
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D3.2

Intermediate report on embedding type-based analysis into

program logics

Due date of deliverable: 2007-03-01 (T0+18)

Actual submission date: 2007-03-28

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: CTH

Revision 3746M — Final

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

SITE Contributed to Chapter
CTH Chapter 1, 2, 5, 6
IoC Chapter 4
WU Chapter 1, 3

2

Executive Summary:
Intermediate report on embedding type-based analyses into program
logics

This document summarises deliverable D3.2 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr.

Secure information flow of programs guarantees that no classified information is leaked to an unauthorised
user. Language-based security techniques analyse programs if they satisfy this property for any possible
program run. The given guarantees are beyond what encryption based approaches can achieve, which
capture only the aspect of access control rights, but do not consider the flow of information in a program,
which might access higher classified information then its user is allowed to access.

Type-based systems are a successfully applied technique in this area, which type only those programs
secure that do not leak classified information. The type-based systems are highly-efficient and automatic.
The drawback is that these systems are also highly specialised and reject too many secure programs as
insecure. The high specialisation makes it also necessary to use different type systems for different secure
information flow policies, which may lead to an increase in the number of different certificates that need to
be supported.

Program logics on the other side are far more general and can be used to encode a wide variety of policies.
Further as program logics model programming languages faithfully, they allow to prove properties beyond
secure information flow like functional correctness of programs or the adherence to resource policies. Such a
program logic has been already developed as part of the MOBIUS project. The drawback of using program
logics is that due to their degree of precision and expressiveness, they lack the efficiency of type-based
systems and require often user interaction.

In this working task, we develop a logic framework that allows to embed the type based systems in the
general logic framework in order to combine the strengthens of both worlds, i.e. the efficiency of type-based
system and the expressiveness of program logics. Another advantage is that these embeddings allow to use
a uniform certificate for all kinds of properties, which reduces the requirements posed on the certification
checkers and therewith their code base.

3

http://mobius.inria.fr

Contents

1 Introduction 5
1.1 Type and logic-based systems . 6

1.1.1 Type-based systems . 7
1.1.2 Program logics . 8

1.2 Terminology and notation . 9
1.3 Translation approaches in comparison . 11
1.4 Structure of the deliverable . 12

2 Integration of a security type system into a program logic 14
2.1 Background . 14

2.1.1 Non-interference analysis and declassification . 14
2.1.2 A program logic with updates . 15

2.2 Interpreting the type system in dynamic logic . 17
2.2.1 Abstraction-based calculi . 17
2.2.2 Simulating type derivations in dynamic logic . 19
2.2.3 Higher precision and delimited information release . 26

2.3 Ongoing and future work . 28
2.3.1 Lifting to the MOBIUS program logic . 28
2.3.2 Improving support for declassification properties and further future work 29

3 Non-interference protection in a program logic 30
3.1 Introduction . 30
3.2 Preliminaries . 31
3.3 Translation from the information flow system . 36
3.4 Proof of non-interference . 40

3.4.1 Proof of stability . 42
3.5 Related work and conclusions . 42

4 Foundational certification of data-flow analysis 43
4.1 Introduction . 43
4.2 A natural semantics and type system for live variables . 44
4.3 A Hoare logic for live variables . 47
4.4 A natural semantics and Hoare logic for future defs, uses . 48
4.5 Conditional liveness . 50
4.6 Dead code elimination . 51
4.7 Related work . 53
4.8 Conclusions . 53

5 Road-Map for integrating the results into the MOBIUS framework and future work 55

6 Conclusions 57

4

Chapter 1

Introduction

The challenge for MOBIUS Task 3.5 “Combining Type-based and Logical Analyses” is to provide the foun-
dations of a framework that allows to integrate logic and type-based analyses of programs. The main goals
to be achieved during its run-time are the combination of type-based and logic-based approaches in order
to benefit from the advantages of both formalisms as well as to circumvent their disadvantages and to make
use of type-based analysis results in order to generate simpler and smaller certificates.

The approaches presented in this deliverable show how type-based analyses can be embedded into (resp.
emulated within) a general logical framework. Using a common formalism allows further the creation of
uniform certificates, thus reducing the complexity of the certificate checkers on the client’s side.

Type-based analyses can be found in manifold variations used to check statically that programs satisfy
specific and well-defined properties like

1. the adherence to certain secure information flow policies as identified in Task 1.1 and further worked
out in Task 3.2.

2. the liveness of variables, which allows an optimising compiler to eliminate dead-code.

Two of the three approaches presented in this intermediate report aim on embedding type-based anal-
yses for secure information flow. Secure information flow means that programs accessing and processing
confidential data do not leak classified information to a potential observer (for example, the user), she is
not entitled to receive. Approaches like cyphering are not strong enough as they are restricted to access
control, but—as many scenarios require programs to access information classified for their users—it must
be ensured that these programs do not leak any secret information. Analysing the flow of information in a
program allows to guarantee that no confidential information is leaked while the program is processed. For
example, in its simplest case by printing the password in clear text form on the screen.

But information leaks must not be thus obvious: Assume that a program computes a checksum of a
password and stores it in a variable that can be publicly observed. A user might then be able to reduce the
search space considerably. The possible search space reduction depends of course on the properties of the
chosen checksum function.

Ensuring secure information flow becomes even harder as not all information leaks can be prevented in
practise. For example, entering a password releases at least the information, if it has been right or wrong.
Consequently, secure information flow cannot be assumed to be an all-or-nothing property, instead one must
be able to specify more elaborated security properties, which allow to define the amount of information that
might be released.

Type-based and logic-based systems can be used to ensure secure information flow inside a program. The
integration of type-based systems into a program logic allows to combine the strengthen of both approaches,
i.e. the high efficiency and automation of type-based systems and the expressiveness and generality of logic-
based systems.

The third approach presented in this deliverable, focuses on the liveness of variables. Intuitively a variable
is considered to be live at a certain program point, if its current assigned value is used and contributes to

5

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

the programs result or behaviour. The results of a liveness analysis can be easily used by an optimising
compiler to eliminate dead-code in programs. In particular the results of the third approach indicate how to
transform functional correctness proofs of the original (not optimised) program into corresponding functional
correctness proofs of the optimised program.

In this deliverable we give an intermediate report about the results achieved so far in the task’s first few
months lifespan.

1.1 Type and logic-based systems

Different approaches—for example type-based program analysis, deductive program verification or model
checking—have been developed to check that a program satisfies certain properties. These approaches differ
in the kind of properties they allow to ensure, or more general, in their expressiveness (number of properties
that can be expressed within the same formalism), in soundness (absence of false positives, i.e. no incorrect
programs are classified as sound), completeness (no false negatives, i.e. no correct programs is rejected as
unsound) and in the degree of automation. Usually an advantage in one of these categories comes with a
drawback in one of the others.

In this working task, we deal with formal systems, which are required and have to be proven to be
sound. These formal systems speak about properties of programs and therefore need a (formal) language to
represent these programs and to state the properties of interest.

Formal languages are usually defined in terms of grammars, which describe precisely the allowed set of
symbols and how these are composed to form valid expressions (words) and/or sentences. Typical represen-
tatives of formal languages are program languages like Java or logics.

These languages are assigned a well-defined meaning, or in other words, a mathematical semantics by
their defining formal system. Such a semantic can be defined in different ways (or flavours), for example
operational or descriptive.

Example 1 (Semantics) Let x, y be program variables and x*y be a valid expression in the given program
language (formal system) of interest. An operational semantics may assign a meaning to this expression
by a detailed description of a multiplication algorithm. In contrast, a descriptive semantics would simply
interpret * as the mathematical multiplication function × and define its value without the necessity to give
a concrete algorithm.

In this deliverable type-based systems and program logics are the formal systems of interest. Bicolano
defines an operational semantics for the subset of Java bytecode supported in MOBIUS. It models the
precise, but informal natural language specification of the Java virtual machine within a strict mathematical
framework. In the end any formalism developed in MOBIUS must be proven sound wrt. Bicolano.

The MOBIUS base logic is a Hoare style logic that provides a suitable abstraction layer designed to
simplify the reasoning about properties of Java bytecode programs. The base logic has been proven sound
relative to Bicolano. Both, Bicolano and the MOBIUS base logic, are explained in detail in [15]. The authors
of [15] implemented both as theories of the theorem prover Coq [16].

Writing specifications in the MOBIUS base logic itself require a profound knowledge of logic, MOBIUS
defines therefore the specification language called Bytecode Modelling Language (BML), which allows to
annotate programs in a design by contract style using a Java like notation, that is easier to handle and more
familiar to developers. BML specifications can then be translated into Hoare assertions.

Secure information flow is one of the main application scenarios of this working task and will serve as
a running example in the following explanations. Nevertheless most of the drawn conclusions are also valid
for other kinds of analysis like liveness of variables.

When establishing a property like secure information flow, we are mainly interested to prove that no
classified information is leaked, while processing a program. Language-based information flow analysis is
intended to ensure this kind of end-to-end secure information flow in a program. Type-based systems have
proved to be a useful approach to automatically ensure secure information flow. Their use has been suggested

6

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

first by Volpano et al. in [36]. Sect. 2 is centred around the information flow sensitive type-based system
developed in [24], while Sect. 3 refers to the type system introduced in [8].

While type-based systems allow to check programs for the properties they have been designed for au-
tomatically. The necessary specialisation of today’s type systems, which is on one side the reason for their
high-efficiency, but contemporary also their greatest disadvantage.

Currently, many secure programs are rejected as insecure. One reason for this behaviour is that those
type-based systems do not keep track of information like the possible range of values a location may have at
a certain execution point. But this kind of value sensitivity would be necessary to exclude certain kinds of
exceptions as for example, those raised by division-by-zero, whose absence can only be proven if knowledge
about the value of the divisor is kept.

Although we are confident that current and future research in this area will increase the precision of
the type-based systems, the use of the more general framework provided by program logics offers several
additional advantages:

• higher precision as program logics usually axiomatise the semantics of programming language faithfully.

• higher expressiveness as program logics allow to specify and guarantee nearly arbitrary functional
properties of programs.

• generation of uniform certificates for all kinds of properties keeping the code base of the certificate
checkers small.

The first results that we present in this deliverable encourage us that the embedding of type-based
systems into a program logic is a realistic and achievable goal. Further, these results strongly indicate that
these embeddings combine the advantages of type-based system with those of logic frameworks.

1.1.1 Type-based systems

Many of today’s programming languages are typed, i.e. they are equipped with a set of basic types like int
or boolean and often allow the programmer to define their own types, which are composites of others, e.g.
classes or records. These types are attached to locations (program variables, fields etc.) and methods. The
compiler checks then statically, if the program to be compiled is typed correctly, such that for example no
integer typed program variable is assigned a boolean value or vice versa. To perform this test the compiler
gets equipped with a set of typing rules, which allow to derive the type of expressions (and/or statements)
by looking at the types of their components. If the compiler is not able to derive that the program is typed
correctly, it will reject the program and print an error message.

A program language is then called type safe if it respects its typing at runtime, or the other way round,
a type system is sound if only programs can be typed within it, that respects the typing at runtime.

Besides additional complications like inheritance structures the above mentioned typing is of a very basic
shape and not sufficient to establish further properties like definite assignment of local program variables,
liveness of program variables or the secure information flow policies considered later in this deliverable. In
order to ensure conformance to these properties additional types are required, which capture more informa-
tion than pure value restrictions: for the definite assignment case one could model a local program variable
type as a tuple (valueType, valueAssigned), where valueTupe is the normal user defined type of the value
and valueAssigned ∈ {asgn, notAsgn} with asgn indicating that the variable has already been assigned a
value. An assignment statement x=y∗z; shall than be only typable, if the valueAssigned components of
variable y and variable z is asgn.

The previous example is also useful to explain the difference between flow sensitive and insensitive type
systems. Flow-sensitive type systems respect the execution order of statements, whereas insensitive systems
do not. This means a type insensitive system will usually not be able to type a program as safe wrt. to
definite assignment if the declaration of a local program variable does not coincide with its first assignment1.

1In order to circumvent this restriction one has to transform the program into an equivalent one that declares a variable at
its first use. But those transformations are not always trivial and need to be proven sound.

7

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

asgn high
[pc] ` h=exp;

asgn low
` exp : low

[low] ` l=exp;

composition
[pc] ` C1; [pc] ` C2;

[pc] ` C1;C2;
while

` exp : pc [pc] ` α
[pc] ` while (!exp) α

condition
` exp : pc [pc] ` C1 [pc] ` C2

[pc] ` if (!exp) C1 else C2

Figure 1.1: Flow insensitive secure type system equivalent to Volpano et. al. taken from [32] (excerpt)

assignmentH {P [x/exp]}x=exp; {P}
compositionH

{P}C1; {R} {R}C2; {Q}
{P}C1;C2; {Q}

conditionH

{P ∧ exp}C1{Q} {P∧!exp}C2{Q}
{P}if (exp) C1 else C2{Q}

Figure 1.2: Hoare style calculus for a simple while-language (excerpt)

The first type-based system used to check secure information flow in a program has been developed
by [36]. The type system is flow insensitive and fails therefore to type a program like “l = h; l = 0;” as
secure. The program is in fact secure as it is equivalent to l=0;. But flow insensitive type systems like the
one shown in Fig. 1.1 fail to derive this property as they do not respect the order of statements and will
reject the previously mentioned program as insecure because of the first assignment. This becomes clear
when looking at the composition rule of the type-based system in Fig. 1.1, which requires both statements
to be typed independently as secure.

This shortcome can be circumvented by the introduction of new variables or by using a flow sensitive
type system as [24]. Another problem where today’s type systems fail are programs like

if (h! = 0) h = 1/h;

which assigns only to a high level program variable and may therefore be considered as secure. The problem
is the division by h which raises an ArithmeticException in cases where h .= 0 and could therewith leak
information about h to an observer. Of course this situation cannot occur as the if-condition excludes the
malicious case, but as current type-based systems for secure information flow analysis are value insensitive,
they will reject the above program as insecure.

1.1.2 Program logics

In order to ensure a certain property with a type system one has to encode it in the set of available types and
corresponding type derivation rules. The chosen setup is then only specific wrt. to the modelled property, i.e.
for different properties different type systems are required and, in addition, often incomplete but admittedly
complete automatic and efficient. Complementary to this are program logics, which allow to specify nearly
any kind of property in the same framework, but usually require user interaction.

Program logics are often Hoare style logics or dynamic logics, which can be seen as a closure of Hoare
logics under quantifiers. Dynamic logics are defined in more detail in Sect. 2.1.2. Therefore we concentrate
on Hoare style logics for the remaining section. In a logic (functional) properties of programs are expressed
in terms of logic formulae. For example the formula result .= x ∗ y evaluates to true (or holds) in states
where the value of variable result is equal to the product of the value of the variables x and y. A program
specification is then given as a so called Hoare triple {pre} prg {post}, where pre and post are logic formulas.
The program prg satisfies its specification if started in state where formula pre holds and if program prg
terminates then the formula post holds in the final state. For this kind of logic, on can define a complete

8

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

calculus that models the semantics of the programming language faithfully and allows to derive all properties
that can be expressed by logic formulas.

Example 2 The Hoare triple

{n .= c ∧ c >= 0}result = 0; while (n−− > 0) result+=m; {result .= m× c}

specifies that if the program is executed in a state where the value of n is equal to c and greater than 0 then
in its final state the computed value of result is the product of m and c.

A Hoare style calculus for a simple while language is shown in Fig. 1.2. In contrast to the typing system,
the calculus models the semantics faithfully, in particular the assignment rule keeps track of the precise
value assigned to a program variable.

In order to formalise secure information flow in a logic setting one can use the following semantic encoding
of non-interference of program variables:

The observable result of a program run must not depend on the content of classified data.

Given a program prg(l, h) using only the variables l and h. Further, let prg(l′, h′) denote a copy of the
previous program, but where the program variables l and h have been replaced by new variables l′ resp. h′.
Assume a user can observe the values of the low security level variables l, l′ before and after a program run,
but not the value of the high security level variables h, h′. The above non-interference semantics requires
now that a program run with equal low level input results in a state which coincides on the value of the low
level input value, this means the final state is indistinguishable from the user’s point of view. A syntactical
encoding of this property as formalised in [19, 10] can be given as:

{l .= l′}prg(l, h); prg(l′, h′); {l .= l′}

1.2 Terminology and notation

In the current stage the developed approaches are too different to be presented using identical notations and
terminology. In order to achieve at least as far as possible a uniform presentation this section identifies and
gives the definition of some shared concepts together with the notation defined by and used to represent
these concepts.

In order to model assignments of variables that means to update a certain (set of) location(s) in the
store or when for example the execution of a statement leads to a change of a variable’s security level, i.e.
its security type, the corresponding formalisation usually maps the function (representing the memory or
typing at a certain program point) to another one identical with the former except for the changed value
(here: variable). The notion of function updates proves convenient for this kind of mappings:

Definition 1.2.1 (Function Update) Given a not necessary total function f : S → T . The function
f [y 7→ v] coincides with f on all x ∈ S except for y where it has value v, i.e.

f [y 7→ v](x) :=
{
v, x = y
f(x), otherwise.

Type-based systems and deductive systems define usually a purely syntactic calculus or derivation system,
that relates different expressions of the used formal language. This relation is called syntactic consequence
relation or as symbol `S : P(S) → S (for a given system S). We omit the superscript S, if the referred
system is obvious in the current context or irrelevant for the discussion.

These syntactic consequence relations are (often) defined as rule-based systems. A rule is a schema that
describes how to perform a single derivation step by purely syntactic operations. These rules are usually
defined using the notation shown below:

rname
premise1 . . . premisen

conclusion

9

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

where

• the identifier rname is a name uniquely identifying the rule,

• premise1, . . . , premisen are the assumptions of the rule that need to be established in order to derive

• the consequence conclusion of the rule.

Example 3 (Conjunction Rule) One example of a valid rule is the conjunction rule as used in many
logic calculi:

Conjunction
Γ ` A, ∆ Γ ` B,∆

Γ ` A ∧B,∆

If A is valid and B is valid, then their conjunction is also a valid formula.

The syntax is assigned a mathematical meaning (semantics) by its formal system S, the idea of formal
systems is to derive mathematical valid proofs of properties by performing only simple syntactical operations.

Definition 1.2.2 (Semantic Consequence) Given a formal system S and a property P . If the property
P is valid and expressible in S, we say P is a semantic consequence of S or short |=S P . This means there
exists a mathematical proof for P in the context of S.

Definition 1.2.3 (Soundness and Completeness) Given a formal system S and a property P expressed
in terms of the formal language defined by S. The syntactical consequence relation `S is called sound if
`S P implies |=S P .

If the opposite direction holds, i.e. if |=S P then there exists a syntactic derivation `S P , then we call
`S complete.

The next few definitions introduce a few common notions for modelling secure information information
flow in a typed based setting. Elementary is the notion of a security type lattice, which defines the available
security types and their order.

Definition 1.2.4 ((Security) Types; Type Lattice) The symbol T denotes the set of all security types.
Further we require that (T ,�) forms a complete finite lattice.

Note 1 The following sections may add additional requirements on the type lattice if necessary, for example
that � has to be a linear order.

Note 2 Given types t1, t2, we defined t1 t t2 to denote the greatest upper bound, resp. t1 u t2 as the least
lower bound of the types t1 and t2.

