
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D4.3

Intermediate report on proof-transforming compiler

Due date of deliverable: 2007-09-01(T0+24)

Actual submission date: 2007-10-04

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: ETH

Revision: Creation

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to chapter

ETH 1, 3, 5, 8

INRIA 2, 4, 6, 7

2

Executive Summary
Intermediate report on proof-transforming compiler

This document provides an intermediate report on the work within Task 4.4 (Proof-Transforming Compiler)
of the MOBIUS project, co-funded by the European Commission within the Sixth Framework Programme
(FP6-015905). Full information on this project, including the contents of this deliverable, is available online
at http://mobius.inria.fr.

PCC requires code producers to provide a certificate that their code has the desired properties. For simple
program properties that are similar in complexity to type safety, classical PCC uses so-called certifying
compilers to produce proofs automatically from source programs. For the advanced security properties
considered in this project, additional techniques are necessary to produce certificates: First, source programs
are analyzed by advanced type systems, and similar type systems are used on the bytecode level, where they
allow efficient checking of security properties. Producing correctly typed bytecode programs from source
code, requires a type-preserving compiler that translates the extended type information from source to
bytecode programs. Second, whenever logic-based techniques are used to prove the desired properties, these
techniques should be applied to source programs in order to benefit from the higher level of abstraction
compared to byte code. We generalize the notion of certifying compilers to proof-transforming compilers
that transform specifications and proofs of source programs to the bytecode level.

This deliverable reports on our efforts to develop type-preserving and proof-transforming compilers from
Java to bytecode. In particular, it summarizes the following major contributions: (1) An architecture
for proof-transforming compilers, which is the basis of future implementation work in this task. (2) An
encoding of JML specifications in first order logic, which is needed to verify source programs. (3) A proof-
transformation scheme for a subset of Java. This scheme preserves proof obligations during the translation.
Therefore, proofs for these obligations on the source level can be re-used on the bytecode level. (4) A proof-
transformation scheme for Java’s abrupt termination features. This scheme handles the subtle interactions
between finally-clauses and break-statements. (5) A type preserving compiler for the secure information
flow type system developed in Task 2.1.

These results clearly show the feasibility of type-preserving compilation for advanced type system and
of the novel concept of proof-transforming compilers.

3

http://mobius.inria.fr

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Architecture of the proof-transforming compiler . 6
1.3 Outline of the deliverable . 8

2 Source and bytecode language 10
2.1 Simple imperative languages . 10

2.1.1 Source language: JAVAB . 10
2.1.2 Bytecode language: JVMB . 10
2.1.3 Compilation . 11

2.2 Adding objects and methods . 14
2.2.1 Source language: JAVAO . 14
2.2.2 Bytecode language: JVMO . 16
2.2.3 Compilation . 16

2.3 Adding exceptions . 17
2.3.1 Source language: JAVAE . 17
2.3.2 Bytecode language . 18
2.3.3 Compiler from JAVAE to JVME . 18

3 Translation from JML to FOL specifications 25
3.1 Overview . 25

3.1.1 Routine annotations . 25
3.1.2 Local annotations . 26

3.2 Translation of JML . 26
3.2.1 JML type specifications . 26
3.2.2 JML Routine specifications . 28
3.2.3 JML expressions . 30
3.2.4 JML statements . 30

4 Preservation of proof obligations using a VCGen 31
4.1 Preservation of proof obligations for simple imperative programs 31

4.1.1 Verification condition generator for JAVAB . 31
4.1.2 The verification condition generator for JVMB . 33
4.1.3 Relation between the verification calculi for JAVAB and JVMB 36

4.2 Preservation of proof obligations for objects and methods . 37
4.2.1 Method specification and behavior subtyping . 38
4.2.2 Verification condition generator for JAVAO . 39
4.2.3 Verification conditions generator for JVMO . 42
4.2.4 Relation between the verification calculi for JAVAO and JVMO 44

4.3 Preservation of proof obligations for exceptions . 44
4.3.1 Verification conditions for JAVAE . 44

4

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

4.3.2 Verification conditions for JVME . 46
4.3.3 Relation between the verification calculi for JAVAE and JVME 46

5 Proof-transforming compilation for programs with abrupt termination 53
5.1 Source language and logic . 53

5.1.1 Method and statement specifications . 54
5.1.2 Rules . 54

5.2 Bytecode language and logic . 56
5.2.1 Method and Instruction Specifications . 56
5.2.2 Rules . 57

5.3 Proof Translation . 57
5.3.1 Compositional Statement . 58
5.3.2 While Statement . 59
5.3.3 Try-Finally Statement . 59
5.3.4 Break Statement . 61

5.4 Example . 62
5.5 Soundness Theorem . 63

6 Implementation issues 65
6.1 Architecture refinement . 65

6.1.1 Mobius PVE . 65
6.1.2 Concrete architecture of the direct VCGen . 66

6.2 Source Logic for the PTC . 67
6.2.1 Pre-processing . 67
6.2.2 Verification conditions generation . 68
6.2.3 A backend to Bicolano . 69

7 Type-preserving compilation for a type system for secure information flow 71
7.1 Control dependence regions . 71
7.2 High level security type system . 71
7.3 Intermediate type system for source code . 75
7.4 Connecting the high level and intermediate type systems . 79
7.5 Target language . 80
7.6 Compilation. 82
7.7 Connecting the intermediate and target type systems . 83
7.8 Discussion . 84

8 Conclusions and future work 86
8.1 Proof-transforming compilation . 86
8.2 Type-preserving compilation . 87

5

Chapter 1

Introduction

This deliverable describes the current state of the work done in Task 4.4. We concentrate on results of ETH
and INRIA on proof-transforming compilation for non-optimized bytecode and type-preserving compilation
for an information-flow type system. IC and IoC have also started their work on type-preserving compilation
and proof-transforming compilation for optimized bytecode, respectively. Their work will be reported in the
second deliverable for this task.

1.1 Motivation

The core idea of Proof-Carrying Code [30] is to associate with executable code a proof that the execution
of the code satisfies desirable properties such as type safety or memory safety. These proofs can then be
checked efficiently and mechanically by the code consumer.

Certifying compilers [31, 11] allow code producers to generate a proof of safety properties automatically
during the compilation of source programs. For instance, certifying compilers for Java use the memory safety
of the source language to provide a certificate for the memory safety of the generated bytecode.

The goal of the MOBIUS project is to verify programs wrt. non-trivial security or functional properties.
In general, certificates for such properties cannot be generated automatically; certain proof obligations
have to be discarded interactively. This interactive verification step is easier on the source than on the
byte code level for several reasons: (1) Source programs have structured control flow, whereas bytecode
may contain arbitrary jumps, which complicate reasoning. (2) Source code provides complex expressions,
whereas bytecode works on an operand stack. (3) The Java source language has a slightly richer type system
than bytecode, for instance, it provides a type boolean, which is not present on the bytecode level and which
makes proof obligations simpler. Besides logic-based verification, type-based reasoning and, in particular,
combinations of both benefit from the higher abstraction level of source code.

We propose to reason about programs on the source level and to generate certificates for bytecode
automatically from the corresponding certificates for source code. For type-based reasoning, this translation
step is known as type-preserving compilation [25]. For logic-based verification, we propose the novel concept
of proof-transforming compilation. In Task 4.4, we have developed a Proof-Transforming Compiler and a
Type-Preserving Compiler. Combining these two techniques will allow us to automatically generate hybrid
certificates for bytecode using type-based and logic-based reasoning on the source level.

1.2 Architecture of the proof-transforming compiler

In this section, we describe the architecture of the compiler developed in Task 4.4. A proof-transforming
compiler is significantly more complex than a type-preserving compiler because it involves programs, specifi-
cations, and proofs. Therefore, we focus on proof-transforming compilation in this section. Type-preserving
compilation will be discussed in Chapter 7.

6

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Java Source
+

JML annotations

Java Source
+

FOL specifications

Verification
Conditions

Coq lemmas

Coq Proof
for source

Coq Proof
for Bicolano

Java Bytecode
+

BML annotations

Bicolano Bytecode
+

FOL specifications

JML to
FOL specifications

Direct
VC Generator

Coq Printer

Manual
proving

Proof
transformer

Java compiler
JML to BML translator

Coq deep
embedding

Certificate

3.6

3.1

4.2

4.3

Certificate
Generation

3.1

4.4

Sourcecode

Bytecode

Verification
ConditionsBytecode

VC Generator

provable

Figure 1.1: Overview of the proof transformation setting. We depict data by boxes and computations by
arrows. We refer to tasks of the project using stars. The dashed arrow highlights the approach followed in
this task.

Overview Figure 1.1 illustrates the scenarios for logic-based verification supported by the MOBIUS
project. A proof for a bytecode program can be developed in two ways. (1) The bytecode and its BML
specification are either developed directly or obtained from an ordinary Java compiler and a JML to BML
translator. Using the technology developed in Task 3.1, we can then generate and prove the verification
conditions for the bytecode program. The resulting proofs can be fed into the certificate generator. This
process is depicted by the lower layer in Figure 1.1. (2) Alternatively, we can generate and prove verification
conditions from the Java/JML source program and then translate the proofs using the proof-transforming
compiler. This process is depicted by the upper layer in Figure 1.1. Task 4.4 focuses on the latter approach.

The architecture of a proof-transforming compiler is to a large extent determined by the structure and
format of the source and bytecode verification conditions and proofs. In our case, the bytecode format
is determined by the bytecode VCGen developed in Task 3.1. This direct VCGen takes Bicolano [32] with
annotations in first order logic and generates first order logic verification conditions in Coq [23].

For source code, we developed a verification condition generator that leads to verification conditions
and proofs similar to—or in the ideal case [8] the same as—the ones for bytecode. This choice makes the
transformation of proofs feasible. Consequently, we did not build on an existing VCGen like the one used in
Jack [19, 5] or ESC/Java2 [16, 10] because they produce structurally different verification conditions.

Trusted code base. A key consideration of proof-transforming compiler infrastructures is to keep the
trusted code base small and simple. In our proof-transforming compiler architecture, only the underlying
theorem prover Coq as well as the JVM model Bicolano are part of the trusted code base. Every other
component of the framework is not part of the trusted code base for the following reasons:

• The bytecode VCGen which is used to check the certificate has been formally proved sound w.r.t. to

7

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

bicolano in Task 3.1.

• If one of the tools for producing source proofs (the upper layer in Figure 1.1) contains an error, invalid
proofs may be generated. However, these invalid proofs will be rejected by the proof checker such
that safety is not compromised. This is analogous to classical Proof-Carrying Code, where certifying
compiler is also not part of the trusted code base.

• If the compilation process from JML annotated Java to BML annotated bytecode or the embedding of
classfiles in Coq contains an error, a wrong program or wrong specifications are generated. Since the
program and specifications are part of the certificate, code consumers detect such problems.

Dependencies Task 4.4 is using many results from other tasks and produces itself output that will be
used in Task 5.4. The most important interplays are described below.

Task 2.1 The information flow type system developed in Task 2.1 is used as target type system for type
preserving compilation shown in Chapter 7.

Task 3.1 The results of Task 3.1 are used at various places to realize a proof transforming compiler. The
proof-transforming compiler produces a proof that can be applied to verification conditions that have
been generated by the bytecode VCGen from Task 3.1. This is important as this VCGen is proved
correct and does not have to be trusted. The bytecode specification language BML that was developed
as part of Task 3.1 is needed in order to express the same properties on bytecode that can be expressed
by JML on source code. We also use the relation that has been proved in Task 3.1 between the MOBIUS
base logic and the Bannwart-Müller bytecode logic [4] that we used to show proof transformation for
a Hoare logic.

Task 3.6 This tasks main goal is to produce the MOBIUS PVE which contains many tools that will seam-
lessly work together. As part of Task 3.6, a JML to BML translator will be built that is needed for the
proof-transforming compiler. Also the deep embedding of classfiles in Coq is done by a Java tool called
bico which is produced as part of Task 3.6.

Task 4.2 and 4.3 Our proof-transforming compiler generates proofs that can directly be used by the cer-
tificate generator defined in Task 4.3 to built certificates in the sense of Task 4.2.

At the end of the day, Task 4.4 provides a mean to use the technologies and tools developed by other
tasks on bytecode level also on JML annotated source code.

1.3 Outline of the deliverable

Chapters 2 to 6 of this deliverable describe the steps of the verification process shown in Figure 1.1. Chapter 7
focuses on type-reserving compilation, and Chapter 8 concludes. We provide a more detailed outline in the
following:

Chapter 2 describes the language subset that we take into consideration and provides an operational
semantics for it.

Chapter 3 presents the first step of the verification generation for source code, namely the transformation
of JML annotations into first order logic specifications. This transformation replaces JML specifications
by a specification table. This table contains first order logic conditions associated with methods or
individual Java statements.

Chapter 4 presents the direct VC generation as well as the key idea behind the proof transformer, which
is the concept of preservation of proof obligations. In other words, this chapter shows that if we prove
the verification conditions on source code, we can also prove the corresponding bytecode with the
transformed proof.

8

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Chapter 5 presents some highlights of proof transformation in presence of abrupt termination for a Hoare
logic. Even though the proof-transforming compiler works with a verification condition generator, we
have also investigated proof transformation for Hoare logics as it enables the transformation of proofs
directly to the more powerful MOBIUS base logic.

Chapter 6 concentrates on the implementation issues of the VC generator. This chapter provides the
interested reader with a more detailed architecture description and describes the integration of the
source logic in ESC/Java2.

Chapter 7 presents a type-preserving compilation for the information flow type system developed in
Task 2.1 [22].

9

Chapter 2

Source and bytecode language

We introduce the source language and bytecode language in three steps: First, we start with a simple
imperative language, then we extend it with objects and method, and we conclude by adding exceptions.
For each step, we present the source language and its semantics, the bytecode language, and the compilation
scheme.

2.1 Simple imperative languages

In this section, we assume that a program consists of a single method.

2.1.1 Source language: JAVAB

Syntax Figure 2.1 defines the basic structured language JAVAB. Let X be the set of variables and V be
the set of values (Z for the moment). E denotes the set of expressions and stmt the set of statements. In
this language, a program P is simply an instruction followed by a return (i.e., P = stmt ; return e)

Operational semantics The basic language does not deal with the heap. So, the language contains only
a local memory ρ : X → V, which is a mapping from local variables to values. We denote by L the set
of local memories. Figure 2.2 gives the big step semantics of the basic source language. The first relation
ρ
↪→⊆ (E × L) × V defines the evaluation of an expression e into a local memory ρ; the result is a value.
Abusing notation, we use the same syntax for the evaluation of tests.

The set StateI of states is defined by the set of pairs [i , ρ]. The semantics of an instruction is defined,
using a big step style, by the second relation ⇓S⊆ (I × L) × (L). This relation takes an instruction i in a
local memory ρ, and returns the resulting local memory. There is no rule for the return statement, which
can only appear at the end of the program. Finally, The evaluation a program P : ρ0 ⇓S v is defined by:

P = stmt ; return e [ρ0, stmt] ⇓S ρ e
ρ
↪→ v

P : ρ0 ⇓S v

2.1.2 Bytecode language: JVMB

Language A bytecode program Ṗ is an array of bytecode instructions (defined figure 2.3). Pc is the set
of program counters (index in the array of bytecode instructions). bytecode instructions perform actions on
the operand stack (push and load push values on the stack, binop performs an operation with the two top
elements, store saves the top element in a variable) or control the execution flow (goto for a unconditional
jump and if for a conditional jump).

10

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

operations op ::= + | − | × | /
comparisons cmp ::= < | ≤ |= |6= | ≥ |>
expressions e ::= x | c | e op e

where c ∈ Z and x ∈ X
tests t ::= e cmp e
statements stmt ::= x := e assignment

| if(t){stmt}{stmt} conditional
| while(t){stmt} loop
| stmt ; stmt sequence
| skip skip

Figure 2.1: Instruction set for the basic language JAVAB

x
ρ
↪→ ρ(x) c

ρ
↪→ c

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 op e2
ρ
↪→ v1 op v2

e1
ρ
↪→ v1 e2

ρ
↪→ v2

e1 cmp e2
ρ
↪→ v1 cmp v2

e
ρ
↪→ v

[x := e, ρ] ⇓S ρ{x 7→ v} [skip, ρ] ⇓S ρ
[stmt1, ρ] ⇓S ρ′ [ρ′, stmt2] ⇓S ρ′′

[stmt1; stmt2, ρ] ⇓S ρ′′

t
ρ
↪→ true [it , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′
t

ρ
↪→ false [if , ρ] ⇓S ρ′

[if(t){it}{if }, ρ] ⇓S ρ′

t
ρ
↪→ true [i , ρ] ⇓S ρ′ [ρ′, while(t){i}] ⇓S ρ′′

[while(t){i}, ρ] ⇓S ρ′′
t

ρ
↪→ false

[while(t){i}, ρ] ⇓S ρ

Figure 2.2: Semantics of the basic language

Bytecode Semantics An abstract machine state is a triple 〈k , ρ, os〉, where k is the program counter,
ρ a mapping from variables to values, and os the operand stack. For the moment, the operand stack only
contains intermediate values needed by the evaluation of source language expressions. We denote by StateB
the set of abstract machine states. The small step semantics of a bytecode program is given by the relation
 ⊆ StateB × (StateB + V), which represents one step of execution (defined in figure 2.4). The transitive
closure of to a final value is inductively defined by:

〈k , ρ, os〉 v

〈k , ρ, os〉 ⇓ v

〈k , ρ, os〉 〈k ′, ρ′, os ′〉 〈k ′, ρ′, os ′〉 ⇓ v

〈k , ρ, os〉 ⇓ v

Finally, the evaluation of a bytecode program Ṗ : ρ ⇓ v , from a initial mapping of local variables to a final
value is defined by

Ṗ : ρ ⇓ v
def≡ 〈0, ρ, ∅〉 ⇓ v

2.1.3 Compilation

The compiler used here is defined in figure 2.5 by two functions. The first one compiles the expressions [[e]]
and generates a bytecode sequence which evaluates e and stores/pushes the result on the top of the operand
stack. The second one compiles the instructions k : [[i]]. The argument k indicates the starting position

11

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

intructions i ::= push c push value on top of stack
| binop op binary operation on stack
| load x load value of x on stack
| store x store top of stack in variable x
| goto j unconditional jump
| if cmp j conditional jump
| return return the top value of the stack

where c ∈ Z, x ∈ X , and j ∈ Pc .

Figure 2.3: Instruction set for the basic bytecode

Ṗ[k] = push c

〈k , ρ, os〉 〈k + 1, ρ, c :: os〉
Ṗ[k] = binop op v = v1 op v2

〈k , ρ, v1 :: v2 :: os〉 〈k + 1, ρ, v :: os〉
Ṗ[k] = return

〈k , ρ, v :: os〉 v

Ṗ[k] = load x

〈k , ρ, os〉 〈k + 1, ρ, ρ(x) :: os〉
Ṗ[k] = store x

〈k , ρ, v :: os〉 〈k + 1, ρ{x 7→ v}, os〉

Ṗ[k] = goto j

〈k , ρ, os〉 〈j , ρ, os〉
Ṗ[k] = if cmp j v1 cmp v2 = true

〈k , ρ, v1 :: v2 :: os〉 〈j , ρ, os〉
Ṗ[k] = if cmp j v1 cmp v2 = false

〈k , ρ, v1 :: v2 :: os〉 〈k + 1, ρ, os〉

Figure 2.4: Semantics of the basic bytecode

of the resulting bytecode sequence in the final bytecode program; this information is used to compute the
labels attached to branching instructions. Abusing notation, we will write k : [[e]] for the compilation of an
expression starting at position k .

Compilation of an assignment x := e is the compilation of the expression e followed by store x . At the
end of the evaluation of [[e]], the value of e is on the top of the operand stack, then a store x instruction
stores this value in the variable x and pops the value from the stack.

The compilation of a conditional k : [[if(e1 op e2){stmt1}{stmt2}]] starts by the sequence corresponding to
the evaluation of the two expressions e2 and e1. After this sequence the operand stack contains on the top
the values of e1 and e2. The if cmp k2 instruction evaluates the comparison and pops the two values from
the stack. If the test is true, the evaluation continues at label k1 corresponding to the beginning of the true
branch; otherwise, the if instruction jumps to label k2 corresponding to the beginning of the false branch.
At the end of the false branch a goto instruction jumps the code of the false branch.

The compilation of a loop k : [[while(e1 cmp e2){i}]] evaluates the two expressions e2 and e1 and then
performs a conditional jump. If the test is false the evaluation jumps to the code corresponding to the body
of the loop, if the test is true the evaluation continues by the evaluation of the loop body and then performs
a jump to the label corresponding to the beginning of the evaluation of the test.

Finally, the compilation of a program P = (i ; return e) is defined by:

[[P]]
def≡ 0: [[i]]; [[e]]; return

Correctness of the compiler The correctness of a compiler expresses that the semantics of a source
program is the same as of the compiled version. In other words, for all source programs P, if P : ρ0 ⇓S v
then the evaluation of its compiled version Ṗ starting form the initial memory ρ0 leads to the same resulting

12

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Compilation of expressions

k : [[x]] = k : load x
k : [[c]] = k : push c

k : [[e1 op e2]] = k : [[e1]]; k1 : [[e2]]; k2 : binop op
where k1 = k + |[[e1]]|

k2 = k1 + |[[e2]]|

Compilation of statements

k : [[x := e]] = k : [[e]]; k1 : store x
where k1 = k + |[[e]]|

k : [[stmt1; stmt2]] = k : [[stmt1]]; k2 : [[stmt2]]
where k2 = k + |[[stmt1]]|

k : [[return e]] = [[e]]; return

k : [[if(e1 cmp e2){stmt1}{stmt2}]] = k : [[e2]]; k1 [[e1]]; k2 : if cmp k3;
k2 + 1: [[stmt1]]; k3 : goto l ; k3 + 1: [[stmt2]]

where k1 = k + |[[e2]]|
k2 = k1 + |[[e1]]|
k3 = k2 + |[[stmt1]]|+ 1

l = k3 + |[[stmt2]]|+ 1

k : [[while(e1 cmp e2){stmt}]] = k : goto k1; k + 1: [[stmt]];
k1 : [[e2]]; k2 : [[e1]]; k3 : if cmp k + 1;

where k1 = k + 1 + |[[stmt]]|
k2 = k1 + |[[e2]]|
k3 = k2 + |[[e1]]|

Figure 2.5: Compilation scheme

value v . The correctness proof of a compiler is done by exhibiting a simulation between the evaluation of
the source program and the evaluation of the bytecode program.

Lemma 1 (Correctness for expressions) For all bytecode programs Ṗ, expressions e, values v, memo-
ries ρ, and operand stacks os such that l = |[[e]]| and Ṗ[k ..k + l] = [[e]] the following property holds:

e
ρ
↪→ v ⇒ 〈k , ρ, os〉 ∗ 〈k + l , ρ, v :: os〉

Lemma 2 (Correctness for instructions) For all bytecode programs Ṗ, instructions i, memories ρ and
ρ′ such that l = |[[i]]| and Ṗ[k ..k + l] = k : [[i]] the following property holds:

[i , ρ] ⇓S ρ′ ⇒ 〈k , ρ, ∅〉 ∗ 〈k + l , ρ′, ∅〉

Lemma 3 (Correctness of the compiler) For all source programs P, if P : ρ0 ⇓S ρ, v then its compiled
version evaluates to the same result:

P : ρ0 ⇓S v ⇒ [[P]] : ρ0 ⇓ v

13

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

2.2 Adding objects and methods

Now that we have introduced the basic concepts of the languages and of the compilation scheme, we shall
consider several more realistic extensions of the language. In this section particularly, we shall focus on a
language with object-oriented features.

2.2.1 Source language: JAVAO

JAVAO is an extension of the simple language JAVAB for dealing with objects and methods.

Syntax In this setting, a program is a set of classes taken from the set C, which is partially ordered (C,�).
The hierarchy of classes will be used to resolve virtual calls. Classes are entities that are provided with a
list of methods taken from the set M. A method is identified uniquely by its identifier. Classes are also
provided with a list of fields taken from the set F .

The new syntactic constructs that JAVAO provides in addition to JAVAB are:

expressions e ::= . . . | this | e.m(e) | e.f | new C
statements stmt ::= . . . | e.f := e

The expression construct e.m(e1) denotes the invocation of method with identifier m on the receiver e
and the argument e1. For simplicity, we restrict ourselves to method with one argument, the extension to
the general case being straightforward. The construct new C denotes a creation of a new instance of type
C. We also provide the language with object field access expressions e.f, where f is from the set of field
names F . Moreover, we allow the update of object fields via the instruction e.f := e. The expression this is
a special variable referring to the current object, i.e., the object of the method currently being executed.

Global memory Compared to JAVAB, the set of JAVAO values is extended to V = Z ∪ R, where R
is an (infinite) set of references. Note that for the moment, we ignore the issue of dereferencing a variable
which does not contain a proper reference value (i.e., null pointers). We extend the notion of program state
to include a global memory (heap), which will give meaning to object expressions. Thus, a state is the pair
(ρ, h) of the local memory store ρ and the global object store h.

The notion of a heap is defined axiomatically similarly to Poetzsch-Heffter and Müller’s work [33]. We
define an abstract data type H of heap objects and define the following operations over it:

Dom : H×R → bool
Get : H×R×F → V
Update : H×R×F × V → H
New : H× C → H×R
typeof : R → C

The function Get(h, r , f) returns the value stored in the field f of object reference r in heap h. Usually this
operator returns the value stored in the field f (if it exists) of any allocated reference r ; otherwise, it is
undefined. Since the type checking of Java can ensure this properties, we assume that the function is total.
We define Dom such that Dom(h, r) holds if r is allocated in the heap h otherwise it returns false. The
function Update(h, r , f, v) updates the value stored in the field f of object location r in heap h. The function
New(h,C) returns a pair of a fresh reference and the resulting heap augmented with the new reference. The
function typeof maps references to reference types. For simplicity, we use the notation h(r .f) for Get(h, r , f)
and h{r .f 7→ v} for Update(h, r , f, v).

We then assume a set of properties to hold for those functions. For illustration, we require that if a
field of a particular reference is updated with a new value, then an access to the field for this reference will
evaluate to that new value:

h{r .f 7→ v}(r .f) = v (2.1)

14

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

When allocating a new object in a heap, then the resulting heap has the same domain plus the new object:

New(h,C) = (h ′, r)⇒ (∀l ,Dom(h, l)⇒ Dom(h ′, l)) ∧ Dom(h ′, r) ∧ ¬Dom(h, r) ∧ typeof(r) = C (2.2)

For the full set of axioms, the reader may refer to [33].

Semantics The first difference with the semantics of JAVAB is that expressions can now have side effects
(on the heap) due to the allocation of new objects or to method invocations. The consequence is that the
evaluation of expressions now returns a value (the result of the expression) and the resulting heap. Note
that the local memory, containing the value of local variables, still remains unchanged. A state is now a
triple [i , ρ, h] ∈ I × L ×H.

The semantics of JAVAOi given Fig. 2.6. There is now three mutually defined predicates:

• (e, h)
ρ
↪→ (v , h ′) stand for: the evaluation of the expression e in the heap h and local memory ρ leads

to the value v and the heap h ′

• [m, r , v , h] ⇓S (v , h ′) stand for: the evaluation of the method m in receiver r and argument v in the
heap h leads to the value v and the heap h ′

• [i , ρ, h] ⇓S (ρ′, h ′) stand for: the evaluation of the instruction i in the local memory ρ and the heap h
leads to the local memory ρ′ and the heap h ′

Compared to JAVAO the evaluation of some expressions may cause side effects as for instance method
invocation expressions or instance creation. The new rules for field access and instance creation are straight-
forward.

The semantics of method calls is more complicated because in Java methods are dispatched dynamically.
This means that the actual method to be executed cannot be determined statically. In languages like Java,
this is due to method overriding in subclasses.

