
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable 3.9

Report on Modular Verification

Due date of deliverable: 2009-08-31 (T0+48)

Actual submission date: 2009-09-05

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: ETH

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

ETH 1, 2, 3, 4

IC 1, 2, 3

This document was written by Ádám Darvas (ETH), Sophia Drossopoulou (IC), Peter Müller (ETH),
Arsenii Rudich (ETH), and Alexander Summers (IC).

2

Executive Summary:
Report on modular verification

This document summarises deliverable D3.9 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr.

Following the goals of Task 3.4 to develop a practical verification technique for object invariants and frame
properties that can handle interesting implementation patterns including inheritance, call-backs, recursive
object structures, and concurrency, the Mobius consortium has made significant contributions to the area
of modular verification. These contributions appear in diverse publication venues. This deliverable contains
an overview of selected results and serves as a chart for Mobius contributions to this area, including pointers
to specific publications for further details.

The following results are in the main focus of the deliverable:

• We have investigated the possible benefits of object invariants for software development, verification,
and maintenance [22]. We found strong arguments that invariant protocols express programmers’ in-
tuitions, lead to better design, allow more succinct specifications and proofs, and allow the expression
of properties which involve many objects in a localised manner. In particular, the resulting verifica-
tion conditions can be made simpler and more modular through the use of invariant-based reasoning.
We also found evidence that, even though encoding invariant protocols through method pre- and
post-conditions is possible, such an encoding loses important information, and as a result makes spec-
ifications less explicit and program evolution more error-prone. Finally, we show that such encodings
often cannot express properties over inaccessible objects, whereas an appropriate invariant protocol
can handle them simply.

• We have developed the considerate specification/verification approach. It is a novel technique for the
verification of object invariants, that explicitly mentions when object invariants are broken, and when
these will be repaired [20]. The proposed technique was used to specify and verify the well known
Composite design pattern. We obtained a succinct specification, which reflects the structure of the
program. The verification was encoded in Boogie2 [12] and was relatively straightforward.

• We have developed the stereotypes-based approach to specification/verification of complex heap struc-
tures and their invariants [15]. The main specification primitive used in our approach for a heap
structures description is a stereotype. On the one hand, stereotypes provide developers with a natural
and lightweight way to describe heap structures, on the other hand, an automatic theorem prover can
efficiently prove such specifications. To facilitate specification/verification of multi-object invariants
on top of stereotypes, we introduced the notion of invariant state. Invariant states generalize the
notions of object invariant and object frame. We used stereotypes and invariant states to verify a
priority inheritance protocol [?].

• We have developed a technique to faithfully map modeling types to mathematical structures provided
by the built-in libraries of theorem provers [7]. The technique formally checks if there is semantic
correspondence between the specification of a modeling type and the structure to which the type is
mapped. The approach enables reasoning about programs specified in terms of modeling types as well
as facilitates writing better specifications for modeling types.

3

http://mobius.inria.fr

Contents

1 Introduction 5

2 Object Invariants and Heap Verification 6
2.1 Considerate programming . 7
2.2 Stereotype-based verification . 8
2.3 A Universe-Type-Based Verification Technique for Mutable Static Fields and Methods 10

3 Faithful Mapping of Model Classes to Mathematical Structures 11

4 Conclusions 14

4

Chapter 1

Introduction
This deliverable reports the final results on modular verification (Task 3.4). The deliverable summarizes
publications and technical reports that have appeared elsewhere and includes contributions from the MOBIUS
partners involved in Task 3.4, namely ETH and IC.

During the final stage of the project we concentrated our efforts on two aspects of modular verification.
Firstly, we developed verification techniques for non-hierarchic object structures. Our aim was to develop
a verification technique that provides the simplicity of ownership-based verification with the flexibility of
dynamic frames and regions. Our work was inspired by four major existing verification techniques for object
structures (dynamic frames [19], ownership [8], regions [1], separation logic [17]). Secondly, we continued our
work on the well-definedness of specifications by extending it to modeling classes, which encode mathematical
structures. Program verifiers map modeling classes to their underlying logics. Flaws in a modeling class or
in the mapping easily lead to unsoundness and incompleteness. We developed a technique for finding such
flaws.

