
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D3.7

Report on multithreading

Due date of deliverable: 2009-03-01(T0+42)

Actual submission date:

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: INRIA

Final version

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

INRIA 1, 2, 3, 4, 5

RUN 1, 3, 5

UEDIN 1, 2, 5

This document was written by David Aspinall (UEDIN), Christian Haack (RUN), Marieke Huisman (INRIA),
Clément Hurlin (INRIA), Gustavo Petri (INRIA), Erik Poll (RUN) and Jaroslav Ševč̀ık (UEDIN).

2

Executive Summary:
Report on multithreading

This document summarizes deliverable D3.7 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including this
deliverable, is available on-line at http://mobius.inria.fr.

This document describes the final results of Task 3.3 on the verification of multithreaded applications. We
describe the semantics of multithreaded Java (considering both the Java Memory Model, and the behavior
at bytecode level, including relevant instructions and native methods), and we describe a program logic,
based on separation logic with permissions. Finally, we show how the program logic also can be used to show
that a program adheres to a certain usage protocol, and to derive provably correct program transformations.
This summarizes the research published in [3, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 15, 16].

The document is structured as follows. Chapter 2 describes how a formal model of the Java Memory
Model can be used to derive whether standard program transformations are behavior preserving. It also
presents a complete formalization of the multithreaded Java Virtual Machine, including monitor-related
instructions, relevant native methods (such as thread creation, and the wait-notify mechanism), exceptions
and the interrupt mechanism. For any data race free program, its behavior can be described with this
formalization.

Chapter 3 describes a variant of separation logic with permissions, that handles all relevant features
of multithreaded Java, i.e., it deals with object-orientation, the fork-join mechanism and reentrant locks.
Because of the combination with abstract predicates, the permission system gives an elegant and expressive
specification and verification system. This is illustrated on the (concurrent) Iterator pattern.

Finally, Chapter 4 shows two derived uses of the program logic. First it shows how it can be used to
specify usage protocols, that describe in what order methods may be called. Second it shows how a program
that is proven correct can be parallelized and optimized, together with its correctness proof. The structure
of the correctness proof is used to decide which optimizations can be applied.

3

http://mobius.inria.fr

Contents

1 Introduction 5

2 Semantics of Multithreaded Java 7
2.1 Validity of Program Transformations in the Java Memory Model 7

2.1.1 Transformations by Example . 7
2.1.2 Proving Validity of Transformations . 9
2.1.3 Invalid Transformations . 9

2.2 BicolanoMT . 10
2.2.1 Data Structures . 10
2.2.2 Interleaving Semantics . 11

3 Separation Logic for a Multithreaded Java-like Language 13
3.1 Separation Logic for a Java-like Language with Fork/Join . 13
3.2 Separation Logic for Java’s Reentrant Locks . 14

3.2.1 Initializing resource invariants. 15
3.2.2 Locking and unlocking. 15

3.3 Resource Usage Protocols for Iterators . 16

4 Other Uses of the Program Logic 18
4.1 Specifying and Checking Protocols of Multithreaded Classes 18

4.1.1 Specifying protocols . 18
4.1.2 Checking protocols . 19

4.2 Automatic Parallelization and Optimization of Programs by Proof Rewriting 19

5 Conclusions 22

4

Chapter 1

Introduction

Multithreading is one of the major challenges in verifying security requirements on applications in global
computing scenarios. In the last decade, several logics (and tools) have been developed to reason about
single-threaded programs [29, 35, 50]. For multithreaded applications, initial theoretical investigations have
been made to develop a logic-based verification method [1, 2, 49, 44], but so far this has not led to a practical,
tool-supported method, with the possible exception of [34], as the most mature approach to date.

This report describes the outcome of our investigations on how to develop a practical and sound ver-
ification technique for multithreaded applications. To achieve this goal, we concentrated on two different
aspects: the semantics of multithreaded Java and the development of a practical verification method.

Our investigations concerning the semantics of multithreaded Java are described in Chapter 2. First, we
have further investigated the Java Memory Model [39], which describes all legal executions of a multithreaded
application. The intermediate deliverable described a formalization of the Java Memory Model, this report
presents how it can be proven that program transformations are behavior preserving. We also show that some
common program transformations are not safe. An important feature of the Java Memory Model is that it
guarantees that programs without race conditions can be described by an interleaving semantics. Therefore,
in the intermediate report on multithreading, we presented a revival of the RCC race condition checker and
on-going work on the formalization of an interleaving semantics for multithreaded Java bytecode, called
BicolanoMT. This report presents the completion of BicolanoMT. Compared to the initial presentation,
exceptions and the interrupt mechanism have been added. In addition, the extension mechanism of Czarnik
and Schubert [14] has been used to reuse the sequential Bicolano formalization as much as possible. This
sequential Bicolano semantics was developed in Task 3.1 (see in Deliverable 3.1 [40]) and the formalisation
is available on-line at http://mobius.inria.fr/twiki/bin/view/Bicolano.

Concerning the development of a practical verification method, described in Chapter 3, our investigations
have resulted in a program logic, based on separation logic with permissions [11, 10], for a multithreaded
object-oriented language with a fork-join mechanism (i.e., dynamic thread creation and termination) and
reentrant locks, thus supporting the main characteristics of multithreaded Java. An important feature of
our specification language is the support for abstract predicates, which results in a flexible and expressive
specification mechanism. To illustrate the approach, it has been applied to the commonly used (concurrent)
Iterator pattern.

Finally, the development of the program logic also gave rise to different derived methods that help to
construct correct programs. Chapter 4 gives two examples. First, we show how the program logic can be
used to specify and check adherence to usage protocols, that describe the order in which different methods
in a class must be called. Second, we present an approach to parallelize and optimize programs in a provably
correct way. This technique requires a correctness proof for a (sequential) program, and it uses the structure
of the proof to transform the program and its correctness proof. Program transformations that are supported
by this method are not only parallelization, but also for example early disposal and late allocation of objects,
and early releasing and late acquiring of locks.

Compared to the intermediate report on multithreading, we have not further investigated explicitly the

5

http://mobius.inria.fr/twiki/bin/view/Bicolano

MOBIUS Deliverable D3.7 Report on multithreading

notions of contract-atomicity, contract-independence, thread ownership and several other proposed key-
words, as the need for this was subsumed by the development of the specification language with permissions
and abstract predicates, which allows to express these concepts in an elegant and uniform way.

This report summarizes the following papers:

• Section 2.1 summarizes results on the validity of program transformations in the Java Memory Model
from [16] and Jaroslav Ševč́ık’s PhD thesis [15], which buids on earlier work [3, 30] in this task;

• Section 2.2 summarizes [31], which describes BicolanoMT;

• Section 3.1 summarizes [25, 26], which describe the program logic for the fork-join mechanism;

• Section 3.2 summarizes [22, 23], which describe the program logic for reentrant locks;

• Section 3.3 summarizes [24, 27], which describe the use of the program logic for resource usage proto-
cols, using the Iterator pattern as leading example;

• Section 4.1 summarizes [33], which discusses the use of the program logic to specify and check adherence
to protocols;

• Section 4.2 summarizes [32], which proposes a technique to obtain provably correct program transfor-
mations using proof trees.