Definition 2.2.1 (Method overriding)

A method m2 declared in class C2 is said to override a method m1 declared in class C1 and we denote by
overrides(m2,m1) the following properties:

• the class C1 is an ancestor class of C2, denoted by (C2 � C1)

• methods m1 and m2 have the same signature (the same short name and type)

An important property of the lookup function is that for all m m′ such that m′ = lookup(m,C) then
overrides(m′, m).

To model dynamic dispatching, we assume that there is a function lookupP attached to each program P
that takes a method identifier m and a class name and returns the identifier of the method to be executed.
Once the method m to be executed is determined, the function body(m) returns the method body of m
which corresponds to a program statement JAVAB. The method body of the latter is then executed with
the resulting heap of the evaluation of the argument and the receiver.

The evaluation of a method is defined in the same way as the evaluation of a JAVAB program, the only
difference is that the local memory is initialized with the value of the receiver for the variable this and the
value of the argument for the variable arg .

Compare to JAVAB the evaluation of the instructions is modified to take into account the side effect of
the expressions.

15

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

2.2.2 Bytecode language: JVMO

A JVMO program is the same that a JAVAO program, except that the body function associate to a method
an array of instructions. To simplify the presentation we use the notation Pm [k] as a short cut for body(m)[k].

The set of instructions of JVMB is extended with additional instructions to create new objects, to read
or update fields objects, and invoke m to call virtual methods. Here, m is a method identifier, which may
correspond to several methods in the class hierarchy due to overriding of methods.

intructions i ::= push c push value on top of stack
| binop op binary operation on stack
| load x load value of x on stack
| store x store top of stack in variable x
| goto j unconditional jump
| if cmp j conditional jump
| return return the top value of the stack
| new C instance creation
| getfield f field access
| putfield f field assignment
| invoke m virtual method call

As for JAVAO, we assume that there is a function lookupP attached to each program P , which takes a
method and a class name and returns the method to be executed.

Operational semantics

While JVM states contain a frame stack to handle method invocations, it is convenient for showing the
correctness of the verification condition generator to rely on an equivalent semantics where method invocation
is performed in one big step transition. Hence, a JVMO state is of the form 〈k , ρ, os, h〉, where k , ρ, and os
are defined as in JVMB and h is a heap. We use an intermediate semantics - small step for all instructions
except for method invocations and big step for method invocations; more precisely, the semantics directly
calls the full evaluation of the called method from an initial state to a return value and uses it to continue
the current computation. As we can see from the rules of the operational semantics, the instructions have a
similar but not exactly the same semantics as their counterparts in JAVAO. The differences come from the
specific features of the virtual machine as for instance the operand stack used for expression evaluation. Also,
the bytecode language is more fine grained—the composition of several bytecode instructions will correspond
to a JAVAO expression.

The operational semantics, given in Figure 2.7, is defined by two mutually dependent predicates. The
instruction putfield f updates field f with the value on top of the operand stack, for the receiver stored
second to top on the stack; after the execution of the instruction, the two top stack elements are removed.
The instruction getfield f pushes the value of the field f for the object reference at the top of the operand
stack.

2.2.3 Compilation

The main difference between a JAVAO and a JVMO program is in the representation of methods. The
structures of the programs are the same except that the body of a method in the source is a source instruction
following by a return whereas it is an array of bytecode instruction for the target language.

So, the compiler from JAVAO to JVMO is a mapping translating each method of the source program
to an array of bytecode instructions. The compilation scheme for instruction is essentially the same as the
one for JAVAB. We simply give the new rules for the new constructs in Fig. 2.8. The correctness of the
compiler can be proved in the same way as for JAVAB. The different lemmas are modified to include the
global memory.

16

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Lemma 4 (Correctness of the JAVAO compiler) For all JAVAO program P and is compiled version Ṗ
and for all method m in P (and so Ṗ), if [m, r , v , h0] ⇓S (v , h) then 〈1, {this 7→ r , arg 7→ v}, ∅, h0〉 ⇓m (v , h)

2.3 Adding exceptions

In the previous section, we looked at objects and method calls where the semantics allowed only for one
kind of termination, namely normal termination. We actually worked under the assumption that executions
always go well, for instance we assumed that all variables are initialized with a proper value before any
use. In practice, programming languages do not work under such hypothesis and must somehow handle
the situation where variables which does not have proper values are used. An example for such situation
is the access of a field of a location via a non-initialized variable. Actually, programming languages use
an exception mechanism to cope with these cases. In the following, we shall describe the extensions of the
language which provide such a mechanism.

2.3.1 Source language: JAVAE

First, we extend the set of possible values V with the new value null, which stands for the reference that
does not point into the heap; that is, V = Z ∪ R ∪ null. Fig. 2.9 gives the new semantics of expressions,
which may either terminate normally or exceptionally. An exception is simply an object of an exception
type. In this setting, the final state of an expression evaluation is either the normal state configuration
(v , h) in case the evaluation yields the value v for the expression and leaves the execution with a heap h, or
the exceptional state (exc r , h) where r is a reference of an exception type and h is the resulting heap. The
execution of statement terminates either in a normal state (ρ, h) with a memory ρ and heap h respectively,
or in an exceptional state of the form (exc r , ρ, h) where r is the thrown exception object, ρ is the current
memory and h is the current heap.

There are five rules for the evaluation of method invocations. First, the receiver object is evaluated
and then the argument. If one of these evaluations leads to an exception, the exception is propagated. If
both evaluate normally then if the value corresponding to the receiver object is null, the method invocation
terminates abruptly with a NullPntrExc exception. Otherwise, the rule is the same as for JAVAO, except if the
method body terminates exceptionally, then the evaluation of the method call also terminates exceptionally.

Field access expression evaluation has two possible executions: if the dereferenced field evaluates to a
reference different from null then it behaves normally as in the previous section; if the dereferenced field is
null then exception NullPntrExc is returned. For brevity, we do not give the other contextual rules, which
propagate exceptional termination of expression.

Moreover, the language supports a mechanism for handling thrown exceptions. We extend our language
with the following statement instructions:

statements stmt ::= . . . | try{stmt} catch (EType) {stmt} | throw e |

The semantics of the extended instructions is given in Fig. 2.10. In our setting, the terminal states of
statement executions may be either normal or exceptional. The normal terminal state is of the form (ρ, h)
and indicates that statement execution leaves the memory ρ and the heap h. The exceptional execution is
of the form (exc r , ρ, h) and shows that the statement has terminated by throwing the exception r and the
local memory is now ρ and the heap is h. The semantics of the try catch statement is such that exceptions
thrown in the try statement of type or subtype of EType will be handled by the catch statement, and the
whole statement terminates execution as the catch statement; otherwise, if the exception r thrown by the try
statement is not a type or subtype of EType, then the whole statement terminates exceptionally and leaves
the execution exceptionally with the exception value EType and the resulting heap. The throw e statement
allow programmers to throw exceptions explicitly. Notice that its execution always terminates exceptionally.
If the exception expression is not null and then e evaluates to the exceptional value r , the execution of the
throw statement terminates exceptionally with the exception r . Otherwise, if e is null, then the statement

17

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

terminates with a NullPntrExc exception. Similarly, the execution of field update statement has a normal and
exceptional termination. As for expressions, we do not give all the rules for the propagation of exceptions.

2.3.2 Bytecode language

In this section, we consider an extension JVME of the JVMO with an exception handling mechanism.
Programs are similar to those in the JVMO model. However, the instruction set of the JVMO is extended
with the bytecode throw.

Furthermore, we assume that programs come equipped with a partial function1 Handlerm : Pc ×C ⇀ Pc

that for each method m selects the appropriate handler for a given program point. If an exception of class
C ∈ C is thrown at program point k ∈ Pc then, if Handlerm(k ,C) = l , the control will be transferred to
program point l , and if Handlerm(k ,C) is undefined (noted Handlerm(k ,C) ↑), the exception is uncaught in
method m.

Operational semantics

We give in Figure 2.11 the semantics of exception-throwing instructions in JVME . Rules for the rest of the
instructions are as in JVMO. The exception throwing instructions now have several rules, which correspond
to the normal and exceptional termination of the instruction. Moreover, there are separate rules for the
exceptional termination when the exception is caught or not.

For instance, there are three more rules for the virtual call instruction. The first is for normal execution.
The second is for the case of the called method terminates abruptly but the exception is handle. The
third express the case where the received object is null, and the NullPntrExc is caught. The two last rules,
correspond to the cases where the evaluation of the call leads to an uncaught exception. We use NullPntrExc
as the class associated to the null pointer exception. Each instruction which performs an access on a reference
(getfield f , putfield f and throw) have a similar semantics.

2.3.3 Compiler from JAVAE to JVME

In the following, we shall extend the compiler function presented in Section 2.2.3 to deal with the new
statements concerning exception handling and throwing. The compilation of the statements considered in
the previous sections for the basic and object oriented language are the same. That is why we omit them
here and show in Fig 2.12 the compilation of the new language constructs.

Notice that the compiler constructs the exception handler function Handler simultaneously with the
compilation of JAVAE statements to JVME instructions. To simplify the presentation the exception handler
function is built incrementally (using imperative style). The only construct which effects the exception
handler function is the try catch statement. First the instruction stmt1 (the try statement) is compiled,
after that the exception handler have been extended in such way that if an exception is throw during
the execution of stmt1 then the handler catch it if the exception has the appropriate type, which leads to
the execution of the catch statement stmt2. If no exception is thrown during the execution of stmt1 the
instruction goto k2 will jump the code of stmt2 to continue normally the execution of the program.

The compilation of the throw consists in the compilation of the expression e followed by the instruction
throw and it does not change the exception handler function.

Lemma 5 (Correctness of the compiler) A JAVAE program P and its compiled version Ṗ share the
same semantics.

1This opaque handling function hides the notions of handler list and subclass used in Java.

18

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

(x , h)
ρ
↪→ (ρ(x), h) (c, h)

ρ
↪→ (c, h)

(e2, h)
ρ
↪→ (v2, h2) (e1, h2)

ρ
↪→ (v1, h1)

(e1 op e2, h)
ρ
↪→ (v1 op v2, h1)

(e2, h)
ρ
↪→ (v2, h2) (e1, h2)

ρ
↪→ (v1, h1)

(e1 cmp e2, h)
ρ
↪→ (v1 cmp v2, h1)

(e, h)
ρ
↪→ (r , h ′)

(e.f, h)
ρ
↪→ (h ′(r .f), h ′)

New(h,C) = (h ′, r)

(new C, h)
ρ
↪→ (r , h ′)

(e, h)
ρ
↪→ (r , h1) (e1, h1)

ρ
↪→ (v1, h2)

m′ = lookupP (m, typeof(r)) [m′, r , v1, h2] ⇓S (v , h ′)

(e.m(e1), h)
ρ
↪→ (v , h ′)

body(m) = i ; return e [i , {this 7→ r , arg 7→ v}, h] ⇓S (ρ′, h ′) (e, h ′)
ρ′

↪→ (v ′, h ′′)

[m, r , v , h] ⇓S (v ′, h ′′)

(e, h)
ρ
↪→ (v , h ′)

[x := e, ρ, h] ⇓S (ρ{x 7→ v}, h ′) [skip, ρ, h] ⇓S (ρ, h)

[stmt1, ρ, h] ⇓S (ρ1, h1) [stmt2, ρ2, h1] ⇓S (ρ2, h2)

[stmt1; stmt2, ρ, h] ⇓S (ρ2, h2)

(t , h)
ρ
↪→ (true, h1) [it , ρ, h1] ⇓S (ρ2, h2)

[if(t){it}{if }, ρ, h] ⇓S (ρ2, h2)

(t , h)
ρ
↪→ (false, h1) [if , ρ, h1] ⇓S (ρ2, h2)

[if(t){it}{if }, ρ, h] ⇓S (ρ2, h2)

(t , h)
ρ
↪→ (true, h1) [i , ρ, h1] ⇓S (ρ2, h2) [while(t){i}, ρ2, h2] ⇓S (ρ3, h3)

[while(t){i}, ρ, h] ⇓S (ρ3, h3)

(t , h)
ρ
↪→ (false, h ′)

[while(t){i}, ρ, h] ⇓S (ρ, h ′)

(e1, h)
ρ
↪→ (r , h1) (e2, h1)

ρ
↪→ (v2, h2)

[e1.f := e2, ρ, h] ⇓S (ρ, h2{r .f 7→ v2})

Figure 2.6: Semantics of JAVAO

19

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Pm[k] = push c

〈k , ρ, os, h〉 m
 〈k + 1, ρ, c :: os, h〉

Pm[k] = binop op v = v1 op v2

〈k , ρ, os, h〉 m
 〈k + 1, ρ, v :: os, h〉

Pm[k] = load x

〈k , ρ, os, h〉 m
 〈k + 1, ρ, ρ(x) :: os, h〉

Pm[k] = store x

〈k , ρ, v :: os, h〉 m
 〈k + 1, ρ{x 7→ v}, os, h〉

Pm[k] = goto j

〈k , ρ, os, h〉 m
 〈j , ρ, os, h〉

Pm[k] = if cmp j v1 cmp v2 = true

〈k , ρ, v1 :: v2 :: os, h〉 m
 〈k + 1, ρ, os, h〉

Pm[k] = if cmp j v1 cmp v2 = false

〈k , ρ, v1 :: v2 :: os, h〉 m
 〈j , ρ, os, h〉

Pm[k] = new C New(h,C) = (r , h ′)

〈k , ρ, os, h〉 m
 〈k + 1, ρ, r :: os, h ′〉

Pm[k] = getfield f

〈k , ρ, r :: os, h〉 m
 〈k + 1, ρ, h(r .f) :: os, h〉

Pm[k] = putfield f

〈k , ρ, v :: r :: os, h〉 m
 〈k + 1, ρ, os, h{r .f 7→ v}〉

Pm[k] = invoke m1 m′ = lookupP (m1, typeof(r))

〈1, {this 7→ r , arg 7→ v}, ε, h〉 ⇓m′ (v , h ′)

〈k , ρ, v :: r :: os, h〉 m
 〈k + 1, ρ, v :: os, h ′〉

S
m
 S ′ S ′ ⇓m (v , h)

S ⇓m (v , h)

Pm[k] = return

〈k , ρ, v :: os, h〉 ⇓m (v , h)

Figure 2.7: Operational Semantics for JVMO

20

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Compilation of expressions

k : [[e.f]] = k : [[e]]; k1 : getfield f
where k1 = k + |[[e]]|

k : [[new C]] = k : new C
k : [[e1.m(e2)]] = k : [[e1]]; k1 : [[e2]]; k2 : invoke m

where k1 = k + |[[e1]]|
k2 = k1 + |[[e2]]|

Compilation of statements

k : [[e1.f := e2]] = k : [[e1]]; k1 : [[e2]]; k2 : putfield f
where k1 = k + |[[e1]]|

k2 = k1 + |[[e2]]|

Figure 2.8: Compilation scheme for JAVAO

(e, h)
ρ
↪→ (exc r , h1)

(e.m(e1), h)
ρ
↪→ (exc r , h1)

(e, h)
ρ
↪→ (v , h1) (e1, h1)

ρ
↪→ (exc r , h2)

(e.m(e1), h)
ρ
↪→ (exc r , h2)

(e, h)
ρ
↪→ (null, h ′) (e1, h

′)
ρ
↪→ (v1, h1) New(h1,NullPntrExc) = (np, h2)

(e.m(e1), h)
ρ
↪→ (exc np, h2)

(e, h)
ρ
↪→ (r1, h1) (e1, h1)

ρ
↪→ (v1, h2) m′ = lookupP (m, stypeof(r))

r1 6= null [m′, r1, v1, h2] ⇓S (v , h ′)

(e.m(e1), h)
ρ
↪→ (v , h ′)

(e, h)
ρ
↪→ (r1, h1) (e1, h1)

ρ
↪→ (v1, h2) m′ = lookupP (m, typeof(r1))

r1 6= null [m′, r1, v1, h2] ⇓S (exc r , h ′)

(e.m(e1), h)
ρ
↪→ (exc r , h ′)

(e, h)
ρ
↪→ (v , h1) v 6= null

e.f
ρ
↪→ (h1(v .f), h1)

(e, h)
ρ
↪→ (null, h ′) New(h ′,NullPntrExc) = (np, h1)

(e.f, h)
ρ
↪→ (exc np, h1)

Figure 2.9: Semantics of expression evaluation in JAVAE

21

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

(e1, h)
ρ
↪→ (exc r , h1)

[e1.f := e2, ρ, h] ⇓E (exc r , ρ, h1)

(e1, h)
ρ
↪→ (v1, h1) (e2, h1)

ρ
↪→ (exc r , h2)

[e1.f := e2, ρ, h] ⇓E (exc r , ρ, h2)

(e1, h)
ρ
↪→ (null, h1) (e2, h1)

ρ
↪→ (v2, h2) New(h2,NullPntrExc) = (np, h3)

[e1.f := e2, ρ, h] ⇓E (exc np, ρ, h3)

(e1, h)
ρ
↪→ (v1, h1) e2

ρ
↪→ h1(v2, h2)

[e1.f := e2, ρ, h] ⇓E (ρ, h2{v1.f 7→ v2})

[stmt1, ρ, h] ⇓E (ρ1, h1)

[try{stmt1} catch (EType) {stmt2}, ρ, h] ⇓E (ρ1, h1)

[stmt1, ρ, h] ⇓E (exc r , ρ1, h1) ¬typeof(r) � EType

[try{stmt1} catch (EType) {stmt2}, ρ, h] ⇓E (exc r , ρ1, h1)

[stmt1, ρ, h] ⇓E (exc r , ρ1, h1) typeof(r) � EType [stmt2, ρ1, h1] ⇓E S

[try{stmt1} catch (EType) {stmt2}, ρ, h] ⇓E S

(e, h)
ρ
↪→ (r , h1)

[throw e, ρ, h] ⇓E (exc r , ρ, h1)

(e, h)
ρ
↪→ (null, h ′) New(h ′,NullPntrExc) = (np, h1)

[throw e, ρ, h] ⇓E (exc np, ρ, h1)

Figure 2.10: Semantics of statement execution in JAVAE

22

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Pm[k] = getfield f r 6= null

〈k , ρ, r :: os, h〉 m
 〈k + 1, ρ, h(r).f :: os, h〉

Pm[k] = getfield f New(h,NullPntrExc) = (np, h1) Handlerm(k ,NullPntrExc) = j

〈k , ρ, null :: os, h〉 m
 〈j , ρ,np :: nil, h1〉

Pm[k] = putfield f r 6= null

〈k , ρ, v :: r :: os, h〉 m
 〈k + 1, ρ, os, h{r .f 7→ v}〉

Pm[k] = putfield f Handlerm(k ,NullPntrExc) = j New(h,NullPntrExc) = (np, h1)

〈k , ρ, v :: null :: os, h〉 m
 〈j , ρ,np :: nil, h1〉

Pm[k] = throw v 6= null Handlerm(k , typeof(v)) = j

〈k , ρ, v :: os, h〉 m
 〈j , ρ, v :: nil, h〉

Pm[k] = throw Handlerm(k ,NullPntrExc) = j New(h,NullPntrExc) = (np, h1)

〈k , ρ, null :: os, h〉 m
 〈j , ρ,np :: nil, h1〉

Pm[k] = invoke m1 m′ = lookupP (m1, typeof(r)) r 6= null 〈1, {this 7→ r , arg 7→ v1}, nil, h〉 ⇓m′ 〈v , h ′〉
〈k , ρ, v1 :: r :: os, h〉 m

 〈k + 1, ρ, v :: os, h ′〉

Pm[k] = invoke m1 m′ = lookupP (m1, typeof(r)) r 6= null
〈1, {this 7→ r , arg 7→ v1}, nil, h〉 ⇓m′ 〈exc r ′, h ′〉 Handlerm(k , typeof(r ′)) = j

〈k , ρ, v1 :: r :: os, h〉 m
 〈j , ρ, r ′ :: nil, h ′〉

Pm[k] = invoke m1 Handlerm(k ,NullPntrExc) = j New(h,NullPntrExc) = (np, h1)

〈k , ρ, v1 :: null :: os, h〉 m
 〈j , ρ,np :: nil, h1〉

Pm[k] = getfield f New(h,NullPntrExc) = (np, h1) Handlerm(k ,NullPntrExc) ↑
〈k , ρ, null :: os, h〉 ⇓m 〈exc np, h1〉

Pm[k] = putfield f Handlerm(k ,NullPntrExc) ↑ New(h,NullPntrExc) = (np, h1)
〈k , ρ, v :: null :: os, h〉 ⇓m 〈exc np, h1〉

Pm[k] = throw v 6= null Handlerm(k , typeof(v)) ↑
〈k , ρ, v :: os, h〉 ⇓m 〈exc v , h〉

Pm[k] = throw Handlerm(k ,NullPntrExc) ↑ New(h,NullPntrExc) = (np, h1)
〈k , ρ, null :: os, h〉 ⇓m 〈exc np, h1〉

Pm[k] = invoke m1 m′ = lookupP (m1, typeof(r)) r 6= null
〈1, {this 7→ r , arg 7→ v1}, nil, h〉 ⇓m′ 〈exc r ′, h ′〉 Handlerm(k , typeof(r ′)) ↑

〈k , ρ, v1 :: r :: os, h〉 ⇓m 〈exc r ′, h ′〉

Pm[k] = invoke m1 Handlerm(k ,NullPntrExc) ↑ New(h,NullPntrExc) = (np, h1)
〈k , ρ, v1 :: null :: os, h〉 ⇓m 〈exc np, h1〉

Figure 2.11: Operational Semantics for JVME

23

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

k : [[throw e]] = k : [[e]]; k1 : throw
where k1 = k + |[[e]]|

k : [[try{stmt1} catch (EType) {stmt2}]] = k : [[stmt1]]; goto k2; k1 : [[stmt2]]
where k1 = k + |[[stmt1]]|+ 1

k2 = k1 + |[[stmt2]]|

Handler(j ,E) :=

{
k1 k ≤ j < k1 ∧ E � EType
Handler(j ,E) otherwise

Figure 2.12: Compiling the exception handling constructs from JAVAE to JVME

24

Chapter 3

Translation from JML to FOL
specifications

This chapter presents the translation of JML into first order logic (FOL) specifications. As illustrated in
Figure 1.1, this translation is the first step of the Mobius Direct VCGen.

The translation covers most of the JML level 0 language. We omit the instance keyword (because the Java
subset considered in this deliverable does not have interfaces), the keywords \nonnullelements and \elemtype
(because they are just shortcuts for other specifications), model fields (because they would be a distraction),
and the ownership modifiers peer and rep (because they can be encoded using constructs we support [14]).

Our translation formalizes essentially the semantics described in the JML reference manual [21]; we
discuss deviations below. In the following, we present the overall approach of the translation and then
discuss the translation of individual JML constructs. We focus on the essential ideas here. Details are
presented in a technical report [12].

3.1 Overview

Our translation takes as input a Java program and its JML specification. It produces a specification table
containing routine (method and constructor) annotations as well as local annotations (assertions) for indi-
vidual Java statements. The predicates in the table and the local annotations are expressed in FOL. Both
the specification table and the local annotations are fed into the verification condition generator described
in Chapter 4.

In the following, we use the notation Tr(e) to denote the FOL term that results from the translation of
a JML annotation e.

3.1.1 Routine annotations

The specification table for routines annotations has the following form:

Γ(Pe , C, m, Φ, Ψ, Ψexc)

For a routine m in class C of program Pe , the specification table contains the precondition Φ, the normal
postcondition Ψ, and several exceptional postconditions Ψexc , where exc denotes the thrown exception. Ψ
and Ψexc contain a special variable for the return value and the exception object, respectively. We denote
this variables by res and esc.

The FOL predicates in the specification table contain all the information that is available for the cor-
responding state, originating from various JML annotations such as requires, ensures, and signals clauses as
well as invariant, assignable, and initially clauses. This means that the VCGen that deals with the predicates
in the specification table does not have to deal with the large number of JML constructs.

25

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Table 3.1 gives an overview on what routine annotations are influenced by the translation of the just
mentioned JML constructs. Section 3.2 below describes the details of how the routine annotations are built
from this JML constructs.

Precondition Φ Postcondition Ψ Exceptional Postconditions Ψexc

requires ensures signals
invariant initially signals only

assignable initially
invariant assignable

invariant

Table 3.1: The routine annotations together with the influencing JML constructs

3.1.2 Local annotations

Local annotations characterize the state before the execution of a particular Java statement. Typical exam-
ples are JML’s assert statement and loop invariants. We encode them by associating each Java statement
with zero or more local annotations of the following forms. Their interpretation in the VCGen is explained
in Section 6.2. For a JML expression e we have:

assert Tr(e): Condition Tr(e) acts as a local assertion for the following Java-statement. It has to be proved
to hold.

assume Tr(e): In the VCGen, Tr(e) is assumed at this point. This is only sound if Tr(e) is known to hold,
for instance, because the property was established by a type system or static analysis. It acts as an
additional information for proving the current goal.

loop invariant Tr(I): This annotation contains the translation of a loop invariant I that holds before and
after each iteration of a loop.

set Tr(V = e): This annotation differs from the previous ones. It is used to translate ghost variable decla-
rations and assignments (that is, JML’s set command). It contains the name of the ghost variable and
the FOL translation of the expression e, which is assigned to the ghost variable. This is done in the
VCGen by substituting V by e.

3.2 Translation of JML

In this section, we present the translation of type specifications and routine specifications, JML expressions,
and JML statements. For the translation, we use the variable heap to denote the current heap and pre heap
to denote the heap in the prestate of the method.

3.2.1 JML type specifications

Object invariants

Object invariants are denoted by the JML clause invariant I. To express Tr(I), we introduce the predicate
inv : C ×R → bool , which yields for a given type and object its invariant.

In JML, all invariants have to hold in the prestates and poststates of routines that are not declared as
helper (the so-called visible states). More concretely, non-helper methods can rely on the fact that in their
prestate all allocated objects satisfy their invariant, and they have to ensure that the same property holds
in their poststate. In order to be able to verify a system in the presence of possible re-entrancy (call-backs),
it’s also necessary to establish all invariants before calling a non-helper method.

26

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

To simplify verification considerably, we currently restrict the expressiveness of invariants. An invariant
is only allowed to depend on fields that are defined in the class declaring the invariant. Fields inherited from
superclasses must not be mentioned in invariants (see [28] for a detailed discussion). Our implementation
will check the admissibility of invariants during the translation process.

For non-helper routines, invariants are conjoined to pre- and postconditions as follows:

• To the precondition Φ, we conjoin the term

∀o, t : Dom(heap, o) ∧ typeof(o) � t ⇒ inv(t , o)

where typeof(o) � t yields whether the dynamic type of object o is a (not necessarily proper) subtype
of type t .

This precondtion expresses that the method can rely on the fact that all invariants have to hold in its
prestate. Callers of the method have to live up to this precondition. The treatment of constructors is
analogous, but the this object is excluded since its invariant has not yet been established.

• to the postconditions Ψ and Ψexc , we conjoin the term

∀o, t : Dom(heap, o) ∧ typeof(o) � t ∧ t ∈ modified(m)⇒ inv(t , o)

where modified(m) is the set of types which can be modified during execution of m.

These postconditions express that the method has to satisfy the invariants of all objects that might
have been modified. This is determined using a static analysis which makes an overestimation by
collecting all types that can be assigned to. It is sufficient to check those invariants because their
subtypes must not contain invariants that depend on inherited fields [28]. So in case of both normal
and exceptional termination, we want to enforce the method to establish invariants that could have
been broken during their execution.

The helper modifier can be applied to private routines with the effect that they do not depend on
invariants. For helper routines, the above pre- and postconditions are not generated.

The initially-clause

The JML clause initially P expresses that every non-helper constructor of the enclosing class as well as
all subclasses has to establish P. The translation therefore conjoins Tr(P) to Ψ and Ψexc for all affected
constructors.

