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Executive Summary:
Report on proof transforming compiler

This document summarises Deliverable 4.6 of project FP6-015905 (MOBIUS), co-funded by the European
Commission within the Sixth Framework Programme. Full information on this project, including the con-
tents of this deliverable, is available online at http://mobius.inria.fr/.

The deliverable is the final report on Task 4.4 on proof-transforming compilation. Prior work on this
task was reported in Deliverables 4.3 [30] and 4.5 [31].

A proof-transforming compiler is a tool for the code producer that not only compiles a given source pro-
gram, but also transforms a given proof of it (obtained, e.g., by interactive theorem proving) automatically
into a proof of the compiled form. This is a lifting of the idea of a certified compiler, which automatically
produces certificate of a program’s conformance to some fixed safety policy, to situations where we are also
interested in functional correctness or in general conformance to freely chosen policies.

The two previous deliverables treated both proof-transforming non-optimizing compilation from Java to
JVML, aiming at a full-scale implementation [30], and optimizations on a more exploratory level [31].

This deliverable presents complementing work on proof and type transformation along both lines. This in-
cludes a formalized semantics of Java+JML in Coq (completing the implementation of the proof-transforming
compiler for the non-optimizing case) and a case study of weakest precondition (wp) proof preservation for
non-optimizing Java to JVML compilation, but also a new general Hoare proof transformability result for
analysis-based optimizations, a wp proof transformation prototype for a simple optimizing compiler, a study
of a big-step semantics and Hoare logic for reasoning about observable behavior of potentially nonterminating
programs.

We also report on generation and preservation of linear and session types in compilation from a high-level
concurrent language to binary code for distributed memory CMP.

3



Contents

1 Introduction 5

2 Semantics of JML in Coq 7
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Case study of the proof-transforming compiler 10
3.1 The mechanism of the proof-transforming compiler . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Invoking the PTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Proving generated goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 A simple example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 First order logic annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.3 Proving arithmetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.4 Proving properties in the presence of heap changes . . . . . . . . . . . . . . . . . . . . 14

3.4 Conclusions from the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Proof transformability from program transformation soundness 17

5 A proof-transformation prototype 19

6 A trace-based coinductive
big-step semantics and Hoare logic of nontermination 23

7 Type-preserving compilations for distributed and communications programming 25
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.2.1 Streaming example and processes with session types . . . . . . . . . . . . . . . . . . . 26
7.2.2 Compiling typed processes to the low-level language . . . . . . . . . . . . . . . . . . . 26

7.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Conclusions 29

4



Chapter 1

Introduction

A proof-transforming compiler is a tool for the code producer in PCC that not only compiles a given
source program, but also transforms a given proof of it (obtained, e.g., by interactive theorem proving).
This is a lifting of the idea of certifying or proof-generating compiler, which automatically produces of a
program’s conformance to some fixed safety, to situations where we concerned with functional correctness
or conformance to freely chosen policies. A variation on the theme is type-generating or type-transforming
compilation.

In Mobius, proof-transforming compilation was the subject of Task 4.4. Prior work on this task led to
Deliverables 4.3 [30] and 4.5 [31], discussing non-optimizing compilation resp. compilation with optimiza-
tions.

In this final deliverable on the task, we complement the results of the two earlier deliverables.

Along the line of non-optimizing compilation, we complete the work on a full-scale non-optimizing
Java+JML to JVML compiler by providing a Coq formalization of Java+JML and reporting a case study
of proof-transforming (proof-preserving compilation) based on preservation of VCGen proof obligations in
non-optimizing compilation. Concerning program optimizations, we strentghen our earlier results to cover
a wide range of optimizations systematically and provide prototype implementations.

We also report on a trace-based coinductive semantics and a corresponding logic, which we intend
to use in the future to obtain optimization soundness and proof transformability results accounting more
adequately for nonterminating programs via observation of intermediate states. We also show how generation
and preservation of linear and session types to obtain safety guarantees of compiled distributed, concurrent
code.

The deliverable is based on four published papers and technical reports [26, 2, 35, 41], several rapers in
the process of publication and several pieces of software, produced by the partners that contributed to the
task.

The report is organized as follows. In Chapter 2, which based on [26], we report on a Coq formalization
of the semantics of Java and the JML annotation language following the design of Bicolano, the Coq
formalization of the JVM bytecode language semantics.

Chapter 3 presents a case study of weakest precondition proof transformation (preservation) for non-
optimizing Java to JVML compilation, relying on the Coq formalization of Java+JML of Chapter 2 and
Bicolano. The verification conditions generated by the VCGens for source programs and compiled code are
essentially identical, so proofs for the verification conditions for a source program also prove the compiled
code modulo minor modifications.

In Chapter 4, we turn to proof transformation for program optimizations and describe a generalization
of our earlier results on the topic. We prove that relational program optimization soundness implies (and is
in fact equivalent) to Hoare proof transformability for any analysis-based optimization described as a type
system and admitting a relational interpretation of types.

Chapter 5 describes a prototype certificate translator for optimizing compilation, elaborating and imple-
menting the method reported in [2]. It handles a class of optimizations for which assertion transformation
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amounts to strengthening, such as constant propagation and common subexpression elimination.
Chapter 6, based on citeNakataU09 and a paper in progress, discusses work that paves way for scaling

proof-transforming compilation for finer semantics and logics. We present a novel coinductive big-step
semantics for nontermination with observable intermediate states and a matching Hoare logic. The aim is
to obtain a framework for proving optimizations sound and Hoare proofs transformable meaningfully also
for nonterminating programs. Under finer semantics, optimization soundness is more than preserving just
the return values of programs.

Chapter 7 summarizes the paper [41] by describing an approach to generation and preservation of linear
and session types to accompany compilation from a high-level distributed and concurrent language through
typed π-calculus to low-level code operating on distributed memory.

In the final chapter, Chapter 8, we conclude.
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Chapter 2

Semantics of JML in Coq

2.1 Motivation

JML is quite popular and there are many tools that use the language for different purposes, be it a static
checker, a verification tool, or a unit test generator (Place citations here). Each tool supports a different
subset of JML, and, in some cases, interpret the semantics as defined in the reference manual [27] slightly
differently. The reason for the ambiguity is that the reference manual is written in English, and it iss not
decently possible to exactly describe a semantics of a computer language in a natural language only. We
need to get help from mathematics, where it is possible to give precise and unambiguous definitions. That’s
were we want to go.

We are highlighting three reasons for formally defining a language like JML in a theorem prover.

A better architecture of the Proof Transforming Compiler (PTC) In the current architecture
of the PTC [30], we translate the JML specifications to first order logic formulas for given program points
(the annotation table). The whole verification environment then uses this FOL terms to verify a program
and to produce a certificate. For a human being, it is quite hard to decide if such a formula corresponds to
the original JML specifications or not. So, no matter how trustfully the verification environment is, we still
need to believe that the FOL terms that we are proving against are what we specified.

One way to believe the specification is to look inside the JML to FOL translator and decide if the
translation is implemented correctly—according to the reference manual. This is, as discussed already hard
to decide. A better way is to get rid of the JML to FOL translator at all. Instead of using FOL terms in
Coq to specify a program, we directly use JML. For this we need to embed JML in Coq. Embedding JML
in Coq means to define a ADT for the language and give each construct in the ADT a meaning. In Coq,
you can do this in a quite elegant way. The advantage to the JML to FOL transformer is that semantics is
clearly visible and not hidden in some implementation tricks.