In addition to the papers mentioned above, the work in chapters 3 and 4 will also be the subject of Clément
Hurlin’s forthcoming PhD thesis.

6

Chapter 2

Semantics of Multithreaded Java

We distinguish two different topics that are relevant for the description of the semantics of multithreaded
Java. The first is the Java Memory Model [39], which describes all legal behaviors of a Java program. In
the earlier, intermediate deliverable, we described a formalization of the Java Memory Model’s guarantee
for data race free programs. Below, we investigate legality of common program transformations in the
Java Memory Model (JMM). That is, we address the question whether program optimizers implement
the Java Memory Model. Second, we study the behavior of race-free programs. This behavior can be
captured by an interleaving semantics. For program verification, we assume that programs are (proven to
be) race-free – the behavior of programs with race conditions is too complex to prove their correctness.
To provide a formal basis, we extend the Bicolano formalization of the Java Virtual Machine [46, 40]
with interleaving, typical multithreaded instructions (monitorenter and monitorexit), relevant native
methods (e.g., Thread.start(), Thread.join(), Thread.wait() and Thread.notify()), exceptions and
the interrupt mechanism.

2.1 Validity of Program Transformations in the Java Memory Model

In our earlier work, we have verified that the Java Memory Model guarantees interleaving semantics for
data race free programs [30, 3], the so-called DRF guarantee. This guarantee allows us to reuse standard
reasoning based on interleaving semantics for data race free programs. The other goal of the Java Memory
Model was to enable as many program transformations as possible. In this deliverable we describe our
investigation of validity of standard thread-local transformations.

We summarise our results in Table 2.1. We have a formal proof for each legal transformation and a
counterexample for each illegal transformation [15]. The table shows validity of transformations under three
memory models:

SC stands for sequential consistency, i.e., the interleaving semantics.

DRF guarantee column shows which transformations maintain interleaving semantics for data race free
programs. The question mark means that we have neither a proof of validity nor a counterexample.
We conjecture that the irrelevant read introduction is valid.

JMM column shows validity in the Java Memory Model.

We only consider transformations on adjacent statements, although the underlying trace-semantic tech-
niques can be used to reason about more complex transformations, such as hoisting reads/writes from a
loop. Below, we describe the transformations using simple examples.

2.1.1 Transformations by Example

In the examples, x and y stand for shared memory locations, r1, r2 for thread-local locations, and m for a
synchronisation monitor.

7

MOBIUS Deliverable D3.7 Report on multithreading

Table 2.1: Validity of transformations in the DRF guarantee and in the JMM.
Transformation SC DRF guarantee JMM

Trace-preserving transformations X X X
Reordering normal memory accesses × X ×
Redundant read after read elimination X X ×
Redundant read after write elimination X X X
Irrelevant read elimination X X X
Irrelevant read introduction X ? ×
Redundant write before write elimination X X X
Redundant write after read elimination X X ×
Roach-motel reordering ×(Xfor locks) X ×
External action reordering × X ×

Trace-preserving transformations do not alter any trace of shared memory operations on any compu-
tation path of the program. For example,

r1 = y; r2 = (r1 == 0) ? x : x −→ r1 = y; r2 = x

Reordering normal memory accesses reorders independent non-volatile memory accesses:

r1 = y; x = 1 −→ x = 1; r1 = y

Redundant read after read elimination reuses a value from a previous non-volatile read of the same
variable:

r1 = x; r2 = x −→ r1 = x; r2 = r1

Redundant read after write elimination replaces a non-volatile read with a local value if the value is
known from a previous write:

x = 1; r2 = x −→ x = 1; r2 = 1

Irrelevant read elimination removes a non-volatile read if its value is not used:

r1 = x; r1 = 1 −→ r1 = 1

Irrelevant read introduction is an inverse of the previous transformation:

x = 1; r2 = x −→ x = 1; r2 = 1

Redundant write before write elimination removes an overwritten non-volatile write:

x = 1; x = 2 −→ x = 2

Redundant write after read elimination removes a write if it is known that the location has the value
that is being written:

r1 = x; x = r1 −→ r1 = x

Roach-motel reordering reorders a non-volatile memory access with a following acquire action (i.e., a
lock or a volatile read) or with a previous release action (i.e., an unlock or a volatile write):

x = 1; lock m −→ lock m; x = 1

External action reordering swaps an I/O action with an independent memory access:

x = 1; print 0 −→ print 0; x = 1

8

MOBIUS Deliverable D3.7 Report on multithreading

x = y = 0

r1=x r2=y

y=r1 x=(r2==1)?y:1

print r2

−→

x = y = 0

r1=x r2=y

y=r1 x=1

print r2

−→

x = y = 0

r1=x x=1

y=r1 r2=y

print r2

Figure 2.1: Hotspot JVM’s transformations violating the JMM.

2.1.2 Proving Validity of Transformations

To establish the validity results, we have developed a trace semantic framework where the semantics of a
program is a set of traces of its threads. For example, the meaning of the program

Thread 1: x := 1; y := 1; v := 1;

Thread 2: if (v > 0) print x + y;

is essentially the set of traces

{[S(T1),W(x, 1),W(y, 1),W(v, 1)]} ∪ {[S(T2),R(v, v)] | v ≤ 0} ∪
{[S(T2),R(v, t),R(x, u),R(y, v),X(u+ v)] | t > 0, u, v ∈ Z}

where S(t) is a start action of thread t, R(x, v) (resp. W(x, v)) is a read of value v from (resp. a write of
value v to) shared location x, and X(v) is an output of v.

We describe the program transformations as relations on sets of traces. To show validity in the Java
Memory Model, we take an execution of the transformed program and construct an execution of the original
program with the same behaviour. We obtain the execution by ‘undoing’ the transformations on the traces
of threads in the execution and construct an execution of the original program together with the committing
sequence for the execution.

To prove the DRF guarantee for the transformations, we use a similar overall procedure, but we can
assume that the original program was data race free and we only need to find an interleaving of the original
program with the same behaviour. We also show that all the considered transformations (except the irrele-
vant read introduction) preserve data race freedom. This implies that any composition of the transformations
is safe. For details, see [15].

2.1.3 Invalid Transformations

Unfortunately, we have discovered serious problems in the JMM—several important transformations are
invalid in the Java Memory Model. The transformation in Figure 2.1 illustrates this on an example. The
first program in the figure cannot print 1 in the Java Memory Model (for details, see [16]). A typical
optimising compiler may reuse the value of y in r2 and transform

x=(r2==1)?y:1 → x=(r2==1)?r2:1 → x=1

as shown by the first transformation in Figure 2.1. Then it may reorder the write to x with read of y, yielding
the last program in Figure 2.1. Observe that this transformed program can print 1 using the interleaving
x=1, r1=x, y=r1, r2=y, print r2.

This is serious flaw in the JMM because the model was designed to validate such transformations. We
have contacted the authors of the model and they acknowledged the problem and confirmed that it would
not be easy to fix.