The typing function assigns any typable program element a security type. Typable program elements are
usually all expressions, but depending on the concrete type framework also statements can have a security
type.

Definition 1.2.5 (Typing) The typing function ∇ : T (S) → T assigns each type-able element e ∈ T (S)
of the formal system S its (security) type ∇(e) or equivalent e : ∇(e).

Example 4 (Security type of a variable) Given the security types T := {low, high}(low � high) and
program variables x and y, we may define ∇(x) := low and ∇(y) := high declaring variable x to be of low
confidentiality resp. variable y of high confidentiality.

Such a typing can be continued easily on statements. For example, the copy assignment statement that
assigns a low level variable a constant is usually also typed with a low security level: ∇(x := 10;) = low.

10

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Note 3 The general typing function ∇ is sometimes to coarse and will be often decomposed into a class of
functions like κl or κh assigning local variables resp. heap locations a security type.

In order to scale up to real world programs, it is necessary to treat method invocations in a modular
way. Therefore one needs to specify the effects a method invocation may have on observable locations. In
order to specify a method according to secure information flow properties the following notion of a method
type signature is used:

Definition 1.2.6 (Method Type Signature) The security signature of a method is defined as

κl −→κh κr

where

• κr describes the security levels of the return normal and exceptional return values of a methods. There-
fore it is a list n : κn, e1 : κe1 , . . . , κen, where κn is the security level of the normal return value and the
security types κei denotes the security level of an environment in which an exception of type ei might
be propagated. The notation κr[n] resp. κr[ei] is used for κn resp. κei.

• κh describes the security level of heap changes that may be performed by the method.

• κl describes the security levels appropriate for the local variables of the method.

The above introduced definitions establish some common notions of the succeeding sections. The section
itself will recall and refine them if necessary to the required extend.

1.3 Translation approaches in comparison

This section roughly compares the different translation approaches introduced in the succeeding chapters.
As already mentioned in the previous sections, all considered type systems and translations are sound with
respect to the specified secure information flow policy. This means that only for programs satisfying the
policy the corresponding type derivation or proof can be found.

The translation approach presented in Sect. 2 embeds a secure information flow type analysis into a
logical framework by “emulating” the typing rules with derivation rules of the program logic. Starting from
a semantical formalisation of the non-interference property in terms of a logical formula, a sound, abstraction-
based program logic calculus is designed to abstract away from information that is not necessarily required for
proving non-interference properties. The resulting framework is proven to be as complete as the emulated
type based system, but due to lazy abstraction and other optimisations it remains more expressive and
precise, which allows to treat more programs than the type system.

The generated proof obligation grows in its basic version linear with the number of program variables for
which non-interference has to be proven. The expression “basic version” refers to the pure non-interference
proof obligation without modelling declassification aspects. The certificate growth should be in acceptable
(linear) ranges, but this has not been proven yet.

The specification of the program is required to provide a security typing of locations, which allows to be
expressed (and computed) as a dependency relation ship between locations, i.e. on which other locations may
the value of a location at most depend after an arbitrary program run. In order to model declassification
aspects the specification must also provide an extensional described partition of the domain of the input
data. The user/attacker is than allowed to deduce the partition by performing several program runs, but
not more.

The suggested approach requires only a minor extension to the already provided logical MOBIUS frame-
work, namely a more general shape of the proof obligation allowing nested quantification in order to express
the dependency between the different locations. This generalisation is easily possible as the formalisation
of the MOBIUS base logic is provided as a Coq theory and Coq allows already the required nesting of

11

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

quantifiers. Lifting the described embedding to the complete MOBIUS logic and therewith to a real object
oriented setting is current ongoing work.

The translation described in Sect. 3 is of a different kind. The presented approach translates the non-
interference formalisation used by the type system defined in [9] in terms of the specification language BML
developed in the MOBIUS project. The soundness of the translation and its completeness relative to the
type-based system is proven.

The required program specification consists of a global policy of security levels of fields, a type spec-
ification for methods and in particular a region structure of the bytecode, which allows to treat certain
program parts as units in order to compensate the lack of structure in bytecode programs. In addition some
further functions and values are required which can be computed mostly statically have to be provided.
In addition for each method the maximal stack size for any program run must be known. Based on these
necessary information is encoded in ghost variables representing tables which capture necessary typing and
model information used finally in the generated method specification expressing the wanted non-interference
property.

The translation makes intensive use of ghost fields, whose support requires the base logic to be extended.
Currently a transparent extension framework for the base logic is discussed and developed in Task 3.2. This
framework will allow the support of ghost fields, which are not only required by the presented translation,
but also by other working groups and tasks, e.g. those concerned with the specification of resource policies.

The provided translation allows to plug-in more elaborated declassification properties in a simple way. It
already incorporates direct support for method calls and exception handling. Propositions about the growth
of proofs and certificates are future work.

Sect. 4 justifies the embedding of type-based analyses into a logic framework on a foundational level. It
shows along a type-based analysis of program variable liveness that type-based systems can be seen as an
applied version of a more foundational Hoare style logic. The Hoare style logic models the same semantics
as used by the type-based system in a direct manner or even in terms of a more general trace semantics.
The soundness of such foundational Hoare logics is easier to understand and prove.

It is then shown that a type derivation step can be translated into a Hoare assertion and thus it is
possible to construct a proof in the Hoare logic from a given type derivation. While the construction of a
proof in the Hoare logic is in general much harder to find, the construction of such a proof based on a given
type analysis is not. The sections demonstrates also how to perform program optimisations by extending
the type-based system with transformations that allow optimisations like the elimination of dead-code. It
mentions further shortly that the provided link and translation between type-based analysis and Hoare logic
allows to transform functional correctness proofs for the original program into proofs for the transformed
(optimised) program automatically.

A simplified overview about the different translation approaches is shown in Fig. 1.3.

1.4 Structure of the deliverable

The deliverable is structured as follows: In Sect. 2 CTH presents an embedding of the type-based secure
information flow analysis developed in [24] into a program logic framework such that a given type derivation
can be simulated by a proof in the logic. The theorem establishing the simulation property is proven in a
constructive manner such that it allows to conclude that it is not significantly harder to find the proof than
the equivalent type derivation and it would also allow to translate a given type derivation into a proof in a
logic enabling the combination of static typing systems by maintaining a general uniform certificate.

An alternative approach to perform secure information flow analysis within a logic framework is presented
in Sect. 3 by WU. In this approach the authors use the type-based information flow system for Java bytecode
described in [8, 9] that guarantees non-interference as starting point and give a translation of the type-based
system into the MOBIUS program logic. As main theorem it is shown that the translated proof obligation
is a valid formula if the program is typable in the type based information flow system.

The IoC presents in Sect. 4 a foundational justification for the translation of analysis type systems

12

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

2: while (..)

Certificate

systems
type−based

Certificates for

(uniform)

certificate types
avoid different

Type Derivation Logic Proof

(TBS)

Type−Based System(s)

emulation
TBS−

Logic Framework

Encoding
(+CTH)WU

(CTH)

Translation (IoC) (+CTH)

functional.
correctness, etc.

secure information flow,
data flow analysis, etc.

1: x=y*z;

Program

...

Figure 1.3: Overview about the different translation approaches

into a program logic. Therefore they prove that analysis type systems are an applied version of more
foundational Hoare logics, where the latter one describes either the same property semantics as the applied
version, but without approximation considerations or a more general transition trace semantics. These
makes the foundational easier to trust and therewith, as the applied version can be proven sound wrt. to
the foundational systems, allows to trust the more elaborated applied systems.

Sect. 5 gives an outline of the future work, before Sect. 6 summarises the achieved results and closes the
report.

13

Chapter 2

Integration of a security type system into
a program logic

In this chapter we present an embedding of a type-based analysis for secure information flow into a program
logic. Therefore the type-based system is “emulated” by an abstraction based calculus for the program
logics. The calculus is proven sound and to be as efficient as the type-based system in case of typeable
programs, but provides higher expressiveness and precision.

In the following sections we will skip most proofs. A complete account can be found in [21].

2.1 Background

2.1.1 Non-interference analysis and declassification

Generally speaking, a program has secure information flow if no knowledge about some given secret data can
be gained by executing this program. Whether or not a program has secure information flow can hence only
be decided according to a given security policy discriminating secret from public data. In our considerations
we adopt the common model where all input and output channels are taken to be program variables. The
semantic concept underlying secure information flow then is that of non-interference: nothing can be learnt
about a secret initially stored in variable h, by observing variable l after program execution, if the initial
value of h does not interfere with the final value of l. Put differently, the final value of l must be independent
of the initial value of h.

This non-interference property is commonly established via security type systems [32, 24, 36, 4], where
a program is deemed secure if it is typable according to some given policy. Type systems are used to
perform flow-sensitive as well as flow-insensitive analyses. Flow-insensitive approaches (e.g. [36]) require
every subprogram to be well-typed according to the same policy. Recent flow-sensitive analyses [24, 4]
allow the types of variables to change along the execution path, thereby providing more flexibility for the
programmer. Like these type systems, the program logic developed in this chapter is termination insensitive,
meaning that a security guarantee is only made about terminating runs of the program under consideration.

The type system of Hunt & Sands [24] is depicted in Fig. 2.1. The type p represents the security level
of the program counter and serves to eliminate indirect information flow. The remaining components of
typing judgements are a program α and two typing functions ∇,∇′ : PVar → L mapping program variables
to their respective pre- and post-types. The type system is parametric with respect to the choice of security
types; it only requires them to form a (complete) lattice L. In this chapter, we will only consider the most
general1 lattice P(PVar). One may thus think of the type ∇(v) of a variable v as the set of all variables
that v’s value may depend on at a given point in the program. A judgement p `HS ∇ { α } ∇′ states that
in context p the program α transforms the typing (or dependency approximation) ∇ into ∇′. We note that
rule AssignHS gives the system its flow-sensitive character, stating that variable v’s type is changed by an

1In the sense that any other type lattice is subsumed by it, see [24, Lem. 6.8].

14

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

p `HS ∇ { } ∇ SkipHS

∇ ` E : t
p `HS ∇ { v = E } ∇[v 7→ p t t] AssignHS

p `HS ∇ { α1 } ∇′ p `HS ∇′ { α2 } ∇′′

p `HS ∇ { α1 ; α2 } ∇′′
SeqHS

∇ ` b : t p t t `HS ∇ { αi } ∇′ (i = 1, 2)

p `HS ∇ { if b α1 else α2 } ∇′
IfHS

∇ ` b : t p t t `HS ∇ { α } ∇
p `HS ∇ { while b α } ∇ WhileHS

p1 `HS ∇1 { α } ∇′1
p2 `HS ∇2 { α } ∇′2

SubHS

p2 v p1,∇2 v ∇1, ∇′1 v ∇′2

Figure 2.1: Hunt & Sands’ flow-sensitive type system for information flow analysis

assignment v = E to E’s type as given by the pre-typing ∇ joined with the context type p. The type t of
an expression E in a typing ∇ can simply be taken to be the join of the types ∇(v) of all free variables
v occurring in E, which we denote by ∇ ` E : t. Joining with the context p is required to accommodate
for leakage through the program context, as in the program “if (h) {l = 1} else {l = 0)}”, where the initial
value of h is revealed in the final value of l. A modification of the context p can be observed, e.g., in rule
IfHS, where the sub-derivation of the two branches of an if statement must be conducted in a context lifted
by the type of the conditional.

2.1.2 A program logic with updates

Following [24], the program logic that we investigate is a simplified version of dynamic logic (DL) for Java
Card [11]. The reason why we use a dynamic logic here in the first place and not the MOBIUS base logic
itself is that at the time the work has been performed the base logic has not yet been available. As dynamic
logic subsumes Hoare logics or in other words can be seen a first-order closure of Hoare logics, it is not to
far away from the base logic and the transfer of the achieved results is currently ongoing and near future
work (see also Sect. 2.3 and Sect. 5).

The most notable difference of DL to standard first-order dynamic logic for the simple while-language [23]
is the presence of an explicit operator for simultaneous substitutions (called updates [30]). While updates
become particularly useful when more complicated programming languages (with arrays or object-oriented
features) are considered, in any case, they enable a more direct relation between program logic and type
systems.

A signature of DL is a tuple (Σ,PVar,LVar) consisting of a set Σ of function symbols with fixed, non-
negative arity, a set PVar of program variables and of a countably infinite set LVar of logical variables. Σ,
PVar, LVar are pairwise disjoint. Because some of our rules need to introduce fresh function symbols, we
assume that Σ contains infinitely many symbols for each arity n. Further, we require that a distinguished
nullary symbol TRUE ∈ Σ exists. Rigid terms tr, ground terms tg, terms t,2 programs α, updates U and
formulae φ are then defined by the following grammar, where f ∈ Σ ranges over functions, x ∈ LVar over

2Both rigid terms and ground terms are terms.

15

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

logical variables and v ∈ PVar over program variables:

tr ::= x | f(tr, . . . , tr) tg ::= v | f(tg, . . . , tg)
t ::= tr | tg | f(t, . . . , t) | {U } t U ::= ε | v := t, U

φ ::= φ ∧ φ | ∀x. φ | . . . | t = t | [α]φ | {U } φ
α ::= α ; . . . ; α | v = tg | if tg α else α | while tg α

For the whole chapter, we assume a fixed signature (Σ,PVar,LVar) in which the set PVar = {v1, . . . , vn} is
finite, containing exactly those variables occurring in the program under investigation.

A structure is a pair S = (D, I) consisting of a non-empty universe D and an interpretation I of function
symbols, where I(f) : Dn → D if f ∈ Σ has arity n. Program variable assignments and variable assignments
are mappings δ : PVar → D and β : LVar → D. The space of all program variable assignments over the
universe D is denoted by PAD = PVar → D, and the corresponding flat domain by PAD

⊥ = PAD ∪ {⊥},
where δ v δ′ iff δ = ⊥ or δ = δ′.

While-programs α are evaluated in structures and operate on program variable assignments. We use a
standard denotational semantics for such programs

[[α]]S : PAD → PAD
⊥

and define, for instance, the meaning of a loop “while b α” through

[[while b α]]S =def

⊔
i

wi, wi : PAD → PAD
⊥

w0(δ) =def ⊥, wi+1(δ) =def

{
(wi)⊥([[α]]S(δ)) for valS,δ(b) = valS(TRUE)
δ otherwise

where we make use of a ‘bottom lifting’: (f)⊥(x) = if (x = ⊥) then ⊥ else f(x).
Likewise, updates are given a denotation as total operations on program variable assignments. The

statements of an update are executed in parallel and statements that literally occur later can override the
effects of earlier statements:

[[U]]S,β : PAD → PAD

[[w1 := t1, . . . , wk := tk]]
S,β(δ) =def

(· · · ((δ[w1 7→ valS,β,δ(t1)])[w2 7→ valS,β,δ(t2)]) · · ·)[wk 7→ valS,β,δ(tk)]

where (δ[w 7→ a])(v) = if (v = w) then a else δ(v) are ordinary function updates.
Evaluation valS,β,δ of terms and formulae is mostly defined as it is common for first-order predicate logic.

Formulas are mapped into a Boolean domain, where tt stands for semantic truth. The cases for programs
and updates are

valS,β,δ([α]φ) =def

{
valS,β,[[α]]S(δ)(φ) for [[α]]S(δ) 6= ⊥
tt otherwise

valS,β,δ({U } φ) =def valS,β,[[U]]S,β(δ)(φ)

We interpret free logical variables x ∈ LVar existentially: a formula φ is valid iff for each structure S = (D, I)
and each program variable assignment δ ∈ PAD there is a variable assignment β : LVar → D such that
valS,β,δ(φ) = tt. Likewise, a sequent Γ `dl ∆ is called valid iff

∧
Γ →

∨
∆ is valid.

The set of unbound variables occurring in a term or a formula t is denoted by vars(t) ⊆ PVar ∪ LVar.
For program variables v ∈ PVar, this means v ∈ vars(t) iff v turns up anywhere in t. For logical vari-
ables x ∈ LVar, we define x ∈ vars(t) iff x occurs in t and is not in the scope of ∀x or ∃x.

We note that the semantic notion of non-interference can easily be expressed in the formalism of dynamic
logic: One possibility [24] is to express the variable independence property introduced above as follows.

16

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Assuming the set of program variables is PVar = {v1, . . . , vn}, then vj only depends on v1, . . . , vi if variation
of vi+1, . . . , vn does not affect the final value of vj :

∀u1, . . . , ui. ∃r. ∀ui+1, . . . , un. { vi := ui }1≤i≤n [α] (vj = r) . (2.1)

The particular use of updates in this formula is a standard trick to quantify over program variables which
is not allowed directly: in order to quantify over all values that a program variable v occurring in a formula
φ can assume, we introduce a fresh logical variable u and quantify over the latter. In the following we use
quantification over program variables as a shorthand, writing ∀̇v. φ for ∀u. { v := u } φ. One achieved result,
which we are able to prove for our translation, is that simple, easily automated proofs of formulae such
as (2.1) are viable in at least those cases where a corresponding derivation in the type system of Hunt and
Sands exists.

2.2 Interpreting the type system in dynamic logic

We now present a calculus for dynamic logic in which the rules involving program statements employ
abstraction instead of precise evaluation. The calculus facilitates automatic proofs of secure information
flow. In particular, when proving loops the burden of finding invariants is reduced to the task of providing a
dependency approximation between program variables. There is a close correspondence to the type system
of [24] (Fig. 2.1). Intuitively, state updates in the DL calculus resemble security typings in the type system:
updates arising during a proof will essentially take the form { v := f(. . . vars . . .) }, where the vars form the
type of v in a corresponding derivation in the type system. To put our observation on a formal basis, we
prove the soundness of the calculus and show that every derivation in the type system has a corresponding
proof in our calculus.

2.2.1 Abstraction-based calculi

We introduce extended type environments as pairs (∇, I) consisting of a typing function∇ : PVar → P(PVar)
and an invariance set I ⊆ PVar used to indicate those variables whose value does not change after execution
of the program. We write ∇v for the syntactic sequence of variables w1, . . . , wk with arbitrary ordering when
∇(v) = {w1, . . . , wk} and ∇C

v for a sequence of all variables not in ∇(v). Ultimately, we want to prove non-
interference properties of the form

{ α } ⇓ (∇, I) ≡def

∧
v∈PVar

{
∀̇v1 · · · vn. ∀u. { v := u }[α] v = u , v ∈ I
∀̇∇v. ∃r. ∀̇∇C

v . [α] v = r , v 6∈ I
(2.2)

where we assume PVar = {v1, . . . , vn}. Validity of a judgment { α } ⇓ (∇, I) ensures that all variables in
the invariance set I remain unchanged after execution of the program α, and that any variable v of the
rest only depends on variables in ∇(v). The invariance set I corresponds to the context p that turns up in
judgments p `HS ∇ { α } ∇′: while the type system ensures that p is a lower bound of the post-type ∇′(v) of
variables v assigned in α, the set I can be used to ensure that variables with low post-type are not assigned
(or, more precisely, not changed). The equivalence is formally stated in Lem. 2.2.2.

