
Project No: FP6-015905

Project Acronym: MOBIUS

Project Title: Mobility, Ubiquity and Security

Instrument: Integrated Project

Priority 2: Information Society Technologies

Future and Emerging Technologies

Deliverable D4.7

Report on on-device checking

Due date of deliverable: 2009-08-31 (T0+48)

Actual submission date: 2009-10-15

Start date of the project: 1 September 2005 Duration: 48 months

Organisation name of lead contractor for this deliverable: INRIA

Revision 8092

Project co-funded by the European Commission in the Sixth Framework Programme (2002-2006)

Dissemination level

PU Public X

PP Restricted to other programme participants (including Commission Services)

RE Restricted to a group specified by the consortium (including Commission Services)

CO Confidential, only for members of the consortium (including Commission Services)

Contributions

Site Contributed to Chapter

FT 2

INRIA 1,3

TL 4

UPM 5

This document was written by Frédéric Besson (INRIA), Pierre Crégut (FT), Thomas Jensen (INRIA),
Mariela Pavlova (TL), and Germán Puebla (UPM).

2

Executive Summary

This document summarises Deliverable 4.7 on On-device Proof Checking of project FP6-015905 (MOBIUS),
co-funded by the European Commission within the Sixth Framework Programme. Full information on this
project, including the contents of this deliverable, is available online at http://mobius.inria.fr/.

3

Contents

1 Introduction: On-device checking 5

2 Two phase points-to analysis 6
2.1 An on-demand points-to analysis based on a context sensitive analysis expressed in Datalog . 6

2.1.1 Whole program analysis . 6
2.1.2 On-demand analysis . 6

2.2 A checker for the on-demand points-to analysis . 7
2.3 Extension to string analysis . 7
2.4 Implementation choices . 7
2.5 Benchmarks . 7

3 Small certificates for on-device proof-carrying code 9
3.1 Witnesses and invariant pruning . 9
3.2 Efficent pruning for polyhedral-based abstract interpretation 10
3.3 Fixpoint reconstruction . 10
3.4 Enhanced certificate format for linear artihmetic . 11

4 PCC infrastructure with the static analysis tool TL SAT 13
4.1 Certificate format . 13

4.1.1 Certificate checker . 14
4.2 Conclusion . 15

5 Checking Resource Usage Bounds 16
5.1 Asymptotic Resource Usage Bounds . 17
5.2 Comparing Cost Functions in Resource Analysis . 18

4

Chapter 1

Introduction: On-device checking

Proof-carrying code (PCC) is based on the idea that in a security-critical code transmission setting, the
code producer should provide some evidence that the program she distributes is safe and/or functionally
correct. The code consumer would thus receive the program together with a certificate (proof) that attests
that the program has the desired properties.

The objective of the current Task 4.5 is to investigate methods and techniques for facilitating the checking
of program certificates on resource-constrained devices; in particular mobile telephones. The approach has
been to use the so-called Abstraction-Carrying Code approach in which the result of static, automatic data
flow analysis is used to produce certificates of program properties. The properties under consideration have
included points-to and alias information, data dependency and flow of string values, as well as resource-
oriented analyses aimed at computing the complexity of a program with respect to a resource (time, space,
number of network accesses, sending of SMSs etc).

Focus has been on obtaining certificate checkers that are efficient, reliable and can be run on-device.
Increased reliability has partly been achieved by extracting checkers form certified Coq specifications. The
extracted checkers must be run by the end-user before he uses the application to check that the security
policy is enforced. When the application is a midlet, this could be done off-line on a regular desktop, but
it is preferable that the verification is a quick, mandatory phase performed directly on the mobile handset
before the first use of the application, in a similar way as byte code verification. To keep checking reasonably
efficient and certificate size small, techniques for compression of fixpoints issued by data flow analysis have
been developed.

Chapter 2 describes a points-to analysis for Java byte code derived from the Datalog analysis framework
by Whaley and Lam. This analysis both provides useful information about data flow and alias, and provides
a rudimentary string analysis.

Chapter 3 describes techniques for compressing invariants obtained from polyhedral analysis of Java
byte code, by pruning of fixpoints and by removing redundant information that the checker will re-compute
anyway. The analysis can among other things be used to certify certain, linear resource usages of applications.

Chapter 4 describes how the analysis tool TL SAT developed by Trusted Logic can be used to derive
program certificates with information about flow of strings and dependencies between program variables.
The latter information provides a simple information flow analysis.