It is less clear whether this is a serious problem in practice. On one hand, even Sun’s HotSpot JVM
performs the optimisation from Figure 2.1 and programs can exhibit behaviours that are forbidden by the
specification. For details, see [17]. On the other hand, we believe that the JVM does not perform any
optimisation that violates the DRF guarantee or out-of-thin-air guarantees (note that there are data races
in the programs in Figure 2.1). This claim is strongly supported by our investigation of transformations

9

MOBIUS Deliverable D3.7 Report on multithreading

in the DRF guarantee described in the previous subsection. Therefore, programmers probably need not
worry about the semantics of their data race free programs—Sun’s JVM still seems to provide the strong
guarantees of the JMM even though it does not implement the memory model precisely.

2.2 BicolanoMT

BicolanoMT is the extension of Bicolano – the formalization of the Java Virtual Machine Specification devel-
oped by D. Pichardie et al. [46, 40] – with multithreading. In particular, we add instructions monitorenter
and monitorexit, and we provide a semantics for the (non-deprecated) native methods related to con-
currency (start, join, wait, notify and notifyAll). Moreover, we model the interrupt mechanism of
Java.

The main benefits provided by the BicolanoMT formalization include the following:

• The formalization is faithful to Java, i.e., a bytecode class can be directly mapped into the Coq
representation that we use, and no artificial code transformations – such as wrapping the body of a
synchronized method in a synchronized statement block – are necessary.

• Since we describe the Java semantics at bytecode level, our formalization has the right level of gran-
ularity to handle multithreading, i.e., interleaving of sequential instructions is described naturally.
Moreover, in contrast to source code level formalizations (like [38]), we do not have to add special tags
to mark that execution is within a synchronized block.

• Sequential Bicolano has been used to show soundness of program logics and type systems for secure
information flow. Our extension for multithreading allows extending these soundness results for mul-
tithreaded programs (e.g., an extension of the program logic with rely-guarantee, or a formalization of
a type system for secure information flow of multithreaded programs [7], where the sequential part is
already formalized [6]). Moreover, using Coq’s extraction mechanism, we can get the implementation
of a verified verification condition generator or type checker for free.

Based on the Data Race Freeness guarantee provided by the Java memory model (JMM) [39], we can
consider an interleaving semantics only, abstracting away from all the details of the JMM. This guaran-
tee ensures that all correctly synchronized programs only exhibit behaviors described by an interleaving
semantics. Program analyses and logics proved with this semantics will thus be valid for correctly synchro-
nized programs. We resort to existing data race detection static analyses to reject incorrectly synchronized
programs [18, 41, 42] (see also the revival of the RCC checker described in the intermediate deliverable).
Interestingly, programs containing data races can also be treated with our formalization, provided that the
semantics of these races is described by some interleaving of the threads (i.e., benign data races).

On a more technical side: to separate the multithreading concerns from those of the sequential Bicolano
formalization, and to better adapt to future changes in Bicolano — upon which BicolanoMT depends — we
have applied the extension framework proposed by Czarnik and Schubert [14]. Their framework enables the
extension of the Bicolano semantics with additional information and/or additional behavior. In particular,
we use the vertical extension mechanism described there, adding extra information to the state definition,
and adding new cases to the step relation. Note that the extensions are constructive, in the sense that they
only add consistent behaviors.

In what follows we will give a flavor of the BicolanoMT formalization, and highlight its most important
constituents. This is by no means a complete report on BicolanoMT. We refer the interested reader to [31]
for a more detailed description.

2.2.1 Data Structures

Several data structures present in Bicolano must be extended in order to account for multithreading. Here
we present the most important changes.

10

MOBIUS Deliverable D3.7 Report on multithreading

Module Type HEAP_MT.

Declare Module Heap : HEAP.

Import Heap.

Parameter lock : t -> Location -> ThreadId.t -> t.

Parameter unlock : t -> Location -> ThreadId.t -> t.

Parameter getLockLevel : t -> Location -> ThreadId.t -> nat.

Parameter getWaitLockLevel : t -> ThreadId.t -> nat.

Parameter getWaitset : t -> Location -> ThreadSet.t.

Inductive waitFor_and_unlock h loc tid h’ : Prop := ...

End HEAP_MT.

Figure 2.2: Fragment of Multithreaded Heap definition

Firstly, we must adapt the sequential definition of the program to several concurrent threads. Thus,
we define the Thread abstract module type that contains the type definition of threads. Threads can be
either in normal state or in exceptional state; their difference being that exceptional threads current frame
is exceptional (i.e., it contains a raised exception). The callstack of each thread is recorded in this data
structure, as well as its execution state (one of: runnable, blocked, waiting or terminated), and a flag
recording whether the thread has been interrupted (via the Thread.interrupt() method for example).

Module Type THREAD.

Inductive t : Type :=

normal : Frame.t -> CallStack.t -> ThreadState.t -> Interruption -> t

| exception : ExceptionFrame.t -> CallStack.t -> ThreadState.t ->

Interruption -> t.

End THREAD.

To keep track of the several threads, we specify the ThreadMap data structure. The thread map basically
is a mapping from thread identifiers to thread instances.

The most important modification to the sequential Bicolano framework is the Heap data structure, which
is replaced by the HeapMT structure, since the multithreaded version of the heap must account for monitor
instructions, namely monitorenter and monitorexit, as well as instructions regarding the wait() and
notify() native methods provided by the Thread class. However, note that this definition of HeapMT reuses
the definition of Heap. We have specified all these operations by means of an abstract type that defines the
more abstract lock and unlock operations that will be the building blocks of the semantics of the Java
multithreaded instructions. The most relevant part of the HeapMT specification can be found in Figure 2.2.

Finally, the last definition that needs to be augmented is the State. The multithreaded state (MT_State)
keeps record of a single current thread that is the one being scheduled for execution, and a thread map. It
also provides means to update (or re-schedule) a new thread. An important remark is that the MT_State data
structure is conservative, in the sense that it reconstructs the multithreaded state from a sequential Bicolano
state, and the information provided by the thread map. This is required by the extensional framework of
Czarnik and Schubert.

2.2.2 Interleaving Semantics

The multithreaded interleaving semantics builds on top of the sequential semantics. It performs an ex-
tra check; namely that the thread is in runnable state and that is has not been interrupted. Also,
semantic cases for all the multithreaded instructions are given (which include exceptional cases). The list
of instructions added to the sequential semantics contains: native_start, monitorenter, monitorexit,
invoke_synch corresponding to the invocation of a synchronized method, native_wait, native_notify,
native_notifyAll, and native_interrupt. The native_ prefix is given to instructions that are not part

11

MOBIUS Deliverable D3.7 Report on multithreading

| monitorenter_nonblocking_mtstep_ok : ...

instructionAt m pc = Some monitorenter -> ...

lockable h loc tid ->

h’ = Heap_mt.lock h loc tid -> ...

Support.additional_step p sst (St h’ f’ cs) sst’ ->

tmap’ = ThreadMap.update tmap tid (Tr f’ cs runnable it) ->

Some mtst’ = update mtst sst’ tid tmap’ ->

mt_step p mtst mtst’

Figure 2.3: Step monitorenter

of the instruction set, but rather implemented as native methods. Since these methods are crucial for giving
a sensible semantics to multithreaded Java we have included them by means of these extra instructions.

