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ABSTRACT
Atomic broadcast protocols ensure that messages are delivered to a
group of machines in some total order, even when some of these
machines can fail. These protocols are key to making distributed
services fault-tolerant, as their total order guarantee allows keep-
ing multiple service replicas in sync. But, unfortunately, atomic
broadcast protocols are also notoriously expensive.

We present a new protocol, called Acuerdo, that improves atomic
broadcast performance by using remote direct memory addressing
(RDMA). Acuerdo is built from the ground up to perform com-
munication using one-side RDMA writes, which do not use the
CPU of the remote machine, and is explicitly designed to minimize
waiting on the critical path. Our experimental results demonstrate
that Acuerdo provides raw throughput comparable to or exceeding
other RDMA atomic broadcast protocols, while improving latency
by almost 2𝑥 .
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rithms.
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1 INTRODUCTION
Remote direct memory access (RDMA) is a network protocol that al-
lows one machine to access the memory of another one. In contrast
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to TCP/IP, RDMA accesses can bypass the CPU (and the kernel),
thus giving an opportunity for significant performance gains, espe-
cially in instances where the kernel is the limiting bottleneck [38].
In the past several years, RDMA has moved from being a tool used
primarily for high performance computing into a commodity ca-
pability accessible to a wider variety of computing needs. This
migration was caused by the decrease in RDMA hardware costs
to the point where RDMA can be integrated into relatively small
data centers and racks. While early research in RDMA focused on
a reasonably narrow set of topics related specifically to high perfor-
mance computing, there is now an opportunity for more general
software tools to benefit from RDMA (e.g. [1, 5, 8, 12, 20, 34]).

In this work, we explore how RDMA can be used to scale up
atomic broadcast protocols that ensure that messages are delivered
to a group of nodes in some total order despite some of the nodes
failing. Atomic broadcast protocols are key to making distributed
services fault-tolerant [31]; they allow a service to run on several
replicas and propagate client operations to them in a common order.
Since atomic broadcast guarantees that all replicas receive the same
set of operations in the same order, the individual replicas remain
synchronized, and the system can continue serving client requests
correctly even if some of the replicas become unavailable. Atomic
broadcast protocols are often used to implement coordination ker-
nels, such as ZooKeeper [14], which are used by larger systems to
manage critical data.

The design of an atomic broadcast protocol can be viewed as
consisting of two main parts: normal mode operation and failure
recovery. In the normal mode, the message ordering is typically
driven by a single leader process, which is responsible for assigning
everymessage a consecutive entry in amessage log, and propagating
it to a set of followers (or backups). For fault-tolerance, the message
ordering needs to be finalized through consensus, which in the
normal mode, stipulates a round of acknowledgments from the
followers to the leader. Failure recovery is initiated by the failure of
the leader, after which the remaining replicas choose a new leader
in an election — once the new leader is elected, we again enter the
normal broadcast mode.

In this paper we present Acuerdo, an atomic broadcast protocol
which enables incredible speedup by running at the speed of the
fastest quorum, instead of the slowest active node as in prior work.
Acuerdo leverages RDMA properties and is specifically designed to
minimize waiting within the algorithm: a node almost never needs
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to wait for a message from another node to make progress, and
nodes are almost always doing useful work.

For most atomic broadcast algorithms, waiting is a common
occurrence, either because some nodes become out of date (and the
rest of the instance must wait for them to catch up), messages go
missing (and nodes must wait for them to arrive before continuing
useful work), nodes are slow to respond (and therefore the rest of
the instance stalls since stale values cannot be garbage collected),
or simply due to transient network hiccups (triggering one or more
of the above issues). We argue that minimizing waiting is the first
step towards optimizing an atomic broadcast algorithm: algorithms
with no waiting can support effectively infinite “pending” messages,
and can process messages as fast as clients can send them.

For minimizing waiting, RDMA is an exceptional opportunity.
When using a reliable RDMA connection, messages will be delivered
in order at the receiver, avoiding unnecessary waiting where a later
message arrives first and cannot be processed. RDMA writes are
also handled at the remote NIC, as opposed to the remote CPU, so
messages can be delivered even if the remote process is descheduled.
Finally, the RDMA protocol design, and many of the RDMA-specific
optimizations that exist in the literature, support efficient catch-up
through a batching mechanism. Thus, even if a node falls behind,
it can catch up to the remainder of the instance because RDMA
catch-up mechanisms run faster than the overall system.