Eliminate uncertainty As discussed already, a reference manual in plain English leads to open questions.
When defining the semantics of JML, one always needs to specify all cases and exactly describe the behavior
in the mathematical model. There is no room for under-specifying the behavior of a language feature. The
goal is that the formal semantics is as readable as an English text, but much more precise. We did not find a
large set of inconsistencies or mistakes in the reference manual, however, many aspects are just not defined
in the reference manual or just still under discussion. It is good to have a clear view on what is defined and
what not.

In the formalization, it is also clear where the definition for a construct starts and where it stops. In an
English text, you potentially never now if there is some more behavior or a clarification defined in another
chapter because some aspects overlap.
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A stable foundation for future work We hope to produce a foundation for a lot of future work that
build on top of the formalized semantics of JML. Like in the case of Bicolano, we provide some hooks to the
outside in order to work with the embedded JML.

2.2 Approach

In [26], we describe a formal definition of JML in the Coq proof assistant in details. Providing a formalization
of JML in Coq includes:

• Definition of the domain of the language, like a heap model, numbers, or the definition of a method
frame

• Definition of the syntax of Java and JML as abstract data types

• Definition of the semantics of JML constructs

• An implementation of all abstract data types mentioned above

• A translation frontend that embeds JML annotated Java programs in Coq data types

• An operational semantics for Java

In the following, we present the most important design decisions.

Build on top of Bicolano As there are many parallel aspects, we base our work on Bicolano [29] , the
bytecode language definition in Coq, and adapt it in order to represent the Java source language and JML
in Coq. We can keep quite some parts of Bicolano domain definition without changes, like the heap model
or the definition of finite length integer numbers, but have to replace the definition of the syntax by its
source code counterpart and have to write the semantics of JML constructs from scratch. Our motivation is
to stay as close to Bicolano as possible, in order to enable interoperability between the two formalizations.

Only do what is really necessary We defined a ‘basic’ language subset that contains everything but
pure syntactic sugar, and there is a lot of syntactic sugar in JML. Many constructs can be syntactically trans-
formed into other constructs without loosing much readability, and without blowing up the specifications a
lot.For this basic subset, we define the semantics in the theorem prover.

We then define the full (in the report, we call it sometimes ‘extended’ syntax) and provide syntactic
rewriting functions within Coq. Mostly, the rewritings are pretty trivial, for instance the elimination of
non_null in parameters by adding to all requires clauses the condition that the parameter is not null.

Using this two steps for the formalization gives us the advantage, that the semantics for JML is pretty
small and readable, and many issues can already be dealt with in the syntactic rewritings from the extended
syntax to the basic syntax. Of course, again, this rewritings are kept readable, in order to ensure that one
can verify that the rewriting is done correctly.

Use only one state variable to represent them all A program state usually contains the current
heap and frame. The frame contains the parameters and local variables, the program counter and similar
information. If you use a specification language, you want to be able to refer to states other than the current
state in your program. In many approaches, several state variables show up in the formalizations. For JML,
this is impractical as we cannot limit the number of states that the specification has access to. It is possible
to refer to a value of an expression at any labeled location in a method. That is why we store the state
for all labeled instructions in a method in its frame. As we are living in Coq it is actually possible to have
several copies of the whole state in a method frame.

The big advantage is that it is quite elegant to access a variable in an arbitrary (accessible) state. The
semantics is clear and the signatures of our definitions stay small.
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Heavily use notations in Coq One big motivation for our work is to embed the JML syntax directly in
Coq so that we get rid of the cryptic FOL terms that cannot be related back to JML specifications. In order
to really play that card, it is very important to have an embedding of JML in Coq that can be understood
by anyone that understands JML specifications. The customer needs to be able to verify that the JML in
Coq is exactly what we specified in the Java file.

That is why we spent effort in defining a large set of notations (extensions to the Coq parser) that allow
us to be syntactically very close to JML. A deep embedded JML specification in Coq looks a bit strange,
yet, is still understandable.

Having a form that closely resembles real JML contracts also help us writing a really trivial translation
frontend that automatically generates deep embedded JML specifications for a given JML specified Java
program.

Use an annotation table interface The current tool chain uses an annotation table to access the
annotations for a given program point. In our formalization, we provide the same interface so that it can
be integrated in the PTC with minimal effort.

2.3 Achievements

We managed to provide a formalization of a large part of JML in Coq. Our work currently covers the
following aspects of the formalization.

• We defined the syntax for nearly all JML constructs that are described in the reference manual. We
omitted constructs that only deals with floating point number as this is also not supported in Bicolano.

• We currently cover the semantics of JML level 0 and still add semantic definitions to more constructs.

• We provide a syntactic rewriting of the sugared JML constructs into more basic constructs and give
an implementation for all JML abstract data types.

• We provide a translation frontend that embedds a given JML annotated Java program in Coq.

9



Chapter 3

Case study of the proof-transforming
compiler

In this chapter, we report on a case study of the (non-optimizing) proof-transforming compiler (PTC). We
quickly introduce the mechanism that the PTC introduces to generate bytecode certificates for source code
programs and proofs. We then illustrate how proofs can be done in the PTC. We conclude the chapter
with an evaluation of the proof-transforming compiler and suggestions for further improvement based on
the experience from the case study.

3.1 The mechanism of the proof-transforming compiler

The PTC is described in chapter 3 and 6 of [30]. The main concept is to avoid the transformation of proofs
at all. This is achieved by defining verification condition generators (VCGens) on source and bytecode level
that produce the same proof obligations. The theory of preservation of proof obligations is described in [3]
and chapter 4 of [30].

So, the name “proof-transforming compiler” is actually misleading as there is no (relevant) transformation
of proofs involved in the process. The only differences between the verification conditions on source code and
their counterpart on bytecode is the naming of variables and the absence of the boolean type on bytecode.

Figure 3.1 shows the different components of the proof-transforming compiler. In a first step, the PTC
transforms the JML annotations into first order logic terms that are accessible as pre- and postconditions, as
well as object invariants, local assertions and loop invariants. Bico+ generates Coq versions of the first order
logic annotations and embeds the bytecode program in bicolano. The source and bytecode VCGens then use
the source and the bytecode program, respectively, and the same annotations in Coq to generate equivalent
(and structurally identical) verification conditions. By discharging the proof obligations on source level
and with an equivalence lemma that can be proven automatically, we can prove the bytecode verification
conditions.

Java Source,
Code Specs (JML)

Java Bytecode

ESC/Java2 AST,
FOL Annotations

Source
VCGen

Bytecode
VCGen (Coq)

Verification
Conditions (Coq)

ESC/Java2 Frontend,
JML to FOL Transl.

javac

Bico+

Bicolano
(Coq)

FOL Annotations
(Coq)

Verification
Conditions (Coq)

Equivalence

Figure 3.1: Overview of the architecture. We depict data by rectangular boxes and computations by rounded
boxes.
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3.2 Invoking the PTC

Since its delta release, the Mobius PVE features the proof-transforming compiler. The corresponding plugin
is called DirectVCGen. It offers a tool bar button to generate a directory called ‘mobius’ in the project
directory that contains all necessary files for manually proving that the program fulfills its specification:

• A background formalization containing type informations and member signatures of predefined Java
Types like ‘java.lang.Object’, user-tactics to reduce the manual proving effort.

• A directory ‘Formalisation’ containing a copy of the virtual machine formalization (bicolano). This is
not generated, but just extracted from an archive of the formalization that is also shipped with the
Mobius PVE.