For brevity we will only explain the monitorenter and monitorexit specification, as a paradigmatic
example. The specification of the other relevant instructions can be found in [31].

The monitorenter and monitorexit bytecode instructions lock and unlock Java monitors. Both take
as parameter a reference whose lock must be acquired or released, respectively. Figure 2.3 shows the
formalization of a monitorenter instruction that succeeds to acquire the lock1. First, the heap is checked
for the state of the lock. If it is free or acquired by the same thread, lockable holds. In that case the lock
is acquired by the thread, and the heap and state are updated. The case in which the lock is not free is not
shown, but the main difference is that the heap is not updated, and the thread state of the thread is changed
to blocked, meaning that the thread is only able to re-attempt to acquire the lock. BicolanoMT also specifies
all the exceptional cases documented in the JVM Specification. The formalization of monitorexit is similar,
but the predicate locked_by is checked instead, and an IllegalMonitorStateException is thrown when
the lock is not held.

Finally, it is important to notice that all the exceptional cases, as well as all possible interactions of the
different thread states and instructions (as well as native methods) are specified in the semantics. Therefore
the number of cases considered is significant (around 500 lines of Coq specification). However, we do not
formalize thread groups, timing and class loading, as these are not allowed in the MIDP framework, which
is the target domain for verification techniques developed within MOBIUS.

1Only the relevant conditions are shown.

12

Chapter 3

Separation Logic for a Multithreaded
Java-like Language

This chapter describes the development of a sound and practical verification method to reason about mul-
tithreaded applications in a Java-like language.

Recently, separation logic [48] made a dent into program verification by taming problems related with
aliasing. Initially, separation logic has been applied to simple while languages [48, 8]. Later, separation
logic has been lifted to more realistic programming languages, including parallel languages [44, 20] and
object-oriented languages [45].

The preliminary results described in the intermediate deliverable evolved into an extension of permission-
based separation logic [25, 26, 24, 27, 22, 23] to reason about applications written in a Java-like language.
Our program logic features an expressive and flexible specification language, that subsumes the need for
explicit keywords, as presented in the intermediate report. Previous work on object-oriented separation logic
existed [45], however, it was restricted to sequential programs. We extended this work in several ways. First,
we lifted it to deal with Java’s fork/join style of parallelism [25, 26]. Second, we crafted new proof rules
for reentrant locks, i.e., locks that can be acquired more than once [22, 23]. Reentrant locks are a common
primitive of modern programming languages such as Java. We applied our system against various flavors
of a concurrent iterators [24, 27]. Notice that a similar technique has recently been added to the Boogie
methodology [37]. However, instead of using separation logic directly, they encode fractional permissions
into BoogiePL.

The next chapter shows how the program logic can be used in derived ways: (1) to specify usage protocols
of multithreaded classes and to check such protocols against method contracts, and (2) to apply provably
correct program optimizations.

3.1 Separation Logic for a Java-like Language with Fork/Join

In [25, 26], we present new proof rules for a Java-like language with threads and fork/join as concurrency
primitives. In order to facilitate concurrent reads we employ fractional permissions [11]. Our rules allow
multiple threads to join on the same thread, in order to read-share the dead thread’s resources. This is not
possible with a lexically scoped parallel composition operator. Below we present our rules informally. To
help the reader understand these rules, we recall that, in separation logic, formulas also denote permissions
to access part of the heap. In particular, a thread’s precondition (specified for the special method run)
represents the part of the heap that can legally be accessed by a thread during its life time, while a thread’s
postcondition represents the part of the heap that can be transferred to other threads after a thread has
terminated. Our rules for fork and join are as follows (where t denotes a thread):

F is t’s precondition
(Fork)

{F}t.fork(){true}
F is t’s postcondition

(Join)
{Join(t, π)}t.join(){π · F}

13

MOBIUS Deliverable D3.7 Report on multithreading

The rule for fork expresses that, when a thread is created, it obtains permissions to write to the
heap from its parent thread. The rule for join expresses that, when a dead thread is joined, it hands back
permissions to write to the heap to the joining thread. This is expressed by the joining permission Join(t, π)
and the scaling operation π · F . In these formulas, π is a fraction in (0, 1]. Join(t, π) expresses that the
joining thread will obtain fraction π of t’s postcondition. For example, if π is 1, the joining thread obtains
the entire part of the heap that was accessible by the dead thread. This is expressed by the scaling operation
π · F which represents fraction π of formula F . If π = 1, then π · F = F .

To support data abstraction and recursive data types, we use abstract predicates [45]. Abstract predicates
are declared at the class level, à la JML [36], with the keywords pred and group. Abstract predicates
declared with the group keyword must satisfy a split/merge axiom. The split/merge axiom is used to define
the scaling operation π · F used in (Join)’s postcondition. Class Point exemplifies an abstract predicate
satisfying the split/merge axiom:

class Point extends Object{

int x,y;

//@ pred state<perm p> = Perm(x,p) * Perm(y,p);

//@ requires state<1>; ensures state<1>;

void shiftBy(int x,int y){

this.x += x; this.y += y;

}

}

Class Point declares an abstract predicate state. The resource conjunction F *G expresses that F and
G describes disjoint parts of the heap. The Perm predicate Perm(x,p) asserts permission to read (if p<
1) or write (if p = 1) to this.x. The state predicate represents permission p to access fields x and y of
instances of class Point. The state predicate is parameterized by permission p to distinguish between read
and write operations: state<1> represents permission to read and write to fields x and y, while state<p>

for any p < 1 represents permission to readonly access fields x and y. À la JML, the keyword requires

indicates the beginning of the precondition (aka requires-clause), and the keyword ens the beginning of the
postcondition (aka ensures-clause). Because method shiftBy requires write access to fields x and y, it has
state<1> as its precondition. In [25], we show how abstract predicates satisfying the split/merge axiom are
useful to specify that objects can be shared among multiple threads.

3.2 Separation Logic for Java’s Reentrant Locks

In [22, 23], we present new proof rules for a Java-like languages with reentrant locks. Reentrant locks
can be acquired twice or more and, as already mentioned, are a common primitive of modern programming
languages such as Java. Reentrant locks are considered to be a facility for programmers because programmers
do not have to worry if a lock is acquired or not before acquiring it. While reentrant locks facilitates the
task of programming, they complicate the underlying proof systems: proof systems for reentrant locks have
to distinguish between initial and reentrant acquiring of locks.

In separation logic [44], the programmer formally associates locks with pieces of heap space, and the
verification system ensures that a piece of heap space is only accessed when the associated lock is held.
The piece of heap space guarded by a lock is called the lock’s resource invariant. Our first achievement
was to modularly specify the resource invariant of objects. In Java, each object has an associated reentrant
lock, its object lock. Naturally, the resource invariant that is associated with an object lock is specified in
the object’s class. For subclassing, we need to provide a mechanism for extending resource invariants in
subclasses in order to account for extended object state. To this end, we represent resource invariants as
abstract predicates [45]: resource invariants are distinguished abstract predicates named inv. They have a
default definition in the Object class and are meant to be extended in subclasses:

14

MOBIUS Deliverable D3.7 Report on multithreading

class Object { ... pred inv = true; ... }

The resource invariant o.inv can be assumed when o’s lock is acquired non-reentrantly and must be es-
tablished when o’s lock is released with its reentrancy level dropping to 0. Regarding the interaction with
subclassing, there is nothing special about inv. It is treated just like other abstract predicates.