Further development within the project. The following chapters describe various aspects of modular
verification:

• Chapter 2 presents an overview of the considerate and stereotype-based approaches to specifica-
tion/verification of complex heap structures and their invariants. Also, it briefly summarizes results
of our investigation of possible benefits from object invariants for software development, verification,
and maintenance.

• Chapter 3 gives an overview of the technique we developed for the faithful mapping of modeling classes
to mathematical structures. A modeling class is an immutable class that contains only side-effect free
methods. The technique allows one to specify the mapping of modeling classes and their methods to
structures provided by theorem provers and their function symbols. The faithfulness of a mapping
means semantical correspondence between the related classes and structures.

5

Chapter 2

Object Invariants and Heap Verification

The coupling of functionality and state is fundamental to the object-oriented programming paradigm. An
object’s state may change during program execution, and as a result the object’s behavior may change.
Objects behave properly if they are in a consistent state, and are implicitly expected by programmers to be
in such a consistent state at most times of execution.

The pioneering work of Bertrand Meyer [?] suggested that the specification and verification of object-
oriented programs should be based on the concept of object invariant, which describes the consistent states
of an object. Object invariants provide a means of specification at the natural level of the object itself,
typically in terms of its fields. Method pre- and post-conditions complement these object-level specifications
by describing method behaviors in the traditional procedural programming style.

Conjoining invariants to pre- and post-conditions in method specifications can encode most of the invari-
ant protocols, and allows for more flexibility: if it is intended that for some methods (e.g., helper methods)
an invariant need not hold, then the predicate expressing the invariant need not be conjoined to the spec-
ification of that method. More generally, properties across several objects can be decomposed into weaker
properties (via other predicate definitions), and so it is easy to express that an invariant partially holds. For
these reasons, it has been suggested by Parkinson [?] that the object invariant is, as a fundamental principle
for object-oriented verification, superfluous.

We argue that the object invariant plays an important role in the design, specification and verification
of object-oriented programs.

We make three claims for the usefulness (and in some cases, necessity) of object invariants.

Invariant-based reasoning aids and improves software design. We believe that thinking in terms
of invariants helps to come up with good software designs, and that a design can be made a more
robust by following an invariant-based philosophy. Furthermore, we argue that if invariants are en-
coded into pre- and post-conditions, essential design information is lost, and its absence may lead to
specification/design errors at the level of programmer specifications, and less practical specifications
and proof obligations for automatic verification.

Software design can be exploited by invariant-based reasoning. We believe that for a verification
approach to be both natural to a programmer and scalable to large programming projects, it is
essential that the principles guiding the design of the code are reflected and exploited in specifying
and verifying the code. Therefore, if code is designed with invariants in mind, then it is natural
and useful to reflect this in the corresponding reasoning. In particular, invariants allow a verification
analogue to the concept of delegation of responsibility, which is a fundamental aspect of object-oriented
design philosophy.

Object invariants allow local reasoning about global properties. We argue that invariant protocols
naturally express the code patterns where objects notify other objects whose properties they may have
broken, and that object invariants allow the expression of these specification requirements in a local
way. Furthermore, we argue that object invariants are the most natural way of maintaining properties

6

MOBIUS Deliverable D3.9 Report on modular verification

that depend on objects which are not accessible via field accesses, and supports a simpler and more
practical verification of such properties.

2.1 Considerate programming

Invariants often describe not only constraints on the fields of a single object, but relationships between the
states of collaborating objects. However, if an invariant depends on the state of some other objects as well
as its own state, then the invariant may be broken while other objects are active. In order to handle this
complexity, an invariant protocol is required, which determines at which points in a program the invariant
of an object may be assumed to hold, and at which points it has to be established.

Müller et al. suggested an invariant protocol, whereby an object owns all objects on whose state its
invariant depends, the ownership hierarchy is a tree, and whereby the invariant of an object can only
be affected by its owner and its owned objects [14]. This protocol has subsequently been refined to deal
with callbacks, visibility, dependency across objects with a common owner, and subclasses [14, ?], dynamic
ownership [?], or ownership types [?].