In the proof process we want to abstract program statements “while b α” and “if b α1 else α2” into
updates modelling the effects of these statements. Thus we avoid having to split up the proof for the two
branches of an if-statement, or having to find an invariant for a while-loop. Extended type environments
capture the essence of these updates: the arguments for the abstraction functions and the unmodified
variables. They are translated into updates as follows:

upd(∇, I) =def { v := fv(∇v) }v∈PVar\I

ifUpd(b,∇, I) =def { v := fv(b,∇v) }v∈PVar\I

17

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Γ `dl φ,∆ Γ `dl ψ,∆
Γ `dl φ ∧ ψ,∆

and− rightdl

Γ `dl φ[x/f(X1, . . . , Xn)],∆
Γ `dl ∀x. φ,∆

all− rightdl {X1, . . . , Xn} = vars(φ) ∩ LVar\{x},
f fresh

Γ `dl φ[x/X],∃x. φ,∆
Γ `dl ∃x. φ,∆

ex− rightdl

X fresh

∗
[s ≡ t]

Γ `dl s = t,∆
close− eqdl

s, t unifiable (with rigid unifier)

(Γ `dl ∆)[x/f(vars(t))]
(Γ `dl ∆)[x/t] abstractdl

f fresh

Γ `dl {U }φ,∆
Γ `dl {U } []φ,∆

Skipdl
Γ `dl {U } { v := E } [. . .]φ,∆
Γ `dl {U } [v = E ; . . .]φ,∆

Assigndl

`dl { αi } ⇓ (∇, I) (i = 1, 2)
Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 else α2 ; . . .]φ,∆ Ifdl

`dl { if b α else {} } ⇓ (γ∗∇(∇), I)
Γ `dl {U } {upd(∇, I) } [. . .]φ,∆

Γ `dl {U } [while b α ; . . .]φ,∆ Whiledl

v ∈ ∇(v) for all v ∈ PVar

Figure 2.2: A dynamic logic calculus for information flow security. In the last four rules the update {U }
can also be empty and disappear.

The above updates assign to each v not in the invariance set I a fresh function symbol fv whose arguments
are exactly the variables given by the type ∇(v). In a program “if b α1 else α2” the final state may
depend on the branch condition b, so the translation ifUpd ‘injects’ the condition into the update. This is
the analogon of the context lifting present in IfHS. For the while-rule, we transform the loop body into a
conditional, so that we must handle the context lifting only in the if-rule.

Figs. 2.2 and 2.3 contain the rules for a sequent calculus. We have only included those propositional and
first-order rules (the first four rules of Fig. 2.2) that are necessary for proving the results in this section;
more rules are required to make the calculus usable in practice. The calculus uses free logical variables
X ∈ LVar (ex− rightdl) and unification (close− eqdl) for handling existential quantification, where the latter
rule works by applying the unifier of terms s and t to the whole proof tree. We have to demand that only
rigid terms (not containing program variables) are substituted for free variables, because free variables can
also occur in the scope of updates or the box modal operator. Skolemisation (all− rightdl) has to collect the
free variables that occur in a quantified formula to ensure soundness. By definition of the non-interference
properties (2.2) and by the design of the rules of the dynamic logic calculus it is sufficient to define update
rules for terms, quantifier-free formulae, and other updates. Such rules can be used at any point in a proof
to simplify expressions containing updates.

Rule Abstractdl can be used to normalise terms occurring in updates to the form f(. . . vars . . .). In
rules Ifdl and Whiledl the second premise represents the actual abstraction of the program statement for
a suitably chosen typing ∇ and invariance set I. This abstraction is justified through the first premise in
terms of another non-interference proof obligation. The concretisation operator γ∗ (cf. [24]) of rule Whiledl

18

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

{w1 := t1, . . . , wk := tk } wi →dl ti if wj 6= wi for i < j ≤ k

{w1 := t1, . . . , wk := tk } t →dl t if w1, . . . , wk 6∈ vars(t)

{U } f(t1, . . . , tn) →dl f({U } t1, . . . , {U } tn)

{U } (t1 = t2) →dl {U } t1 = {U } t2
{U } ¬φ →dl ¬{U } φ

{U } (φ1 ∗ φ2) →dl {U } φ1 ∗ {U } φ2 for ∗ ∈ {∨,∧}

{U } {w1 := t1, . . . , wk := tk } φ →dl {U, w1 := {U } t1, . . . , wk := {U } tk } φ

Figure 2.3: Application rules for updates in dynamic logic, as far as they are required for Lem. 2.2.6. Further
application and simplification rules are necessary in general.

is generally defined as

γ∗∇1
(∇2)(x) =def {y ∈ PVar |∇1(y) ⊆ ∇2(x)} (x ∈ PVar) . (2.3)

Together with the side condition that for all v we require v ∈ ∇(v), a closure property on dependencies
is ensured: w ∈ γ∗∇(∇)(v) implies γ∗∇(∇)(w) ⊆ γ∗∇(∇)(v): if a variable depends on another, the latter’s
dependencies are included in the former’s. This accounts for the fact that the loop body can be executed
more than once, which, in general, causes transitive dependencies.

Function Arguments Ensure Soundness. A recurring proof obligation in a non-interference proof is
a statement of the form ∀̇∇v. ∃r. ∀̇∇C

v . [α] v = r. To prove this statement without abstraction essentially is
to find a function of the variables ∇v that yields the value of v under α for every given pre-state: one must
find the strongest post-condition w.r.t. v’s value. Logically, one must create this function as a term for the
existentially quantified variable r in which the ∇C

v do not occur. In a unification-based calculus the occurs
check will let all those proofs fail where an actual information flow takes places from ∇C

v to v. The purpose
of function arguments for fv is exactly to retain this crucial property in the abstract version of the calculus.
We must make sure that a function fv – abstracting the effect of α on v – gets at least those variables as
arguments that are parts of the term representing the final value of v after α.

Theorem 2.2.1 (Soundness) The rules of the DL calculus given in Figs. 2.2 and 2.3 are sound: the root
of a closed proof tree is a valid sequent.

2.2.2 Simulating type derivations in dynamic logic

In order to show subsumption of the type system in the logic, we first put the connection between invariance
sets and context on solid ground. It suffices to approximate the invariance of variables v with the requirement
that v must not occur as left-hand side of assignments (Lhs(α) is the set of all left-hand sides of assignments
in α).

Lemma 2.2.2 In the type system of [24], see Fig. 2.1, the following equivalence holds:

p `HS ∇ { α } ∇′ iff ⊥ `HS ∇ { α } ∇′ and f.a. v ∈ Lhs(α) : p v ∇′(v)

Furthermore, we can normalise type derivations thanks to the Canonical Derivations Lemma of [24].
The crucial ingredient is the concretisation operator γ∗ defined in (2.3).

Lemma 2.2.3 (Canonical Derivations)

⊥ `HS ∇ { α } ∇′ iff ⊥ `HS ∆0 { α } γ∗∇(∇′) where ∆0 = λx. {x}

19

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

For brevity, we must refer to Hunt and Sands’ paper for details, but in the setting at hand one can intuitively
take Lemma 2.2.3 as stating that any typing judgment can also be understood as a dependency judgment:
the typing on the left-hand side is equivalent to the statement that the final value of x may depend on the
initial value of y only if y appears in the post-type, or dependence set, γ∗∇(∇′)(x).

The type system of Fig. 2.4 only mentions judgments with a pre-type ∆0 as depicted on the right-
hand side of the equivalence in Lemma 2.2.3. Further, the context p has been replaced by equivalent side
conditions (Lemma 2.2.2), and rule SeqHS is built into the other rules, i.e., the rules always work on the
initial statement of a program. Likewise, rule SubHS has been integrated in Skipcf and Whilecf . The type
system is equivalent to Hunt and Sands’ system (Fig. 2.1):

Lemma 2.2.4
⊥ `HS ∆0 { α } ∇ if and only if `cf ∆0 { α } ∇

The proof proceeds in multiple steps by devising intermediate type systems, each of which adds a modification
towards the system in Fig. 2.4 and which is equivalent to Hunt and Sands’ system.

Obviously, due to the approximating character of Ifdl and Whiledl (and the lack of arithmetic), our DL
calculus is not (relatively) complete in the sense of [23]. For the particular judgements { α } ⇓ (∇, I) the
calculus is, however, not more incomplete than the type system of Fig. 2.1: every typable program can also
be proven secure using the DL calculus.3

Theorem 2.2.5
⊥ `HS ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

The proof of the theorem is constructive: A method for translating type derivations into DL proofs is given.
The existence of this translation mapping shows that proving in the DL calculus is in principle not more
difficult than typing programs using the system of Fig. 2.1.

The first part of the translation is accomplished by Lem. 2.2.4, which covers structural differences between
type derivations and DL proofs. Applications of the rules of Fig. 2.4 can then almost directly be replaced
with the corresponding rules of the DL calculus, which is ensured by the following lemma:

Lemma 2.2.6
`cf ∆0 { α } ∇ implies `dl { α } ⇓ (∇, ∅)

Obviously the combination of Lem. 2.2.4 and Lem. 2.2.6 allows us to immediately prove the main
theorem 2.2.5. We concentrate therefore on a proof sketch for Lem. 2.2.6 where most of the work is done
and in particular the constructive flavour of the proof can be demonstrated.

For showing that derivations in cf can be translated to proofs in the DL calculus, we first need a bit of
further notation. For an update U and a term s, we write U [s] for the (unique) irreducible term s′ that is
obtained by repeatedly applying rules of Fig. 2.3:

{U } s ∗→dl s′

Note that terms U [s] do not contain updates.
Further, for an update U , a type t ⊆ PVar and a logical variable R ∈ LVar, we write rel(t, R, U) if the

following identity holds:
{v ∈ PVar | R ∈ vars(U [v])} = PVar\t (2.4)

Intuitively, this means that all variables w ∈ PVar\t whose interference is prohibited are “poisoned” by U
with a free variable R. Removing the quantifiers in a non-interference statement like

∀u1 u2 ∃r. ∀u3 u4. { vi := ui }1≤i≤4 [p] (v1 = r)

3The converse of Theorem 2.2.5 does not hold. In the basic version of the calculus of Fig. 2.2, untypable programs like
“if (h) {l = 1} else {l = 0}” can be proven secure. Sect. 2.2.3 discusses how the precision of the DL calculus can be further
augmented.

20

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

using rules all− rightdl and ex− rightdl creates this situation (in the example for t = ∇(v1) = {v1, v2}).
We denote the update obtained by sequentially composing two updates U1 and U2 = v1 := t1, . . . , vk := tk

by
U1;U2 := U1, v1 := {U1 } t1, . . . , vk := {U1 } tk

(note the similarity to the last rule of Fig. 2.3).
In order to prove the completeness of our translation relative to the type system of Hunt and Sands, we

need to further technical lemmas that are given here without proofs.

Lemma 2.2.7 Suppose that for an update U ′ and a typing ∇′ : PVar → P(PVar) the following property
holds:

f.a. v ∈ PVar. ∇′(v) = vars(U ′ [v]) ∩ PVar and R 6∈ vars(U ′ [v])

Then
rel(t, R, U) implies rel(γ∇′(t), R, (U ;U ′))

One further technical lemma that required for proving the main theorem is:

Lemma 2.2.8
p `HS ∇ { α } ∇′ and v 6∈ Lhs(α) implies ∇(v) v ∇′(v)

Proof of Lem. 2.2.6:

We show the stronger implication

`cf ∆0 { α } ∇ =⇒ I ∩ Lhs(α) = ∅ =⇒ `dl { α } ⇓ (∇, I)

by induction on the program α. It appears easiest to use noetherian induction and the sub-program-order:
For showing the implication for a program α, we will assume that it holds for all programs α′ 6= α that
literally occur as part of α (in particular for the empty program).

In the whole proof, given a type environment ∇ : PVar → P(PVar) we write ∇↓A for the environment
defined by

∇↓A(v) :=

{
{v} for v ∈ A
∇(v) otherwise

We then first decompose α into a list α = α1 ; . . . ; αm of statements (m = 0 is possible) and assume
`cf ∆0 { α } ∇ and I ∩ Lhs(α) = ∅. { α } ⇓ (∇, I) consists of two kinds of proof obligations:

Non-interference obligations: We pick one of the obligations,

PO = ∀̇∇v. ∃r. ∀̇∇C
v . [α] r = v

(for v 6∈ I), and by induction on a k ∈ N, k ≤ m we show that the following properties hold:

• There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } [αk+1 ; . . . ; αm]R = v

where U is an update

• There is a type derivation that corresponds to the open goal:

`cf ∆0 { αk+1 ; . . . ; αm } ∇′

for some typing ∇′ with rel(∇′(v), R, U).

21

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

The induction is conducted as follows:
Induction base case (k = 0): (Just eliminate the quantifiers of PO)
Induction step (the properties hold for a 0 ≤ k < m): There are different cases depending on the next
statement αk+1:

• αk+1 is an assignment w = E: There is a derivation ending with

∆0 ` E : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∆0[w 7→t](∇
′)

`cf ∆0 { w = E ; αk+2 ; . . . ; αm } ∇′ Assigncf

In the dl proof, we apply rule Assigndl to the open branch:

`dl {U ; w := E } [αk+2 ; . . . ; αm]R = v

`dl {U } [w = E ; αk+2 ; . . . ; αm]R = v
Assigndl,→dl

and by Lem. 2.2.7 we have
rel(γ∗∆0[w 7→t](∇

′)(v), R, (U ; w := E))

• αk+1 is a conditional statement if b β1 else β2: Let A := Lhs(β1) ∪ Lhs(β2). There is a type derivation
ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { βi } ∇′′ (i = 1, 2)

`cf ∆0 { if b β1 else β2 ; αk+2 ; . . . ; αm } ∇′ Ifcf

and the condition f.a. v ∈ A. t v ∇′′(v) holds. In order to continue the dl proof we apply Ifdl for the
extended type environment (∇′′

↓AC , A
C):

`dl { βi } ⇓ (∇′′
↓AC , A

C) (i = 1, 2)
`dl {U ; ifUpd(b,∇′′

↓AC , A
C) } [αk+2 ; . . . ; αm]R = v

`dl {U } [if b β1 else β2 ; αk+2 ; . . . ; αm]R = v
Ifdl,→dl

For proving the first two premisses, the type judgements

`cf ∆0 { βi } ∇′′ (i = 1, 2) (2.5)

and the induction hypothesis entail that there are dl proofs of

`dl { β1 } ⇓ (∇′′, AC), `dl { β2 } ⇓ (∇′′, AC) (2.6)

Because of the definition of non-interference proof obligations, these proofs are also proofs of the first
two premisses

`dl { β1 } ⇓ (∇′′
↓AC , A

C), `dl { β2 } ⇓ (∇′′
↓AC , A

C)

Finally, from Lem. 2.2.8 and (2.5) we obtain ∇′′
↓AC v ∇′′, i.e., γ∗∇′′(∇′) v γ∗∇′′

↓AC
(∇′), and thus the

typing
`cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′

↓AC
(∇′)

which is related to the open goal of the dl proof: By Lem. 2.2.7 and the condition

f.a. v ∈ A. vars(b) = t v ∇′′(v)

we have
rel(γ∗∇′′

↓AC
(∇′)(v), R, (U ; ifUpd(b,∇′′

↓AC , A
C)))

22

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

• αk+1 is a loop while b β: Let A := Lhs(β). There is a type derivation ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { β } γ∗∇′′(∇′′)

`cf ∆0 { while b β ; αk+2 ; . . . ; αm } ∇′ Whilecf

and the conditions ∆0 v ∇′′ and f.a. v ∈ A. t v γ∗∇′′(∇′′)(v) hold. In order to continue the dl proof,
we apply rule Whiledl using the extended type environment (∇′′, AC):

`dl { if b β else {} } ⇓ (γ∗∇′′(∇′′), AC)
`dl {U ; upd(∇′′, AC) } [αk+2 ; . . . ; αm]R = v

`dl {U } [while b β ; αk+2 ; . . . ; αm]R = v
Whiledl,→dl

The first premiss again leads to two different kinds of proof obligations, non-interference obligations
and invariance obligations, one for each existing program variable.

– Non-interference obligations: We pick one of the obligations (for a w ∈ A), eliminate the quanti-
fiers and apply Ifdl using the type environment (γ∗∇′′(∇′′), AC):

`dl { β } ⇓ (γ∗∇′′(∇′′), AC) `dl { } ⇓ (γ∗∇′′(∇′′), AC)
`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []R′ = w

`dl {U ′ } [if b β else {}]R′ = w
Ifdl,→dl

....
`dl ∀̇∇w. ∃r. ∀̇∇C

w . [if b β else {}] r = w

Because of (the second judgement follows because of ∆0 v γ∗∇′′(∇′′))

`cf ∆0 { β } γ∗∇′′(∇′′), `cf ∆0 { } γ∗∇′′(∇′′)

and the induction hypothesis there are dl proofs of the first two premises.
For the last premise, because of f.a. v ∈ A. vars(b) = t v γ∗∇′′(∇′′)(v) and by Lem. 2.2.7 we have
(for ∇′′′ := γ∗∇′′(∇′′)↓AC)

rel(γ∗∇′′′(γ∗∇′′(∇′′))(w), R′, (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)))

Because of w ∈ γ∗∇′′′(γ∗∇′′(∇′′))(w), that is

R′ 6∈ vars((U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w])

by (2.4), the premise can be proven by

∗
[R′ ≡ (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]]

`dl R′ = (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]
close− eqdl

`dl {U ′ } { ifUpd(b, γ∗∇′′(∇′′), AC) } []R′ = w
Skipdl,

∗→dl

– Invariance obligations: Again we pick one of the obligations (for w 6∈ A), eliminate the quantifiers
and apply Ifdl using the type environment (γ∗∇′′(∇′′), AC):

`dl { β } ⇓ (γ∗∇′′(∇′′), AC) `dl { } ⇓ (γ∗∇′′(∇′′), AC)
`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []uc = w

`dl {U ′ } [if b β else {}]uc = w
Ifdl,→dl

....
`dl ∀̇v1 · · · vn. ∀u. {w := u }[if b β else {}]u = w

23

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

The first two premises can be handled as in the first case. For the last premise, because of w 6∈ A
we obtain

(U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w] = uc

and the branch can be proven by

∗
`dl uc = uc

close− eqdl

`dl uc = (U ′; ifUpd(b, γ∗∇′′(∇′′), AC)) [w]

`dl {U ′; ifUpd(b, γ∗∇′′(∇′′), AC) } []uc = w
Skipdl,

∗→dl

As in the if-case, we finally have ∆0 v ∇′′, that is ∇′′
↓AC v ∇′′, that is γ∗∇′′(∇′) v γ∗∇′′

↓AC
(∇′), and we

obtain
`cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′

↓AC
(∇′)

This type judgement is related with the open branch of the dl proof because of Lem. 2.2.7:

rel(γ∗∇′′
↓AC

(∇′)(v), R, (U ; upd(∇′′, AC)))

Harvesting: Having finished the induction on k, we know that

• There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } []R = v

where U is an update

• There is a type derivation that corresponds to the open goal:

`cf ∆0 { } ∇′

for some typing ∇′ with rel(∇′(v), R, U).

The second item entails ∆0 v ∇′ (because the only applicable rule is Skipcf), that means v ∈ ∇′(v), and we
can finish the dl proof with

∗
[R ≡ U [v]]

`dl R = U [v]
close− eqdl

`dl {U } []R = v
Skipdl,

∗→dl

Invariance obligations: As for non-interference obligations, we construct a dl proof by induction. There
are in fact very simple proofs of the invariance obligations, because the type environments ∇ that are
chosen when applying Ifdl and Whiledl are irrelevant. Nevertheless, it is meaningful to select certain type
environments, because this demonstrates that the same choices for ∇ can be made as for the non-interference
obligations, and actually the same proof can be used for all proof obligations.