Chapter 5 presents two developments which are needed in order to perform practical on-device checking
of resource bounds. The first one allows obtaining asymptotic upper bounds from (non-asymptotic) cost
relations. The second one allows checking user-provided resource usage bounds with those inferred by static
analysers such as COSTA.

5

Chapter 2

Two phase points-to analysis

2.1 An on-demand points-to analysis based on a context sensitive anal-
ysis expressed in Datalog

2.1.1 Whole program analysis

A points-to analysis [4, 9] computes an over-approximation of the storage locations that can be pointed
to by pointer variables at a given execution point. Storage locations are represented by the points where
they are allocated and eventually the execution context of this allocation. Execution points are usually
approximated by the program point and eventually some approximation of the call stack.

Datalog is a fragment of Prolog without function symbols (there are no complex terms) and negation.
Programs on finite domains can be efficiently compiled as operations on binary decision diagrams coding
the relations.

John Whaley [11, 12] has formalized context sensitive analysis as a Datalog program where initial rela-
tions describe the initial assignment of variables with newly created objects (represented by allocation sites),
how values flows between method parameters, local variables and object fields and the initial knowledge on
how method calls are resolved. The program computes new relations describing how the allocated objects
are propagated to other variables. Contexts (call stacks) are directly coded as atoms. A relation describes
how the call stack may evolve at each invocation point depending on the resolution of the virtual call. Call
stacks that only differ because of recursive calls are represented by a single atom.

2.1.2 On-demand analysis

The on-demand analysis was first developed as an extraction algorithm that prunes the fixpoint computed
by the whole analysis (represented by the computed relations). Two kinds of relations are computed:

• the fact that a variable or a field of an abstract object contributes to the points-to value of another
variable because its contents can be transferred to this variables (eventually through a sequence of
assignments),

• the fact that an allocation site can flow to a variable or an object field.

Those relations are computed only for the variables and allocation sites necessary to compute the points-to
set of the variables we are interested in.

In fact this algorithm computes on the fly the points-to set of the variables used as the base object for
accessing fields we are interested in and we do not need any of the results of the global analysis. So the
algorithm can be used as an independent on-demand analysis. Details are presented in an annex [?].

6

MOBIUS Deliverable D4.7 Report on on-device checking

2.2 A checker for the on-demand points-to analysis

The certificate is coded as a tabular representation of the relations computed by the on-demand analysis
and by the class hierarchy analysis used to solve virtual method calls.

The checker linearly scan the byte code of the application and checks locally on each instruction that
the constraints expressed in the certificate are fullfilled:

• that the knowledge a variable points-to set is needed for another variable points-to set is correctly
propagated backward with respect to the data flow,

• that an object from a given allocation site can be stored in a given variable is propagated forward
with respect to the data flow,

• that the resolution of virtual method is coherent with the propagation between arguments at method
invocation points and parameters of actual methods.

2.3 Extension to string analysis

Points-to analysis is a key component for verifying security related properties of applications. The most
obvious example is string analysis that can be used to check constraints on strings used as parameters of
security relevant methods.

In MIDP, the main usage is the definition of URLs that describe the protocol and the address of network
connections. This has a direct impact on their cost and can also raise other security issues if the phone
connects to a rogue site.

A string analysis can be easily developed from a points-to analysis because strings are not mutable [7].
String concatenation is performed through StringBuffer objects that are usually local to a method. The
scheduling of operations on StringBuffers inside a method can be retrieved from a simple intra-procedural
analysis. The propagation of string objects thorough the program is computed by the points-to analysis.

2.4 Implementation choices

Certified checkers are developed as Coq terms and their actual source code is extracted from the Gallina
source as Objective Caml programs. The complete checker for the points-to analysis was directly developed
in Objective Caml following the pattern of those certified checkers so that a certified version can be eventually
be derived.

Those Objective Caml programs are cross-compiled to native code for the ARM processor with a modified
compiler based on Eric Cooper cross compiler for Objective Caml with float support disabled (because it is
incompatible with current hardware and not required). Compiling the Objective Caml runtime on a Linux
based platform is easier than on non POSIX compliant environment (Symbian, Windows for mobile).

Due to all those constraints, targetting a Linux based phones was an obvious choice. We used a Motorola
A780with the open source ”EZX crosstool” compilation chain.

Because we do not have a direct access to the native UI libraries of the phone, the user interface of the
application is implemented as a midlet. It is quite slow : launching a midlet takes several seconds and is
usually slower than our analyzers. Benchmarks have been performed with a command line version of the
analyzers accessed through a telnet connection with the phone.

2.5 Benchmarks

The prototype targets calls to Connector.open. We have used a set of 75 small free midlets from the
midlets.org site [8] that open network connections to evaluate the behaviour of our analysis.