However, there are cases where the invariant dependency is not a tree, e.g., the Subject and Observer
pattern, and where state-modifying methods do not navigate the tree from the top, e.g. the Composite,
one of the classic design patterns in object-oriented languages [?]. It describes a tree-structure of objects in
which a uniform interface is presented to the leaves of the tree and the Composite objects which can store
a number of components. This example was used as the basis of the Challenge Problem at SAVCBS last
year, and was also used as an example in the survey of open challenges for verification by Leavens et al.
[?]. We give in Figure 2.1 a simplified version of the code presented there, in which we are concerned only
with a Composite class, and not with issues regarding subclassing. We believe such issues to be orthogonal
to the main challenge of this example, that regards the verification of the flexible updates which the data
structure permits. We are still able to describe the intended tree-structure, since Composite objects need
not have any components, and so can be used to represent the leaves of the tree as well as other nodes.

From the verification perspective, one of the main challenges is to preserve some property of the nodes
over the whole data structure, which is historically a count of the number of nodes in the corresponding
subtree. The major difficulty in verifying this property is that the data structure can be directly added to at
any point, by simply calling a method on a Composite object. This is problematic for, e.g., ownership-based
approaches to verification, since these typically guarantee encapsulation by requiring access to owned objects
to be controlled in some way by the owning objects (which would correspond to a top-down traversal of the
tree-structure before a modification could take place). Similarly, specifications of such patterns in separation
logic typically involve the use of recursive predicates to describe properties over the data structure [16, 17],
and such predicates are easier to unfold and fold from the root of the structure downwards.

To deal with this challenge considerate programming, a new approach to specification/verification of
object invariant, was proposed [22, 20]. Considerate programming is an amalgamation of the ideas presented
in [2, 13, ?]. All these approaches support the notion of object invariant, whereby classes define invariants,
and objects satisfy the invariants declared their class except for some specific points in a program.

When a field in object o is updated, it may affect the validity of invariants in the object o as well as in
other objects. The notion of the set vulnerable to a field update is at the core of considerate programming.
It describes the object invariants which are affected by a field update.

For example, according to Figure 2.1, the value o.total affects invariant2 of o; therefore, we say that
invariant2 of o is vulnerable to updates of field total of object o. Notice, that the vulnerable set for updates
of total of o also includes all objects which contain o in their field components. More formally, invariant2
of o′ is vulnerable to updates of field total of object o, for all objects o′ such that o′.components[i] = o.

Considerate programming expects all objects to satisfy their invariants immediately before and immedi-
ately after all method calls, except if the invariant is explicitly indicated as broken. Thus a method which
mentions broken Inv1(o) in its precondition but does not mention it in its postcondition, promises to repair
the invariant Inv1 on object o, while a method which mentions broken Inv1(o) in its postcondition but does

7

MOBIUS Deliverable D3.9 Report on modular verification

c l a s s Composite {
p r i v a t e Composite parent ;
p r i v a t e i n t t o t a l = 1 ;
p r i v a t e Composite [] components ;
p r i v a t e i n t count = 0 ;

// i nv a r i an t 1 : 1 ≤ total ∧ 0 ≤ count

// i nv a r i an t 2 : t o t a l = 1 +
∑

0≤i<count

components[i].total

//@ r e q u i r e s : c . parent == n u l l ;
pub l i c void addComponent (Component c) {

// r e s i z e array i f nece s sa ry
components [count] = c ;
count++;
c . parent = t h i s ;
addToTotal (c . t o t a l) ;

}

//@ r e q u i r e s : 0≤p
p r i v a t e void addToTotal (i n t p) {

t o t a l += p ;
i f (parent != n u l l) {

parent . addToTotal (p) ;
}

}
}

Figure 2.1: A single-class variant of the Composite pattern

not mention it in its precondition may break the invariant Inv1 on object o.

As in approach proposed by Middelkoop et al. [?], the identification of vulnerable sets precedes the
verification of the code. At the end of a method body the verification has to establish the invariants from
the corresponding vulnerable sets which are not included in the post-condition’s broken set.