• A directory ‘classes’ that contains the following files for each class: class type.v that defines the
type information of the program, class signatures.v that contains the signature definitions of all class
members, class annotations.v that contains all first order logic annotations for the given class and
class.v that contains the coq embedded bytecode of all methods in the class.

• A directory ‘vcs’ that contains the generated verification conditions for the given class. There are
subdirectories for each method of the class, and each subdirectory contains one or more goals to prove
for the method, the source VCs, the bytecode VCs and an equivalence lemma that should be provable
automatically.

3.3 Proving generated goals

We evaluated the feasibility to prove generated goals for some simple programs. In the following, we present
the proof sketch for proving arithmetic properties and for properties that involve heap accesses.

3.3.1 A simple example

We use the following trivial program to illustrate the process of proving goals in the PTC. We choose two
different implementations to highlight the two aspects that we present in this summary.

c l a s s Test {
// @ensure s \ r e s u l t == i ∗ 2 ;
i n t tw i c e ( i n t i ) { . . . }

}

3.3.2 First order logic annotations

Our small example contains a minimalistic JML annotation that states that for any i, the method twice

returns double the value of i.

Although the annotation is very small, the generated first order logic formulas are considerably bigger. In
the following listing, we show only the interesting (non-trivial) parts of the annotations that are generated.
The specifications define the precondition and the postcondition of the method. The precondition states that
this is a subtype of Test and that the invariants of all alive objects hold. The postcondition makes a case
distinction on all possible constructors of ReturnVal. In the case of normal termination, the specification
says that all invariants have to hold again and that the result is twice the input parameter. In case of
exceptional termination, the specification says that no exception can be thrown (by stating false as goal)
and that all invariants have to hold. As Coq functions are total, we also have to define the non-wellformed
case Normal None, which stands for normal termination of the method, but without a return value, which
is not possible.
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Module twice.

Definition mk_pre :=

fun (heap: Heap.t) (this: value) (i_4_23: Int.t) ⇒
((assign_compatible p heap this (ReferenceType (ClassType TestType.name)))

∧ (∀ (r0: Location) (x1:type), (((isAlive heap r0)

∧ (assign_compatible p heap r0 x1)) → (inv heap r0 x1)))).

Definition mk_post :=

fun (t:ReturnVal) (_pre_heap:Heap.t) (heap:Heap.t) (this:value) (i_4_23:Int.t) ⇒
match t with

| Normal (Some _result) ⇒ ((Is_true true)

∧ ((∀ (r1: Location) (x2:type), (((isAlive heap r1)

∧ (assign_compatible p heap r1 x2)) → (inv heap r1 x2)))

∧ ((assign_compatible p heap this (ReferenceType (ClassType TestType.name)))

→ ((vInt _result) = (Int.mul i_4_23 (Int.const (2)))))))

| Normal None ⇒ True

| Exception x0 ⇒
((((assign_compatible p heap (Ref x0) (ReferenceType

(ClassType java_lang_ExceptionType.name)))

→ ((assign_compatible p heap this (ReferenceType (ClassType TestType.name)))

→ (Is_true false)))

∧ (∀ (r2: Location) (x3:type), (((isAlive heap r2)

∧ (assign_compatible p heap r2 x3)) → (inv heap r2 x3))))

∧ (Is_true true))

end.

End twice.

3.3.3 Proving arithmetic properties

To focus on the task, we choose the following implementation for twice. It is not interesting to introduce
local variables as those disappear in the generated proof obligations anyway.

// @ensure s \ r e s u l t == i ∗ 2 ;
i n t tw i c e ( i n t i ) {

return i + i ;
}

For this method, we get one file goal1.v that contains one subgoal. Please note that all Coq goals in
the following are simplified to only show the interesting parts. What we have to prove here, is that the
precondition of twice implies the postcondition, where the return value is the addition of twice the input
parameter. You can also see that the heap stays unchanged. In the postcondition, we feed the heap0 to
both _pre_heap and heap:

1 subgoal

...
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______________________________________(1/1)

∀ (this0 : value) (i_3_24 : Int.t) (heap0 : Heap.t),

TestAnnotations.twice.mk_pre heap0 this0 i_3_24 →
TestAnnotations.twice.mk_post

(Normal (Some (Num (I (Int.add i_3_24 i_3_24))))) heap0 heap0 this0 i_3_24

The DirectVCGen provides a set of nice user-tactics, that - in most cases - simplify the goal considerably.
By default, the first proof steps are already provided:

nintros; repeat (split; nintros); cleanstart.

Applying this set of tactics lead to two subgoals:

2 subgoals

...

H : TestAnnotations.twice.mk_pre h1 this0 i_3_0

H0 : isAlive h1 r1 ∧ assign_compatible p h1 r1 x2

...

______________________________________(1/2)

inv h1 r1 x2

______________________________________(2/2)

Int.add i_3_0 i_3_0 = Int.mul i_3_0 2

The first goal origins from the part of the postcondition that states that all invariants hold in the post-
state. This is simple to prove, as we didn’t change the heap in the method body. We just have to extract
that information form the precondition in hypothesis H

The second goal is the actual arithmetics that we are interested in. We have to prove that the addition of
the same number is the same as the multiplication of that number by two in Java arithmetics with overflow.
For this, we do not need any of the hypotheses that we get from the goal, but we need the formalization of
numbers in bicolano. In there, we can find the data types of integer operations. We show the addition and
the definition of smod below. smod is the operation that deals with overflow as specified in the Java virtual
machine specifications. The addition is axiomatized by add_prop. The function toZ yields a Coq number
of type Z for a given Java integer.

Definition smod (x:Z) : Z :=

let z := x mod base in

match Zcompare z half_base with

| Lt ⇒ z

| _ ⇒ z - base

end.

Parameter add : t → t → t.

Parameter add_prop : ∀ i1 i2,

toZ (add i1 i2)= smod (toZ i1 + toZ i2).

13
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Unfortunately, this axiomatization for addition does not help us to continue the proof, as we cannot
match or rewrite the term from our goal Int.add i_3_0 i_3_0 with that axiom. Therefore, we changed
the formalization of numbers in bicolano by defining the function add instead of axiomatizing it. In the
definition below, const yields a Java integer number for a given Coq number, and is axiomatized for the case
that the number is actually within the allowed range for Java integers. So we do not change the meaning of
add anyhow, we just write it down differently.

Definition add (i1 : t) (i2 : t) : t := const (smod (toZ i1 + toZ i2)).

With this changed way of defining Java integer operations, we can now prove our goal. We begin by
unfolding all arithmetic operators, which is now possible. We get the following goal:

Int.smod (i_3_0 + i_3_0) = Int.smod (i_3_0 * 2)

We now add an assertion that states the desired property for Coq numbers: ∀ i : Z ,i + i = i * 2.
We can prove this hypothesis automatically in Coq and use it to rewrite our goal so that we get the same
term on both sides of the equality.

The following listing shows the full prove script of the subgoal. At some point, we tell Coq to print all
coercions (implicit conversion functions from one type to another), because it helps to understand which
rewritings need to be done. From the axiomatization of the function const, we get a new goal to prove that
2 is in the range of integer numbers. This prove can be done by actually computing the value of the type
which leads to several cases, that are either trivially true or can be proven by pointing out contradictory
hypotheses—we think that this kind of proofs could be further simplified by writing user tactics that deal
with such basic problems.