7

MOBIUS Deliverable D4.7 Report on on-device checking

Figure 2.1: Size of certificates

Figure 2.2: Performance of the analysis on PC and of checking on the handset

Figure 2.1 shows the size of certificates. They are often in the 5k-15k range but some of them are bigger.
The overhead of the certificate is high for small midlets but is still reasonable (usually 20%, some around
50% in rare cases)for bigger ones. It is clearly still too high for an industrial deployment. We have not yet
tried to improve its size. Potential solutions are:

• using a binary format and using a single file to improve zip compression,

• transfering some information directly in the class to reduce the size of the certificate constant pool
(around 30% of the certificate) that duplicates the class constant pool.

Figure 2.2 gives performance result for the on-demand analysis on a PC (1.7 GHz Pentium-M based
laptop) and for checking it on a mobile (A780). The checking time on the handset is usually between 2 and
3s (around 0.4 s when run on the laptop). It could be reduced if the checker did not verify MIDP classes
that are not used by the midlet. The performance of this non optimised code is already good enough for an
industrial deployment.

Analysis time is more correlated to the size of midlets than checking time because the bulk of the analysis
is in the code of the application. This is not true for the checking phase that is almost proportional to the
size of the code base whatever is the computational content of the analysed code.

8

Chapter 3

Small certificates for on-device
proof-carrying code

The work of INRIA in this work-package has focused on the problem of how to produce small certificates for
proof-carrying code. This problem has been studied in the setting of abstraction-carrying code[3] where the
program certificates are obtained from the outcome of a static analysis. Such analyses will produce program
invariants in the form of fixpoints of abstract transfer functions and the present work has been concerned
with several aspects of how to simplify and reduce the size of these fixpoints:

• Abstract interpretations will often produce more information that necessary for proving a particular
program property. We have defined the notion of a witness of a property together with a technique
for pruning program invariants to provide the minimum information necessary to prove a particular
property.

• The pruning algorithm has been specialised for the particular case of polyhedral-based abstract in-
terpretation. Using results from linear programming we have shown how to efficiently compute the
smallest subset of linear constraints of a polyhedron needed to prove a given property. This allows a
greedy pruning algorithm for which each pruning step is locally optimal.

• The checking of a proposed invariant involves a certain amount of re-computing the invariant. It is
therefore possible to reduce the amount of information that is being transmitted in the certificate
because the checker will reconstruct it anyway. We have developed general fixpoint reconstruction
algorithms that generalize the dedicated algorithms from lightweight bytecode verification.

• An essential part of verifying a proposed invariant is the checking of polyhedral inclusions. We have
developed a notion of certificate for checking polyhedral inclusions based on a use of Farkas’ lemma
that reduces inclusion checking to a few simple matrix computations. This work has been documented
in the deliverable D4.4 of Task 4.3 of this work-package, entitled “Generation of certificates”. The
certificates described in D4.4 are complete for R with full addition and multiplication but incomplete
for linear arithmetic over Z. We have proposed and implemented in Coq an extended certificate format
that is also complete for linear arithmetic over Z.

Fixpoint pruning was first presented in [6] in the case of polyhedral invariants and for Java stack maps
with interfaces in [5]. The PhD thesis of Tiphaine Turpin [10] provides a comprehensive description of the
technique and its applications.

3.1 Witnesses and invariant pruning

An abstract interpretation of a program can be described by an abstract domain D whose elements represent
sets of potential execution states of the program, and an abstract transfer function F : D → D that over-
approximates the possible steps that can be taken. A program invariant is a post-fixpoint of F .

9

MOBIUS Deliverable D4.7 Report on on-device checking

A safety property can be given by an element φ of D, which represents a set of states that are safe to
enter. If w satisfies w v φ, then this means that all reachable states are safe, and therefore the program
is safe. Furthermore, w is itself a witness whose existence is sufficient to ensure the program’s safety, and
thus can play the role of certificate for PCC. Checking that a given abstract element w is indeed a witness
only amounts to checking the two above constraints, namely, F (w) v w and w v φ, which is fundamentally
simpler that computing w.

Definition 3.1.1 A witness for a property φ ∈ D and a (monotone) abstract operator F : D → D is an
abstract property w ∈ D such that

F (w) v w u φ.

In the case of distributive data flow analyses, it can be shown that an optimal witness can be copmputed.
However, the more complex (and therefore useful) program analyses are generally not distributive. For the
general case, we assume that abstract states are described as sets of constraints, as is the case in polyhedral
analysis. The intuitive idea of pruning is then to remove as many constraints as possible from a given witness
(which is computed by standard fixpoint iteration).