We pick one of the obligations,

PO = ∀̇v1 · · · vn. ∀u. { v := u }[α]u = v

(for v ∈ I), and by induction on a k ∈ N, k ≤ m we show that the following properties hold:

• There is a dl proof tree with PO as root that has exactly one open branch:

`dl {U } [αk+1 ; . . . ; αm]uc = v

where U is an update with U [v] = uc

24

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

• There is a type derivation that corresponds to the open goal:

`cf ∆0 { αk+1 ; . . . ; αm } ∇′

The induction is conducted as follows:
Induction base case (k = 0): (Just eliminate the quantifiers of PO)
Induction step (the properties hold for a 0 ≤ k < m): There are different cases depending on the next
statement αk+1:

• αk+1 is an assignment w = E: There is a derivation ending with

∆0 ` E : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∆0[w 7→t](∇
′)

`cf ∆0 { w = E ; αk+2 ; . . . ; αm } ∇′ Assigncf

In the dl proof, we apply rule Assigndl to the open branch:

`dl {U ; w := E } [αk+2 ; . . . ; αm]uc = v

`dl {U } [w = E ; αk+2 ; . . . ; αm]uc = v
Assigndl,→dl

Because of v 6∈ Lhs(α) we have v 6= w and thus

(U ;w := E) [v] = uc

• αk+1 is a conditional statement if b β1 else β2: Let A := Lhs(β1) ∪ Lhs(β2). There is a type derivation
ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { βi } ∇′′ (i = 1, 2)

`cf ∆0 { if b β1 else β2 ; αk+2 ; . . . ; αm } ∇′ Ifcf

In order to continue the dl proof we apply Ifdl:

`dl { βi } ⇓ (∇′′
↓AC , A

C) (i = 1, 2)
`dl {U ; ifUpd(b,∇′′

↓AC , A
C) } [αk+2 ; . . . ; αm]uc = v

`dl {U } [if b β1 else β2 ; αk+2 ; . . . ; αm]uc = v
Ifdl,→dl

The first two premises can be proven as for non-interference obligations. Further, because of v ∈ AC ,
we obtain

(U ; ifUpd(b,∇′′
↓AC , A

C)) [v] = uc

• αk+1 is a loop while b β: Let A := Lhs(β). There is a type derivation ending with

∆0 ` b : t `cf ∆0 { αk+2 ; . . . ; αm } γ∗∇′′(∇′)
`cf ∆0 { β } γ∗∇′′(∇′′)

`cf ∆0 { while b β ; αk+2 ; . . . ; αm } ∇′ Whilecf

In order to continue the dl proof, we apply rule Whiledl using the extended type environment (∇′′, AC):

`dl { if b β else {} } ⇓ (γ∗∇′′(∇′′), AC)
`dl {U ; upd(∇′′, AC) } [αk+2 ; . . . ; αm]uc = v

`dl {U } [while b β ; αk+2 ; . . . ; αm]uc = v
Whiledl,→dl

The first premise can again be handled as for non-interference obligations. Further, because of v ∈ AC ,
we obtain

(U ; upd(∇′′, AC)) [v] = uc

25

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Harvesting: Having finished the induction on k, we know that there is a dl proof tree with PO as root
that has exactly one open branch:

`dl {U } []uc = v

where U is an update with U [v] = uc. Hence, the dl proof can directly be finished with

∗
`dl uc = uc

close− eqdl

`dl uc = U [v]
`dl {U } []uc = v

Skipdl,
∗→dl

2.2.3 Higher precision and delimited information release

The previous section shows that the suggested framework is at least so good and efficient as the type based
approaches. In this section we describe how to improve the precision of the abstraction-based calculi in
order to be able to treat a greater set of programs efficiently and to support more complex information flow
policies.

Many realistic languages feature exceptions as a means to indicate failure. The occurrence of an exception
can also lead to information leakage. Therefore, an information flow analysis for such a language must, at
each point where an exception might possibly occur, either ensure that this will indeed not happen at
runtime or verify that the induced information flow is benign. The Jif system [26] which implements a
security type system for a large subset of the Java language employs a simple data flow analysis to retain
a practically acceptable precision w.r.t. exceptions. The data flow analysis can verify the absence of null
pointer exceptions and class cast exceptions in certain cases. However, to enhance the precision of this
analysis to an acceptable level one is forced to apply a slightly cumbersome programming style.

The need for treatment of exceptions is an example showing that we actually gain something from the
fact that our analysis is embedded in a more general program logic: there is no need to stack one analysis
on top of the other to scale the approach up to larger languages, but we can coherently deal with added
features, in this case exceptions, within one calculus. In the precise version of the calculus for Java Card as
implemented in [1] and also in the MOBIUS base logic, exceptions are handled like conditional statements
by branching on the condition under which an exception would occur. An uncaught exception is treated as
non-termination. As an example, the division v1/v2 would have the condition that v2 is zero (“.. ...” denotes
a context possibly containing exception handlers):

v2 6= 0 `dl {w := v1/v2 } [.. ...]φ v2 = 0 `dl [.. throw E ...]φ
`dl [.. w = v1/v2 ...]φ .

If we knew v2 6= 0 at this point of the proof, implying that the division does in fact not raise an exception,
the right branch could be closed immediately. Because our DL calculus stores the values of variables (instead
of only the type) as long as no abstraction occurs, this information is often available: 1. rule Assigndl does
not involve abstraction, which means that sequential programs can be executed without loss of information,
and 2. invariance sets I in non-interference judgments allow to retain information about unchanged variables
also across conditional statements and loops.

This can be seen for a program like “v = 2 ; while b α ; w = w/v” in which α does not assign to v. By
including v in the invariance set for “while b α” we can deduce v = 2 also after the loop, and thus be sure
that the division will succeed. This is a typical example for a program containing an initialisation part that
establishes invariants, and a use part that relies on the invariants. The pattern recurs in many flavours:
examples are the initialisation and use of libraries and the well-definedness of references after object creation.
We are optimistic to gather empirical evidence of our claim that the increased precision is useful in practice
through future experiments.

26

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

`cf ∆0 { } ∇ Skipcf

v ∈ ∇(v) for all v ∈ PVar

∆0 ` E : t `cf ∆0 { . . . } γ∗∆0[v 7→t](∇)

`cf ∆0 { v = E ; . . . } ∇ Assigncf

∆0 ` b : t `cf ∆0 { . . . } γ∗∇(∇′)
`cf ∆0 { αi } ∇ (i = 1, 2)

`cf ∆0 { if b α1 else α2 ; . . . } ∇′ Ifcf
f.a. v ∈ Lhs(α1). t v ∇(v)
f.a. v ∈ Lhs(α2). t v ∇(v)

∆0 ` b : t `cf ∆0 { . . . } γ∗∇(∇′)
`cf ∆0 { α } γ∗∇(∇)

`cf ∆0 { while b α ; . . . } ∇′ Whilecf v ∈ ∇(v) for all v ∈ PVar
f.a. v ∈ Lhs(α). t v γ∗∇(∇)(v)

Figure 2.4: Intermediate flow-sensitive type system for information flow analysis

∗
[f ′l (TRUE) ≡ R]

odd(fh(R)) `dl f ′l (TRUE) = R
close− eqdl

odd(fh(R)) `dl f ′l (odd(fh(R))) = R
apply − eqdl

odd(fh(R)) `dl { l := fl(R), h := fh(R) } { l := f ′l (odd(h)) } l = R
∗→dl

D

· · ·

∗
`dl { l = 0 } ⇓ (∇, {h})

∗
`dl { l = 1 } ⇓ (∇, {h}) D

odd(fh(R)) `dl { l := fl(R), h := fh(R) } [α] l = R
Ifdl

`dl { l := fl(R), h := fh(R) } (odd(h) → [α] l = R)
∗→dl , imp− rightdl

`dl ∃r. ∀̇l. ∀̇h. (odd(h) → [α] l = r)
ex− rightdl, all− rightdl

`dl { α } ⇓ (∇, {h}, odd(h))
(Def), and− rightdl

Figure 2.5: Non-interference proof with delimited information release: The precondition odd(h) entails
that only the parity of h is leaked into l. For sake of brevity, we use odd both as function and predicate,
and only in one step (apply − eqdl) make use of the fact that odd(fh(R)) actually represents the equation
odd(fh(R)) = TRUE .

27

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Increasing precision.

While our DL calculus is able to maintain state information across statements, the rules Ifdl and Whiledl

lose this information in the first premisses, containing non-interference proofs for the statement bodies. This
makes it impossible to deduce that no exceptions can occur in the program “v = 2 ; while b {w = w/v}”.
As another shortcoming, the branch predicate is not taken into account, so that absence of exceptions cannot
be shown for a program like “if (v 6= 0) {w = 1/v}”.

One way to remedy these issues might be to relax the first premisses in Ifdl and Whiledl. The idea is to
generalise non-interference judgments and introduce preconditions φ under which the program must satisfy
non-interference.

{ α } ⇓ (∇, I, φ) ≡def

∧
v∈PVar

{
∀̇v1 · · · vn. (φ→ [α] v = u) , v ∈ I
∀̇∇v. ∃r. ∀̇∇C

v . (φ→ [α] v = r) , v 6∈ I

In an extended rule for if-statements, for instance, such a precondition can be used to ‘carry through’ side
formulae and state information contained in the update U , as well as to integrate the branch predicates:
we may assume arbitrary preconditions φ1, φ2 in the branches if we can show that they hold before the
if-statement:

`dl { α1 } ⇓ (∇, I, φ1) `dl { α2 } ⇓ (∇, I, φ2)
Γ, {U } b = TRUE `dl {U }φ1,∆ Γ, {U } b 6= TRUE `dl {U }φ2,∆

Γ `dl {U } { ifUpd(b,∇, I) } [. . .]φ,∆

Γ `dl {U } [if b α1 else α2 ; . . .]φ,∆

Probably more interestingly is that preconditions allow us to handle delimited information release in the
style of [24], i.e. situations in which non-interference does not strictly hold and some well-defined information
about secret values may be released.

Consider the following program piece α that tests the parity of a given variable and writes the result in a
low level security variable. Further, assume that the declassified amount of information, i.e. the knowledge
that a user is allowed to learn by observing variable l is exact the parity of h:

if (odd(h)) {l = 0} else {l = 1}

The typing ∇ of the variables h and l assigns the variable l the value ∇(l) = ∅ and variable h the
type ∇(h) = {h}, indicating that only declassified information flows into the low level security variable l.
Parts of the non-interference proof for the above program with delimited information release is shown in
Fig. 2.5. Performing a similar proof with the negated preconditions ensures that only the specified amount
of declassified information can be learnt by an observer.

This approach allows us to treat all delimited information release properties, where the declassified
information can be modelled as a partition on the values of high level variables. The observer is than
allowed to deduce the partition in which the value of a high security level variable lies by observing the
value of low variables, but not more. The precondition formulae φi, i ∈ {1, . . . , n} must be then chosen as
the characteristic functions of the partitions (see Fig. 2.6).

2.3 Ongoing and future work

2.3.1 Lifting to the MOBIUS program logic

As mentioned in the background section of this chapter, we used a dynamic logic as program logic as at the
time most of the work has been done, the MOBIUS base logic has not yet been available. The transfer of
the achieved results to the MOBIUS program logic is the currently ongoing work and will be done as a next
step. In order to complete this transfer the following two steps have to be done

28

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Program: l = h mod 4;

I

951
...

2

...

7
3 11

6

10
...

0
4

8
... III

IV

II

Partitions (as preconditions):

φI ≡ h mod 4 .= 0
. . .
φIV ≡ h mod 4 .= 3

(a) Declassification of Partitions∧
i∈{I,...,IV }

(
{ l = h mod 4; } ⇓ (∇(l) := ∅,∇(h) := {h, l}, {h}, φi)

)
(b) Secure Information Flow Proof-Obligation with Delimited Information Release

Figure 2.6: Delimited information release: Partitioning of domains

1. the abstraction-based calculus and the non-interference formalisation have to be adopted to capture
object-oriented features as heaps or method invocations.

2. the used formalism has to be translated into the Coq formalisation of the MOBIUS base logic.

We expect both issues to be completed within a relative short period of time. For the extension of the
approach to a complete object-oriented programming language, we will make use of the ideas presented
in [3, 9, 7] suggesting a type system that can treat heap structures and other object-oriented features. For
the transfer of these ideas into a logic framework, the authors of this chapter can build up on their experience
gained actively in the KeY-Project, which has successfully developed a deductive verification environment
that can treat full Java Card, which is comparable to the Java fragment modelled in MOBIUS.

The translation of the approach into the MOBIUS formalism should be easily possible as we plan to
use the Coq formalisation of the MOBIUS base logic. The MOBIUS base logic itself is mainly a Hoare style
logics lacking the possibility to use nested quantifiers surrounding the complete Hoare triple. Using the
Coq formalisation allows to make additional use of the Coq framework, in particular it allows the necessary
nesting of quantifiers. With this on hand the translation is expected to be relative straight forward modulo
some possibly occurring technical difficulties.

2.3.2 Improving support for declassification properties and further future work

The presented ideas for increasing the precision of the abstraction based calculus and the treatment of
delimited information releases will be extended. A good classification of several declassification properties
is given in [33], we plan to go through the classification systematically and to provide support for most of
the listed properties. For those that will not be treated the reason will be given in detail.

Further future work that remains is a strict result for the growth of certificates, when using the suggested
translation instead of the type based derivation. As the completeness proof of the translation is constructive,
it gives already a good intuition that the translated proof is not significantly larger than the original proof.
But still this has to be shown formal.

In order to evaluate the practical applicability of the suggested approach, we plan to perform some
substantial case studies. These shall give conclusion about the performance of the translation and if it
captures most of the security policies that are of practical importance.

29

Chapter 3

Non-interference protection in a program
logic

3.1 Introduction

The Java bytecode language is the target low-level language for the Java programming language. The
application of formal specification methods at the level of the bytecode has several advantages. (1) This
allows to provide descriptions and verify properties of programs written in the bytecode itself. (2) It allows
to do a unified formalised development for languages other than Java, but compiling to the Java bytecode. In
particular, it allows to conduct a unified formal development in projects with several source code languages.
(3) Proof for bytecode programs may make possible several optimisations in a JIT compilers. (4) As Java
bytecode is the language which is actually executed, it is possible to couple with programs their proof
carrying-code (PCC) certificates. (5) Since Java programs are distributed in their bytecode version, it is
possible for a software distributor to develop its own certificate to ensure a particular property its clients
are interested in. As we can see, the formal methods at the bytecode level need not to be conjoined with
the development in the Java source code. However, we will focus here mainly on this approach to make the
presentation clearer.

Java security model is based on several dynamic and static techniques such as the absence of the arith-
metic on references, access control for stacks, arrays and typed objects etc. which ensure that the sensitive
internal information is separated from the external access. Still, it is difficult in Java to ensure more so-
phisticated security policies which ensure that security sensitive data flows only through secure paths in the
code (e.g. every secret data does not leak to the network, a master password is not written to a file).

In this paper we consider the non-interference property of the data processed by bytecode programs. A
program satisfies this property whenever the properties of the information from higher levels of confidentiality
cannot be deduced from the data on lower ones. As a starting point we take an information-flow type system
for Java bytecode that guarantees non-interference [8, 9]. The main contribution of this paper is a translation
of the type system into a program logic developed within the MOBIUS project [15].

It is worth pointing out that the logical model for the non-interference property has several desirable
features. First of all, it is possible to use a toolset based on logical methods rather than typed ones. The
translation may be especially beneficial when the logical toolset is within the trusted code base. Second, the
resulting model of non-interference is more flexible when the non-interference property must be enforced in
a more sophisticated situation when the declassification is needed. It also allows in a flexible way to use
different collections of the same type to contain values of different levels of confidentiality as well as associate
with them in a safe way iterators and enumerators. Moreover, additional algorithms allow to easily discover
in the source code the cases when the initial model is replaced by a more complicated solution.

The paper is structured as follows. In Section 3.2 we fix the notation and present the basic notions
which are exploited in the paper. This is followed in Section 3.3 by an exposition of the translation from
a type based system to the logic based one. This translation is supplemented by a proof that the resulting

30

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

specifications guarantee the non-interference property in Section 3.4. The formal development is concluded
by a proof that the non-interference property holds even when the bytecode program is extended with other
specifications. This is presented in Section 3.4.1. At last we present the related work and conclusions in
Section 3.5.

3.2 Preliminaries

Basic notation We use the expression dom(f) to denote the domain of the (partial) function f . Similarly,
rng(f) denotes the image of the function f . To denote the fact that f is a partial function from the set A
to B we write f : A ⇀ B. The powerset of a set A is written P (A). We write ~k to denote a vector of values.
The notation |~k| denotes the length of the vector and ~k(0), . . . ,~k(|~k| − 1) are the subsequent elements of the
vector.

Java bytecode programs and specifications A Java bytecode program P is a set of classes with one
distinctive method mainP . A class C is a set of fields and methods. Each field f has a name fn and a
type ft. Similarly, a method m has a name Nm, a signature Tm and the body Bm. We assume that the
method names are unique within a single program (possibly due to the standard Java prefixing with the
object or class name). A method body is a sequence of bytecode instructions. The instructions are indexed
by program points. For each method we distinguish the set of all program points in the method PPm (we
omit the subscript m when possible).

An annotated program P̂ (following [15, Chapter 3]) has additionally for each class C

• a list GhostC of model and ghost fields,

• a list InvC of (static and object) class invariants,

• a list ConstrC of (static and object) history constraints,

• a method specification table MC .

The method specification table MC associates with each method m:

• a method specification Sm = (Rm, Tm,Φm) where Rm is the precondition of the method m, Tm is the
postcondition of the method, and Φm is the method invariant;

• a local specification table Gm which assigns to each label in the method body Bm an additional
assumption that may be used in the proof of the program verification clause associated with the label;

• a local annotation table Qm which assigns to each label in the method body Bm an additional assertion,

• a local instruction table Insm which assigns to each label l in the method body Bm a sequence of
bytecode instructions that operate on ghost variables which is supposed to be executed before the
instruction at the label l.

Java Virtual Machine semantics We will use the Java Virtual Machine semantics proposed by Barthe
et al. [9, Figure 10]. Here, we present only its brief overview. We use V to denote the set of possible values
(i.e. Z× L × {null}), L to denote the set of possible locations in heaps. Heap is the set of all heaps (finite
partial functions L⇀ O where O is understood as the set of partial functions C × F ⇀ V with C being the
set of all classes and F being the set of all possible fields in objects). The set X is the set of all possible
variable names. The set Labels denotes the set of all the program instruction labels.

The semantics is described by a one step relation
(n)
;m,τ , where n counts the number of method in-

vocations, m is the current method, and τ is a tag which determines if the step is a normal step or an

31

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

exceptional step and in the latter case the exception thrown. When the instruction is not a return from a
method (normal or exceptional), the one step relation relates pairs:

〈i, ρ, os, h〉 (n)
;m,τ 〈i′, ρ′, os′, h′〉

where i, i′ ∈ Labels are instruction lables in Bm, ρ, ρ′ : X ⇀ V + L define the values of the local variables,
os, os′ are local operand stacks of the method m, and h, h′ ∈ Heap are heaps. We sometimes use the shorhand
State to denote Labels× (X ⇀ V +L)×V∗×Heap, the set of values related by the normal step relation. In
case a return action should be performed, the relation is slightly different:

〈i, ρ, os, h〉 (n)
;m,τ l, h

′

where i, ρ, os, and h are as before and l ∈ V + L defines the return value for the method, and h′ ∈ Heap
defines the resulting heap.