The modifier ‘ghost’

The ghost modifier allows one to declare fields and local variables that only appear in JML specifications.
For instance, ghost variables are used to carry resource information or to save an old value of a non-ghost
variable. ghost fields and variables can be assigned to by the set statement and read within specifications
in the same way as normal fields and variables.

Currently, we support only ghost variables, but an extension to ghost fields is straightforward. For each
declaration of a ghost variable, a set annotation is created. If the declaration includes an expression for the
initial value of the variable, it is also included in the set annotation, which is then attached to the following
Java statement.

During the translation, we also use ghost variables to capture the prestate values of the arguments such
that we can refer to them in \old expressions.

27

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

3.2.2 JML Routine specifications

Light- and heavyweight specifications

We desugar arbritrary routine specifications to behavior specification cases as follows:

Lightweight specification cases: JML does not define default values for omitted clauses in lightweight
specifications. We are using the same default that are defined for heavyweight specifications except
for the case of the signals clause which is handled stricter. The idea behind choosing the defaults like
this is to be on the conservative side. If a routine is not specified, we have to assume that we loose all
information about the program that we had before.

• The weakest possible precondition (true) is chosen if no requires clause is given. This means that
no assumptions about the program state at the beginning of the method can be done to prove
the method body.

• The weakest possible postcondition (true) is chosen if no ensures clause is given. Here, the caller
of the method with true as postcondition does not get any information from the postcondition
about the program state after the call.

• An omitted signals only clause means that no other exception than the ones mentioned in the
throws clause of a method can be thrown.

• A default signals clause is introduced if none was specified. It contains false for java.lang.Exception
meaning that the method is by default not allowed to throw any exception.

• If no modifies clause is present, the weakest possible modifies clause is given which is ‘\everything’.
This means that the method might possibly modify every allocated heap location.

Normal behavior specification cases: As in the lightweight specification case without a signals clause,
we want to guarantee that no exception can be thrown. We introduce a signals clause that contains
false for java.lang.Exception.

Exceptional behavior specification cases: We introduce ensures false in order to guarantee that in this
case, the method is not supposed to terminate normally.

Besides this, we can transform several specification cases to one single case by rewriting the routine level
annotations as follows:

requires: Several requires clauses in the same specification case are conjoined to one single requires clause as
all of them have to be assumed at the beginning of a method. requires clauses in different specification
cases are being disjuncted.

ensures: For a (already conjoined) requires clause P of a specification case and a current class C , the
ensures clauses Q of the same specification case are transformed to

\type(this) � C ∧ \old(P)⇒ Q

By doing this, the ensures clauses are being guarded by the precondition of the same specification case.

signals, signals only: The same principle that we use in ensures clauses is used for exceptional postcon-
ditions. We guard the condition by the precondition of the same specification case.

assignable: We merge all assignable heap locations form several specification cases together.

In the following, the description of the translation for routine annotations is given for the desugared form.

28

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The requires-clause

A requires P clause becomes part of the precondition. We conjoin Tr(P) to Φ.

The ensures-clause

An ensures P clause becomes part of the normal postcondition. We conjoin Tr(P) to Ψ.

The signals- and signals only-clause

For the JML clause signals (E e) P, we substitute all occurrences of e in P by exc and conjoin typeof(exc) �
E ⇒ Tr(P) to Ψexc . signals only is translated analogously.

The assignable-clause

The assignable l and modifies l clauses, where l refers to a set of locations, are synonymous. In JML, the
understanding is that only the heap locations declared in the clause can be assigned to by the routine;
that is, even if a method modifies a location and then re-establishes the old value, the location has to be
mentioned in the assignable clause. We call this semantics ‘assignable semantics’.

The assignable semantics can be translated by attaching an assert annotation loc(o, f) ∈ l to every field
update o.f = v in the routine body if o was allocated already in the prestate of the routine. loc(o, f) yields
the heap location denoted by object o and field identifier f . In addition, an assert annotation has to be
attached to every routine call to check that its assignable clause is at least as restrictive as the one of the
caller:

∀o, f : loc(o, f) ∈ lm ⇒ loc(o, f) ∈ l

where lm is the set of locations that can be modified by the callee m. In this semantics, an assignable \nothing
would lead to the special case which puts the assert annotation false in front of all field updates. Thus, the
method cannot be verified if it contains a (reachable) field update. In this case, routine calls are annotated
with the condition that the routine must not modify any heap locations. For assignable \everything, we can
omit all assert annotations for field updates and routine calls as all of them are allowed.

Another way to understand it (especially the modifies keyword) is that the routine is not allowed to
modify any heap location that is not mentioned in the clause. This would still allow temporary assignment
of locations not mentioned in the clause, as long as the original value is assigned again. This is fine as long
as we don’t (indirectly) recursively call the routine itself and only have a single threaded program. We call
this semantics ‘modifiable semantics’.

To enforce the modifies semantics, we state in the postconditions of a routine that every heap location
that is not in the modifiable set and that was already allocated in the prestate of the method still contains
the old value. We conjoin

∀o, f : loc(o, f) ∈ l ∨ ¬Dom(pre heap, o) ∨ Get(heap, o, f) = Get(pre heap, o, f)

to Ψ and Ψexc . If we encounter a modifies \nothing, l is empty which leads to the simpler version:

∀o, f : ¬Dom(pre heap, o) ∨ Get(heap, o, f) = Get(pre heap, o, f)

If we encounter a modifies \everything, we can simply ignore it for the translation as it does not restrict the
routine anyhow in using heap locations.

In the current state of the work, JML data groups are not taken into account which
For simplicity, we chose to use the modifiable semantics here, even if this is not the JML semantics as

it leads to less proof obligations. For the final version, we want to switch to the assignable semantics as
used in JML. Another simplification is that we currently do not support data groups which means that the
assignable clause only talks about a list of heap locations, the special case \everything which stands for all
allocated heap locations, or \nothing which stands for no heap locations.

29

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

3.2.3 JML expressions

In general, the translation of JML expressions is straightforward. The operators are directly translated to
the corresponding operators in FOL. The same applies to quantifiers and certain predicates like \type and
\typeof. Still, there are some more interesting expressions that we discuss here.

The result expression

For each routine, a special result variable res of the return type of the routine is created. It is used each
time the translation encounters a \result expression.

The old expression

In order to translate the JML \old (P) expression, we need to have access to parts of the prestate of the
current routine execution. For heap locations, this is done by saving a copy of the variable heap into pre heap.
For each parameter p, we generate a ghost variable pre p that contains the value of the parameters in the
prestate (The corresponding set annotations are attached to the first Java statement.

Having saved the interesting parts of the prestate, we can use it to translate the \old expression:

• field accesses o.f inside \old expressions use pre heap instead heap in the Get function.

• parameter accesses p inside \old expressions lead to the use of the saved ghost variable pre p instead
of the parameter p itself.

The fresh expression

For all heap locations l in \fresh (l), we have to ensure that the location has not been allocated in the
prestate. Tr(\fresh(l)) is defines as follows:

∀o, f : loc(o, f) ∈ l ⇒ ¬Dom(pre heap, loc(o, f)) ∧ Dom(heap, loc(o, f))

3.2.4 JML statements

In Section 3.1.2, we introduced the different kinds of local annotations that can be attached to a Java
statement. For each JML statement, we have introduced an annotation type. assert P translates to the
annotation assert Tr(P), assume P translates to the annotation assume Tr(P), and set V = e translates to
the annotation set Tr(V = e).

30

Chapter 4

Preservation of proof obligations using a
VCGen

In this chapter, we shall focus on the relation of the proof obligations over source programs and their re-
spective non optimizing bytecode compilation. Particularly, we show that those are syntactically equivalent.
In a PCC scenario such a relation enables the code producer to generate the certificate over the source
code. As we pointed out earlier in the introduction, this is important when the certificate must be produced
interactively which can be potentially the case when the security policy is non decidable. In such cases, rea-
soning over structured code is easier than reasoning over unstructured stack based code. We shall gradually
investigate the relation of the proof obligations for three fragments of the language. In Section 4.1, we shall
focus on a simple while language, Section 4.2 is dedicated to object oriented features and Section 4.3 takes
into account an objected oriented language with exceptions.

4.1 Preservation of proof obligations for simple imperative programs

4.1.1 Verification condition generator for JAVAB

The verification condition generator (VCGen) computes a set of verification conditions (logical propositions)
such that their validity ensures the validity of a postcondition at the end of every run of a program. A
postcondition is a proposition relating the final result to the initial values of the local variables. To define
the VCGen, we need some logical annotations that cannot be inferred automatically, namely loop invariants.
So we modify the syntax of a while instruction as follows: whileI (t){i}. Where I is a proposition, the loop
invariant.

Definition 4.1.1 (Propositions) The set of propositions is defined as follows:

logical expressions ē ::= res | x̄ | x | c | ē op ē
logical tests t̄ ::= ē cmp ē
Propositions P ::= t̄ | ¬P | P ∧ P | P ∨ P | P ⇒ P

where x̄ is a special variable representing the initial values of the variable x , and res is a special value
representing the final value of the evaluation of the program.

An annotated program is a triple (P,Φ,Ψ), where all while instructions in P are annotated with a loop
invariant. In the proof-transforming compiler, these annotations are produced by the translation from JML
to FOL as discussed in the previous chapter. Loop invariants should be valid at the entry and at the end
of their corresponding loop. A loop invariant is a proposition that can only refer to the initial and current
values of the local variables (not to the final result). Φ is the precondition of the program, which may only
contain reference to the initial values of local variables. Ψ is the postcondition, which may only refer to the
initial values of local variables and to the final result denoted by the special variable res.

31

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

wpS(skip, ψ) = ψ, ∅ wpS(x := e, ψ) = ψ{x 7→ e}, ∅

wpS(stmt2, ψ) = φ2, θ2 wpS(stmt1, φ2) = φ1, θ1

wpS(stmt1; stmt2, ψ) = φ1, θ1 ∪ θ2

wpS(stmtt , ψ) = φt , θt wpS(stmtf , ψ) = φf , θf

wpS(if(t){stmtt}{stmtf }, ψ) = (t ⇒ φt) ∧ (¬t ⇒ φt), θt ∪ θf

wpS(stmt , I) = φ, θ

wpS(whileI (t){stmt}, ψ) = I , {I ⇒ (t ⇒ φ) ∧ (¬t ⇒ ψ)} ∪ θ

P = stmt ; return e wpS(stmt ,Ψ{res 7→ e}) = φ, θ

VCgenS(P,Φ,Ψ) = {Φ⇒ φ{~x 7→ ~̄x}} ∪ θ

Figure 4.1: Weakest precondition of the basic language

Figure 4.1 describes the verification condition generator. First, we define the weakest precondition of an
instruction wpS(i , ψ) to ensure the postcondition ψ. The result is the precondition of the instruction, which
should be valid before its execution, and a set of side conditions, which should be valid for any values of the
local variables.

The set of verification conditions of an annotated program VCgenS(P,Φ,Ψ), where P = i ; return e, is
the side condition of the instruction i and the fact that the precondition of the program implies the weakest
precondition of i . An annotated program (P,Φ,Ψ) is correctly annotated if all generated conditions are
provable.

Soundness

We denote by ` ψ the fact that a proposition ψ is provable. This notation is naturally extended to sets of
propositions.

Definition 4.1.2

• An initial local memory ρ̄ satisfies a precondition Φ if Φ with the variables x̄ replaced by the corre-
sponding values in ρ̄ is a valid proposition:

ρ̄ |= Φ
def≡ ` Φ{~̄x 7→

−−→
ρ̄(x)}

• An initial local memory ρ̄ and a current local memory ρ satisfy a proposition ψ if ψ with the variables
x̄ replaced by the corresponding values in ρ̄ and variables x replaced by the corresponding values in ρ
is a valid proposition:

ρ̄, ρ |= ψ
def≡ ` ψ{~̄x 7→

−−→
ρ̄(x)}{~x 7→

−−→
ρ(x)}

• An initial memory ρ̄ and a final result v satisfy a postcondition Ψ if Ψ with the variables x̄ replaced
by the corresponding values in ρ̄ and the variable res replaced by v is a valid proposition:

ρ̄, v |= Ψ
def≡ ` Ψ{~̄x 7→

−−→
ρ̄(x)}{res 7→ v}

32

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Given an annotated program (P,Φ,Ψ), which is correctly annotated ` VCgenS(P,Φ,Ψ), the soundness of
the VCGen is expressed by the following property:

ρ̄ |= Φ
P : ρ̄ ⇓S v

}
⇒ ρ̄, v |= Ψ

In other terms, for every initial local memory ρ̄ satisfying the precondition of the program, if the program
evaluates to a final value v then ρ̄ and v satisfy the postcondition of the program.

We do not prove this lemma, since the soundness of the VCGen for source programs will be a direct
consequence of the soundness of the VCGen for bytecode and the preservation of proof obligations and the
preservation of the semantics, see below.

4.1.2 The verification condition generator for JVMB

The first difference compared to the VCGen for the source language JAVAB is the propositions. Propositions
for JVMB must refer to elements in the operand stack. To allow this, we extend the expressions of the logic
with a special variable os representing the current operand stack. ē :: ōs represents the stack ōs with the
expression ē on top, ↑k ōs represents the stack ōs where the k top elements have been popped, and ōs[k]
refers to the k+1-th element of the operand stack ōs (starting from the top). So, ōs[0] is the top element of
the stack, ōs[1] is the second, etc.

Definition 4.1.3 (Bytecode Propositions) The syntax of the bytecode propositions is defined by:

stack expressions ōs ::= os | ē :: ōs |↑k ōs
logical bytecode expressions ē ::= res | x̄ | x | c | ē op ē | ōs[k]
logical tests t̄ ::= ē cmp ē

bytecode Propositions Ṗ ::= t̄ | ¬Ṗ | Ṗ ∧ Ṗ | Ṗ ∨ Ṗ | Ṗ ⇒ Ṗ

where os is a special variable representing the current operand stack.

Intuitively, bytecode propositions should be understood as functions from local variables and an operand
stack to logical propositions.

The second difference is the way of storing loop invariants (or annotations). In the source language
JAVAB, loop invariants are attached to while instruction. In the bytecode, loop invariants are stored in an
external table Λ : Pc → Ṗ +⊥, associating to some program point an annotation. Intuitively each time we
reach an annotated program point, the annotation should be satisfied. An annotated bytecode program is a
tuple (Ṗ,Φ,Λ,Ψ), where φ is the precondition of the program and ψ its postcondition.

At the level of the bytecode language, the predicate transformer is a partial function that computes,
from a sufficiently annotated program, a fully annotated program in which all labels of the program have
an explicit precondition attached to them. In order to ensure the decidability of VCGen computation, its
domain is restricted to well-annotated programs. This domain can be characterized by an inductive and
decidable definition and does not impose any specific structure on programs. Note that the verification
condition generator does not ensure that well typedness of the bytecode. We actually assume that the code
is ”well behaved” in the sense that every time an instruction is executed the operand stack contains the
right type and number of arguments.

Definition 4.1.4 (Well-annotated Program)

• For all bytecode programs Ṗ and program points k, the successor function succṖ(k) returns the set of
program points that can be reached from one execution step starting from k:

succṖ(k) =

∅ if Ṗ[i] = return

{l} if Ṗ[i] = goto l

{k + 1, l} if Ṗ[i] = if cmp l
{k + 1} otherwise

33

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

• A program Ṗ is closed if for any program point k in the domain Ṗ, all the successors of k are in the
domain of Ṗ:

∀ks, k ∈ Dom(Ṗ)⇒ s ∈ succṖ(k)⇒ s ∈ Dom(Ṗ)

• A program point k ′ is reachable from a label k in Ṗ if k = k ′ or if k ′ is the successor of a program
point reachable from k:

k ∈ reachableṖ,k

k ′ ∈ reachableṖ,k k ′′ ∈ succṖ(k ′)

k ′′ ∈ reachableṖ,k

• Given a bytecode program Ṗ and an annotation table Λ, a program point k reaches annotated program
points if the instruction at position k is annotated in Λ or if the instruction is a return (in that case
the annotation is the postcondition), or if all its immediate successors reach annotated program points.
More precisely, reachAnnotṖ,Λ is defined as the smallest set that satisfies the following conditions:

Λ(k) = Ṗ

k ∈ reachAnnotṖ,Λ

Ṗ[k] = return

k ∈ reachAnnotṖ,Λ

∀k ′ ∈ succṖ(k), k ′ ∈ reachAnnotṖ,Λ
k ∈ reachAnnotṖ,Λ

• An annotated program (Ṗ, φ,Λ, ψ) is well-annotated if it is closed and every reachable point from the
starting point (i.e., label 0) reaches annotated labels.

Given a well-annotated program, the verification condition generator is defined with two mutually re-
cursive functions wpL(i) and wpi(Ṗ[i]). The function wpL(i) computes the weakest precondition of the
program point i using the annotation table. If i is annotated (Λ(i) = Ṗ), the weakest precondition is the
annotation Ṗ ,; otherwise, the weakest precondition is the weakest precondition of the instruction at i , which
is computed using the function wpi . The function wpi first computes the weakest precondition of all the
successors of the instruction at i and then transforms the resulting condition depending on the instruction.
Figure 4.2 defines these two functions.

Definition 4.1.5 The set of verification condition of a well-annotated bytecode program VCgenB(Ṗ,Φ,Λ,Ψ)
is the the smallest set of propositions that contains the following implications:

• The precondition implies the weakest precondition of the starting point:

(Φ⇒ wpL(0){~x 7→ ~̄x})

• For all annotated program point (Λ(k) = Ṗ), the annotation Ṗ implies the weakest precondition of the
instruction at k:

∀k ,Λ(k) = Ṗ ⇒ (Ṗ ⇒ wpi(k))

Soundness

The key point to prove the soundness lemma is that if all conditions generated by the VCGen are valid
then the weakest precondition of a program point wpL(i) implies the weakest precondition of its instruction
wpi(i).

Definition 4.1.6 (Interpretation of bytecode proposition) bytecode propositions can be interpreted
as predicates on bytecode states

34

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

wpi(k) = wpL(k + 1){os 7→ c :: os} if Ṗ[k] = push c

wpi(k) = wpL(k + 1){os 7→ (os[0] op os[1]) ::↑2 os} if Ṗ[k] = binop op

wpi(k) = wpL(k + 1){os 7→ x :: os} if Ṗ[k] = load x

wpi(k) = wpL(k + 1){os, x 7→ ↑ os,os[0]} if Ṗ[k] = store x

wpi(k) = wpL(l) if Ṗ[k] = goto l

wpi(k) =
(os[0] cmp os[1]⇒ wpL(k + 1){os 7→ ↑2 os})

∧ (¬(os[0] cmp os[1])⇒ wpL(l){os 7→ ↑2 os}) if Ṗ[k] = if cmp l

wpi(k) = Ψ{res 7→ os[0]} if Ṗ[k] = return
=

wpL(k) = Ṗ if Λ(k) = Ṗ
wpL(k) = wpi(k) if Λ(k) = ⊥

Figure 4.2: Weakest precondition of the basic bytecode

• The evaluation of a logical stack expression ōs and of a logical bytecode expression in an initial memory
ρ̄ and a current operand stack os are mutually defined by:

ρ̄, os, ρ ` os 7→ os

ρ̄, os, ρ ` ē 7→ v ρ̄, os, ρ ` ōs 7→ os ′

ρ̄, os, ρ ` ē :: ōs 7→ v :: os ′
ρ̄, os, ρ ` ōs 7→ v0 :: . . . :: vk−1 :: os ′

ρ̄, os, ρ `↑k ōs 7→ os ′

ρ̄, os, ρ ` ōs 7→ os ′

ρ̄, os, ρ ` ōs[k] 7→ os ′[k] ρ̄, os, ρ ` x̄ 7→ ρ̄(x) ρ̄, os, ρ ` x 7→ ρ(x)

ρ̄, os, ρ ` c 7→ c

ρ̄, os, ρ ` ē1 7→ v1 ρ̄, os, ρ ` ē2 7→ v2

ρ̄, os, ρ ` ē1 op ē2 7→ v1 op v2

• This evaluation is naturally extended to bytecode propositions ρ̄, os, ρ ` P 7→ Pv , where Pv is a boolean
formula, with the following rule for tests:

ρ̄, os, ρ ` ē1 7→ v1 ρ̄, os, ρ ` ē2 7→ v2

ρ̄, os, ρ ` ē1 cmp ē2 7→ v1 cmp v2

• An initial memory ρ̄, a current operand stack os, and a current memory ρ validate a logical bytecode
proposition P (ρ̄, os, ρ |= P) if ρ̄, os, ρ ` P 7→ Pv and Pv is provable.

Lemma 6 For all bytecode programs Ṗ, preconditions Φ, postconditions Ψ, and annotation tables Λ, if the
proof obligations of Ṗ are valid (i.e., ` VCgenB(Ṗ,Φ,Λ,Ψ)) then the following property holds:

ρ̄, ρ, os |= wpL(k)⇒ ρ̄, ρ, os |= wpi(k)

Lemma 7 (Soundness for one execution step) For all bytecode programs Ṗ, preconditions Φ, postcon-
ditions Ψ, and annotation tables Λ, if the proof obligations of Ṗ are valid (i.e., ` VCgenB(Ṗ,Φ,Λ,Ψ)) then
the following property holds:

ρ̄, ρ, os |= wpi(k)
〈k , ρ, os〉 〈k ′, ρ′, os ′〉

}
⇒ ρ̄, ρ′, os ′ |= wpL(k ′)

Lemma 8 (Soundness of the bytecode VCGen) For all bytecode programs Ṗ, preconditions Φ, postcon-
ditions Ψ, and annotation tables Λ, if the proof obligations of Ṗ are valid (i.e., ` VCgenB(Ṗ,Φ,Λ,Ψ)) then
the following property holds:

ρ̄, ρ, os |= wpi(Ṗ[i])
〈k , ρ, os〉 ⇓ v

}
⇒ ρ̄, v |= Ψ

35

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

4.1.3 Relation between the verification calculi for JAVAB and JVMB

Our goal is to show the preservation of proof obligations (PPO), i.e., given an annotated source program
and its non optimized compilation, there exists an annotation table such that the verification conditions on
bytecode and source code level will be syntactically equivalent:

VCgenS(P,Φ,Ψ) = VCgenB([[P]],Φ,Λ,Ψ)

It is worth to note that the fact that the compiler is non optimizing is important for this result as in the
presence of optimizations such an equivalence will not hold.

For the purposes of this section, we extend the compiler to annotated source programs. Only the
compilation rule for the while statement changes: each time the compiler translates an annotated loop
starting from position k (k : [[whileI (e){c}]]), it inserts in the annotation table the invariant I at position k .
The translation of the pre- and postcondition is the identity.

Lemma 9 (Well-annotated programs) For all annotated source programs (P,Φ,Ψ) that terminate by
a return (i.e., P = i ; returne), the compiled version (Ṗ,Φ,Λ,Ψ) is well-annotated.

This lemma implies that the VCGen on bytecode is defined. To prove preservation of proof obligations, we
need two auxiliary lemmas. The first one expresses PPO for expressions, the second for instructions:

Lemma 10 (Preservation of proof obligations for expressions)
Given a well-annotated program (i ′; return e ′,Φ,Ψ) and its compiled version (Ṗ,Φ,Λ,Ψ). For all sub-

expressions e appearing in the program, if the sequence of code corresponding to the compilation of e starts at
position k and terminates at position l (i.e., l = k + |[[e]]|) and wpL(l) = ψ then wpL(k) = ψ{os 7→ e :: os}.

The proof is by induction on e. The two base cases are trivial, the case of binary operators needs some
explanation. Let e = e1 op e2. Its compiled sequence is

[[e2]]; [[e1]]; binop op

Let l2 = k + |[[e2]]| and l1 = l2 + |[[e1]]|, so l = l1 + 1. Since wpL(l) = ψ, we have

wpL(l1) = ψ{os 7→ os[0] op os[1] ::↑2 os}

By induction hypothesis on e1

wpL(l2) = wpL(l1){os 7→ e1 :: os}
= ψ{os 7→ (e1 :: os)[0] op (e1 :: os)[1] ::↑2 (e1 :: os)}
= ψ{os 7→ e1 op os[0] ::↑1 os}

By induction hypothesis on e2 we get the expected result

wpL(k) = wpL(l2){os 7→ e2 :: os}
= ψ{os 7→ e1 op e2 :: os}

Lemma 11 (Preservation of proof obligations for instructions)
Given a well-annotated program (i ′; return e ′,Φ,Ψ) and its compiled version (Ṗ,Φ,Λ,Ψ). For all sub-

instructions i ⊆ i ′, which are compiled starting from position k (i.e., Ṗ[k ..k + |[[i]]|] = k : [[i]]) and for all
postconditions ψ, if wpS(i , ψ) = φ, θ and wpL(k + |[[i]]|) = ψ then the following properties hold:

• wpL(k) = φ

• For all C ∈ θ there exists k ′ ∈ [k ..k + |[[i]]|] and loop invariant I such that Λ(k ′) = I and

C = (I ⇒ wpi(k
′))

36

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The proof of this lemma is by induction over the instruction i . The two interesting case are for assignment
and the while instruction. The assignment case is a direct consequence of PPO for expressions: by definition
k : [[x := e]] = [[e]]; store x , since wpL(k + |[[i]]|) = wpL(k + |[[e]]|+ 1) = ψ we have

wpL(k + |[[e]]|) = ψ{os, x 7→ ↑ os,os[0]}

and by lemma 10 we get

wpL(k) = wpLk + |[[e]]|{os 7→ e :: os}
= (ψ{os, x 7→ ↑ os,os[0]}){os 7→ e :: os}
= ψ{os, x 7→ os, e}
= ψ{x 7→ e}

For the while case i = whileI (t){i1} and t = e1 cmp e2, we have

k : [[i]] = [[e2]]; [[e1]]; if cmp k2; k1 : [[i1]]; goto k
wpS(i , ψ) = I , {I ⇒ (t ⇒ φ1) ∧ (¬t ⇒ ψ)} ∪ θ1

with wpS(i1, I) = φ1, θ1, l = k + |[[e1]]|+ |[[e2]]| k1 = l + 1 and k2 = k1 + |[[i1]]|+ 1 = k + |[[i]]| Since Λ(k) = I
(by definition of the compiler), we have wpL(k) = I and the first property trivially holds. For the second,
if C ∈ θ = {I ⇒ (t ⇒ φ1) ∧ (¬t ⇒ ψ)} ∪ θ1, either C ∈ θ1 and the property holds by induction hypothesis
on i1 or C = I ⇒ (t ⇒ φ1) ∧ (¬t ⇒ ψ). In that case, we take k ′ = k and we should prove that

wpi(k
′) = (t ⇒ φ1) ∧ (¬t ⇒ ψ)

The WP of the last goto instruction is wpLk1 + |[[i1]] = wpLk = I , so by induction hypothesis wpLk1 = φ1

and by hypothesis wpL(k2) = wpL(k + |[[i]]|) = ψ. The WP of the branching instruction is

wpL(l) = (os[0] cmp os[1]⇒ wpL(k1){os 7→ ↑2 os}) ∧ (¬(os[0] cmp os[1])⇒ wpL(k2){os 7→ ↑2 os})
= (os[0] cmp os[1]⇒ φ1{os 7→ ↑2 os}) ∧ (¬(os[0] cmp os[1])⇒ I {os 7→ ↑2 os})
= (os[0] cmp os[1]⇒ φ1 ∧ (¬(os[0] cmp os[1])⇒ I)

For the last equation, we use the fact that os does not appear in φ1 and I (they are source propositions).
Then, using lemma 10, we conclude:

wpL(k) = (e1 cmp e2 ⇒ φ1 ∧ (¬(e1 cmp e2)⇒ I)

Lemma 12 (Preservation of proof obligations (PPO)) The sets of verification conditions of a well-
annotated source program (P,Φ,Ψ) terminating by a return, and its compiled version (Ṗ,Φ,Λ,Ψ) are equal:

VCgenS(P,Φ,Ψ) = VCgenB(Ṗ,Φ,Λ,Ψ)

Using the fact that the compiler preserves the semantics of programs, the soundness of the verification
condition generator for bytecode and PPO, we can derive soundness of the source verification condition
generator.