3.2 Efficent pruning for polyhedral-based abstract interpretation

Given polyhedra P and Q – viewed as sets of linear inequations – and a linear transfer function F such
that F (P) v Q, the problem consists in finding a minimal subset of inequations of P , say P ′, such that
F (P ′) v Q. The properties of the pruning are that P ′ is smaller than P but strong enough to ensure the
property Q. The problem can be written as

min{P ′|P ′ ⊆ P, F (P ′) v Q}

Because F is a linear transformation, this minimisation problem can be solved by minimising a set of
emptiness problems of the form

min{P ′|P ′ ⊆ P, P ∪Di v ∅}
where Di is obtained from F and the ith inequation of Q.

Using Farkas’s Lemma, we have shown that P ′ can be obtained from the vertices of dual polyhedron of
P ∪Di.

This result allows for an efficient and locally optimal greedy pruning algorithm for polyhedron-based
abstract interpretation.

3.3 Fixpoint reconstruction

In the context of PCC based on abstract interpretation, a part of a witness can usually be deduced, or recon-
structed from the rest using the abstract transfer function. We have developed a reconstruction algorithm
which takes advantage of our definition of witness, and a method for generating corresponding certificates.
For a program given by a control flow graph, and given a witness, we propose to derive a certificate of
the form (K,S) where K gives the value of the witness for a subset of the program points, and S specifies
an “iteration strategy”, that is, a sequence of program points whose corresponding local abstract transfer
functions are to be evaluated for reconstructing the witness.

Definition 3.3.1 A certificate is a pair (K,S) where K : [1, n] 7→ D is a partial mapping from program
points to properties and S ∈ [1, n]∗ is a sequence of program points.

The interpretation of such a certificate is given by the following reconstruction algorithm. The soundness
of this algorithm is established by the following Theorem:

Theorem 3.3.2 Let (K,S) be a certificate. If check(K,S) succeeds then the program satisfies the associated
security property φ.

10

MOBIUS Deliverable D4.7 Report on on-device checking

check(K, S) =
check that every j defined in K appears at least once in S

let w ∈ Dn be defined as w =

[
j 7→

{
K(j) if K(j) is defined
> otherwise

]
for j iterating over S do

compute w′j = Fj(Πj(w))

check that w′j v wj

wj ← w′j
done
check that w v φ

3.4 Enhanced certificate format for linear artihmetic

Program verification often requires arithmetic reasoning over Z. We have designed compact and easily
checkable certificates asserting that a set of polynomial inequations do not have an integer solution. The
basic block of the certificate is a certificate for real arithmetic asserting that a set of polynomial inequations
do not have real solutions. Indeed, if there is no real solution, there is no integer solution. The purpose
of the enhanced certificate is to assertthe absence of integer solution even if there are real solutions (e.g.,
2 × x = 1). In order to handle proofs over Z, the certificate format provides two additional constructions
allowing to obtain cutting planes and case splits. A cutting plane is an inequation that can be strengthened
by rounding the constant over the nearest integer.

Theorem 3.4.1 (Cutting Plane) Let p be an integer and c a rational constant.

p ≥ c⇒ p ≥ dce

A case split allows to enumerate over all the possible integer values over a finite interval.

Theorem 3.4.2 (Enumeration) Let p be an integer and c1 and c2 integer constants.

c1 ≤ p ≤ c2 ⇒
∨

x∈[c1,c2]

p = x

In pseudo-ML syntax1, the enhanced certificate format zcert is the following.

type zcert =

| RealProof of rcert * zcert?

| CutProof of rcert * zcert?

| EnumProof of rcert * rcert * (zcert list)

where rcert is the type of certificate for real arithmetic.

The checker takes as argument a list of hypotheses. It evaluates the certificate to construct logic conse-
quences of the initial inequalities that are added to the current hypotheses. The checker stops as soon as it
detects a logic consequence that is trivially contradictory e.g., −1 ≥ 0.

• If the certificate has the form RealProof(rcert,zcert), the checker computes using rcert a logic
consequence of the hypotheses and continues with zcert.

• If the certificate has the form CutProof(rcert, zcert, the checker computes using rcert a logic
consequence p ≥ c. It computes the cutting plane p ≥ dce and continues with zcert.