Additionally, the semantics uses a big-step ⇓(n)
m relation in case of the method invocation instructions

(m and n have the same meaning as in the case of the small step semantics). This relation always relates
pairs of the form:

〈i, ρ, os, h〉 ⇓(n)
m l, h′

To make the notation clearer, we usually omit the superscript n.
This semantics uses auxiliary operations that statically calculate different properties:

1. A function classAnalysis which given a program point returns the set of exception classes of exceptions
that may be thrown at the program point.

2. A function excAnalysis which given a method name Nm returns the set of exceptions that are possibly
thrown by m.

3. A function nbLocals which given a method name Nm returns the number of its local variables.

4. A function nbArguments which given a method name Nm returns the number of its arguments.

5. A function RuntimeExceptionHandling : Heap × L × C × PP × (X ⇀ V) → State + (L × Heap) which
chooses either to exit (in case the exception is not handled locally) exceptionally from a method or to
jump to the local exception handling code (in case the exception can be handled locally).

6. Partial functions Handlerm : PP × C ⇀ PP that for each method m take a program point i and an
exception class τ and select the program point j at which the exception handler for τ when triggered
by the instruction at i starts.

Security policy The security policy framework we employ in this paper is based on assumption that the
attacker can observe the input/output of methods only (e.g. methods that perform network operations).
This, however, is extended to the values of fields and heaps as otherwise it is difficult to guarantee statically
the non-interference property. We also assume that the attacker is unable to observe the termination of the
programs.

Formally, a security policy is described by a finite partial order (S,≤). This order allows to express the
capabilities of the attacker and the program to be analysed:

• A security level kobs determines the observational capabilities of the attacker (she can observe field,
local variables and return values whose level is less or equal to kobs).

• A policy function ft assigns to each field its security level. This allows us to express the non-interference
property we are interested in.

32

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

• A policy function Γ that associates to each method identifier Nm and security level k ∈ S a security
signature Γm[k]. This signature gives the security policy of the method m called on object of level
k. The set of security signatures for a method m is defined as PoliciesΓ(m) = {Γm[k] | k ∈ S}. The
security signature has the following shape:

~kp
kh→ ~kr

– ~kp describes the security levels appropriate for the local variables of the method (in particular it
assigns also the levels to the input parameters), kp[0] is the upper bound on the security level of
an object that calls the method,

– kh describes the security level of the heap operations performed by the method

– ~kr describes the security levels for the method results (both normal and exceptional ones); it is
a list of the form {n : kn, e1 : ke1 , . . . , en : ken}, where kn is the security level of the return value
and ei is an exception class that might be propagated by the method in a security environment
of level ki. We use the notation kr[n] and kr[ei] for kn and kei .

For simplicity, the orders we actually use here are modelled as suborders of natural numbers. However, it is
straightforward to extend the definitions to arbitrary finite orders. This can be achieved either by a more
complicated definition of the inequality ≤ we use in the formulae below or by using objects for which the
inequality can be encapsulated in one of their methods. This last solution allows also to consider certain
infinite orders.

Non-interference In order to define the non-interference property we are interested in, we have to provide
a few notions of indistinguishability.

Definition 1 (value indistinguishability)
Let β be a partial function L⇀ L we say that v1, v2 ∈ V are indistinguishable (written v1 ∼β v2) when

• v1 = v2 = null , or

• v1, v2 ∈ Z and v1 = v2, or

• v1, v2 ∈ L and β(v1) = v2.

Definition 2 (local variables indistinguishability)
Let ρ, ρ′ : X ⇀ V be two assignments of values for local variables. Let β be a partial function L ⇀ L. We
write ρ ∼ ~kp,β

ρ′ if dom(ρ) = dom(ρ′) and ρ(x) ∼β ρ
′(x) for all x ∈ dom(ρ) such that ~kp(x) ≤ kobs.

Definition 3 (object indistinguishability)
Let β be a partial function L⇀ L and o1, o2 ∈ O. We write o1 ∼β o2 if o1 and o2 are of the same class and
for every field f ∈ dom(()o1) such that ft(f) ≤ kobs the value indistinguishability o1.f ∼β o2.f holds.

Definition 4 (heap indistinguishability)
Let β be a partial function L⇀ L. We write h1 ∼β if and only if the following conditions hold:

1. β is a bijection between dom(β) and rng(β),

2. dom(β) ⊆ dom(h1) and rng(β) ⊆ dom(h2),

3. for each l ∈ dom(β) the object indistinguishability h1(l) ∼β h2(β(l)) holds.

Definition 5 (output indistinguishability)
Let β be a partial function L⇀ L and ~kr be an output security level. We write (v1, h1) ∼ ~kr,β

(v2, h2) when

33

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

1. h1 ∼β h2 and if ~kr[n] ≤ kobs then v1 ∼β v2, or

2. h1 ∼β h2, and v1, v2 ∈ L and class(h1(l1)) has the level k ∈ ~kr, k ≤ kobs, and v1 ∼β v2,

3. h1 ∼β h2, and v1, v2 ∈ L and class(h1(l1)) has the level k ∈ ~kr, k 6≤ kobs,

4. h1 ∼β h2, and v1, v2 ∈ L and class(h2(l2)) has the level k ∈ ~kr, k 6≤ kobs,

5. h1 ∼β h2, and v1, v2 ∈ L, and class(h1(l1)) has the level k1 ∈ ~kr, and class(h2(l2)) has the level k2 ∈ ~kr

k1 6≤ kobs, and k2 6≤ kobs.

Definition 6 (non-interference of methods)
A method m is non-intereferent with respect to a policy ~kp → ~kr if for every partial function β : L⇀ L and
every ρ1, ρ2 : X ⇀ V, h1, h2, h

′
1, h

′
2 ∈ Heap, r1, r2 ∈ V + L such that ρ1, h1 ⇓m r1, h

′
1 and ρ2, h2 ⇓m r2, h

′
2

with h1 ∼β h2 and ρ1 ∼ ~kp,β
ρ2 there exists a partial function β′ : L⇀ L such that β ⊆ β′ and (r1, h1) ∼ ~kr,β′

(r2, h2).

Definition 7 (side-effect preorder)
Let h, h′ ∈ Heap. We write h �k h′ and say that the heaps are side effect preordered with respect to a
security level k ∈ S when dom(h) ⊆ dom(h′) and for each location l ∈ dom(h) and each field f ∈ F such
that k 6≤ ft(f) we have h(l).f = h′(l).f .

Definition 8 (side-effect safe)
A method m in a program P is side-effect-safe with respect to a security level kh if for all local variables
assignments ρ : X ⇀ V, all heaps h, h′ ∈ Heap and a value v ∈ V, the reduction ρ, h ⇓m v, h′ implies
h �kh

h′.

Definition 9 (safe methods)

A method m in a program P is safe with respect to a security signature ~kp
kh→ ~kr when m is side-effect-safe

with respect to kh and non-intereferent with respect to the policy ~kp → ~kr.

Definition 10 (safe programs)
A program P is safe with respect to a table of method signatures Γ if for each method m in P , m is safe

with respect to all the security signatures in PoliciesΓ(m).

Non-structured programs The bytecode programs do not have instructions typical for structured pro-
gramming. Instead they provide control flow by means of jumps and conditional jumps. In order to reason
on the information flow of such programs an additional structural information is needed. As we translate
typings in an information flow system [9] we need the same descriptions of the bytecode program structure.

We use a binary successor relation 7→τ⊆ PP → PP defined on the program points. This relation is
parametrised by a tag τ since bytecode instructions may have several successors as it may execute normally
(then the tag is ∅) or an exception may be triggered by the instruction (then the tag is the class of the
exception). Intuitively, j is a successor of i (i 7→ j) if performing one step execution from a state whose
program point is i may lead to a state whose program point is j. We write i 7→ if i corresponds to a return
instruction.

We assume that a bytecode program P comes equipped with a control dependence regions structure
cdr which consists of a pair of partial functions (region, jun). The role of the functions is to arrange the
program into compact parts for which the analysis of program invariants can be conducted separately. The
region function describes the internal parts while jun the connections between them. The types of the
functions are the following:

regionm : PP × ({∅}+ C) → P (PP) junm : PP × ({∅}+ C) ⇀ PP

The functions can be axiomatised by the following SOAP (Safe Over APproximation) properties:

34

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

SOAP1 for all program points i, j, k and tag τ such that i 7→∅ j, i 7→τ k and j 6= k (i is a branching point),
k ∈ region(i, τ) or k = jun(i, τ);

SOAP2 for all program points i, j, k and tag τ , if j ∈ region(i, τ) and j 7→∅ k then either k ∈ region(i, τ)
or k = jun(i, τ);

SOAP3 for all program points i, j and tag τ if j ∈ region(i, τ) (or i = j) and j is a return point then
jun(i, τ) is undefined;

SOAP4 for each program point i and tags τ1, τ2, if jun(i, τ1) and jun(i, τ2) are defined and jun(i, τ1) 6=
jun(i, τ2) then jun(i, τ1) ∈ region(i, τ2) or jun(i, τ2) ∈ region(i, τ1);

SOAP5 for all program points i, j and tag τ if j ∈ region(i, τ) (or i = j) and j is a return point then for
each tag τ ′ such that jun(i, τ ′) is defined, jun(i, τ ′) ∈ region(i, τ).

Typable programs To check that a program is safe one may use a type system presented in [9]. In this
type system every method is checked against its signatures separately. The type system is parametrised by:

• a table Γ of method signatures,

• a global policy ft that provides security levels of fields,

• a cdr structure (regionm, junm) for every method m

Moreover, we suppose that functions classAnalysis, excAnalysis, nbLocals, nbArguments, Handler are given
and that they are correct (computed in the trusted computing base).

Definition 11 (typable programs)
Program P is typable with the policy (kobs, ft, Γ) and cdr satisfying SOAP if every method m from P is
typable with respect to ft, Γ, regionm and all signatures in PoliciesΓ(m).

Definition 12 (typable methods)
Method m is typable with respect to ft, Γ, regionm and a signature sgn if there exists a security environment
se : PP → S and a function st : PP → S? such that st(1) = ε and for all i, j ∈ PP , e ∈ {∅} ∪ C:

1. if i 7→e j then there exists s ∈ S? such that Γ, ft, regionm, se, sgn, i `e st(i) =⇒ s and s v st(j),

2. if i 7→e then Γ, ft, regionm, se, sgn, i `e st(i) =⇒

where ⊆ denote the point-wise partial order on type stack with respect to the partial order taken on security
levels. Two exemplary rules for .. `e .. =⇒ .. relation are given in Figure 3.2. The set of all rules is given
in [9].

Note that st and se are chosen for particular signature sgn. This signature, in turn, comes from PoliciesΓ(m)
and for each security level s ∈ S we have a single signature. In this light we may consider se and st in
collections indexed by elements of S only.

The main theorem of [9] states that typable programs are safe.

Theorem 3.2.1 from typable to safe programs Let P be a Java program, (kobs, ft, Γ) a desired security policy,
and cdr a control dependence regions structure satisfying SOAP. If P is typable with respect to (kobs, ft, Γ)
and cdr then P is safe with respect to Γ.

Proof:
See [9, Section 6].

35

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Pm[i] = ifeq j ∀j′ ∈ region(i, ∅), k ≤ se(j′)

Γ, ft, region, se, ~kp
kh→ ~kr, i `∅ k :: st =⇒ liftk(st)

Pm[i] = invokevirtual Nm′ ΓNm′ [k] = ~k′p
k′

h→ ~k′r
k t kh t se(i) ≤ k′h length(st1) = nbArguments(N ′

m)
k ≤ k′p[0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ k′p[i+ 1]

ke = t{k′r[e] | e ∈ excAnalysis(Nm′)}
∀j ∈ region(i, ∅), k t ke ≤ se(j)

Γ, ft, region, se, ~kp
kh→ ~kr, i `∅ st1 :: k :: st2 =⇒ liftktke((k′r[n] t se(i)) :: st2)

Figure 3.1: The rule for ifeq and a rule for invokevirtual

3.3 Translation from the information flow system

The translation of the information flow system into the MOBIUS base logic is done with the use of the
BML syntax. Here is a brief summary of the syntax elements which are useful in the presentation of the
translation.

We use the modifier ghost to indicate that a particular variable is not a program variable, but a spec-
ification variable. Other Java type modifiers such as public,private,final, static have the same meaning
as in the case of Java declarations. We use JML syntax to denote the logical connectives i.e. && means the
logical conjunction, || the logical alternative, and ! the logical negation. The logical implication is denoted
as ==>. We also use the JML syntax to access and initialise elements of arrays and to denote types of
variables. We also use here the general quantifier. The syntax of the quantifier expression is as follows:

(\forall variable declaration; bound on the quantification; actual formula)

where the variable declaration has the same form as a one line variable declaration in Java and introduces
the variables over which the quantification takes place. The bound on the quantification is a formula the
goal of which is to restrict potentially infinite domain of the quantification to be finite and it can be any
boolean Java expression. At last, the actual formula is the formula we are interested in. A bound on the
quantification B and an actual formula A are understood as the implication from B to A.

In order to express in MOBIUS base logic that there is no information flow we need to add some formula
annotations to the program and to extend the method specification tables with the formulae encoding
Definition 12. Both can be done separately for each method. The translation uses extensively ghost fields.

Data to translate The annotations we need are of two kinds. The first group consists of data used in
the information-flow type system, namely:

• a table Γ of method signatures,

• a global policy ft that provides security levels of fields,

• a cdr structure (regionm, junm),

• functions classAnalysis, excAnalysis, nbLocals, nbArguments, Handler,

• the successor relation 7→e.

The second group comes from the Definition 12. For each policy signature of a given method these are:

• a security environment se : PP → S,

• a function st : PP → S?.

36

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Security level of fields can be stored in ghost fields in the corresponding class. For each class field f
(both static and instance) we define:

public f ina l ghost S g f t f = ft(f) ;

this variable allows to consult the security level of the field f . The domain of the functions Γ, excAnalysis,
nbLocals, nbArguments is the name space for methods names. It seems that the best place to store them are
ghost fields of the class where the given method name appears. The other data are relative to the body of
a concrete instance of the method and they should be stored as local ghost variables of the methods. We
assume the following additional numbers are calculated statically:

1. lm the maximal label of the method m,

2. maxStack the maximal height of the stack during the execution of method m,

3. maxEx the number of all exception types in program P ,

4. maxS the maximal security level; the level 0 6∈ S will be used to mark the undefined value. Let
S0 = S ∪ {0}

These values are inlined in the specifications (i.e. we do not use any special ghost variable definitions to
refer to them).

In each class we add the following ghost field definitions initialised according to the static data mentioned
above. In the definitions below we use a fixed correspondence between the exception types and the natural
numbers 0, . . . ,maxEx−1. For each method (both static and instance) m with the identifier Nm we define a
set of ghost variables. These variables will be used as constants; they will never be changed. The initial values
of all the ghost variables we use here are defined to correspond directly to the values of real values/functions.

public stat ic f ina l ghost int gnbArguments Nm =
nbArguments(Nm) ;

public stat ic f ina l ghost int gnbLoca ls Nm =
nbLocals(Nm) ;

public stat ic f ina l ghost boolean [maxEx] g excAna ly s i s Nm =
{ e0, . . . , emaxEx−1 } ;

public stat ic f ina l ghost S0
[maxS] [gnbLoca ls Nm+3+maxEx] gsgn Nm =

{
{ s0,0, . . . , s0,gnbLocals Nm+3+maxEx−1 } ,
. . .
{ smaxS−1,0, . . . , smaxS−1,gnbLocals Nm+3+maxEx−1 }

} ;

This definition makes use of some additional values which are defined and explained below. The information
contained in gexcAnalysis Nm is defined with the use of:

ei =

true when excAnalysis(Nm) says

that the exception number i is rised in m
false otherwise

The security signature Γm[i] = ~kp
kh→ ~kr allows us to give the values for si,j .

si,j =

~kp(j) j < | ~kp|
kh j = | ~kp|
~kr(j − | ~kp| − 1) j > | ~kp|

This definition allows us to explain the meaning of gsgn[i][j] in the following way. For a given security level i,
gsgn[i][0] is the security level of the object that calls the method m, gsgn[k][1 . . . gnbLocals Nm] are security

37

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

levels of parameters and local variables (note that nbLocals(Nm) = | ~kp| − 1), gsgn[k][gnbLocals Nm + 1]
is the level of heap operations, while gsgn[k][gnbLocals Nm + 2] is the level of a normal return value and
gsgn[k][gnbLocals Nm + 3 . . . gnbLocals Nm + 3 + maxEx− 1] are the security levels in which corresponding
exceptions might be propagated (note that maxEx ≥ |~kr| − 1).

We define also local ghost variables associated with the method m:

ghost boolean [lm] [maxEx] g c l a s sAna l y s i s =
{
{ c0,0, . . . , c0,maxEx−1 } ,
. . .
{ clm−1,0, . . . , clm−1,maxEx−1 }

} ;

where

ci,j =

true when classAnalysis(i) says that the exception number j

can be rised in m at i,
false otherwise.

ghost boolean [lm] [maxEx + 1] [lm] g r eg ion =
{
{
{ r0,0,0, . . . , r0,0,lm−1 } ,
. . .
{ r0,maxEx−1,0, . . . , r0,maxEx−1,lm−1 }

} ,
. . .
{
{ rlm−1,0,0, . . . , rlm−1,0,lm−1 } ,
. . .
{ rlm−1,maxEx,0, . . . , rlm−1,maxEx,lm−1 }

}
} ;

where

ri,j,k =

true when k ∈ regionm(i, e) and

the exception number corresponding to e is j
true when k ∈ regionm(i, ∅) and

j = maxEx
false otherwise.

Note that we use the index maxEx on the second coordinate to encode the region information for the normal
execution.

ghost int [lm] [maxEx] gHandler =
{
{ h0,0, . . . , h0,maxEx−1 } ,
. . .
{ hlm−1,0, . . . , hlm−1,maxEx−1 }

} ;

where hi,j = Handlerm(i, e) with e corresponding to the exception number j. Handler function is encoded as
a two-dimensional array of boolean values, since the value of a handler is not used in the type-system.

As noted below Definition 12, we may assume that se and st are indexed with security levels from S.
We use the notation sei and sti for i ∈ S to refer to the elements of the indexed families.

ghost S [maxS] [lm] gse =
{
{ v0,0, . . . , v0,lm−1 } ,
. . .

38

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

{ vmaxS−1,0, . . . , vmaxS−1,lm−1 }
} ;

where vi,j = sei(j).

ghost S0 [maxS] [lm] [maxStack] g s t =
{
{
{ t0,0,0, . . . , t0,0,maxStack−1 } ,
. . .
{ t0,lm−1,0, . . . , t0,lm−1,maxStack−1 }

} ,
. . .
{
{ tmaxS−1,0,0, . . . , tmaxS−1,0,maxStack−1 } ,
. . .
{ tmaxS−1,lm−1,0, . . . , tmaxS−1,lm−1,maxStack−1 }

}
} ;

where ti,j,k = n whenever k + 1-st element of the sequence sti(j) is n. Note that the function sti gives
security levels for the stack positions so that the length of each sti(j) is less that the maximal stack length
maxStack. We also assume that for each i, j the elements of gst[i][0][j] are zero which corresponds to the
fact that the operand stack at the beginning of a method is empty.