Unfortunately, prior art in atomic broadcast algorithms over
RDMA fails to take advantage of these benefits. Some work fails
to take advantage of the FIFO delivery benefits of RDMA [29, 38].
Most work adds some waiting on the critical path with dramatic
performance consequences: a single delayed message in these sys-
tems can halt the entire system’s progress [16, 17]. Our work is
specifically designed to take advantage of the benefits that RDMA
can offer, resulting in latencies nearly 2𝑥 faster than prior art while
providing competitive bandwidth.

To further minimize service interruption and waiting, the failure
recovery in Acuerdo is based on a novel leader election protocol
that aims to restore the system back to operational state while
minimizing communication overheads and service interruption. To
achieve this extremely low downtime after a failure, our election
protocol is guaranteed to elect the most up-to-date node in a quo-
rum, thereby avoiding additional waiting wherein the leader must
acquire (from other nodes) any missing messages before beginning
to accept messages from clients (cf. [18, 21]).

In summary, Acuerdo is a novel atomic broadcast protocol de-
signed to leverage the benefits of RDMA atop the following building
blocks which are the contributions of this work:

(1) A novel and efficient catch-up mechanism, optimized for
RDMA (Section 3), which achieves superior latency and
throughput by systematically avoiding waiting;

(2) A new election protocol that is guaranteed to elect an “up-
to-date” leader, thus preventing long-latency state transfers.

(3) A new failure recovery procedure; and
(4) Case studies demonstrating that Acuerdo maintains a

throughput which is comparable to other existing RDMA-
based atomic broadcast protocols while improving message
latency by 2𝑥 (Section 4).

2 BACKGROUND
2.1 RDMA
As the RDMA protocol [30, 33] is a significant departure from tradi-
tional transport methods, its design takes a whole stack approach.
RDMA is for the most part managed at the network interface card
(NIC), which sits on the PCIe bus. The card has access to memory
through this bus and on most machines resides within the cache
coherency domain [15, 23].

To establish an RDMA connection between two NICs, applica-
tions must exchange device information and register the connection
(usually this exchange is done via a different protocol, such as TCP).
Next, applications exchange memory permissions to allow the re-
mote node access to their own memory. This exchange is done by
first registering memory with the NIC for remote access, which
pins the memory to prevent it from being swapped out and returns
a remote access key. This key is sent to the remote node to give it
access to the registered local memory region.

Once the connection is established at both NICs and remote
keys have been exchanged, the application can begin to use RDMA
messages (called verbs), such as read and write. It is important to
note that verbs are sent to the NIC via user space — the kernel is
only involved when we initially establish the connection.

In this work, we use RDMA’s reliable connection type, which
guarantees the lossless delivery of messages in FIFO order [30, 33].
In order to guarantee the delivery of writes at the remote node,
the local NIC must receive some acknowledgment (or completion
in RDMA terminology). Until the completion for a given write is
received, the NIC will maintain space in its memory in case the
write has been dropped. If the completion is not received within
a preset timeout, the NIC reissues the remote write. In an impor-
tant optimization to the reliable connection protocol (and one we
use extensively), not every write must be acknowledged with a
completion. Rather, because the reliable connection ensures FIFO
delivery of messages, the completion of a later write serves to ac-
knowledge the receipt of all earlier writes, effectively allowing us
to batch acknowledgments. Consequently, for connections which
issue large numbers of writes, we only need to request a completion
periodically in order to clear our send queue — this optimization is
known as selective signaling [3]. Our implementation issues a write
with a completion request every thousand messages, which works
well on our network. Our system is tuned specifically for RDMA
over Converged Ethernet (RoCE), but would presumably also work
over an Infiniband network with appropriate tuning.

2.2 Atomic Broadcast
Acuerdo is a distributed implementation of an atomic broadcast
protocol supporting reliable totally ordered broadcast of messages
to a set of replica nodes. Messages are received from a client and
broadcast to the nodes. At each replica, messages are delivered
to the application running on the same node.

A system implements atomic broadcast if every one of its execu-
tions satisfies the following properties:

Integrity. Every message delivered was previously broadcast (i.e.,
no out-of-thin air values).
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No Duplication. No message is delivered more than once to the
same node.

Total Order. All nodes are delivered a prefix of a commonmessage
order (i.e., messages are delivered in the same order to all
nodes, without gaps).

Atomic broadcast is a key building block for implementing
fault-tolerant services by means of the state-machine replication
approach [31]. This approach runs a service on several replicas and
propagates client operations to the replicas using the broadcast
primitive; when a replica delivers an operation, it applies the
operation to the local service state. Since atomic broadcast guar-
antees that all replicas deliver the same set of operations in the
same order, the individual replicas remain synchronized, and can
continue serving client requests correctly even if some of them
become unavailable.