2.2 Stereotype-based verification

Another challenge for verification is complicated heap structures. Typically, the description of heap struc-
tures requires intensive usage of transitive closure or similar constructs, e.g., recursive functions or inductive
definitions. Such constructs provide a transparent and natural way for heap structure description and
reasoning. Unfortunately, an ATP (automatic theorem prover) cannot adequately handle such constructs.
Usually it is possible to describe such constructs, but their applications fairly often results in infinite looping.

One possible way to address this problem is regional logic [1]. The main idea behind regional logic is
the explicit maintenance of a finite set of objects of interest. Such sets of objects are called regions and
maintained through ghost fields. For example, object o is an element of a tree structure, C is the set of
children of o, and p is the parent of o. If, for specification purposes, we need the set of descendants and
ancestors of o, we can introduce regions D and A. We use these regions instead of the transitive closure of
C and p. An advantage of the approach is that we don’t need transitive closure anymore, and thus the ATP
can handle specifications automatically and avoid potential infinite looping.

The price that is paid for the extra flexibility is specification overhead. Whenever a tuple is added to or
removed from a relation, the sets that encode the relation’s transitive closure have to be updated explicitly.
For example, if we want to add o′ as a child of o, the following sequence of updates should be performed:

8

MOBIUS Deliverable D3.9 Report on modular verification

• o′.p := o

• o.C := o.C ∪ {o′}

• ∀o′′ ∈ o.A ∪ {o} : o′′.D := o′′.D ∪ o′.D ∪ {o′}

• ∀o′′ ∈ o′.D ∪ {o′} : o′′.A := o′′.A ∪ o.A ∪ {o}

To deal with this specification overhead we developed the notion of stereotype. The main idea behind
stereotypes is the approximation of a complicated property by a set of simple properties. If an approxima-
tion is precise enough then the ATP can be used for automatic verification of such properties. From the
perspective of heap verification, a stereotype is an aspect of an objects’ participation in heap structures. We
formally define stereotype as triples of stereotype elements, stereotype invariants, and stereotype operations.

Stereotype elements define essential notions of the approximated heap structure. For example, the
elements of the stereotype tree are parent, root of the tree, children, ancestors, and descendants. Stereotype
invariants define the semantics of stereotype elements. For example, one of tree stereotype invariants is
∀o, o′ : o′.p = o⇔ o′ ∈ o.C. It establishes a relation between the parent and children, namely o’ is a child of
o iff o is a parent of o’. Stereotype operations change the values of stereotype elements of objects participating
in the stereotype in such a way that the stereotype invariants are preserved. Since stereotype operations
change only stereotype elements, they act as ghost updates. Examples of tree stereotype operations are
addition and removal of an element of a tree stereotype.

An advantage of the stereotype based approach is that it is a purely abstract mechanism and it doesn’t
restrict the real heap in any way. For example, if an object participates in the list stereotype, it doesn’t
mean that it has to participate in a real list heap structure, or that it has to have fields next or previous.
Therefore the same stereotypes can be used for the specification of different heap structures. For example,
the stereotype list can be used to specify singly linked or doubly linked, cyclic or acyclic lists. On the
other hand, it is quite typical for the real applications that an object participates in several stereotypes
simultaneously. In such a case, it is enough to provide an additional invariant to specify when and in which
stereotypes an object participates. Existing stereotypes can be easily reused and combined together.

To facilitate stereotype-based verification, we generalized the notion of object invariant to a notion of
invariant state. In ownership-based verification, it is assumed that an object invariant depends only on the
part of the heap which is owned (encapsulated) by the object. This guarantees that the invariant can be
broken only by the object. From the practical perspective this restriction is too strong. It is typical that
the invariants depend on heap locations that can be changed by other objects. In this case, the invariant
is broken and essential information about the object state is lost. It is not clear which methods need to
be involved to restore the object invariant. One possible way to deal with this problem and make objects
suitable for such external heap changes is to introduce invariant states. It is usually assumed that an
invariant is either valid or invalid, which can be treated like that the invariants’ state takes values from the
Boolean domain. Instead, we assume that the class developer provides a description of the invariant states’
values domain. Together with the domain description, the developer should provide and prove transitions
rules. These rules describe how the objects’ invariant state changes as a reaction to external heap changes.
The rules formalize the developer’s expectations about how the environment of the object can be changed
during the program execution. If the provided rules are detailed enough, they can be used to restore the
object invariant after external changes.