Translating non-interference property Once we have all the needed annotations, we may translate
the property described in Definition 12. We do it for each method m separately and we decide to use local
annotation table Qm (as in [15, Chapter 3]).

Qm is a finite partial map which for a program label i occurring in m gives an assertion Q(c0, c). If a
program point i in m is annotated with Q then Q(c0, c) is supposed to hold in very c encountered at label i
during any execution of m with the initial state c0 satisfying Rm(c0) (i.e. the precondition of the method).

Let us describe how to extend a given specification Q so that it ensures the non-interference property.
According to Definition 12 we need to state that for every security level s, every label i, every exception
e, and every j, such that i 7→e j (or i 7→e) some properties hold. For every i they will be expressed by a
formula N(i)(s). We define QNI, the local annotation table extended with non-interference checking, as

QNI(i) = λc0 ∈ State λc ∈ State.
Q(c0, c) && N(i)(1) && . . . && N(i)(maxS).

(3.1)

Additionally, we add to QNI(1) the formula:

\forall int i, j; 0 ≤ i && i < maxS && 0 ≤ j && j < maxStack; gst[i][0][j] == 0 (3.2)

The formulae N(i)(s) have similar form; it is

(\forall int e, j; 1 ≤ e && e ≤ maxEx && 1 ≤ j && j ≤ lm;
(i 7→e j ==> (Reg

inst(i)
1 (~p1) || . . . || Reg

inst(i)
k (~pk))) &&

(i 7→e ==> (Reg
inst(i)
1 (~p1) || . . . || Reg

inst(i)
k′ (~pk′))))

(3.3)

where inst(i) is the instruction at the label i in the method body m. Note also that i 7→e j (as well as i 7→e)
is a static information which can be easily defined directly as a subformula to be inserted at the place or
with help of an additional ghost array.

Every Reg
inst(i)
i (~pi) corresponds to one of the possibly applicable typing rules for instruction inst(i) in

case i 7→e j (or i 7→e) where ~pi are parameters of inst. For example Regifeq
1 (j) corresponds to ifeq j and equals

39

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

to
e == ∅ &&
(\forall int j′; 1 ≤ j′ && j′ ≤ lm;

gregion[i][0][j′ − 1] ==> gst[s][i− 1][cntr] ≤ gse[s][j′ − 1]) &&
(\forall int p; 0 ≤ p && p ≤ cntr − 1;

gst[s][i− 1][p] t gst[s][i− 1][cntr] ≤ gst[s][j − 1][p]) &&
(\forall int p; cntr ≤ p;

gst[s][j − 1][p] = 0)

(3.4)

The two last lines state that liftk(st) ⊆ st(j); the last one explicitely checks that st(j) is one element shorter
than st(i). Reginvokevirtual

1 (Nm′), for some called method m′, corresponds to

e == ∅ &&
(\forall int k, n, ke; 1 ≤ k && ke ≤ maxS;

(n == gnbArguments Nm′ &&
cntr ≥ n+ 1 &&
k == gst[s][i− 1][cntr − n] &&
ke == t{gsgn Nm′ [k][n+ 2 + i] | gexcAnalysis Nm′ [i]})

==>
k t gsgn Nm[s][gnbLocals Nm + 1] t gse[s][i] ≤

gsgn Nm′ [k][gnbLocals Nm′ + 1] &&
k ≤ gsgn Nm′ [k][0] &&
(\forall int j; 0 ≤ j && j ≤ n− 1;

gst[s][i− 1][cntr − j] ≤
gsgn Nm′ [k][j + 1]) &&

(\forall int j′; 1 ≤ j′ && j′ ≤ lm;
gregion[i][0][j′]

==>
k t ke ≤ gse[s][j′]) &&

(\forall int p; 0 ≤ p && p ≤ cntr − n;
gst[s][i− 1][p] t k t ke ≤ gst[s][j − 1][p]) &&

((k t ke t gsgn Nm′ [k][n+ 2] t gse[s][i]) ≤
gst[s][j − 1][cntr − n+ 1]) &&

(\forall int p; cntr − n+ 2 ≤ p;
gst[s][j − 1][p] == 0)

We recall that Nm′ stands for the method identifier of the called method m′. In order to shorten the formula
we introduce shorthands n, k for the number of the parameters for the method to be called and the security
level of the object that contains the called method, respectively. We also introduce the shorthand ke ,with
the informal use of t, to denote the least upper bound of security levels corresponding to exceptions allowed
by the excAnalysis.

ke == t{gsgn Nm′ [k][n+ 2 + i] | gexcAnalysis Nm′ [i]})

Again, it is easy to define the appropriate formula which expresses this property as we can enumerate all
the values that are involved here.

It is worth pointing out that the subformulae starting from the first occurrence of \forall int p state that

liftktke((k
′
r[n] t se(i)) :: st2) ⊆ st(j).

3.4 Proof of non-interference

In our approach the non-interference property is obtained in two steps. The first one provides the link
between the type system of Barthe et al. [9] and this is exploited in the second step which results in the

40

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

non-interference by Theorem 3.2.1. We additionally provide a result which allows to mix the specifications
that result from our translation with specifications that come from other sources (e.g. are written by hand).

Please recall that like in [9] we assume that functions classAnalysis, excAnalysis, nbLocals, nbArguments,
Handler are correct (computed in the trusted computing base).

The goal of the translation we provided is to obtain the following theorem.

Theorem 3.4.1 typechecking and verifyability Let P be a Java program, (kobs, ft, Γ) a desired security pol-
icy, and cdr a control dependence regions structure satisfying SOAP. Let TR be the translation defined in
Section 3.3 that adds base logic annotations to a bytecode program. For each security environment family
{sei : PP → PPP}i∈S and a family of functions {sti : PP → S?}i∈S,

⇒ if the annotated program TR(P, kobs, ft, Γ, cdr, se, st) verifies correctly then P with the policy (kobs, ft, Γ)
and cdr is typable,

⇐ if the program P with the policy (kobs, ft, Γ) and cdr is typable with se, st, and all Q(c0, c) in QNI in
(3.1) on page 39) are empty then the annotated program TR(P, kobs, ft, Γ, cdr, se, st) verifies correctly.

Proof:
We present here a sketch of the proof only.

(⇒) Suppose that the annotated program TR(P, kobs, ft, Γ, cdr, se, st) verifies correctly. We want to verify
that the condition in Definition 12 is fulfilled. We take se and st as above. st(1) = ε is guaranteed by the
presence of the subformula (3.2) in QNI(1). The conditions (1)–(2) from Definition 12 are guaranteed by
the fact that all the typing rules are faithfully modelled in the logic. We provide here a motivation that the
typing rule is faithfully modelled in case the instruction at the label i is ifeq j. In other cases the proof is
similar. Note that in this case we must ensure the point (1) only if i has a successor in the method. We
have to ensure that the typing condition is fulfilled. This is guaranteed by the first \forall subformula of
(3.4). The condition s v st(j) is guaranteed in turn by the second \forall subformula of (3.4).

(⇐) Suppose that the program P with the policy (kobs, ft, Γ) and cdr is typable. We have to ensure that
each QNI(i), for i being a label in the method m, holds. As Q(c0, c) is empty, it is enough to check that
each N(i)(j) holds for j ∈ S. Each of the N(i)(s) has similar structure presented in (3.3). It is enough to
show that one of the corresponding Reg

inst(i)
l (~pl) holds in case i 7→e j (or in case i 7→e). As the method is

typable, we know that Γ, ft, regionm, se, sgn, i `e st(i) =⇒ s can be inferred. This is done with one of the
rules, say Reg

inst(i)
l (~pl). Now, we have to make sure that the corresponding translation formula holds. We

show this in case inst(i) is ifeq j.

• the subformula e == ∅ in the pattern (3.4) holds as the only rule for ifeq j works only when we deal
with the normal execution,

• the second subformula of (3.4) holds as the typing rule guarantees that ∀j′ ∈ region(i, ∅), k ≤ se(j′),

• the third subformula of (3.4) holds as the typability requires that liftk(st(i)) v st(j),

• the fourth subformula of (3.4) holds as the st(j) is not determined for indices greater than the top of
the operand stack.

This finishes the proof in this case. The cases of other instructions are similar.
This theorem says in principle that whenever a program with annotations proposed in Section 3.3 successfully
verifies it also successfully typechecks. This property implies the following result:

Theorem 3.4.2 non-interference If TR(P, kobs, ft, Γ, cdr, se, st) verifies correctly then the program P is safe.
Proof:
Suppose that TR(P, kobs, ft, Γ, cdr, se, st) verifies correctly. By Theorem 3.4.1 it means that P is typable with
the policy (kobs, ft, Γ) and cdr. As Theorem 3.2.1 states, this means that P is safe.

41

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

3.4.1 Proof of stability

We want also obtain a result which allows safely to extend the specifications so that the non-interference
property is preserved. This can be spelled out by the following Theorem 3.4.3.

Definition 13 (specifications in conflict)
We say that specifications are in conflict with the translation TR whenever any element of the ghost arrays
or variables defined in Section 3.3 is set.

Theorem 3.4.3 stability Let P ′ be a specificational extension of TR(P, kobs, ft, Γ, cdr, se, st) that does not
conflict with TR(P, kobs, ft, Γ, cdr, se, st). If P ′ verifies correctly then P satisfies the non-interference property.

Proof:
We present here a sketch of the proof only. When the specification extension does not conflict with the
translation TR(P, kobs, ft, Γ, cdr, se, st) then the values of all the variables used in the translation are the
same. In this light, the logical values of the formulae are the same as in case there are no additional
specifications. By Theorem 3.4.2 we obtain non-interference for P .

3.5 Related work and conclusions

We presented here a translation of the information-flow type system defined in [8] and further explored in
[9] to the MOBIUS base logic presented in [15]. The translation is in fact through the BML specification
language syntax which should facilitate quicker adoption of the translation by tools. This translation gives
possibility to combine the logical verification with the properties obtained using a type system. It seems
also that our formalisation can enable an easy control over the declassification.

Conclusions The original order used in the information flow type system has not been restricted to be
finite. Our translation relies crucially on the fact that the order is finite. In practise, however, it is very
difficult to check the non-interference in case of essentially infinite policies—in particular such policies should
be effectively enumerable and thus the checking that a policy is fulfilled becomes an algorithm verification
task.

42

Chapter 4

Foundational certification of data-flow
analysis

4.1 Introduction

In proof-carrying code [27], it is the responsibility of the code producer to produce evidence that the code
shipped is safe and/or functionally correct. When code generation involves optimizations, an important
useful intermediate mechanism is certification of the underlying program analyses, preferably based on a
formalism rather than an informal mathematical theory.

It has been recognised, see, e.g., [29, 25], that classical data-flow analyses, such as live variables analysis,
available expressions analysis etc., are usefully specifiable in a declarative way as type systems that may
operate on source programs in a compositional (syntax-directed) manner, rather than on intermediate repre-
sentations (such as flat control-flow graphs). These type systems make good formal vehicles for certification
of analyses and can thus turn it very similar to customary certification of safety and functional correctness
properties in program-logic like formalisms. A certificate is a typing derivation (or a typing judgement
with sufficient additional information in the form of annotations to recover one), certificate checking is
type(-derivation) checking and certificate generation amounts to principal type inference. The declarative
character of type systems endows their use with additional value. For instance, there is no good reason for
certificates to depend on an algorithmic definition of an analysis when only the certifier needs to produce
analyses: the certificate checker should be able to check purported analyses based on a declarative definition
(which, moreover, is probably more basic and thus easier to trust than any algorithmic one).

The analysis type systems are sound and, in the case of distributive analysis frameworks, complete wrt.
appropriate natural semantics on abstract properties—a reformulation of the usual semantical justification
of analyses.

In this chapter, we shed further light on the type-systematic method by showing that analysis type sys-
tems are in fact applied versions of more foundational Hoare logics. These describe either the same property
semantics as the type system (but without recourse to any ideas about approximations) or a more basic
semantics on transition traces of a suitable kind and are therefore easier to trust. The applied formalisms
are justifiable as sound wrt. the more foundational formalisms (and also their underlying semantics). This
is analogous to foundational proof-carrying code [6], motivated by exactly the same idea of reducing the
burden of trusting an applied formalism of certification by switching to a more foundational one. Moreover,
we learn that not only can a textbook definition of an analysis be cast as a program-logic like formalism,
but the same is possible for the more basic considerations that justify this definition.

These contributions are all based on the classical theory of monotone analysis frameworks and abstract
interpretation [17, 18], but they demonstrate that the applied vs. foundational spectrum in proof-carrying
code for safety or functional correctness carries over to certified optimisation analyses. And they also
emphasise that program analyses for optimisations are just as amenable to certification in program-logic
like declarative formalisms as are functional correctness and safety.

43

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

δ[x 7→ dd][y 7→ δ(y) t δ(x) | y ∈ FV(a)] �x := a� δ
:=lvns

δ �skip� δ
skiplvns

δ �s0� δ′ δ′ �s1� δ′′

δ �s0; s1� δ′′
complvns

δ �st� δ′

δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� δ′
ifttlvns

δ �sf� δ′

δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� δ′
iffflvns

δ �st� δ′ δ′ �while b do st� δ′′

δ[y 7→ ll | y ∈ FV(b)] �while b do st� δ′′
whilett

lvns δ[y 7→ ll | y ∈ FV(b)] �while b do st� δ
whileff

lvns

Figure 4.1: Natural semantics for live variables

Further, in addition to standard data-flow analyses, we also look at conditional analyses, based on a
combined “standard state and abstract property” semantics, as a possible variation. We also comment briefly
on type-systematic definition and justification of program optimisations and type-systematic “optimisation”
of functional correctness proofs alongside programs.

For the sake of brevity and intuitiveness of exposition, we limit our discussion to live variables analysis
and dead code elimination for the While language, but the approach is general and applies to a variety
data-flow analyses and optimisations.

In Section 4.2, we introduce the method of defining data-flow analyses as type systems on the example
of live variables analysis. We justify the type system by proving it sound and complete wrt. an appropriate
natural semantics on liveness states and show that analysing a program amounts to principal type inference.
In Section 4.3, we show that the type system is an applied version of a Hoare logic for the same natural
semantics. In Section 4.4, we define liveness of a variable as a predicate on def/use transition traces and
justify the natural semantics and Hoare logic on liveness states in terms of a natural semantics and Hoare
logic on def/use transition traces. In Section 4.6, we treat conditional liveness, to then proceed to a discussion
of type-systematic program optimisation on the example of dead code elimination in Section 4.6. Section 4.7
reviews some related work and Section 4.8 concludes.

4.2 A natural semantics and type system for live variables

We begin by an overview of the type-systematic approach to data-flow analyses [29, 25]. We do this on the
example of live variables analysis (in Sec. 4.5, we also consider a variant, conditional liveness).

Informally, a variable is said to be live on a computation path, if it has a future useful use not preceded by
a definition. A useful use is a use in an expression assigned to a live variable or a use in a guard expression.
(This is the strong version of liveness, in contrast to the weaker one where any use triggers liveness.)

The textbook definition of live variables analysis and its justification, however, do not proceed directly
from this definition but from derived considerations. The analysis (for source programs, not for the cor-
responding control-flow graphs) is justified by the following non-standard semantics, which we state as a
natural (i.e., big-step) semantics.

States δ are assignments of values {dd, ll}, dd v ll, to variables, understood as “liveness states”. We
define δ v δ′ to mean that δ(y) v δ′(y) for any y ∈ Var.

The evaluations of a statement are pairs of states (a prestate and a poststate) given by the rules in
Figure 4.1, the notation δ�s� δ′ meaning that δ and δ′ are a possible pre- and poststate for s. The notation
δ[x 7→ v] stands for updating a state δ at a variable x with a value v and we also use a similar notation for
simultaneous updates.

Intuitively, this semantics runs programs backwards. For any final liveness state, we get the initial
liveness states corresponding to the computation paths the program can take. For example, the assignment
rule expresses that, if the lhs variable x is live in a poststate, then it is dead in the midstate (where the
rhs has been evaluated but not assigned yet), because the assignment defines it, and all variables y of the

44

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

x := a : d[x 7→ dd][y 7→ d(y) t d(x) | y ∈ FV(a)] −→ d
:=lvts

skip : d −→ d
skiplvts

s0 : d −→ d′ s1 : d′ −→ d′′

s0; s1 : d −→ d′′
complvts

st : d −→ d′ sf : d −→ d′

if b then st else sf : d[y 7→ ll | y ∈ FV(b)] −→ d′
if lvts

st : d −→ d[y 7→ ll | y ∈ FV(b)]
while b do st : d[y 7→ ll | y ∈ FV(b)] −→ d

whilelvts

d ≤ d0 s : d0 −→ d′0 d′0 ≤ d′

s : d −→ d′
conseqlvts

Figure 4.2: Type system for live variables

rhs (including perhaps x as well) are live in the prestate (because they are usefully used). If x is dead in
a poststate, the prestate is the same. The semantics is non-deterministic, as if- and while-statements can
take multiple computation paths: liveness states fix no values for the variables.

A version that is deterministic (still in the backwards direction: for any poststate, there is exactly one
prestate), the collecting semantics, is defined by

JsK(δ′) =df

⊔
{δ | δ �s� δ′}

The collecting semantics calculates the MOP (“meet over all paths”) upper bound on the liveness prestates
for a given liveness poststate.

The analysis (working with approximations) can be formulated as a type system. Types d are assignments
of values from {dd, ll}, dd v ll to variables, just as states, but their pragmatics is different: they function
as non upper bounds (over-approximations) of liveness states. The negation here is a formality that results
from the analysis being backward, but validity of subtyping and typing being forward (for conformity with
the standard definitions of validity; this design decision will be useful for us especially in Sec. 4.5). Ignoring
this negation, the values dd and ll in types can be understood to mean “certainly dead” resp. “possibly
live”: a state is of a type, if all variables dead in the type are dead in the state (a variable live in the type
can be both dead and live in the state).

The type system has one subtyping rule, reading

d′ v d

d ≤ d′

The types of a statement are pairs of types (a pretype and a posttype): we write to s : d → d′ to denote
that d and d′ are a possible pre- and posttype of s. The typing rules are in Figure 4.2. Note that while the
assignment rule of the type system is similar to that in the semantics, the rules for if- and while-statements
are different: a typing of a statement pertains to all computation paths of a statement, not just one. The
while rule is similar to the while rule from standard Hoare logic by involving an invariant type. Likewise,
the subsumption rule is an analogue of the consequence rule. The type system accepts all valid analyses
of a program, not only the strongest one, so for the statement s =df if w = 3 then x := y else x := z and
posttype [w 7→ dd, x 7→ ll, y, z 7→ dd], both [w 7→ ll, x 7→ dd, y, z 7→ ll] and [w, x, y, z 7→ ll] are derivable as
pretypes, but the former pretype corresponds to the strongest analysis.

To state and prove the type system adequate wrt. the semantics, we define δ |= d to mean δ 6v d in
agreement with the explanations above. Adequacy of subtyping (d ≤ d′ iff d′ being an upper bound of a
state implies that d is also an upper bound) is trivial.

