi-
dentiality levels. Then, the expected security behaviour of a
program is captured by a single global policy Γ that assigns
confidentiality levels to variables.

For expressing declassification policies, we take a sim-
ple generalisation of the non-interference setting: instead
of a single policy Γ for the program, we assume that there
is a policy Γ[i] for each program point in the program.
(We postpone to Section 5.2 the correctness conditions that
should be satisfied by the family Γ[i]). The use of local poli-
cies for the specification of declassification permits more
precision on what is declassified within a code fragment.
Different memory policies for each program point in the
program allows us to specify when the security level of a
variable x is downgraded from its original policy, as given
by the security level Γ[entry](x) for x in the initial program
point entry.

Definition of delimited non-disclosure The definition of
non-interference for sequential languages may be formu-
lated in terms of a relation between inputs and outputs
of the program, because non-interference only considers
global policies. (in some settings such as abstract non-
interference [17], there is no requirement that the initial and
final policies coincide; nevertheless, these definitions do not
aim at enforcing local policies).

When defining localised declassification policies, even
in sequential settings, the security definition cannot be given
in terms of inputs and outputs. This is because memory
policies are local and should be respected not only in in-
put/output states but also in intermediate states. Further-
more, we need to define a behavioural equivalence that does
not necessarily correspond to any program trace, since we

“reset” the memory in some intermediate states [12]. We
begin by defining a notion of bisimulation that will char-
acterise the notion of security; in order to reflect the local
nature of policies, bisimulation is defined w.r.t. an indexed
family (∼Γ[i])i∈P of symmetric and transitive relations on
states.

Definition 1 (DND Bisimulation). A DND bisimulation is
a symmetric relation R between program points in P such
that for every i, j ∈ P , if iR j then for all si, tj and s′i′ s.t.

si ; s′i′ ∧ si ∼Γ[i] tj ∧ safeP (tj)

there exists t′j′ such that:

tj ;
∗ t′j′ ∧ s′i′ ∼Γ[entry] t

′
j′ ∧ i′ R j′

This notion of bisimulation follows the work of non-
disclosure [2]: two program points i and j are related if
starting with memories that are equal according to the local
memory policy, a transition of the first memory si ; s′i′
is matched by zero or more transitions of tj and the pro-
gram points of the final memories are bisimilar, and the final
memories are related by the global memory policy Γ[entry].

Let ≈ be the largest DND bisimulation.

Definition 2 (Delimited non-disclosure). A program P sat-
isfies the delimited non-disclosure policy if entry ≈ entry.

The definition of delimited non-disclosure is
termination-sensitive, in contrast to other declassifica-
tion policies such as localised delimited release [4].
As it is usual in language-based security, the question
of whether or not to use the termination-sensitive or
termination-insensitive version of the security notion
depends on the adversary model. Nevertheless, one could
get a termination-insensitive version of DND by adding as
hypothesis to the bisimulation that executions starting in si
and tj terminate.

We conclude this section with a brief remark about the
nature of delimited non-disclosure. As announced, the pol-
icy is intended to capture declassification along the what
and where dimensions. While the use of local policies
clearly indicates that delimited non-disclosure supports the
where aspect of declassification, it is not immediate from
the definition to which extent the what dimension is sup-
ported. Clearly, local policies offer the opportunity to de-
classify variables, but do not explicitly mention the possi-
bility of declassifying expressions. However, we are target-
ing unstructured languages in which intermediate compu-
tations are stored in intermediate memories, typically vari-
ables, and therefore it is sufficient to declassify variables
instead of expressions. Furthermore, it is always possible
to rewrite programs in a semantics-preserving fashion so
that declassification of an expression e can be reduced to

86868686

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

72

declassification on a freshly introduced variable that stores
the result of e. This is further elaborated in the next section,
where we provide an example of this transformation.

4. Examples

In this section we introduce a simple sequential language
to illustrate our policy and compare it with other declassi-
fication policies. To ease comparison with previous works
where the local memory is inferred from the program syn-
tax (see e.g. [12, 2, 4]), we consider a structured language,
and include a syntactic construct for declassification.

Security lattice For the sake of simplicity, we work with
a L ≤ H security lattice. Besides, we use h (resp. l) as a
program variable whose initial memory policy is H (resp.
L).

Language The syntax of the language is defined by the
grammar in Figure 1 where n ranges over numbers N =
{0, 1, . . .}, x ranges over program variables, op ranges over
arithmetic, boolean, and relational operators. As stated
above, we include an explicit command for declassification,
namely declassify (e) in { c }, to specify local policies
by means of the program syntax.

In order to identify program points, some commands of
the language are labelled with natural numbers i. We set
entry = 1. Local policies in our language might be directly
specified by functions that map program points to memory
policies. However, one can also choose to infer local mem-
ory policies from the program syntax, as explained in Ex-
ample 1.

The language semantics is standard, and ommitted. The
only non-standard command is declassify (e) in { c }—
contrary to the introduction, we do not indicate the security
level to which an expression is declassified, since there are
only two levels. Informally, this command does not affect
the semantics (its semantics is equivalent to a skip).

e ::= n | x | e op e
c ::= [skip]i | c ; c

| [x := e]i

| [if (e) then { c } else { c }]i

| [while (e) do { c }]i
| declassify (e) in { c }

Figure 1. Expression and command syntax

The command declassify (e) in { c } is used to spec-
ify a local policy where the security level of expression e is
L in the scope of command c.

In order to capture the what dimension of declassifica-
tion accurately, the command declassify (e) in { c }
declassifies whole expressions instead of single variables.
DND can cope with this form of declassification using a
simple program transformation, as is explained in Exam-
ple 2.

Examples Our first example illustrates how local policies
may be inferred from the syntax, and from the initial policy.

Example 1 (Local memory policy inference). Consider the
program:

[l1 := 0]1 ; declassify (h) in { [l2 := h]2 } ; [l3 := l2]3

For such a program, we generate local memory policies as
follows:

Γ[1](l1) = Γ[1](l2) = Γ[1](l3) = L
Γ[1](h) = H
Γ[2](l1) = Γ[2](l2) = Γ[2](l3) = L
Γ[2](h) = L
Γ[3] = Γ[1]

Program point 3 is not in the scope of the declassification
command therefore its memory policy is the same of pro-
gram point 1.

This program complies with the DND policy for Γ de-
fined above because the direct flow from h to l2 produced
by assignment at 2 is authorised by the local memory policy
Γ[2].

Our second example illustrates how delimited non-
disclosure could capture declassification of expressions by
an appropriate program transformation.

Example 2 (Declassification of expressions in DND). Ex-
pression level declassification can be accomplished in DND
by assigning the declassified expression to a fresh variable
and replacing expression occurrences by the new variable.
For example, if we are interested in declassifying the expres-
sion h > 0 in the program:

declassify (h > 0) in { [if (h > 0) then { [l := 0]2 }]1 }
we transform the program into:

[h′ := h > 0]1 ;
declassify (h′) in { [if (h′) then { [l := 0]3 }]2 }

where h′ is a fresh variable name, and generate the follow-
ing memory policies:

Γ[1](l) = L
Γ[1](h) = Γ[1](h′) = H
Γ[2](l) = Γ[2](h′) = L
Γ[2](h) = H
Γ[3] = Γ[2]

87878787

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

73

The next examples compare delimited non-disclosure
with delimited release and its localised version.

Example 3 (Complies with DR and not DND). Consider
the program:

[l := h]1 ; declassify (h) in { [l := h]2 }

The program does not comply with DND because com-
mand at program point 1 contains an explicit flow for the
initial local memory policy that says that Γ[1](l) = L and
Γ[1](h) = H . This program complies with delimited re-
lease [34], that only imposes restrictions on what is declas-
sified without considering where declassification occurs. As
discussed in [4] (p.1), a policy based only on the what di-
mension does not qualify for a declassification policy be-
cause it already assumes that secrets are known from the
program’s start. This program is not accepted by LDR.

Example 4 (Complies with LDR and DND). Consider the
program:

[h2 := 0]1 ;
[if (h1) then { declassify (h1) in { [l := h1]3 } } else {

declassify (h2) in { [l := h2]4 } }]2

After the execution of this program the final value of l is
the value of h1 even if h1 has not been declassified. Delim-
ited release accepts this program but DND and localized
delimited release reject it.

In contrast to delimited non-disclosure, localised delim-
ited release rejects programs that may lead to laundering
attacks [4] by allowing variables to be modified before their
declassification. Indeed, our policy does not provide by it-
self any protection against laundering attacks.

We have essentially two reasons for not excluding laun-
dering attacks by definition of DND. First of all, we believe
that the indistinguishability of memories property (exclu-
sively expressed by e.g. DND) and the lack of laundering
attacks safety property are independent concepts. Hence
there is no need to put both concepts together in a sin-
gle property, as is the case in LDR. Furthermore, this well
marked independence between the “indistinguishability”
part of LDR and the laundering attack part of LDR leads
as to conjecture that, given corresponding local memory
policies, programs that comply with termination-sensitive
version of LDR also comply with DND and programs that
comply with DND and do not have laundering attacks, com-
ply with LDR.

The second and most important reason is that by separat-
ing concepts of laundering attacks and DND, it is possible to
modularly extend (as shown in Section 5) type systems for
non-interference and even more important, construct a proof
of soundness of this extension that can be adapted to a se-
ries of different languages, constructs, and non-interference
type systems. Even more, laundering attacks can be avoided

`LA [skip]i : ∅, ∅

`LA [x := e]i : {x}, ∅

`LA C1 : U1, V1 `LA C2 : U2, V2 U1 ∩ V2 = ∅
`LA C1 ; C2 : U1 ∪ U2, V1 ∪ V2

`LA C1 : U, V `LA C2 : U, V

`LA [if (e) then { C1 } else { C2 }]i : U, V

`LA C : U, V U ∩ V = ∅
`LA [while (e) do { C }]i : U, V

`LA C : U, V

`LA declassify (x) in { C } : U, V ∪ {x}

`LA C : U, V U ⊆ U ′ V ⊆ V ′

`LA C : U ′, V ′

Figure 2. Effect system against laundering

by a simple effect system which ensures that variables that
are declassified were not previously updated. To show this,
we define a type system in Fig. 2 as an example of a type
system to prevent laundering attacks. The judgements are
of the form `LA C : U, V where C is a command, U
is a set of variables which meaning is variables that have
been assigned by previous commands but not yet declassi-
fied and V is a set of variables which meaning is variables
that have been declassified. The typing rules for compos-
ite commands, and in particular for loops, put disjointness
constraints on the set of previously assigned variables and
the set of declassified variables.

Example 5 (Laundering attacks).

[h := 0]1 ; declassify (h) in { [l := h]2 }

This program is rejected by localised delimited release
and accepted by DND. However, the program is rejected by
the laundering-attacks type system given in Fig. 2, since the
only V sets typing [h := 0]1 must contain h by the rule of
assingments, and the only U sets typing the declassify con-
struct must contain h by the rule of declassification con-
structs. By the rule of sequential composition the V set of
the assigment and the U set of the declassification instruc-
tion must not have common elements.

Our next example suggests that it may be possible to
encode localised delimited release using DND. We conjec-
ture that a terminating program is accepted by localized de-
limited release iff its transformation along the process de-

88888888

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

74

scribed above is accepted by delimited non-disclosure and
by the effect system against laundering.

Example 6 (Program complies with LDR but not with
DND). Localised delimited release accepts programs like:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := h]3

because it considers that assignment to l3 is “intuitively”
secure because the program can be safely transformed into:

declassify (h) in { [l := h]1 ; [l2 := h]2 } ; [l3 := l2]3

For DND, assignments 1 and 2 are valid because they are
made in the scope of the declassification of variable h, but
assignment 3 does not comply with our policy.

Notice that, if necessary, the original program can be
transformed to be accepted by DND by extending the de-
classification region until the end of the program:

declassify (h) in { [l := h]1 ; [l2 := h]2 ; [l3 := h]3 }

We conclude this section by a comparison with non-
disclosure, which is closely related to DND. The main dif-
ference is that DND permits a fine-grained relaxation of
non-interference by authorising exceptional flows not from
all high variables but from user defined sets of high vari-
ables. In contrast, non-disclosure is based on a global se-
curity lattice G that dynamically evolves to interpret locally
induced flow policies. These policies introduce new flow
relations in G in the context of sets of program points. Out-
side these sets, the global security lattice remains as it was
at the beginning of the program.

The following example compares non-disclosure [2] and
delimited non-disclosure, and suggests a possible encoding
of ND in terms of DND. In contrast to non-disclosure, we
assume that the security lattice does not change at differ-
ent points of the program but variable confidentiality levels
change. Thus, our security policy is not expressed by means
of flows between principals (that determine the security lat-
tice) but rather by local memory policies.

Example 7 (Non-disclosure). The flow declaration con-
struct of non-disclosure

flow (p2 ≺ p1) in c

is introduced to express local lattice modifications. Here c is
a statement into which the original security lattice induced
by principals {p2, p1} is modified to permit flows from p2 to
p1. Let’s name elements in the original lattice as

H = {}
H1 = {p1}
H2 = {p2}
L = {p1, p2}

where ≤ is given by the subset relation. The new lattice in-
duced by the flow construct above, treats H2 as L (security
level H2 dissapears from the lattice).

In our policy the security lattice is not modified, in-
stead the initial memory policy Γ[1] is adapted at each
program point in order to reflect local relaxations of non-
interference.

Therefore, the effect of the above flow construct, in terms
of our policy, is that for all variable x such that Γ[1](x) =
H2 we have Γ[j](x) = L if j is a program point for state-
ment c.

For example, if the program has variables h and h′ with
Γ[1](h) = Γ[1](h′) = H2, then flow (p2 ≺ p1) in c can
be expressed in our language as:

declassify (h) in { declassify (h′) in { c } }

The flow construct of non-disclosure is expressed in our
setting as a declassification of all variables belonging to the
security levels induced by the new flow.

5. Enforcing delimited non-disclosure

The purpose of this section is to provide a modular defi-
nition and soundness proof of an information flow type sys-
tem that enforces delimited non-disclosure. For simplicity,
we fix the lattice of security levels to S = {L,H} with
L ≤ H and assume that security policies are functions that
attach security levels to program variables. (However the
main result applies to arbitrary lattices, the simplification to
two level lattices applies to the hypotheses on NI, and these
hypotheses can be generalized as shown in e.g. [6].)

The order on security levels can be extended pointwise
to security policies; by abuse of notation, we let ≤ denote
the order between policies.

5.1 Assumptions on NI typing

Our starting point is a type system `NI designed for
enforcing non-interference. The type system operates on
a program P annotated with control dependence regions
(region, junction), and is parameterised by a security en-
vironment se that maps program points to levels, a policy
Γ that maps variables to security levels, and a type S; the
exact nature of types does not need to be specified. For
readability, typing judgements are written in the following
form:

Γ, S `NI i

where Γ is a policy, S is a type, i is a program point. All
other parameters are left implicit.

The principal hypotheses that we make on `NI take the
form of unwinding statements. The first unwinding hypoth-
esis states that execution locally respects state equivalence,
i.e. if we start from two equivalent states that point to the
same instruction and perform one step of execution, then
the two resulting states are also equivalent. Additionally, it

89898989

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

75

makes some technical assumption about the program coun-
ters of the resulting states: either they coincide, or the initial
states were pointing to a high branching instruction.

In order to formulate the notion of high branching
instruction, we say that k has a high region, written
highregion(k), iff k is a branching point, and se(j) = H for
every j ∈ region(k). Moreover, we write i ∈ highregion(k)
to mean highregion(k) and i ∈ region(k).

Hypothesis 4 (LowNI). Assume that Γ, S `NI i, and
si ∼Γ ti, and si ; s′i′ and ti ; t′j′ . Then s′i′ ∼Γ t′j′
and one of the following holds:

• i′ = j′, or

• highregion(i), and i′, j′ ∈ region(i) ∪ {junction(i)}.
The second hypothesis states that executing an instruc-

tion in a high control dependence region does not modify
the observable part of a state. It corresponds to the step pre-
serving unwinding property of [30].

Hypothesis 5 (HighNI). Assume that highregion(k) and let
i, i′ ∈ region(k). Assume that si ; s′i′ and Γ, S `NI i.
Then si ∼Γ s

′
i′ .

Using the above lemmas, one can prove that typable pro-
grams are non-interfering.

Definition 3. A program P is typable with type S w.r.t. Γ,
written Γ, S `NI P , iff for every program point i, we have
Γ, S `NI i.

Using an adaptation of the general scheme of [7], one
can prove that, under the hypotheses of this section, typable
programs are non-interfering. More precisely, if P is ty-
pable w.r.t. Γ, then P is non interferent w.r.t. Γ, i.e. for all
sentry, tentry:

sentry ∼Γ tentry
sentry ;

? s′i
tentry ;

? t′j
i, j ∈ Pexit

⇒ s′i ∼Γ t

′
j

5.2 Typing delimited non-disclosure

The goal of this section is to formulate the DND-type
system and to prove that, under some mild hypotheses, pro-
grams that are typable by the DND-type system verify the
delimited non-disclosure policy. We begin by defining the
type system.

The type system for delimited non-disclosure is very
similar to the type system for non-interference, but is pa-
rameterised by a family of policies (Γ[i])i∈P . Like the type
system for non-interference, the type system for delimited
non-disclosure is parameterised by control dependence re-
gions (region, junction), a security environment se and a
type S.

Definition 4. Let (Γ[i])i∈P be an indexed set of local poli-
cies. A program P is typable with type S w.r.t. (Γ[i])i∈P ,
written (Γ[i])i∈P , S `DND P , iff for every program point
i, we have Γ[i], S `NI i.

The DND type system is conservative: intuitively, pro-
grams without declassification (i.e. without different lo-
cal policies) that are typable by the DND type system are
non-interferent programs. However, (Γ[i])i∈P , S `DND P
does not necessarily imply that Γ[i], S `NI P for some
i ∈ P(P).

Note that, at such an abstract level, there is a strong simi-
larity between our type system for delimited non-disclosure,
and flow-sensitive type systems [20], since they both rely
on a family of policies (Γ[i])i∈P . However, the type system
for delimited non-disclosure makes different assumptions
on this family: see Hypothesis 7.

Termination Delimited non-disclosure is termination
sensitive and the type system must reject any program that
has loops whose termination behaviour is influenced by
confidential data. Therefore, we must of a program anal-
ysis loop that detects that the branching point i is a loop,
and we assume that the type system guarantees that all high
loops terminate. In the sequel, we write loop(i) if the anal-
ysis detects that i is a loop, see e.g. [28] for a definition of
such an analysis.

Hypothesis 6 (Termination of while loops). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point such
that highregion(i) and loop(i). Then junction(i) is defined.
Besides, if j ∈ region(i), and sj is safe, i.e. `safe sj , then
there exists tj′ such that sj ;? tj′ , and j′ = junction(i).

The hypothesis states that high loops terminate normally
(in contrast to abrupt termination caused by a return in a
loop). This condition can be brutally enforced by typing
rules that reject all high loops [36, 2]. However, Gérard
Boudol [11] observed that such typing rules can be largely
improved by being parameterised by a termination analysis
(see e.g. [15] for an advanced analysis of this kind).

Note that one can strengthen the hypothesis by not re-
quiring that i is a loop, using Hypothesis 2.

Lemma 1 (Exit from high guards). Assume
(Γ[i])i∈P , S `DND P , and let i be a program point
such that highregion(i) and junction(i) is defined. If
j ∈ region(i), and sj is safe, i.e. `safe sj , then there exists
tj′ such that sj ;? tj′ , and j′ = junction(i).

Proof. If loop(i), then we apply directly Hypothesis 6. Oth-
erwise, one can apply Hypotheses 1 and 2, together with
progress (Hypothesis 3).

We use Lemma 1 in the proof of Theorem 1 below.

90909090

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

76

Correct memory policies In order to be able to prove
soundness of the DND type system, we impose mild restric-
tions on families of local memory policies (Γ[i])i∈P . These
restrictions can be verified automatically independently of
the DND type system.

Hypothesis 7 (Correct memory policies). A family of mem-
ory policies (Γ[i])i∈P is correct if for all i, j ∈ P:

1. for every variable x, we have Γ[i](x) ≤ Γ[entry](x);

2. if highregion(i) and j ∈ region(i) ∪ {junction(i)},
then Γ[j] = Γ[i].

The first item says that a memory policy for a variable
x can be downgraded (declassified) but not upgraded. The
second item says that inside high control dependence re-
gion and up to the junction point, local policies remain
unchanged; this assumption is in line with previous work
on disallowing declassification inside high branching state-
ments, and rightfully rejects programs such as

[if (h) then { declassify (h1) in { [l := h1]2 } }]1

which leaks the value of h through the knowledge of
whether h1 has been declassified or not (see Example 4).

Hypothesis 8 (Monotonicity of ∼). If Γ[i] ≤ Γ[j] and
s ∼Γ[i] t then s ∼Γ[j] t.

The hypothesis guarantees monotonicity of ∼Γ[i] w.r.t.
the order of local memory policies.