In separation logic for single-entrant locks [44], locks can be acquired without precondition. For reentrant
locks, on the other hand, it seems unavoidable that the proof rule for acquiring a lock distinguishes between
initial acquires and re-acquires. This is needed because it is quite obviously unsound to simply assume the
resource invariant after a re-acquire. Thus, a proof system for reentrant locks must keep track of the locks
that the current thread holds. To this end, we introduce two new formulas: Lockset(S) and S contains o
(where S denotes a multiset of objects). Informally, Lockset(S) means that S is the multiset of locks held
by the current thread. Multiplicities record the current reentrancy level i.e., the number of times locks have
been acquired. S contains o means that multiset S contains object o.

While lockset and contains track the state of threads, we also need formulas to track the state of
locks. Like class invariants must be initialized before method calls, resource invariants must be initialized
before the associated locks can be acquired. In O’Hearn’s simple concurrent language [44], the set of locks is
static and initialization of resource invariants is achieved in a global initialization phase. This is not possible
when locks are created dynamically. Conceivably, we could tie the initialization of resource invariants to the
end of object constructors. However, this is problematic because Java’s object constructors are free to leak
references to partially constructed objects (e.g., by passing this to other methods). Thus, in practice we have
to distinguish between initialized and uninitialized objects semantically. Furthermore, a semantic distinction
enables late initialization of resource invariants, which can be useful for objects that remain thread-local for
some time before getting shared among threads. To support flexible initialization of resource invariants, we
introduce two more formulas: o.fresh and o.initialized. o.fresh means that o’s resource invariant is not
yet initialized. o.initialized means that o’s resource invariant has been initialized.

3.2.1 Initializing resource invariants.

The fresh-predicate is introduced as a postcondition of new:

(New)
{true}o = new(){o.fresh * . . . }

The specification command o.commit triggers o’s transition from the fresh to the initialized state,
provided o’s resource invariant is established:

(Commit)
{Lockset(S) * o.inv * o.fresh}

o.commit
{Lockset(S) * !(S contains o) * o.initialized}

3.2.2 Locking and unlocking.

There are two rules each for locking and unlocking, depending on whether or not the lock/unlock is
associated with an initial entry or a reentry (where · denotes multiset union):

(Lock)
{Lockset(S) * !(S contains o) * o.initialized}

o.lock()
{Lockset(S · o) * o.inv}

(Re-Lock)
{Lockset(S)}
o.lock()

{Lockset(S · o)}

The rule (Lock) applies when lock o is acquired non-reentrantly, as expressed by the Hoare triple’s precon-
dition: Lockset(S) * !(S contains o). The precondition o.initialized makes sure that (1) threads only
acquire locks whose resource invariant is initialized, and (2) no null-error can happen (because initialized
values are non-null). The postcondition adds o to the current thread’s lockset, and assumes o’s resource
invariant. The rule (Re-Lock) applies when a lock is acquired reentrantly.

Next we present the rules for releasing locks:

15

MOBIUS Deliverable D3.7 Report on multithreading

ready readyFor
Next

readyFor
Remove

init
hasNext()==true

 element=next()
get access right for element

remove()abandon access
right for element

init(c)
abandon access

right for c

hasNext()

abandon
iterator and

get back access
right for c

Figure 3.1: Usage Protocol of the Iterator interface

(Unlock)
{Lockset(S · o · o)}

o.unlock()
{Lockset(S · o)}

(Re-Unlock)
{Lockset(S · o) * o.inv}

o.unlock()
{Lockset(S)}

The rule (Unlock) applies when o’s current reentrancy level is at least 2, and (Re-Unlock) applies when o’s
current reentrant level might be 1.

3.3 Resource Usage Protocols for Iterators

In [24, 27], we study various flavors of a concurrent iterator and its usage protocol and show how this
protocol can be expressed in our extension of separation logic [25]. Usage protocols for iterators are meant
to prevent so-called concurrent modifications of the underlying collection: while an iterator over a collection
is in progress, the collection should not get modified by other actions that interleave with the iteration1.
Concurrent modifications need to be prevented, because they may temporarily break invariants of the
collection, resulting in iterators seeing collections in inconsistent states. Concurrent modifications can be
caused both by modifications of the collection itself (i.e., adding or removing collection elements), or in some
cases by modification of the collection elements (i.e., resetting fields of collection elements).

In Java, the Collection and Iterator interfaces are as follows:

interface Collection{

Iterator iterator();

}

interface Iterator{

boolean hasNext();

Object next();

void remove();

}
Figure 3.1 depicts Interface Iterator’s protocol: hasNext() must be called first, then next() should

be called if hasNext() returned true before, and then remove() may be called if the iterator is read-write
(it can read and write to the iteratee), and so on. Here is the Iterator interface that formalizes Figure 3.1:

interface Collection {

//@ requires this.space; ensures result.ready;

Iterator/*@<this>@*/ iterator();

1Such interleaving actions may execute in the same thread as the iterator.

16

MOBIUS Deliverable D3.7 Report on multithreading

}

interface Iterator/*@<Collection iteratee>@*/ {

//@ pred ready;

//@ pred readyForNext;

//@ pred readyForRemove<Object element>;

//@ axiom ready -* iteratee.space;

//@ axiom (fa Object e)(readyForRemove<e> * e.space -* ready);

//@ requires ready; ensures ready & (result -* readyForNext);

boolean hasNext();

//@ requires readyForNext;

//@ ensures readyForRemove<result> * result.space;

Object next();

//@ requires readyForRemove<Object>; ensures ready;

void remove();

}

This interface declares three abstract predicates ready, readyForNext and readyForRemove (where the
keyword fa denotes universal quantification). Interface implementations must define these predicates in
terms of concrete separation logic formulas. The predicate definitions must be such that the two class
axioms are tautologically true, and that the methods satisfy their contracts (after replacing the abstract
predicate symbols by their concrete definitions). Each class extends a generic predicate space, which has a
default definition in the Object class. This predicate should define the heap space that is associated with an
object — often consisting of the object fields only, but in the case of collections sometimes also including the
object spaces of the collection elements. Reference types and predicates may be parameterized by values.
For instance, the Iterator class is parameterized by the collection, and the readyForRemove predicate is
parameterized by the collection element that is ready to be removed. The &-operator represents choice. If
F & G holds, then F and G are available, but are interdependent: using either one of them destroys the
other, too. The &-operator can be used to represent non-deterministic state transitions, as exhibited in the
postcondition of hasNext(). The resource implication F -*G grants the right to consume F yielding G.

The protocol above is the basis of the protocols for various flavors of iterators [24]. We have shown how
to support (1) multiple read-only iterators over the same collection, (2) unrestricted access to immutable
collection elements, and (3) collections where the element access rights stay with the elements rather than
being governed by the collection. This confirmed our belief that our variant of separation logic is expressive
and powerful enough to handle real world case studies.