Theorem 4.2.1 (Soundness and completeness of subtyping) d ≤ d′ iff for any δ, δ |= d implies
δ |= d′ (i.e., δ v d′ implies δ v d).

Soundness and completeness of typing (s : d −→ d′ iff d′ being an upper bound on a poststate implies
that d is an upper bound on the prestates) are proven separately.

45

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Theorem 4.2.2 (Soundness of typing) If s : d −→ d′, then, for any δ, δ′ such that δ �s� δ′, δ |= d
implies δ′ |= d′ (i.e., δ′ v d′ implies δ v d).

Proof. By induction on s : d −→ d′ and subordinate induction on δ �s� δ′ in the case s = while b do st. 2

To prove completeness, we define a syntactic weakest pretype operator wpt:

wpt(x := a, d′)
=df d′[x 7→ dd][y 7→ d′(y) t d′(x) | y ∈ FV(a)]

wpt(skip, d′) =df d
′

wpt(s0; s1, d′) =df wpt(s0,wpt(s1, d′))
wpt(if b then st else sf , d

′)
=df (wpt(st, d

′) ∧ wpt(sf , d
′))[y 7→ ll | y ∈ FV(b)]

wpt(while b do st, d
′)

=df ν(F) where
F (d) =df (wpt(st, d) ∧ d′)[y 7→ ll | y ∈ FV(b)]

Here ν is the greatest (wrt. our subtyping ≤) fixpoint operation on monotone type transformers.
The wpt operator is the type-systematic formulation of an algorithm for computing the strongest analysis,

i.e., the MFP (“maximal fixpoint”) upper bound on the liveness prestates for a liveness poststate.
The following lemmata show that the wpt of a given type d′ is a pretype of d′, in the sense of typing,

and greater than any semantic pretype of d′.

Lemma 1 s : wpt(s, d′) −→ d′.

Proof. By induction on s. 2

Lemma 2 If, for any δ, δ′ such that δ �s� δ′, δ |= d implies δ′ |= d′ (i.e., δ′ v d′ implies δ v d), then
d ≤ wpt(s, d′) (i.e., wpt(s, d′) v d).

Proof. Also by induction on s. 2

Theorem 4.2.3 (Completeness of typing) If, for any δ, δ′ such that δ �s� δ′, δ |= d implies δ′ |= d′

(i.e., δ′ v d′ implies δ v d), then s : d −→ d′.

Proof. Immediate from the two lemmata by the conseqlvts rule. 2

¿From soundness and completeness we get that the collecting semantics and the weakest pretype agree
perfectly, i.e., MOP=MFP.

Corollary 1 JsK(δ′) v wpt(s, δ′).

Proof. By Lemma 1 and Thm. 4.2.2, δ �s� δ′ yields δ v wpt(s, δ′) for any liveness state δ. 2

Corollary 2 wpt(s, δ′) v JsK(δ′)

Proof. By Lemma 2. 2

Lemma 2 and its consequences, including completeness of typing (Thm. 4.2.3) and MFP vMOP (Cor. 2),
depend on the fact that the transfer functions of live variables analysis are distributive (preserve meets).
They do not, for instance, hold for constant propagation, which fails to be distributive.

The following weaker semantics-independent property of the type system alone does not rest on distribu-
tivity (and holds thus also for non-distributive backward analyses): the wpt of a program wrt a posttype
d′ is greater than any typing-sense pretype of d′. We already know that it also is a typing-sense pretype of
d′ (Lemma 1). In summary, the wpt is the principal pretype of d′, in type systems jargon. And computing
the strongest analysis is principal type inference.

46

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

{P}x := a {(ls(x) = ll ⊃ P [ls(y) Z⇒ ll | y ∈ FV(a)][ls(x) Z⇒ dd]) ∧ (ls(x) = dd ⊃ P)}
:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

complvhoa

{P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {Q} {P [ls(y) Z⇒ ll | y ∈ FV(b)]} sf {Q}
{P} if b then st else sf {Q}

if lvhoa

{P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {P}
{P}while b do st {P [ls(y) Z⇒ ll | y ∈ FV(b)]} whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

Figure 4.3: Hoare logic for live variables

Lemma 3 If d′0 ≤ d′, then wpt(s, d′0) ≤ wpt(s, d′).

Theorem 4.2.4 If s : d −→ d′, then d ≤ wpt(s, d′).

Proof. By induction on s : d −→ d′, using Lemma 3 in some cases. (For live variables, one can also go via
the semantics and get the theorem as an immediate corollary of Thm. 4.2.2 and Lemma 2.) 2

4.3 A Hoare logic for live variables

While the type system is a description of the semantics, it is not a very direct one: the type system really
relies on both the semantics and properties of upper bounds. Nor is the type system completely expressive;
the only expressible assertions are negations of upper bound conditions. A more foundational formalism,
which is also expressively complete, can be obtained by recasting the liveness semantics as a Hoare logic, in
complete analogy with the Hoare logic characterisation of the standard semantics.

The assertions of the Hoare logic are (generally open) formulae of the (first-order) theory of ({dd, ll},v)
over the signature with an extralogical constant ls(x) (for the liveness value of x in the understood liveness
state) for any program variable x ∈ Var. The proof rules are in Figure 4.3. The notation P [x Z⇒ a]
denotes substituting the occurrences of x in P by a. Again the design is for the standard notion of validity,
i.e., a forward implication: the precondition holding for a prestate implies that the postcondition holds for
all possible poststates. Reversing the implication is possible by contraposition, i.e., by negating the two
conditions.

The Hoare logic is adequate (both sound and complete) with respect to the intended interpretation,
which has Jls(y)K(δ) =df δ(y) (i.e., ls(y) means the current liveness value of y).

Theorem 4.3.1 (Soundness) If {P} s {Q}, then, for any δ, δ′ such that δ�s�δ′, δ |=α P implies δ′ |=α Q
for any valuation α.

Lemma 4 {P} s {slp(P, s)} (for a correctly defined strongest postcondition operator).

Theorem 4.3.2 (Completeness) If, for any δ, δ′ such that δ �s� δ′, δ |=α P implies δ′ |=α Q for any
valuation α, then {P} s {Q}.

Note that since the domain of the intended interpretation of the language of assertions is a doubleton,
this language is, in fact, essentially propositional. Hence the strongest postcondition operation is trivially
definable. And completeness would still hold absolutely (as opposed to relatively to the level of completeness
of an axiomatization of arithmetic), if we replaced the two entailment side conditions in the consequence
rule with side conditions of deducibility in an appropriate proof system.

47

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Clearly the Hoare logic is more foundational than the type system, as it formalizes the semantics directly.
But this has the price that, generally, Hoare triple derivations are harder to construct than type derivations.
For certification of analyses, however, this is unproblematic. Constructing a Hoare-logic derivation for a
typing judgement (a purported analysis result) is no harder than constructing a type-system derivation:
types admit a translation into Hoare-logic assertions and a Hoare-logic derivation of a translated typing
judgement is mechanically obtainable from its type-system derivation, i.e., the translation of types extends
to type derivations.

In agreement with the semantic meaning of types, a type d can be translated into the Hoare-logic
assertion [d] =df ls 6v d (i.e., ¬

∧
{ls(y) v d(y) | y ∈ Var}). This translation preserves subtyping and typing.

Theorem 4.3.3 (Preservation of subtyping) If d ≤ d′ in the type system, then [d] |= [d′].

Theorem 4.3.4 (Preservation of typing) If s : d −→ d′ in the type system, then {[d]} s {[d′]} in the
Hoare logic.

Proof. A non-constructive indirect proof is immediate from soundness of the type system and completeness
of the Hoare logic. An alternative constructive direct proof (by extending translation to type derivations)
is by induction on s : d −→ d′. 2

Of course the weakest preconditions in the Hoare logic are stronger than those in the type system. For
the statement s =df if w = 3 then x := y else x := z, for instance, we have that wpt(s, [w 7→ dd, x 7→
ll, y, z 7→ dd]) = [w 7→ ll, x 7→ dd, y, z 7→ ll] while

wlp(s,¬(ls(w) = dd ∧ ls(y) = dd ∧ ls(z) = dd))
= ¬(ls(w) = ll ∧ ls(x) = dd

∧ ((ls(y) = ll ∧ ls(z) = dd) ∨ (ls(z) = ll ∧ ls(y) = dd)))

(for a poststate where w, y, z are dead, the type system can only detect that x is dead in the prestate (w, y, z
can be either dead or live), while the Hoare logic knows also that w is live and that exactly one of y and z
is live).

4.4 A natural semantics and Hoare logic for future defs, uses

Our discussion of live variables analysis thus far has been quite detached from the (informal) definition of
liveness we recalled in Sec. 4.2. Instead we built on a semantics on liveness states, which looks very different.
In fact, the definition of liveness is part of a foundation for this semantics, but we did not show this. Now
we will close the gap.

The only observation needed is that liveness states are an abstraction over another, more concrete (and
thus more basic) non-standard notion of states. There is nothing like liveness states or a semantics for them
“in the nature”. Instead, the liveness definition speaks about “computation paths”, more specifically, about
future definitions and uses of variables on such paths. As no more information about paths is relevant for
liveness, we can take abstract paths to future transition traces, where the transitions are defs and uses.

Thus we introduce a natural semantics where states are lists of tokens Dx with x ∈ Var and Ux
V with

V ⊆ Var and x ∈ Var+{pc}. A token Dx means a definition of x. A token Ux
V means a use of the variables

V for defining x. The pseudovariable pc (for “program counter”) is for the case where the variables V are
used to evaluate a guard. Lists of such tokens should be understood as defs and uses to take place in the
future.

The evaluation rules of the semantics are in Figure 4.4. (· stands for both “cons” and “append”. Again
the causality is backward, but compared to the rules of the liveness semantics, they are completely basic.
The assignment rule, for instance, tells us that the unique preagenda for a postagenda τ is Ux

FV(a) · Dx · τ ,
i.e., to use all variables of a, to define x and then to do τ .

48

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Ux
FV(a) ·Dx · τ �x := a� τ

:=lvns
τ �skip� τ

skiplvns

τ �s0� τ ′ τ ′ �s1� τ ′′

τ �s0; s1� τ ′′
complvns

τ �st� τ ′

Upc
FV(b) · τ �if b then st else sf� τ ′

ifttlvns

τ �sf� τ ′

Upc
FV(b) · τ �if b then st else sf� τ ′

iffflvns

τ �st� τ ′ τ ′ �while b do st� τ ′′

Upc
FV(b) · τ �while b do st� τ ′′

whilett
lvns Upc

FV(b) · τ �while b do st� τ
whileff

lvns

Figure 4.4: Natural semantics for future def/use traces

{P}x := a {P [tr Z⇒ Ux
FV(a) ·Dx · tr]}

:=lvhoa {P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

complvhoa

{P [tr Z⇒ Upc
FV(b) · tr]} st {Q} {P [tr Z⇒ Upc

FV(b) · tr]} sf {Q}
{P} if b then st else sf {Q}

if lvhoa

{P [tr Z⇒ Upc
FV(b) · tr]} st {P}

{P}while b do st {P [tr Z⇒ Upc
FV(b) · tr]}

whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

Figure 4.5: Hoare logic for future def/use traces

Using traces as states, it is straightforward to formalize the intuitive definition of liveness. For a trace
τ , the corresponding liveness state LS(τ) is defined as follows.

LS(τ)(z) = ll
iff df ∃υ, τ ′, x, V. τ = υ ·Ux

V · τ ′ ∧ z ∈ V
∧((∃τ ′′. τ ′ = Dx · τ ′′ ∧ LS(τ ′′)(x) = ll) ∨ x = pc)

This definition is wellformed, because it can be reorganized into the following structurally recursive one.

LS(ε)(z) =df dd

LS(Dx · τ)(z) =df

{
dd if z = x
LS(τ)(z) otherwise

LS(Ux
V ·Dx · τ)(z) =df

{
LS(τ)(z) t LS(τ)(x) if z ∈ V
LS(Dx · τ)(z) otherwise

LS(Upc
V · τ)(z) =df

{
ll if z ∈ V
LS(τ)(z) otherwise

The abstraction function puts the semantics of liveness states into perfect agreement with the trace
semantics. Hence it is right to say that the trace semantics and the abstraction function are a foundation
for the liveness state semantics.

Theorem 4.4.1 If τ �s� τ ′, then LS(τ) �s� LS(τ ′).

Theorem 4.4.2 If δ �s� LS(τ ′), then there is a trace τ such that τ �s� τ ′ and LS(τ) = δ.

Similarly to the liveness state semantics, the trace semantics is also characterisable by a Hoare logic, by
a completely analogous design. The assertions are (open) formulae of the (first-order) theory of lists of use,
def tokens over the signature with an extralogical constant tr for the current def-use future. The inference
rules are in Figure 4.5.

Again the logic is sound and complete for the obvious intended interpretation of the assertions with
JtrK(τ) =df τ (i.e., tr denotes the current trace). But completeness is only relative to the completeness level
of an axiomatization of the theory of lists, if the entailments in the side conditions of the consequence rule
are replaced by deducibilities: the incompleteness of axiomatisations of arithmetic applies.

49

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

Theorem 4.4.3 (Soundness) If {P} s {Q}, then, for any τ , τ ′ such that τ�s�τ ′, τ |=α P implies τ ′ |=α Q
for any valuation α.

Theorem 4.4.4 (Completeness) If, for any τ , τ ′ such that τ �s� τ ′, τ |=α P implies τ ′ |=α Q for any
valuation α, then {P} s {Q}.

Just as constructing proofs in the Hoare logic for liveness in general was harder than constructing type
derivations in the type system for liveness, constructing proofs in the Hoare logic for traces is even harder,
generally. But again, if we have a proof for a triple in the Hoare logic for liveness, the more foundational
proof in the Hoare logic for traces is obtainable mechanically. The assertions of the Hoare logic for liveness
can be translated into ones of the Hoare logic for traces and the translation extends to derivations. Define LS
to be a syntactic version of LS (so JLS (t)K(τ) = LS(JtK(τ)). An assertion P about the current liveness state
is naturally translated as the assertion [P] =df P [ls Z⇒ LS (tr)] about the current trace. This translation
preserves derivable triples.

Theorem 4.4.5 (Preservation of derivable Hoare triples) If {P} s {Q} in the Hoare logic for live
variables, then {[P]} s {[Q]} in the Hoare logic for traces.

Proof. A non-constructive indirect proof is immediate from soundness of the Hoare logic for live variables,
Thm. 4.4.1 and completeness of the Hoare logic for traces. An alternative constructive direct proof is by
induction on {P} s {Q}. 2

For analyses other than live variables analysis, the notion of a trace considered need not be suitable.
For available expressions, for instance, it suffices to keep track of past evaluations and modifications of
non-trivial expressions on a computation path. A more universal notion would record all past and future
“atomic actions” (which are assignments and evaluations of guards).

4.5 Conditional liveness

Having outlined the foundational spectrum of certification for live variables analysis, we now sketch a variant,
much to illustrate the flexibility of our setup. Namely, we look at conditional liveness à la Strom and Yellin
[34]. This dwells on the same definition of liveness on a computation path as before, but the states in the
underlying concrete semantics are pairs of a store (standard state) and a computation path, so only these
transitions between computation paths are considered that are physically possible. Accordingly, the analysis
is finer.

The analogue to the semantics in Sec. 4.2 has as states pairs (σ, δ) of stores (assignments of integers to
variables) and liveness states. The evaluation rules are in Figure 4.6.

The type system defining the analysis has as types d assignments to variables of assertions of the standard
Hoare logic (i.e., arithmetic formulae over a signature with an extralogical constant x for any variable x).
There is one subtyping rule

d′ |= d

d ≤ d′

The typing rules are in Figure 4.7. In these rules, we have written d′ |= d to mean that d′(y) |= d(y) for all
y ∈ Var, d[x Z⇒ a] to mean [y 7→ d(y)[x Z⇒ a] | y ∈ Var], b ⊃ d to mean [y 7→ b ⊃ d(y) | y ∈ Var] and dt ∧ df

to mean [y 7→ dt(y) ∧ df (y) | y ∈ Var].
Adequacy (soundness and completeness) of the type system wrt. the semantics holds wrt. the intended

interpretation of types, which is: σ, δ |= d iff it is not the case that, for all variables y ∈ Var, δ(y) = ll
implies σ |= d(y) (i.e., d(y) is a necessary condition for y being live). (Again the negation is formal: the
analysis is backward, but the validity notion definition is forward, hence the need for contraposition.)

50

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

σ, δ[x 7→ dd][y 7→ δ(y) t δ(x) | y ∈ FV(a)] �x := a� σ[x 7→ JaKσ], δ
:=lvns

σ, δ �skip� σ, δ
skiplvns

σ, δ �s0� σ′, δ′ σ′, δ′ �s1� σ′, δ′′

σ, δ �s0; s1� σ′′, δ′′
complvns

σ |= b σ, δ �st� σ′, δ′

σ, δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� σ′, δ′
ifttlvns

σ 6|= b σ, δ �sf� σ′, δ′

σ, δ[y 7→ ll | y ∈ FV(b)] �if b then st else sf� σ′, δ′
iffflvns

σ |= b σ, δ �st� σ′, δ′ σ′, δ′ �while b do st� σ′, δ′′

σ, δ[y 7→ ll | y ∈ FV(b)] �while b do st� σ′′, δ′′
whilett

lvns

σ 6|= b

σ, δ[y 7→ ll | y ∈ FV(b)] �while b do st� σ, δ
whileff

lvns

Figure 4.6: Natural semantics for conditional liveness

x := a : (d[x 7→ ⊥][y 7→ d(y) ∨ d(x) | y ∈ FV(a)])[x Z⇒ a] −→ d
:=lvts

skip : d −→ d
skiplvts

s0 : d −→ d′ s1 : d′ −→ d′′

s0; s1 : d −→ d′′
complvts

st : b ⊃ d −→ d′ sf : ¬b ⊃ d −→ d′

if b then st else sf : d[y 7→ ll | y ∈ FV(b)] −→ d′
if lvts

st : b ⊃ d −→ d[y 7→ ll | y ∈ FV(b)]
while b do st : d[y 7→ ll | y ∈ FV(b)] −→ ¬b ⊃ d

whilelvts

d ≤ d0 s : d0 −→ d′0 d′0 ≤ d′

s : d −→ d′
conseqlvts

Figure 4.7: Type system for conditional liveness

The strongest analysis algorithm is described by the weakest pretype (wpt) operator defined as follows:

wpt(x := a, d′)
=df (d′[x 7→ ⊥][y 7→ d′(y) ∨ d′(x) | y ∈ FV(a)])[x Z⇒ a]

wpt(skip, d′) =df d
′

wpt(s0; s1, d′) =df wpt(s0,wpt(s1, d′))
wpt(if b then st else sf , d

′)
=df ((b ⊃ wpt(st, d

′)) ∧ (¬b ⊃ wpt(sf , d
′)))

[y 7→ ll | y ∈ FV(b)]
wpt(while b do st, d

′)
=df ν(F) where

F (d) =df ((b ⊃ wpt(st, d)) ∧ (¬b ⊃ d′))
[y 7→ ll | y ∈ FV(b)]

Type derivations in this type system can be translated into proofs in a Hoare logic. The assertions P
are formulae of the two-sorted theory of both the integers and the liveness domain ({dd, ll},v) over the
signature with an integer constant y and liveness constant ls(y) for any variable y. The proof rules are
in Figure 4.8. A type d is translated as dictated by the interpretation of types, namely by the assertion
¬

∧
{ls(y) = ll ⊃ d(y) | y ∈ Var}.
We refrain from spelling out the semantics and Hoare logic for store and transition trace pairs.