(* Goal: Int.add i_3_0 i_3_0 = Int.mul i_3_0 2 *)

unfold Int.add, Int.mul.

cut (∀ i : Z ,i + i = i * 2).

intro Hcut.

Set Printing Coercions.

rewrite Hcut.

rewrite Int.const_prop.

reflexivity.

(* Goal: Int.range 2. *)

compute ; split ;

[ intro Hfalse ; discriminate Hfalse

| reflexivity ].

(* Goal: ∀ i : Z, i + i = i * 2. *)

auto with zarith.

3.3.4 Proving properties in the presence of heap changes

To focus on heap changes only, we choose the following implementation for method twice:

c l a s s Test {
i n t f ;
// @ensure s \ r e s u l t == i ∗ 2 ;
i n t tw i c e ( i n t i ) {

14
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t h i s . f = i ∗2 ;
return th i s . f ;

}
}

For this, the DirectVCGen generates one file goal1.v that contains 6 subgoals, as many things can
potentially go wrong here. In the following, we focus on 3 subgoals that are intersting.

Our specification of the postcondition says that there should be no exception. Potentially, a field update
leads to a null-pointer exception and that is what see in the following goal. It’s trivial to prove, as we always
know that this cannot be null. So we just have to point out the contradiction between H1 and H4.

1 subgoal

...

H1 : this0 <> Null

...

H4 : this0 = Null

...

______________________________________(1/1)

Is_true false

We also have to prove as another subgoal that all invariants hold in the exceptional case. Again, this is
simple to prove by pointing out the contradiction in the hypotheses.

We now look at the interesting case, which says that saving i_6_0 * 2 in f and then accessing this value
in the new heap still yields i_6_0 * 2.

...

______________________________________(1/1)

vInt

(Num

(I

(vInt

(do_hget

(Heap.update h1

(Heap.DynamicField this0 TestSignature.fFieldSignature)

(Num (I (Int.mul i_6_0 2))))

(Heap.DynamicField this0 TestSignature.fFieldSignature))))) =

Int.mul i_6_0 2

We can rewrite the goal with the heap axiom Heap.get_update_same which states exactly what we
need, i.e., that if we update a heap location by some value and access the same location in the new heap, we
get the same value back. We get two subgoals, the first stating our property, and the second stating that
accessing f on this is possible.

...

H: assign_compatible p h1 this0 (ReferenceType (ClassType TestType.name))

...

______________________________________(1/2)
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vInt (Num (I (vInt (Num (I (Int.mul i_6_0 2)))))) = Int.mul i_6_0 2

______________________________________(2/2)

Heap.Compat h1 (Heap.DynamicField this0 TestSignature.fFieldSignature)

The first subgoal is can be solved automatically by Coq. The second subgoal is also very simple, but
produces another three subgoals to prove, as assign_compatible has three inductive definitions. Two of
them can be proven by contradiction (for this0 = Null and for the case that the receiver is an arrayi-type.
So we get to the last goal to prove. We apply the right constructor of the inductive type Heap.Compat to
exactly get H8 as goal.

1 subgoal

...

cn : ClassName

...

H8 : Heap.typeof h1 loc = Some (Heap.LocationObject cn)

...

______________________________________(1/1)

Heap.Compat h1 (Heap.DynamicField loc TestSignature.fFieldSignature)

3.4 Conclusions from the case study

As we wanted to evaluate the proof-transforming compiler and not the user who needs to discharge the proof
obligations, we have chosen to use several small examples instead of a large or sophisticated example. By
this, we were able to test different aspects of the PTC without spending a large amount of time in doing
proofs.

In our experiments, we encountered obstacles that forced us in some cases to go back and change small
parts of the underlying theory; we mentioned the unfortunate definition of integer operations in bicolano for
our purpose. Other examples are the absence of hypotheses that would help to solve a subgoal, e.g., that
this is never null. Such free invariants of a correct Java program are missing sometimes and we added
them manually to prove certain goals. However, it would be simple to add this to the verification condition
generator.

After getting rid of the issues described above, we were able to prove goal generated for source code
programs. However, we couldn’t verify the equivalence of the source and bytecode verification conditions.
We didn’t manage to prove the equivalence lemma yet, neither automatically (as planned) by predefined
tactics nor manually. With the information given, we couldn’t spot the source of the problem.

To sum up, the proof-transforming compiler combines the advantages of doing proofs on source level with
the possibility of using those proofs for bytecode certificates. Although the generated goals and annotations
look awfully complicated at first, the PTC manages to present proof obligations to the customer that can
be understood easily. The user-tactics that are shipped with the PTC do a very good job in simplifying
the goals considerably. We could also verify that the underlying formalization (bicolano) is well-designed to
prove program properties in most of the cases.
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Chapter 4

Proof transformability from program
transformation soundness

To obtain automatic proof transformations for program optimizations used in compilers, in prior work on
Mobius (Tasks 3.5 and 4.4) we have developed a type-systematic technique of specifying analysis-guided
program optimizations, enabling simple optimization soundness proofs based on relational interpretation of
the type language and automatic transformation of program proofs alongside optimization [38].

We have demonstrated this method on a number of optimizations, including classical optimizations like
dead code elimination, common subexpression elimination and partial redundancy elimination (PRE) for a
high-level language with expressions [38, 39] and some stack usage optimizations for an operand-stack based
low-level language [37]. We have also shown that type systems for analyses can be seen as applied versions
of more foundational Hoare logics [18], that the approach scales for bidirectional analyses [19], and that
not only program optimization, but also other automatic program transformations, e.g., analysis-guided
program repair, can be treated in the same way [17].

In this chapter, we report on a generalization of the above work. In a new paper, we demonstrate that
program transformation soundness implies (in fact is equivalent to) program proof transformability generally,
i.e., for any program transformation specified by a type system and any notion of of validity specified by a
relational interpretation of types.

Specifically, we state and prove our result in two forms.

The first takes a black-box view of the programming language, its big-step semantics and Hoare logic,
the program transformation type system and the relational interpretation. We assume that the Hoare
logic is sound and complete relative to the big-step semantics, but do not need to know the soundness and
completeness proofs. It turns out that soundness and completeness of the Hoare logic (alongside expressibility
of the semantic evaluation relation in the assertion language of the Hoare logic) are sufficient to conclude
that soundness of the program transformation implies program proof transformability and vice versa.

In detail, the result is as follows.

We assume we have a big-step semantics, with evaluations of the form σ
s−→ σ′, where σ, σ′ are states

(the pre- and poststate of a run of the statement) and a Hoare logic, with triples of the form {P}s{Q},
where P and Q are assertions in a signature with an extralogical constant st for the current state. We
assume that the Hoare logic is sound and complete wrt. the big-step semantics in the standard sense.

We assume we are given a type system with a program transformation component where subtyping
judgements are of the form d ≤ d′ and typing judgements for statements are of the form s : d → d′ ↪→ s∗
where d, d′ are types and s, s∗ are statements (an original statement and the corresponding transformed
statement).

We also assume we are given, for any type d, a type-indexed relation ∼d on pairs of states (of the runs
of the original and optimized statement). We assume that ∼d is expressible in the assertion language via a
predicate ∼=d. For an assertion P and type d, we define two translations P |d and P |d by P |d =df ∃w.st ∼=d

w ∧ P [w/st] and P |d =df ∃w.w ∼=d′ st ∧ P [w/st].
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We say that our program transformation is sound, if s : d → d′ ↪→ s∗ implies that the following two
conditions hold:

(i) if σ ∼d σ∗ and σ
s−→ σ′, then there exists σ′∗ such that σ′ ∼d σ

′
∗ and σ∗

s−→ σ′∗,

(ii) if σ ∼d σ∗ and σ∗
s∗−→ σ′∗, then there exists σ′ such that σ′ ∼d σ

′
∗ and σ

s−→ σ′.