Soundness proof To prove that the DND type system en-
forces delimited non-disclosure, we exhibit a DND bisimu-
lation B that satisfies entry B entry. The relation B is de-
fined inductively by the clauses

i B i
j B i
i B j

i, j ∈ highregion(k)

i B j
i ∈ highregion(k) j = junction(k)

i B j

Since B is reflexive, we obviously have entry B entry.
In the sequel, we assume that all aforementioned hy-

potheses are satisfied.

Theorem 1 (Soundness of `DND). If (Γ[i])i∈P , S `DND

P , then P complies with the delimited non-disclosure policy
w.r.t. (Γ[i])i∈P .

Proof. We show that B is a DND bisimulation. Assume
that iBj. There are four cases to treat:

• If i = j. Let si and ti be states s.t. si ; s′i′ and
si ∼Γ[i] ti. Suppose that safeP (tj). By progress (Hy-
pothesis 3), either i ∈ Pexit or there exists t′j′ such that
ti ; t′j′ . Since si ; s′i′ , we have i 6∈ Pexit, and thus
there exists t′i′ such that ti ; t′j′ . By locally respects
unwinding (Hypothesis 4), s′i′ ∼Γ[i] t

′
j′ and i′ = j′, or

i′, j′ ∈ region(i)∪{junction(i)}. In all cases, we have
i′Bj′.
Furthermore, by Hypothesis 7 Γ[i] ≤ Γ[entry] and by
Hypothesis 8 s′i′ ∼Γ[entry] t

′
j′ , so we are done.

• If i, j ∈ highregion(k) for some k. Let si ∼Γ[i] tj ,
and assume that si ; s′i′ . By step preserving unwind-
ing (Hypothesis 5), s′i′ ∼Γ[i] tj . By monotonicity of
local policies (Hypothesis 7), s′i′ ∼Γ[entry] t

′
j . Further-

more, exit through junction (Hypothesis 1) ensures that
junction(i) is the unique exit point of region(i), there-
fore either i′ ∈ region(k) or i′ = junction(k). In both
cases, i′Bj.

• If i ∈ highregion(k) and j = junction(k) for some
k. This case is similar to the above (except for the fact
that if i′ = junction(k) we use the reflexivity of B to
conclude that i′Bj).

• If j ∈ highregion(k) and i = junction(k) for some k.
Let si ∼Γ[i] tj , and assume that si ; s′i′ . By progress
(Hypothesis 3) and exit from high guards (Lemma 1),
and by exit through junction (Hypothesis 1), there ex-
ists a sequence

tj ; u1
k1

; . . . ; ulkl
; u′i

such that k1 . . . kl ∈ region(i). By repeatedly apply-
ing the step preserves unwinding (Hypothesis 5), ap-
pealing to the correctness of memory policy (Hypoth-
esis 7), which ensures that policy do not vary in high
regions, and the transitivity of state equivalence, we
conclude that tj ∼Γ[k] u

′
i. Since Γ[k] = Γ[i] by cor-

rectness of memory policy (Hypothesis 7), we have by
transitivity si ∼Γ[i] u

′
i, and can conclude as in the first

case.

6. Case study: Java Virtual Machine

The objective of this section is to apply our results to
a minimal fragment of the JVM. We also establish type-
preserving compilation w.r.t. a type system for the language
of Section 4. Finally, we discuss the applicability of the
method to a larger fragment of the JVM.

91919191

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

77

instr ::= binop op binary operation on stack
| push v push value on top of stack
| load x load value of x on stack
| store x store top of stack in variable x
| ifeq j conditional jump
| goto j unconditional jump

Figure 3. JVMI instructions

6.1 Language and policy

For brevity, we consider a fragment called JVMI , whose
instruction set is given in Figure 3; we use op to range over
binary operations, v over values, x over variables, and j
over program points.

The operational semantics of JVMI programs is stan-
dard, and given by a small-step relation ; that represents
one step execution of the virtual machine. States can either
be intermediate, in which case they consist of an operand
stack, a memory, and a program counter, or final, in which
case they consist of a memory. We use 〈i, ρ, os〉 to denote
an intermediate state with program counter i, memory ρ and
operand stack os. Final states are simply identified with
memories.

To instantiate delimited non-disclosure to JVMI pro-
grams, we must first define local policies. A local policy
is simply a mapping from variables to levels. We assume
given a policy Γ[i] for each program point i.

Next, we define an indexed family of partial equivalence
relations between states. This involves defining equivalence
between memories, and between operand stacks.

Definition 5. Two memories µ and µ′ are equivalent w.r.t.
Γ, written µ ∼Mem

Γ µ′, iff µ(x) = µ′(x) for every variable
x such that Γ(x) = L.

Equivalence between operand stacks is defined relative
to stack types. (There are both weaker and stronger notions
of operand stack equivalence; see [7] for a discussion on
these notions).

Definition 6. The relation os1 ∼Stk
st1,st2 os2, where

st1, st2 ∈ S∗, is defined inductively, together with the
inductively defined auxiliary relation high(os, st), in Fig-
ure 4.

Finally, state equivalence is defined in the obvious way.

Definition 7. Let S : P → S∗. Two states s = 〈i, ρ, os〉
and s′ = 〈i′, ρ′, os′〉 are equivalent, written s ∼State s′, iff
Γ(i) = Γ(i′) and ρ ∼Mem

Γ(i) ρ
′ and os ∼Stk

S(i),S(i′) os
′.

To conclude with the definition of delimited non-
disclosure, one needs to define the notion of safe state. In

high(os1, st1) high(os2, st2)

os1 ∼Stk
st1,st2 os2

os1 ∼Stk
st1,st2 os2

v :: os1 ∼Stk
L::st1,L::st2

v :: os2

os1 ∼Stk
st1,st2 os2

v1 :: os1 ∼Stk
H::st1,H::st2

v2 :: os2

high(ε, ε)

high(os, st)

high(v :: os,H :: st)

Figure 4. Operand stack equivalence

our setting, a safety type assigns to each program point
a natural number that represents the height of its operand
stack, and a state is safe if its operand stack has the cor-
rect height w.r.t. its program counter. The safety type sys-
tem tracks the height of the operand stack, and ensures that
jumps are correct, i.e. remain within the program code. It
is easy to show Hypothesis 3, i.e. that safe states enjoy
progress. In a more general setting, one can define safe
states using the work of Freund and Mitchell [16], who for-
malized a safety type system for the JVM, and showed that
safe programs enjoy progress.

6.2 Type system

The type system is expressed by rules of the form

i
JVM

` st⇒ st′

where i is a program point and st, st′ ∈ S? are stacks types.
The rules are given in Figure 5, and assume that programs
come equipped with control dependence regions (cdr), and
a security environment. The rules exactly match the rules
of [6], except that:

• the rules for load and store use the local policy;

• the rule for ifeq rejects high loops, and is instantiated
to the case where the stack is empty after execution
(which is the case for compiled programs, see [23]).

The typing rules of JVMI can be viewed as an instance
of the generic type system. Indeed, define a type to be a
map S from program points to stack types. Then, we define
(Γ[i])i∈P , S `DND P iff the following holds:

• S(entry) is the empty stack;

• for every i s.t. se(i) = H , the stack S(i) is high (i.e.
all elements of S(i) are equal to H);

92929292

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

78

P [i] = push n

i `DND st⇒ se(i) :: st

P [i] = binop op

i `DND k1 :: k2 :: st⇒ (k1 t k2) :: st

P [i] = store x se(i) t k ≤ Γi(x)

i `DND k :: st⇒ st

P [i] = load x

i `DND st⇒ (Γi(x) t se(i)) :: st

P [i] = goto j

i `DND st⇒ st

P [i] = return se(i) = L

i `DND k :: st⇒ ε

P [i] = ifeq j loop(i)⇒ k = L
∀j′ ∈ region(i), k ≤ se(j′)

i `DND k :: ε⇒ ε

Figure 5. Transfer rules for JVMI instructions

• if i 7→ j, then i
JVM

` S(i)⇒ st for some st ≤ S(j).

Under this definition, and restricting ourselves to constant
families of policies (i.e. families of policies (Γ[i])i∈P s.t.
Γ[i] = Γ[j] for all i and j), the notion of typable pro-
gram w.r.t. `NI coincides with the notion of typable pro-
gram in [6]. Furthermore, one can use our construction
of `DND, Theorem 1 and our earlier results in the proof
of non-interference for JVMI to conclude that `DND en-
forces delimited non-disclosure.

Theorem 2. Let (Γi)i∈P be correct policies. Let P
be a safe program such that (Γi)i∈P , S `DND P . If
(region, junction) satisfy the SOAP properties (given in Fig-
ure 6), then P satisfy delimited non-disclosure.

We briefly indicate why the hypotheses of Section 5
hold. Exit through junction (Hypothesis 1) corresponds
exactly to the property SOAP2, whereas no return before
junction (Hypothesis 2) corresponds exactly to the property
SOAP3.

Progress and preservation of safety (Hypothesis 3) hold
as explained above.

The unwinding statements (Hypotheses 4 and 5) are di-
rect consequences of the unwinding lemmas proved in [6];
note that the unwinding statements are proved using the
SOAP properties.

Hypothesis 6 holds by definition of the typing rule for
ifeq, which prevents highregion(i) and loop(i) from hold-
ing simultaneously.

SOAP1 for all program points i and all successors j, k of
i (i 7→ j and i 7→ k) such that j 6= k (i is hence a
branching point), k ∈ region(i) or k = junction(i);

SOAP2 for all program points i, j, k, if j ∈ region(i) and
j 7→ k, then either k ∈ region(i) or k = junction(i);

SOAP3 for all program points i, j, if j ∈ region(i) and
j ∈ Pexit then junction(i) is undefined.

Figure 6. SOAP properties

Finally, correctness of memories (Hypothesis 7) is an as-
sumption of the theorem, and monotonicity (Hypothesis 8)
holds trivially.

6.3 Type-preserving compilation

In this section, we focus on preservation of typability by
compilation. The benefits of type preservation are two-fold:
they guarantee program developers that their programs writ-
ten in an information flow aware programming language
will be compiled into executable code that will be accepted
by a security architecture that integrates an information flow
bytecode verifier. Conversely, they guarantee code con-
sumers of the existence of practical tools to develop appli-
cations that will provably meet the policy enforced by their
information flow aware security architecture.

We consider the source language introduced in Section 4,
and define a declassification type system. The type sys-
tem is parameterized by a family (Γ[i])i of local policies,
in this case one policy per label. As already explained in
Example 1, these local policies can be inferred from the
initial policy, and from the program syntax. (Alternatively,
one could formulate a type system that is parameterized by
a single policy, that corresponds to the policy at the entry
point of the program, and use the type system to track the
local changes in the policy.)

Furthermore, the local policies (Γi)i∈P for T (P) are
generated from the initial policy of P (that is the policy of
the entry point of P) and from the declassify (.) in { . }
constructs, as explained in Example 1.

The type system for the source language is given by the
rules given in Figs. 7 and 8. Notice that since we have local
policies (Γ[i])i for each program point, the rule for declassi-
fication corresponds exactly to typability of C and the type
system is very similar to a non-interference type system ex-
cept because it uses a set of local policies instead of a unique
global policy.

Notice furthermore that the typing rules are restricted
to programs in which only variables are declassified.
In order to extend typing to programs that do not
meet this restriction, we use the source-to-source trans-

93939393

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

79

(Γ[i])i `DND n : L

(Γ[i])i `DND x : Γ(x)

(Γ[i])i `DND e1 : k (Γ[i])i `DND e2 : k

(Γ[i])i `DND e1 op e2 : k

(Γ[i])i `DND e : k1 k1 ≤ k2
(Γ[i])i `DND e : k2

Figure 7. Typing rules for expressions

(Γ[i])i `DND [skip]i : L

(Γ[i])i `DND e : Γi(x)

(Γ[i])i `DND [x := e]i : Γ(x)

(Γ[i])i `DND e : k
(Γ[i])i `DND C1 : k (Γ[i])i `DND C2 : k

(Γ[i])i `DND [if (e) then { C1 } else { C2 }]i : k

(Γ[i])i `DND C : k

(Γ[i])i `DND declassify (x) in { C } : k

(Γ[i])i `DND e : L (Γ[i])i `DND C : L

(Γ[i])i `DND [while (e) do { C }]i : k

(Γ[i])i `DND C : k k′ ≤ k
(Γ[i])i `DND C : k′

Figure 8. Typing rules for commands

formation introduced in Example 2. This transforma-
tion replaces declassify (e) in { c } by x :=
e; declassify (x) in { c′ }, where x is a fresh vari-
able and c′ is recursively obtained from applying the same
transformation to c[e/x]. This transformation is semantics-
preserving provided variables in e are not modified in c. In
the sequel, we denote by T (P) the result of applying this
transformation to P .

We consider a non-optimizing compiler [[.]]. Its defi-
nition on programs is standard, except for the statement
declassify (x) in { c }, which is compiled to [[c]] (that
is, declassify statements are ignored by compilation). The
compiler is extended to programs that delassify expressions
by composition with the transformation T .

As the bytecode type system uses both a cdr struc-
ture (region, junction), a security environment se, and
local policies (Γ[i])i∈P , the compiler must also gener-
ate this additional information. Furthermore, the gener-

ated information must ensure that [[P]] is typable w.r.t.
(region, junction), (Γ[i])i∈P and se. The cdr structure and
security environment of the compiled programs can be de-
fined as in earlier works on type-preserving compilation,
e.g. [8].

The compiler maps every labeled statement in the source
programs to a set of program points. The local policy of
these program points is inherited from the local policy of
the label of their corresponding source statement.

Theorem 3 (Typability Preservation). Let P be a source
program with correct memory policies. Assume that T (P)
is typable by the DND source type system. Then [[P]] is a ty-
pable bytecode program (w.r.t. the generated information).

In addition, the generated cdr structure
(region, junction) satisfies the SOAP properties and
the generated local policies (Γ[i])i∈P are correct. There-
fore, one can conclude by Theorem 2 that the compiled
program verifies delimited non-disclosure w.r.t. the family
of local policies generated by the compiler.

Section 4 also presents an effect system to prevent laun-
dering attacks. Although we refrain from doing so here, it is
possible to define a similar effect system for the JVMI and
show that compilation preserves typability wr.t. this system.

7 Discussion

7.1 Objects, exceptions, and methods

Our method has been described and instantiated in a rep-
resentative, but simplified, setting. Leveraging it to the se-
quential fragment of the Java Virtual Machine does not pose
any major difficulty, but involves a significant amount of
technicalities. Fortunately, these technicalities were already
handled in the NI work on the JVM.

The first class of technicalities arises from dealing with
object-oriented features. Firstly, information flow type sys-
tems for the JVM must rely on security signatures with ex-
ception effects to support modular verification, and there-
fore to remain compatible with bytecode verification. Fur-
thermore, signatures and specifications must be compatible
with method overriding. Secondly, in presence of objects,
state equivalence is formulated in terms of heap equiva-
lence, which must be carefully handled to avoid flows based
on non-opaqueness of pointers [19]. Thirdly, exceptions in-
troduce some additional potential sources of indirect flows,
and thus must be accounted for in the type system.

In addition, further technicalities are required to achieve
an analysis with sufficient precision. Indeed, the presence of
exceptions and object-orientation yields a significant blow-
up in the control flow graph of the program, and, if no care
is taken, may lead to overly conservative type-based anal-
yses. In order to achieve an acceptable degree of usability,

94949494

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

80

the information flow type system of [6] relies on prelimi-
nary analyses that provide a more accurate approximation
of the control flow graph of the program. Typically, the pre-
liminary analyses will perform safety analyses such as class
analysis, null pointer analysis, exception analysis, and ar-
ray out-of-bounds analysis. These analyses drastically im-
prove the quality of the approximation of the control flow
graph. In particular, one can define a tighter successor re-
lation 7→ that leads to more precise control dependence re-
gions; in [6], precision is further increased by indexing 7→
and control dependence regions by a tag (an exception or a
special tag for normal execution).

7.2 Multi-threading

As multi-threading is widely used in applications to mo-
bile code, there is a strong interest in developing enforce-
ment mechanisms for multi-threaded programs. There is a
wide range of works that consider information flow poli-
cies for multi-threaded source programs, see e.g. [10, 25,
32, 33], and it would be interesting to understand how the
modular technique of this paper could be applied to this set-
ting.

Building upon earlier work by Russo and Sabelfeld [31],
[9] considers a modular method to devise sound enforce-
ment mechanisms for multi-threaded programs. The central
idea of these works is to constrain the behavior of the sched-
uler so that it does not leak information; it is achieved by
giving to the scheduler access to the security levels of pro-
gram points, and by requiring that the choice of the thread
to be executed respects appropriate conditions. As in the
present paper, the type system for the concurrent language
is defined in a modular fashion from the type system for
the sequential language, and the soundness of the concur-
rent type system is derived from unwinding lemmas for the
sequential type system.

The kind of extension presented here is orthogonal to
the multi-threaded extension shown in [9], and we believe
that modular extensions can be combined to augment pol-
icy and language expressivity in a single bytecode verifier
that enforces DND for a concurrent JVM. Understanding
the intuitive guarantees provided by the extension of DND
to concurrent languages and formalizing the details of the
combination of [9] with the results of this paper is left for
future work.

7.3 Formal proofs

Information flow type systems are complex mechanisms
whose soundness proofs are particularly involved, espe-
cially when considering permissive declassification policies
for real programming languages such as the JVM. As such
type systems are designed to complement existing type sys-

tems for safety and thus lie at the heart of the Trusted Com-
puting Base (TCB), it is therefore fundamental that their
implementation is correct, since flaws in the implementa-
tion of a type system can be exploited to launch attacks. In
our earlier work [6], we have used the proof assistant Coq to
formally verify the soundness of an information flow type
system that ensures non-interference for a sequential frag-
ment of the Java Virtual Machine. In addition to providing
strong guarantees about the correctness of the type system,
the formalization serves as a basis for a Foundational Proof
Carrying Code architecture. A distinctive feature of our ar-
chitecture is that the type system is executable inside higher
order logic and thus one can use reflection for verifying cer-
tificates within Coq, or extraction to obtain an OCaml im-
plementation of a lightweight information flow checker. As
compared to Foundational Proof Carrying Code [3], which
is deductive in nature, reflective Proof Carrying Code ex-
ploits the interplay between deduction and computation to
support efficient verification procedures and compact cer-
tificates.

As a benefit of the modularity of our approach, we be-
lieve that it is possible to achieve, at a moderate cost, a
proof of soundness for our DND information flow type sys-
tem presented, using the formalization reported in [6]. To
be more specific, the Coq development is organized in two
parts: a generic part, that derives the soundness of the non-
interference type system from the unwinding lemmas, and
a specific part, that establishes the unwinding lemmas for
a particular language, operational semantics, and type sys-
tem. We are confident that extending the generic part of
the formalization to accomodate DND is direct, as in fact
proving Theorem 1 in an abstract setting is direct. Never-
theless, we anticipate a fair amount of bookkeeping in the
instantiation: even if there is no conceptual difficulty in pro-
gramming in Coq a bytecode verifier that enforces DND,
the specification of the non-interference type system for the
JVM is rather large, and extending (even in the modular
fashion) its definition to DND—and thus to have a policy
per program point instead of a global policy—will be de-
manding.

8 Conclusion

Tractable enforcement of declassification policies for
bytecode languages is an essential step towards a practical
use of language-based security in mobile code. In this pa-
per, we have developed a modular method to extend non-
interference type systems to sound information flow type
systems for delimited non-disclosure, a security policy that
combines the what and where dimensions of declassifica-
tion, and that is closely related to policies such as delimited
release, localized delimited release, and non-disclosure. As
a case study, we have instantiated our results to a sequential

95959595

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

81

fragment JVMI of the Java Virtual Machine, yielding the
first sound information flow type system to support declas-
sification for an unstructured language. In addition, we have
argued that our approach is scalable to exceptions, objects,
and methods. As a final contribution, we have shown that
our results on type-preserving compilation readily adapt to
declassification.

As future work, we intend to spell out the details of ex-
tening our results to a richer language with object-oriented
features and concurrency, and to provide machine-checked
proofs of our results.

Acknoledgements: We thank Ana Almeida Matos,
Gérard Boudol, and anonymous reviewers for providing in-
sightful comments on the final version of this paper. This
work is partially funded by the EU project MOBIUS and by
the ANR project PARSEC.

References

[1] 18th IEEE Computer Security Foundations Workshop,
(CSFW-18 2005), 20-22 June 2005, Aix-en-Provence,
France. IEEE Computer Society, 2005.

[2] A. Almeida Matos and G. Boudol. On Declassification and
the Non-Disclosure Policy. In CSFW ’05: Proceedings of
the 18th IEEE workshop on Computer Security Foundations,
pages 226–240, Washington, DC, USA, 2005. IEEE Com-
puter Society.

[3] A. W. Appel. Foundational Proof-Carrying Code. In LICS
’01: Proceedings of the 16th Annual IEEE Symposium on
Logic in Computer Science, page 247, Washington, DC,
USA, 2001. IEEE Computer Society.

[4] A. Askarov and A. Sabelfeld. Localized delimited release:
combining the what and where dimensions of information
release. In PLAS ’07: Proceedings of the 2007 workshop
on Programming languages and analysis for security, pages
53–60, New York, NY, USA, 2007. ACM.