1In the type definition, the question mark denotes an optional argument

11

MOBIUS Deliverable D4.7 Report on on-device checking

• If the certificate has the form EnumProof(rcert1,recer2,zcerts), the checker computes a logic
consequence c1 ≤ p using rcert1 and p ≤ c2 using rcert2. Using Theorem 3.4.2, it starts a case split
with the list of certificate zcerts. The list has length c2− c1 + 1. The ith element of the list is a proof
the the hypotheses augmented with p = c1 + i− 1 is a contradiction.

This enhanced certificate format is complete for linear integer arithmetic and is part of Coq 8.2.

12

Chapter 4

PCC infrastructure with the static
analysis tool TL SAT

TL SAT is a static analysis tool tailored to bytecode programs and is mainly used for the certification of
mobile or embedded applications prior to their installation on the user devices. More particularly the tool has
been used for the security validation of Java Card and Midlet applications. The properties verified by the tool
concern the use of critical APIs which vary from forbidding the use of some APIs to constraining the shape
of their parameters as well as simple information flow properties. The need for such validation is explained
with the fact that the Midp or JavaCard framework (and in general Java) do not provide mechanisms to
check such kind of properties. The validation performed by TL SAT however is not a guarantee that the
code shipped on the user device really respects the properties verified by TL SAT. Of course, frameworks
like Midp rely on digital signatures which guarantee that the code is not tempered and identify the issuer
of the application. Although the combination of security certification and digital signatures seems to close
safely the certification chain, currently there is no way to verify on the user device prior to applet execution
that the latter is complying to the device security policy.

To fill in this gap, we study the possibility for a PCC certification chain based on TL SAT. As any
PCC infrastrtucture, the one that we propose relies on certificates accompanying the untrusted code. The
certificate generation is done outside the device by TL SAT. Certificates bring an evidence that the code
adheres to a certain number of rules and are checked on the device.

An important factor for the feasability of a PCC infrastruture depends on the format and the size
of the certificate accompanying the untrusted code. Therefore, the main purpose of this study is the
investigation of these certificate characteristics. The proposed certificate consists of an overapproximation
of the runtime application behavior of the certified program. The overapproximation is the result of the of
TL SAT which is based on abstract interpretation algorithms. Compared to certificates based on deductive
program verification, this approach has the benefit to generate certificates automatically without the need
of user interaction (e.g. writing annotations or proving verification conditions). Note that automation is an
important parameter in an industrial context as the constraints on the development and certification phase
are very strong. Of course, TL SAT is not as expressive as specification languages like JML and is not as
powerful as logical verification techniques but provides a sufficient coverage for many interesting security
properties.

4.1 Certificate format

Designing the format of a PCC certificate is an important step as the certificate will greatly impact the fea-
sibility and scaling up of the whole PCC infrastructure. The certificate format must be efficiently checkable,
i.e. it should contain sufficient information so that the checking procedure on the client side be sufficiently
fast. The size of the certificate is also important as it has a direct impact on the certificate transportation
over the network and storage on the device. On the other hand, small certificates imply that they do not

13

MOBIUS Deliverable D4.7 Report on on-device checking

contain much information and therefore their corresponding checker is potentially more complex. In what
follows we discuss several issues which are important for designing a PCC infrastructure which scales up.

We propose that the certificate in a PCC infrastructure based on TL SAT contains overapproximations
for the argument Argcert and return values Retcert of each live method, a global overapproximation Heapcert

of the heap used by the application and finally overapproximation of states related to special program points
of the method execution. The first three components allow for modular verification of the application code
- every method m will be inspected by assuming the precondition Argcert(m) and by checking the postcon-
dition Retcert(m); for every method call to m, the precondition Argcert(m) is assumed and the postcondition
Retcert(m) is assumed. The fourth component allows for efficient verification of a method implementation
where each instruction in a method bytecode is visited at most once by the certificate checker.

applet jar size (kb) certificate of method pre and post state, heap (kb) compressed certificate (kb)