Corolary 4.1.7 (Soundness of VCgenS) If ` VCgenS(P,Φ,Ψ) then for all initial memory ρ0 satisfying
Φ, if P : ρ0 ⇓S ρ, v then ρ0, ρ ` Ψ.

4.2 Preservation of proof obligations for objects and methods

Now that we have introduced the basic concepts of the proof preserving compilation, we are ready to consider
several more realistic extensions of the language. In this section particularly, we shall consider a language
with object-oriented features.

37

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

4.2.1 Method specification and behavior subtyping

In JAVAO and JVMO a program is a set of classes, we have to change the notion of program specification.
In an object-oriented setting, the basic execution entities are methods. A method is provided with a

specification (or also contract), i.e., two propositions describing under what conditions a method may be
called (the method precondition) and what is guaranteed by the method (the method postcondition). Thus,
we shall provide a program Po with a table Γ describing the contract of every method in the program. When
we want to express that the specification found in Γ for method m is the precondition Φ and Ψ, we shall
write Γ(m,Φ,Ψ).

The notion of program validity relies on the validity of every method in the program and is as follows:

Definition 4.2.1 (Validity of programs)
A program Po is valid if every method declared in a class in Po is valid w.r.t. its specification.

Method validity w.r.t. method specifications Assuming that the specification of the method m
consists of the precondition Φ and the postcondition Ψ (i.e., Γ(m,Φ,Ψ)), we say that m is valid w.r.t. its
specification if the execution of the method in a state satisfying the precondition leads to a value satisfying
the postcondition. This is formally stated in the following definition:

Definition 4.2.2 (Validity of methods)

• Method validity for JAVAO

|= Γ(m,Φ,Ψ)
def≡

∀h r v v ′ h ′. [m, r , v , h] ⇓S (v ′, h ′) ∧ ({this 7→ r , arg 7→ v}, h) |= Φ⇒
({this 7→ r , arg 7→ v}, h), (h ′, v ′) |= Ψ

• Method validity for JVMO

|= Γ(m,Φ,Ψ)
def≡

∀h r v v ′ h ′. 〈1, {this 7→ r , arg 7→ v}, nil, h〉 ⇓m (v ′, h ′) ∧ ({this 7→ r , arg 7→ v}, h) |= Φ⇒
({this 7→ r , arg 7→ v}, h), (h ′, v ′) |= Ψ

Method validity in the presence of virtual method calls In the presence of method overriding, it
is not clear at compile time which of the methods will be executed, the overridden method or which of
its overriding methods. This depends on the dynamic type of the receiver object which in general cannot
be determined statically. This implies that an overriding method m1 may be executed whenever their is a
static call to method m2 overriden by m1. Intuitively, we would expect that m1 may be executed under the
same conditions as m2, and that m2 must provide the same guarantees as the overridden method m1; this
property is called behavioral subtyping [20]. This is formally stated in the following definition:

Definition 4.2.3 (Behavioral subtyping validity of methods)
Let m2 be a method declared in class C2 such that C1 is an ancestor class of C2 in the program Po.

Moreover, let m2 override method m1. If the specifications of m2 and m1 are Γ(m2,Φ2,Ψ2) and Γ(m1,Φ1,Ψ1),
respectively, then we say that method m2 is a behavioral subtype of m1 if the following two conditions hold:

1. ∀ρ0 h0, (ρ0, h0) |= Φ1 ⇒ (ρ0, h0) |= Φ2

2. ∀ρ0 h0 h v , (ρ0, h0) |= Φ1 ⇒ (ρ0, h0), (h, v) |= Ψ2 ⇒ (ρ0, h0), (h, v) |= Ψ1

A first option to statically ensure this property is to look for all the possible methods that can be
actually executed at a method call (find all the methods that are overriding the method) and check if their
specifications respect the respective pre- and postcondition of the method call. But this is a non-modular
solution, as the whole program should be re-verified every time the program is extended with a new subclass.

38

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Γ(m,Φ,Ψ) m ∈ C
Γ(m′,Φ′,Ψ′) m′ ∈ C

Superclass(C,C′) overrides(m′,m)

Φ′ ⇒ Φ ∈ VCbsO(Γ)

Γ(m,Φ,Ψ) m ∈ C
Γ(m′,Φ′,Ψ′)m′ ∈ C′

Superclass(C,C′) overrides(m′,m)

Ψ⇒ Ψ′ ∈ VCbsO(Γ)

Figure 4.3: Conditions for enforcing behavioral subtyping in JAVAO

Another possibility is to use specification inheritance [13] which provides a modular and sound reasoning
in the presence of virtual method calls. This solution is also adopted in JML [37]. The technique consists
in synthesizing method specifications from its proper specification (e.g., provided by the developer) and
the specifications of the methods it overrides. In particular, the synthesized method precondition is the
disjunction of its specified precondition and the preconditions of its overridden methods. The postcondition
of a method states that if its specified precondition holds in the initial state then its specified postcondition
holds in the final state and similarly for the specified pre- and postcondition of every overridden method.
Such synthesized specifications meet the condition of behavioral subtyping without the need of additional
verification conditions but however may lead to prove large specifications against which a method should be
verified if the chain of overriding methods is long.

Here, we shall adopt another approach of enforcing behavioral subtyping as shown in Fig. 4.3: for the
specification table Γ of program Po , we require that for every overriding method in a class C there is a
co- and contravariance relation between its pre- and postcondition and the pre- and postcondition of the
overridden method in the direct super class C′ of Cfor which we use the notation Superclass(C,C′). This is
sufficient to establish that a method in the presence of virtual calls is a correct behavioral subtype of the
methods it overrides by transitivity of the logical implication. This technical is used at source and bytecode
level.

At source level and at bytecode level the verification conditions of a program are split in two parts:

• A first part to ensure behavior subtyping checker

VCbsO(Γ)

This part is common to the source and bytecode level

• A second to check that the implementation of each method satisfies its specification.

Since the part of the verification conditions ensuring the behavior subtyping is common to the two
language level, our goal is now to show the preservation of proof obligations of the second part.

4.2.2 Verification condition generator for JAVAO

Program specification for JAVAO programs

The specification language for JAVAO is an extension of the one of JAVAB but it take into account heap
expressions.

Definition 4.2.4 (Propositions language of JAVAO)

39

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The set of propositions is defined as follows:

logical expressions ē ::= res | x̄ | x | v | c | ē op ē | H (ē.f)
heap expressions H ::= H {ē.f 7→ ē} | h̄ | h | h
logical tests t̄ ::= ē cmp ē
Propositions P ::= t̄ | ¬P | P ∧ P | P ∨ P | P ⇒ P

| ∀v . P | ∀h. P | New(H ,C) = (h, v)

In the new constructs for expressions, v are variables which are bind by a for all expression and H (ē.f)
stand for the value of the field f associated to the expression ē in the heap H . Heap expressions are either a
heap variable (bind by a for all), or the special variable h̄ representing the initial heap (at the beginning of
the evaluation of the method or the special variable h representing the current heap or H {ē1.f 7→ ē2} which
stand for the heap H where the field f of the expression ē1 has been updated with the value ē2. Proposition
are also extended with two for all expressions, one for quantifying over values and the other over heaps.
Thus, we introduce a special predicate New(H ,C) = (h, v) which means that the variable h represents the
heap resulting of a new allocation of a object of class C in the heap H and v is a reference to the newly
allocated object.

We also introduce special logical variables, which, as we shall see later, are abstractions for expression
values. Those variables are taken from a set LV which is disjoint from the set of the program variables. To
give an intuition about LV, an assertion may mention a logical variable if it refers to intermediate states
of expression evaluation. Thus, method pre- and postconditions must not contain such logical variables.
Actually, as we shall see later, those variables will appear only in the intermediate calculations of the
verification condition generator.

Validity of assertions is defined in a similar way as in the previous section, but it is now parametrised
by four components, the initial local and global memory and the current local and global memories:

Definition 4.2.5 (Validity of pre- and postconditions)

• An initial state (ρ0, h0) satisfies a precondition Φ if the interpretation of Φ in this state holds:

(ρ, h) |= Φ
def≡ ` Φ{~̄x , h̄ 7→ ~ρ0(x), h0}

• An initial state (ρ0, h0) and a current state (ρ, h) satisfy the proposition ψ if the interpretation of ψ
in these states holds:

(ρ0, h0), (ρ, h) |=` ψ def≡ ψ{~̄x , h̄, ~x ,h 7→ ~ρ0(x), h0, ~ρ(x), h}

• An initial state (ρ0, h0), a final memory h and a final value v satisfy the postcondition ψ if the
interpretation of ψ in these states and for this value holds:

(ρ0, h0), (h, v) |= ψ
def≡ ` ψ{~̄x , h̄,h, res 7→ ~ρ0(x), h0, h, v}

Verification condition generator for JAVAO

Fig. 4.4 shows the rules for generating verification conditions for JAVAO. Now that evaluation of expressions
may change the program state (e.g., instance creation expression and method invocation), the verification
condition generator becomes more complex.

First, we define the weakest precondition wpO(e, ψ)v of an expression e to ensure a postcondition ψ the
variable v as to be understand as a binder which links the value of the expression e in ψ. If the expression
e is the variable x the weakest precondition is ψ{v 7→ x}. If it is a binary operation then the WP is a
composition of the WP of the two expressions, the order of the composition is important due to the possible
side effect of expressions. For method invocation, the WP lookup in the method specification table the

40

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

wpO(x , ψ)v = ψ{v 7→ x} wpO(c, ψ)v = ψ{v 7→ c}

wpO(e1 op e2, ψ)v = wpO(e2,wpO(e1, ψ{v 7→ v1 op v2})v1)v2

Γ(m,Φ,Ψ)
ξ1 := Φ{ ¯this, ¯arg, h̄ 7→ v1, v2,h}

ξ2 := ξ1 ∧ ∀h r . (ξ1 ∧Ψ{this, arg, h̄,h, res 7→ v1, v2,h, h, r})⇒ ψ{h, v 7→ h, r}
φ := wpO(e1,wpO(e2, ξ2)v2)v1

wpO(e1.m(e2), ψ)v = φ

φ := wpO(e1, ψ{v 7→ h(v1.f)})v1

wpO(e1.f, ψ)v = φ

wpO(new C, ψ)v = ∀h r .New(h,C) = (h, r)⇒ ψ{h, v 7→ h, r}

φ := wpO(e1,wpO(e2, ψ{h 7→ h{v1.f 7→ v2}})v2)v1

wpO(e1.f := e2, ψ) = (φ, ∅)

Γ(m,Φ,Ψ) wpO(body(m),Ψ) = φ, θ

VCgenO(m) = {Φ⇒ φ} ∪ θ

VCc(C,Γ) = ∪m∈CVCgenO(m)

Figure 4.4: Weakest precondition for the extensions in JAVAO

specification associated to the method m in the class C (the static type of the expression e1), and use it to
build the precondition of the call. The heap after the call and the result are universally quantified.

Second, we define the weakest precondition for instruction wpO(i , ψ), as for JAVAB the result is a
precondition for the instruction i and a set of side conditions. The rule for field assignment states that the
postcondition ψ must hold in the post-state of the field assignment, i.e. after the evaluation of e1 and e2 for
their values v1 and v2.

The verification conditions for a method implementation VCgenO(m) is computed using the specifica-
tion given by Γ and weakest precondition of the method body. Those verification conditions for method
implementations are then used to compute the set of verification condition of a class VCc(C,Γ).

The verification conditions for a program Po with a specification table Γ express that Po is correct if
every method in every class in Po is correct w.r.t. Γ and verify the behavior subtyping condition.

Definition 4.2.6 (Verification conditions for JAVAO)

• The verification conditions of the method implementations of a program are defined as:

VCpO(Po ,Γ) = ∪C∈Po VCc(C,Γ)

• The verification conditions of a program are:

VCpO(Po ,Γ) ∪ VCbsO(Γ)

41

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The soundness statement of the verification condition generator VCgenO is expressed as follows:

Theorem 4.2.7 (Soundness of the verification condition generator for JAVAO)

Let Po be a JAVAO program provided with its specification table Γ. If the following conditions hold:

1. the verification conditions over methods are valid, i.e., ` VCpO(Po ,Γ)

2. overriding methods are proper behavioral subtypes, i.e., ` VCbsO(Γ)

then Po is valid in the sense of Definition 4.2.1

4.2.3 Verification conditions generator for JVMO

Like in the source case, a JVMO program Po is specified with a global specification table Γ, where Γ(m,Φ,Ψ)
means that the precondition and postcondition for method m are Φ and Ψ, respectively. We also need a
local specification table Λ containing the local invariants of each methods. This local table can be see as a
map associating to each method a JVMB annotation table, i.e. Λm(k) = I means that the program point
at position k in the bytecode sequence corresponding to the method m is annotated with the invariant I ,
whereas Λm(k) = ⊥ means that the program point k in m is not annotated.

As for JAVAB and JVMB, the specification language of JAVAO is extended to allows stack expressions.

Definition 4.2.8 (Specification language of JVMO)

The set of propositions is defined by:

stack expressions ōs ::= os | ē :: ōs |↑k ōs
logical expressions ē ::= res | x̄ | x | v | c | ē op ē | H (ē.f) | ōs[k]
heap expressions H ::= H {ē.f 7→ ē} | h̄ | h | h
logical tests t̄ ::= ē cmp ē
Propositions P ::= t̄ | ¬P | P ∧ P | P ∨ P | P ⇒ P

| ∀v . P | ∀h. P | New(H ,C) = (h, v)

Verification condition generator for JVMO

The verification condition generator for the object-oriented instructions is given in Fig. 4.5. The generation
of verification conditions is based on the predicate transformer function wpm

i . Let us look at some of the
rules in more detail. The rule for the method invocation generates a precondition for the instruction which
expresses the following: in the prestate, the precondition of the invoked method must hold, where the value
of the argument is initialized with the top stack element and the receiver object this is initialized with the
second stack top element. The postcondition of the method must imply the precondition of the successor
instruction (calculated by wpm

l) for any return value and where the receiver object and the argument are
initialized with the values from the operand stack.

As for JAVAO, the set of verification conditions of a bytecode program is the union of the verification
condition due to the behavior subtyping and to the verification conditions of each classes of the program.

Definition 4.2.9 (Verification conditions of a bytecode program)

• The verification conditions of the method implementations of a bytecode program are defined as:

VCpbc
O (Po ,Γ) = ∪C∈Po VCcbc

O (C,Γ)

• The verification conditions of a bytecode program are:

VCpbc
O (Po ,Γ) ∪ VCbsO(Γ)

42

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Pm[k] = invoke m′ Γ(m′,Φ,Ψ) wpm
l (k + 1) = ψ

ξ1 = Φ{ ¯this, ¯arg, h̄ 7→ os[1],os[0],h}
φ = ξ1 ∧ ∀h r . ξ1 ∧Ψ{ ¯this, ¯arg, h̄,h, res 7→ os[1],os[0],h, h, r} ⇒ ψ{h,os 7→ h, r ::↑2 os}

wpm
i (k) = φ

Pm[k] = putfield f

wpm
i (k) = wpm

l (k + 1){h,os 7→ h{os[1].f 7→ os[0]}, ↑2 os}

Pm[k] = getfield f

wpm
i (k) = wpm

l (k + 1){os 7→ h(os[0].f) ::↑ os}

Pm[k] = new C wpm
l (k + 1) = φ

wpm
i (k) = ∀h r . New(h,C) = (h, r)⇒ φ{h,os 7→ h, r :: os}

Pm[k] = push c

wpm
i (k) = wpm

l (k + 1){os 7→ c :: os}
Pm[k] = binop op

wpm
i (k) = wpm

l (k + 1){os 7→ (os[0] op os[1]) ::↑2 os}

Pm[k] = load x

wpm
i (k) = wpm

l (k + 1){os 7→ x :: os}
Pm[k] = store x

wpm
i (k) = wpm

l (k + 1){os, x 7→ ↑ os,os[0]}

Pm[k] = goto l

wpm
i (k) = wpm

l (l)

Pm[k] = if cmp l

wpm
i (k) =

(os[0] cmp os[1]⇒ wpm
l (k + 1){os 7→ ↑2 os})

∧ (¬(os[0] cmp os[1])⇒ wpm
l (l){os 7→ ↑2 os})

Pm[k] = return Γ(m,Φ,Ψ)

wpm
i (k) = Ψ{res 7→ os[0]}

Λm(k) = Ṗ

wpm
l (k) = Ṗ

Λm(k) = ⊥
wpm

l (k) = wpm
i (k)

Γ(m,Φ,Ψ)

VCgenbc
O (m) = {ψ ⇒ wpm

i (k) | Λm(k) = ψ} ∪ {Φ⇒ wpm
i (1)}

VCcbc
O (C,Γ) = ∪m∈CVCgenbc

O (m)

Figure 4.5: Verification condition generator for JVMO

43

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The soundness of the verification condition generator states that if the the verification conditions gener-
ated for a program are valid, then the program is valid in the sense of Definition 4.2.1:

Theorem 4.2.10 (Soundness of the verification condition generator for JVMO)
Let Po be a JVMO program provided with a specification table Γ. If the following conditions hold:

1. the verification conditions over methods are valid, i.e., ` VCpbc
O (Po ,Γ)

2. overriding methods are proper behavioral subtypes, i.e., ` VCbsO(Γ)

then Po is valid in the sense of Definition 4.2.1

The proof is similar to the case of JVMB the only new difficulty is the case of method invocation, where
we use the fact that the condition ensuring behavior subtyping are valid, and the property of the lookup
function which return a overriding method.

4.2.4 Relation between the verification calculi for JAVAO and JVMO

Similarly to the simple source and bytecode languages, the verification conditions for a JAVAO program
against a specification table Γ and its compilation in JVMO against the same specification table extended
with the local annotation table containing the loop invariants, are syntactically equivalent under the assump-
tion that the local annotations (i.e. loop invariants) are compiled in a proper way. The formal statement
follows.

Theorem 4.2.11 (Equivalence between VCpO and VCpbc
O)

For all JAVAO program Po and annotation table Γ, its compilation version [[Po]] and its corresponding
annotation table annotation table Γ′, the following holds:

VCpO(Po ,Γ) = VCpbc
O ([[Po]],Γ′)

This theorem is sufficient to show the equality of the verification conditions, since the verification con-
dition of both program due to the behavior subtyping are by construction equals.

The proof of the theorem is similar to the case of JAVAB and JVMB. The only difference is for the case
of the expressions, since the way of computing the WP at source level has really changed. To that end we
prove the following lemma:

Lemma 13 For all expression e compiled starting from position k, let j = k +|[[e]]| then for all postcondition
ψ and number z such that

ψ{wk 7→ os[k]}k=0...z = wpm
l (j)

we have
wpO(k)(e, ψ)w0{wk 7→ os[k − 1]}k=1...z = wpm

l (k)

4.3 Preservation of proof obligations for exceptions

4.3.1 Verification conditions for JAVAE

Program specification for JAVAE programs

In order to characterize properly the normal and exceptional termination of programs, methods will be
provided with a normal and exceptional postcondition for every possible exception type on which method
execution may terminate. Thus, the specification tables are now extended with a new component: the
exceptional postcondition of each methods.

An exceptional postcondition is a postcondition where the special variable exc binds the value of the
raised expression, i.e. the exceptional reference. Since the semantics of a JAVAE program when an exception

44

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

is raised depend of the dynamic type of the exception, the specification language should be able to express
this notion. Thus the syntax of proposition is extended with the following predicate: Which means that the
dynamic type of the expression ē in the heap H is a subclass of C.

Thus, a program Pe is provided with a specification table Γ where for every method m in every class C,
Γ returns the already seen elements of method specification - the precondition Φ and the method normal
postcondition Ψ. In addition, the specification table specifies for any exception type on which the method
may terminate, the property that must hold in such an exceptional termination. This is done via the
exceptional postcondition Ψexc . The postcondition Ψexc specifies depending on the type of the thrown
exception object exc what is the respective property that must hold in the exceptional state, i.e. the Ψexc

is of the form :

typeof(exc) � E1 ⇒ ψ1∧
typeof(exc) � E2 ⇒ ψ2∧
. . .

We use the notation Ψexc{E 7→ ψ} as an abbreviation of the following :

typeof(exc) � E1 ⇒ ψ ∧ ¬(typeof(exc) � E1)⇒ Ψexc

We write that the method signature m in class C is associated with the specification Φ, Ψ and Ψexc by
the specification table Γ as follows Γ(Pe , m, Φ, Ψ, Ψexc).

Program and method validity Program validity has still the same meaning as in the previous sections

Definition 4.3.1 (Validity of programs in JAVAE) A program Pe is valid if for every class C in Pe and
for every method m declared in C, method m is valid in the sense of Def. 4.3.2.

However, method validity should be adapted to the new operational semantics of the language. Given
a method m with a specification Φ and Ψ (i.e. Γ(Pe ,m,Φ,Ψ,Ψexc)), we say that m is valid w.r.t. its
specification if a method starts execution in an initial local memory ρ and heap h, such that (ρ, h) |= Φ and
terminates normally execution leaving a heap h ′ and returns a value v then the postcondition holds in the
final state (ρ, h), h ′, v |= Ψ . Moreover, if the method starts execution in state (ρ, h) such that (ρ, h) |= Φ
and method terminates execution exceptionally by throwing an exceptional object r with a heap h ′ then
the exceptional postcondition holds in the final state (ρ, h), h ′, r |= Ψexc . This is stated formally with the
following definition:

Definition 4.3.2 (Validity of methods in JAVAE) In program Pe , a method m with specification Φ,Ψ,Ψexc

is valid w.r.t. to this specification (notation |= Γ(Pe ,m,Φ,Ψ,Ψexc)) if the following holds :

∀ρ, h, h ′, [body(m), ρ, h] ⇓E (v , h ′)⇒ ρ, h |= Φ⇒ ρ, h, h ′, v |= Ψ∧
∀ρ, h, h ′, [body(m), ρ, h] ⇓E (r , h ′)⇒ ρ, h |= Φ⇒ ρ, h, h ′, r |= Ψexc

Verification condition generator for JAVAE

The definition of the verification condition generator for JAVAE is shown in Fig. 4.6. The predicate trans-
former function wpE now takes not only the normal postcondition ψ but also an exceptional postcondition
ψexc .

Actually, only the rules for expressions and statements which may throw or handle exceptions change.
Thus, except the rules shown in the figure, the cases for the other language constructs remain the same as
in the previous sections.

In these settings, for method invocation there are three cases - in case the receiver of the object is not
null and the execution of the called method terminates normally, then the specified normal postcondition
of the invoked method implies the normal ψ. In case that the receiver object is not null and the invocation

45

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

of the method terminates exceptionally, the specified exceptional postcondition of the called method must
imply the exceptional postcondition of the invocation expression. Finally, if the receiver object is null, then
the exceptional postcondition of the invocation expression must hold.

The try catch rule first calculates the precondition for the catch statement. The resulting precondition
will update the exceptional postcondition ψexc for the exceptional type EType and upon the latter and the
normal postcondition the precondition for the try statement will be calculated.

The verification conditions for a method w.r.t. its specification - precondition, normal postcondition
and exceptional postcondition are the verification conditions over the method body and the formula which
states that the specified precondition of the method implies the weakest precondition of the method body.

Finally, the verification conditions for a program are generated via the function VCpE which depends on
EvcC and wpE and is defined in the following way:

VCpE(Pe ,Γ) = ∪C∈Pe VCcE(C,Γ)

Theorem 4.3.3 (Soundness of the verification condition generator for JAVAE) Let us have JAVAE
program Pe provided with specification table Γ. If the following conditions hold :

1. the verification conditions over methods are valid, i.e. ` VCpE(Pe ,Γ)

2. overriding methods are proper behavioral subtypes

then Pe is valid in the sense of Definition 4.3.1

4.3.2 Verification conditions for JVME

The verification condition generator for the language is given in Fig. 4.7. The generation of verification
conditions is based on the predicate transformers wpEi and wpEE which are responsible for the normal
postcondition and exceptional postconditions respectively. While the transformer wpEi works in a similar
way as the bytecode predicate transformers from the previous sections, the novel part here concerns wpEE .
The latter takes an index i of a bytecode instruction (we assume implicitly that the bytecode instructions
are in the body of method m) and reconstructs the list of all the exception handlers in whose domain i is.
The list of exception handlers excH consists of pairs - the index at which the exception handler starts and
the exception type that it manages. The first element in the list is the first element in the exception handler
table which may handle exceptions from i , the second is the second such exception handler etc, i.e. the
order in the list reflect which exception handler will be used to handle an exception thrown at index i . From
the list excH and the exceptional postcondition Ψexc of m , wpEE constructs the exceptional postcondition.

The verification conditions for behavioral subtyping remain the same as in JAVAO. We are now ready
to state the soundness statement which is as follows:

Theorem 4.3.4 (Soundness of the verification condition generator for JVME) Let us have a JVME
program Pe provided with specification table Γ. If the following conditions hold :

1. the verification conditions over methods are valid, i.e. ` VCpO(Pe ,Γ)

2. overriding methods are proper behavioral subtypes, i.e. ` VCbsE(Γ)

then Pe is valid in the sense of Definition 4.3.1

4.3.3 Relation between the verification calculi for JAVAE and JVME

We shall establish few properties about the compiler which will play a role for the relation between the
verification calculi of JAVAE and JVME programs. In particular, we will show that the compiler will
preserve the exception handlers, i.e. if a statement or expression in the source is protected by a particular
exception handler, then the compilation or statement is protected by the compilation of the corresponding
exception handler statement.

46

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The next lemma concerns compilation of expressions. Because our programming language introduces
exception handlers only via the try catch statement, this means that all the instructions resulting from an
expression compilation for any exception thrown must have the same exception handler.

Lemma 14 (Exception handler compilation for expressions) For every expression e and initial com-
pilation index i the compiler returns the next free index j , the list of resulting bytecode instructions I and
the the exception handler function Handler, i.e. j : [[i , e]] = I , j ,Handler such that :

∀ k , ∀ E , i ≤ k ≤ j ⇒ Handler(k ,E) = Handler(j ,E)

We shall turn now to the preservation of exception handlers in compilation of statements. Consider a
try catch statement try{s1} catch (EType) {s2}. What happens there, is that every exception thrown by the
try statement of type or subtype of EType will transfer the control to the catch statement s2. Any other
exception E thrown by the try statement will be processed in the same way in which E will be processed if
thrown by the catch statement s2. Thus, the compilation of a try catch statement modifies the exception
handler function. On the other hand, from the fact that any other exception thrown by the try and catch
statement is handled in the same way, implies that the exception handlers for any exception thrown by the
last instructions in the compilation of the try and the catch substatements are the same.

Lemma 15 (Exception handler compilation for try catch statements) Suppose that the statement
s is of the form try{s1} catch(EType){s2} and that its compilation starts at the initial index i and returns
the next free index j , the list of resulting bytecode instructions I and the resulting exception handler function
Handler1, i.e. [[i , s]] = I , j ,Handler. More over, assume that the compilation of the substatement s1 terminates
at index k, i.e. [[i , s1]] = I1, k , . Then we have that

• ∀ E , ¬E � EType⇒ Handler(k − 1,E) = Handler(j − 1,E)

• ∀ E , E � EType⇒ Handler(k − 1,E) = k + 1

In order to establish a similar property of the compiler for the rest of the statements of the language,
we introduce the notion of direct of substatement: a statement s ′ is a direct substatement of s if s ′ ⊂ s, i.e.
s ′ is a substatement of s and there is no other substatement s ′′, such that s ′′ ⊂ s and s ′ ⊂ s ′′.