4.6 Dead code elimination

As an example of a data-flow analysis based optimisation, let us look at dead code elimination. This
optimisation removes assignments to dead variables. Type-systematically, it is straightforwardly defined by

51

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

{P [x 7→ a]}x := a {(ls(x) = ll ⊃ P [ls(y) Z⇒ ll | y ∈ FV(a)][ls(x) Z⇒ dd]) ∧ (ls(x) = dd ⊃ P)}
:=lvhoa

{P} skip {P}
skiplvhoa

{P} s0 {Q} {Q} s1 {R}
{P} s0; s1 {R}

complvhoa

{b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {Q} {¬b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} sf {Q}
{P} if b then st else sf {Q}

if lvhoa

{b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} st {P}
{P}while b do st {¬b ∧ P [ls(y) Z⇒ ll | y ∈ FV(b)]} whilelvhoa

P |= P0 {P0} s {Q0} Q0 |= Q

{P} s {Q}
conseqlvhoa

Figure 4.8: Hoare logic for conditional liveness

d(x) = ll
x := a : d[x 7→ dd][y 7→ ll | y ∈ FV(a)] −→ d ↪→ x := a

:=1
lvts

d(x) = dd
x := a : d −→ d ↪→ skip

:=2
lvts

skip : d −→ d ↪→ skip
skiplvts

s0 : d −→ d′ ↪→ s′0 s1 : d′ −→ d′′ ↪→ s′1
s0; s1 : d −→ d′′ ↪→ s′0; s

′
1

complvts

st : d −→ d′ ↪→ s′t sf : d −→ d′ ↪→ s′f

if b then st else sf : d[y 7→ ll | y ∈ FV(b)] −→ d′ ↪→ if b then s′t else s′f
if lvts

st : d −→ d[y 7→ ll | y ∈ FV(b)] ↪→ s′t
while b do st : d[y 7→ ll | y ∈ FV(b)] −→ d ↪→ while b do s′t

whilelvts

d ≤ d0 s : d0 −→ d′0 ↪→ s′ d′0 ≤ d′

s : d −→ d′ ↪→ s′
conseqlvts

Figure 4.9: Type system for dead code elimination

a transformational add-on to the analysis type system of Fig. 4.2. The rules of the extended type system
are in Fig. 4.9. For any type assigned to a program, this also assigns a transformed program.

This type-systematic definition of the optimisation allows for a simple proof of relational soundness of
the analysis. Defining σ ∼d σ′ to denote that σ(x) = σ′(x) for any x ∈ Var such that d(x) = ll (i.e.,
that two states agree on all variables live in a type), the optimisation is sound in the following sense: If
s : d → d′ ↪→ s∗ and σ ∼d σ∗, then (i) σ �s� σ′ implies that there exists σ′∗ such that σ′ ∼d′ σ

′
∗ and

σ∗ �s∗� σ′∗, (ii) σ∗ �s∗� σ′∗ implies that there exists σ′ such that σ′ ∼d′ σ
′
∗ and σ �s� σ′. The proof is by

induction on s : d→ d′ ↪→ s∗. Moreover, the type-derivation based program transformation can be extended
to a transformation of functional correctness proofs. For details, see [12, 31].

Conditional liveness analysis facilitates more refined dead code elimination optimisation. For assignment,
one could, for instance, choose to give these rules:

d(x) 6|= ⊥
x := a :
(d[x 7→ ⊥][y 7→ d(y) ∨ d(x) | y ∈ FV(a)])[x Z⇒ a] −→ d

↪→ x := a
d(x) |= ⊥

x := a : d[x Z⇒ a] −→ d ↪→ skip

A more aggressive optimisation could be built on conditional liveness information together with condi-
tional constant propagation information.

Consider this example (b does not contain z, y and x; the pretypes for all constituent statements have
been computed from the global posttype on line 8).

52

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

1 [z 7→ b, y 7→ ⊥, x 7→ ⊥] x := 5;
2 [z 7→ b, y 7→ ⊥, x 7→ ⊥] if b then
3 [z 7→ b, y 7→ ⊥, x 7→ ¬b] y := x

else
4 [z 7→ b, y 7→ ¬b] skip;
5 [z 7→ b, y 7→ ¬b] if b then
6 [z 7→ >] z := z + 1

else
7 [z 7→ ⊥, y 7→ >] z := y
8 [z 7→ >]

Because of path sensitivity, the assignment to x on line 1 is eliminated by the rules above, since x is
necessarily dead after it. The assignment to y on live 3 is conditionally live and could be removed on the
basis of additional forward analysis information that it is liveness condition ¬b cannot obtain after it.

Alternative designs would optimise partially dead assignments by code motion, e.g., move an assignment
preceding an if into one branch of the if-statement.

4.7 Related work
We can only mention some items of related work. Use of type systems to define program analyses is an
old idea, especially in the form of enrichments of standard type systems (“annotated types”, especially for
functional languages). The type systems philosophy is also central in the “flow logic” work of Nielsen and
Nielsen [29]. Type-systematic accounts of classical data-flow analyses for optimisations (incl. soundness of
optimisations and optimisation of functional correctness proofs, cf. translation validation) for imperative
languages appear in [12, 25, 31]. Volpano et al.’s well-known type system [36] for secure information flow is
of the same kind, but relatively weak (based on invariant state types instead of pre- and poststate types).

The idea of characterising non-standard semantics with program logics is old as well. For imperative
languages, it appears already, e.g., in Andrews and Reitman’s Hoare logic for secure information flow [5] and
H. R. Nielson’s Hoare logic for computation time [28]. Denney and Fischer [20] have characterized safety
policies with Hoare logics and applied these to certification of safety.

The conditional data-flow analyses à la Strom and Yellin [34] are an extension of Strom and Yemini’s
typestate checking paradigm [35], originally meant to address basic safety.

Proof-carrying code was invented by Necula and Lee [27], who certified safety of programs against a
verification condition generator. Foundationalism in PCC was pioneered by Appel [6], who suggested using
a universal logic formalisation of the underlying semantics instead. Hamid, Zhao et al. [22] proposed that a
foundational certificate can consist in a type derivation and a formal soundness proof of the type system.

Formal certification of data-flow analyses, especially for Java bytecode, is the subject of a number of
recent works. Albert et al.’s analysis-carrying code [2] highlights that analysis results can serve as analy-
sis certificates allowing for lightweight checking (without fixpoint re-computation, only fixpoint checking).
Besson, Jensen et al. [14] have taken a more foundational approach, certifying also soundness of analysis
algorithms and address the issue of minimising certificate size. Also foundational is the work by Beringer,
Hofmann et al. [13] on certified heap consumption analysis based on a type system specialising a program
logic.

4.8 Conclusions
We have shown that classical data-flow analyses, such as live variables analysis, can be certified on a variety
of levels, completely analogous to certification of program safety or functional correctness. To accept a
typing derivation in an analysis type system as a certificate of a computed analysis, one must believe in
the textbook definition of the analysis (this is what the type system formalises) or in a justification of this
definition. To accept a derivation in the corresponding Hoare logic for abstract properties, it suffices to trust
the definition of the abstract property semantics (which is also the justification for the type system, but only
together with additional ideas about approximations). Finally, to accept a derivation in the Hoare logic for
future def/use traces, even this is not necessary: one must only believe in the trivial definition of the trace

53

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

semantics and in the definition of the abstraction of traces into liveness states. How much prerequisite trust
is required depends on the application, but a formalism is available for each level.

In the case of more foundational formalisms, one can ask what makes better certificates: direct deriva-
tions in the foundational formalism (obtainable from derivations in an applied formalism by translation) or
derivations in an applied formalism accompanied by a proof of soundness of the applied formalism wrt. the
foundational one. It is also an option to avoid trusting any program logics by relying instead on the descrip-
tions of their underlying program semantics and universal (meta)logic. The program logics and program
semantics we have presented here support the full spectrum of foundationalism.

54

Chapter 5

Road-Map for integrating the results into
the MOBIUS framework and future work

In this section we sketch shortly the next steps to be realised by this working task. In the immediate future
we will integrate the results achieved so far in the MOBIUS framework and tool suite. In detail this includes:

1. extending the presented translations and embeddings to treat all core features of the Java language
supported by MOBIUS. This includes object-oriented features like presence of an object heap, method
invocations or exceptions.

2. reformulation of the presented embeddings and translations in terms of the formalism developed and
used in MOBIUS. In particular in terms of Bicolano or the MOBIUS base logic instead of the partially
used external formalisms.

3. formalisation and implementation of the theoretic results within the suitable tools, like the Coq for-
malisation of the supported logics. This step depends on the completion of a modular extension
framework for Bicolano and the base logic. This extension framework is currently discussed and de-
veloped in Task 3.2. The framework will allow to add support for concepts like ghost variables in a
transparent manner. Transparent means that adding/removing or availability/absence of an extensions
affects only those parts of the system that depend on this particular extension.

4. defining a clear interface to verification condition/proof obligation generators and fixing the informa-
tion required to be provided by the user in order to perform the required analysis. This may result in
suggestions for extensions of the bytecode modelling language BML.

5. furthermore, possible impacts on the general format of certificates have to be examined in order to be
able to generate certificates from the found proofs and to achieve the desired uniform representation.

The above listed tasks, but especially the first three ones are scheduled for the immediate future. But
their is further work to be done in order to improve the practical use of the presented approaches.

An important milestone to be reached is to provide support for more elaborated security policies. For
information flow analyses the focus lies on the comprehensive treatment of declassification. Therefore we
plan to go systematically through the classification of these properties listed in [33]. We aim to develop and
provide support for most of the different mentioned property classes and to point out in detail, when certain
declassification properties cannot be treated in the suggested framework.

Last but not least, the developed approaches have to be analysed and evaluated with respect to scalability
and stability issues. These kinds of analyses are expected to answer questions about the growth of required
annotations, proofs and certificates—both in size and run-time—in relation to the program size as well as
the impact caused e.g. by changing a few lines of code. An admirable property would be that local changes
remain local and will not cause numerous proofs to be redone.

55

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

In order to gain empirical results how the approaches behave in practise case studies will be performed.
The case studies shall help to weight the theoretically gained insights in scalability and stability. This
is necessary as often theoretical problems might not be of practical relevance as the problematic cases
either occur only in rare cases and/or can be circumvented easily, e.g. by following or preventing certain
programming patterns. In addition, we expect from these case studies further feedback about strengthen
and weaknesses of the approaches as well as to shed light on potential optimisations.

56

Chapter 6

Conclusions

In this deliverable we gave an intermediate report of the current results achieved in the first months. We
presented two approaches that allow to embed type-based analysis for secure information flow into a logical
framework in detail. The presented approaches are complete wrt. to the original type-based systems, but
allow more programs to be proven secure than the original type systems. Further, the higher precision
and expressiveness allows to express more elaborated security policies within the same formalism. Further,
some first proofs show that the complexity for performing these analysis within the logical framework are
not significantly harder as long as the program to be checked could be proven secure in the type-based
system. The impact on growth of proofs, certificates and required program annotations differs between the
suggested approaches and has been analysed and quantified in the near future. The results will be important
for insights and improvements of the approaches concerning stability and scalability.

In addition a foundational certification for data-flow analysis has been presented, which provides a
foundational ground for type-based analysis and their representation in a Hoare style logic. The link between
type-based system and foundational logics allow further insights on how to ensure soundness of program
optimisations and allows to automatically compile functional correctness proofs of the original program into
proofs for the optimised version.

57

Bibliography

[1] W. Ahrendt, Th. Baar, B. Beckert, R. Bubel, M. Giese, R. Hı̈¿1
2nle, W. Menzel, W. Mostowski, A. Roth,

S. Schlager, and P. H. Schmitt. The KeY tool. Software and System Modeling, 2004. To appear.

[2] E. Albert, G. Puebla, and M. V. Hermenegildo. Abstraction-carrying code. In Logic for Programming
Artificial Intelligence and Reasoning, volume 3452 of Lecture Notes in Computer Science, pages 380–
397. Springer-Verlag, 2005.

[3] T. Amtoft, S. Bandhakavi, and A. Banerjee. A logic for information flow in object-oriented programs.
In Principles of Programming Languages, pages 91–102. Association of Computing Machinery Press,
2006.

[4] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In R. Giacobazzi, editor, Static
Analysis Symposium, volume 3148 of Lecture Notes in Computer Science, pages 100–115. Springer-
Verlag, 2004.

[5] G.R. Andrews and R.P. Reitman. An axiomatic approach to information flow in programs. ACM
Transactions on Programming Languages and Systems, 2(1):56–76, 1980.

[6] A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Logic in Computer Science,
page 247. IEEE Press, June 2001. Invited Talk.

[7] A. Banerjee and D. Naumann. Secure information flow and pointer confinement in a java-like language.
In Computer Security Foundations Workshop, page 253. IEEE Computer Society, 2002.

[8] G. Barthe, D. Naumann, and T. Rezk. Deriving an information flow checker and certifying compiler
for Java. In Symposium on Security and Privacy. IEEE Press, 2006.

[9] G. Barthe, D. Pichardie, and T. Rezk. Non-interference for low level languages. Technical report,
INRIA, 2006.

[10] P. D’Argenio G. Barthe and T. Rezk. Secure Information Flow by Self-Composition. In R. Foccardi,
editor, Computer Security Foundations Workshop, pages 100–114. IEEE Press, 2004.

[11] B. Beckert. A dynamic logic for the formal verification of Java Card programs. In I. Attali and
T. Jensen, editors, Java on Smart Cards: Programming and Security, volume 2041 of Lecture Notes in
Computer Science, pages 6–24. Springer-Verlag, 2001.

[12] N. Benton. Simple relational correctness proofs for static analyses and program transformations. In
Principles of Programming Languages, pages 14–25. Association of Computing Machinery Press, 2004.

[13] L. Beringer, Martin Hofmann, Alberto Momigliano, and Olha Shkaravska. Automatic certification of
heap consumption. In Logic for Programming Artificial Intelligence and Reasoning, volume 3452, pages
347–362. Springer-Verlag, 2005.

[14] F. Besson, T. Jensen, and D. Pichardie. Proof-Carrying Code from Certified Abstract Interpretation
and Fixpoint Compression. Theoretical Computer Science, 2006. Extended version of [?], to appear.

58

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

[15] Mobius Consortium. Deliverable 3.1: Bytecode specification language and program logic. Available
online from http://mobius.inria.fr, 2006.

[16] Coq development team. The Coq proof assistant reference manual V8.0. Technical Report 255, INRIA,
France, mars 2004. http://coq.inria.fr/doc/main.html.

[17] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Principles of Programming Languages, pages 238–252,
1977.

[18] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Principles of Pro-
gramming Languages, pages 269–282, 1979.

[19] A. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure information flow.
In R. Gorrieri, editor, Workshop on Issues in the Theory of Security. IFIP WG 1.7, ACM SIGPLAN
and GI FoMSESS, 2003.

[20] E. Denney and B. Fischer. Correctness of source-level safety policies. In Formal Methods Europe,
volume 2805 of Lecture Notes in Computer Science, pages 894–913. Springer-Verlag, 2003.

[21] R. Hähnle, J. Pan, P. Rümmer, and D. Walter. Integration of a security type system into a program
logic, 2007.

[22] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to foundational
proof-carrying code. Journal of Automated Reasoning, 31(3–4):191–229, 2003.

[23] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Foundations of Computing. MIT Press, October
2000.

[24] S. Hunt and D. Sands. On flow-sensitive security types. In Principles of Programming Languages,
Charleston, South Carolina, USA, January 2006. Association of Computing Machinery Press.

[25] P. Laud, T. Uustalu, and V. Vene. Type systems equivalent to data-flow analyses for imperative
languages. Theoretical Computer Science, 364(3):292–310, 2006.

[26] A. C. Myers. JFlow: Practical mostly-static information flow control. In Principles of Programming
Languages, pages 228–241. Association of Computing Machinery Press, 1999. Ongoing development at
http://www.cs.cornell.edu/jif/.

[27] G.C. Necula. Proof-carrying code. In Principles of Programming Languages, pages 106–119, New York,
NY, USA, 1997. Association of Computing Machinery Press.

[28] H.R. Nielson. A hoare-like proof system for analysing the computation time of programs. Science of
Computer Programming, 9:107–136, 1987.

[29] H.R. Nielson and F. Nielson. Flow logic: A multi-paradigmatic approach to static analysis. In The
Essence of Computation, Complexity, Analysis, Transformation, volume 2566 of Lecture Notes in Com-
puter Science, pages 223–244. Springer-Verlag, 2002.

[30] P. Rümmer. Sequential, parallel, and quantified updates of first-order structures. In Logic for Program-
ming Artificial Intelligence and Reasoning, volume 4246 of Lecture Notes in Computer Science, pages
422–436. Springer-Verlag, 2006.

[31] A. Saabas and T. Uustalu. Program and proof optimizations with type systems. Submitted, 2006.

[32] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE Journal on Selected Areas
in Communication, 21:5–19, January 2003.

59

http://mobius.inria.fr
http://coq.inria.fr/doc/main.html
http://www.cs.cornell.edu/jif/

MOBIUS Deliverable D3.2 Intermediate report on embedding type-based analysis into program logics

[33] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In IEEE Computer Security
Foundations Workshop, pages 255–269. IEEE Press, 2005.

[34] R.E. Strom and D.M. Yellin. Extended typestate checking using conditional liveness analysis. IEEE
Transactions on Software Engineering, 19(5):487–485, 1993.

[35] R.E. Strom and S. Yemini. Typestate: a programming language concept for enhancing software relia-
bility. IEEE Transactions on Software Engineering, 12(1):157–171, 1986.

[36] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal of Computer
Security, 4(3):167–187, 1996.

60

	1 Introduction
	1.1 Type and logic-based systems
	1.1.1 Type-based systems
	1.1.2 Program logics

	1.2 Terminology and notation
	1.3 Translation approaches in comparison
	1.4 Structure of the deliverable

	2 Integration of a security type system into a program logic
	2.1 Background
	2.1.1 Non-interference analysis and declassification
	2.1.2 A program logic with updates

	2.2 Interpreting the type system in dynamic logic
	2.2.1 Abstraction-based calculi
	2.2.2 Simulating type derivations in dynamic logic
	2.2.3 Higher precision and delimited information release

	2.3 Ongoing and future work
	2.3.1 Lifting to the MOBIUS program logic
	2.3.2 Improving support for declassification properties and further future work

	3 Non-interference protection in a program logic
	3.1 Introduction
	3.2 Preliminaries
	3.3 Translation from the information flow system
	3.4 Proof of non-interference
	3.4.1 Proof of stability

	3.5 Related work and conclusions

	4 Foundational certification of data-flow analysis
	4.1 Introduction
	4.2 A natural semantics and type system for live variables
	4.3 A Hoare logic for live variables
	4.4 A natural semantics and Hoare logic for future defs, uses
	4.5 Conditional liveness
	4.6 Dead code elimination
	4.7 Related work
	4.8 Conclusions

	5 Road-Map for integrating the results into the MOBIUS framework and future work
	6 Conclusions