We say that proofs are transformable, if s : d→ d′ ↪→ s∗ implies that the following two conditions hold:

(I) if {P}s{Q}, then {P |d}s∗{Q|d′},

(II) if {P}s∗{Q}, then {P |d}s{Q|d′}.

It turns out that program transformation soundness is equivalent to proof transformability; in fact (i)
is equivalent to (II) and (ii) to (I). The proof of uses soundness and completeness of the Hoare logic. The
right-to-left implication also hinges on the expressibility of the semantic evaluation relation.

The second result is for a partially white-box setup. We can work, e.g., with the While-language of
statements over some expression language. We assume the standard big-step semantics and Hoare logic
rules for statements. About the program transformation type system we assume standard sequence, if,
while and consequence rules (which transform the statement homomorphically); we do not restrict the
assignment rules and the rules for boolean expressions.

In this setting, program transformation soundness and proof transformability are equivalent for state-
ments, if the same holds for assignments and boolean expressions. Differently from the first, blackbox
setting, the proof of this result can be conducted by direct induction on the given Hoare logic proof or
semantic evaluation.

These results apply to and provide a unification of a wide range of program transformations with proof
transformability. In fact, they apply to all these we had previously studied on case-by-case basis. Several
variations are possible. E.g., the high-level While language can be replaced by a low-level language with
jumps; the program transformation can take programs from one language to another (with a different syntax
and a semantics over a different state space).

Both results are consequences of semantics/logic duality. It particular, it should be noted that not only
does program transformation soundness imply proof transformability, but the converse is true as well, so
the two are really two equivalent ways of stating the same property of a program transformation.

We have been developing a Coq formalization of the results.
We have also tested our approach on program analyses and optimizations we had not considered in our

earlier work, most notably points-to analysis.
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Chapter 5

A proof-transformation prototype

In this chapter, we report on a prototype implementation of certificate translation for a subset of the C
language, and on experiments with using the prototype on small to medium size examples. This work allows
us to draw for the first time some preliminary conclusions about the practicality of certificate translation. In
particular, we are able to provide a preliminary analysis of the impact of certificate translation on the size of
certificates, which is an essential metrics for Proof Carrying Code [36]. The tool implements a new method
for transforming certificates for optimizations based on arithmetic reasoning, such as constant propagation,
and common subexpression elimination. The method is simpler, in that it treats the certificate of the
original program as a black-box, whereas the previous method in [2] involved weaving certificates, using a
well-founded induction principle on the control flow graph of the program. In comparison, the new method
also yields smaller certificates, and thus contributes to the practicality of certificate translation. The tool is
available at http://mobius.inria.fr/CertificateTranslation.

Example 1 (Matrix Multiplication: source code) The code given in Figure 5.1 computes the multi-
plication of two matrices a and b, and stores it in c. Matrices are encoded as uni-dimensional arrays; that
is, if a m×n matrix A is represented by the uni-dimensional array a of size mn, we encode the array element
Ai,j as a[i ∗ n+ j].

In order to support modular verification, the program verifier requires that procedures are annotated
with their preconditions and postconditions, and that loops are annotated with their invariants. Procedure
specifications are triples of the form 〈Pre, annot,Post〉, where Pre and Post are assertions and annot is a
partial function from program labels to assertions. Assertions are written in a language similar to (but

l1 : i := 0;
l2 : while (i < m){
l3 : j := 0;
l4 : while (j < p){
l5 : k := 0;
l6 : c[i ∗ p + j] := 0;
l7 : while (k < n){
l8 : c[i ∗ p + j] := c[i ∗ p + j] + a[i ∗ n + k] ∗ b[k ∗ p + j];
l9 : k := k + 1;

}
l10 : j := j + 1;

}
l11 : i := i + 1;

}
l12 : return 0

Figure 5.1: Source code of matrix multiplication example
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smaller than) the ACSL language used in the Frama-C project [?]; they are also allowed to refer to functions
and predicates defined in an external Coq module.

Example 2 (Matrix Multiplication: specification) The specification for matrix multiplication is given
by the triple 〈Pre, annot,Post〉 where:

Pre
.
= 0 < m ∧ 0 < n ∧ 0 < p

annot(l2)
.
= ∀i, j. ((0 ≤ i < i)⇒ (0 ≤ j < p)⇒ c[i, j] = (a× b)[i, j]) ∧ i ≤ m

annot(l4)
.
= ∀j.((0 ≤ j < j)⇒ c[i, j] = (a× b)[i, j]) ∧ (0 ≤ j ≤ p)∧
∀i, j. ((0 ≤ i < i)⇒ (0 ≤ j < p)⇒ c[i, j] = cl2 [i, j])

annot(l7)
.
= c[i, j] =

∑k
r=0(a[i, r] ∗ b[r, j]) ∧ (0 ≤ j ≤ p)∧

∀j. ((0 ≤ j < j)⇒ c[i, j] = cl4 [i, j])
Post

.
= ∀i, j. ((0 ≤ i < m)⇒ (0 ≤ j < p)⇒ c[i, j] = (a× b)[i, j])}

For notational convenience, we write x[i, j] instead of x[i ∗n+ j] if the array x represents an m×n matrix.
The postcondition ensures that the array c is the result of matrix multiplication between a and b, i.e. for
every i and j, c[i, j] is equal to

∑n
k=0 a[i, k] ∗ b[k, j], denoted (a × b)[i, j]. A labeled variable xl stands for

the value of the variable x at program point l.

The program verifier generates for each annotated program a set of proof obligations. The generation
of proof obligations proceeds in two phases: first, a symbolic execution algorithm is used to strengthen
program annotations. Then, a weakest precondition calculus generates proof obligations using the strength-
ened annotations. In order to avoid bloated proof obligations, the weakest precondition calculus does not
strengthen annotations with all the results of symbolic execution, but only with those that refer to variables
that would appear in the proof obligation. The use of symbolic execution to strengthen invariants allows
users provide weaker specifications.

Example 3 (Matrix Multiplication: invariant strengthening) At program point l4, a standard VC-
gen would generate, for the execution that does not enter the loop, the proof obligation: annot(l4) ⇒ ¬j <
p ⇒ annot(l2)[

i+1/i]. Unfortunately, the loop invariant annot(l4) does not provide enough information to
carry the proof. In contrast, symbolic execution propagates automatically the condition provided by the
outer invariants (annot(l2) in this case) to strengthen the inner invariants, and generates provable proof
obligations.

The proof obligations are collected as lemmas in a Coq file, and must be discharged to guarantee that the
program is correct w.r.t. its specification. This process is done interactively by the user, using the Coq
proof assistant. The certificate of the program is the set of proof terms that are built automatically by Coq
upon successful verification of the proof obligations.

Certificate translation starts after the user has completed the verification of the source program. The
program is first compiled to an intermediate representation, written in a RTL language with arrays and
procedure calls.

Example 4 (Matrix multiplication: RTL code) The result of compiling the running example can be
found in Figure 4. (Ignore at this point the boxes in gray, which show an optimized version of the RTL
code).