Lemma 16 (Exception handler compilation for statements not manipulating exceptions) Suppose
that the compilation of a non try catch statement s starts at the initial index i and the index j is the next free
instruction index after the compilation, I the list of resulting bytecode instructions and Handler the resulting
exception handler function, i.e. [[i , s]] = I , j ,Handler. If s has a direct substatement s1 whose compilation
starts at index r and terminates leaving the next free index k for some exception handler [[r , s1]] = I , k , the
following holds

∀ E , Handler(j − 1,E) = Handler(k − 1,E)

We are now ready to state the relation between the verification conditions for the structured language
JAVAE and the bytecode language JVME . As in the cases considered in the previous sections, this relation is
a syntactic equivalence between the verification conditions of a JAVAE program and the bytecode program
produced by our compiler under the assumption bytecode that method specifications are the same and
annotations are compiled in a proper way as discussed in Section 4.1.

Theorem 4.3.5 Equivalence between VCpE and VCpbc
E Let us have the program Pe and its compilation [[Pe]]

and the annotation table Γ. Then the following holds:

VCpE(Pe ,Γ) = VCpbc
E (Pe ,Γ)

To prove that equivalence in the current settings, we will need several more auxiliary properties. First,
we must establish that the preconditions of a JAVAE expression and its compilation are the same provided
that that both the exceptional and normal postcondition are syntactically equivalent:

47

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Lemma 17 For the expression e and its compilation starting at index s and terminating with index i, a
list of bytecode instructions I and exception handler Handler, i.e. [[s, e]] = I , i ,Handler, the following holds:

• an assertion ψ and a natural number z such that ψ{wk 7→ st[k]}k=1...z{v 7→ st[0]} = wpEl (i)

• an exceptional postcondition function ψe such that ψe = wpEE(i − 1)

then we have
wpE(e, ψ, ψe)v{wk 7→ st[k]}k=1...z = wpEl (s)

The proof is by induction over the expression structure. Actually the first case of the lemma coincides with
the reasoning that we have used in Lemma 13. We shall now illustrate the proof for field access expressions.

• e1.f By definition the weakest precondition for this case is as follows :

wpE(e1.f, ψ, ψexc)v =
wpE(e1, v1 6= null⇒ ψ{v 7→ h(v1.f)}∧

∀h r , v1 = null⇒ New(h,NullPntrExc) = (h, r)⇒ ψexc{h, exc 7→ h, r}, ψexc)v1

Remind that the compiler for field access expression is defined as follows:

[[e1.f]] = s : [[e1]]; i : getfield f, i + 1

Looking at the definition of wpEi for field access expressions in Fig.4.7 we can apply a similar reason-
ing to Lemma 13 and because of the hypothesis for the exceptional postcondition functions, we can
establish that

wpEi (i) =
(v1 6= null⇒ ψ∧
∀h r , v1 = null⇒ New(h,NullPntrExc) = (h, r)⇒
ψexc{h, exc 7→ h, r}){v 7→ h(v1.f)}{wk 7→ st[k]}k=1...z{v1 7→ st[0]}

In order, however, to apply the induction hypothesis over the expression e, we have to establish that
the bytecode exceptional postcondition wpEE(i − 1) for the instruction at index i − 1 is the same as
the source exception postcondition ψexc . For this we use Lemma 14 for the compilation of exception
handlers, from which we can conclude that

∀ k , ∀ E , s ≤ k ≤ i ⇒ Handler1(k ,E) = Handler1(i ,E)

where k is the index at which the compilation starts and i is the last index of the compilation of e1.f.
From this, the definition of wpEE and the initial hypothesis for exception postconditions we conclude
that

ψexc = wpEE(i − 1)

This allows us to apply the induction hypothesis over the subexpression e and this case is proved.

We need also to establish a lemma for preconditions of statements and their compilation.

Lemma 18 Suppose that for the statement stmt starting at index s the compiler returns the sequence of
instructions I , the next index k and the handler Handler, i.e. [[s, stmt]] = I , k ,Handler. Assume that we have

• the annotation table Λ resulting from the annotation compilation in stmt

• an assertion ψ such that ψ does not contain stack subexpressions and moreover wpEl (k) = ψ

48

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

• an exceptional postcondition ψe such that ψexc = wpEE(k − 1)

then if wpE(stmt , ψ) = φ, θ then we have

• φ = wpEl (s)

• for every proposition ξ in θ, there exists an index i such that s ≤ i < k and Λ(i) = A such that
ξ = A⇒ wpEl (i)

The proof is by induction over the statement structure. We sketch the first part of the proof for
compositional and try catch statement. The second part follows directly by structural induction.

• i1; i2 The weakest precondition for the compositional statement in the presence of exception is as
follows:

wpE(i1; i2, ψ, ψexc) = (φ, θ1 ∪ θ2),where
wpE(i1, ψ

′, ψexc) = φ, θ1

wpE(i2, ψ, ψexc) = ψ′, θ2

and the compilation is as shown in the previous Section 2.3.3, Fig. 2.12:

[[s : i1; i2]] = [[i1]]; r : [[i2]], k

We can apply the induction hypothesis over statement i2 and get that

ψ′ = wpEl (r)

We can establish that
ψexc = wpEE(r − 1)

using the Lemma 16 from the previous subsection and the definition of wpEE in Fig. 4.7. We can thus
apply the induction hypothesis over i1, ψ′ and ψexc and establish the case for compositional statements.

• try{i1} catch (EType) {i2} The weakest precondition function for the try catch statement was defined
as follows:

wpE(try{i1} catch (EType) {i2}, ψ, ψexc) = (φ, θ1 ∪ θ2),where
wpE(i1, ψ, ψexc{EType 7→ ψ′}) = φ, θ1

wpE(i2, ψ, ψexc) = ψ′, θ2

Let us also remind the try catch statement compilation:

[[try{i1} catch (EType) {i2}]] = (s : [[i1]]; l : goto k ; l + 1 : [[i2]]; k :,Handler)

We can apply the induction hypothesis over the catch statement i2 and its compilation and obtain

ψ′ = wpEl (l + 1)

From the initial hypothesis and the definition of the wpEl for goto instruction, we obtain that:

wpEl (l) = wpEl (k)

In order to apply the induction hypothesis over the statement i1, we have also to establish that for
every exception E the bytecode exceptional postcondition function wpEE returns the same predicate

49

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

for instruction at index l − 1 as the source exceptional postcondition function ψexc{exc,EType 7→ ψ′}.
We can establish this using Lemma 15, i.e. we have that:

ψexc{EType 7→ ψ′} = wpEE(l − 1)

We can apply the induction hypothesis for this case and thus, obtain that

wpE(i1, ψ, ψexc{EType 7→ ψ′}) = wpEl (s)

which allows us to conclude that the lemma holds in this case

50

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Γ(m,Φ,Ψ,Ψexc) φ := wpE(e1,wpE(e2, ξ, ψexc)v2 , ψexc)v1

ξ1 := Φ{this, arg 7→ v1, v2}
ξ2 := ∀h r , v1 6= null⇒ Ψ{this, arg, h̄,h, res 7→ v1, v2,h, h, r} ⇒ ψ{h, v 7→ h, r}
ξ3 := ∀h r , v1 6= null⇒ Ψexc{this, arg, h̄,h, exc 7→ v1, v2,h, h, r} ⇒ ψexc{h 7→ h}
ξ4 := ∀h r , v1 = null⇒ New(h,NullPntrExc) = (h, r)⇒ ψexc{h, exc 7→ h, r}

ξ := ξ1 ∧ ξ2 ∧ ξ3 ∧ ξ4

wpE(e1.m(e2), ψ, ψexc)v = φ

ξ1 := v1 6= null⇒ ψ{v 7→ h(v1.f)}
ξ2 := ∀h r , v1 = null⇒ New(h,NullPntrExc) = (h, r)⇒ ψexc{h, exc 7→ h, r}

wpE(e1, ξ1 ∧ ξ2, ψexc)v1 = φ

wpE(e1.f, ψ, ψexc)v = φ

ξ1 := v1 6= null⇒ ψ{h 7→ h{v1.f 7→ v2}}
ξ2 := ∀h r , v1 = null⇒ New(h,NullPntrExc) = (h, r)⇒ ψexc{h, exc 7→ h, r}

wpE(e1,wpE(e2, ξ1 ∧ ξ2, ψexc)v2 , ψexc)v1 = φ

wpE(e1.f := e2, ψ, ψexc) = (φ, ∅)

wpE(i1, ψ
′, ψexc) = φ, θ1 wpE(i2, ψ, ψexc) = ψ′, θ2

wpE(i1; i2, ψ, ψexc) = (φ, θ1 ∪ θ2)

wpE(i1, ψ, ψexc{EType 7→ ψ′}) = φ, θ1 wpE(i2, ψ, ψexc) = ψ′, θ2

wpE(try{i1} catch (EType) {i2}, ψ, ψexc) = (φ, θ1 ∪ θ2)

ξ1 := v 6= null⇒ ψexc{exc 7→ v}
ξ2 := ∀h r , v = null⇒ New(h,NullPntrExc) = (h, r)⇒ ψexc{h, exc 7→ h, r}

wpE(e, ξ1 ∧ ξ2, ψexc)v = ψ′

wpE(throw e, ψ, ψexc) = (ψ′, ∅)

wpE(body(m),Ψ,Ψexc) = φ, θ

VCgenE(m,Φ,Ψ,Ψexc) = {Φ⇒ φ} ∪ θ

Γ(m,Φ,Ψ,Ψexc)

VCcE(C,Γ) = ∪m∈CVCgenE(m,Φ,Ψ,Ψexc)

Figure 4.6: Weakest precondition for the extensions in JAVAE

51

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Pm [i] = invoke m
Γ(m,Φ,Ψ,Ψexc) ξ := wpEl (i + 1)

φ := Φ{ ¯this, ¯arg , h̄ 7→ st[1], st[0],h} ∧ φn ∧ φec ∧ φeu

φn := st[1] 6= null⇒ ∀h r ,Ψ{ ¯this, ¯arg , res, h̄,h 7→ st[1], st[0], r ,h, h} ⇒ ξ{st,h 7→ r ::↑ st, h}
φec := ∀h r , st[1] 6= null⇒ Ψexc{ ¯this, ¯arg , h̄,h, exc 7→ st[1], st[0],h, h, r} ⇒ wpEE(i){h 7→ h}

φeu := ∀h e, st[1] = null⇒ New(H ,NullPntrExc) = (h, e)⇒ wpEE(i){h, exc 7→ h, e}
wpEi (i) = φ

Pm [i] = throw
ξ1 := st[0] 6= null⇒ ψexc{exc 7→ st[0]}

ξ2 := ∀h r , st[0] = null⇒ New(h,NullPntrExc) = (h, r)⇒ wpEE(i){h, exc 7→ h, r}
wpEi (i) = ξ1 ∧ ξ2

Pm [i] = putfield f φ := wpEl (i + 1)
ξ1 := st[1] 6= null⇒ φ{h, st 7→ h{st[1].f 7→ st[0]}, ↑2 st}

ξ2 := ∀h r , st[1] = null⇒ New(H ,NullPntrExc) = (h, r)⇒ wpEE(i){h, exc 7→ h, r}
wpEi (i) = ξ1 ∧ ξ2

Pm [i] = getfield f φ := wpEl (i + 1)
ξ1 := st[1] 6= null⇒ φ{st 7→ h(st[0].f) ::↑ st}

ξ2 := ∀h r , st[1] = null⇒ New(H ,NullPntrExc) = (h, r)⇒ wpEE(i){h, exc 7→ h, r}
wpEi (i) = ξ1 ∧ ξ2

Handlers(i) = excH

wpEE(i , l) =

{
Ψexc if excH = nil

wpEE(i , t){E 7→ wpEi (j)} if excH = (j ,E)::t

wpEE(i) = ξ

Γ(m,Φ,Ψ,Ψexc) body(m) = Ṗ
VCgenbc

E (m,Φ,Ψ,Ψexc) = {ψ ⇒ wpEi (Ṗ[i]) | Λ(i) = ψ} ∪ {Φ⇒ wpEi (Ṗ[0])}

Γ(m,Φ,Ψ,Ψexc)

VCcbc
E (C,Γ) = ∪m∈CVCgenbc

E (m,Φ,Ψ,Ψexc)

Figure 4.7: Verification condition generator for JVME

52

Chapter 5

Proof-transforming compilation for
programs with abrupt termination

In the last chapters, we have seen how proofs can be produced in such a way that the transformation of them
is simple, using two VCGens that produce structurally the same verification conditions. Instead of using a
verification condition generator we now look at a way to transform proofs using a Hoare logic for source
and bytecode. In this case, the proof contains the full structure of the method bodies, which makes the
translation more complicated. Knowing that we can automatically transform proofs directly into a Hoare
proof on bytecode opens the possibility to use a proof-transforming compiler to directly prove properties on
the MOBIUS base logic.

If the source and target languages are close, the proof translation is still simple. However, if they
are not close and the compilation function is complex, the translation can be hard. For example, proof-
transformation from a subset of Java with try-catch, try-finally and break statements to Java bytecode
is difficult. Compiling these statements in isolation is simple, but the compilation of their interplay is not.
In the earlier chapters, we left away this difficulty of abrupt termination. Now we extend the language
subset to show interesting aspects of abrupt termination.

A try-finally statement is compiled using code duplication: the finally block is put after the try

block. If try-finally statements are used inside of a while loop, the compilation of break statements first
duplicates the finally blocks and then inserts a jump to the end of the loop. Furthermore, the generation of
exception tables is also harder. The code duplicated before the break may have exception handlers different
from those of the enclosing try block. Therefore, the exception table must be changed so that exceptions
are caught by the appropriate handlers. In this chapter, we present the first Proof-Transforming Compiler
that handles these complications.
Outline. The source language and its Hoare-style logic are introduced in Section 5.1. We present the
bytecode language and its logic in Section 5.2. In Section 5.3, we define the proof transformation. Section 5.4
illustrates proof transformations by an example. Section 5.5 states a soundness theorem.

5.1 Source language and logic

The source language we consider is similar to JAVAE (see Section 2.3). We leave away all language constructs
that would be simple to transform and add the additional statement break as well as the finally-clause
to deal with abrupt termination. Its definition is the following:

exp ::= literal | var | exp op exp

stm ::= x = exp | stm; stm | while (exp) stm | break ; | if (exp) stm else stm

| try stm catch (type var) stm | try stm finally stm | throw exp ;

To avoid return statements, we assume that the return value of every method is assigned to a special
local variable named result (this is the only discordance with respect to Java). Moreover, we assume that
the expressions are side-effect-free and cannot throw exceptions.

53

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The subset of Java is small, but the combination of while, breaks, try-catch and try-finally state-
ments produces an interesting subset especially from the point of view of compilation. The code duplication
used by the compiler for try-finally statements increases the complexity of the compilation and translation
functions, specially the formalization and its soundness proof.

In our technical report [27], the source languages also includes object-oriented features such as cast, new,
read and write field, and method invocation. In this chapter, we only present the most interesting features.

5.1.1 Method and statement specifications

The logic is based on the programming logic introduced in [26, 34, 35]. We have modified it and proposed
new rules for while including break and exceptions, try-catch and try-finally. In [35], a special variable
χ is used to capture the status of the program such as normal or exceptional status. This variable is not
necessary in the bytecode proof since non-linear control flow is implemented via jumps. To eliminate the
χ variable, we use Hoare triples with two or three postconditions to encode the status of the program
execution. This simplifies not only the translation but also the presentation.

Properties of methods are expressed by Hoare triples of the form {P} T.m { Qn , Qe } , where
P , Qn , Qe are first-order formulas and T.m is a method m declared in class T . The third component of
the triple consists of a normal postcondition (Qn), and an exceptional postcondition (Qe). We call such a
triple method specification.

Properties of statements are specified by Hoare triples of the form {P} S {Qn ,Qb ,Qe} , where P , Qn ,
Qb , Qe are first-order formulas and S is a statement. For statements, we have a normal postcondition (Qn),
a postcondition after the execution of a break (Qb), and an exceptional postcondition (Qe).

The triple {P} S {Qn ,Qb ,Qe} defines the following refined partial correctness property: if S ’s
execution starts in a state satisfying P , then (1) S terminates normally in a state where Qn holds, or S
executes a break statement and Qb holds, or S throws an exception and Qe holds, or (2) S aborts due
to errors or actions that are beyond the semantics of the programming language, e.g., memory allocation
problems, or (3) S runs forever.

5.1.2 Rules

Figure 5.1 shows the rules for compositional, while, break, try-catch, and throw statements. In the
compositional statement, the statement s1 is executed first. The statement s2 is executed if and only if s1

has terminated normally.

In the while rule, the execution of the statement s1 can produce three results: either (1) s1 terminates
normally and I holds, or (2) s1 executes a break statement and Qb holds, or (3) s1 throws an exception and
Re holds. The postcondition of the while statement expresses that either the loop terminates normally and
(I ∧ ¬e) ∨ Qb holds or throws an exception and Re holds. The break postcondition is false, because after
a break within the loop, execution continues normally after the loop.

The break rule sets the normal and exception postcondition to false and the break postcondition to P
due to the execution of a break statement.

In the try-catch rule, the execution of the statement s1 can produce three different results: (1) s1

terminates normally and Qn holds or terminates with a break and Qb holds. In these cases, the statement
s2 is not executed and the postcondition of the try-catch is the postcondition of s1; (2) s1 throws an
exception and the exception is not caught. The statement s2 is not executed and the try-catch finishes
in an exception mode. The postcondition is Q ′′e ∧ τ(excV) 6� T , where τ yields the runtime type of an
object, excV is a variable that stores the current exception, and � denotes subtyping; (3) s1 throws an
exception and the exception is caught. In the postcondition of s1, Q ′e ∧ τ(excV) � T specifies that the
exception is caught. Finally, s2 is executed producing the postcondition. Note that the postcondition is not
only a normal postcondition: it also has to take into account that s2 can throw an exception or can execute
a break.

54

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Similar to break, the throw rule modifies the postcondition P by updating the exception component of
the state with the just evaluated reference.

compositional
{P} s1 {Qn ,Rb ,Re}
{Qn} s2 {Rn ,Rb ,Re}
{P} s1; s2 {Rn ,Rb ,Re}

while
{e ∧ I } s1 {I ,Qb ,Re}

{I } while (e) s1 {((I ∧ ¬e) ∨ Qb), false,Re}
break

{P} break {false,P , false}
try-catch

{P} s1 {Qn ,Qb ,Q}
{Q ′e [e/excV]} s2 {Qn ,Qb ,Re}

{P} try s1 catch (T e) s2 {Qn ,Qb ,R}
where

Q ≡ ((Q ′′e ∧ τ(excV) 6� T) ∨ (Q ′e ∧ τ(excV) � T))

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6� T))

throw

{P [e/excV]} throw e {false, false,P}

Figure 5.1: Rules for composition, while, break, try-catch, and throw.

To define the rule for try-finally, we have to treat a special case, illustrated through the example in
Figure 5.2.

void foo () {
int b = 1;
while (true) {

try { throw new Exception(); }
finally { b++; break; }

}
b++;

}

Figure 5.2: The exception raised in the try block is not handled, yet the method terminates normally.

The exception thrown in the try block is never caught. However, the loop terminates normally due to
the execution of the break statement in the finally block. Thus, the value of b at the end of foo is 3.

If an exception occurs in a try block, it will be re-raised after the execution of the finally block. If
both the try and the finally block throw an exception, the latter takes precedence. The following table
summarizes the status of the program after the execution of the try-finally:

55

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

finally

normal break exc2
normal normal break exc2

try break break break exc2

exc1 exc1 break exc2

We use the fresh variable eTmp to store the exception occurred in s1 because another exception might
be raised and caught in s2. In this case, we still need to have access to the first exception of s1 because this
exception is the result of that statement [35]. We use the fresh variable XTmp to store the status of the
program after the execution of s1. The possible values of XTmp are: normal , break , and exc. Depending on
the status after the execution of s2, we need to propagate an exception or change the status of the program
to break . The rule is the following:

{P} s1 {Qn ,Qb ,Qe}
{Q} s2 {R,R′b ,R′e}

{P} try s1 finally s2 {R′n ,R′b ,R′e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

))
R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)
Furthermore, the logic contains language-independent rules such as the rule of consequence (see [34]).

5.2 Bytecode language and logic

The JVME instructions used to compile the source language are: push v , load x , store x , binop op, goto l ,
and throw. We use an additional instruction iftrue l which transfers control to the point l if the topmost
element of the stack is true and unconditionally pops it. This instruction is not defined in JVME but it is a
shortcut for the JVME instruction sequence ‘push true; if = l ’. As you can see, we assume that the bytecode
language has a type boolean in order to concentrate on abrupt termination.

The bytecode logic is a Hoare-style program logic which allows one to formally verify that implementations
satisfy interface specifications given as pre- and postconditions. We use the bytecode logic developed by
Bannwart and Müller [4]. As part of Task 3.1, we have shown that the MOBIUS base logic covers the chosen
logic, that is, for each rule of the Bannwart-Müller Logic an interpretation can be given that is derivable in
the MOBIUS base logic.

5.2.1 Method and Instruction Specifications

To make proof transformation feasible, it is essential that the source logic and the bytecode logic are similar
in their structure. In particular, they treat methods in the same way, they contain the same language-
independent rules, and triples have a similar meaning.

Analogously to the source logic, properties of methods are expressed by method specifications of the
form form {P} T.mp {Qn , Qe}. Properties of method bodies are expressed by Hoare triples of the form
{P} comp {Q}, where P, Q are first-order formulas and comp is a method body. The triple {P} comp
{Q} expresses the following refined partial correctness property: if the execution of comp starts in a state
satisfying P, then (1) comp terminates in a state where Q holds, or (2) comp aborts due to errors or actions
that are beyond the semantics of the programming language, or (3) comp runs forever.

The unstructured control flow of bytecode programs makes it difficult to handle instruction sequences,
because jumps can transfer control into and from the middle of a sequence. Therefore, the logic treats

56

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

each instruction individually: each individual instruction Il in a method body p has a precondition El . An
instruction with its precondition is called an instruction specification, written as {El} l : Il .

The meaning of an instruction specification {El} l : Il cannot be defined in isolation. {El} l : Il

expresses that if the precondition El holds when the program counter is at position l , the precondition El ′

of Il ’s successor instruction I ′l holds after normal termination of Il .

5.2.2 Rules

All the rules for instructions, except for method calls, have the following form:

El ⇒ wp1
p(Il)

A ` {El} l : Il

where wp1
p(Il) denotes the local weakest precondition of instruction Il . Such a rule specifies that the precon-

dition of Il has to imply the weakest precondition of Il with respect to all possible successor instructions of
Il . The definition of wp1

p is shown in Table 5.1.
Within an assertion, the current stack is referred to as s and its elements are denoted by non-negative

integers: element 0 is the topmost element, etc. The interpretation [El] : State × Stack → Value for s is

[s(0)]〈S , (σ, v)〉 = v and
[s(i + 1)]〈S , (σ, v)〉 = [s(i)]〈S , σ〉

The functions shift and unshift define the substitutions that occur when values are pushed onto and
popped from the stack, respectively:

shift(E) = E [s(i + 1)/s(i) | ∀i ∈ N]
unshift = shift−1

Il wp1
p(Il)

push v unshift(El+1[v/s(0)])

load x unshift(El+1[x/s(0)])

store x (shift(El+1))[s(0)/x]

binop op (shift(El+1))[s(1) op s(0)/s(1)]

goto l ′ El ′

iftrue l ′ (¬s(0)⇒ shift(El+1)) ∧ (s(0)⇒ shift(El ′))

Table 5.1: Definition of function wp1
p .

5.3 Proof Translation

Our proof-transforming compiler is based on two transformation functions, ∇S and ∇E , for statements and
expressions, respectively. Both functions yield a sequence of bytecode instructions and their specification.
The Proof-Transforming Compiler takes a list of classes with their proofs and returns the bytecode classes
with their proofs.

The function∇E generates a bytecode proof from a source expression and a precondition for its evaluation.
The function ∇S generates a bytecode proof and an exception table from a source proof. These functions
are defined as a composition of the translations of its sub-trees. The signatures are the following:

∇E : Precondition × Expression × Postcondition × Label → BytecodeProof

∇S : ProofTree × Label × Label × Label × List [Finally] × ExcTable → [BytecodeProof × ExcTable]

57

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Type Typical use

Precondition ∪ Postcondition P ,Q ,R,U ,V
ProofTree (for source language only) TS1 ,TS2 ,Treei

ProofTree (for finally only) TFi

List [Finally] f
ExceptionTable eti

ExceptionTable (for finally only) et ′i
BytecodeProof BS1 ,BS2

InstrSpec bpush, ..., biftrue

Label lstart , lnext , lbreak ,
lb , lc , ..., lg

Table 5.2: Naming conventions.

In ∇E , the label is used as the starting label of the translation. ProofTree is a derivation in the source logic.
In ∇S , the three labels are: (1) lstart for the first label of the resulting bytecode; (2) lnext for the label after
the resulting bytecode; this is for instance used in the translation of an else branch to determine where to
jump at the end; (3) lbreak for the jump target for break statements.

The BytecodeProof type is defined as a list of InstrSpec, where InstrSpec is an instruction specification.
The Finally type, used to translate finally statements, is defined as a tuple [ProofTree,ExcTable]. Fur-
thermore, the ∇S takes an exception table as parameter and produces an exception table. This is necessary
because the translation of break statements can lead to a modification of the exception table as described
above. (more details are presented in Section 5.3.3).

The ExcTable type is defined as follows:

ExcTable := List [ExcTableEntry]
ExcTableEntry := [Label ,Label ,Label ,Type]

In the ExcTableEntry type, the first label is the starting label of the exception line, the second denotes the
ending label, and the third is the target label. An exception of type T1 thrown at line l is caught by the
exception entry [lstart , lend ,ltarg ,T2] if and only if lstart ≤ l < lend and T1 � T2. Control is then transferred
to ltarg .

In the following, we present the proof translation for compositional rule, while, try-finally, and break.
Table 5.2 comprises the naming conventions we use in the rest of this chapter.

5.3.1 Compositional Statement

Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1

{P} s1 {Qn ,Rb ,Re}

TS2 ≡
Tree2

{Qn} s2 {Rn ,Rb ,Re}

TS1;S2 ≡
TS1 TS2

{P} s1; s2 {Rn ,Rb ,Re}

In the translation of TS1 , the label lnext is the start label of the translation of s2, say lb . The translation
of TS2 uses the exception table produced by the translation of TS1 , et1. The translation of TS1;S2 yields

58

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

the concatenation of the bytecode proofs for the sub-statements and the exception table produced by the
translation of TS2 .

Let [BS1 , et1] and [BS2 , et2] be of type [BytecodeProof , ExcTable]:

[BS1 , et1] = ∇S (TS1 , lstart , lb , lbreak , f , et)

[BS2 , et2] = ∇S (TS2 , lb , lnext , lbreak , f , et1)

The translation is defined as follows:

∇S (TS1;S2, lstart , lnext , lbreak , f , et) = [BS1 + BS2 , et2]

The bytecode for s1 establishes Qn , which is the precondition of the first instruction of the bytecode for
s2. Therefore, the concatenation BS1 + BS2 produces a sequence of valid instruction specifications. We will
formalize soundness in Section 5.5.

5.3.2 While Statement

Let TS1 and Twhile be the following proof trees:

TS1 ≡
Tree1

{e ∧ I } s1 {I ,Qb ,Re}

Twhile ≡
TS1

{I } while (e) s1 {(I ∧ ¬e) ∨ Qb , false,Re}

In this translation, first the loop expression is evaluated at lc . If it is true, control is transferred to lb , the
start label of the loop body. In the translation of TS1 ing, the start label and next labels are lb and lc . The
break label is the end of the loop (lnext). Furthermore, the finally list is set to ∅, because a break inside the
loop jumps to the end of the loop without executing any finally blocks.