To evaluate the flexibility and efficiency of the stereotype based approach, we applied it for verifica-
tion/specification of a priority inheritance protocol [?]. The resulting specifications have a clear structure
and can be automatically verified. Most of the specifications in the heap structures of the priority inher-
itance protocol are a combination of three stereotypes: tree, acyclic list, and cyclic list. The combination
and adjustment of these stereotypes requires only an insignificant amount of additional specifications.

9

MOBIUS Deliverable D3.9 Report on modular verification

2.3 A Universe-Type-Based Verification Technique for Mutable Static
Fields and Methods

Another direction of our research in the area of object invariants verification is the extension of our ver-
ification technique for mutable static fields and methods [21]. We developed two extensions of our basic
technique, aimed at improving usability [23].

Firstly, we introduce a new universe annotation strong any to allow safe callbacks between ownership
trees, whereby trees may be visited not at the top, but at the point where a previous visit had left off. The
intended semantics of strong any is that the object referred to is guaranteed to be safe to make a callback
on; we permit all calls on strong any references. We consider strong any to be a specialisation of any, and a
strong any reference can be upcast to any if desired (losing the special semantics associated with a strong
any reference type), but downcasts are not permitted. Our strong any annotation expresses that an object’s
invariant may be assumed to hold without constraining the object’s position in the ownership topology. In
that sense, it is similar to a Spec# [?] specification stating that an object is peer-consistent. However, since
we use a type system, we have to over-approximate the consistency of objects and enforce a stronger system
invariant.

Secondly, we refined our heap topology with a notion of levels, which stratify the heap and provide
modularity with regard to library classes and the required effects annotations. We aimed to abstract away
from the details of previously written classes (such as library classes). The key observation is that library
classes will never (directly) call static methods on newer classes being verified, and so the possibility of
dangerous callbacks is naturally reduced when calling classes on a lower level. This extension allows for
fewer (and more modular) effect annotations.

10

Chapter 3

Faithful Mapping of Model Classes to
Mathematical Structures

A common way of writing abstract specifications is to specify implementations in terms of well-known
mathematical structures, such as sets and relations. This technique is applied, for instance, in VDM, Larch,
and OCL. While these approaches describe the mathematical structures in a language that is different from
the underlying programming language, the one-tiered JML simplifies the development of specifications by
describing the structures in an object-oriented manner through modeling types [4], commonly referred to as
modeling classes.

A model class is immutable and contains only pure methods, that is, methods that are side-effect free.
These methods provide an interface to the mathematical structure that the class represents. While model
classes are useful for specification purposes, verifiers have to encode model classes in the underlying theorem
prover.

Encoding the methods of a model class by uninterpreted functional symbols in the underlying logic is
possible, but not optimal, mainly for the following three reasons. (1) The tactics of a theorem prover are
optimized for theories that are part of the prover’s theory-library, and not for the encoding of the methods
of model classes. (2) It is difficult to ensure consistency of such encodings, in particular, in the presence
of recursive specifications [18]. (3) The encoding technique can ensure consistency of specifications, but
not their semantical correctness. While we cannot do better for pure methods that are written for a given
domain, the situation is different for model classes. For instance, we have a good understanding about the
semantics of the method union in the model class that represents mathematical sets.

Therefore, previous work [3, 10, 11] proposes to map model classes and their pure methods directly
to theories of the underlying theorem prover. This is possible because model classes, are in fact, very
similar to mathematical structures. Their objects are immutable, their operations are side-effect free, and
equality is based on their state rather than object identity. Therefore, instances of model classes behave
like mathematical values, rather than heap-allocated objects. This view greatly simplifies reasoning about
model classes.

Figure 3.1 shows the use of model class JMLObjectSet for the specification of class SingletonSet.
Model class JMLObjectSet is a prefabricated class that encodes a mathematical set of objects through its
pure methods. In order to use the model class in the specification of class SingletonSet, model field _set

is declared. The field represents the abstraction of an instance of type SingletonSet as specified by the
represents clause: a singleton set containing the object referenced by field value. Method setValue is
specified in terms of the model field and JMLObjectSet’s pure method has, which checks for set membership.