17

Chapter 4

Other Uses of the Program Logic

4.1 Specifying and Checking Protocols of Multithreaded Classes

4.1.1 Specifying protocols

In [33], we extend earlier work on specifying and checking protocols of classes [12] to deal with a variant of
generic classes (i.e., classes parameterized by Java values or specification values) and multithreaded classes
(i.e., classes such that multiple threads may execute a method simultaneously on instances of this class). To
show that method contracts are correct w.r.t. protocols, we generate programs that must be proven correct
(in analogy with traditional program verifiers [13] that generate proof obligations). Because little support
currently exists to help writing method contracts, our technique helps programmers to check their contracts
early in the development process.

Protocols are specified by means of regular expressions that indicate which methods can be called on an
object and in which order. As a general observation (cf. [12]), we note that many classes must be used in a
specific way by clients: for these classes it is important to be able to concisely express allowed method call
sequences. For example, clients of Java’s StreamBuffer interface must call method read() zero or more
time and then call method close() exactly once. This can be concisely specified by the following protocol:

read()*, close() (4.1)

We propose to specify such protocols at the class level with the keyword protocol. An advanced example
is the protocol for Java’s Iterator outlined in Section 3.3: hasNext() must be called first, then next()

should be called if hasNext() returned true before, and then remove() may be called if the iterator is
read-write (it can read and write to the iteratee), and so on. To express that iterators may have write-access
to the iteratee, we parameterize interface Iterator by a permission p (cf. [25]). If p is instantiated by 1, one
obtains a read-write iterator, otherwise a read-only iterator. Now, one can precisely and concisely express
the Iterator’s protocol as follows:

interface Iterator<perm p> {

protocol (v=hasNext(), v?(next(), p==1?(remove())))*;

boolean hasNext();

Object next();

void remove();

}

In the protocol above, v?(next(), p==1?(remove())) expresses that next and remove can be called
only if the previous call to hasNext returned true (in analogy with Java’s syntax for inlined conditional i.e.,
“b ? . . . : . . . ”). Similarly, p==1?(remove()) expresses that remove may be called only if the iterator is read-
write (i.e.,p is 1). We believe that such a formal specification (compared to Java’s informal documentation)
would help clients to use Iterators in a disciplined way.

18

MOBIUS Deliverable D3.7 Report on multithreading

4.1.2 Checking protocols

Finally, we propose a technique for checking that protocols are correct w.r.t. method contracts. The key
observation is that, because protocols specify in which order method calls must be done, it should be
checked that method contracts adhere to such an order. To check protocols, we generate programs that
can be verified with standard techniques using our variation of separation logic [25, 26, 22, 23]. If the
generated program cannot be proven correct, it means that the method contracts are incorrect w.r.t. the
protocol: some (client-provided) programs will fail to verify. As an example, to check that method contracts
of interface Iterator adhere to the Iterator’s protocol, one must verify the following program (where *

models non-deterministic choice):

requires ... * Perm(i.v,1);

ensures true;

void checkAdherence(Iterator<p> i){

... // initialization (not shown in Iterator’s interface)

while(*){

i.v = hasNext();

if(*){

assume(i.v); Object o = i.next();

if(*){ assume(i.p==1); i.remove(); }

}

}
}

One caveat is that the precondition of method contracts considered must be receiver splittable i.e., they
must have the form F op G (where op = {*, & }) and no method parameter (except this and result)
occurs in F . The reason for this restriction is that, when generating programs, we cannot (easily) provide
method parameters fulfilling the part of the method preconditions which is relevant to method parameters.
The precondition allows to syntactically split method contracts into a part that concerns the receiver this
(F) and a part that concerns the parameters (G). Then, when checking adherence of protocols, the part
of the preconditions relevant to parameters (G) is dropped. We believe that, in practice, most method
preconditions are receiver splittable. Our belief is supported by the fact that all examples that are used to
illustrate object-oriented separation logic [45, 25, 26, 22, 23] are receiver splittable.

4.2 Automatic Parallelization and Optimization of Programs by Proof
Rewriting

Since writing parallel software is notoriously harder than writing sequential software, inferring parallelism
automatically is a possible solution to the challenges faced by software developers. A well-known technique
for inferring parallelism is to detect pieces of programs that access disjoint parts of the heap. In earlier work,
various pointer analyses have been used to achieve this for programs manipulating simple data structures
and arrays, see e.g., [28, 19, 21].

This section describes a new technique to infer parallelism from proven programs. Instead of designing
ad-hoc analysis techniques, we use separation logic [48] to analyze programs before parallelizing them. We
use separation logic’s * operator – which expresses disjointness of parts of the heap – to detect potential
parallelism. Compared to [28, 19, 21], using the * operator avoids relying on reachability properties. This
permits to discover disjointness of arbitrary data structures, paving the way to parallelize and optimize
object-oriented programs proven correct with separation logic [45]. For the moment, this work is not yet
adapted to our variant of separation logic, instead it uses a classical variant of separation logic and the
parallel operator. However, it is possible to apply the ideas presented below also to our specific flavour of
separation logic.

19

MOBIUS Deliverable D3.7 Report on multithreading

Contrary to most earlier work (that manipulate formulas representing proof obligations [5, 43] or manip-
ulate labelled heaps [47]), our algorithms manipulate proof trees representing derivations of Hoare triplets.
The overall procedure is as follows: we generate a proof tree P of a program C, then we rewrite P, C into
P ′, C ′ such that P ′ is a proof of C ′ and C ′ is a parallelized and optimized version of C. Proof trees are
generated using a modified version of Smallfoot [9], and the proof tree rewrite system is implemented in
Tom [4].

Our algorithm for rewriting proof trees focuses on two rules of separation logic: the (Frame) and the
(Parallel) rules. First, the (Frame) rule [48] allows reasoning about a program in isolation from its environ-
ment, by focusing only on the part of the heap that the program accesses. Second, the (Parallel) rule [44]
allows reasoning about parallel programs that access disjoint parts of the heap.

{F}C{F ′}
(Frame)

{F *G}C{F ′ *G}
{F}C{G} {F ′}C ′{G′}

(Parallel)
{F *F ′}C‖C ′{G *G′}

The basic idea of our reasoning is depicted by the following rewrite rule:

{F}C{G}
(Frame)

{F *F ′}C{G *F ′}
{F ′}C ′{G′}

(Frame)
{G *F ′}C ′{G *G′}

(Seq)
{F *F ′}C; C ′{G *G′}

↓Parallelize

{F}C{G} {F ′}C ′{G′}
(Parallel)

{F *F ′}C‖C ′{G *G′}

This diagram should be read as follows: Given a proof of the sequential program C; C ′ we rewrite this
proof into a proof of the parallel program C‖C ′. If the initial proof tree is valid, this rewriting yields a valid
proof tree because the leaves of the rewritten proof tree are included in the leaves of the initial proof tree.

Our procedure differs from recent and concurrent work [47] on three main points: (1) instead of attaching
labels to heaps, we use the (Frame) rule to statically detect independent parts of the program, leading to
a technically simpler procedure; (2) we express optimizations by rewrite rules on proof trees, allowing us
to feature other optimizations than parallelization and to use different optimization strategies; and (3) we
have an implementation.