Let bgoto and biftrue be instruction specifications and BS1 and Be be bytecode proofs:

bgoto = {I } la : goto lc

[BS1 , et1] = ∇S (TS1 , lb , lc , lnext , ∅, et)

Be = ∇E (I , e, (shift(I) ∧ s(0) = e) , lc)

biftrue = {shift(I) ∧ s(0) = e} ld : iftrue lb

The definition of the translation is the following:

∇S (Twhile , lstart , lnext , lbreak , f , et) = [bgoto + BS1 + Be + biftrue , et1]

The instruction bgoto establishes I , which is the precondition of the successor instruction (the first instruction
of Be). Be establishes shift(I) ∧ s(0) = e because the evaluation of the expression pushes the result on
top of the stack. This postcondition implies the precondition of the successor instruction biftrue. biftrue

establishes the preconditions of both possible successor instructions, namely e ∧ I for the successor lb (the
first instruction of BS1), and I ∧ ¬e for lnext . Finally, BS1 establishes I , which implies the precondition of
its successor Be , (I ∧ ¬e) ∨ Qb . Therefore, the produced bytecode proof is valid.

5.3.3 Try-Finally Statement

Sun’s newer Java compilers translate try-finally statements using code duplication. Consider the following
example:

59

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

while (i < 20) {
try {

try {
try { ... break; ... }
catch (Exception e) { i = 9; }

}
finally { throw new Exception(); }

}
catch (Exception e) { i = 99; }

}

The finally body is duplicated before the break. But the exception thrown in the finally bock must be
caught by the outer try-catch. To achieve that, the compiler creates, in the following order, exception lines
for the outer try-catch, for the try-finally, and for the inner try-catch. When the compiler reaches the
break, it divides the exception entry of the inner try-catch and try-finally into two parts so that the
exception is caught by the outer try-finally. To be able to divide the exception table the compiler needs
to compare the exception entries. This is why our Finally type consists of a proof tree (for the duplicated
code) and an exception table. Note that we have a list of Finally to handle nested try-finally statements.

Let TS1 , TS2 and Ttry−finally be the following proof trees:

TS1 ≡
Tree1

{P} s1 {Qn ,Qb ,Qe}

TS2 ≡
Tree2

{Q} s2 {R,R′b ,R′e}

Ttry−finally ≡
TS1 TS2

{P} try s1 finally s2 {R′n ,R′b ,R′e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

))
R ≡

(
(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)

In this translation, the bytecode for s1 is followed by the bytecode for s2. In the translation of TS1 , the
finally block is added to the finally-list f with TS2 ’s source proof tree and its associated exception table.
The corresponding exception table is retrieved using the function getExcLines : Label ×Label ×ExcTable →
ExcTable. Given two labels and an exception table et , getExcLines returns, per every exception type in et ,
the first et ’s exception entry (if any) for which the interval made by the starting and ending labels includes
the two given labels. Furthermore, a new exception entry, for the finally block, is added to the exception
table et . Then, the bytecode proof for the case when s1 throws an exception is created. The exception table
of this translation is produced by the predecessor translations.

Let et ′, et ′′ be the following exception tables:

et1 = et + [lstart , lb , ld , any]

et ′ = getExcLines(la , lb , et1)

60

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Let bgoto, bstore, bload, and bthrow be instructions specifications and BS1 , BS2 , and B ′S2
be bytecode proofs:

[BS1 , et2] = ∇S (TS1 , lstart , lb , lbreak , [TS2 , et ′] + f , et1)

[BS2 , et3] = ∇S (TS2 , lb , lc , lbreak , f , et2)

bgoto = {Q ′n} lc : goto lnext

bstore =

shift(Qe) ∧
excV 6= null

∧ s(0) = excV

 ld : store eTmp

[BS ′
2
, et4] = ∇S (TS2 , le , lf , lbreak , f , et3)

bload =
{

Q ′n ∨ Q ′b ∨ Q ′e

}
lf : load eTmp

bthrow =

{
(Q ′n ∨ Q ′b ∨ Q ′e)

∧ s(0) = eTmp

}
lg : throw

The translation is defined as follows:

∇S (Ttry−finally , lstart , lnext , lbreak , f , et) = [BS1 + BS2 + bgoto + bstore + BS ′
2

+ bload + bthrow , et4]

It is easy to see that the instruction specifications bgoto, bstore, bload, and bthrow are valid (by applying the
definition of the weakest precondition). However, the argument for the translation of TS1 and TS2 is more
complex. Basically, the result is a valid proof because the proof tree inserted in f for the translation of
TS1 is a valid proof and the postcondition of each finally block implies the precondition of the next one.
Furthermore, for normal execution, the postcondition of BS1 (Qn) implies the precondition of BS2 (Q).

5.3.4 Break Statement

To specify the rules for break, we use the following recursive function: divide: ExcTable × ExcTableEntry
× Label × Label → ExcTable. Its definition assumes that the exception entry is in the given exception table
and the two given labels are in the interval made by the exception entry’s starting and ending labels. Given
an exception entry y and two labels ls and le , divide compares every exception entry, say x , of the given
exception table to y . If the interval defined by x ’s starting and ending labels is included in the interval
defined by y ’s starting and ending labels, then x must be divided to have the appropriate behavior of the
exceptions. Thus, the first and the last interval of the three intervals defined by x ’s starting and ending
labels, ls , and le are returned, and the procedure is continued for the next exception entry. If x and y
are equal, then recursion stops as divide reached the expected entry. The formal definition of divide is the
following:

divide : ExcTable × ExcTableEntry × Label × Label → ExcTable
divide : ([], e ′, ls , le) = [e ′]
divide : (e : et , e ′, ls , le) =

[lstart , ls , ltarg , T1] + [le , lend , ltarg , T1] + divide(et , e ′, ls , le) if e ⊆ e ′ ∧ e 6= e ′

| e : et if e = e ′

| e : divide(et , e ′, ls , le) otherwise
where

e ≡ [lstart , lend , ltarg ,T1] and e ′ ≡ [l ′start , l
′
end , l

′
targ ,T2]

⊆ : ExcTableEntry × ExcTableEntry → Boolean
⊆ : ([lstart , lend , ltarg ,T1], [l ′start , l

′
end , l

′
targ ,T2]) =

| true if (l ′st ≤ lst) ∧ (l ′end ≥ lend)
| false otherwise

61

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

When a break statement is encountered, the proof tree of every finally block the break has to execute
upon exiting the loop is translated. Then, control is transferred to the end of the loop using the label lbreak .
Let fi = [TFi , et ′i] denote the i -th element of the list f , where

TFi =
Treei

{U i} si {V i}

and U i and V i have the following form, which corresponds to the Hoare rule for try-finally (see Sec-
tion 5.1):

U i ≡

(U i

n ∧ XTmp = normal) ∨
(U i

b ∧ XTmp = break) ∨(
U i

e [eTmp/excV] ∧ XTmp = exc ∧
eTmp = excV

)

V i ≡

 (V ′in ∧ XTmp = normal) ∨

(V ′ib ∧ XTmp = break) ∨
(V ′ie ∧ XTmp = exc)

 , V i
b , V i

e

Let BFi be a BytecodeProof for TFi such that

[BFi , eti+1] = ∇S

(
TFi , lstart+i , lstart+i+1, lbr , fi+1...fk ,

divide(eti , et ′i [0], lstart+i , lstart+i+1)

)

bgoto = {Bk
b } lstart+k+1 : goto lbr

The definition of the translation is the following:

∇S

(
{P} break {false,P , false}

, lstart , lnext , lbr , f , et0

)
= [BF1 + BF2 + ...BFk

+ bgoto, etk]

To argue that the bytecode proof is valid, we have to show that the postcondition of BFi implies the
precondition of BFi+1 and that the translation of every block is valid. This is the case because the source
rule requires the break-postcondition of s1 to imply the normal precondition of s2.

The exception table has two important properties that hold during the translation. The first one (Lemma
1) states that the exception entries, whose starting labels appear after the last label generated by the
translation, are kept unchanged. The second one (Lemma 2) expresses that the exception entry is not
changed by the division. These properties are used to prove soundness of the translation.

Lemma 1 If ∇S ({Pn} s {Q}, la , lb+1, lbreak , f , et) = [(Ila ...Ilb), et ′] and lstart ≤ la < lb ≤ lend then for
every ls , le ∈ Label such that lb < ls < le ≤ lend and for every T ∈ Type such that T � Throwable∨T ≡ any,
the following holds: et [lstart , lend ,T] = et ′[ls , le ,T].

Lemma 2 Let r ∈ ExcTableEntry and et ′ ∈ ExcTable be such that r ∈ et ′. If et ∈ ExcTable and ls , le ∈
Label are such that et = divide(et ′, r , ls , le), then et [ls , le ,T] = r [2]

5.4 Example

Figure 5.3 exemplifies the translation. The source proof of the example in Figure 5.2 is presented on the
left-hand side and the corresponding bytecode proof on the right. An exception is thrown in the try block

62

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

with precondition b = 1. The finally block increases b and then executes a break changing the status
of the program to break mode (the postcondition is b = 2). In the bytecode proof, the body of the loop is
between lines 09 and 18. Lines 17 and 18 re-throw the exception produced at line 10. Due to the execution of
a break instruction, the code from 17 to 18 is not reachable (this is the reason for their false precondition).
The break translation yields at line 16 a goto instruction whose target is the end of the loop, i.e., line 23.

void foo () {
{ true }
int b = 1;
{ b = 1, false, false }
while (true) {
{ b = 1, false, false }
try {
{ b = 1, false, false }
throw new Exception();
{ false, false, b = 1 }

}
finally {

{ b = 1 ∧Xtmp = exc }
b = b+1;
{ b = 2 ∧Xtmp = exc, false,
false }

break;
{ false, b = 2 ∧Xtmp = exc,
false }

}
{ false, b = 2, false }
}
{ b = 2, false, false }
b = b+1;
{ b = 3, false, false }

}

{ true } 00 : push 1
{s(0) = 1} 01 : store b
{b = 1} 02 : goto 20
{b = 1} 09 : new Exception
{b = 1} 10 : throw
{b = 1 ∧ excV 6= null ∧ s(0) = excV } 11 : store eTmp
{b = 1 ∧ eTmp = excV } 12 : push 1
{b = 1 ∧ s(0) = 1} 13 : load b
{b = 1 ∧ s(1) = 1 ∧ s(0) = b} 14 : binop +
{b = 1 ∧ s(0) = b + 1} 15 : store b
{b = 2} 16 : goto 23
{ false } 17 : load eTmp
{ false } 18 : throw
{b = 1} 20 : push true
{b = 1 ∧ s(0) = true } 21 : iftrue 04
{b = 2} 23 : push 1
{b = 2 ∧ s(0) = 1} 24 : load b
{b = 2 ∧ s(1) = 1 ∧ s(0) = b} 25 : binop +
{b = 2 ∧ s(0) = 1 + b} 26 : store b

Exception Table
From to target type

0 7 10 any

Figure 5.3: Example of source and bytecode proofs generated by the Proof-Transforming Compiler.

5.5 Soundness Theorem

In a Proof-Carrying Code environment, a soundness proof is required only for the trusted components. PTCs
are not part of the trusted code base: If the Proof-Transforming Compiler generates an invalid proof, the
proof checker would reject it. But from the point of view of the code producer, we would like to have a
compiler that always generates valid proofs. Otherwise, it would be useless.

We prove the soundness of the translations, i.e., the translation produces valid bytecode proofs. It
is, however, not enough to prove that the translation produces a valid proof, because the compiler could
generate bytecode proofs where every precondition is false. The theorem states that if (1) we have a valid
source proof for the statement s1, and (2) we have a proof translation from the source proof that produces
the instructions Ilstart ...Ilend , their respective preconditions Elstart ...Elend , and the exception table et , and (3)
the exceptional postcondition in the source logic implies the precondition at the target label stored in the
exception table for all types T such that T � Throwable ∨T ≡ any but considering the value stored in the
stack of the bytecode, and (4) the normal postcondition in the source logic implies the next precondition of the
last generated instruction (if the last generated instruction is the last instruction of the method, we use the
normal postcondition in the source logic), (5) the break postcondition implies finallyProperties. Basically,
the finallyProperties express that for every triple stored in f, the triple holds and the break postcondition

63

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

of the triple implies the break precondition of the next triple. And the exceptional postcondition implies
the precondition at the target label stored in the exception table eti but considering the value stored in the
stack of the bytecode. Then, we have to prove that every bytecode specification holds (` {El} Il).

In the soundness theorem, we use the following abbreviation: for an exception table et , two labels la , lb ,
and a type T , et [la , lb ,T] returns the target label of the first et ’s exception entry whose starting and ending
labels are less or equal and greater or equal than la and lb , respectively, and whose type is a supertype of
T .

Here, we present the theorem without the details of the properties satisfied by the finally function f .
The proof runs by induction on the structure of the derivation tree for {P} s1 {Qn ,Qb ,Qe}. The proof and
the complete theorem can be found in our technical report [27].

Theorem 1

` Tree
{P} s1 {Qn ,Qb ,Qe}

≡ TS1 ∧

[(Ilstart ...Ilend), et] = ∇S (TS1 , lstart , lend+1, lbreak , f , et ′)∧

(∀ T : Type : (T � Throwable ∨ T ≡ any) : (Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet ′[lstart ,lend ,T]) ∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ finallyProperties)

⇒

∀ l ∈ lstart ... lend : ` {El} Il

64

Chapter 6

Implementation issues

6.1 Architecture refinement

6.1.1 Mobius PVE

The MOBIUS PVE is the tool that will host the proof-transforming compiler components. It is based upon
Eclipse [15], a development environment for Java. One of the recent additions made to this environment was
the ability to brand applications out of it, creating specific rich client platforms. The source VCGen will be
based upon some already existing components of MOBIUS PVE:

• ESC/Java2 and, in particular, its source to AST compiler, JavaFE, and its multi-prover back-end
[16, 10, 17]

• Bico, a Java to Bicolano translator [24]

• Eclipse and ProverEditor, the multi-prover editor of the MOBIUS PVE, which are both end-user com-
ponents [36]

ESC/Java2 ESC/Java2 is a mature extended static checker for Java and JML. Its new version will be the
core component of the MOBIUS PVE. Two parts of it are interesting for the direct VCGen to work, first the
parser, and second the multi-prover output.

Right now, the parser is a specific Java and JML parser built on top of the JavaFE parser, which is
one of the ESC/Java2 components that should be changed in the final version of the MOBIUS PVE. This
component generates an AST that can be visited using a visitor pattern. The visitor pattern that should
be used is generic enough to be applied to another AST once the parser will be changed in a near future.

ESC/Java2 provides a new AST to express first order logic formulas. The formulas are typed, which is
important for the generation of Coq verification conditions.

Bico Bico is a translator from Java bytecode to Bicolano’s Coq version of Java bytecode. It is used to
translate the bytecode to Bicolano instructions. For the direct bytecode VCGen, Bico generates towards a
map implementation of Bicolano’s axiomatisation.

Bico generates mainly two groups of files: the class translation files and the summary files, which will
be used by the direct VCGen. The class translation files have names prefixed by the name of the class and
contain the Bicolano class name, as well as the field and method signatures, and the interesting part for the
methods: the methods’ body. The summary files gather all the types (the class and interface name), the
method and field signatures and the body, into an accessible list that should be used further on.

Environment The direct VCGen is included as a component in the MOBIUS PVE. It is included inside of
Eclipse, which enables it to use some Eclipse facilities: it is project targeted and it generates the file to a
designated project directory. There will be soon a GUI component to easily view the verification conditions

65

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

status (it should be a generic one compatible with ESC/Java2). The classpath is handled as well by Eclipse,
and it is done in a uniform way for the different tools (ESC/Java2, Bico and the direct VCGen).

More specifically, the MOBIUS PVE already contains some components to edit Coq files with the MOBIUS
PVE component ProverEditor. This component is a lightweight multi-prover editor for Eclipse. It was
previously used in Jack [19, 5] to handle the user-interaction. This component will be useful especially for
case studies.

6.1.2 Concrete architecture of the direct VCGen

The core component which is developed for the proof-transforming compiled is the direct VCGen. It is called
direct because, as opposed to other approaches used in MOBIUS PVE, it does not use any intermediate
language to compute the weakest precondition of a program. The direct VCGen’s implementation is arranged
into two main parts, the verification condition generation for bytecode, which has been proven correct against
Bicolano semantic, and the VCGen for source code. The whole direct VCGen implementation takes JML
annotated source code as input and generates two verification conditions, one for source and the other for
bytecode. As described in Chapter 4, we arrange for the proofs of these VCs to be nearly identical.

Source
+

JML

Source AST
+

Annotations

Source AST
+

First Order Logic

Bicolano Bytecode
+

Coq First Order Logic
Annotations

First Order Logic
Verification
Conditions

Coq First Order Logic
Verification
Conditions

Bytecode

Guarded Commands
(ESC/Java 2 Core)

Source Direct VCGen
(Java)

Bytecode Direct VCGen
(Coq) Coq First Order Logic

Verification
Conditions

ESC/Java 2

Mobius Direct VCGen
JML to FOL Translator

(Java)

Coq

Figure 6.1: The direct VCGen inclusion inside MOBIUS PVE architecture. Boxes denote data, arrows denote
computations. The fat arrows represent the implementation work done in this task so far.

The source subsystem

The direct VCGen for source program is plugged directly into ESC/Java2. As entry, it takes JML annotated
source code, this source code is then parsed by ESC/Java2 into an AST with some annotation nodes. Then
the annotations are translated into first order logic, using the JML to FOL translator described in Chapter 3.
This translator produces an FOL annotated AST. Then the verification conditions are generated using the
direct VCGen for source programs. The verification conditions are simple first order logic formulas in the
same format as the one ESC/Java2 uses. These formulas are generated in Coq format. The whole source
processing is implemented in Java.

66

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

The bytecode subsystem

This subsystem is the one that is formalized in Coq. The verification conditions for bytecode are generated
from a direct VCGen written in the proof assistant’s language. The first step is to translate the bytecode
(which has been compiled from the source code using javac or a non-optimizing compiler) and the anno-
tations to Coq. The bytecode is translated using bico, the annotations are translated from the resulting
first order logic formula gotten from the JML to FOL translator. Once the bytecode and the annotations
are translated to Bicolano, the direct bytecode VCGen [23, 24] generates from this input some verification
conditions, which are very similar to those of the source code.

The direct VCGen for bytecode is based on the simple verification condition generator, which is presented
in Chapter 4. The verification conditions are generated directly as lemmas to prove on the Coq level. The
VCGen is deeply embedded in Coq, and it has some optimizations.

One of the difficulties for the inclusion was that no standard way of testing was set. The tool could
only be tried on examples built by hand. Hopefully, this has been solved by adapting Bico to generate
Bicolano bytecode together with a translation to Coq of the first order logic annotations presented in this
report. The extension with the annotation has been done given the hypothesis that the Java compiler was
non-optimizing. Still, this part is just an experimental extension for testing purposes. The annotations are
generated as functions, with their parameters being the local variables. It is done in a slightly more generic
way as what was presented as Coq annotations in Deliverable 3.1 [23]. This extension enabled the testing of
the VCGen on more various examples, and more specifically a better synergy with the source direct VCGen.

6.2 Source Logic for the PTC

The direct VCGen for source programs treats all the main Java source constructions, except multi-dimensional
arrays and concurrency. It is based on a simple calculus, as described in Chapter 4, which discharges the
verification conditions as side conditions when it encounters a loop construct or an assert construct. It takes
as input the Java source with JML annotations.

6.2.1 Pre-processing

In the pre-processing phase, the Java and JML program are parsed, an AST is built using JavaFE, and the
JML annotations are transformed to first order logic as described in Chapter 3.

JavaFE and ESC/Java2 parsing

We have seen in Section 6.1.1 that JavaFE provides an AST which is pretty standard. It enables a visitor
design pattern and some standard decorations. The main class file which is subtyped by all the nodes is
javafe.ast.ASTNode.

There are two ways of using visitors with this AST. Returning nothing (void accept(Visitor)) or
returning a result (Object accept(VisitorArgResult, Object)). A difference is also made between the
pure Java AST (defined only in JavaFE) and the JML annotated AST which has its base visitor defined in
the package escjava.ast. If the visitor used is not the one from ESC/Java2, it would simply ignore the
JML constructs.

The decoration of the AST is done with a decorator. The only decoration which is used at this stage is
the type decoration. Each node of the AST contains an array that is filled with decorations. To add more
information to the AST, one only has to use or subclass javafe.ast.ASTDecoration.

Once the AST has been created and type-checked, it can be processed through Mobius’ direct VCGen.

First order logic

We use the first order logic that is used by ESC/Java2 to generate proof obligations. It is defined in the
package escjava.sortedProver. This logic is multi-sorted and provides eight different types (SPred, SAny,

67

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

SMap, SValue, SBool, SInt, SReal, SRef). There is no way to define real custom types over these basic types
as they are hard-coded. Another problem arises for custom predicates: there is no standard programmatic
way to build custom predicates or functions. Therefore, we had to modify the code of this backend to use
the MOBIUS memory model.

Another drawback of the ESC/Java2 backend was the fact that the typed intermediate representation
(before the translation to prover-specific formulas) was programmed using non-static inner classes. This
makes the overall backend less usable for other purposes, especially to extend it with substitution for all
the provers at the same time. There was now way of creating this inner datastructure from the outside
of the backend. This problem was partially solved by writing a library layer to handle all these creation.
The library layer consists of eight classes, corresponding to the eight types of the logic. Each class is
parameterized by an instance of the class which contains the inner-classes representation.

Despite these small issues, it was important to use the ESC/Java2 backend because it permits the direct
VCGen to be properly integrated in MOBIUS PVE as well as to gain multi-prover output.

JML to first order logic

After parsing and type checking, we obtain the JML and Java typed AST. At this point, the first order logic
formulas have to be computed from of the JML annotations. The JML nodes will be removed and the AST
nodes will be decorated using the class AnnotationDecoration. An annotation decoration contains two
elements: the list of annotations, which are evaluated before the node, and the list of annotations, which
have to be evaluated after the node. The annotations that are part of the list are of three possible kinds:
assert, assume, or set. Loop invariants are added directly to the node if needed.

The translation from JML to first order logic is done in the package formula.jmlTranslator. It is based
upon several visitors, which perform the translation described in Chapter 3. Once the translation is done,
no more JML nodes appear in the AST as they are replaced by first order logic terms.

Method specifications are handled differently. They are all concentrated in a single location, the Lookup

class. This class is accessed through static calls and the translation of pre- or post- condition of the methods
is done there.

6.2.2 Verification conditions generation

Once the specifications are translated and the AST has been decorated, the verification conditions can
be computed. This is done using several visitors. The weakest precondition calculus from Chapter 4 is
implemented in the package vcgen.

Basic principle

A typical scenario for the weakest precondition of an instruction is the following:

• first, the annotations that decorate the after-part of the instruction are taken into account,

• then the weakest precondition of the instruction is computed, and

• finally, the annotations that decorate the before-part of the instruction are taken into account.

The data structure used to pass the postconditions is complex because of the number of possible post-
conditions. It must contain the normal and exceptional postconditions, which are the ones from the current
method. There are several postconditions that change depending on the content of the method. First, there
are the try catch block exceptional postconditions. The list of these exceptional postconditions is indexed
by the type of the exception which are caught. There are also several postconditions which must be stored
as well, like the continue, continue label postconditions and the break and break label postconditions.

68

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

wpS(assert φ, ψ) = φ ∧ ψ, ∅ wpS(assume φ, ψ) = φ→ ψ, ∅

wpS(set v , ψ) = ∀v .ψ, ∅ wpS(set v val , ψ) = ψ{v 7→ val}, ∅

Figure 6.2: Weakest precondition of the first order logic constructs generated for local
JML annotations

lookup(ψ, break) = ψbrk

wpE(break, ψ) = ψbrk , ∅
lookup(ψ, lbl) = ψlbl

wpE(break lbl , ψ) = ψlbl , ∅

Figure 6.3: Weakest precondition for the break instruction

Specific annotations

The annotations generated by the translation from local JML specifications to FOL have a specific weakest
precondition calculus. The calculus presented in Figure 4.1 is easily extended to treat the local annotations
used (Figure 6.2).

The weakest precondition for assert and assume is standard. The set construct is two-fold. There is
the declaration set, which takes only one argument, and the assignment set, which takes two arguments.
The value val is computed during the JML to FOL translation.

Expressions

The weakest precondition calculus for the expressions is based on the calculus for JAVAE(Chapter 4). The
implementation is split into three classes: the visitor, which inspects each node of the expression, two
delegate objects, one generic that computes the weakest precondition for binary expressions, and one that
computes it for all other expressions such as increment instructions, initialization expressions, or method
invocations. The implementation is standard as the way exceptions are treated is using the usual handlers
with try-catch constructs that are described in JAVAE .

Handling break and continue

Breaks and continues are difficult to handle, because they add complexity to the postcondition structure.
As shown in Chapter 5, these constructs require specific lists of postconditions.

Each time a loop, a try-catch, or a block is entered by the weakest precondition calculus, the slot
in the postcondition data structure for the break is filled with the current normal postcondition. This
postcondition will be the postcondition for the break if encountered in the block. If there is a label to the
block, the postcondition is put in a list of postcondition indexed by labels. This is shown in Figure 6.3,
where the function lookup is used to retrieve the break postconditions in the postcondition data structure.
The same treatment is given for the continue postconditions.

6.2.3 A backend to Bicolano

A crucial concern for the correspondence between source and bytecode verification conditions was to use the
Bicolano memory model for both VCGen. In order to output Coq compatible proof obligations, a plugin to
pretty print towards Coq was written for the ESC/Java2 backend.

69

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Sorted prover’s Coq backend

The main differences between Bicolano and the sorted prover generic backend lies in the handling of type
names. In Bicolano, type names have a specific sort, and in order to be used as types in a generic manner,
they have to be converted. For instance, the type Object in Bicolano would be used in a proof obligation
as (ReferenceType (ClassType Object.className)). In the sorted prover, the only way to express the
type is using a variable of type Ref, here it would be T_java_lang_Object. When used with the same
construct, typeof, this difference naturally leads to typing errors.

An issue also appears with the handling of heap access. It is also due to the handling of types. The
predicates in Bicolano and the sorted prover to access the heap are different because in Bicolano, the heap
access methods take an addressing mode data structure, whereas in the backend, it is once again a reference
variable. Here the problem is for field names, but the result is the same: the typing of the construction
cannot be properly verified if the backend generically, like its intended purpose.

The solution to these problems we apply is a temporary one: it is to simply separate the plugin which
pretty prints toward Coq from the rest of ESC/Java2. With this solution, the direct VCGen can work
properly, but we lose some features that the integration in ESC/Java2 was offering.

Prelude generation

The usual prelude generation for ESC/Java2 is simple, as ESC/Java2 generates all the background predicates
at runtime, when it generates the proof obligations. Here, this was not possible since we want to be
compatible with Bicolano. All the constructs that are used are already declared in Bicolano’s axiomatization.
The only elements that are not properly present are the class and field names. For this purpose Bico has
been used. It properly generates all the names needed for proof obligations, as well as instantiate properly
the axioms with an implementation using the Map data structure. Bico gives a generic way to generate the
prelude for Coq verification conditions.

70

Chapter 7

Type-preserving compilation for a type
system for secure information flow

JFlow [29] offers a practical tool for developing secure applications, and in particular for ensuring to devel-
opers that applications meet high-level policies about API usage. In contrast, the type system for bytecode
developed in Task 2.1. and [6] augments the Java security architecture to provide assurance to users that
applets respect high-level policies about API usage.

In this chapter we connect them via a type preservation result, showing that programs typable in a
suitable fragment of JFlow will be compiled into bytecode programs that pass information flow bytecode
verification (as suggested, e.g., by Abadi [1]). The interest of such a result is to show on the one hand that
applications written with JFlow can be deployed in a mobile code architecture that delivers the promises of
JFlow in terms of confidentiality, and on the other hand that the enhanced security architecture can benefit
from practical tools for developing applications that meets the policy it enforces.