[5] A. Banerjee, D. A. Naumann, and S. Rosenberg. Expressive
declassification policies and modular static enforcement. In
29th IEEE Symposium on Security and Privacy, May 2008.

[6] G. Barthe, D. Pichardie, and T. Rezk. A Certified
Lightweight Non-interference Java Bytecode Verifier. In
Nicola [27], pages 125–140.

[7] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight
non-interference Java bytecode verifier. Technical report,
INRIA, 2007. Extended version of [6]. Available from
http://hal.inria.fr/inria-00106182/.

[8] G. Barthe, T. Rezk, and D. A. Naumann. Deriving an In-
formation Flow Checker and Certifying Compiler for Java.
In 27th IEEE Symposium on Security and Provacy, pages
230–242. IEEE Computer Society, 2006.

[9] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of
Multithreaded Programs by Compilation. In J. Biskup and
J. Lopez, editors, ESORICS, volume 4734 of Lecture Notes
in Computer Science, pages 2–18. Springer, 2007.

[10] A. Bossi, C. Piazza, and S. Rossi. Compositional informa-
tion flow security for concurrent programs. Journal of Com-
puter Security, 15(3):373–416, 2007.

[11] G. Boudol. On Typing Information Flow. In D. V. Hung and
M. Wirsing, editors, ICTAC, volume 3722 of Lecture Notes
in Computer Science, pages 366–380. Springer, 2005.

[12] N. Broberg and D. Sands. Flow Locks: Towards a Core
Calculus for Dynamic Flow Policies. In P. Sestoft, editor,
ESOP, volume 3924 of Lecture Notes in Computer Science,
pages 180–196. Springer, 2006.

[13] S. Chong and A. C. Myers. Language-based information
erasure. In aa [1], pages 241–254.

[14] S. Chong and A. C. Myers. End-to-end enforcement of era-
sure. In CSFW. IEEE Computer Society, 2008. To appear.

[15] B. Cook, A. Podelski, and A. Rybalchenko. Terminator:
Beyond Safety. In T. Ball and R. B. Jones, editors, CAV,
volume 4144 of Lecture Notes in Computer Science, pages
415–418. Springer, 2006.

[16] S. N. Freund and J. C. Mitchell. A Type System for the
Java Bytecode Language and Verifier. J. Autom. Reason.,
30(3-4):271–321, 2003.

[17] R. Giacobazzi and I. Mastroeni. Abstract non-interference:
parameterizing non-interference by abstract interpretation.
In N. D. Jones and X. Leroy, editors, POPL, pages 186–197.
ACM, 2004.

[18] J. A. Goguen and J. Meseguer. Security Policies and Secu-
rity Models. In IEEE Symposium on Security and Privacy,
pages 11–20, 1982.

[19] D. Hedin and D. Sands. Noninterference in the Presence of
Non-Opaque Pointers. In CSFW ’06: Proceedings of the
19th IEEE workshop on Computer Security Foundations,
pages 217–229, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[20] S. Hunt and D. Sands. On flow-sensitive security types. In
POPL ’06: Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, pages 79–90, New York, NY, USA, 2006. ACM.

[21] S. Hunt and D. Sands. Just Forget it – The Semantics and
Enforcement of Information Erasure. In Programming Lan-
guages and Systems. 17th European Symposium on Pro-
gramming, ESOP 2008, LNCS. Springer Verlag, 2008.

[22] N. Kobayashi and K. Shirane. Type-Based Information
Analysis for Low-Level Languages. In APLAS, pages 302–
316, 2002.

[23] X. Leroy. Bytecode verification on Java smart cards. Soft-
ware: Practice and Experience, 32(4):319–340, Apr. 2002.

[24] H. Mantel and A. Reinhard. Controlling the what and where
of declassification in language-based security. In Nicola
[27], pages 141–156.

[25] H. Mantel and A. Sabelfeld. A Unifying Approach to the Se-
curity of Distributed and Multi-threaded Programs. Journal
of Computer Security, 11(4):615–676, 2003.

[26] H. Mantel and D. Sands. Controlled Declassification Based
on Intransitive Noninterference. In W.-N. Chin, editor,
APLAS, volume 3302 of Lecture Notes in Computer Science,
pages 129–145. Springer, 2004.

[27] R. D. Nicola, editor. Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007,

96969696

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

82

Held as Part of the Joint European Conferences on The-
ory and Practics of Software, ETAPS 2007, Braga, Portu-
gal, March 24 - April 1, 2007, Proceedings, volume 4421 of
Lecture Notes in Computer Science. Springer, 2007.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Pro-
gram Analysis. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1999.

[29] B. C. Pierce. Types and programming languages. MIT Press,
Cambridge, MA, USA, 2002.

[30] J. Rushby. Noninterference, Transitivity, and Channel-
Control Security Policies. Technical report, SRI, dec 1992.

[31] A. Russo and A. Sabelfeld. Securing interaction between
threads and the scheduler. In Computer Security Founda-
tions Workshop, pages 177–189, 2006.

[32] A. Sabelfeld. Confidentiality for multithreaded programs
via bisimulation. In Andrei Ershov International Conference
on Perspectives of System Informatics, volume 2890 of Lec-
ture Notes in Computer Science, pages 260–273. Springer-
Verlag, July 2003.

[33] A. Sabelfeld and H. Mantel. Static confidentiality enforce-
ment for distributed programs. In Static Analysis Sympo-
sium, volume 2477 of Lecture Notes in Computer Science,
pages 376–394, Madrid, Spain, Sept. 2002. Springer-Verlag.

[34] A. Sabelfeld and A. C. Myers. A Model for Delimited
Information Release. In K. Futatsugi, F. Mizoguchi, and
N. Yonezaki, editors, ISSS, volume 3233 of Lecture Notes in
Computer Science, pages 174–191. Springer, 2003.

[35] A. Sabelfeld and D. Sands. Dimensions and Principles of
Declassification. In aa [1], pages 255–269.

[36] D. M. Volpano and G. Smith. A Type-Based Approach to
Program Security. In TAPSOFT ’97: Proceedings of the 7th
International Joint Conference CAAP/FASE on Theory and
Practice of Software Development, pages 607–621, London,
UK, 1997. Springer-Verlag.

[37] S. Zdancewic. Challenges for Information-flow Secu-
rity. In Proceedings of the 1st International Workshop on
the Programming Language Interference and Dependence
(PLID’04), August 2004.

97979797

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 15, 2008 at 09:41 from IEEE Xplore. Restrictions apply.

MOBIUS Deliverable D2.5 Report on safe information release

83

Cryptographically-Masked Flows

Aslan Askarov Daniel Hedin Andrei Sabelfeld

Department of Computer Science and Engineering
Chalmers University of Technology

412 96 Göteborg, Sweden

In Proc. 13th International Static Analysis Symposium, Seoul, Korea, August 2006. LNCS.© Springer-Verlag

Abstract. Cryptographic operations are essential for many security-critical sys-
tems. Reasoning about information flow in such systems is challenging because
typical (noninterference-based) information-flow definitions allow no flow from
secret to public data. Unfortunately, this implies that programs with encryption
are ruled out because encrypted output depends on secret inputs: the plaintext and
the key. However, it is desirable to allow flows arising from encryption with secret
keys provided that the underlying cryptographic algorithm is strong enough. In
this paper we conservatively extend the noninterference definition to allow safe
encryption, decryption, and key generation. To illustrate the usefulness of this
approach, we propose (and implement) a type system that guarantees noninter-
ference for a small imperative language with primitive cryptographic operations.
The type system prevents dangerous program behavior (e.g., giving away a secret
key or confusing keys and non-keys), which we exemplify with secure imple-
mentations of cryptographic protocols. Because the model is based on a standard
noninterference property, it allows us to develop some natural extensions. In par-
ticular, we consider public-key cryptography and integrity, which accommodate
reasoning about primitives that are vulnerable to chosen-ciphertext attacks.

1 Introduction

Cryptographic operations are ubiquitous in security-critical systems. Reasoning about
information flow in such systems is challenging because typical information-flow defi-
nitions allow no flow from secret to public data. The latter requirement underliesnon-
interference[11, 16], which demands that public outputs are unchanged as secret inputs
are varied. While traditional noninterference breaks in the presence of cryptographic
operations, the challenge is to distinguish between breaking noninterference because of
legitimate use of sufficiently strong encryption and breaking noninterference due to an
unintended leak.

A common approach to handling cryptographic primitives in information-flow aware
systems is by allowingdeclassificationof encryption results. The intention of declas-
sification is that the result of encryption can be released to the attacker. Declassifi-
cation, however, is a versatile mechanism: different declassification dimensions cor-
respond to different reasons why information is released [29, 4]. Attempts at framing
cryptographically-masked flows into different dimensions have been made although, as
we discuss, not always with satisfactory results.

In this paper, we introduce cryptographic primitives into an information-flow set-
ting while preserving a form of noninterference property. This is achieved by building

MOBIUS Deliverable D2.5 Report on safe information release

84

(a) Noninterference (b) Encryption

(c) Possibilistic noninterference (d) Cryptographically-masked flows

Fig. 1. From noninterference to cryptographically-masked flows

in the model a basic assumption that attackers may not distinguish between ciphertexts
and that decryption using the wrong key fails. Although this assumption is stronger
than some probabilistic and computational cryptographic models (which allow some
information to leak when comparing ciphertexts), we argue that it can still be reason-
able, and that it opens up possibilities for tracking information flow in the presence of
cryptographic primitives in expressive programming languages.

The intuition behind our approach is sketched below and illustrated in Figure 1,
where dashed and solid lines correspond to secret and public values, respectively. Fix-
ing some public (low) inputxL and varying secret (high) input fromxH to yH may
not reflect on a public outputz′L of a system that satisfies noninterference (illustrated
in Figure 1(a)). Suppose the system in question involves encryption, such as in the pro-
gramz = enc(k, x) for some secret keyk. Clearly, noninterference is broken: variation
in the secret input fromxH to yH may cause variation in the public output fromz′L to
z′′L (illustrated in Figure 1(b)).

However, noninterference can be recovered if the result of encryption is possibly
any valuev. This means that variation of the high input fromxH to yH does not af-
fect the public output—any valuev is a possible public output in both cases. This form
of noninterference is known aspossibilistic noninterference[24] (illustrated in Fig-
ure 1(c)). Overall, although low outputs might depend on low inputs and ciphertexts, no
observation about possible low outputs may reveal information about changes in high
inputs (illustrated in Figure 1(d)).

This paper makes a case for possibilistic noninterference as a natural model for
cryptographically-masked flows. Further, we have designed and implemented a secu-
rity type system that provably enforces possibilistic noninterference for an imperative
language with primitive cryptographic operations and communication channels. The
type system prevents dangerous program behavior (e.g., giving away a secret key or
confusing keys or non-keys), which we exemplify with secure implementations of cryp-
tographic protocols. Because the model is based on a standard noninterference property,
it allows us to develop some natural extensions. In particular, we consider public-key
cryptography and integrity, which accommodates reasoning about primitives that are
vulnerable to chosen-ciphertext attacks.

2

MOBIUS Deliverable D2.5 Report on safe information release

85

sec. levels σ ::= L | H
key levels γ ::= P | S
global decls. gd ::= global x γ | ch τ

basic types t ::= int | encγ τ
prim. types τ ::= t σ | key γ | (τ1, τ2)
local decls. ld ::= x τ

expressions e ::= n | x | e1 op e2 | encγ (e1, e2) | decγ (e1, e2) | newkey γ | (e1, e2)
| fst(e) | snd(e)

statements c ::= skip | x := e | if e then b1 else b2 | while e do b | out(ch, e)
| in(x, ch)

block b ::= {ld1; . . . ldn; c1; . . . ; cm}
actor actor ::= A b program prog ::= gd1; . . . gdn; actor1 . . . actorm

Fig. 2. Syntax

2 Language

We explore how to model cryptographic flows in a small imperative language equipped
with primitive encryption functions, dynamic key generation, and channels for commu-
nication. This section introduces the syntax and semantics of the language. For space
reasons we are forced to omit the standard features of the language. The complete rules
can be, however, found in the full version of this paper [3].

SyntaxThe syntax of the language is defined in Figure 2. Letx ∈ VarName range over
the set of variable names andch ∈ ChanName range over the set of channel names.
A programconsists of a sequence ofglobal declarationsfollowed by a sequence of
actors. A global declaration is either a declaration of aglobal keyor the declaration
of a channel. Global keys are declared by associating a variable name with akey level.
Values and keys have correspondingsecurity levels. Values are eitherpublic (low)L or
secret (high)H. The key levels declare the maximum value security level the key can
safely encrypt. In particular, a key of levelSmay safely encrypt public and secret values,
whereas a key of levelP may only safely encrypt public values. LetKeyLvl = {S, P}
be the set of key levels. Global keys are assumed to have appropriate values at the
beginning of the execution of a program and correspond to initial shared secrets between
the actors of the program. Achannelis declared by associating a channel name with
the type of the messages that will be sent over the channel. LetA range over the set
of actor names. An actor is defined by naming ablock, representing the code of the
actor. A block is simply a sequence of variable declarations followed by a sequence of
commands. Variables are local to the block in which they are declared. The commands
include the standard commands of an imperative language and commands for sending
on and receiving from a given channel. Apart from expressions for generating new keys
and for encryption and decryption, expressions are standard: integers, variables, total
binary operators, pair formation, and projection.

SemanticsThe semantics of the system is defined as a big-step operational semantics.
The actors of a program run concurrently and interact with each other by sending and
receiving messages on the declared channels. We refrain from modeling the semantics
for the entire system and instead provide semantics for isolated actors. Thus we delib-
erately ignore information flows via races and other flows that may arise in concurrent

3

MOBIUS Deliverable D2.5 Report on safe information release

86

systems (cf. [27]). First we define the values and environments, which are used in the
following definition of the semantics of expressions and commands. Letn ∈ Z range
over theintegersandk ∈ Key = KeyP∪KeyS range overkeys, whereKeyP andKeyS
are disjoint. Thevaluesare built up by theordinary values, integers, keys andpairs of
values, together with theencrypted valuesu ∈ U = UP ∪ US.

values∈ Value v ::= n | k | (v1, v2) | u

The system is parameterized over twosymmetric encryption schemes—one for each
key levelγ—represented by triplesSEγ = (Kγ , Eγ ,Dγ), where

– Kγ is akey generationalgorithm that on each invocation generates a new key.
– Eγ is a probabilistic encryption algorithm that takes a keyk ∈ Keyγ , a value
v ∈ Value and returns a ciphertextu ∈ Uγ .

– Dγ is a deterministic decryption algorithm that takes a keyk ∈ Keyγ , a cipher-
text u ∈ Uγ and returns a valuev ∈ Value or fails. Decryption should satisfy
Dγ(k, Eγ(k, v)) = v.

The reason for the use of different encryption schemes for different security levels is
to lay the ground for an extension of the system into amulti-levelsystem, i.e. a system
with more than two security levels. In such a system we would have one encryption
schema at each security level, trusted to encrypt values up to and including the security
level. We shall assume that the keys setsKeyP andKeyS of the two different encryption
schemes are distinct; letpk range overKeyP andsk overKeyS.

Input and output is modeled in terms of streams of values with the cons opera-
tion “·” and the distinguished empty streamε. Thefull environmentE consists of four
components: (i) the variable environmentM , which is a stack of mappings from vari-
able names to lifted values (values joined with a special value for undefinedValue• =
Value ∪ {•}); (ii) the key-stream environmentG, which maps an encryption scheme
level to thestream of keysgenerated by successive use of the key generator (letks range
over streams of keys); (iii) the input environmentI and (iv) the output environmentO,
which map channel names to streams of values.

Semantics of ExpressionsThe evaluation of expressions has the form〈(M,G), e〉 ⇓
〈G′, v〉: evaluating an expression in a given variable and key-stream environment yields
a value and a possibly updated key-stream environment. The semantics of integers,
variables, total binary operators, pair formation, and projection are entirely standard.

Figure 3 presents the rules specific to the treatment of cryptography; the rest of the
rules can be found in [3]. Key generation(S-NEWKEY) takes the level of the key to be
generated and returns the topmost element in the key stream associated to that level in
the key-stream environment. Encryption(S-ENC)and decryption(S-DEC)both use the
encryption schemesSEγ introduced above.

Semantics of CommandsCommands are state transformers of the form〈E, c〉 ⇓ E′:
the commandc yields the new environmentE′ when run in the environmentE. The
semantics of the commands is entirely standard for a while language with channels—
everything specific to encryption is in the expressions. For space reasons the semantics
of the commands is not presented here but can be found in [3].

4

MOBIUS Deliverable D2.5 Report on safe information release

87

(S-NEWKEY)
G(γ) = k · ks

〈(M,G), newkey γ〉 ⇓ 〈G[γ 7→ ks], k〉

(S-ENC)

〈(M,G), e1〉 ⇓ 〈G′, k〉 〈(M,G′), e2〉 ⇓ 〈G′′, v〉 k ∈ Keyγ
u = Eγ(k, v)

〈(M,G), encγ (e1, e2)〉 ⇓ 〈G′′, u〉

(S-DEC)

〈(M,G), e1〉 ⇓ 〈G′, k〉 〈(M,G′), e2〉 ⇓ 〈G′′, u〉 k ∈ Keyγ
v = Dγ(k, u)

〈(M,G), decγ (e1, e2)〉 ⇓ 〈G′′, v〉

Fig. 3. Semantics of Expressions

3 Security

This section states the assumptions our semantic model makes on the underlying en-
cryption schema and shows how these assumptions lead up to a natural formulation
of possibilistic noninterference. The section concludes by investigating the relation be-
tween our assumptions and common cryptographic attacker models.

Encryption Model As was mentioned above, this paper only considersprobabilistic
encryption schemes. A probabilistic encryption scheme is a triple(K, E ,D) where the
encryption algorithm is a function from a key, a plaintext, and some initialrandom
data, referred to as theinitial vector. Such an algorithm will produce a set of possible
ciphertexts for each plaintext-key pair, one ciphertext for each initial vector.

To be able to formulate and prove possibilistic noninterference for our system we
need to demand two properties of the underlying encryption schemes. The first property
is the assumption that an adversary can learn nothing about the plaintext or the key by
observing the ciphertext. This property, known as Shannon’sperfect secrecy[30], is
used to justify ourindistinguishabilityrelation on ciphertexts.

The second property is anauthenticity propertyneeded in the treatment of decryp-
tion. More precisely we are assuming that decryption using thewrongkey fails:

D(k, E(k′, v)) = ⊥ if k 6= k′

Insufficiency of Standard NoninterferenceThe prevailing notion when defining con-
fidentiality in the analysis of information flows is noninterference. Noninterference is
typically formalized as the preservation of alow-equivalencerelation under the exe-
cution of a program: if a program is run in two low-equivalent environments then the
resulting environments should be low-equivalent. For ordinary values like integers low-
equivalence demands that public values are equal. However, from the assumption that
an adversary can learn nothing about the plaintext from observing the ciphertext it is
secure to treat all ciphertexts of the same length1 as low-equivalent. However appealing
this may be, such a treatment leads the ability of masking implicit flows in ciphertexts.
Consider the program on Listing 1 for some public channelch and encryption with
secret keyk:

1 We do not assume that encryption hides the length of messages.

5

MOBIUS Deliverable D2.5 Report on safe information release

88

l := enc(k, a);
out(ch, l);
if (h) then l := enc(k, b) else skip;
out(ch, l);

Listing 1. Occlusion

If all encrypted values are consid-
ered equal then we cannot distinguish
between the first and the second output
value, even though it is clear that the
equality/inequality of the first and the
second value reflects the secret valueh.

Possibilistic NoninterferenceTo address this problem we use a variant of noninter-
ference known as possibilistic noninterference, which allows us to create a notion of
low-equivalence that disallows the above example without disallowing intuitively se-
cure uses. Before we formalize our notion of possibilistic noninterference, let us lift the
evaluation relation to a set of results as follows:

〈E, c〉 ⇓ Ê iff Ê = {E′ | 〈E, c〉 ⇓ E′}

With this we can formulate our notion of possibilistic noninterference. LetE1 ∼Σ E2

denote that the environmentsE1 andE2 are low-equivalent w.r.t the environment type
Σ. A pair of commands,c1 andc2 are noninterfering if

NI(c1, c2)Σ ≡ ∀E1, E2 . E1 ∼Σ E2∧
〈E1, c1〉 ⇓ Ê1 ∧ Ê1 6= ∅ ∧ 〈E2, c2〉 ⇓ Ê2 ∧ Ê2 6= ∅ =⇒

∀E′
1 ∈ Ê1∃E′

2 ∈ Ê2 . E
′
1 ∼Σ E′

2

That is, two commands are consideredequivalentif, for every pair of low-equivalent
environmentsin which the commands terminateit holds that there exists thepossibility
that each environment produced by the first command when run in the first environment
can be produced by the second command when run in the second environment.

By only considering environments for which the commands terminate, we ignore
the issue with crashes. This is equivalent to saying that normal and abnormal termina-
tion cannot be distinguished by the attacker.