The checker of RTL programs is based on the same principles as the verifier for source programs: annotated
RTL programs are sent to a weakest precondition calculus that generates a set of proof obligations; then the
certificates are checked against the proof obligations. Unlike the verifier for source programs, the checker for
RTL programs does not rely on symbolic execution—one reason for this discrepancy is that the RTL checker
is trusted, and hence should be as simple as possible. To bridge the gap between the source code verifier and
the RTL checker, the tool relies on a specification compiler that strengthens the original specification with the
result of the symbolic execution. Although the proof obligations between source code and RTL programs are
very similar, there are some minor differences that prevent directly reusing certificates—for many examples,
including the running example, the proof obligations coincide syntactically. The tool implements a Coq
tactic to transform the original certificates into certificates for their RTL compilation.
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i := 0
l2 : set il2 := i

set jl2 := j

set kl2 := k

set cl2 := c

lb2 : cjmp i < m lo2
jmp l′2

lo2 : j := 0
l4 : set jl4 := j

set kl4 := k

set cl4 := c

lb4 : cjmp j < p lo4
jmp l′4

lo4 : k := 0

r1 := i ∗ p
r2 := r1 + j

c[r2] := 0
l7 : set kl7 := k

set cl7 := c

lb7 : cjmp k < n lo7
jmp l′7

lo7 : r3 := i ∗ p r3 := r1
r4 := r3 + j r4 := r2
r5 := c[r4]
r6 := i ∗ n
r7 := r6 + k

r8 := a[r7]
r9 := k ∗ p

r10 := r9 + j

r11 := b[r10]
r12 := r8 ∗ r11
r13 := r5 + r12
r14 := i ∗ p r14 := r1
r15 := r14 + j r15 := r2
c[r16] := r15
k := k + 1
jmp l7

l′7 : j := j + 1
jmp l4

l′4 : i := i + 1
jmp l2
return 0

Figure 5.2: RTL representation of the matrix multiplication example

Certificate Translation for the Optimizing Phases

The tool performs a series of optimizations: constant propagation, common subexpression elimination, par-
tial redundancy elimination, and unreachable code elimination. For each optimization, the tool transforms
the program, its specification and the certificates. Previous work [2, 4] proved the existence of certifi-
cate translators for these optimizations. However, the theoretical development has not been matched by a
practical implementation. As a result, it has not been possible to validate experimentally the theoretical
developments, nor to assess the practicality of certificate translation. The tool described in this chapter
implements an ad-hoc technique, that considers a particular class of optimizations, for which the growth of
the original certificate size is moderate.

For the class of optimizations considered in this paper, the certificate translator must strengthen the
specification with the result of the analysis that motivates the program transformation. Therefore, a cer-
tificate translation procedure must automatically generate a certificate for the analysis result, and then
merge it with the original certificate. First, the tool defines, for each analysis module, a function that that
maps every element a in A to its representation as a logical assertion. Then, from the result of the analysis
as program specification, the tool computes the corresponding set of verification conditions. These proof
obligations are automatically discharged in Coq by application of the ring tactic, that solves equations on
ring structures by associative and commutative rewriting.

Most of the optimizations mentioned above can be classified as a replacement of expressions in the
instructions of an RTL procedure, without modifying its control-flow graph. The main result of this char-
acterization, is that the computation of verification conditions along the graph of the optimized program
coincides in their logical structure with the original ones. That is, there is a syntactical correspondence
between the logical formulae, up to substitution of equal expressions.

The certificate transformation implemented by the tool relies on the fact that the result of the analysis
can prove the equality of the expressions in which the original and final proof obligations differ.

The tool implements a tactic that generates the new certificates, by traversing the logical structure of
the proof obligations, and applying the Coq ring and rewrite tactic, taking as input a certificate for the result
of the analysis.

Experimental Results

We have experimented with several examples to estimate the impact of certificate transformation in the size
of the final certificates. Most of the examples are relatively small, but specifically suited to test the opti-
mizations covered by the tool. In average, from the original certificate we have obtained a slight reduction
on the certificate for the non-optimized RTL code. The size of the certificate for result of the analysis is on
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average 0.43 times the size of the original certificate. Merging the RTL certificates with the certificates of the
analysis yields certificates that are almost three times the size of the original certificate. Certificate transla-
tion for common-subexpression elimination increases the previous certificate by a factor of 1.46 on average.
In total, the final certificates are on average approximately 4 times the size of the original certificates.

We show in the following table a more detailed analysis of the certificate size for the multiplication
matrix example.

PO Source RTL Analysis Merge CSE

Pre 2922 2960 109 7615 7615
annot(l2) 8746 8272 138 23276 23276
annot(l4) 33232 32418 261 86962 86962
annot(l7) 95195 93907 229 178012 253575

The table shows each certificate size for each step of the compilation. The second column represents the
original certificate discharged interactively by the tool user. The third column represents the certificate size
after non-optimizing compilation. The fourth column represents the size of the certificate of the analysis
result, automatically generated by the tool. The fifth column represents the certificate size after merging
the certificate for the RTL program and the certificate for the result of the analysis. Finally, the last column
show the certificate size for the optimized program.

Other optimizations, such as redundant conditional elimination and dead code elimination, reduce the
size of certificates, since verification conditions are always simplified.
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Chapter 6

A trace-based coinductive
big-step semantics and Hoare logic of
nontermination

The standard big-step operational semantics and Hoare logic characterize only terminating runs of programs,
in terms of final states or postconditions. All nonterminating runs are identified. In particular, it is not
possible to see the intermediate states or output produced during such runs. At the same time, one should
expect program transformations like compilation or optimizations to respect the meanings of programs
on this level of detail. The challenge of stating and proving that they do so indeed calls for appropriate
semantics and program logics. In this chaper, we report on work in this direction.

In [35], we propose two big-step operational semantics (relational and functional-style) for the While
language, that usefully describe the behavior of potentially nonterminating programs. These semantics
characterize a program run in terms of a state trace, i.e., a sequence of states that the run passes through.

In our semantics, traces are defined coinductively, as possibly infinite, nonempty sequences of states. The
relational semantics is given by a statement-indexed evaluation relation between states and traces relating
an initial state to corresponding trace. An auxiliary evaluation relation relates two traces: a trace already
accumulated before running the statement of interest is related to a total trace after the run. The two
evaluation relations are defined mutually coinductively.

In the corecursive functional semantics, the evaluation relations are replaced by evaluation functions
(these are total, as any initial state leads to a trace).

A central concern in our design to is to make sure that while-loops are sufficiently productive. This is
needed in order to guarantee that a nonterminating run will always be represented by an infinite trace (so
that appending a further trace to it cannot grow it by further states—that would be an anomaly). We assure
this by taking evaluation of an assignment or a boolean guard to constitute a single step (growing an already
accumulated trace by a state). In the case of the functional semantics, this productivity is indispensable
also technically: without it, the corecursive definition of the evaluation functions would not be guarded.

We prove the relational and functional big-step semantics equivalent to each other, but also to relational
and functional small-step semantics, which, differently from the subtle big-step semantics case, are straight-
forward coinductive trace-based versions of the standard inductive state-based small-step semantics. All of
these equivalence proofs are fully constructive.

We also provide a formalization of the whole development of the paper in the Coq proof assistant.

Our design was guided by the realization that nontermination (with observable intermediate states) is
a monadic effect (cf. Capretta’s approach to nontermination with no intermediate observation [9]). The
extended evaluation function taking traces to traces is the Kleisli extension of the main evaluation function
sending states to traces, a Kleisli map. The semantics of sequences is given exactly by the Kleisli composition
and the semantics of while-loops hinges on the fact that the monad is completely iterative.