Let us see how one would prove the postcondition of method setValue in store h. Due to our semantical
understanding of method has, expression _set.has(o) can be mapped to o ∈ h(this. set). To determine
the value of location this._set in store h, we map the represent clause of field _set to the singleton set,
yielding term {h(this.value)}. Given the assignment in the body of the method, we obtain the following
proof obligation for setValue: o ∈ {o}, which is trivial to prove.

11

MOBIUS Deliverable D3.9 Report on modular verification

c l a s s S ing l e tonSe t {
Object va lue ;
model JMLObjectSet s e t ;
r e p r e s e n t s s e t <− new JMLObjectSet (va lue) ;

void setValue (n u l l a b l e Object o)
ensure s s e t . has (o) ;

{ value = o ; }

// other c o n s t r u c t o r s and methods omitted
}

Figure 3.1: Specifying SingletonSet using model class JMLObjectSet

The proof obligation above is considerably better suited for verification than the proof obligation

ĥas(̂JMLObjectSet(o, h), o, h) that one would obtain by encoding the expression with the use of uninter-
preted function symbols.1

Previous work discusses only the mapping of method signatures, but ignores their contracts. With this
approach, the meaning of has is given by the definition of symbol ∈ of the underlying theorem prover,
and not by the contract of has. This is problematic if there is a mismatch between the contract and the
semantics of the operation given by the theorem prover. Static program verifiers might produce results that
come unexpected for programmers who rely on the model class contract. The results may also vary between
different theorem provers, which define certain operations slightly differently (for instance, division by zero
yields 0 in Isabelle, while it is not admissible in PVS). Moreover, the result of runtime assertion checking
might differ from that of static verification if the model class implementation used by the runtime assertion
checker is based on the model class contract.

The main contribution of our work is a technique for proving that the mapping of a model class to a
mathematical structure defined by the theorem prover is faithful, that is, the model class and the structure
indeed correspond to each other in their properties.

Our technique allows one to prove faithfulness of a mapping in three steps. In the first step, one has to
specify to what structure a given model class is mapped, and to which function symbols of the structure
are the methods of the model class mapped. In the second step, one has to prove that everything that can
be proved using the contracts of the model class can also be proved using the corresponding structure of
the theorem prover. Completing this step successfully gives us the guarantee that the specification of the
model class is consistent (that is, free from contradictions), provided that the structure is consistent. In the
third step, one has to prove that the properties of the structure to which the model class is mapped can be
derived from the properties of the model class. In this step, user-specified mappings need to be “reversed”.
Completing the third step successfully gives us the guarantee that the specification of the model class is
complete relative to the target structure. Once faithfulness of a model class has been proven, the mapping
can be used for program verification without worrying about semantic discrepancies.

Our approach leads to important results beyond semantical correspondence and simplified reasoning.
Model class contracts are complex and can easily get inconsistent, which can lead to unsound reasoning.
Showing that a model class can be mapped consistently to a mathematical structure proves that the model
class contract itself is (relatively) consistent. In fact, one of our case studies discovered an inconsistent
specification in class JMLObjectSet, which is one of the most basic model classes of JML’s model library.

Proving that the specification of a model class is complete relative to a theory gives some level of
confidence that the model class contains all important properties. Failing to prove completeness is typically

1Our encoding denotes a method call to method m by a function application m̂.

12

MOBIUS Deliverable D3.9 Report on modular verification

a sign that some properties are missing. Our case studies discovered such missing specifications.
These points show that proving faithfulness of mappings helps in writing better specifications for model

classes by making them consistent and complete. Our approach can also be used to identify redundant parts
of specifications as well as to check whether specifications marked as redundant are indeed derivable from
non-redundant specifications. These capabilities further improve the quality of model-class specifications.

13

Chapter 4

Conclusions

This chapter summarises the results and briefly discusses their impact on modular verification.