CellHtml 48 524 48
WebViewer 48 528 48
MobileMule 56 516 52

Kungfu 76 420 38
MGMaps 96 692 64
J2MeMap 196 872 76
MyWiowa 216 896 72

AplusBegalX 268 1274 100
Itransports 352 568 49

Table 4.1: Statistics on the certificate and application sizes

We performed measurements over the results returned by TL SAT which are shown in Table 4.1. The
experiment consisted in running the analysis over several applications and serialising the produced approxi-
mations for the method argument and return values as well as the heap. We have chosen a set of applications
with various functionalities and sizes in order to obtain a representative average for the certificate size w.r.t.
the complexity of the application. The first column in the table shows the name of each of the applications
that we analysed, the second column shows the size of the application jar file, the third column gives the
size of the certificate, i.e. the serialised information. The last column shows the size of the compressed
certificate. The indicated application size is the size of the applet jar file as it is shipped on the device.
The size of the serialized analysis result (third column from left to right) is quite large w.r.t. the size of
the application size- the average certificate size is around 4 times larger than the applet size. However, the
compressed version of the certificate is in average 2 to 3 times smaller than the applet size which implies
that the compressed certificate increases in average the code package with up to 30% which is a positive
result. It is also interesting to note that while for small applets (up to 60Kb) the compressed certificate
has almost the same size as the applet size, for larger applets the size of the compressed certificate is often
2 to 3 times smaller than the applet size. For the largest applet (352 Kb) the certificate compression is 7
times smaller (49 Kb). Such drastic reductions in the certificate size can be explained also with the fact
that the applet contains additional resources like images or sound files. In this experiment we do not take
into account the part of the certificate concerning backedges in the code. We expect that the size of this
information would have a small impact on the overall certificate size.

4.1.1 Certificate checker

The certificate checker is composed from an abstract Java virtual machine enriched with checks against the
device security policies and checks over the correctness of the certificate accompanying the application code.
When one of the checks fails the whole certificate check fails. The checker has a linear complexity w.r.t. the
size of the certified code and is consequently efficient. We do not enter here in details about the algorithm
underlying the checker but it does not defer from from existing work in the field. For more details the reader
may check the full version of the TL contribution for the Mobius final technology evaluation.

14

MOBIUS Deliverable D4.7 Report on on-device checking

4.2 Conclusion

We have investigated the possibility for building a PCC infrastructure for safe resource use and simple
information policies based on the static analysis tool TL SAT. Concerning the certificate format, our exper-
iments are positive as they show that the size of a certificate containing sufficient information to perform
one pass on-device checking is times smaller than the code size itself. This is an important point as PCC
infrastructures relying on heavy certificate formats are in practice not acceptable in a realistic scenario.
Another point which is crucial for building a PCC architecture is the on device checker the implementation
of which is the next step before providing a full fledged PCC infrastructure.

15

Chapter 5

Checking Resource Usage Bounds

An important application of resource analysis is resource certification, whereby programs are coupled with
information about their resource usage. This information allows deciding whether the resources used by
the program execution are acceptable or not before running the program. In this sense, resource usage can
be considered a security property of untrusted mobile code, possibly in the context of proof-carrying code.
Programs whose resource usage is not certified are potentially harmful, since their execution may require
more resources than we are willing to spend or they may even have monetary cost by executing billable
events such as sending text messages or making http connections on a mobile phone. In fact, mobile devices
is one of the settings where resource certification is more important, because of the limited computing power
typically available on mobile devices.

Ideally, one would like to extend bytecode verification in order to include more sophisticated security
policies in the static verification part. This problem can be formulated in two ways. One is to have an
automatic system which given a program and a resource usage policy answers yes only if it succeeds to
prove that the program satisfies the policy. Alternatively, we can split this process in two steps: first,
an automatic system obtains an upper bound on the resource usage of the program and second, another
automatic system, which in what follows we refer to as comparator, checks whether the computed upper
bound is smaller than or equal to the resource usage policy for any possible input value. We advocate for
the second alternative because we believe it is more flexible: we first use COSTA on the code producer side
to infer upper bounds which are independent of any resource policy and consumer, and then, on the code
consumer side we check whether the upper bound abides by the policy.

We illustrate through a simple example the fundamental intuition behind resource certification. Let us
assume a resource usage policy for method m(t) that imposes a resource usage policy, which we call policy ,
on the number of instructions executed of:

policy=60 ∗ [nat(t)]2 + 120 ∗ nat(t) + 13

COSTA infers the upper bound ub=24 ∗ nat(t) ∗ dlog2(nat(t) + 1)e + 53 ∗ nat(t) + 12. The code will be
acceptable, provided that policy is guaranteed, i.e., ub≤policy , which happens to be the case in our example
and that the comparator succeeds to prove it.

We have developed a comparator which handles closed-forms that involve logarithmic, exponential,
polynomial expressions, etc. It is described in Section 5.2 below.

Also, though in some contexts, especially when considering memory usage, non-asymptotic policies are
to be expected, sometimes it is more reasonable that the policy is asymptotic. In order to allow the use
of asymptotic policies, COSTA has been extended in order to compute asymptotic upper bounds. This is
described in Section 5.1 below. Coming back to our previous example, this would result in a new policy ′ s.t.
policy ′=[nat(t)]2. The comparator should again be able to prove that policy ′ is satisfied by method m.