Adequacy of the ModelThe choice of possibilistic noninterference does not automat-
ically solve the above problem—using the full low-equivalence relation on ciphertexts
would lead to the same danger of masking insecure flows. Instead the low-equivalence
relation has to be crafted carefully to avoid masked insecure flows and at the same time
allow secure usage of encryption primitives. We will now show how this can be done
for probabilistic encryption schemes. Consider first what happens in the above example.
Let two low-equivalent environmentsE1 andE2 s.t.h is true in the first andfalse in
the second. The result of running theif statement of the example above in the second
environmentE2 is the singleton set̂E2 = {E2}. However, the result of running it in
the first environment is the set of environmentsÊ1 = {E1[l = c] | encrypt(b) = c},
where each c is obtained by encryptingb under the same key but with different initial
vectors. The demand of possibilistic noninterference is that for each environment inÊ1

there should exists a low-equivalent environment inÊ2. This is only the case if all ci-
phertexts{c | encrypt(b) = c} are low-equivalent. Thus, any low-equivalence relation
that does not consider the different ciphertexts originating from one plaintext and one

6

MOBIUS Deliverable D2.5 Report on safe information release

89

key to be the equivalent will prevent this kind of masking. However, we must make sure
that each ciphertext produced by one plaintext and key has a low-equivalent ciphertext
for each other choice of plaintext and key.

Fortunately, for probabilistic encryption schemes we can easily form a low-equiva-
lence relation

.
= with these properties by regarding ciphertextswith the same random

initial vector to be equivalent:

∀k1, k2, v1, v2 . E(k1, v1, iv) .
= E(k2, v2, iv)

whereiv ranges over initial vectors. This relation has the following properties: (i) differ-
ent ciphertexts produced by one plaintext and one key will have different initial vectors
and will not be low-equivalent, and (ii) since each plaintext and key will produce ci-
phertexts using all initial vectors, for each ciphertext produced by one plaintext and key
there will be exactly one low-equivalent ciphertext for every other choice of plaintext
and key.

Relation to Computational Adversary ModelsThe perfect secrecy and authenticity de-
mands on the encryption schemes are fairly strong. However, there are schemes for
which the probability of breaking these assumptions is provably negligible.

The first demand that the ciphertexts should give no information about the plaintexts
is commonly relaxed to the notion ofsemantic security under chosen plaintext attack
(SEM-CPA) by assuming that the adversary haslimited computational power. Semantic
security states that “Whatever is efficiently computable about the cleartext given the
cyphertext, is also efficiently computable without the cyphertext” [17]. 2

In the same way we may allow a relaxation of the demand of authenticity, which
can be implemented by combiningMessage Authentication Code(MAC) with a SEM-
CPA encryption scheme to form a new scheme that is both secure (SEM-CPA) and
authenticity preserving (INT-PTXT)[6]. A scheme is INT-PTXT if the chance that an
adversary can produce ciphertextsC s.t.M = Dk(C) 6= ⊥ andM was never a para-
meter ofEk(·) is negligible. To see that the probability of a successful decryption using
the wrong key is negligible under an INT-PTXT scheme consider the following. If a
ciphertextC = Ek(M) decrypts successfully using another key than was used to con-
struct the message i.e.M ′ = Dk′(C) for k′ 6= k then the scheme cannot be INT-PTXT,
sinceM ′ was never a parameter ofEk′(·).

On Semantic SecurityWe believe that it is possible to prove a general result that if a
program with SEM-CPA + INT-PTXT encryption primitives is secure w.r.t. possibilis-
tic noninterference then it is also semantically secure. This result is likely to involve
restrictions onkey cycles, which are a known problem when reconciling the formal and
computational views of cryptography [2], or demanding that the underlying schema is
secure in the presence of such cycles (cf.KDM security[7]).

With such a result at hand, we shall be able to capitalize on the modularity of our
approach. For a given language and type system, as soon as we can prove that all well-
typed programs are noninterfering, we automatically get semantic security. This opens

2 There is another frequently used notion of security under a computationally limited adversary,
IND-CPA. IND-CPA has been shown to be equivalent to SEM-CPA [17, 6].

7

MOBIUS Deliverable D2.5 Report on safe information release

90

up possibilities for reasoning about expressive languages and type systems, where all
we have to worry about are noninterference proofs (which are typically simpler than
proofs of computational soundness).

4 Types

The syntax of the types is defined in Figure 2. Aprimitive typeis either asecurity anno-
tated basic type, a pair of primitive types or akey type. The security annotation assigns
a security level to the basic type expressing whether it issecretor public. The types of
encrypted values arestructural in the sense that the type reflects the original type of
the encrypted values as well as the level of the key that was used in the encryption. For
instance,encS (int H) L is the type of a secret integer that has been encrypted with
a secret key once andencS (encS (int H) L) L is the type of an integer that has been
encrypted with a secret key twice. The type of the variable environmentΩ is a map
from variables to primitive types, the type of the input environment and the output en-
vironment alikeΘ is a map from channel names to primitive types, and the key-stream
environment defines its own type (in the domain of the environment). The type of the
entire environment,Σ, is the pair of a variable type environment and a channel type
environment.

Well-formed ValuesWell-formedness defines the meaning of the types ignoring the
security annotations. The well-formedness is entirely standard and is omitted for space
reasons.

Low-equivalenceIn Figure 4 we formalize the low-equivalence relation. For complex
types, i.e., pairs and environments, low-equivalence is defined structurally by demand-
ing the parts of the complex type to be low-equivalent w.r.t. the corresponding type.
Any values are low-equivalent w.r.t. a secret type. Integers are low-equivalent w.r.t.
a public integer type if they are equal. Low-equivalence for keys is slightly different
since keys are not annotated with a security level—only a key level—whose meaning
is defined by well-formed values as different sets. Even though it is semantically mean-
ingful to add a security level to key types—the values of keys can be indirectly affected
by computation—we have chosen not to. Instead, a public key is considered to be of
low security and a secret key of high security. Thus, public keys are low-equivalent if
they are equal, and any two secret keys are low-equivalent.

The most interesting rule is the rule defining low-equivalence w.r.t. a public en-
cryption type(LE-ENC-L1) and (LE-ENC-L2). These two rules define the difference in
meaning between encryption with a secret and a public key. First, in both rules, the en-
crypted values must be low-equivalent w.r.t. the low-equivalence relation of encrypted
values. Second, there must exist a pair of low-equivalent keys w.r.t. the key type of the
encryption type that decrypt the encrypted value to two values. This is where the rules
differ. Since ciphertexts created by public keys can be decrypted by anyone with access
to the public keys, we have to demand that the inside of the encrypted value contains
only public values. This is done in the(LE-ENC-L2) rule, which demands that the inside

8

MOBIUS Deliverable D2.5 Report on safe information release

91

(LE-KEY-L)
pk• ∼key P pk

•

(LE-KEY-H)
sk•1 ∼key S sk

•
2

(LE-INT-L)
n• ∼int L n

•

(LE-INT-H)
n•
1 ∼int H n

•
2

(LE-ENC-L3) • ∼encP τ L •

(LE-ENC-H)
u•
1 ∼encγ τ H u

•
2

(LE-PAIR)
v11 ∼τ1 v21 v12 ∼τ2 v22

(v11, v12) ∼(τ1,τ2) (v21, v22)

(LE-MEM)
∀x ∈ dom (Ω) M1(x) ∼Ω(x) M2(x)

M1 ∼Ω M2

(LE-INENV)
∀ch ∈ dom(Θ) . I1(ch) ∼Θ(ch) I2(ch)

I1 ∼Θ I2

(LE-OUTENV)

∀ch ∈ dom(Θ) .
O1(ch) ∼Θ(ch) O2(ch)

O1 ∼Θ O2

(LE-KGEN)
G1(S) ∼ G2(S) G1(P) ∼ G2(P)

G1 ∼ G2

(LE-KGENP)

pk1 ∼key P pk2
K1 ∼P K2

pk1 ·K1 ∼P pk2 ·K2
(LE-KGENS)

sk1 ∼key S sk2
K1 ∼S K2

sk1 ·K1 ∼S sk2 ·K2

(LE-ENC-L1)

∃vi, ki . vi = Dγ(ki, ui) i = 1, 2 k1 ∼key S k2 v1 ∼τ v2
u1

.
= u2

u1 ∼encS τ L u2

(LE-ENC-L2)

∃vi, ki . vi = Dγ(ki, ui) k1 ∼key P k2 v1 ∼tolow(τ) v2
u1

.
= u2

u1 ∼encP τ L u2

Fig. 4. Low-equivalence

is not only low-equivalent w.r.t. its typeτ , but low-equivalent w.r.t.tolow(τ), which is
defined as follows:

tolow(t σ) = t L tolow(key P) = key P tolow((τ1, τ2)) = (tolow(τ1), tolow(τ2))

The (LE-ENC-L1) rule can be seen as encoding the power of the attackers. For en-
cryption with secret keys the demand is only that the resulting values should be low-
equivalent w.r.t. the primitive type,τ , of the encryption type. This way, we demand
low-equivalence inside encrypted values and make certain that that the result of de-
crypting low-equivalent encrypted values will result in low-equivalent values and that
secret values are not stored inside encrypted values that are created by public keys.

SubtypingThe subtyping is entirely standard; it allows public information to be seen
as secret with the exception of invariant subtyping for keys. The subtyping relation
for primitive types,<:, and the subtyping relation for security levels,v, defines the
corresponding join operators. The subtyping relation can be found in [3].

Expression Type RulesThe type rules for expressions are of the formΩ, pc ` e : τ .
Figure 5 defines typing rules for non-standard expressions, while the rest of the rules
can be found in [3]. The generation of a new key with the requested security level results
in a key with that security level if the requested level is not below the context type. The

9

MOBIUS Deliverable D2.5 Report on safe information release

92

(T-NEWKEY)
pc v lvl(key γ)

Ω, pc ` newkey γ : key γ
(T-ENC1)

Ω, pc ` e1 : key S
Ω, pc ` e2 : τ

Ω, pc ` encS (e1, e2) : encS τ L

(T-ENC2)

Ω, pc ` e1 : key P
Ω, pc ` e2 : τ lvl(τ) = σ

Ω, pc ` encP (e1, e2) : encP τ σ
(T-DEC)

Ω, pc ` e1 : key γ
Ω, pc ` e2 : encγ τ σ

Ω, pc ` decγ (e1, e2) : τ
σ

Fig. 5. Type Rules of Expressions

reason for this is that we assume that the public-key stream is publicly observable. En-
cryption with secret keys will always result in public encrypted values. Encryption with
public keys is possible on any value but produces a result that is as secret as the origi-
nal value. Both the type rule for key generation and the type rule for public encryption
makes use of functionlvl(·) that computes the security level of the given value:

lvl(t σ) = σ lvl((τ1, τ2)) = lvl(τ1) t lvl(τ2) lvl(key P) = L lvl(key S) = H

Decryption is allowed only if the key level of the key used for decryption matches the
key level of the encrypted value. The result of the decryption is tainted by the security
level of the encrypted values. The taint function is defined as follows:

(t σ)σ
′
= t (σ t σ′) (τ1, τ2)

σ = (τσ1 , τ
σ
2) (key P)L = key P (key S)σ = key S

Command Type RulesAs with expressions most of the rules are standard for a secu-
rity type system (cf. [34]). As is standard, following Denning’s original approach to
analyzing programs for secure information flow [13], in order to prevent implicit flows
the notion ofsecurity contextis defined. The security context of a program point is de-
fined to be the least upper bound of the security levels of the conditional expressions
of the enclosing conditionals. The context affects the the commands with side-effects,
i.e., variable assignment, input, and output. A block of local declarations followed by a
sequence of statements is checked by first adding the declared variables to the variable
environment and then checking all statements in the new type environment. The type
rule for sequences of statements(T-SEQ)checks all statements of the sequence.If and
while are the two constructs that can lead to indirect flows since they affect the control
flow. Thus, the body of theif and thewhile are checked in the context of the security
level of the control expression. This way, when a branch is depending on a secret the
body of that branch is prevented from causing any low side effects. The type rules of
commands can be found in [3].

5 Soundness

The main soundness theorem of the paper states that well-typed programs are noninter-
fering. Typically, for typed programming languages, the soundness is phrased in terms

10

MOBIUS Deliverable D2.5 Report on safe information release

93

of progress, i.e. well-typed programs can always be evaluated in well-formed environ-
ments, andpreservation, i.e. after this step has been made the resulting environment is
well formed. It may be interesting to note that the way we have avoided to model error
makes this system not satisfy progress: decryption with the wrong key or computing
with an uninitialized variable will prevent evaluation. The well known solution is to
model failure in the semantics. To keep the presentation cleaner we refrain from this.

The soundness theorem states that well-typed programs are noninterfering. Sec-
tion 3 lifts the evaluation relation of commands to sets and formulates noninterference
for commands. Before giving the formulation of the soundness theorem we must lift the
codomain of the evaluation relation of expressions to sets and formulate noninterference
for expressions:

〈(M,G), e〉 ⇓ 〈G′, v̂〉 iff v̂ = {v | 〈(M,G), e〉 ⇓ 〈G′, v〉}
With this we can define noninterference for expressions, which is equivalent to the

noninterference of statements defined above. Put simply, if two expressionse1 ande2
are run in low-equivalent key-stream and variable environments, yielding pairs of new
key-stream environments and results, then these results should be low-equivalent:

NI (e1, e2)Ω,τ ≡ ∀M1,M2, G1, G2 . M1 ∼Ω M2 ∧G1 ∼ G2∧
〈(Mi, Gi), ei〉 ⇓ 〈G′

i, v̂i〉 ∧ v̂i 6= ∅ =⇒
G′

1 ∼ G′
2 ∧ ∀v1 ∈ v̂1 ∃v2 ∈ v̂2 . v1 ∼τ v2

We arrive at the soundness theorems for expressions and commands, both proved by
induction on type derivation [3].

Theorem 1. Soundness for expressionsΩ, pc ` e : τ =⇒ NI (e, e)Ω,τ

Theorem 2. Soundness for commandsΣ, pc ` c =⇒ NI (c, c)Σ

6 Extensions

In this section we consider two extensions: integrity and public-key cryptography.

Integrity Confidentiality classifies information into public and secret, i.e., information
that may or may not be given to the world, respectively. Dually, integrity classifies in-
formation intountrusted(or low-integrity) andtrusted(or high-integrity), i.e., whether
the information may or may not have beenaffectedby the world.

Tracking the integrity of data enables us to explore some additional dimensions of
cryptography: weaknesses of the encryption algorithms and the effect of encryption
on integrity. Consider for example, a primitive that is vulnerable to chosen ciphertext
attacks. With integrity controls, it is natural to express the restriction that untrusted
encrypted values may not be decrypted.

In the presence of integrity the security levels for values are pairs of the form(σ, ι),
whereσ is a confidentiality level, andι is a corresponding integrity level. The follow-
ing tables define two functions—safeE(α, (σ, ι)) andsafeD(α, (σ, ι))—that indicate

11

MOBIUS Deliverable D2.5 Report on safe information release

94

if it is safe to encrypt (decrypt) a plaintext (ciphertext) of security level(σ, ι) with an
encryption scheme that has propertyα. Hereα ranges over standard notions [5]—IND-
CCA (indistinguishable under chosen-ciphertext attacks) and IND-CPA (indistinguish-
able under chosen-plaintext attacks).

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe safe safe safe

(H,H) (L,L) (H,L) (L,H)
IND-CCA safe safe safe safe
IND-CPA safe - - safe

safeE(α, (σ, ι)) safeD(α, (σ, ι))

In this way we can provide different type rules for different assumptions on the
vulnerability properties of the encryption and decryption algorithms:

(T-ENC*)
Ω, pc ` e1 : key S Ω, pc ` e2 : τ lvl(τ) = (σ, ι) safeE(α, (σ, ι))

Ω, pc ` encαS (e1, e2) : encS τ (L, H)

(T-DEC*)
Ω, pc ` e1 : key γ safeD(α, (σ, ι)) Ω, pc ` e2 : encγ τ (σ, ι)

Ω, pc ` decαγ (e1, e2) : τ
(σ,ι)

A Note on the Integrity of KeysThe current model allows very limited interaction with
keys apart from encryption. Since the values of keys cannot be programmatically in-
spected, the power of the attacker is limited to choice between secure keys. Thus, the
model cannot in its present form distinguish between encryption with high and low-
integrity keys w.r.t.confidentiality. The intuition is clear: since the attacker can only
choose between secure keys, that choice will give different but safe encrypted values.

Public-Key CryptographyEven though the present system deals only with symmetric-
key cryptography, there is nothing in the model that prevents modeling public-key cryp-
tography. The set of secret keys would contain theprivatekeys and the set of public keys
would contain thepublic keys, where the private keys and the public keys are dual. In
this system values encrypted with public keys would be considered public, since only
actors with access to the private keys would be able to decrypt them.

However, public-key cryptography is most interesting in the presence of integrity.
In the same way we can model that encryption of secrets using secret keys results in
public values, we can model that encryption raises the integrity of the encrypted value
to the integrity of the key, which corresponds to signing.

7 Programming with encryption: Examples

We have implemented a prototype of the type system and mechanically type-checked
two applications: secure backup and a Wide-Mouthed-Frog protocol implementation. In
both examples the type system prevents dangerous insecurities such as sending sensitive
unencrypted data over a public channel or not using a secret key for encryption. This
section discusses some interesting fragments of these implementations.

12

MOBIUS Deliverable D2.5 Report on safe information release

95

Secure Data BackupIn the secure backup scenario a low-confidentiality channel is used
for sending sensitive information to the remote storage. Listing 2 presents the code for
the backup operation. Here and below we slightly simplify the syntax with respect to
Figure 2 for the sake of readability.

1 global K secret;
2 backup enc secret (int high) low;
3
4 actor Backup {
5 data int high;
6 ctxt enc secret (int high) low;
7 data := ...
8 ctxt := encrypt(K, data);
9 out backup ctxt;

10 }

Listing 2. Backup code

Here, the global declarations contain
secret keyK and low channelbackup.
The type of the latter says that only en-
crypted high integers may be sent over
this channel.

Lines 5 and 7 declare and initial-
ize a high integer variabledata. Line 6
declares the variablectxt of type enc

secret (int high) low. On line 8 the
value of variabledata is encrypted with secret keyK and the resulting ciphertext is as-
signed to the variablectxt. Since type ofctxt matches the type of thebackup channel
it might be sent over this channel. This is done by theout command on line 9.

1 actor Restore {
2 data int high;
3 ctxt enc secret (int high) low;
4 in ctxt backup;
5 data := decrypt(K, ctxt);
6 }

Listing 3. Recovery code

When recovering data, an actor reads
the data from the public channel and de-
crypts it. Assuming the same global dec-
larations Listing 3 presents the recovery
code. Here, line 4 reads data from the
backup channel. It’s decrypted using the
keyK on line 5.

An example of an easy-to-overlook error is to have the following line in place of
line 9 in the body of actorBackup: out backup data;. This is an insecurity that the
type system rejects. Generally, in the secure backup example the type system ensures
that secret data is encrypted before it is sent over thebackup channel, thus preventing
accidental leaks.

Wide-Mouthed-Frog ProtocolThe Wide-Mouthed-Frog protocol [8] is a simple key
exchange protocol with trusted server and timestamps. In this protocol secret keysKAS

andKBS are shared between server S and principals A and B, respectively. Principal A
generates a fresh session keyKAB , which is transferred to B in two messages:

1. A → S : A, {TA, B,KAB}KAS

2. S → B : {TS , A,KAB}KBS

The first message consist of A’s name and a tuple encrypted with the shared keyKAS .
This tuple contains three elements—a timestampTA, the name of principal B, and a
generated keyKAB . Upon receipt of this message, S decrypts it, checks the timestamp,
replacesTA with its own timestampTS , encrypts it with keyKBS , and forwards the
resulting message to B. Principal B then checks whether the second message is timely.

Obviously, there is more to implementation of the protocol than expressed by the
two-step description. Our type system guarantees that implementations do not introduce
information-flow leaks in the protocol. Listing 4 presents the implementation of this
protocol for principal A. The full version of this paper [3] contains the implementation
for the server S and principal B.)

13

MOBIUS Deliverable D2.5 Report on safe information release

96

1 global Kas secret;
2 chanS <int low, enc secret
3 (<int low, <int low, key secret>>) low>;
4 chanAB enc secret (int high) low;
5 actor A {
6 idA int low; idB int low; tsA int low;
7 messageToB int high;
8 Kab key secret;
9 // ... initialization

10 Kab := newkey (secret);
11 out chanS <idA,
12 encrypt(Kas, <tsA,<idB, Kab>>)>;
13 out chanAB encrypt (Kab, messageToB);
14 }

Listing 4. WMF Implementation

This program declares two chan-
nels:chanS for communicating with the
server, andchanAB for sending mes-
sages to B, once the key has been ex-
changed. The type of the channelchanS

corresponds to the first message in the
protocol—a pair consisting of a low in-
teger and an encryption with secret key
of a three-element tuple (expressed by
nested pairs). Since the level of the key
used for encrypting this tuple issecret,
it is safe to label the result of encryption
aslow. The body of theactor declaration defines low-confidentiality variablesidA and
idB that stand for the names of the principals; variabletsA stores the current timestamp;
the high-confidentiality variablemessageToB contains the information that A wants to
send to B.

The new key is generated on line 10. Line 12 constructs the first message of the
protocol and sends it to the server. Line 13 uses the newly generated key and sends the
secret message to the principal B.