Results There is rich evidence that we have achieved task goals :

• We presented a unified framework that describes verification techniques for object invariants in terms
of seven parameters and separates verification concerns from those of the underlying type system.
We identified sufficient conditions on the framework parameters that guarantee soundness, and we
proved a universal soundness theorem. The result have been presented at the European Conference
on Object-Oriented Programming (ECOO 2008) [9].

• We have outlined a verification technique based on VT, catering for static fields, methods, and invari-
ants. In the process, we extended the usual heap topology of ownership types, and tackled potential
callbacks through a combination of effects, levels, and the owner-as-modifier discipline. The result have
been presented at the Workshop on Formal Techniques for Java-like Programs (FTfJP 2008) [21].

• We have investigated the usefulness of invariants for different aspects of object-oriented verification.
Invariants can express the design intentions of a programmer, and provide an implicit contract for fu-
ture subclasses which cannot be captured directly by method specifications. Furthermore, the ability
to separate the concerns of the invariant from the method specifications themselves makes clear the
division of responsibility in the verification, and avoids unnecessarily cluttering the client specifica-
tions with properties guaranteed by code they cannot see. We have also argued that invariants can
help reflect properties inherent in software design, and that this can help keep the verification argu-
ment closer to the original intentions of the implementation.The results have been presented at the
International Workshop on Aliasing, Confinement and Ownership in Object-Oriented Programming
(IWACO 2009) [22].

• We have developed the considerate specification/verification approach. The proposed technique was
used to specify and verify the well-known Composite design pattern. We believe that provided spec-
ification of the Composite example is natural to an object-oriented programmer, and the approach
is manageable from the verification point of view. Our encoding in Boogie2 sketches how it can be
embedded into a verification tool. As future work we hope to develop further techniques to support
verification efforts which can be flexible, natural, and appealing to programmers. To this end, we be-
lieve that a verification approach which closely reflects the design decisions of programmers is essential,
and that as we have explained, invariants will play a vital role.

• Challenged by verification of complex design patterns, such as the Composite and the priority inher-
itance protocol, we developed stereotypes as a new specification primitive. Our goal was to develop
a primitive, which on the one hand, provides developers with a natural and lightweight way for heap
structure description, and, on the other hand, can be efficiently proven by an automatic theorem
prover. To validate our approach we applied it for the specification and verification of the priority

14

MOBIUS Deliverable D3.9 Report on modular verification

inheritance protocol. Our specification of the priority inheritance protocol was automatically verified
in Boogie2.

• We presented a new technique to check the well-formedness of specifications. We showed how to
incrementally construct a model for the specification, which guarantees that the partiality constraints
of operations are respected and that the axiomatisation of pure methods is consistent.The results have
been presented at the International Symposium on Formal Methods (FM 2008) [18].

• We proposed a new procedure Y to generate well-definedness conditions. Y is complete and yields
formulas that grow linearly with respect to the size of the input formula. Our procedure has been used
to enforce well-formedness of invariants and method specifications. The results have been presented
at the International Joint Conference on Automatic Reasoning (IJCAR 2008) [5].

• We proposed an approach to show that mappings of model classes to structures provided by theorem
provers are faithful. The proposed approach improves on previous work in three ways. First, previous
work that proposed the mapping of model class did not ensure any actual semantic relationship.
This can easily lead to semantic mismatch between what was intended to be specified and what was
actually verified. Second, our approach leads to better specifications for model classes by ensuring their
(relative) consistency and completeness. Third, previous work for ensuring the consistency of recursive
pure-method specifications either does not provide a satisfying solution [6], or proposes to explicitly
prove well-foundedness [18]. The proposed solution solves this problem by proving that a certain
mathematical structure is a model for the specifications of a model class, we get the guarantee that
the specifications are consistent. This result is independent of the presence of recursion and requires
no explicit proof for well-foundedness. The results have been published in IET Software Journal [7].

Impact The results of the task have been published in [22, 7, 20, 15, 23, 9, 21, 5, 18].

15

Bibliography

[1] A. Banerjee, D. Naumann, and S. Rosenberg. Regional logic for local reasoning about global invariants.
In J. Vitek, editor, European Conference on Object-Oriented Programming, volume 5142 of Lecture
Notes in Computer Science, pages 387–411. Springer-Verlag, 2008.