7.1 Control dependence regions

Tracking information flow via control flow in a structured language without exceptions is easy since the
analysis can exploit control structure [?, 2]. Exceptions make tracking cumbersome due to the loss of
structured control flow. Our high level type system tracks exception levels in a way similar to [9].

For unstructured low level code implicit flows can be tracked in terms of an analysis of control dependence
regions which gives information about different blocks in the program due to conditional or exceptional
instructions. This analysis can be statically approximated [7, 38].

To deal with this mismatch between tracking of implicit flows at source and bytecode level, we introduce
an intermediate analysis that applies to source code but uses control dependence regions. One of the
contributions of this chapter is an inductive definition of control dependence regions for a language with
exceptions. An important consequence of such an analysis for source programs is that, given a compiler from
source programs to target programs, it is possible to obtain control dependence regions for the compiled
program (Definition 7.7.1). In a scenario where the compiler is not trusted, it is possible to check that
the regions given by the analysis based on compilation has the requisite properties for soundness of the
information flow analysis (see SOAP Property from Task 2.1 and [6]).

7.2 High level security type system

In this section we define a high level type system for the source language. By high level we mean that it
consists of syntax-directed rules together with subsumption rules. It enforces the policy specified by security
method signatures and a mapping, ft, from field names to security levels.

Method signatures are of the form

71

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

~kv
kh−→ ~kr

where ~kv provides the security level of the method arguments (and to all intermediate variables used in
the method), kh is the effect of the method on the heap, ~kr (called output level) is a list of security levels of
the form {n : kn , e1 : ke1 , . . . en : ken}, where kn is the security level of the return value and ei is an exception
class that might be propagated by the method in a security environment (or due to an exception-throwing
instruction) of level ki . In the rest of the chapter we will write ~kr [n] instead of kn and ~kr [ei] instead of kei .

Source language. Basically, we operate on a subset of JAVAE . In the following, we shortly summarize
the constructs that are used in this chapter. Exceptions in Java can be explicitly programmed and are
also thrown by expressions such as field access (null dereference) and type cast (cast failure). We use
a desugared source language in which exceptions can only occur in specific syntactic forms. This helps
simplify the formalization in Section 7.3 where we attach control flow labels to commands that can branch
due to exceptions. We also require method bodies to end with a return, to simplify the definition of control
flows. Any command can be desugared to this form using additional local variables.

The grammar is as follows; x represents any variable name, v a literal value, C a class name, f a field
name, m a method identifier and op represents an arithmetic or boolean operation.

e ::= x | v | e op e | new C

c ::= x = e | x = e.f | e.f = e | throw e |
return e | c; c | if e then c else c |
while e do c | try c catch(X x) c | x = e.m(~e)

p ::= [m (~x){c; return e}]

A program p is a list of method declarations of the form m (~x){c; return e}, where c is a command that
does not contain return instructions, and ~x is the set of local variables used in the body of the method.

We assume that every program is closed under the successor relation.
We use the term exception-throwing for commands of the form e.f = e ′ or x = e.f or x = e.m(~e) or

throw e. Handlers for exceptions appear in the catch part of a try-catch command.

Source labels and control flows. To name program points where control flow can branch or writes can
occur, we add natural number labels to the source syntax —not to be confused with security labels given
by the policy.

c ::= [x = e]n | [x = e.f]n | [e.f = e]n | [throw e]n |
[return e]n | c; c | [if e then c else c]n |
[while e do c]n | [try c catch(X x) c]n | [x = e.m(~e)]n

The notation for labels of compound commands is convenient but visually misleading in that the label
pertains to the branching point in the control flow graph, for if and while, and the start of the handler for
try-catch.

By contrast with Nielson et al. [18], we do not need to label expressions. The significance of labeling
commands will become clear later in the chapter, when we give a definition for control dependence regions
for programs as mapping from branching commands (such as if, while or exception-throwing commands) to
sets of labels, corresponding to commands included in their regions. Throughout this section, we only use
labels for the command throw (to define a class analysis). We write a command together with its label, [c]n ,
only when the label is relevant for the context.

Remark on notation. We write ≤ for the lattice ordering on the set S of security levels and t for least
upper bounds. The latter is extended to ∅ by defining ∅ t k = k .

The join operation tE for two exception effect lists is the join operation for security levels discriminated
by class of exception, e.g. {e1 : ke1 , e2 : ke2} tE {e2 : ke′

2
, e4 : ke4} = {e1 : ke1 , e2 : ke2 t ke′

2
, e4 : ke4}.

72

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Var
~kv ` x : ~kv (x)

Val
~kv ` v : L

New
~kv ` new C : L

Op
~kv ` e : k ~kv ` e ′ : k

~kv ` e op e ′ : k t k ′

Subsume
~kv ` e : k k ≤ k ′

~kv ` e : k ′

Figure 7.1: High level typing rules for source language expressions.

Type system. In presence of exceptions, commands can have multiple exits and the region of a branch
need not be contained within the command. We define high level judgments ` c : k1, ~k2 with the meaning
that c is secure and writes variables/fields of level at least k1. Moreover, the information revealed by the
termination mode is given by ~k2, where ~k2 is a list of security levels of the form {e1 : ke1 , . . . , en : ken}
where kei is a security level and ei is an exception class. Furthermore, the judgment allows ~k2 to be ∅ which
indicates that no exception can escape from the command. In the case of exception-throwing commands,
the exception effect is given by the type of the expression which might cause the exception to be thrown,
e.g., in the case x = e.f the exception effect k is the type of expression e (see rule [Assign2]).

Figure 7.1 gives the typing rules for source language expressions . These are used both in the high
level typing system and in the intermediate system. Figure 7.2 gives the high level typing rules for source
programs and Figure 7.3 shows the rule of typability for method body.

Notice that commands such as x = e or return e are typed with exception effect ∅, meaning that these
commands cannot throw exceptions.

The type system is parameterized by a class analysis and an exception analysis, as described in Task
2.1.

Exception effects are used to impose constraints on successor commands, e.g., in c; c′ exception effects of
c must be less or equal than the write effect of c′ (see k1 ≤ k ′). In general, exception effects of a command
restrict the write effect of its successor commands, except in the case of try-catch. In the [Catch] rule, the
exception effect for the command in the try part imposes a constraint on the type of variable x (that stores
the exception object) and imposes a constraint on the write effect of the code of the handler (catch part).
If the catch part cannot throw new exceptions, i.e. its exception effect is ∅, and all exceptions in the try
part are of the class of the handler (i.e. X in the rules), then there are no constraints on the write effects
of successor commands of try-catch.

The following example illustrates how exception-throwing commands inside while commands can lead to
information leaks.

Example 1 (exceptions in while) Let x and x ′ be high variables and y be low. The program

while x ≤ 3 do {x ′ = y .f ; x = x + 1; } return e

is interferent because x ′ = y .f can throw an exception and there is no handler for it. Suppose that the
variable y is initially null . Then the program terminates in an abnormal state if the (high) expression
x ≤ 3 is true and it terminates in a normal state if x ≤ 3 is false. This program will be rejected by the
[While] rule, which does not allow low exceptions in high environments (constraint k = ke). Now assume
that variable x is low and x ′ and y are high. Again the program is interferent: A high null pointer exception
can be thrown so the program will terminate abnormally depending on the value of high variable y.

This program will also be rejected by the [While] rule.

The following lemma claims that any subcommand of a command c has at least the same write effect
as that of c.

73

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Assign
~kv ` e : k k ≤ ~kv (x)

Γ, ~kv
kh−→ ~kr ` x = e : ~kv (x), ∅

Seq

Γ, ~kv
kh−→ ~kr ` c : k , ~k1 Γ, ~kv

kh−→ ~kr ` c′ : k ′, ~k ′1 ∀e : k1 ∈ tJ (k1) k1 ≤ k ′

Γ, ~kv
kh−→ ~kr ` c ; c′ : k u k ′, ~k1 tE

~k ′1

While

~kv ` e : k Γ, ~kv
kh−→ ~kr ` c : k , ~k ′ ~k ′ 6= ∅ ⇒ k = ke ke = t{k1|e : k1 ∈ ~k ′}

Γ, ~kv
kh−→ ~kr ` while e do c : k , ke

Cond
~kv ` e : k

Γ, ~kv
kh−→ ~kr ` c : k , ~k ′ Γ, ~kv

kh−→ ~kr ` c′ : k , ~k ′ ke = t{k1|e : k1 ∈ ~k ′} ~k ′ 6= ∅ ⇒ k ≤ ke

Γ, ~kv
kh−→ ~kr ` if e then c else c′ : k , ke

Assign2
~kv ` e : k k t ft(f) ≤ ~kv (x)

Γ, ~kv
kh−→ ~kr ` x = e.f : ~kv (x),np : k

Update
~kv ` e : k ~kv ` e ′ : k ′ k t k ′ ≤ ft(f)

Γ, ~kv
kh−→ ~kr ` e.f = e ′ : ft(f),np : k

Catch

Γ, ~kv
kh−→ ~kr ` c : k , ~k1 (∀X ′ : kx ′ ∈ ~k1.X

′ ≤ X .kx ′ ≤ k u ~kv (x))

Γ, ~kv
kh−→ ~kr ` c′ : k , ~k ′1 (∀X ′ : kx ′ ∈ ~k1.X

′ 6≤ X .kx ′ ≤ ~ku)

Γ, ~kv
kh−→ ~kr ` try c catch (X x) c′ : k u ~kv (x), ~k ′1 tE

~ku

Throw
~kv ` e : k ~X = classAnalysis(n)

Γ, ~kv
kh−→ ~kr ` [throw e]n : H , ~X : k

Invoke

∀i ∈ [0, length(~e)− 1]. ~kv ` ~e[i] : ~kv [i] mtm ′ = ~k ′v
k ′
h−→ ~k ′r

~k ′v [0] t kh ≤ k ′h
~k ′r [n] ≤ ~kv (x) ke = {e : k |e : k ∈ ~k ′r ∧ e 6= n}

Γ, ~kv
kh−→ ~kr ` x = e.m ′(~e) : ~kv (x) u k ′h ,

~ke

Return
~kv ` e : k k ≤ ~kr [r] ke = t{k1|e : k1 ∈ ~kr ∧ e 6= n}

Γ, ~kv
kh−→ ~kr ` return e : ke , ∅

Subsume2

Γ, ~kv
kh−→ ~kr ` c : k1, ~k2 k ′1 ≤ k1

~k2 ≤ ~k ′2

Γ, ~kv
kh−→ ~kr ` c : k ′1,

~k ′2

Figure 7.2: High level typing rules for source language command.

74

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Typability of method body

Γ, ~kv
kh−→ ~kr ` c : k , ~k ′ ∀X : kx ∈ ~k ′. : kx = ~kr [e] ke = t{k1|e : k1 ∈ ~k ′} ke ≤ ~kr [r] kh ≤ k

Γ, ~kv
kh−→ ~kr ` c; return e

Figure 7.3: Typability for method body.

Lemma 19 Suppose Γ, ~kv
kh−→ ~kr ` c : k1, ~k2 and Γ, ~kv

kh−→ ~kr ` c′ : k ′1,
~k ′2. Let c′ be a subcommand of c.

Then k1 ≤ k ′1 and if c′ throws an exception of type e and has no handler inside c then ~k ′2[e] ≤ ~k2[e].

Example 2 (Example with try-catch) Consider the command

try [throw x]n ; x = 1; catch (X y) y = null

where variable x is high (~kv (x) = H) and variable y is low(~kv (x) = L). Suppose that a sound class analysis
for n returns {X }. The program then is interferent; indeed its effect is the same as the direct assignment
y = x . It is rejected by the type system because of the [Catch] rule, where the exception effect of the try
part (here, H) has to be less or equal than the type of the variable in catch (here, L).

Typability. A method m is typable w.r.t. a method signature table Γ, a global field policy ft, and a
signature sgn if its body is typable with rule in Figure 7.3. A program is typable, when all its methods are
typable.

Example 3 (Example of high unhandled exceptions) Let x be a high variable (~kv (x) = H) and y be
a low variable(~kv (x) = L). The method code x = y .f ; return e with signature that includes an exception list
{np : L} is interferent because a high can be thrown and there is no handler for it and the program will
terminate normally or abnormally depending on high variable y. In our type system, this program is rejected
because typability rule requires that the join of exception effect levels of the first command be less or equal
then the write effect of the return command, that for this case is L.

7.3 Intermediate type system for source code

In this section we introduce another type system for the source language. The intermediate type system
serves as a bridge between the high level type system and the type system for the target language.

The function labels takes a command and returns all the labels of its subcommands, e.g. labels([x =
e]n) = {n}, and labels(c; c′) = labels(c) ∪ labels(c′).

Labels on program points are used in intermediate judgments of the form ` c : E . Here E is a security
environment, i.e., a function E : labels(SPm)→ S that assigns levels to all program points of a method body
SPm . The body of a method m, SPm , is typable with respect to a signature sgn and a function sregion,
written Γ, sregion, sgn ` SPm : E , if its command part is typable with respect to E according to the rules
given in Figure 7.5. Roughly, the idea is that for a field or variable assignment with control label n, the
field or variable must have level at least E (n). Note that the rules recurse on the structure of constituent
commands c of SPm , but a single E is used throughout. A program is typable if all its methods are typable
with all of its signatures.

The constraints in the rules involve control dependence regions (sregion), which we now proceed in several
steps to define.

We use the notation C [−] to denote context of a command. We use square brackets both for labeling
and for contexts; it should be clear that [c]n without a capital letter in front means that command c has
label n, whereas C [c] with a capital C in front means C [−] is the context of command c.

75

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

c init(c) final(c) except(c)

[x = e]n n {n} ∅
[x = e.f]n n {n} {(np,n)}
[e.f = e]n n {n} {(np,n)}
[throw e]n n ∅ {(e,n)| e ∈ classAnalysis(n)}
c1; c2 init(c1) final(c2) except(c1) ∪ except(c2)

[if e then c1 else c2]n n final(c1) ∪ final(c2) except(c1) ∪ except(c2)

[while e do c1]n n {n} except(c1)

[try c1 catch(X x) c2]n init(c1) final(c1) ∪ final(c2) except(c2) ∪ {e,n)| e ∈ (except(c1) ∧ e 6≤ X)}
[return e]n n {n} ∅
[x = e.m(~e)]n n {n} {(e,n)| e ∈ excAnalysis(m)}

c flow(c)

[x = e]n ∅
[x = e.f]n ∅
[e.f = e]n ∅
[throw e]n ∅
c1; c2 flow(c1) ∪ flow(c2) ∪ {(n, init(c2)) | n ∈ final(c1)}
[try c1 catch(X x) c2]n flow(c1) ∪ flow(c2) ∪ {(n ′,n) | (e,n ′) ∈ except(c1) ∧ e ≤ X } ∪ {(n, init(c2))}
[if e then c1 else c2]n flow(c1) ∪ flow(c2) ∪ {(n, init(c1)), (n, init(c2))}
[while e do c1]n flow(c1) ∪ {(n, init(c1))} ∪ {(p,n) | p ∈ final(c1)}
[return e]n ∅
[x = e.m(~e)]n ∅

Figure 7.4: Forward flows.

76

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Assign
~kv ` e : k k t E (n) ≤ ~kv (x)

Γ, region, ~kv
kh−→ ~kr ` [x = e]n : E

Seq

Γ, region, ~kv
kh−→ ~kr ` c : E Γ, region, ~kv

kh−→ ~kr ` c′ : E

Γ, region, ~kv
kh−→ ~kr ` c ; c′ : E

While

~kv ` e : k Γ, region, ~kv
kh−→ ~kr ` c : E ∀n ′ ∈ sregion(n, ∅).k ≤ E (n ′)

Γ, region, ~kv
kh−→ ~kr ` [while e do c]n : E

Cond
~kv ` e : k

Γ, region, ~kv
kh−→ ~kr ` c : E Γ, region, ~kv

kh−→ ~kr ` c′ : E ∀n ′ ∈ sregion(n, ∅).k ≤ E (n ′)

Γ, region, ~kv
kh−→ ~kr ` [if e then c else c′]n : E

Assign2
~kv ` e : k

E (n) t ft(f) t k ≤ ~kv (x) ∀n ′ ∈ sregion(n,np).k ≤ E (n ′) sHandler(n,np) ↑⇒ k ≤ ~kr [np]

Γ, region, ~kv
kh−→ ~kr ` [x = e.f]n : E

Update
~kv ` e : k ~kv ` e ′ : k ′

k t k ′ t E (n) t kh ≤ ft(f) ∀n ′ ∈ sregion(n,np).k ≤ E (n ′) sHandler(n,np) ↑⇒ k ≤ ~kr [np]

Γ, region, ~kv
kh−→ ~kr ` [e.f = e ′]n : E

Catch

Γ, region, ~kv
kh−→ ~kr ` c : E Γ, region, ~kv

kh−→ ~kr ` c′ : E E (n) ≤ ~kv (x)

Γ, region, ~kv
kh−→ ~kr ` [try c catch (X x) c′]n : E

Return
~kv ` e : k E (n) t k ≤ ~kr [r]

Γ, region, ~kv
kh−→ ~kr ` [return e]n : E

Throw
~kv ` e : k

∀e ∈ classAnalysis(n) sHandler(n, e) ↑⇒ k ≤ ~kr [e] sHandler(n, e) = n ′ ⇒ ∀n ′ ∈ sregion(n, e). k ≤ E (n ′)

Γ, region, ~kv
kh−→ ~kr ` [throw e]n : E

Invoke

∀i ∈ [0, length(~e)− 1]. ~kv ` ~e[i] : ~k ′1[i] ~kv [0] t kh t E (n) ≤ k ′h
~kr [r] t E (n) ≤ ~kv (x) mtm ′ = ~k ′v

k ′
h−→ ~k ′r

∀e ∈ excAnalysis(m ′). ∀j ∈ sregion(n, e) ~kv [0] t ~k ′r [e] ≤ E (n) sHandler(n, e) ↑⇒ ~k ′v [0] t ~k ′r [e] ≤ ~kr [e]

Γ, region, ~kv
kh−→ ~kr ` [x = e.m(~e)]n : E

Figure 7.5: Intermediate typing rules for high-level language commands.

77

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

We define here a successor relation between commands in the language. Following Nielson et al. [18] we
define for each labeled command the init , final , and except labels (see Figure 7.4); the set except(n) is a set
of pairs (class of exception, label) where label is from which there can be an —uncaught— exception of the
given class..

Given a method body SPm , n 7→ n ′ denotes that command labeled n ′ is a successor of command labeled
n in the control flow graph. We define n 7→ n ′ iff (n,n ′) ∈ flow(SPm). The latter is defined in two steps,
which are given in Figure 7.4. Let 7→+ (resp. 7→?) denote the transitive (resp. transitive and reflexive)
closure of 7→.

Definition 7.3.1 (branching commands, LL])
The branching commands are those of the form if e then c1 else c2, while e do c1, x = e.f , e.f = e,

throw e, and x = e.m(~e). The set LL] is all the labels of branching commands in a method body.

For example, if the method body SPm is

[if x then [x = x]4 else [x = x]7]2; [return x]9

then LL] is {2}.
The following definition is needed to define control dependence regions.

Definition 7.3.2 (inner-most handler) Let [c]n be an exception-throwing command in SPm . Then an
inner-most handler decomposition for e ∈ except([c]n) consists of contexts C1[−], C2[−], command c′, and
label t such that

SPm ≡ C1[[try C2[[c]n] catch (e x) c′]t]

and C2[−] does not have a try-catch that handles exceptions of class e and that encloses [c]n in its try part.
We say that t is the inner-most handler of n for e and c′ is the handler for exception e from c.

For any exception class and command [c]n , either there is no handler for exception e thrown by c, or there
is a unique inner-most handler decomposition for e.

Definition 7.3.3 (handler function) We define a function sHandler as follows: for label n and class e it
returns the label of the inner-most handler of n for e, if there is one; otherwise sHandler(n, e) is undefined,
denoted sHandler(n, e) ↑.

Example 4 (inner-most handler) In the code below, sHandler(n,np) = t.

[try ([try [c]n catch (np x) c′]t) catch (X y) c′′]n
′
; . . .

Control dependence regions. Control dependence regions are used by the intermediate type system to
impose constraints on commands depending on branching instructions. For example, in the high level type
system, if the expression e in command

[if e then c else c′]n

is typable as ` e : k then c and c′ can only assign variables of level at least k . The intermediate system
expresses this constraint by ∀n ′ ∈ sregion(n).k ≤ E (n ′), which means that every command in the region of
n (including commands in branches depending on exceptions) has security level at least k .

Definition 7.3.4 (sregion and B) The region of a labeled command [c]n with n ∈ LL] is written sregion(n,X)
(where X is and exception class if [c]n is an X exception-throwing command or ∅ otherwise) and defined to
be the set of all labels n ′ such that n B n ′. Here B is defined inductively as follows.

• If [c]n is an e exception-throwing command with sHandler(n, e) ↑ and n 7→+ n ′ then n B n ′.

78

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

• If [c]n is an e exception-throwing command with an inner-most handler decomposition

C1[[try C2[[c]n] catch (e x) c′]t]

then there are two sub-cases:

(1) if n 7→+ n ′, n ′ ∈ labels(C2[[c]n]) and n ′ is not in the catch part of a try-catch command then
n B n ′;

(2) if d ∈ labels(c′) ∪ {t} then n B d. Furthermore, if n B d and d B d ′ then n B d ′.

• If [c]n is of the form [if e then c1 else c2]n and d ∈ labels(c1) ∪ labels(c2) then n B d. Furthermore, if
n B d and d B d ′ then n B d ′.

• If [c]n is of the form [while e do c1]n and d ∈ labels(c1) then n B d. Furthermore, if n B d and d B d ′

then n B d ′.

Note that any label in the region of an exception-throwing command is either inside the try part of its
inner-most handler, or is a successor of the code in the catch part.

7.4 Connecting the high level and intermediate type systems

This section shows that if labeled source program SP is typable in the high level system then it is typable
in the intermediate system as well. In order to do this, we first show how a security environment E for SP
can be obtained from the typing derivation in the high level system.

Let D be a typing derivation for SPm in the high level type system. For each constituent c of SPm there
is an instance of an introduction rule with conclusion Γ, sregion, sgn ` c : k , ~k ′ for some k , ~k ′ (as opposed
to uses of the subsumption rule). In this case we say the type k , ~k ′ of c is given by its intro judgment and
write D ::` c : k , ~k ′. When the types k , ~k ′ are irrelevant, we use D ::` c to mean that SPm is typable with
derivation tree D and c occurs in SP .

The intro judgment for a subcommand reflects the essential constraints for security of this command
in its context. Subsumption serves to weaken typing information, e.g., to match the two branches of a
conditional in high level rule Cond, but it loses precision. So we define the security environment E in terms
of intro judgments.

Definition 7.4.1 (environment E from high level typing) Let D be a typing derivation for source
code SPm in the high level type system. Define security environment E : labels(SPm)→ S as follows:

• If n belongs to some region of a branching label n ′ of a command c′ in SPm such that the intro judgment
for c′ types it with write effect or some exception effect k ′ (where e : k ′ ∈ ~k ′ if k ′ is an exception effect
and k ′ 6≤ kobs), then E (n) is defined as the write level of the intro judgment for [c]n in D. That is, if
D ::` c : k , ~k ′ then E (n) = k.

• Otherwise, E (n) = L.

Example 5 (obtaining E from D) Let the source code c be

[if yH = 0 then [yH = xL]6 else [yH := 1]9]4; [new C .fL = 3]12

Labels are chosen for compatibility with compilation, that will be defined in later sections. Let ~kv (xL) = L,
~kv (yH) = H and ft(fL) = L. The type for c is L,L. The derivation tree in the high level system shown in
Fig. 5. The security environment is E (4) = H , E (6) = H , E (9) = H , and E (12) = L.

Lemma 20 states a relation between types of commands in the high level type systems and regions.

79

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

~kv (yH) = H

yH : H 0 : L

yH = 0 : H

~kv (xL) = L

xL : L

xL : H
~kv (yH) = H

yH = xL : H , ∅
1 : L

~kv (yH) = H

yH = 1 : H , ∅

if yH = 0 then yH = xL else yH := 1 : H ,np : L

if yH = 0 then yH = xL else yH := 1 : L ,np : L

new C : L
ft(fL) = L

3 : L

new C .fL = 3 : L, np : L

` if yH = 0 then yH = xL else yH := 1 ; new C .fL = 3 : L, np : L

Figure 7.6: Derivation for Example 5, using high level rules.

~kv (yH) = H

yH : H 0 : L

yH = 0 : H

~kv (xL) = L

xL : L

xL : H

yH = xL : E

1 : L
E (9) ≤ H

[yH = 1]9 : E
E =↑H (E , sregion(4))

[if yH = 0 then yH = xL else yH := 1]4 : E

3 : L
new C : L

E (12) ≤ ft(fL)
E =↑L (E , sregion(12))

sHandler(12) ↑⇒ E (12) = L

[new C .fL = 3]12 : E

~kv ` [if yH = 0 then [yH = xL]6 else [yH := 1]9]4; [new C .fL = 3]12 : E

Figure 7.7: Derivation for Example 6, using intermediate rules.

Lemma 20 Let [c]n be an e exception-throwing command. Let n ′ ∈ sregion(n, e) and let D ::` [c′]n
′

: k ′1,
~k ′2

be the intro judgment for n ′ in derivation D of the method body SPm and let D ::` [c]n : k1, ~k2 be the intro
judgment for [c]n . Then k2[e] ≤ k ′1.

The following lemma claims that the security enviromment for a command, is an upper bound for its
exception effect.

Lemma 21 (exception effect and region) Let c be an exception-throwing command. Let D ::` [c]n :
k , ~k ′ (typable according to the corresponding intro judgment for c) and E be the security environment derived
from D then for all e : k ′′ ∈ ~k ′, ∀n ′ ∈ sregion(n, e).

~k ′′[e] ≤ E (n ′)

Now we can prove, by induction on the structure of source commands, that every program typable in
the high level system is also typable in the intermediate system.

Theorem 7.4.2 If D ::` c then ` c : E, where E is obtained from D by Definition 7.4.1.

Example 6 (Preservation of types) Recall command c of Example 5, its type derivation and its derived
E. According to Definition 7.3.4, sregion(4, ∅) = {6, 9}. The derivation tree using the intermediate type
system and E from Example 5 is given in Figure 6. Constraints H ≤ E (6),E (9) are satisfied since E (6) = H
and E (9) = H .

7.5 Target language

We recall in Figure 7.8 the type system of Task 2.1 and [6].