In this example, the type system prevents non-secret session keys in the key estab-
lishment protocol. As in the previous example, it also guarantees that secret information
may not leave the system unless it is encrypted with a secret key.

8 Related work

As mentioned in the introduction, declassification models are sometimes used to jus-
tify cryptographic primitives in languages with information-flow control. Declassifi-
cation mechanisms facilitate information release. A recent classification of declassifi-
cation [29] suggests that information release policies represent aspects ofwhat is de-
classified, bywhom, whenandwherein the system. These correspond to dimensions
of information release. The relation of our model to declassification is somewhat sub-
tle, because masking does not actually model information release. Hence, none of the
release dimensions is directly suitable for cryptographically-masked flows.

Furthermore, attempts at framing cryptographically-masked flows into different di-
mensions do not always lead to satisfactory results. For example, releasing the differ-
ence between two values of a secret whenever the results of its encryption are different
can be a deceptive policy when assumptions about the underlying cryptographic primi-
tives are not explicitly stated. If the underlying encryption function is bijective (assum-
ing the key is fixed) then releasing the result of encryption is equivalent to releasing
the secret itself. This phenomenon applies to typical policies from thewhatdimension,
such as delimited release [28].

Another example of releasing the secret itself, together with the result of a cryp-
tographic primitive applied to the secret, can be found in [9]. The password checker
example is based on matching the hash of the password with the hash of a user query.

The password has a labelH
certÃ L, which means that the level of the password is even-

14

MOBIUS Deliverable D2.5 Report on safe information release

97

tually declassified from high to low. This, however, allows the password itself to be
released to the attacker in cleartext.

Nevertheless, declassification is meaningful in the context of cryptographic com-
putation when the attacker is capable of learning some information from ciphertext.
Temporal policies expresswhen, at earliest, the attacker might learn the secret. Volpano
and Smith’s relative secrecy [33, 32] guarantees that the attacker cannot learn the secret
in polynomial time in the size of the secret. Approaches by Laud [20, 21], Laud and
Vene [22], provide computational guarantees for a simple imperative language but with
the assumption that keys can be statically distinguished. Mitchell et al. [23, 25] reason
about security with respect to polynomial-time attackers for a form of theπ calculus.

A source of our inspiration is Abadi’s secrecy model for symmetric-key crypto-
graphic protocols [1]. This model assumes that an attacker is unable to decrypt cipher-
texts encrypted with secret keys. Compared to [1], we end up with simpler typing rules.
For example, because of the probabilistic encryption assumption, we do not need to deal
with explicit confounders. In addition, our approach accommodates natural extensions
with integrity and public-key cryptography. Another source of inspiration is a logi-
cal relations technique by Sumii and Pierce that facilitates manual security proofs for
cryptographic protocols [31]. This technique is not accompanied by static enforcement
mechanisms (such as a type system), however.

Gordon and Jeffrey [18] extend Abadi’s work to multiple security levels that may be
dynamically created and may become compromised. This and other work within Gor-
don and Jeffrey’s Cryptyc project, however, relies on trace-based properties (such as
correspondence) that are weaker than noninterference. Dam and Giambiagi’s work on
admissibility[12, 15] focuses on protocol implementation, with the goal that informa-
tion leaks in the implementation must adhere to those declared in protocol specification.

Duggan’s and Chothia et al.’s cryptographic types [14, 10] help enforce security for
a distributed programming language. This is realized through a combination of static
and dynamic checks, leading to access-control guarantees (albeit without information-
flow guarantees) for secrecy and integrity. Myers et al.’s qualified robustness [26] is
based on a possibilistic treatment ofendorsement, operation dual to declassification.

Hicks et al. [19] define a notion ofnoninterference modulo trusted functions, which
requires parts of programs free of cryptographic functions to be in a certain sense in-
distinguishable. The cryptographic functions are trusted to release information if their
security labels satisfy trust constraints. It is a worthwhile direction for future work to
formally investigate the relation tononinterference modulo trusted functions. We do not
expect it to be straightforward because the definition of the indistinguishability relation
from [19] involves two-level semantics.

9 Conclusions and future work
We have developed an approach to tracking information flow in the presence of crypto-
graphic operations, based on possibilistic noninterference. We have argued that a possi-
bilistic treatment of cryptographic operations leads to a natural model of attackers that
may not distinguish between ciphertexts. This model has a close connection to prob-
abilistic encryption and, we believe, it naturally connects to computational adversary
models (cf. Section 3).

15

MOBIUS Deliverable D2.5 Report on safe information release

98

Our case for possibilistic noninterference is driven by the possibility of capitalizing
on the available machinery for reasoning about noninterference in programming lan-
guages. We have demonstrated that possibilistic noninterference can be provably and
straightforwardly enforced via a security-type system for a language that includes cryp-
tographic primitives and message passing. The type system is amenable to extensions,
including integrity and public-key cryptography, which makes it attractive for develop-
ing secure implementations of non-trivial cryptographic protocols. We plan to explore a
semantic justification of these extensions, crystallizing guarantees provided by the typ-
ing rules, and to consider cases studies in which it is critical to achieve these guarantees.

AcknowledgmentsWe wish to thank Martín Abadi and Peeter Laud for helpful com-
ments. This work was supported, in part, by the Swedish Research Council and, in part,
by the Information Society Technologies programme of the European Commission, Fu-
ture and Emerging Technologies under the IST-2005-015905 MOBIUS project.

References

1. M. Abadi. Secrecy by typing in security protocols.J. ACM, 46(5):749–786, September 1999.
2. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational

soundness of formal encryption).J. of Cryptology, 15(2):103–127, 2002.
3. A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows.

Technical report, Chalmers University of Technology, June 2006. Located at
http://www.cs.chalmers.se/∼aaskarov/sas06full.pdf.

4. A. Askarov and A. Sabelfeld. Security-typed languages for implementation of cryptographic
protocols: A case study. InProc. European Symp. on Research in Computer Security, volume
3679 ofLNCS, pages 197–221. Springer-Verlag, September 2005.

5. M. Bellare, A. Desa, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. InAdvances in Cryptology- Crypto 98, volume 1462 of
LNCS, pages 26–46, January 1998.

6. M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. InAdvances in Cryptology - Asiacrypt 2000,
volume 1976 ofLNCS, pages 531–545, January 2000.

7. J. Black, P. Rogaway, and T. Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. InSelected Areas in Cryptography, volume 2595 ofLNCS, pages
62–75. Springer-Verlag, August 2002.

8. M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Transactions on
Computer Systems, 8(1):18–36, February 1990.

9. S. Chong and A. C. Myers. Security policies for downgrading. InACM Conference on
Computer and Communications Security, pages 198–209, October 2004.

10. T. Chothia, D. Duggan, and J. Vitek. Type-based distributed access control. InProc. IEEE
Computer Security Foundations Workshop, pages 170–186, 2003.

11. E. S. Cohen. Information transmission in sequential programs. In R. A. DeMillo, D. P.
Dobkin, A. K. Jones, and R. J. Lipton, editors,Foundations of Secure Computation, pages
297–335. Academic Press, 1978.

12. M. Dam and P. Giambiagi. Confidentiality for mobile code: The case of a simple payment
protocol. InProc. IEEE Computer Security Foundations Workshop, pages 233–244, July
2000.

13. D. E. Denning and P. J. Denning. Certification of programs for secure information flow.
Comm. of the ACM, 20(7):504–513, July 1977.

16

MOBIUS Deliverable D2.5 Report on safe information release

99

14. D. Duggan. Cryptographic types. InProc. IEEE Computer Security Foundations Workshop,
pages 238–252, June 2002.

15. P. Giambiagi and M. Dam. On the secure implementation of security protocols. InProc.
European Symp. on Programming, volume 2618 ofLNCS, pages 144–158. Springer-Verlag,
April 2003.

16. J. A. Goguen and J. Meseguer. Security policies and security models. InProc. IEEE Symp.
on Security and Privacy, pages 11–20, April 1982.

17. S. Goldwasser and S. Micali. Probabilistic encryption.Journal of Computer and System
Sciences, 28:270–299, 1984.

18. A. Gordon and A. Jeffrey. Secrecy despite compromise: Types, cryptography, and the pi-
calculus. InProc. CONCUR’05, number 3653 in LNCS, pages 186–201. Springer-Verlag,
August 2005.

19. B. Hicks, D. King, and P. McDaniel. Declassification with cryptographic functions in a
security-typed language. Technical Report NAS-TR-0004-2005, Network and Security Cen-
ter, Department of Computer Science, Pennsylvania State University, May 2005.

20. P. Laud. Semantics and program analysis of computationally secure information flow. In
Proc. European Symp. on Programming, volume 2028 ofLNCS, pages 77–91. Springer-
Verlag, April 2001.

21. P. Laud. Handling encryption in an analysis for secure information flow. InProc. European
Symp. on Programming, volume 2618 ofLNCS, pages 159–173. Springer-Verlag, April 2003.

22. P. Laud and V. Vene. A type system for computationally secure information flow. InProc.
Fundamentals of Computation Theory, volume 3623 ofLNCS, pages 365–377, August 2005.

23. P. Lincoln, J. C. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time framework
for protocol analysis. InACM Conference on Computer and Communications Security, pages
112–121, November 1998.

24. D. McCullough. Noninterference and the composability of security properties. InProc.
IEEE Symp. on Security and Privacy, pages 177–186, May 1988.

25. J. C. Mitchell. Probabilistic polynomial-time process calculus and security protocol analysis.
In Proc. European Symp. on Programming, volume 2028 ofLNCS, pages 23–29. Springer-
Verlag, April 2001.

26. A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified
robustness.J. Computer Security, 2006. To appear.

27. A. Sabelfeld and A. C. Myers. Language-based information-flow security.IEEE J. Selected
Areas in Communications, 21(1):5–19, January 2003.

28. A. Sabelfeld and A. C. Myers. A model for delimited information release. InProc. In-
ternational Symp. on Software Security (ISSS’03), volume 3233 ofLNCS, pages 174–191.
Springer-Verlag, October 2004.

29. A. Sabelfeld and D. Sands. Dimensions and principles of declassification. InProc. IEEE
Computer Security Foundations Workshop, pages 255–269, June 2005.

30. C. E. Shannon. A mathematical theory of communication.Bell System Tech. J., 27:623–656,
1948.

31. E. Sumii and B. Pierce. Logical relations for encryption. InProc. IEEE Computer Security
Foundations Workshop, pages 256–269, June 2001.

32. D. Volpano. Secure introduction of one-way functions. InProc. IEEE Computer Security
Foundations Workshop, pages 246–254, July 2000.

33. D. Volpano and G. Smith. Verifying secrets and relative secrecy. InProc. ACM Symp. on
Principles of Programming Languages, pages 268–276, January 2000.

34. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis.J.
Computer Security, 4(3):167–187, 1996.

17

MOBIUS Deliverable D2.5 Report on safe information release

100

On the Computational Soundness of
Cryptographically Masked Flows

Peeter Laud
Tartu University, Institute of Computer Science, and Cybernetica AS

peeter.laud@ut.ee

Abstract
To speak about the security of information flow in programs em-
ploying cryptographic operations, definitions based on computa-
tional indistinguishability of distributions over program states have
to be used. These definitions, as well as the accompanying analysis
tools, are complex and error-prone to argue about. Cryptographi-
cally masked flows, proposed by Askarov, Hedin and Sabelfeld, are
an abstract execution model and security definition that attempt to
abstract away the details of computational security. This abstract
model is useful because analysis of programs can be conducted us-
ing the usual techniques for enforcing non-interference.

In this paper we investigate under which conditions this abstract
model is computationally sound, i.e. when does the security of a
program in their model imply the computational security of this
program. This paper spells out a reasonable set of conditions and
then proposes a simpler abstract model that is nevertheless no more
restrictive than the cryptographically masked flows together with
these conditions for soundness.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Operational Semantics, Program Analysis

General Terms Languages, Security, Verification

Keywords Secure Information Flow, Encryption, Computational
Soundness, Cryptographically Masked Flows

1. Introduction
Non-interference (Goguen and Meseguer 1982) is the usual way
of defining the secure information flow in programs (Sabelfeld and
Myers 2003). It states that varying only the secret inputs of the
program must not change the public outputs — public outputs are
determined by the non-secret inputs only. For programs containing
encryption or other cryptographic operations, such a definition may
be too strong, because a ciphertext still depends on the plaintext
used to produce it, albeit in a manner that cannot be exploited
by an adversary that uses only a reasonable amount of resources.
Instead, the notion of computational non-interference (Laud 2003)
has to be used. The definition of computational non-interference
is quite complex in its structure and in the used domains. The
usage of such a definition requires the semantics of the program

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’08, January 7–12, 2008, San Francisco, California, USA.
Copyright c© 2008 ACM 978-1-59593-689-9/08/0001. . . $5.00

to be probabilistic, making it more difficult to argue about. Also,
the precise program analyses based directly on computational non-
interference (Laud 2001, 2003; Laud and Vene 2005) tend to have
a complex structure and their correctness is not always so obvious.

It would be nice to have a more “abstract” definition for the
semantics of the programming language, as well as for the security
of the information flow, such that

(i) the used domains and the structure of definitions are more
conventional;

(ii) the security of the program in the abstract model would imply
its security in the computational model;

(iii) the abstraction would hide the cryptographic details of the en-
cryption (including the necessary use of probabilistic domains),
but not much else of the computational model.

Cryptographically masked flows by Askarov et al. (2006) aims to
be such a more abstract model. This model considers an imperative
programming language (in the original paper this language is quite
feature-rich; we consider a stripped-down version of it) with key
generation, encryption and decryption as distinguished operations.
In the concrete semantics, corresponding to the real-world imple-
mentations of the language, the encryption operation is probabilis-
tic (otherwise it cannot be sufficiently secure). The semantics of a
program maps the initial state Si to a probability distribution Df

over final states. In the model of cryptographically masked flows,
henceforth called the abstract semantics, the encryption operation
is non-deterministic — the encryption algorithm works in the same
way as in the concrete semantics, but each time it flips a coin it
gets both 0 and 1 as the result. The abstract semantics of a pro-
gram maps the initial state Si to a set Sf of possible final states.
The set Sf can be obtained from the distribution Df by just for-
getting the probabilities (at least if there are no other probabilistic
operations except key generation and encryption; such requirement
is put forth by Askarov et al. (2006)). The definition of secure in-
formation flow in the setting of cryptographically masked flows is
the conventional possibilistic non-interference (Smith and Volpano
1998) stating that the set of the low-slices of possible final states
may not depend on the initial secrets. However, when considering
whether the low-slices of two states are equal, we sometimes al-
low the values of the variables containing ciphertexts to differ. The
equivalence of low-slices is defined so that generally all ciphertexts
are considered equal, but we can distinguish a pair of two differ-
ent ciphertexts from a pair of equal ciphertexts. Cryptographically
masked flows can hence be said to satisfy the objectives (i) and
(iii). The aim of the current paper is to investigate, to what extent
and under which conditions the objective (ii) is satisfied.

Askarov et al. (2006) also give a type system for checking
whether a program satisfies the non-interference property given by
the cryptographically masked flows. In the current paper, we do

337

MOBIUS Deliverable D2.5 Report on safe information release

101

not treat this type system in any way; we are interested strictly
only in the cryptographically masked flows. Still, the results of this
paper and Askarov et al. (2006) together establish that if a program
is typable according to this type system, and also satisfies certain
conditions that we put on it in this paper, then this program has
computationally secure information flow.

In the following we will give a precise definition of the program-
ming language and its concrete and abstract semantices in Sec. 2.
We continue by formally stating the definitions of secure informa-
tion flow in both the concrete and abstract settings in Sec. 3. In
Sec. 4 we state and discuss the security definitions that the encryp-
tion systems employed in this paper must satisfy. In Sec. 5 we give
several examples of programs that seem to violate the computa-
tional soundness of cryptographically masked flows and outline the
conditions that would exclude such programs, these conditions are
formally stated in Sec. 6 and their sufficiency is proved in Sec. 7.
Reflecting on the constraints put on the programs we devise a new
model for abstract execution and non-interference that is simpler
and less restrictive; we describe it in Sec. 8. We finish with a review
of some related work in Sec. 9 and discussion on desired properties
of such abstractions in general in Sec. 10.

2. Programming language
In this paper we consider programs P in the usual WHILE-
language defined by

P ::= x := o(x1, . . . , xk) | skip | P1 ; P2

| if b then P1 else P2 | while b do P ′

where b, x, x1, . . . , xk are variables from a given set Var and o
ranges over a fixed set of arithmetic, relational, boolean, etc. op-
erations. Among the operations of the language we will handle the
following ones in a special way: new key generation newkey, (sym-
metric) encryption enc, decryption dec, pairing (,) and projections
π1 and π2. The language in (Askarov et al. 2006) is much richer, but
the subset we are considering here represents the underlying prob-
lem well. As usually done in this area (research on secure informa-
tion flow), we consider only terminating programs — the issue of
leaking information by non-termination (or by execution time) is
orthogonal to the issues considered here and can be mitigated by
known methods (Agat 2000).

Askarov et al. (2006) give a big-step operational semantics
for the programming language. The semantics is quite typeful —
values from different sources have different types (key, ciphertext,
pair, integer) and if the arguments of the operations are not of the
right type, the operation gets stuck (in some sense, by disallowing
type errors, the semantics already contains some aspects of the
enforcement of non-interference). In this paper, we have tried to
simplify the operational semantics as much as possible, leaving out
such constraints. Rushing ahead, those constraints actually turn out
to be necessary for the soundness result, thus they’ll appear again
in Sec. 6.

The abstract semantics of expressions is given in Fig. 1. The
semantics of an n-ary “normal” operation o is a polynomial-time
computable function [[o]] : Valn → Val where Val = {0, 1}∗ is
the set of values (no operations are probabilistic, except key gen-
eration and encryption). We assume that there is a distinguished
value ⊥ ∈ Val denoting failure, and that all operations are strict
with respect to ⊥. For giving semantics to pairing and projections,
we assume that an easily computable and reversible injective func-
tion ρ : Val2 → Val is fixed; this function is the semantics of
the pairing operation. For giving semantics to the key generation,
encryption and decryption operations, we fix an encryption system
(K, E ,D). HereK is the key generation algorithm, E is the encryp-
tion and D the decryption algorithm. The algorithms K and E are

M(x) = v

〈M,x〉 ⇓a v

〈M, ei〉 ⇓a vi [[o]](v1, . . . , vk) = v

〈M, o(e1, . . . , ek)〉 ⇓a v

〈M, e〉 ⇓a u ρ(v1, v2) = u

〈M,πi(e)〉 ⇓a vi

〈M, e〉 ⇓a u u 6∈ Dom ρ

〈M,πi(e)〉 ⇓a ⊥
v ∈ SuppK()

〈M, newkey〉 ⇓a v

〈M, ek〉 ⇓a vk 〈M, ex〉 ⇓a vx vy ∈ Supp E(vk, vx)

〈M, enc(ek, ex)〉 ⇓a vy

Figure 1. Abstract semantics of expressions

probabilistic, D is deterministic. The algorithm K takes no argu-
ments, the algorithms E and D take two — the key and the plain-
/ciphertext. For all keys k that can be output byK, for all plaintexts
x ∈ Val and all ciphertexts y that can be output by E(k, x), the
equality D(k, y) = x must hold. The decryption is allowed to fail,
it has to produce ⊥ then. The semantics of the operation dec is D.
For a probability distributionD we denote by SuppD the set of all
such x where D(x) > 0.

The ability of operations, particularly decryption, to fail is dif-
ferent from (Askarov et al. 2006). In their treatment, the failures are
invisible — the executions where an operation is about to fail just
get stuck and do not contribute anything to the final set of states. In
our opinion this is unrealistic, as the failures are definitely visible
in the real world.

In Fig. 1,M is a memory — a mapping from variables to values.
We see that ⇓a is non-deterministic — the key generations and
encryptions may have several possible values. Compared to the
treatment of Askarov et al. (2006), we have made a simplification
— they let the program state also to contain the stream of yet-to-
be-generated keys and the operation newkey takes and returns the
first element of that stream (this detail turns out to be important in
the security definition, we will discuss it in Sec. 5).

Having defined the abstract semantics of expressions ⇓a we now
define the transition relation of the abstract small-step structural op-
erational semantics a−→ of the programming language. The relation

a−→ relates program configurations 〈M,P 〉 to program configura-
tions or memories. The definition of a−→ is completely standard
(Nielson and Nielson 1992, Chap. 2.2) and is omitted. But note
that the non-determinism of ⇓a also causes the non-determinism of

a−→. We also define 〈M,P 〉 a
=⇒M ifM = {M ′ | 〈M,P 〉 a−→∗

M ′}.
On the concrete / computational side, the non-deterministic

constructs are replaced by probabilistic ones. We define

• ⇓c, relating an expression e to the probability distribution of its
values;

• the transition relation c−→ of the concrete small-step structural
operational semantics, relating a program configuration 〈M,P 〉
to a probability distribution D over memories or to a pair
〈D,P ′〉.