This work was motivated by the prospective application in certified code, but it was particularly inspired

23



MOBIUS Deliverable D4.6 Report on proof transforming compiler

the closely related work by Leroy and Grall [28] in the framework of their CompCert certified compiler
project, a major successful demonstration of the practical viability of certified compilation. They describe
two attempts at big-step semantics, which we find to fall short of what one would desire in two aspects.
The first semantics has separate evaluation relations for finite and infinite runs (one inductive, the other
coinductive). As a result, the proof that the small-step semantics is sound relative to the big-step semantics
hinges on an instance of the classical law of excluded middle, in fact, decidability of termination. Intuitively,
this should not be necessary, and indeed, as our work confirms, it is just an unfortunate consequence of the
chosen definition of the big-step semantics. The second has a single coinductive evaluation relation, but
suffers from the anomaly that a statement following a nonterminating statement is reached and run (from
an underdetermined state). In our solution, both problems are avoided.

In a newer follow-up work (still in progress), we have devised a trace-based Hoare logic to match our trace-
based big-step semantics. In this logic, a triple associates to a statement a state assertion (the precondition)
and a trace assertion (the postcondition). It is valid, if, for any initial state meeting the precondition,
the trace produced by running the statement satisfies the postcondition. The trace assertion language is
similar to that of interval temporal logics. The central connectives are chop (concatenation) and repetition
(possibly infinite repetition rather than finite repetition). For both, satisfiability is defined coinductively.
But provability is still inductive, i.e., derivations are wellfounded trees, as in the standard Hoare logic. This
trace-based Hoare logic is sound with respective to the big-step semantics and, under the assumption of a
sufficiently expressive state assertion language, also complete.

The new Hoare logic subsumes both the standard partial-correctness Hoare logic and the total-correctness
Hoare logic (based on variants), there are syntactic embeddings.

Again we provide a Coq formalization of the whole development.
A curious detail that becomes apparent working with a constructive formalization in Coq is that not-

nontermination and termination are distinctively different: termination is a stronger property. For example,
algorithms of total unbounded search are cannot be proved terminating constructively (so intuitionistic
total-correctness Hoare logic, which only detects constructive termination, can prove nothing about them).
But our trace-based Hoare logic proves them constructively not-nonterminating.

We have not done so yet, but we plan to show in the closest future that the type-systematic approach to
program optimizations supporting relational optimization soundness and associated automatic transforma-
bility of program proofs [38] extend to the more discriminating trace-based semantics. This means both a
stronger form of optimization soundness (preservation of a finer semantics) and automatic transformation
of proofs of finer program properties.
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Chapter 7

Type-preserving compilations for
distributed and communications
programming

7.1 Motivation

In this chapter, we report a general type-preserving compilation framework from the high-level distributed
or concurrent programming languages to the low-level languages based on the advanced type theory of
the π-calculus. Our approach uses the typed π-calculus as an intermediate language in order to ensure a
preservation of secrecy (secure information flow) and communication-safety of the high-level programming
languages. Our motivations are two-fold: first it offers an effective source language for compilation into
the low-level languages such as a typed assembly language for multicore programming. Secondly it offers
an expressive target language into which we can efficiently and flexibly translate different kinds of high-
level programs, including Web service languages [13, 23, 12, 10] and communication-based object-oriented
languages [25, 14, 16]. This latter aspect is based on the observation that many concurrent and potentially
concurrent programs can be represented as a collection of structured conversations, where we can abstract
the structure of data movement in their programs as types for conversations. The type disciplines used in
this deliverable are linear types and session types [20, 5, 8, 11, 42, 24, 15, 34, 33], and the developments of
the high-level distributed languages and their types are based on the work done in Tasks 2.1 and 4.1.

7.2 Approach

We explain our framework using one example on a type-based compilation and execution framework for
the low-level programming for distributed memory multicore CPUs [41]. Later we summarise how this
approach is generalised and extended in Section 7.3. The basic idea is to stipulate typed communicating
processes as a representation for an intermediate compilation step from high-level abstractions, and, after
a type-based analysis of this intermediate representation, perform a type-directed compilation [32] onto ex-
ecutable binary code for distributed memory CMP. The basic step is listed in Figure 7.1(a). L0, L1, L2

High-level concurrent languages (L2)
⇓

Typed imperative processes (L1)
⇓

CMP executable (L0)
Key Producer

Kernel

Data Producer

Consumer

Figure 7.1: (a) The compilation framework and (b) A simple program for stream cipher
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refer to abstraction levels. Each ⇓ stands for one or more type-preserving compilations. At L1, we use
an intermediate concurrent imperative language with types for channel-based conversations. The preceding
studies on types for communicating processes, many centring on the π-calculus, have shown that they can
offer fundamental articulation and basic safety guarantee for diverse communication patterns. As commu-
nication types for the compilation framework, we use a variant of session types for multiparty interactions
[8, 24, 34, 5], into which various high-level abstractions can be translated and which allows their efficient
and safety-preserving compilation to distributed CMP primitives. The session types at L1 are generated
from the interaction structures implicit in the high-level abstractions in L2, as we shall illustrate with a
concrete example in the subsequent sections. The resulting typed communicating processes are amenable
to uniform program analyses for safety assurance, and can be directly mapped to efficient code in L0, with
a formal guarantee of the aforementioned key correctness properties [21, 41].

7.2.1 Streaming example and processes with session types

We take a simple program for stream cipher, depicted in Figure 7.1(b). Data Producer and KeyProducer
continuously send a data stream and a key stream respectively to Kernel. Kernel calculates their XOR and
sends the result to Consumer. A high-level specification of such an example can be written using a domain
specific language for streaming, which we omit. Our purpose is to translate this program to a type-safe
low-level program for distributed memory CMP.

We show a process representation of the streaming algorithm. In order to illustrate the key ideas, we
use a simple translation scheme. In practice we use a slightly more complex, and more efficient, translation,
which we shall briefly discuss at the end. The kernel initiates a session:

Kernel
def
= def K(d, k, c) = d!〈〉; k!〈〉; d?(x); k?(y); c?(); c!〈x xor y〉; K〈d, k, c〉 in a(d, k, c).K〈d, k, c〉

Observe that the channels d and k are used for Kernel to receive data and keys from Data Producer and
Key Producer, respectively. Before receiving, Kernel notifies Data/Key Producers that it is ready before
receiving data/keys. Such an insertion of a notification message before the reception of datum is essential
for safe translation into direct memory access operations, since without them, a datum may be written to
a memory region while that region is being read and/or written by a local process, leading to inconsistent
values. Note also these signals are necessary even when we use the class of streaming languages with the most
regular behaviour such as static and cycle-static data flow languages. The channel c is used for Consumer to
receive the encrypted data from Kernel, which is also used for notifying its readiness to receive the data. The
keyword def denotes a recursive process; a(d, k, c) is a session initiation establishing a session between the
three parties; d?(x) is an input action at d; and c!〈x xor y〉 is an output action at c. Similarly, DataProducer
and Consumer can be defined as processes with session types [21].