To develop our approach, we carefully redesigned the standard proof rules from Berdine et al. [9] to
adapt them to our rewrite rules, in particular so that they compute frames with enough precision to be able
to apply the rewrite rules. Based on the adapted proof rules, we derive sound rewrite rules from proof trees
to proof trees that yield optimized programs. The (Frame) rule is the central ingredient of this procedure.

However, once (Frame)s have been computed with enough precision, the proof trees obtained are often
still inadequate for our procedure to work. This is due to the particular shape of the proof trees obtained.
Generally speaking, given a program of the form C0; C1; C2, proof trees obtained from existing program
verifiers such as Smallfoot have the following shape:

. . . (Frame F)
{. . . }C0{. . . }

. . . (Frame G)
{. . . }C1{. . . } . . .

(Seq)
{. . . }C1; C2{. . . }

(Seq)
{. . . }C0; C1; C2{. . . }

The problem with the tree shown above is that the successive frames F and G are often redundant. For
example, if the commands C0; C1 and C2 access different part of the state, F and G will represent a similar
part of the state. For our procedure to work, we need to remove redundancies in frames, by factorizing
them. Figure 4.1 shows a rewrite rule for factorizing frames. This rewrite rule fires if two successive frames
Ff and Gf have a common part Fc. The proof tree obtained after factorization frames the common part of
the frame below C; C ′. Once frames have been factorized, the Parallelize rule shown above can often infer
parallelism [32].

Considered optimizations are parallelization, early disposal, late allocation, early lock releasing, and late
lock acquiring.

20

MOBIUS Deliverable D3.7 Report on multithreading

{Fa}C{Fp}
(Frame Ff)

{Fa *Ff}C{Fp *Ff}

{Ga}C ′{Gp}
(Frame Gf)

{Ga *Gf}C ′{Gp *Gf} {Gp *Gf}C ′′{F ′}
(Seq)

{Ga *Gf}C ′; C ′′{F ′}
(Seq)

{Fa *Ff}C; C ′; C ′′{F ′}

↓ FactorizeFrames

{Fa}C{Fp}
(Frame Ff0)

{Fa *Ff0}C{Fp *Ff0}
{Ga}C ′{Gp}

(Frame Gf0)
{Ga *Gf0}C ′{Gp *Gf0} (Seq)

{Fa *Ff0}C; C ′{Gp *Gf0} (Frame Fc){Fa *Ff}C; C ′{Gp *Gf} {Gp *Gf}C ′′{F ′}
(Seq)

{Fa *Ff}C; C ′; C ′′{F ′}

Guard: Ff ⇔ Ff0 *Fc and Gf ⇔ Gf0 *Fc

Figure 4.1: Rewrite rule to factorize applications of (Frame)

21

Chapter 5

Conclusions

This document describes the final results of Task 3.3 of the MOBIUS project on verification of multithreaded
applications. It describes contributions on two different topics. First, we have contributed to the formal
description of the semantics of multithreaded Java applications, by studying the semantics of the Java
Memory Model, and by giving a detailed and complete formalization of relevant bytecode instructions and
native methods, and defining an appropriate interleaving semantics. Second, we have developed a program
logic, based on permission-based separation logic, for multithreaded applications, that considers object-
orientation, the fork-join mechanism and reentrant locks, i.e., Java’s most relevant features. The program
logic allows to write and verify elegant and expressive specifications. Moreover, it can also be used for other
applications, such as checking whether a program adheres to a usage protocol, and to apply provably correct
program optimizations (including parallelization).

Further investigation is still needed to see whether the program logic can be used for automatic veri-
fication. Currently, we are working on a simple refutation procedure, that quickly can decide whether a
program can not be proven correct. This will be reported in the forthcoming PhD thesis of Clément Hurlin,
along with more additional material on the topics of chapters 3 and 4.

Within Task 5.3, we plan to use permission-based separation logic to specify the typical concurrency
patterns that occur in midlets. We have shown that many general concurrency patterns can be specified
and verified with our approach, but we did not consider the specific midlet usage of concurrency yet.

22

Bibliography

[1] E. Ábrahám. An Assertional Proof System for Multithreaded Java - Theory and Tool Support. PhD
thesis, University of Leiden, 2004.

[2] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. Tool-supported proof system for mul-
tithreaded Java. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal
Methods for Components and Objects, number 2852 in Lecture Notes in Computer Science, pages 1–32.
Springer-Verlag, 2003.

[3] D. Aspinall and J. Ševč́ık. Formalising Java’s data-race-free guarantee. In Theorem Proving in Higher
Order Logics: Proceedings of the 20th International Conference TPHOLs 2007, Lecture Notes in Com-
puter Science 4732, pages 22–37. Springer-Verlag, 2007.

[4] E. Balland, P. Brauner, R. Kopetz, P-E. Moreau, and A. Reilles. Tom: Piggybacking rewriting on
Java. In F. Baader, editor, Rewriting Techniques and Applications, volume 4533 of Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[5] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate translation for optimizing compilers. In
K. Yi, editor, Static Analysis Symposium, number 4134 in Lecture Notes in Computer Science, pages
301–317. Springer-Verlag, 2006.

[6] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference Java bytecode verifier. In
Programming Languages and Systems: Proceedings of the 16th European Symposium on Programming,
ESOP 2007, number 4421 in Lecture Notes in Computer Science, pages 125–140. Springer-Verlag, 2007.

[7] G. Barthe, T. Rezk, A. Russo, and A. Sabelfeld. Security of multithreaded programs by compilation. In
European Symposium On Research In Computer Security, Lecture Notes in Computer Science. Springer-
Verlag, September 2007.

[8] J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic assertion checking with
separation logic. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal
Methods for Components and Objects, volume 4111 of Lecture Notes in Computer Science, pages 115–
137. Springer-Verlag, 2005.

[9] J. Berdine, C. Calcagno, and P. W. O’Hearn. Symbolic execution with separation logic. In K. Yi, editor,
Asian Programming Languages and Systems Symposium, volume 3780 of Lecture Notes in Computer
Science, pages 52–68. Springer-Verlag, 2005.

[10] R. Bornat, P. W. O’Hearn, C. Calcagno, and M. Parkinson. Permission accounting in separation logic.
In J. Palsberg and M. Abadi, editors, Principles of Programming Languages, pages 259–270. ACM
Press, 2005.

[11] J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis
Symposium, volume 2694 of Lecture Notes in Computer Science, pages 55–72. Springer-Verlag, 2003.

23

MOBIUS Deliverable D3.7 Report on multithreading

[12] Y. Cheon and A. Perumandla. Specifying and checking method call sequences of Java programs.
Software Quality Journal, 15(1):7–25, 2007.

[13] D. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building
and using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to verify portions
of an internet voting tally system. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Construction and Analysis of Safe, Secure and Interoperable Smart Devices: Proceedings of
the International Workshop CASSIS 2004, volume 3362 of Lecture Notes in Computer Science, pages
108–128. Springer-Verlag, 2005.