(these straightforward definitions are omitted) Given c−→ we can
define the probability of a sequence 〈M0, P0〉 → 〈M1, P1〉 →
· · · → 〈Mn−1, Pn−1〉 → Mn as the product of the probabilities

338

MOBIUS Deliverable D2.5 Report on safe information release

102

p1, . . . , pn where pi is the probability of Mi in the distribution Di

andDi is given by 〈Mi−1, Pi−1〉 c−→ 〈Di, Pi〉 (for 1 ≤ i ≤ n−1)
or 〈Mn−1, Pn−1〉 c−→ Dn. Finally we define 〈M,P 〉 c

=⇒ D
relating the initial program memory M and the program P to the
probability distribution D over final program memories. Here the
probability assigned by D to some memory M ′ is the sum of
probabilities of all sequences 〈M,P 〉 → · · · →M ′. The mapping
D is indeed a probability distribution (i.e. all probabilities assigned
by it sum up to 1) because we have disallowed the non-termination
of P .

3. Security definition
Let VarS,VarP ⊆ Var be the sets of initial secret and final public
variables — we want the adversary that learns the final values of the
variables in VarP to be unable to deduce anything it did not know
before about the initial values of the variables in VarS. We demand
VarS ∩VarP = ∅, but not VarS ∪VarP = Var — there may
be auxiliary variables that do belong to neither VarS nor VarP.
We demand that the program does not use the initial values of such
auxiliary variables.

To give the definition of non-interference in the abstract setting,
Askarov et al. (2006) first defined when two cryptotexts “look
the same”. For bit-strings y1, y2 they defined y1 =E y2 if there
exist such r, k1, k2, x1, x2, such that y1 = E(r; k1, x1) and y2 =
E(r; k2, x2). Here the argument r denotes the choice of the random
coins for the algorithm E . I.e. y1 =E y2 if they could be ciphertexts
generated with the same random coins (initial vectors).

This relaxed equality is applied only to ciphertexts. To use
it for the values of program variables we have to fix which of
those variables contain ciphertexts. Hence let VarE ⊆ VarP be
the public variables that are assumed to contain ciphertexts. For
program memories M1 and M2 we define the low-equivalence of
M1 and M2, denoted M1 ∼P M2, if M1(x) = M2(x) for all
x ∈ VarP\VarE and M1(x) =E M2(x) for all x ∈ VarE.

Askarov et al. (2006) define a program P to be non-interfering
if for all program memories M1,M2, such that M1 ∼P M2 and
for all memories M ′1, such that 〈M1, P 〉 a−→∗ M ′1 there exists a
memory M ′2, such that 〈M2, P 〉 a−→∗ M ′2 and M ′1 ∼P M ′2. This
definition gives us the standard nondeterministic non-interference,
only the definition of equality for values has been changed.

In the computational setting, the non-interference is defined
as the computational independence of secret inputs and public
outputs. To define the asymptotic computational notions we need
a security parameter n relative to which the asymptotics are taken.
Hence let the semantics of the operations be parametrized by this
security parameter and let their running time be polynomial with
respect to this parameter. In particular, the algorithms K, E and
D take the security parameter as an extra argument. The semantic
relations ⇓c, c−→ and c

=⇒ are thus parametrized with n, too.
Let D be the probability distribution of initial memories for

the program P ; the adversary knows this distribution. Actually,
because of the security parameter, D = {Dn}n∈N is a family of
probability distributions over program memories. The program P
is computationally non-interferent with respect to D (Laud 2003)
if the families of probability distributions (parametrized by n)

{|(M |VarS , T |VarP) |M ← Dn, 〈M,P 〉 c
=⇒n D̂, T ← D̂|}

and

{|(M ′|VarS , T |VarP) |M,M ′ ← Dn, 〈M,P 〉 c
=⇒n D̂, T ← D̂|}

are computationally indistinguishable. Here {|E | C|} denotes the
distribution of the random expression E under the conditions C.
The notation M ← Dn means that the random variable is dis-
tributed according to Dn. Hence the first of the above distributions

is that of the initial values of the secret variables and final values
of the public variables, where the initial memory M is sampled ac-
cording toDn and the final memory T is obtained by executing the
program P (which is probabilistic) on M . The second of the above
distributions is that of the same values of the same variables, but
here the initial memory M ′ and the final memory T correspond to
different runs (the initial memories M and M ′ are sampled inde-
pendently of each other). Two families of probability distributions
D = {Dn}n∈N and D′ = {D′n}n∈N are computationally indis-
tinguishable (this is the cryptographic equivalent for being “the
same”) if for all probabilistic polynomial-time (PPT) adversaries
A the difference

Pr[A(n, x) = 1 | x← Dn]− Pr[A(n, x) = 1 | x← D′n]

is negligible in n. HereA(n, x) denotes the probability distribution
of the outputs of the algorithm A on the input (n, x). A function f
is negligible if f is o(1/p) for any polynomial p.

Our desired result We want to have a soundness theorem with
more or less the following wording:

Let P be a program. If P satisfies certain conditions
and the initial probability distribution D satisfies certain
conditions and P is non-interferent in the abstract setting
then P is computationally non-interferent with respect to
the initial distribution D.

Here the conditions on D should be something natural, for exam-
ple the independence of the secret values from the public ones. The
conditions on P should be verifiable in the abstract setting, other-
wise we lose the modularity of the approach. In the Sec. 5 we take
a look at what these conditions could be. Let us call a program P
well-structured if it obeys those conditions.

In the following we often have to speak about the public part of
the result of some computation. For a memory M we thus define
MP as the restriction of M to VarP. For a set of memories M
we defineMP = {MP |M ∈ M}. For a probability distribution
D over memories we have to collapse all memories with the same
public part — we define DP(M̄) =

P
M :MP=M̄ D(M).

4. Security of encryption systems
So far we have only defined the functionality of an encryption sys-
tem, but not its security. This definition is necessary when arguing
about the security of information flow. Obviously, we require that
our encryption system hides the contents of plaintexts. To simplify
our arguments in the rest of the paper we also want the length of the
plaintext to be hidden. We still need more — the encryption must
also hide the identities of plaintexts. This means that it must be im-
possible to determine whether two ciphertexts were generated using
the same key or different keys. The programs in our programming
language are able to decrypt, too, hence we also need to protect the
integrity of encrypted messages. We do not want to put many con-
straints on the programs, hence the security properties must hold
even if the keys are treated quite arbitrarily (short of leaking them).
In particular, it must be possible to treat the keys as parts of plain-
texts, too. The details are given below. There we also discuss the
existence of such encryption systems.

Against passive attacks, the most common security definition is
the indistinguishability under chosen plaintext attacks (IND-CPA
security) (Bellare et al. 1997). It states that there exists no PPT
adversary A (that has access to an oracle), such that the difference
of probabilities

Pr[AEn(k,·)(n) = 1 | k ← Kn()]−
Pr[AEn(k,0|·|)(n) = 1 | k ← Kn()]

339

MOBIUS Deliverable D2.5 Report on safe information release

103

is non-negligible. This definition is a typical instance of security
definitions of cryptographic primitives and systems where the in-
distinguishability of the “real” functionality from the “ideal” func-
tionality is required. Here the real functionality is the encryption
functionality — given a plaintext it returns a corresponding cipher-
text. The ideal functionality also returns a ciphertext, but this ci-
phertext is generated without actually using the plaintext (except
its length).

In the definition of =E, ciphertexts created with different keys
may also be considered equal. Hence we need the encryption sys-
tem to hide the identities of keys (Abadi and Rogaway 2000) as
well: for no PPT adversaryA, the following difference may be non-
negligible:

Pr[AEn(k,·),En(k′,·)(n) = 1 | k, k′ ← Kn()]−
Pr[AEn(k,·),En(k,·)(n) = 1 | k ← Kn()] .

Our security proofs in this paper will be simpler if we do not
state that in the ideal functionality all keys are the same, but state
that in the ideal functionality all keys are different. We also give
the adversary the possibility to choose among several encryption
oracles, not just two (in the definition of IND-CPA, the adversary
could also be allowed to access several encrypting oracles simulta-
neously).

Let O be an oracle that works as follows:

• At the initialization (or before it answers its very first query)
it independently generates the keys ki using the algorithm Kn

for all i ∈ N. Actually, the keys ki are not all generated in the
beginning of the run, but only right before they are first used.

• When queried with (i, x) the machine O returns En(ki, x).

Let O′ be an oracle that on query (i, x) generates a new key k,
encrypts x with it and returns the result. An encryption system
hides the identities of the keys if and only if no PPT adversary
is able to distinguish the oracles O and O′ with non-negligible
advantage.

The non-interference definition in the abstract model does not
attempt to rule out key cycles (Abadi and Rogaway 2000) in any
way. A key cycle of length 1 occurs when a key k (or a message
where k may be obtained from) is used as a plaintext in encryption
with k. In a longer key cycle, the key k1 is encrypted with k2, the
key k2 is encrypted with k3, etc., until the key kn is encrypted
again with k1. In such scenarios we can find no real functionality,
as given in the definition of IND-CPA, that can be replaced with
the ideal one. Therefore the definition of IND-CPA does not say
anything about the security of such usage of keys. Such usage of
keys is certainly possible in programs.

Also, =E will have no problem relating ciphertexts whose plain-
texts are of obviously different lengths. It may make sense to refine
=E so that the lengths of plaintexts were discriminated, but the
issue of concealing the lengths is orthogonal to other issues in se-
cure information flow. Hence the current choice should be consid-
ered reasonable. A strengthening of the definition of IND-CPA to
key-dependent messages (Black et al. 2002) that also conceals the
lengths of the plaintexts and the identities of the keys can be given
as follows.

Let O be an oracle that works as follows

• At the initialization it independently generates the keys ki using
the algorithm Kn for all i ∈ N. Actually, the keys ki are not all
generated in the beginning of the run, but only right before they
are first used. . .

• O accepts queries of the form (i, e) where i ∈ N and e is an
expression in some Turing-complete language whose running
time is polynomial in n (we may also state that the query con-

tains the maximum running time of e as well). The expression
e may contain free variables kj .

• When queried with (i, e), the machineO evaluates e, substitut-
ing the values of the keys kj to the free variables kj of e. It then
encrypts the result with the key ki and returns it.

LetO′ be an oracle that on each query generates a new key and re-
turns the encryption of a fixed constant with this key. The encryp-
tion system (K, E ,D) is IND-CPA-secure, which-key concealing
and length-concealing in presence of key-dependent messages if no
PPT adversary A can distinguish O from O′, i.e. the difference of
probabilities

Pr[AO(·)(n)]− Pr[AO′(·)(n)]

must be negligible for all PPT A.
The properties considered above only deal with confidentiality

of messages, and only with encryption. They do not state anything
about what happens if the decryption algorithm is invoked (the
definition of encryption systems states that the decryption of a
correctly constructed ciphertext must give back the corresponding
plaintext, but does not state anything about decrypting other bit-
strings). The property that we are going to need is plaintext integrity
(INT-PTXT) (Bellare and Namprempre 2000) stating that no PPT
adversary A that is given access to the encryption oracle E(k, ·)
(where k is generated using the key generation algorithm) is able
(with non-negligible probability) to output a ciphertext c, such that
D(k, c) = p 6= ⊥ andA had not queried the encryption oracle with
p before. Askarov et al. (2006) argue that if the encryption system
has plaintext integrity then D(k, E(k′, x)) results in error almost
always (i.e. the opposite has only negligible probability). Here x is
any plaintext and k, k′ are two keys that are independent of each
other.

The above definition of INT-PTXT does not allow encryption
cycles, either. We will turn the given definition into one that allows
key-dependent messages in the same way as was done for the defi-
nition of IND-CPA. First, we give the adversary access to multiple
encryption oracles E(k1, ·), E(k2, ·), . . . where the keys ki are in-
dependently generated. Such access is equivalent to the access to
an oracle O that on query (i, x) returns E(ki, x). After interacting
with the oracle O, the adversary outputs a pair (i, c) and wins if
D(ki, c) = p 6= ⊥ and the adversary did not query O with (i, p)
before. The modification of INT-PTXT we have done so far (re-
placing a single key k with multiple keys k1, k2, . . .) has not been
substantial — the modified definition can be proved equivalent to
the original definition by a standard hybrid argument (Goldreich
2001, Chap. 3.2.3). We will now modify the definition by allow-
ing key-dependent messages as well — in the query (i, x) toO the
component x is not just a bit-string but an expression for computing
the bit-string to be encrypted. As before, x may contain free vari-
ables k1, k2, . . ., these are substituted with the values of the keys
k1, k2, . . . that have been generated by O.

Existence. It is not known how to construct encryption systems
that are secure in the presence of key-dependent messages, as long
as the construction is in the “plain model” i.e. assumes only the
existence of one-way functions. Black et al. (2002) give a con-
struction for IND-CPA-secure (with key-dependent messages) en-
cryption system in the random oracle model (Bellare and Rogaway
1993). This model assumes the existence of a globally fixed ran-
dom functionH : {0, 1}∗ → {0, 1}ω that all parties (including the
adversary, and the expressions it sends to its oracle(s)) can access
(in practice, H is replaced by some (function based on some) cryp-
tographic hash function). The distribution of H is such that all bits
in its image are distributed fairly and independently of each other.
In the encryption system by Black et al. (2002), the key generation
algorithm just returns an n-bit random string (where n is the se-

340

MOBIUS Deliverable D2.5 Report on safe information release

104

curity parameter). The encryption algorithm En(k, x) generates an
n-bit random string r and returns (r,H|x|(k‖r) ⊕ x) where ‖ de-
notes the concatenation of bit-strings and H` returns the first ` bits
of H . Black et al. (2002) show this system to be IND-CPA-secure.
A slight modification of their proof is sufficient to show that this
encryption system also conceals the identities of the keys. This en-
cryption system obviously does not hide the length of the plaintext,
padding has to be used for that.

Bellare and Namprempre (2000) show how to use message au-
thentication codes (MACs) to provide plaintext (and ciphertext) in-
tegrity for encryption systems. A MAC consists of three algorithms
— key generation algorithm, tagging algorithm (taking the key and
the message as inputs) and verification algorithm (taking the key,
the message and the alleged tag as inputs). The tagging algorithm
may be deterministic in which case the verification algorithm sim-
ply has to recompute it. A MAC is weakly unforgeable (WUF), if
no PPT adversary with the access to tagging and verification algo-
rithms (as oracles) can produce a message and a valid tag, such that
the message had not been submitted to the tagging oracle before
that. Bellare and Namprempre (2000) prove that a compound en-
cryption system where a message is first tagged with a weakly un-
forgeable MAC and then encrypted with an IND-CPA-secure cryp-
tosystem (using different keys) provides plaintext integrity. As the
encryption operation is the last step in the construction, the con-
struction also preserves the concealing of key identities.

We can modify the definition of weak unforgeability to also al-
low key-dependent messages (the adversary can then submit ex-
pressions, not just messages to the tagging and verification oracles).
The proof by Bellare and Namprempre (2000) can then be modi-
fied, showing that if the construction is made using primitives that
are secure in the presence of key-dependent messages then the re-
sulting encryption system is INT-PTXT-secure also even with key-
dependent messages.

A WUF-secure (with key-dependent messages) MAC is easy to
construct in the random oracle model. Let the key generation algo-
rithm return a random n-bit string and let the tag of the message x
with the key k be the first n bits of H(k‖x). In this way the tags
of the messages are really just random bit-strings that do not reveal
anything about k.

5. Non-well-structured programs
In this section we give some examples of programs that are secure
in the abstract setting, but possibly insecure in the computational
setting. We then explain what patterns in programs have to be
excluded to make sure that the soundness theorem would not apply
to this or analogous programs.

5.1 Bad keys
The program

k := s; p := enc(k, s)

where VarS = {s} and VarP = VarE = {p}, is secure in
the abstract setting. In the computational setting we do not know
whether k is a good key. Hence we do not know whether E(s, s)
sufficiently hides s or not. We cannot use the security definitions
of encryption systems to argue about the computational security of
this program.

The conditions we put on programs must make sure that only
keys generated with the operation newkey can be used as keys in
encryption operations.

5.2 Constructing ciphertexts
Similarly to using only good keys when encrypting we must use
only good ciphertexts when applying the relaxed equivalence =E

on them.

5.3 Publishing keys
Consider the following program

k := newkey; p := enc(k, s)

where VarS = {s}, VarP = {k, p} and VarE = {p}. Accord-
ing to the possibilistic non-interference definition, this program is
secure. Indeed, an initial memory {s 7→ vs} is transformed to the
final memories where the value of k is just a key and the part of the
value of p that matters for the relation =E is just a random initial
vector. Hence the public part of the set of final memories does not
depend on the initial secret.

On the other hand we would certainly want to consider the
preceding program secure if the set of public variables VarP would
have consisted of just the variable p. To avoid considering such
programs secure we must make sure that the keys cannot become
public. This includes using these keys in computations (other than
encryption and possibly decryption), such that the results of those
computations become public.

Askarov et al. (2006) actually consider the previous program to
be insecure because the program state also contains the values of all
yet-to-be-generated keys; these values are treated as high-security
inputs. Hence one cannot publish keys or anything that depends on
them (except when used in encryption).

5.4 Possibilistic vs. probabilistic security
The following well-known example (McLean 1990) shows that the
possibilistic non-interference does not always imply probabilistic
(and similarly computational) non-interference.

x := rnd(0, 1); if x then l := h else l := rnd(1, 100)

where rnd(a, b) returns a uniformly chosen random integer be-
tween a and b, l ∈ VarP, h ∈ VarS and it is known that the
value of h is between 1 and 100. In the possibilistic setting the se-
mantics of rnd(a, b) is nondeterministic, we have rnd(a, b) ⇓a c
for all c where a ≤ c ≤ b.

In the possibilistic setting, the above program is secure because
the set of possible final values of l does not depend on the value of
h. In the probabilistic setting it is insecure because the most prob-
able final value of l is equal to the value of h. In our programming
language, we can implement rnd (or something close to it) by using
the probabilistic operation enc. For certain constructions of secure
encryption systems, the output of E is indistinguishable from a uni-
formly distributed bit-string.

To avoid considering the previous program, we must disallow
computations with ciphertexts. The ciphertexts may be published,
included in pairs, encrypted or decrypted, but their “actual value”
may not be used in computations.

5.5 Non-failure of bad decryptions
Consider the following program:

k := newkey; k′ := newkey; x := enc(k, C); y := dec(k′, x);
if y = ⊥ then l := h else l := 1− h

where C is some constant, VarP = {l}, VarS = {h} and the
possible values of h are 0 and 1. In the concrete (probabilistic)
setting, the program is insecure because the then-branch is taken
with overwhelming probability.

The model of cryptographically masked flows (Askarov et al.
2006) makes the assumption that the decryption with the wrong
key always fails. I.e. if k 6= k′ then dec(k′, enc(k, x)) returns ⊥
with probability equal to 1, and not to 1−α for some negligible α.
Under that assumption the above program is insecure, too, because
the else-branch is never taken.

However, it is not clear whether there exist (even in the random
oracle model) encryption systems with such a property, that also

341

MOBIUS Deliverable D2.5 Report on safe information release

105

satisfy other properties we stated in Sec. 4, in particular hiding
the identity of keys. If we drop the requirement that the decryption
with the wrong key always fails (i.e. dec(k′, enc(k, x)) returns ⊥
with probability of only 1 − α) then, in the possibilistic setting, it
is actually possible to take the else-branch in the above program,
which is then defined as secure.

Note that this particular program is actually insecure by the
definitions given by Askarov et al. (2006) even if we drop the
requirement that the decryption with a wrong key always fails,
because at the failure of the decryption the execution becomes stuck
and hence the then-branch is unreachable. But then we could just
replace the predicate “y = ⊥” with some other predicate P that is
satisfied by some of the possible values of y and not satisfied by
others. Both branches would then still be reachable in the abstract
semantics, but in the concrete semantics the branch corresponding
to the value of P (⊥) would be chosen most of the time.

There is also a negligible chance that the two key generations
in the considered program return the same key. If this happens then
the value of h can also be deduced from the value of l because the
else-branch is always taken.

We do not have a good remedy against cases like this where
the abstract semantics considers the events that happen only neg-
ligibly often in the concrete semantics as equals to the events that
happen almost always in the concrete semantics. We thus resort
to modifying the abstract semantics, such that two key genera-
tions cannot produce equal keys, and the decryption of a cipher-
text is possible only with the key that was used in creating it.
We change the definition of ⇓a, it is now a relation of the form
〈M,K◦, C◦, e〉 ⇓a 〈v,K•, C•〉 where M is the memory, e the
evaluated expression and v its value. Additionally, K◦ and K• are
the sets of generated keys before and after the evaluation of e, and
C◦/C• is the set of triples (c, k, p) of ciphertexts, keys and plain-
texts, such that c has been generated by encrypting p with k during
the course of the program. The definition of ⇓a for particular ex-
pressions is changed as follows:

• For key generations, we have the side condition that the newly
generated key v is not a member of K◦. The set K• is then
defined as K◦ ∪ {v} (for all other operations, K• = K◦).

• For encryptions, the generated ciphertext may not yet be a
ciphertext in the set C◦. The triple of the newly generated
ciphertext, key and plaintext is added to C• along with the rest
of C◦ (for all other operations, C• = C◦).