The exchange of messages as above forms a “conversation” among processes, with a precise structure:
this structure we abstract below as a type. The session type of the Kernel is given as:

TK = µt.d! 〈〉; k! 〈〉; d? 〈bool〉; k? 〈bool〉; c? 〈〉; c! 〈bool〉; t

Above µt.T represents a recursive type, k? 〈bool〉 (resp. k! 〈bool〉) denotes the input (resp. output) of a value
of bool-type, and T ;T ′ denotes a sequencing. The type of the DataProducer is given as µt.d? 〈〉; d! 〈bool〉; t.
Similarly for KeyProducer and Consumer. Safe parallel composition of communicating code is guaranteed
by checking duality of types: the type of the Kernel and one of the DataProducer are dual to each other at
d, so that there is no communication error occurs at d. Similarly for k and c.

7.2.2 Compiling typed processes to the low-level language

Processes with session types are guaranteed to follow rigorous communication structures, given as types.
By tracing this session type, we know beforehand what and when process will send and receive as messages.
Using this information, we can replace message passing in typed processes with direct memory write to a
multicore chip.
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main : {
main : {

r1 := g e t I d l e C o r e
r2 := g e t I d l e C o r e
r3 := g e t I d l e C o r e
r4 := g e t I d l e C o r e
f o r k dataProduce r at r1
f o r k keyProduce r at r2
f o r k k e r n e l at r3
f o r k consumer at r4
y i e l d

}
}

dataProduce r : {
data : by te [ 1 2 8 ]
ack : by te [ 0 ]
main : {

// produce data
get ack
put data i n r3 . data
jump main

}
}

keyProduce r : {
key : by te [ 1 2 8 ]
ack : by te [ 0 ]
main : {

// produce key
get ack
put key i n r3 . key
jump main

}
}

consumer : {
buf : by te [ 1 2 8 ]
ack : by te [ 0 ]
main : {

get b u f f
// consume buf
put ack i n r3 . ack
jump main

}
}

k e r n e l : {
data : by te [ 1 2 8 ]
key : by te [ 1 2 8 ]
buf : by te [ 1 2 8 ]
ackD : byte [ 0 ]
ackK : byte [ 0 ]
ackC : byte [ 0 ]
main : {

put ackD i n r1 . ack
put ackK i n r2 . ack
ge t data ; ge t key
r5 := 128 ; jump l oop

}
l oop : {

when r5 l t 0 jump done
r6 := data [ r4 ] ; r7 := key [ r4 ]
buf [ r4 ] := r7 xo r r6 ;
jump l oop

}
done : {

get ackS
put sum i n r1 . a rg
jump main

}
}

Figure 7.2: L0 code for the stream example

Since our purpose is to have type-safe compilation, we use a typed assembly language, which we call L0
for brevity. L0 is built on top of MIL [40], which in turn is a multi-threaded extension of TAL [32]. Task
scheduling is accomplished by loading a program into a core. This includes copying from the main memory
the code and the data required for a run of the core, as well as a snapshot of the current register values.

Figure 7.2 presents one possible result of compiling our running example into L0. All typed message
passing is replaced by low level primitives, using addresses of the variables in the local memory of a target
core for remote asynchronous writes, where the addresses are shared at the time a thread is launched. The
block associated with identifier main defines a program comprising, in this case, a single basic block, also
named main. The program is intended to be uploaded at some core and its execution launched. Cores
terminate their execution with a special instruction yield , thus joining the pool of available cores. Cores
requiring extra workers get hold idle cores by issuing an instruction of the form r1 := getIdleCore . The first
fork instruction in main.main copies program dataProducer to the core in register r1, copies a snapshot of
its registers to the target core, and launches the execution of basic block dataProducer.main. Notice that
by getting first the number of required cores and then forking the threads we guarantee that each thread
knows all other cores (including its own) via registers r1 to r4.

The program associated with identifier dataProducer defines a program comprising two buffer declarations
(named data and ack) and a basic block (named main). The core running this program writes its data buffer
into the kernel ’s data buffer, but first needs to make sure it can overwrite the latter. Instruction get ack
blocks the core until a corresponding put instruction is issued, namely via instruction put ackD in r1 .ack in
basic block kernel .done and the data is safely written. After put, the producer asynchronously writes its
buffer (with put data in r3 .data), for which the kernel waits with a get data instruction.

Program kernel declares three buffers (two incoming, one outgoing), and another three (empty) buffers
used for acknowledgements, signals the data and the key producers that the respective buffers can be written,
waits for the completion of the write operations, and embarks on a loop to fill the outgoing (buf) buffer. Fi-
nally it asynchronously writes this buffer into the arg buffer at core consumer before restarting the process. In-
struction when r4 lt 0 jump done is expanded into the two instructions r4 := r4 − 1; if r4 == 0 jump done,
providing for loops.
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Subject reduction (Type preservation) for these languages are proved as in [24]. We can also obtain
the advanced safety properties, such as communication safety (no communication mismatch) and progress
(deadlock-freedom), as stated in [24, §5]. Thus the stream example in L1 is translated preserving advanced
type structures for communication and distributions among the multiple participants; using our framework,
the translation into the target language (L0) also preserves these properties.

7.3 Achievements

The above section described one instance which demonstrates a use of the typed π-calculus for type-
preserving compilations. Extending this idea, we developed the following methods for Task 4.2, based
on the work done in Task 2.1 and Task 4.1:

1. To attest the value of this type-preserving compilation framework, IC developed the type-safe and
communication-safe distributed high-level languages and their typing systems. For example, Web ser-
vice languages [13, 23, 12, 10] and distributed [1] and communication-based object-oriented languages
[25, 14, 16].

2. To enrich the intermediate calculi, we developed the advanced type theories for the π-calculus such
as the time-out language for distributions [7], multiparty session types [8, 24, 5], the types for the
exceptions [11], the types for secrecy preservations [20], and higher-order mobile code [33]. In partic-
ular, the work [34] demonstrates type-preserving communication optimisations based on multiparty
session types is effective to ensure the correctness and safety of a distributed algorithm for multicore
programming.

3. We developed a general framework [41, 21] to compile the high-level distributed languages established
in (1) into (2); then using the above method, we embed (2) into low-level languages preserving security
properties such as communication-safety, deadlock-freedom and secure information flows. We also
extended this framework to logics for concurrency [22, 6].

As future work, we are currently working on the experiments of the general framework proposed in this
chapter via collaborations with the Sensoria project. It centres on a simple imperative concurrent language
equipped with multiparty session communications and their types. The language, combined with two other
associated languages, is intended to serve as an intermediate language (roughly of level L1) to which typed
high-level concurrent languages such as X10 and StreamIt and others are compiled into. The details of this
language and its typing system are discussed in [41]. The framework implements a series of type-directed
translation steps from high-level typed concurrent languages into the low-level code targeted at the Cell
architecture, using IBM’s QS21 blade servers and their compiler architecture.
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Chapter 8

Conclusions

We judge that the outcomes of Task 4.4 demonstrate convincingly that automatic proof transformation to
accompany program compilation is viable for both functional correctness and freely chosen safety policies.
This represents a significant strengthening of the original PCC scenario of certificed compilation, which
means that the compiler generates proofs, but for a fixed safety policy only.

At the present stage, the Mobius PVE supports transformation of weakest precondition proofs for non-
optimizing Java to JVML compilation through the Bicolano and Java+JML formalizations.

The research line on optimizing compilation had been planned as exploratory, but turned out to be highly
rewarding in terms of the new knowledge obtained. It led to powerful frameworks of proving optimization
soundness and extracting proof transformations from these soundness proofs in a systematic fashion. Here,
full-scale implementations are future work, but we deem the first experiments to have been successful.
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