[14] P. Czarnik and A. Schubert. Extending operational semantics of the java bytecode. In Trustworthy
Global Computing: Revised Selected Papers from the Third Symposium TGC 2007, number 4912 in
Lecture Notes in Computer Science, pages 57–72. Springer-Verlag, 2008.

[15] J. ev́ık. Program Transformations in Weak Memory Models. PhD thesis, University of Edinburgh, 2008.

[16] J. ev́ık and D. Aspinall. On validity of program transformations in the Java memory model. In European
Conference on Object-Oriented Programming, pages 27–51, 2008.

[17] Jaroslav ev́ık. The Sun Hotspot JVM does not conform with the Java memory model. Technical Report
EDI-INF-RR-1252, School of Informatics, University of Edinburgh, 2008.

[18] C. Flanagan and S. N. Freund. Type-based race detection for Java. In Programming Languages Design
and Implementation, pages 219–232, New York, NY, USA, 2000. ACM Press.

[19] R. Ghiya, L. J. Hendren, and Y. Zhu. Detecting parallelism in c programs with recursive data structures.
In K. Koskimies, editor, International Conference on Compiler Construction, volume 1383 of Lecture
Notes in Computer Science, 1998.

[20] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for storable locks and
threads. In Z. Shao, editor, Asian Programming Languages and Systems Symposium, volume 4807 of
Lecture Notes in Computer Science, pages 19–37. Springer-Verlag, 2007.

[21] R. Gupta, S. Pande, K. Psarris, and V. Sarkar. Compilation techniques for parallel systems. Parallel
Computing, 25(13):1741–1783, 1999.

[22] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s reentrant locks. In G. Ramalingam,
editor, Asian Programming Languages and Systems Symposium, volume 5356 of Lecture Notes in Com-
puter Science, pages 171–187. Springer-Verlag, December 2008.

[23] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s reentrant locks. Technical Report
ICIS-R08014, Radboud University Nijmegen, 2008.

[24] C. Haack and C. Hurlin. Resource usage protocols for iterators. In International Workshop on Alias-
ing, Confinement and Ownership in object-oriented programming, 2008. Revised version available
from http://www.cs.ru.nl/~chaack/papers/iterators.pdf.

[25] C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with fork/join. In
J. Meseguer and G. Rosu, editors, Algebraic Methodology and Software Technology, volume 5140 of
Lecture Notes in Computer Science, pages 199–215. Springer-Verlag, July 2008.

[26] C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with fork/join. Technical
Report 6430, INRIA, January 2008.

[27] C. Haack and C. Hurlin. Resource usage protocols for iterators. Journal of Object Technology, 8(4):55–
83, 2009.

24

http://www.cs.ru.nl/~chaack/papers/iterators.pdf

MOBIUS Deliverable D3.7 Report on multithreading

[28] L. J. Hendren and A. Nicolau. Parallelizing programs with recursive data structures. IEEE Transactions
on Parallel and Distributed Systems, 1:35–47, 1990.

[29] M. Huisman. Reasoning about Java programs in higher order logic using PVS and Isabelle. PhD thesis,
Computing Science Institute, University of Nijmegen, 2001.

[30] M. Huisman and G. Petri. The Java memory model: a formal explanation. In VAMP 2007: Proceedings
of the 1st International Workshop on Verification and Analysis of Multi-Threaded Java-Like Programs,
number ICIS-R07021 in Technical Report. Radboud University Nijmegen, 2007.

[31] M. Huisman and G. Petri. BicolanoMT: a formalization of multi-threaded Java at bytecode level. In
BYTECODE, ENTCS. Elsevier, 2008.

[32] C. Hurlin. Automatic parallelization and optimization of programs by proof rewriting. In Static Analysis
Symposium, volume 5673 of Lecture Notes in Computer Science, pages 52–68. Springer-Verlag, 2009.

[33] C. Hurlin. Specifying and checking protocols of multithreaded classes. In Symposium on Applied
Computing, pages 587–592. ACM Press, March 2009.

[34] B. Jacobs. A Statically Verificable Programming Model for Concurrent Object-Oriented Programs. PhD
thesis, Katholieke Universiteit Leuven, 2007.

[35] B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Hussmann, editor,
Fundamental Approaches to Software Engineering, volume 2029 of Lecture Notes in Computer Science,
pages 284–299. Springer-Verlag, 2001.

[36] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: a behavioral interface specification
language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

[37] K. R. M. Leino and P. Müller. A basis for verifying multi-threaded programs. In G. Castagna, editor,
European Symposium on Programming, volume 5502 of Lecture Notes in Computer Science, pages 378–
393. Springer-Verlag, 2009.

[38] A. Lochbihler. Type safe nondeterminism - a formal semantics of Java threads. In ACM Workshop on
Foundations of Object-Oriented Languages, 2008.

[39] J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In Principles of Programming
Languages, pages 378–391, 2005.

[40] MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and program logic, 2006. Avail-
able online from http://mobius.inria.fr.

[41] M. Naik and A. Aiken. Conditional must not aliasing for static race detection. In Principles of
Programming Languages, pages 327–338, New York, NY, USA, 2007. ACM Press.

[42] M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In Programming Languages
Design and Implementation, pages 308–319. ACM Press, 2006.

[43] G. C. Necula. Translation validation for an optimizing compiler. ACM SIGPLAN Notices, 35(5):83–94,
2000.

[44] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science, 375(1–
3):271–307, 2007.

[45] M. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge, 2005.

[46] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/bicolano. Summary
appears in [40], 2006.

25

http://mobius.inria.fr
http://mobius.inria.fr/bicolano

MOBIUS Deliverable D3.7 Report on multithreading

[47] M. Raza, C. Calcagno, and P. Gardner. Automatic parallelization with separation logic. In Giuseppe
Castagna, editor, European Symposium on Programming, volume 5502 of Lecture Notes in Computer
Science, pages 348–362. Springer, 2009.

[48] J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Computer
Science, pages 55–74. IEEE Computer Society, 2002.

[49] M. Steffen. Object-connectivity and observability for class-based object-oriented languages, 2006. Ha-
bilitation thesis.

[50] D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD
thesis, Technische Universität München, 2001.

26

	1 Introduction
	2 Semantics of Multithreaded Java
	2.1 Validity of Program Transformations in the Java Memory Model
	2.1.1 Transformations by Example
	2.1.2 Proving Validity of Transformations
	2.1.3 Invalid Transformations

	2.2 BicolanoMT
	2.2.1 Data Structures
	2.2.2 Interleaving Semantics

	3 Separation Logic for a Multithreaded Java-like Language
	3.1 Separation Logic for a Java-like Language with Fork/Join
	3.2 Separation Logic for Java's Reentrant Locks
	3.2.1 Initializing resource invariants.
	3.2.2 Locking and unlocking.

	3.3 Resource Usage Protocols for Iterators

	4 Other Uses of the Program Logic
	4.1 Specifying and Checking Protocols of Multithreaded Classes
	4.1.1 Specifying protocols
	4.1.2 Checking protocols

	4.2 Automatic Parallelization and Optimization of Programs by Proof Rewriting

	5 Conclusions