• The decryption operation dec(k, c) first computes the plaintext
vp = D(M(k),M(c)). It then checks whether (vc,M(k), vp)
belongs to C◦ for some value vc. If this is the case then
dec(k, c) returns vp, otherwise it returns ⊥.

The sets K and C are also added to program configurations.

6. Well-structured programs
To satisfy the necessary constraints demonstrated by the programs
in the previous section, it is sufficient to require that all operations
that the program (in the abstract semantics) performs are well-
typed. Here the types τ ∈ T are defined by the following grammar:

τ ::= int | key | enc(τ) | (τ, τ),

and the operations of the program expect and produce the values of
the following types:

• arithmetic operations (of arity k): intk → int ;
• key generation: key ;
• encryption: key × τ → enc(τ);
• decryption: key × enc(τ)→ τ ;

M(x) = v Γ(x) = τ

〈M,Γ,K,C, x〉 ⇓a 〈v, τ,K,C〉
〈M,Γ,Ki−1, Ci−1, ei〉 ⇓a 〈vi, int ,Ki, Ci〉

[[o]](v1, . . . , vk) = v

〈M,Γ,K0, C0, o(e1, . . . , ek)〉 ⇓a 〈v, int ,Kk, Ck〉
〈M,Γ,Ki−1, Ci−1, ei〉 ⇓a 〈vi, τi,Ki, Ci〉 ρ(v1, v2) = v

〈M,Γ,K0, C0, (e1, e2)〉 ⇓a 〈v, (τ1, τ2),K2, C2〉
〈M,Γ,K◦, C◦, e〉 ⇓a 〈u, (τ1, τ2),K•, C•〉 ρ(v1, v2) = u

〈M,Γ,K◦, C◦, πi(e)〉 ⇓a 〈vi, τi,K•, C•〉
〈M,Γ,K◦, C◦, e〉 ⇓a 〈u, (τ1, τ2),K•, C•〉 u 6∈ Dom ρ

〈M,Γ,K◦, C◦, πi(e)〉 ⇓a 〈⊥, τi,K•, C•〉
v ∈

`
SuppK()

´
\K

〈M,Γ,K,C, newkey〉 ⇓a 〈v, key ,K ∪ {v}, C〉
〈M,Γ,K0, C0, ek〉 ⇓a 〈vk, key ,K1, C1〉
〈M,Γ,K1, C1, ex〉 ⇓a 〈vx, τ,K2, C2〉

vy ∈
`
Supp E(vk, vx)

´
\π1(C2) C3 = C2 ∪ {(vy, vk, vx)}

〈M,Γ,K0, C0, enc(ek, ex)〉 ⇓a 〈vy, enc(τ),K2, C3〉
〈M,Γ,K0, C0, ek〉 ⇓a 〈vk, key ,K1, C1〉

〈M,Γ,K1, C1, ey〉 ⇓a 〈vy, enc(τ),K2, C2〉 vp = D(vk, vy)
v = if (vk, vp) ∈ π2,3(C2) then vp else ⊥
〈M,Γ,K0, C0, dec(ek, ey)〉 ⇓a 〈v, τ,K2, C2〉

where πi1,...,ik (C) denotes {(ui1 , . . . , uik) | (u1, u2, u3) ∈ C}
Figure 2. Extended ⇓a

• pairing: τ1 × τ2 → (τ1, τ2);
• projections: (τ1, τ2)→ τi.

Also, the guards of the branching statements must have the type
int , the secret inputs (i.e. the initial values of the variables in
VarS) must also have the type int , final values of the variables in
VarE must have types of the form enc(τ), and final values of the
variables in VarP may not have a type that has a component key
(define that the only component of the types int , key and enc(τ)
is that type itself, and the components of the type (τ1, τ2) are the
components of τ1 and τ2).

The previous paragraph spoke about the types of values, not
variables. Indeed, we can allow the typing to be dynamic, extend-
ing the memories with the information about the current types of
variables. This dynamic typing disallows the usage of non-keys as
keys and the usage of “actual values” of keys (excluding encryption
and decryption) and ciphertexts. To formalize this typing we again
extend the definition of ⇓a: it is now a set of judgements of the
form 〈M,Γ,K◦, C◦, e〉 ⇓a 〈v, τ,K•, C•〉, where Γ is a mapping
from variables to types and τ is the type of v. The modified ⇓a, also
covering the modifications of Sec. 5.5, is given in Fig. 2.

The typing Γ is also added to program configurations; the type
Γ(x) is updated whenever x is assigned to. The extended abstract
semantics is given in Fig. 3. We call a program well-structured if
its execution according to the abstract semantics never gets stuck,
i.e. no such configuration is reachable where there is still a program
P , but no outgoing transitions. Also, a well-structured program
must satisfy the constraints on the final types of variables, as stated
above (for variables in VarP, the type may not be key , and for
variables in VarE, the type must be enc(τ) for some τ).

The type system still allows us to perform cryptographic opera-
tions quite freely, as long as they are not combined with operations

342

MOBIUS Deliverable D2.5 Report on safe information release

106

〈M,Γ,K◦, C◦, e〉 ⇓a 〈v, τ,K•, C•〉
〈M,Γ,K◦, C◦, x := e〉 a−→ 〈M [x 7→ v],Γ[x 7→ τ],K•, C•〉

〈M,Γ,K,C, skip〉 a−→ 〈M,Γ,K,C〉

〈M,Γ,K,C, P1〉 a−→ 〈M ′,Γ′,K′, C′〉
〈M,Γ,K,C, P1;P2〉 a−→ 〈M ′,Γ′,K′, C′, P2〉

〈M,Γ,K,C, P1〉 a−→ 〈M ′,Γ′,K′, C′, P ′1〉
〈M,Γ,K,C, P1;P2〉 a−→ 〈M ′,Γ′,K′, C′, P ′1;P2〉
〈M,Γ,K◦, C◦, e〉 ⇓a 〈b, int ,K•, C•〉 b ∈ {0, 1}

〈M,Γ,K◦, C◦, if e then P1 else P0〉 a−→ 〈M,Γ,K•, C•, Pi〉

〈M,Γ,K,C,while e do P 〉 a−→
〈M,Γ,K,C, if e then (P ;while e do P) else skip〉

Figure 3. Instrumented semantics a−→

that make use of the “actual value” of a key or a ciphertext. We
are allowed to copy keys and ciphertexts from one variable to an-
other, as well as to encrypt keys and ciphertexts (or pairs containing
a key or a ciphertext as a component). Among the restrictions the
inability to use the “actual value” of a ciphertext is the most signifi-
cant one, but likely unavoidable, because of Sec. 5.4 (otherwise our
abstract semantics has to be probabilistic as well). Also, Sec. 5.3
prohibits us making public the values of the keys, hence our type
system must ensure that the keys do not end up as values of type
int .

LEMMA 1. Let P be a well-structured program and M a memory.
Let 〈M,Γ,K,C, P 〉 a−→ 〈M ′,Γ′,K′, C′, P ′〉. Then P ′ is well-
structured, too.

PROOF. Well-structuredness of a program implies the well-struct-
uredness of all of its subprograms. Consider the definition of

a−→. According to it, P ′ is either a subprogram of P , or P ′ ≡
P ′′;while b do P ′′, such that P ≡ while b do P ′′. In the last case
P ′′ and while b do P ′′ are well-structured with respect to the same
typing, and their sequential composition admits the same typing as
well. �

We can now state the main result of this paper:

THEOREM 2. If a well-structured program P that does not as-
sign to variables in VarS and does not use the initial values of
the variables with types different from int has possibilistic non-
interference then it has probabilistic non-interference for all fami-
lies of probability distributions D over initial memories where the
variables in VarS are independent of the rest of the variables.

We see that the conditions onP , besides the well-structuredness,
are not significant. They can be worked around by adding more
variables to P .

7. Security proof
Here we will sketch the proof of Theorem 2. We are going to
perform the standard steps in reasoning about programs that con-
tain cryptographic operations — we replace the parts of the pro-
gram that correspond to the real functionality of the cryptographic
primitives with the code that corresponds to the ideal functionality
(Sec. 7.1). The modification will transform the program P to some

program P̂ , thereby also changing both the abstract and the con-
crete semantics of the program. The concrete semantics will change
only indistinguishably. We will compare the abstract execution of
P with the concrete execution of P̂ and conclude that they run in
lock-step, producing similar structures of final states (Sec. 7.2). In
particular, we will show that for each M , the set of abstract final
statesM, where 〈M,P 〉 a

=⇒ M, determines the distribution D,
where 〈M, P̂ 〉 c

=⇒ D. If the program P has secure information
flow in the abstract setting then the program P̂ is probabilistically
non-interferent1. The concrete semantics of P is indistinguishable
from the semantics of P̂ for an adversary that does not see the
keys generated by the programs, hence P is computationally non-
interferent.

7.1 Program modifications
We would like to apply the definition of IND-CPA (including the
concealing of key identities and plaintext lengths, and security in
presence of key-dependent messages), thereby changing the ex-
pressions enc(k, y) to expressions enc(newkey, 0). But we cannot
apply this transformation right away — in the definition of IND-
CPA the encryption keys may only be used in encryption opera-
tions (and they may also be used in arbitrary manner to create the
plaintexts that are encrypted), but in our program they may also be
used in decryption operations. We have to apply the definition of
INT-PTXT first.

The well-structuredness of programs ensures that we only at-
tempt to decrypt valid ciphertexts. We are not ensured that the key
used for decryption is the right one. The plaintext integrity of the
used encryption system guarantees that if the used key is not the
correct one then the decryption almost always fails in the con-
crete semantics. The modifications made to the abstract semantics
in Sec. 5.5 also ensure this for the abstract semantics. We can mod-
ify the program so that we record the plaintext of each ciphertext,
as well as (the identity of) the key used to create it, and replace the
decryption with the return of the plaintext if the comparison of key
identities succeeds. This modification does not change the abstract
semantics of a program and changes its concrete semantics only
indistinguishably.

Let P0 be the original program. We perform the following pro-
gram modifications. To simplify the presentation we assume that
there are no nested expressions, i.e. in each statement x := e in the
program the expression e contains just a single operation. We also
assume that all guard expressions in if - and while-statements are
just variables. First, we introduce a new variable idk of type int
for producing key names and prepend the program with the initial-
ization idk := 0. Then we rewrite all assignments and branches
according to Table 1.

We see that in the modified program all variables contain pairs
whose first component is the original value of the variable. The
second component records the auxiliary information for eliminat-
ing decryptions:

• for keys, we record their identity;
• for ciphertexts, we record the identity of the key and the plain-

text with associated auxiliary information;
• for pairs, we record the auxiliary information of both compo-

nents;
• we do not record anything for integers, but still keep the second

component to avoid special cases in Table 1.

To finish the execution of the program with the same values of vari-
ables in VarP as before we append to the program the statements

1 The security of P̂ is even information-theoretic (Sabelfeld and Sands
1999, Sec. 5), not just computational

343

MOBIUS Deliverable D2.5 Report on safe information release

107

before after
x := y x := y
x := o(x1, . . . , xk) x := (o(π1(x1), . . . , π1(xk)), 0)

x := newkey
idk := idk + 1;
x := (newkey, idk)

x := enc(k, y) x := (enc(π1(k), π1(y)), (π2(k), y))

y := dec(k, x)
if π1(π2(x)) = π2(k)

then π2(π2(x)) else ⊥
x := (y, z) x := ((π1(y), π1(z)), (π2(y), π2(z)))
y := πi(x) y := (πi(π1(x)), πi(π2(x)))
if b . . . / while b . . . if π1(b) . . . / while π1(b) . . .

Table 1. Removing decryption operations

x := π1(x) for all x ∈ VarP. We also must introduce the sec-
ond component to all initial values of the variables. For all vari-
ables x whose initial values are used by the program we prepend
x := (x, 0) to the program (By Thm. 2, all those variables have
the initial type int). Let P be the resulting program. Let P ′ be the
program P without the final statements x := π1(x) for x ∈ VarP.

LEMMA 3. If P0 is a well-structured program then so is P . More-
over, for each initial state the final typings Γ and Γ′ of P0 and P ′

are such, that Γ′(x) = (Γ(x), . . .) for all x ∈ Var.

We have introduced the relation =E on values — two typed
values are related by =E if they are equal or if they are both
ciphertexts and have the same initial vector. We now define a more
relaxed version of it: we say that v =EK v′ if v =E v′ or both v
and v′ are keys.

LEMMA 4. LetM0 be an initial state. If 〈M0, λx.int , ∅, ∅, P0〉 a
=⇒

M and 〈M0, λx.int , ∅, ∅, P ′〉 a
=⇒M′ then for all M ∈M there

exists some M ′ ∈ M′, and for all M ′ ∈ M′ there exists some
M ∈M, such that M(x) =EK M ′(π1(x)).

The preceding two lemmas can be proved by constructing a
(weak) bisimulation between the program configurations of P0 and
P ′. The transition relation is a−→ in both cases. A configuration of
P0 is related to a configuration of P ′, if

• the programs correspond to each other;
• the values and types of variables in the configuration of P0 are

related by =EK to the first components of the values and types
of variables in the configuration of P ′;

• the key identities and recorded plaintexts in the configuration of
P ′ correspond to the recorded ciphertext-key-plaintext triples in
the configuration of P0.

For the concrete semantics we can show the following result.

LEMMA 5. Let O1 [resp. O2] be the following oracle. On input
of an initial memory M and the security parameter n, it executes
the program P0 [resp. P] on it (using n as the parameter for
the algorithms K, E and D) and returns the public part of the
final memory. Then no PPT algorithm A can distinguish with non-
negligible advantage (in n) whether it interacts with O1 or O2.

Indeed, plaintext integrity of the encryption system ensures that
the decryption of a ciphertext with a wrong key returns ⊥. The
proof is again formalized by constructing a weak bisimulation be-
tween the program configurations of P0 and P ′. The transition re-
lation is c−→ in both cases. The bisimulation relation is similar to
the proof of Lemma 4. But this time, the bisimulation is probabilis-
tic, because the transition relation c−→ is. Also, the bisimulation is
with error sets (Backes et al. 2003) — two traces have to be similar

only until one of them has reached a state from a certain error set.
In our case the error sets correspond to situations where a cipher-
text can be decrypted by a key different from the one used to create
it. Such situation arises with only a negligible probability.

From a well-structured program P0 we have now constructed
a program P that is also well-structured and that is secure in the
abstract or concrete setting iff the program P0 is secure. Also, the
program P contains no decryption operations. Hence it suffices to
prove Theorem 2 only for programs that contain no decryptions;
this, together with the given construction of the programP from the
program P0 immediately implies Theorem 2 in its full generality.

If a program P contains no decryptions then we can apply the
definition of IND-CPA-security (the strongest of them in Sec. 4)
of the encryption system and replace all expressions enc(k, y) in
P with the expression enc(newkey, 0). Let P̂ be the resulting
program. The concrete semantices ofP and P̂ are indistinguishable
— a result similar to Lemma 5 can be proved for P and P̂ .

7.2 Similarity of executions
In this subsection we will show that the abstract execution of P and
the concrete execution of P̂ proceed in some sense in lock-step.
Whenever we talk about the concrete semantics of the program P̂
in this subsection, the security parameter is implicit. We are going
to establish the probabilistic non-interference of P̂ without any
qualifiers about the power of the adversaries (i.e. the advantage of
any adversary is the constant function 0), hence an explicit security
parameter would just clutter the notation. We start by noting the
following:

LEMMA 6. Let M be an initial memory and consider an execution
C0

a−→ C1
a−→ · · · a−→ Cf where C0 is the initial configuration

〈M,λx.int , ∅, ∅, P 〉 and Cf is a final configuration. Then the path
of that execution through the program P (or: the values of the
guard expressions at if - and while-statements) depend only on
M , not on the values of keys and ciphertexts generated during the
execution.

Indeed, the guard expressions have to have the type int , but the
keys and the ciphertexts have the types key and enc(τ), respec-
tively, and there are no operations that can be applied to these val-
ues that could produce a value of type int (remember that P does
not contain decryptions). Similar claims about the keys and cipher-
texts not affecting the control flow of the program can be made for
the concrete semantics of P̂ .

Hence for an initial memory M there exists a sequence

〈M0,Γ0, P0〉 → 〈M1,Γ1, P1〉 → · · · → 〈Mr,Γr〉 (1)

whereM0 = {M}, Γ0 = λx.int , P0 = P , the set of memories
Mi contains all those memories that can be reached by executingP
with the initial memory M for i steps, Γi is the typing of variables
after these i steps and Pi is the program that is still left to execute
after i steps. As the path of the execution depends only on M ,
the typing and the remaining program are the same for all possible
memories after i steps. Similarly, for the concrete semantics of P̂
there exists a sequence

〈D0, P̂0〉 → 〈D1, P̂1〉 → · · · → Dr̂ (2)

where D0 is the probability distribution that puts all its weight on
M , P̂0 = P̂ , Di is the distribution over memories reached after i
steps and P̂i is the program that is still left to execute at this point.

We are going to show that

• P̂i is the programPi where all encryption expressions enc(k, x)
are replaced with enc(newkey, 0);

344

MOBIUS Deliverable D2.5 Report on safe information release

108

• 〈Mi,Γi〉 uniquely determine Di (without referring to the ini-
tial memory M)

the mapping from 〈M,Γ〉 to D will be such that if the
public parts of the two sets M′, M′′ are equal then the
public parts of the corresponding distributions D′, D′′ are
also equal.

these claims imply the probabilistic non-interference of P̂ . But first
we have to explore the structure of the setsMi some more.

Given a typing Γ we consider the set of extended variables
EVarΓ that contains all “atomic” components of the variables in
Var, where “atomic” currently means “having type int , key or
enc(τ)”. I.e. we want to refer directly to the components of the
values of variables whose types are pairs. Formally, EVarΓ is
defined by the following process:

1. Let EVarΓ := Var.

2. If EVarΓ contains some z, such that Γ(z) = (τ1, τ2) then
• Let EVarΓ := EVarΓ\{z} ∪ {π1(z), π2(z)};
• Let Γ := Γ[π1(z) 7→ τ1, π2(z) 7→ τ2]

• Go to step 2.

3. Otherwise return EVarΓ.

For some z ∈ EVarΓ and a memory M whose variables are typed
according to Γ we can also define the value of z in M .

LEMMA 7. Let 〈Mi,Γi, Pi〉 be an element in the sequence (1).
Then the following claims hold.

• For all extended variables z ∈ EVarΓi with Γi(z) = int , the
value of z is the same in all M ∈Mi.

• There exists a partitioning ΠK of the set of all extended vari-
ables in EVarΓi with type key , such that

for all V ∈ ΠK, z1, z2 ∈ V and M ∈ Mi, M(z1) =
M(z2);
for all V ∈ ΠK andM1,M2 ∈Mi there existsM3 ∈Mi,
such that
− M3(z) = M1(z) for all z ∈ V ,
− M3(z) =E M2(z) for all z ∈ EVarΓi\V

unless some key in M2 is equal to the keys M1(z) where
z ∈ V .

• There exists a partitioning ΠE of the set of all extended vari-
ables in EVarΓi with type enc(τ), such that

for all V ∈ ΠE, z1, z2 ∈ V and M ∈ Mi, M(z1) =
M(z2);
for all V ∈ ΠE and M1,M2 ∈Mi there exists M3 ∈Mi,
such that
− M3(z) =E M1(z) for all z ∈ V ,
− M3(z) =E M2(z) for all z ∈ EVarΓi\V

unless some ciphertext in M2 is equal to the ciphertexts
M1(z) where z ∈ V .

The preceding lemma states that at each step of the computation,
the values that are present in the variables of the program are the
following:

• Integers whose values are fixed.
• A number of keys that may each occur several times. The

pattern of copying the keys is fixed. Each key takes all possible
values independently of everything else. For example, it cannot
happen that the possible values of a key at a certain program
point are only half of all possible values for keys, the other half
being cut away by some branch statement.

• A number of ciphertexts that may each occur several times. The
pattern of copying the ciphertexts is fixed. The initial vector
of each ciphertext takes all possible values independently of
everything else.

Hence the set Mi is completely determined by Γi, the values of
extended variables of type int and the partitions ΠK and ΠE.

The lemma is proved by induction over i, considering all pos-
sible steps that a program may make (of which there are just two
— assignment and branching). The induction base is i = 0, the set
M0 contains just a single memory where all variables have the type
int . To simplify the induction step, assume again without lessening
of generality that the program contains no nested expressions and
that all guard expressions are just variables (the program P con-
structed in Sec. 7.1 does not satisfy this, so we have to introduce
temporary variables to store intermediate results). Assume that the
lemma holds for Mi. A branching step is controlled by a guard
variable of type int which has the same value in all memories in
Mi, henceMi+1 = Mi in this case. An assignment step x := e
can be decomposed into two parts — killing the current value of x
and assigning a new value to x. Killing x simply removes the val-
ues of all extended variables derived from it from the memory M ,
thereby possible reducing some sets in the partitions ΠK and ΠE.
The effects of assigning a new value to x depend on e:

• if some values are just copied around (e is a variable, a pair or a
projection) then new extended variables of type int will contain
a value that is same in all memories, and the equivalence classes
of ΠK and ΠE may be extended with new extended variables;

• if e is o(x1, . . . , xk) then the types of the variables x1, . . . , xk
is int , their values are constant across Mi, the operation o is
deterministic, and its result is also constant;

• if e is a key generation [resp. encryption] then {x} will be a
new equivalence class in ΠK [resp. ΠE]; the possible values of
x are all possible keys [resp. have all possible initial vectors].