16

MOBIUS Deliverable D4.7 Report on on-device checking

5.1 Asymptotic Resource Usage Bounds

A fundamental characteristics of a program is the amount of resources that its execution will require, i.e.,
its resource usage. Typical examples of resources include execution time, memory watermark, amount of
data transmitted over the net, etc. Resource usage analysis aims at automatically estimating the resource
usage of programs. Static resource analyzers often produce cost bound functions, which have as input the
size of the input arguments and return bounds on the resource usage (or cost) of running the program on
such input.

A well-known mechanism for keeping the size of cost functions manageable and, thus, facilitate human
manipulation and comparison of cost functions is asymptotic analysis, whereby we focus on the behaviour
of functions for large input data and make a rough approximation by considering as equivalent functions
which grow at the same rate w.r.t. the size of the input date. The asymptotic point of view is basic in
computer science, where the question is typically how to describe the resource implication of scaling-up
the size of a computational problem, beyond the “toy” level. For instance, the big O notation is used
to define asymptotic upper bounds, i.e, given two functions f and g which map natural numbers to real
numbers, one writes f ∈ O(g) to express the fact that there is a natural constant m ≥ 1 and a real constant
c > 0 s.t. for any n ≥ m we have that | f(n) |≤ c∗ | g(n) |. Other types of (asymptotic) computational
complexity estimates are lower bounds (“Big Omega” notation) and asymptotically tight estimates, when the
asymptotic upper and lower bounds coincide (written using “Big Theta”). The aim of asymptotic resource
usage analysis is to obtain a cost function fa which is syntactically simple s.t. fn ∈ O(fa) (correctness)
and ideally also that fa ∈ Θ(fn) (accuracy), where fn is the non-asymptotic cost function. Besides, as we
will develop in the paper, fa can be computed by obtaining fn first and then simplifying it into fa or, more
interestingly, be produced directly.

The scopes of non-asymptotic and asymptotic analysis are complementary. Non-asymptotic bounds are
required for the estimation of precise execution time (like in WCET) or to predict accurate memory re-
quirements. The motivations for inferring asymptotic bounds are twofold: (1) They are essential during
program development, when the programmer tries to reason about the efficiency of a program, especially
when comparing alternative implementations for a given functionality. (2) Non-asymptotic bounds can be-
come unmanageably large expressions, imposing huge memory requirements. We will show that asymptotic
bounds are syntactically much simpler, can be produced at a smaller cost, and, interestingly, in cases where
their non-asymptotic forms cannot be computed.

The main techniques presented in [1] are applicable to obtain asymptotic versions of the cost functions
produced by any cost analysis, including lower, upper and average cost analyses. Besides, we will also
study how to perform a tighter integration with an upper bound solver which follows the classical approach
to static cost analysis. In this approach, the analysis is parametric w.r.t. a cost model, which is just a
description of the resources whose usage we should measure, e.g., time, memory, calls to a specific function,
etc. and analysis consists of two phases. (1) First, given a program and a cost model, the analysis produces
cost relations (CRs for short), i.e., a system of recursive equations which capture the resource usage of the
program for the given cost model in terms of the sizes of its input data. (2) In a second step, closed-form,
i.e., non-recursive, upper bounds are inferred for the CRs.

How the first phase is performed is heavily determined by the programming language under study and
nowadays there exist analyses for a relatively wide range of languages and their references). Importantly,
such first phase remains the same for both asymptotic and non-asymptotic analyses and thus we will not
describe it. The second phase is language-independent, i.e., once the CRs are produced, the same techniques
can be used to transform them to closed-form upper bounds, regardless of the programming language used
in the first phase. The important point is that this second phase can be modified in order to produce
asymptotic upper bounds directly. Our main contributions in [1] can be summarized as follows:

1. We adapt the notion of asymptotic complexity to cover the analysis of realistic programs whose limiting
behaviour is determined by the limiting behaviour of its loops. The latter often depends on linear
combinations of several program arguments which might increase or decrease.

17

MOBIUS Deliverable D4.7 Report on on-device checking

2. We present a novel transformation from non-asymptotic cost functions into asymptotic form. After
some syntactic simplifications, our transformation detects and eliminates subterms which are asymp-
totically subsumed by others and preserves the complexity order. When using our transformation as a
back-end of any non-asymptotic cost analyzer for average cost, upper or lower bounds, we accomplish
motivation (1) above.

3. In order to achieve motivation (2), we need to integrate the above transformation within the process
of obtaining the cost functions. We present a tight integration into (the second phase of) a resource
usage analyzer to generate directly asymptotic upper bounds without having to first compute their
non-asymptotic counterparts.