[2] M. Barnett and D. Naumann. Friends need a bit more: Maintaining invariants over shared state. In
D. Kozen, editor, Mathematics of Program Construction, volume 3125 of Lecture Notes in Computer
Science, pages 54–84. Springer-Verlag, 2004.

[3] J. Charles. Adding native specifications to JML. In Workshop on Formal Techniques for Java Programs,
2006.

[4] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model variables: cleanly supporting abstraction
in design by contract. Software: Practice and Experience, 35(6):583–599, 2005.

[5] Á. Darvas, F. Mehta, and A. Rudich. Efficient well-definedness checking. In A. Armando, P. Baum-
gartner, and G. Dowek, editors, International Joint Conference on Automated Reasoning, volume 5195
of Lecture Notes in Computer Science, pages 100–115. Springer-Verlag, 2008.

[6] Á. Darvas and P. Müller. Reasoning About Method Calls in Interface Specifications. Journal of Object
Technology (JOT), 5(5):59–85, June 2006.

[7] Á. Darvas and P. Müller. Faithful mapping of model classes to mathematical structures. IET Software,
2(6):477–499, December 2008.

[8] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[9] S. Drossopoulou, A. Francalanza, P. Müller, and A. J. Summers. A unified framework for verifica-
tion techniques for object invariants. In J. Vitek, editor, European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science. Springer-Verlag, 2008.

[10] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML accommodates
both runtime assertion checking and formal verification. Science of Computer Programming, 55(1–
3):185–205, 2005.

[11] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification challenges for sequential
object-oriented programs. Formal Aspects of Computing, 2007. Accepted for publication.

[12] K. R. Leino. This is Boogie 2, June 2008. Manuscript KRML 178.

[13] K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In M. Odersky, editor, European
Conference on Object-Oriented Programming, volume 3086 of Lecture Notes in Computer Science, pages
491–516. Springer-Verlag, 2004. Available from www.sct.inf.ethz.ch/publications/index.html.

[14] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

16

www.sct.inf.ethz.ch/publications/index.html

MOBIUS Deliverable D3.9 Report on modular verification

[15] P. Müller and A. Rudich. Using stereotypes to verify complex heap structures in regional logic. Technical
report, ETH Zurich, 2009. Avaliable from http://www.sct.ethz.ch/publications/index.html.

[16] P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding. In Principles of
Programming Languages, pages 268–280. ACM Press, January 2004.

[17] M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and M. Abadi, editors,
Principles of Programming Languages, pages 247–258. ACM Press, 2005.

[18] A. Rudich, Á. Darvas, and P. Müller. Checking well-formedness of pure-method specifications. In
J. Cuellar and T. Maibaum, editors, Formal Methods, volume 5014 of Lecture Notes in Computer
Science, pages 68–83. Springer-Verlag, 2008.

[19] J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for java-like programs based
on dynamic frames. In FASE, volume 4961 of Lecture Notes in Computer Science, pages 261–275.
Springer, 2008.

[20] A. J. Summers and S. Drossopoulou. Considerate reasoning and the composite design pattern. In
VMCAI 2010, 2010.

[21] A. J. Summers, S. Drossopoulou, and P. Müller. A universe-type-based verification technique for
mutable static fields and methods. In Formal Techniques for Java-like Programs, 2008.

[22] A. J. Summers, S. Drossopoulou, and P. Müller. The need for flexible object invariants. In International
Workshop on Aliasing, Confinement and Ownership in object-oriented programming (IWACO), 2009.

[23] A. J. Summers, S. Drossopoulou, and P. Müller. Universe-type-based verification techniques for mutable
static fields and methods. Journal of Object Technology (JOT), 8(4), June 2009.

17

	1 Introduction
	2 Object Invariants and Heap Verification
	2.1 Considerate programming
	2.2 Stereotype-based verification
	2.3 A Universe-Type-Based Verification Technique for Mutable Static Fields and Methods

	3 Faithful Mapping of Model Classes to Mathematical Structures
	4 Conclusions