Recall that P does not contain decryption operations.
We can now define the probability distribution D[M,Γ] corre-

sponding to a set of memories and a typing satisfying the conditions
of Lemma 7 (hence the partitions ΠK and ΠE are defined). We be-
lieve that it is best described informally, by stating how a memory
M is constructed when the distribution D[M,Γ] is sampled. The
values of the variables in M have the structure given by Γ — there
is the same set of extended variables as in the memories in M.
The extended variables of type int have the same values in M as
they have inM — these variables were constants inM and they
are constants in D[M,Γ]. For each equivalence class V ∈ ΠK we
generate a key kV using the algorithmK and assign the result to all
extended variables in V . For each equivalence class V ∈ ΠE we
generate a new key k using the algorithm K and then encrypt the
constant 0 with the key k using the algorithm E ; the resulting value
is assigned to all extended variables in V . Hence the distribution
D[M,Γ] is the “Cartesian product” of a one-point distribution (as-
signing the values to extended variables of type int), a number of
distributions K() and a number of distributions E(K(), 0).

LEMMA 8. LetMi, Γi and Di be defined as in (1) and (2). Then
Di = D[Mi,Γi].

This lemma is again proved by induction over i, considering the
possible computation steps. We omit the proof here.

We have shown that if the final sets of memories are the same
for the abstract executions from initial memories M1 and M2 then
the final distributions over memories for the concrete executions
from M1 and M2 are the same as well. It remains to note that if
just the public parts of the final sets of the memories are the same
then the public parts of the final distributions are the same as well.

345

MOBIUS Deliverable D2.5 Report on safe information release

109

The public part of a set of memoriesM (together with a typing Γ,
such that the conditions of Lemma 7 are satisfied) consists of

• the values of all those extended variables of type int that are
parts of the variables in VarP;

• the initial vectors of the ciphertexts that are the values of all
those extended variables of type enc(τ) that are parts of the
variables in VarP.

The public part of a distribution D over memories is sampled
simply by sampling D and only taking the values of variables in
VarP in the resulting distribution.

The abstract security definition states precisely that modifying
only the secret inputs of an initial memory does not change the
public part of the resulting final set of memories. Computational
non-interference (our security definition in the concrete setting) is
a relaxation of probabilistic non-interference stating that the public
part of the final distribution may not change if only the secret inputs
of the initial memory change. Hence the abstract security of P
implies the concrete security of P̂ that is equivalent to the concrete
security of P .

8. A new model
In this section we give a model that is simpler but equivalent
(and sometimes even more permissive) than the semantics and the
security definition in the framework for cryptographically masked
flows, together with the constraints we gave in Sec. 6. In contrast
to the presented abstract model, we can also publish the final
values of keys in the new model — there are no constraints of
VarP, except that it must be disjoint with VarS. Also, the program
semantics in the new model is deterministic, in this aspect it is
simpler than the model of cryptographically masked flows. The
main components of the new model, particularly the equivalence
of abstract memories, are similar to the way the equivalence is
defined for formal messages by Abadi and Rogaway (2000). It is
even more similar to the subsequent development of these results
by Abadi and Jürjens (2001) who were also one of the first to use
formal randomness to distinguish between different encryptions
of the same message with the same key in the abstractions of
cryptography (another early paper was (Bodei et al. 2001), but both
were influenced by the idea of confounders by Abadi (1999)).

We have to redefine the set of values. A value v ∈ Val is either
⊥ or defined by the following grammar:

v ::= b | k〈i〉 | {v}r〈j〉k〈i〉 | (v1, v2)

where b ∈ {0, 1}∗ and i, j ∈ N. The value k〈i〉 denotes the
(formal) key that is produced by the i-th invocation of newkey.
Similarly, r〈j〉 is the formal randomness (or: initial vector) of the
j-th ciphertext.

The semantices of operations are functions from tuples of values
to values. In particular, the semantics of a normal operation o of
arity k is still given by a function from ({0, 1}∗)k to {0, 1}∗. If
one of the arguments is not a bit-string, the result is ⊥. The pairing
takes two values v1 and v2 and returns (v1, v2), unless some of
v1, v2 is⊥, in which case it returns⊥, too. The projections take the
first or second component of a pair; if the argument of a projection
is not a pair then the result is ⊥.

The evaluation context for expressions has to contain the num-
ber nk of already generated keys and the number ne of already
generated ciphertexts; the values of nk and ne are also part of
program configurations. The key generation operation newkey
returns k〈nk + 1〉 and increments nk. The encryption operation
enc(k, y) expects the value of k be k〈i〉 for some i ∈ N. It returns
{vy}r〈ne+1〉

k〈i〉 , where vy is the value of y, and increments ne. If the
value of k is not a formal key or if the value of y is ⊥, it returns ⊥.

The decryption operation expects two arguments of the form k〈i〉
and {v}r〈j〉k〈i〉 and returns v.

Again we require that in the initial memory all values are bit-
strings. We define the program P to have secure information flow
in our new model if for all memories M1,M2,M

′
1,M

′
2 where

M ′i is the final memory corresponding to the initial memory Mi,
M1 ∼P M2 implies M ′1 ∼= M ′2. The formal equivalence ∼= of
memories is defined in the same way as by Abadi and Rogaway
(2000). Formally, let visibles(M) ⊂ Val be the least set such that

• if x ∈ VarP then M(x) ∈ visibles(M);
• if (v1, v2) ∈ visibles(M) then vi ∈ visibles(M);

• if k〈i〉 ∈ visibles(M) and {v}r〈j〉k〈i〉 ∈ visibles(M) then v ∈
visibles(M).

Let keys(M) = visibles(M) ∩ {k〈i〉 | i ∈ N}. Extend the set of
values by

v ::= . . . | �r〈j〉,

the value �r〈j〉 denotes a ciphertext generated using the formal
coins r〈j〉, that the adversary is unable to decrypt. Let the pattern
pat(v,K) of a value v with respect to a set of keys K be defined
as follows:

pat(⊥,K) = ⊥
pat(b,K) = b

pat(k〈i〉,K) = k〈i〉
pat((v1, v2),K) = (pat(v1,K), pat(v2,K))

pat(�r〈j〉,K) = �r〈j〉

pat({v}r〈j〉k〈i〉,K) =

(
{pat(v,K)}r〈j〉k〈i〉, if k〈i〉 ∈ K

�r〈j〉, if k〈i〉 6∈ K

Finally define pattern(M) : VarP → Val by

pattern(M)(x) := pat(M(x), keys(M)) .

We define two memoriesM1 andM2 as equivalent if pattern(M1)
and pattern(M2) are α-conversions of each other. I.e. there must
exist permutations ϕ,ψ : N→ N, such that if we replace each k〈i〉
in pattern(M1) with k〈ϕ(i)〉 and each r〈j〉 with r〈ψ(j)〉, we get
pattern(M2).

The proof of computational soundness of the secure information
flow in the new model is similar to the proof of soundness of
cryptographically masked flows. Again we start with the removal
of decryption operations by recording the name (identity) of the
key alongside each key we generate, and the plaintext and the
identity of the key alongside each ciphertext (the change is given in
Table 1). There will be no change in the visible abstract semantics.

We can now define the “computational interpretation” of an
abstract memory — a mapping from abstract memories to distri-
butions over memories. The computational interpretation is actu-
ally identical to the one proposed by Abadi and Rogaway (2000);
Adão et al. (2005). We show that the computational interpreta-
tion commutes with the computation steps in the abstract and con-
crete semantices — that the runs in the abstract and in the con-
crete model proceed in lock-step. Finally we use the result by Adão
et al. (2005), stating that formal equivalence of memories implies
the indistinguishability of the public parts of their computational
interpretations.

Let us see some examples of secure and insecure programs ac-
cording to the presented definition. Consider the following program

k := newkey; if h then l1 := enc(k, a); l2 := enc(k, b)
else l2 := enc(k, a); l1 := enc(k, b)

346

MOBIUS Deliverable D2.5 Report on safe information release

110

where VarS = {h} and VarP = {l1, l2}. The quantities a and b
are constants. Depending on the initial value of h (either 0 or 1),
the final memories of this program will be

{h 7→ 1, k 7→ k〈1〉, l1 7→ {a}r〈1〉k〈1〉, l2 7→ {b}
r〈2〉
k〈1〉}

and

{h 7→ 0, k 7→ k〈1〉, l1 7→ {b}r〈2〉k〈1〉, l2 7→ {a}
r〈1〉
k〈1〉} .

The patterns of the public parts are

{l1 7→ �r〈1〉, l2 7→ �r〈2〉}
and

{l1 7→ �r〈2〉, l2 7→ �r〈1〉} .
We see that the patterns do not depend on the constants a and b.
Furthermore, the first of them can be α-converted to the second one
by letting the permutation ψ of formal randomness indices map 1
to 2 and 2 to 1. Hence the considered program is secure.

Consider now the following program:

k := newkey; l1 := enc(k, a); if h then l2 := enc(k, b)
else l2 := l1

with the same VarS, VarP, a and b as before. Depending on the
value of h, the final memories of this program will be

{h 7→ 1, k 7→ k〈1〉, l1 7→ {a}r〈1〉k〈1〉, l2 7→ {b}
r〈2〉
k〈1〉}

and

{h 7→ 0, k 7→ k〈1〉, l1 7→ {a}r〈1〉k〈1〉, l2 7→ {a}
r〈1〉
k〈1〉} .

The patterns of the public parts are

{l1 7→ �r〈1〉, l2 7→ �r〈2〉}
and

{l1 7→ �r〈1〉, l2 7→ �r〈1〉} .
As there exists no α-conversion between these possible patterns,
the program is not secure. Indeed, the value of h can be determined
by considering the equality of l1 and l2. This example (called the
occlusion example) was presented by Askarov et al. (2006) as one
of the motivating examples for the equivalence relation =E among
ciphertexts.

9. Related work
Cryptographically masked flows were proposed by Askarov et al.
(2006) along with a type system for checking the security of infor-
mation flow. Askarov and Sabelfeld (2007) considered the release
of keys in this framework, using it to provide a mechanism for de-
classification.

In quite general terms, the topic of this paper is secure informa-
tion flow. A semi-recent overview of this topic is given by Sabelfeld
and Myers (2003). The handling of encryption and publishing the
ciphertexts is also closely connected to the topic of declassification,
a good overview of which is given by Sabelfeld and Sands (2005).

In this paper we have searched for abstractions of cryptogra-
phy; we have been particularly concerned with the soundness of
such abstractions. The most well-known and celebrated abstraction
of cryptography is without doubt the Dolev-Yao model (Dolev and
Yao 1983) that abstracts the cryptographic messages by terms in
a free algebra and lists all possible means to derive new messages
from the known ones. The Dolev-Yao model even appears in this
paper, in Sec. 8. The question on the soundness has been unan-
swered for a long time, the first well-known results connecting it
to the computational model were given by Abadi and Rogaway
(2000). Abadi and Rogaway (2000) considered only passive adver-
saries, but the soundness (for integrity properties) in the presence

of active adversaries was shown by Cortier and Warinschi (2005).
Another, earlier soundness proof was given by Herzog (2002), but
this proof required plaintext aware encryption systems for which no
constructions without random oracles are known. Also, a compre-
hensive soundness result was established by the presentation of the
universally composable cryptographic library (Backes et al. 2003)
showing that minor adjustments to the Dolev-Yao model indeed
cause it to reflect all observable properties of the computational
model. Still, those results about the Dolev-Yao model do not carry
that easily over to cryptographically masked flows.

Recently, some other abstractions of the encryption function-
ality have appeared, although the focus of these works has been
different — an information-hiding and integrity-preserving con-
struction has been proposed and then it is shown how to implement
it using cryptographic primitives. Vaughan and Zdancewic (2007)
have proposed an information-packing primitive that declassifies
its argument from its original security level to the lowest level, but
at the same time preserves its confidentiality and integrity as if it
had not been declassified. The packing primitive is integrated into
the decentralized label model (Myers 1999) and implemented us-
ing public-key encryption and signatures. Fournet and Rezk (2008)
give a sound implementation of the shared memory security model
(stating which principal is allowed to read or write which variables)
using cryptography (again, public-key encryption and signatures).
The soundness of the implementation is shown using language-
based techniques, by giving type systems for secure information
flow for both the source and target languages (which may be of in-
dependent interest) and showing that the translation preserves typ-
ing.

10. Discussion
This paper has demonstrated the limits of cryptographically masked
flows. Some of them are quite natural (e.g. the handling of keys),
but one of them in particular may seem excessive, partly because
the program analyses working directly on the computational se-
mantics (Laud 2001, 2003; Laud and Vene 2005) do not have that
limit. We are concerned about the inability to use the “actual val-
ues” of ciphertexts in arbitrary computations.

Still, as Sec. 5.4 demonstrated, we likely cannot allow the arbi-
trary handling of random values (in the concrete semantics), unless
these values are somehow randomly generated in the abstract se-
mantics as well. Models where the encryption is replaced with ran-
dom number generation have been considered (Smith and Alpı́zar
2006) and they would be quite similar to the programs that we get
after performing the replacement of the real functionality of the en-
cryption primitive with the ideal functionality. If we also want to
have decryption operations in such a model then we have to keep
a table of plaintext-key-ciphertext pairs that have occurred in the
course of the computation, similarly to the modifications of the ab-
stract semantics in Sec. 5.5. The practical value of such abstract
model is strongly dependent on the available tool support. Fortu-
nately, tools for arguing about stochastic programs will suffice; the
tools do not have to deal with the cryptographic effects because
these have been abstracted away.

11. Acknowledgements
This research has been supported by Estonian Science Founda-
tion, grant No. 6944 and by EU Integrated Project MOBIUS
(contract no. IST-15905). We thank the anonymous referees and
Steve Zdancewic for their valuable comments, as well as Pierpaolo
Degano for pointing out the origins of formal randomness.

347

MOBIUS Deliverable D2.5 Report on safe information release

111

References
Martı́n Abadi. Secrecy by Typing in Security Protocols. Journal of the

ACM, 46(5):749–786, September 1999.
Martı́n Abadi and Jan Jürjens. Formal Eavesdropping and Its Computa-

tional Interpretation. In Naoki Kobayashi and Benjamin C. Pierce, edi-
tors, Theoretical Aspects of Computer Software, 4th International Sym-
posium, TACS 2001, volume 2215 of LNCS, pages 82–94, Sendai, Japan,
October 2001. Springer-Verlag.

Martı́n Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). In Jan
van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and
Takayasu Ito, editors, International Conference IFIP TCS 2000, vol-
ume 1872 of LNCS, pages 3–22, Sendai, Japan, August 2000. Springer-
Verlag.

Pedro Adão, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Sound-
ness of formal encryption in the presence of key-cycles. In Sabrina
De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann, ed-
itors, ESORICS, volume 3679 of Lecture Notes in Computer Science,
pages 374–396. Springer, 2005.

Johan Agat. Transforming out timing leaks. In POPL 2000, Proceedings of
the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 40–53, Boston, Massachusetts, January 2000.
ACM Press.

Aslan Askarov and Andrei Sabelfeld. Gradual release: Unifying declassifi-
cation, encryption and key release policies. In Pfitzmann and McDaniel
(2007), pages 207–221.

Aslan Askarov, Daniel Hedin, and Andrei Sabelfeld. Cryptographically-
Masked flows. In Kwangkeun Yi, editor, SAS, volume 4134 of Lecture
Notes in Computer Science, pages 353–369. Springer, 2006.

Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Universally
Composable Cryptographic Library. In Proceedings of the 10th ACM
Conference on Computer and Communications Security, Washington,
DC, October 2003. ACM Press. Extended version available as Report
2003/015 of Cryptology ePrint Archive.

Mihir Bellare and Chanathip Namprempre. Authenticated Encryption:
Relations among Notions and Analysis of the Generic Composition
Paradigm. In Tatsuaki Okamoto, editor, Advances in Cryptology -
ASIACRYPT 2000, 6th International Conference on the Theory and
Application of Cryptology and Information Security, volume 1976 of
LNCS, pages 531–545, Kyoto, Japan, December 2000. Springer-Verlag.

Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols. In CCS ’93, Proceedings
of the 1st ACM Conference on Computer and Communications Security,
pages 62–73, Fairfax, Virginia, November 1993. ACM Press.

Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Con-
crete Security Treatment of Symmetric Encryption. In 38th Annual Sym-
posium on Foundations of Computer Science, pages 394–403, Miami
Beach, Florida, October 1997. IEEE Computer Society Press.

John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme
security in the presence of key-dependent messages. In Kaisa Nyberg
and Howard M. Heys, editors, Selected Areas in Cryptography, volume
2595 of Lecture Notes in Computer Science, pages 62–75. Springer,
2002.

Chiara Bodei, Pierpaolo Degano, Flemming Nielson, and Hanne Riis Niel-
son. Static analysis for secrecy and non-interference in networks of pro-
cesses. In Victor E. Malyshkin, editor, PaCT, volume 2127 of Lecture
Notes in Computer Science, pages 27–41. Springer, 2001.

Veronique Cortier and Bogdan Warinschi. Computationally Sound, Auto-
mated Proofs for Security Protocols. In Shmuel Sagiv, editor, Program-
ming Languages and Systems, 14th European Symposium on Program-
ming, ESOP 2005, volume 3444 of LNCS, pages 157–171, Edinburgh,
UK, April 2005. Springer-Verlag.

Danny Dolev and Andrew C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, IT-29(12):198–208, March
1983.

Cédric Fournet and Tamara Rezk. Cryptographically Sound Implementa-
tions for Typed Information-Flow Security. In POPL 2008, Proceedings
of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Francisco, California, January 2008. ACM
Press.

Joseph A. Goguen and José Meseguer. Security Policies and Security
Models. In Proceedings of the 1982 IEEE Symposium on Security and
Privacy, pages 11–20, Oakland, California, April 1982. IEEE Computer
Society Press.

Oded Goldreich. Foundations of Cryptography. Volume 1 - Basic Tools.
Cambridge University Press, 2001.

Jonathan Herzog. Computational Soundness of Formal Adversaries. Mas-
ter’s thesis, Massachusetts Institute of Technology, September 2002.

Peeter Laud. Semantics and Program Analysis of Computationally Secure
Information Flow. In David Sands, editor, Programming Languages and
Systems, 10th European Symposium on Programming, ESOP 2001, vol-
ume 2028 of LNCS, pages 77–91, Genova, Italy, April 2001. Springer-
Verlag.

Peeter Laud. Handling Encryption in Analyses for Secure Information
Flow. In Pierpaolo Degano, editor, Programming Languages and Sys-
tems, 12th European Symposium on Programming, ESOP 2003, volume
2618 of LNCS, pages 159–173, Warsaw, Poland, April 2003. Springer-
Verlag.

Peeter Laud and Varmo Vene. A Type System for Computationally Secure
Information Flow. In Maciej Liśkiewicz and Rüdiger Reischuk, editors,
15th International Symposium on Fundamentals of Computation Theory
(FCT) 2005, volume 3623 of LNCS, pages 365–377, Lübeck, Germany,
August 2005. Springer-Verlag.

John McLean. Security models and information flow. In IEEE Symposium
on Security and Privacy, pages 180–189, 1990.

Andrew C. Myers. JFlow: Practical Mostly-Static Information Flow Con-
trol. In POPL ’99, Proceedings of the 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 228–241,
San Antonio, Texas, January 1999. ACM Press.

Hanne Riis Nielson and Flemming Nielson. Semantics with Applications:
A Formal Introduction. Wiley, 1992.

Birgit Pfitzmann and Patrick McDaniel, editors. 2007 IEEE Symposium on
Security and Privacy (S&P 2007), 20-23 May 2007, Oakland, Califor-
nia, USA, 2007. IEEE Computer Society.

Andrei Sabelfeld and Andrew C. Myers. Language-Based Information-
Flow Security. IEEE Journal on Selected Areas in Communications,
21(1):5–19, January 2003.

Andrei Sabelfeld and David Sands. A Per Model of Secure Information
Flow in Sequential Programs. In S. Doaitse Swierstra, editor, Program-
ming Languages and Systems, 8th European Symposium on Program-
ming, ESOP’99, volume 1576 of LNCS, pages 40–58, Amsterdam, The
Netherlands, March 1999. Springer-Verlag.

Andrei Sabelfeld and David Sands. Dimensions and principles of declassi-
fication. In CSFW, pages 255–269. IEEE Computer Society, 2005.

Geoffrey Smith and Rafael Alpı́zar. Secure Information Flow with Random
Assignment and Encryption. In 4th ACM Workshop on Formal Methods
in Security Engineering, pages 33–43, 2006.

Geoffrey Smith and Dennis M. Volpano. Secure Information Flow in a
Multi-threaded Imperative Language. In POPL ’98, Proceedings of the
25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 355–364, San Diego, California, January 1998.
ACM Press.

Jeffrey A. Vaughan and Steve Zdancewic. A cryptographic decentralized
label model. In Pfitzmann and McDaniel (2007), pages 192–206.

348

MOBIUS Deliverable D2.5 Report on safe information release

112