4. We report on a prototype implementation within the COSTA system which shows that we are able to
achieve motivations (1) and (2) in practice.

5.2 Comparing Cost Functions in Resource Analysis

In all applications of resource analysis, such as resource-usage verification, program synthesis and optimiza-
tion, etc., it is necessary to compare cost functions. This allows choosing an implementation with smaller
cost or to guarantee that the given resource-usage bounds are preserved.

Essentially, given a method m, a cost function fm and a set of linear constraints φm which impose size
restrictions (e.g., that a variable in m is larger than a certain value or that the size of an array is non zero,
etc.), we aim at comparing it with another cost function bound b and corresponding size constraints φb.
Depending on the application, such functions can be automatically inferred by a resource analyzer (e.g., if
we want to choose between two implementations), one of them can be user-defined (e.g., in resource usage
verification one tries to verify, i.e., prove or disprove, assertions written by the user about the efficiency of
the program).

From a mathematical perspective, the problem of cost function comparison is analogous to the problem
of proving that the difference of both functions is a decreasing or increasing function, e.g., b − fm ≥ 0
in the context φb ∧ φm. This is undecidable and also non-trivial, as cost functions involve non-linear
subexpressions (e.g., exponential, polynomial and logarithmic subexpressions) and they can contain multiple
variables possibly related by means of constraints in φb and φm. In order to develop a practical approach
to the comparison of cost functions, we take advantage of the form that cost functions originating from
the analysis of programs have and of the fact that they evaluate to non-negative values. Essentially, our
technique, described in [2], consists in the following steps:

1. Normalizing cost functions to a form which make them amenable to be syntactically compared, e.g.,
this step includes transforming them to sums of products of basic cost expressions.

2. Defining a series of comparison rules for basic cost expressions and their (approximated) differences,
which then allow us to compare two products.

3. Providing sufficient conditions for comparing two sums of products by relying on the product com-
parison, and enhancing it with a composite comparison schema which establishes when a product is
larger than a sum of products.

We have implemented our technique in the COSTA system. Our experimental results demonstrate that
our approach works well in practice, it can deal with cost functions obtained from realistic programs and
verifies user-provided upper bounds efficiently.

18

Bibliography

[1] E. Albert, D. Alonso, P. Arenas, S. Genaim, and G. Puebla. Asymptotic resource usage bounds. In
Programming Languages and Systems: Proceedings of the 7th Asian Symposium APLAS 2009, Lecture
Notes in Computer Science. Springer-Verlag, 2009. To appear.

[2] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and G. Puebla. Comparing cost functions in resource
analysis. In FOPARA ’09: Proceedings of the International Workshop on Foundational and Practical
Aspects of Resource Analysis, 2009.

[3] E. Albert, P. Arenas, and G. Puebla. Incremental certificates and checkers for abstraction-carrying
code. In Workshop on the Issues in the Theory of Security, March 2006.

[4] Lars Ole Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis,
University of Copenhagen, May 1994.

[5] Frédéric Besson, Thomas Jensen, and Tiphaine Turpin. Computing stack maps with interfaces. In
Proc. of the 22nd European Conference on Object-Oriented Programming (ECOOP’08), volume 5142
of Lecture Notes in Computer Science, pages 642–666. Springer-Verlag, 2008.

[6] Frédéric Besson, Thomas P. Jensen, and Tiphaine Turpin. Small witnesses for abstract interpretation-
based proofs. In Programming Languages and Systems: Proceedings of the 16th European Symposium
on Programming, ESOP 2007, number 4421 in Lecture Notes in Computer Science, pages 268–283.
Springer-Verlag, 2007.

[7] P. Crégut and C. Alvarado. Improving the security of downloadable Java applications with static
analysis. In Bytecode Semantics, Verification, Analysis and Transformation, volume 141 of Electronic
Notes in Theoretical Computer Science. Elsevier, 2005.

[8] MOBIUS Consortium. Deliverable 5.1: Selection of case studies, 2007. Available online from http:

//mobius.inria.fr.

[9] Bjarne Steensgaard. Points-to analysis in almost linear time. In Principles of Programming Languages,
pages 32–41, New York, NY, USA, 1996. ACM Press.

[10] Tiphaine Turpin. Pruning program invariants. PhD thesis, Univ. Rennes 1, 2008.

[11] John Whaley. Context-Sensitive Pointer Analysis using Binary Decision Diagrams. PhD thesis, Stan-
ford University, March 2007.

[12] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias analysis using binary
decision diagrams. In Programming Languages Design and Implementation. ACM Press, June 2004.

19