80

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Pm [i] = ifeq j ∀j ′ ∈ region(i , ∅), k ≤ se(j ′)

Γ, region, se, ~ka
kh−→ ~kr , i `∅ k :: st ⇒ liftk (st)

Pm [i] = return k t se(i) ≤ ~kr [n]

Γ, region, se, ~ka
kh−→ ~kr , i `∅ k :: st ⇒

Pm [i] = invokevirtual mID ΓmID [k] = ~k ′
a

k′
h−→ ~k ′

r

k t kh t se(i) ≤ k ′
h length(st1) = nbArguments(mID)

k ≤ ~k ′
a [0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ ~k ′

a [i + 1]

∀e ∈ excAnalysis(mID)∀j ∈ region(i , e), k t ~k ′
r [e] ≤ se(j)

ke =
⊔{ ~k ′

r [e] | ∃e ∈ excAnalysis(mID), ∃t ∈ Pc ,Handler(i , e) = t
}

Γ, region, se, ~ka
kh−→ ~kr , i `∅ st1 :: k :: st2 ⇒ liftktke

(
(~k ′

r [n] t se(i)) :: st2
)

Pm [i] = invokevirtual mID ΓmID [k] = ~k ′
a

k′
h−→ ~k ′

r

k t kh t se(i) ≤ k ′
h length(st1) = nbArguments(mID)

k ≤ ~k ′
a [0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ ~k ′

a [i + 1]

e ∈ excAnalysis(mID) ∀j ∈ region(i , e), k t ~k ′
r [e] ≤ se(j) Handler(i , e) = t

Γ, region, se, ~ka
kh−→ ~kr , i `e st1 :: k :: st2 ⇒ (k t ~k ′

r [e]) :: ε

Pm [i] = invokevirtual mID ΓmID [k] = ~k ′
a

k′
h−→ ~k ′

r

k t kh t se(i) ≤ k ′
h length(st1) = nbArguments(mID)

k ≤ ~k ′
a [0] ∀i ∈ [0, length(st1)− 1], st1[i] ≤ ~k ′

a [i + 1]

e ∈ excAnalysis(mID) k t ~k ′
r [e] ≤ ~kr [e] ∀j ∈ region(i , e), k t ~k ′

r [e] ≤ se(j) Handler(i , e) ↑

Γ, region, se, ~ka
kh−→ ~kr , i `e st1 :: k :: st2 ⇒

P [i] = putfield f k1 t se(i) t k2 ≤ ft(f) kh ≤ ft(f)
∀j ∈ region(i , ∅), k2 ≤ se(j)

Γ, region, se, ~ka
kh−→ ~kr , i `∅ k1 :: k2 :: st ⇒ liftk2st

Pm [i] = putfield f k1 t se(i) t k2 ≤ ft(f)
∀j ∈ region(i ,np), k2 ≤ se(j) Handler(i ,np) = t

Γ, region, se, ~ka
kh−→ ~kr , i `np k1 :: k2 :: st ⇒ k2 t se(i) :: ε

Pm [i] = putfield f k1 t se(i) t k2 ≤ ft(f)

k2 ≤ ~kr [np] ∀j ∈ region(i ,np), k2 ≤ se(j) Handler(i ,np) ↑

Γ, region, se, ~ka
kh−→ ~kr , i `np k1 :: k2 :: st ⇒

Pm [i] = getfield f ∀j ∈ region(i , ∅), k ≤ se(j)

Γ, region, se, ~ka
kh−→ ~kr , i `∅ k :: st ⇒ liftk ((ft(f) t se(i)) :: st)

Pm [i] = getfield f ∀j ∈ region(i ,np), k ≤ se(j) Handler(i ,np) = t

Γ, region, se, ~ka
kh−→ ~kr , i `np k :: st ⇒ k t se(i) :: ε

Pm [i] = getfield f Handler(i ,np) ↑ k ≤ ~kr [np]

Γ, region, se, ~ka
kh−→ ~kr , i `np k :: st ⇒

Pm [i] = throw e ∈ classAnalysis(i) ∪ {np}
∀j ∈ region(i , e), k ≤ se(j) Handler(i , e) = t

Γ, region, se, ~ka
kh−→ ~kr , i `e k :: st ⇒ k t se(i) :: ε

Pm [i] = throw e ∈ classAnalysis(i) ∪ {np}
k ≤ ~kr [e] ∀j ∈ region(i , e), k ≤ se(j) Handler(i , e) ↑

Γ, region, se, ~ka
kh−→ ~kr , i `e k :: st ⇒

Figure 7.8: Transfer rules for instructions of the Target Language

81

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

E(x) = load x

E(n) = push n

E(e op e ′) = E(e) :: E(e ′) :: binop op

S(x = e.f) = E(e) :: getfield f :: store x

E(new C) = new C

S(x = e) = E(e) :: store x

S(c1; c2) = S(c1) :: S(c2)

S(while e do c) = let le = E(e); lc = S(c);
in goto (pc + #lc + 1) :: lc :: le :: ifeq (pc −#lc −#le)

S(if e then c1 else c2) = let le = E(e); lc1 = S(c1); lc2 = S(c2);
in le :: ifeq (pc + #lc2 + 2) :: lc2 :: goto (pc + #lc1 + 1) :: lc1

S(e.f = e ′) = E(e ′) :: E(e) :: putfield f

S(throw e) = E(e) :: throw

S(try c1 catch (X x) c2) = let lc1 = S(c1); lc2 = S(c2);
in lc1 :: goto (pc + #lc2 + 1) :: store x :: lc2

S(return e) = E(e) :: return

S(x = e.m(~e)) = E(~e) :: E(e) :: invoke m

Figure 7.9: Compilation function. Primary instructions are underlined.

X (c1; c2) = X (c1) :: X (c2)
X (while e do c) = X (c)

X (if e then c1 else c2) = X (c1) :: X (c2);
X (try c1 catch (X y) c2) = let lc1 = S(c1); lc2 = S(c2);

in X (c1) :: X (c2) :: 〈1,#lc1 + 1,#lc1 + 2,X 〉
X () = ε

Figure 7.10: Definition of exception table.

7.6 Compilation.

Compilation is done by a function, W, from source programs to target programs. The compiler is based
on [40].

The compilation function from source programs to target programs W : Prog→ Progc is defined from a
compilation function on expressions E : Expr→ Instr?, and a compilation function on commands S : Comm→
Instr?. Their formal definitions are given in Figure 7.9. The compilation of every labeled command includes
a primary instruction —e.g., getfield is the primary instruction for a field access [x = e.f]n— and these are
indicated in the definition of the compiler. Exception tables are defined in Figure 7.10. In order to enhance
readability, we use :: both for consing an element to a list and concatenating two lists, and we omit details
of calculating program points (we use pc to represent current program point) in the clauses for while and if
expressions. We also use # to denote the length of a list.

For method body SPm ≡ c; return e, we define the compilation W(SPm) to be S(c; return e).

We assume label compatibility : the label of a source command is the same as the label of the program
point of the primary instruction in its compilation, e.g., if getfield is obtained by compilation of [x = e.f]n ,
its corresponding program point in the target program is n. This implies that LL] = PP] for a source

82

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

program and its compilation. The simplifying assumption loses no generality since source labels can be read
off the compilation (as was done in the example just after Definition 7.3.1).

Given the definition of regions for the source program, we obtain regions for its compilation as follows.

Definition 7.6.1 (compiler for regions) Let [c′]n
′

be a branching source command. Let τ ∈ {∅} + C.
Then define tregion(n ′, τ) to be the union, over all [c]n with n ∈ sregion(n ′, τ) (in the source language), of
{i ..j} where TP [i ..j] is the compilation of c. That is, all program points in the compilation of commands
in the (source) region of some branching command with label n ′ are included in the (target) region of the
compiled program for the branching instruction n ′.

Furthermore

• if n ′ is a command of the form if e then c1 else c2, and #lc2 is the length of the compilation of command
c2, then n ′ + lc2 + 1 ∈ tregion(n, ∅) (note that n ′ + lc2 + 1 corresponds to the goto instruction).

• if n ′ is an e exception-throwing command with sHandler(n ′, e) = t, then program points t and t − 1
corresponding to goto and store instructions in the compilation of a try-catch with label t, are also
included in region of n ′.

• if n is a while command, then n ∈ tregion(n, ∅).

We will use regions for the target language defined as in Definition 7.6.1 for proofs of preservation, in next
section. The following lemma claims that regions defined as in Definition 7.6.1 have the SOAP property.

Lemma 22 Let n ∈ PP] be a program point in a target program P and let tregion(n) be defined as in
Definition 7.6.1 from compilation of a command [c]n . Then SOAP holds for tregion(n).

7.7 Connecting the intermediate and target type systems

The main result is that compilation preserves typing. That is, given a typing derivation for a source program
in the high level system, a corresponding security type for bytecode can be obtained. We show that the
defined security type satisfies all the conditions for typing of a bytecode program.

First, given a source program SP together with a security environment E for it we obtain a security
environment se with which to type the compilation of SP .

Definition 7.7.1 (se determined by E) We define se by induction on syntax of source commands. The
domain of se is the set of program points in the compilation W(SPm). Define se(i) as E (n) where [c]n is
the smallest subcommand of SPm whose compilation contains program point i .

Lemma 23 Let c be an exception throwing command. Suppose D ::` [c]n : k , k ′ (intro judgment), let
E be the security environment derived from D, and let se be determined by E. Then for all e : k ′′ ∈ ~k ′,
∀n ′ ∈ tregion(n, e).k ′′ ≤ se(n ′).

Main result. Finally we can show that compilation of expressions and of commands preserves typing.
From these two lemmas we obtain the main theorem.

Lemma 24 Let e be an expression in [c]n such that [c]n is the inner-most command that encloses e and
~kv ` c : E and ~kv ` e : k, and S(c)[i ..j] = E(e). Let se be the security environment determined by E. Then
for any sti ∈ ST there exist sti+1, ..stj such that the following hold:

1. for every l 7→∅ l ′ in i ..j then Γ, tregion, se, sgn, l ` stl ⇒ stl ′;

2. Γ, tregion, se, sgn, j ` stj ⇒ (k t se(i)) :: sti .

83

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

In the following, for simplicity’s sake we fix Γ, se, and tregion and we abbreviate Γ, tregion, se, i ` st ⇒ st ′

as i ` st ⇒ st ′.

The following lemma claims that for every typable compiled command, there exist types in the target
type system.

Lemma 25 Let c be a command in source method body SPm , typed ` c : E, where E is obtained as in
Definition 5, and let [i ..j] be the program points in compilation of c. Let se be the security environment
determined by E and let tregion be defined as in Definition 7.6.1. Then, for all st there exists sti+1, .., stj

such that if we define sti = st, we have

• Γ, region, ~kv
kh−→ ~kr , l ` stl ⇒ stl ′, for all l 7→ l ′, l ∈ {i ..j};

• if c is not a throw command, then stj = st;

• if [c]n is a e exception-throwing command with sHandler(n, e) = n ′, then n ` stn ⇒ k ′ :: st, with
k ′ ≤ se(n ′)

Finally, putting together Lemma 25 and Theorem 7.4.2 we obtain the main result.

Theorem 7.7.2 Let Γ, ~kv
kh−→ ~kr ` SPm , i.e. source program SPm be typable in the high level system. Then

Γ, ~kv
kh−→ ~kr ` W(SP), i.e., its compilation is typable in the target system.

Example 7 The compilation S(c) of the program introduced in Example 5 and its types obtained with
the Target type system is shown below. To construct se for this program, we use E from Example 5 and
Definition 7.7.1 to obtain: se = {1 7→ H , 2 7→ H , 3 7→ H , 4 7→ H , 5 7→ H , 6 7→ H , 7 7→ H , 8 7→ H , 9 7→
H , 10 7→ L, 11 7→ L, 12 7→ L}.

1 load yH ε
2 push 0 H :: ε
3 binop = H :: H :: ε
4 ifeq 8 H :: ε
5 load xL ε
6 store yH H :: ε
7 goto 10 ε
8 push 1 ε
9 store yH H :: ε
10 new C ε
11 push 3 L :: ε
12 putfield fL L :: L

ε

It is easy to corroborate that the constraints of the type system to apply the transfer rules with the types
given above hold.

7.8 Discussion

The development and deployment of software that respects an end-to-end confidentiality policy requires a
number of ingredients. First, developers must be able to specify how interfaces relate with the policy using
labels. They need tools to provide them accurate feedback whether their labeling is consistent with the
policy. Second, execution platforms must reflect the assumptions of the policy (e.g. a low attacker is not
able to directly read channels labeled high), and must feature security functions that enforce the policy.

84

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

Verification tools for developers and security functions for execution platforms have a similar purpose,
namely to verify that the labeling is correct and ensures the policy. Establishing a formal relation between
them, and devising means to exploit the results of source code verification for verification of executables is
a significant step towards the adoption of end-to-end security policies in mobile code.

The focus of this chapter is on checking that a program is noninterferent with respect to a given labeling—
that is, controlling fine-grained flows within a program.

We are confident that our approach is robust and can be adapted to more sophisticated settings, including
richer languages, more expressive policies, and optimizing compilers.

Richer languages. Our language already handles some main complexities of Java, including exceptions
and heap allocated mutable objects. The full version of the article also considers methods and multiple
exceptions. We expect to treat multiple exceptions in a way similar to JFlow (corresponding to our single
exception effect, JFlow uses a list of levels indexed by exception types, called “paths”). We believe that type
preservation can be extended to sequential Java, provided existing type systems at source code and bytecode
are extended appropriately—in particular, it is possible to treat JVM subroutines, but not so interesting as
they will disappear from Java 1.6. The real challenge is to understand whether type preservation scales up
to concurrent Java, but for the time being there is no information flow type system that has been proved
sound for a concurrent fragment of Java source code or bytecode.

More sophisticated policies. Practical end-to-end policies weaker than full non-interference are often
needed, e.g., to cater for downgrading [39] and to connect flow policy with access controls (based on stack
inspection or execution history) [2, 3]. Such policies are under active investigation but several current
proposals provide source level type systems to express and statically enforce specific policies that enable
declassification. We believe that most of these type systems can be adapted to bytecode in such a way that
type-preservation will be ensured. For example, it is trivial to extend type preservation to an extension of
Java with a cryptographic API where encryption turns secret data into public one.

Practical enforcement mechanisms for end-to-end policies are also likely to combine information flow type
systems with other type systems, e.g. for exception analysis, or with logical verification methods. Extending
type-preservation results to combinations of type systems is thus an interesting topic for future work, as is
preservation of typability/provability in a framework that combines type systems and logical reasoning.

Optimizing compilers. Common Java compilers such as Sun’s javac or IBM’s jikes only perform very
limited optimizations such as constant folding, dead code elimination, and rewriting conditionals whose
conditions always evaluate to the same constant. These source-to-source transformations can easily be
shown to preserve information-flow typing; thus type preservation lifts to standard Java compilers.

More aggressive optimizations may break type preservation, even though they are semantics preserving,
and therefor security preserving. Of course, if the transformations are made after bytecode verification (as
in JIT), type preservation is not needed (instead transformations become part of the TCB). For example,
applying common subexpression elimination to the program xH := n1 ∗n2; yL := n1 ∗n2, where n1 and n2 are
constant values, will result into the program xH := n1 ∗ n2; yL := xH . Assuming that variable xH is a high
variable and yL is a low variable, the original program is typable, but the optimized program is not, since
the typing rule for assignment will detect an explicit flow yL := xH . (A naive solution to recover typability
is to create a low auxiliary variable zL in which to store the result of the computation n1 ∗ n2, and assign
zL to xH and yL, i.e. zL := n1 ∗ n2; xH := zL; yL := zL.) Adapting standard program optimizations so that
they do not break type preservation is left as future work. We conjecture that most optimizations will only
need minor modifications, provided advanced features of the type system such as label polymorphism are
available.

85

Chapter 8

Conclusions and future work

In this deliverable, we presented the main ideas of both proof-transforming and type-preserving compilation.
Both techniques enable reasoning about interesting security properties on source code and using the result
directly on bytecode to build a certificate that can be checked efficiently.

8.1 Proof-transforming compilation

We designed a new direct verification condition generator and integrated it into the MOBIUS PVE, which
is being built in Task 3.6. The new VCGen is tailored towards the already existing verification condition
generator for bytecode and enables automatic transformation of proofs to the bytecode level. The verification
condition generation process can be separated into two relatively independent steps.

First, JML annotations are transformed to first order logic specification tables from which the actual
VCGen retrieves pre- and postconditions for routines as well as local annotations for program statements.
With the prototypical implementation, we are able to process all Java constructs except multi-dimensional
arrays and concurrency instructions. On the JML side, we currently support most interesting JML-level 0
constructs except for model fields, array handling instructions, and some visibility modifiers.

Second, we also showed that it is possible to achieve nearly preservation of proof obligations for the
chosen language subset, which means that translating a proof from source code to bytecode is feasible.
This is done by generating structurally identical verification conditions on source and bytecode that only
differ in minor aspects like variable names or the change of boolean variables on source code to integer
variables on bytecode. The proofs for the VCs on source and bytecode therefore are very similar and can
be transformed from one to the other. This part sets the important theoretical foundations for the proof
transformer implementation and shows that the whole idea of proof-transforming compilation is effectively
doable for a realistic language subset.

The architecture of the proof-transforming compiler has been chosen so that the trusted code base is as
small as possible. No part of the tool-chain needs to be trusted but only Coq as proof checker and Bicolano
as the JVM model.

With the MOBIUS base logic in mind, we also succeeded to define a proof transformer that uses a
Hoare logic. The main difficulty is that the proof contains the structure of the program and, therefore, the
translation is more complex. Still, we could prove that the transformed proof is correct if the original proof
is correct.

Future work: The main work for the next part of Task 4.4 will consist of the implementation of the proof
transformer, for which we already set the theoretical foundations. Another important task is the extension
of the proof-transforming compiler to work with optimizations on bytecode. The key idea is to first use the
non-optimizing proof-transforming compiler and then optimize the resulting bytecode along with rewriting
the proof such that it still holds for the optimized version.

86

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

8.2 Type-preserving compilation

The focus of the type-preserving compilation chapter of this deliverable is on checking that a program is
noninterferent with respect to a given labeling—that is, controlling fine-grained flows within a program. The
chapter follows a long line of work in this area and makes significant progress by showing a formal relation
between typability at source code, and bytecode verification for an extended bytecode verifier that enforces
noninterference.

In fact, we obtained this relation by deriving the typing systems for source code from the bytecode
system. First, we establish a correspondence between regions in source code and regions in bytecode. Then
we obtain constraints on a security environment for source fragment c, in terms of regions, by combining
the constraints from the bytecode rules as applied to the compilation of c. Next, we formulate high level
judgements and a connection between them and the security environment. Finally, this connection is used to
obtain a high level rule for each source code construct, using the constraints in the construct’s intermediate
rule and the definition of regions for source code.

We have solved the problem of connecting control dependence between source and target language—
even reducing control dependence to an inductive property amenable to machine verification—and we are
confident that our approach is robust and can be adapted to more sophisticated settings, including richer
languages, more sophisticated policies, and optimizing compilers.

Future work: The work on type-preserving compilation is going to be extended in two directions. On the
one hand, the concept of type preserving compilation is going to be extended to distributed programs. On
the other hand, we will study preservation of information-flow types in optimizations, similar to our work
on transforming proofs in optimizations.

87

Bibliography

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the Association of Computing Machinery,
46(5):749–786, September 1999.

[2] A. Banerjee and D. Naumann. Stack-based access control for secure information flow. Journal of
Functional Programming, 15:131–177, March 2005. Special Issue on Language-Based Security.

[3] A. Banerjee and D. A. Naumann. History-based access control and secure information flow. In
G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Proceedings of CASSIS’04,
volume 3362 of Lecture Notes in Computer Science, pages 27–48. Springer-Verlag, 2004.

[4] F. Y. Bannwart and P. Müller. A program logic for bytecode. Electronic Notes in Theoretical Computer
Science, 141:255–273, 2005.

[5] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet, M. Pavlova, and A. Requet.
JACK: A tool for validation of security and behaviour of Java applications. In Formal Methods for
Components and Objects: Revised Lectures from the 5th International Symposium FMCO 2006, number
4709 in Lecture Notes in Computer Science, pages 152–174. Springer-Verlag, 2007.

[6] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference Java bytecode verifier. In
Programming Languages and Systems: Proceedings of the 16th European Symposium on Programming,
ESOP 2007, number 4421 in Lecture Notes in Computer Science, pages 125–140. Springer-Verlag, 2007.

[7] G. Barthe and T. Rezk. Non-interference for a JVM-like language. In M. Fähndrich, editor, Types in
Language Design and Implementation, pages 103–112. ACM Press, 2005.

[8] G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation. In T. Dimitrakos,
F. Martinelli, P. Ryan, and S. Schneider, editors, Workshop on Formal Aspects in Security and Trust,
number 3866 in Lecture Notes in Computer Science, pages 112–126. Springer-Verlag, 2005.

[9] G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems. In Theoretical
Computer Science, volume 281, pages 109–130, 2002.

[10] D. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java and JML: Progress and issues in building
and using ESC/Java2 and a report on a case study involving the use of ESC/Java2 to verify portions
of an internet voting tally system. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean,
editors, Construction and Analysis of Safe, Secure and Interoperable Smart Devices: Proceedings of
the International Workshop CASSIS 2004, volume 3362 of Lecture Notes in Computer Science, pages
108–128. Springer-Verlag, 2005.

[11] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying compiler for Java. In
Programming Languages Design and Implementation, volume 35 of ACM Sigplan Notices, pages 95–107.
ACM Press, June 2000.

[12] Á. Darvas and P. Müller. Formal encoding of JML level 0 specifications in jive. Technical report, ETH
Zurich, 2007. Annual Report of the Chair of Software Engineering.

88

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

[13] K. K. Dhara and G. T. Leavens. Weak behavioral subtyping for types with mutable objects. In
S. Brookes, M. Main, A. Melton, and M. Mislove, editors, Mathematical Foundations of Programming
Semantics, Eleventh Annual Conference, volume 1 of Electronic Notes in Theoretical Computer Science.
Elsevier, 1995. Available from http://www.sciencedirect.com/science/journal/15710661.

[14] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of Object Technology,
4(8):5–32, October 2005.

[15] Eclipse website. www. See http://www.eclipse.org/.

[16] ESC/Java2 website. www. See http://secure.ucd.ie/products/opensource/ESCJava2.

[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In Programming Languages Design and Implementation, volume 37, pages 234–245,
June 2002.

[18] C. Hankin, F. Nielson, and H. R. Nielson. Principles of Program Analysis. Springer-Verlag, 2005.
Second Ed.

[19] Jack website. www. See http://www-sop.inria.fr/everest/soft/Jack/jack.html.

[20] G. T. Leavens and K. K. Dhara. Concepts of behavioral subtyping and a sketch of their extension to
component-based systems. pages 113–135, 2000.

[21] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, and J. Kiniry. JML Reference Manual,
July 2005. In Progress. Department of Computer Science, Iowa State University. Available from http:

//www.jmlspecs.org.

[22] MOBIUS Consortium. Deliverable 2.1: Intermediate report on type systems, 2006. Available online
from http://mobius.inria.fr.

[23] MOBIUS Consortium. Deliverable 3.1: Bytecode specification language and program logic, 2006. Avail-
able online from http://mobius.inria.fr.

[24] MOBIUS Consortium. Deliverable 4.2: Certificates, 2007. Available online from http://mobius.inria.

fr.

[25] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language. ACM
Transactions on Programming Languages and Systems, 21(3):527–568, 1999. Expanded version of a
paper presented at POPL 1998.

[26] P. Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture
Notes in Computer Science. Springer-Verlag, 2002.

[27] P. Müller and M. Nordio. Proof-transforming compilation of programs with abrupt termination. Tech-
nical Report 565, ETH Zurich, 2007.

[28] P. Müller, A. Poetzsch-Heffter, and G. T. Leavens. Modular invariants for layered object structures.
Science of Computer Programming, 62:253–286, 2006.

[29] A. C. Myers. JFlow: Practical mostly-static information flow control. In Principles of Programming
Languages, pages 228–241. ACM Press, 1999. Ongoing development at http://www.cs.cornell.edu/
jif/.

[30] G. C. Necula. Proof-carrying code. In Principles of Programming Languages, pages 106–119, New York,
NY, USA, 1997. ACM Press.

89

http://www.sciencedirect.com/science/journal/15710661
http://www.eclipse.org/
http://secure.ucd.ie/products/opensource/ESCJava2
http://www-sop.inria.fr/everest/soft/Jack/jack.html
http://www.jmlspecs.org
http://www.jmlspecs.org
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://mobius.inria.fr
http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/

MOBIUS Deliverable D4.3 PROOF-TRANSFORMING COMPILER

[31] G. C. Necula and P. Lee. The design and implementation of a certifying compiler. In Programming
Languages Design and Implementation, volume 33, pages 333–344, New York, NY, USA, 1998. ACM
Press.

[32] D. Pichardie. Bicolano – Byte Code Language in Coq. http://mobius.inria.fr/bicolano. Summary
appears in [23], 2006.

[33] A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented languages. In D. Gries
and W. De Roever, editors, Programming Concepts and Methods (PROCOMET), pages 404–423, 1998.

[34] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra, editor,
European Symposium on Programming Languages and Systems (ESOP’99), volume 1576 of Lecture
Notes in Computer Science, pages 162–176. Springer-Verlag, 1999.

[35] A. Poetzsch-Heffter and N. Rauch. Soundness and relative completeness of a programming logic for a
sequential Java subset. Technical report, Technische Universität Kaiserlautern, 2004.

[36] ProverEditor website. www. See http://provereditor.gforge.inria.fr.

[37] A. D. Raghavan and G. T. Leavens. Desugaring JML method specifications. Technical Report TR
#00-03e, Department of Computer Science, Iowa State University, 2000. Current revision from May
2005.

[38] V. P. Ranganath, T. Amtoft, A. Banerjee, M. B. Dwyer, and J. Hatcliff. A new foundation for control-
dependence and slicing for modern program structures. In Mooly Sagiv, editor, European Symposium
on Programming, pages 77–93, 2005.

[39] A. Sabelfeld and D. Sands. Dimensions and principles of declassification. In Computer Security Foun-
dations Workshop, pages 255–269. IEEE Press, 2005.

[40] R.F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine—Definition, Verification,
Validation. Springer-Verlag, 2001.

90

http://mobius.inria.fr/bicolano
http://provereditor.gforge.inria.fr

	1 Introduction
	1.1 Motivation
	1.2 Architecture of the proof-transforming compiler
	1.3 Outline of the deliverable

	2 Source and bytecode language
	2.1 Simple imperative languages
	2.1.1 Source language: JAVAB
	2.1.2 Bytecode language: JVMB
	2.1.3 Compilation

	2.2 Adding objects and methods
	2.2.1 Source language: JAVAO
	2.2.2 Bytecode language: JVMO
	2.2.3 Compilation

	2.3 Adding exceptions
	2.3.1 Source language: JAVAE
	2.3.2 Bytecode language
	2.3.3 Compiler from JAVAE to JVME

	3 Translation from JML to FOL specifications
	3.1 Overview
	3.1.1 Routine annotations
	3.1.2 Local annotations

	3.2 Translation of JML
	3.2.1 JML type specifications
	3.2.2 JML Routine specifications
	3.2.3 JML expressions
	3.2.4 JML statements

	4 Preservation of proof obligations using a VCGen
	4.1 Preservation of proof obligations for simple imperative programs
	4.1.1 Verification condition generator for JAVAB
	4.1.2 The verification condition generator for JVMB
	4.1.3 Relation between the verification calculi for JAVAB and JVMB

	4.2 Preservation of proof obligations for objects and methods
	4.2.1 Method specification and behavior subtyping
	4.2.2 Verification condition generator for JAVAO
	4.2.3 Verification conditions generator for JVMO
	4.2.4 Relation between the verification calculi for JAVAO and JVMO

	4.3 Preservation of proof obligations for exceptions
	4.3.1 Verification conditions for JAVAE
	4.3.2 Verification conditions for JVME
	4.3.3 Relation between the verification calculi for JAVAE and JVME

	5 Proof-transforming compilation for programs with abrupt termination
	5.1 Source language and logic
	5.1.1 Method and statement specifications
	5.1.2 Rules

	5.2 Bytecode language and logic
	5.2.1 Method and Instruction Specifications
	5.2.2 Rules

	5.3 Proof Translation
	5.3.1 Compositional Statement
	5.3.2 While Statement
	5.3.3 Try-Finally Statement
	5.3.4 Break Statement

	5.4 Example
	5.5 Soundness Theorem

	6 Implementation issues
	6.1 Architecture refinement
	6.1.1 Mobius PVE
	6.1.2 Concrete architecture of the direct VCGen

	6.2 Source Logic for the PTC
	6.2.1 Pre-processing
	6.2.2 Verification conditions generation
	6.2.3 A backend to Bicolano

	7 Type-preserving compilation for a type system for secure information flow
	7.1 Control dependence regions
	7.2 High level security type system
	7.3 Intermediate type system for source code
	7.4 Connecting the high level and intermediate type systems
	7.5 Target language
	7.6 Compilation.
	7.7 Connecting the intermediate and target type systems
	7.8 Discussion

	8 Conclusions and future work
	8.1 Proof-transforming compilation
	8.2 Type-preserving compilation