As is standard for atomic broadcast protocols, Acuerdo runs over
a group of 𝑛 = 2𝑓 +1 processes, at most 𝑓 of which can fail by
crashing. The processes are connected by reliable FIFO channels,
provided by the reliable RDMA connections that we use. We call
any majority of 𝑓 +1 processes a quorum.

3 THE ACUERDO PROTOCOL
Acuerdo is a novel distributed atomic broadcast protocol designed to
leverage all the benefits of RDMA to improve performance. Acuerdo
is designed around the principle of running as fast as the fastest
quorum. This goal is accomplished through four design strategies:
(1) leveraging FIFO delivery, (2) efficient catch-up, (3) tolerance of
transient delays, and (4) novel leader election.

Leveraging FIFO Delivery RDMA’s FIFO delivery ensures that
messages are received in the order that they were sent, and Acuerdo
leverages this ordering to minimize waiting in two distinct ways.
First, the use of FIFO delivery avoids a critical source of waiting in
many atomic broadcast algorithms—waiting for missing messages
before processing subsequent ones that have already arrived [18].
Secondly, RDMA’s FIFO guarantees allow Acuerdo to efficiently
represent and transmit replica state. Since a replica’s state is equiv-
alent to the messages it has received and processed, we can, with
some care, represent the replica’s state using message identifiers. In
Acuerdo, the replicas leverage these identifiers to efficiently notify
each other of received and committed messages, which, thanks to
the RDMA FIFO guarantees, implicitly acknowledge their previ-
ously received and committed messages. As an added advantage,
since subsequent RDMA writes to the same location overwrite ear-
lier values, these replica state updates can always be directed to the
same address, simplifying update handling [17].

Efficient Catch-Up A node that falls behind needs to have the
ability to catch up to the remainder of the instance, instead of falling
further and further behind and eventually inhibiting progress of the
entire system. For efficient catch-up, we use a receiver-side batching
model [11, 19]. Since RDMA messages do not wake up the CPU,
they will instead be handled in batches determined by the receiver’s
event loop and scheduler. Since the CPU can processmessages faster
than they can be sent over the network, the CPUwill drain the batch
faster than it accumulates, even in the presence of long scheduler
induced delays. The message identifier-based notification scheme

similarly accelerates this catch-up mechanism. The receiver only
notifies its peers once it drains its batch, and this late notification
avoids network traffic when catching up. Consequently, the cost of
consensus is amortized over the size of the (receiver-determined)
batch.

Tolerating Transient Delays In real networks, intermittent
disruptions of service are likely. While efficient catch-up can be
seen as a way of handling these delays, Acuerdo incorporates this
principle into other parts of its design. In particular, Acuerdo is a
quorum-based protocol—messages are committed once accepted
at a majority of nodes. As with most quorum based systems, the
quorum is “flexible”; the system as a whole does not manage which
nodes are in or out but instead simply gathers a minimal number
of responses. This design decision stands in contrast to a virtual
synchrony model [6, 7, 9], as used in the Derecho algorithm [16, 17],
in which the quorum is explicitly managed in response to detected
failures or slowdowns. A virtual synchrony scheme will take action
if the delay is “bad enough” to merit the cost of reconfiguration.
In contrast, Acuerdo does not need to take explicit action when a
node is slow; it simply expects that most nodes will be fast, and the
slow node will catch up efficiently.

Novel Leader Election Acuerdo uses a novel election mecha-
nism that is guaranteed to elect an “up-to-date” leader that is aware
of any messages that could have been previously committed. This
property means that the new leader, upon winning the election,
need not confer with its followers to determine what earlier mes-
sages to truncate or include into the log (cf. [18, 21]), nor do they
need to wait before beginning to accept client messages. Instead,
the new leader can unilaterally decide how to proceed, avoiding
an additional round trip communication to all its followers and
reducing the downtime caused by the fail-over.

3.1 Acuerdo Overview
Like many atomic broadcast protocols, Acuerdo uses a leader-based
approach. It is most similar to the Zab protocol [18] from the popular
ZooKeeper coordination kernel, with the difference that Acuerdo
leverages RDMA for minimizing waiting [14] (see Section 5 for a
detailed comparison). On initialization, nodes in Acuerdo attempt
to elect a leader in the election mode; the leader wins an election
with a majority of votes, thereby winning the right to propose new
messages in Acuerdo’s broadcast mode. Once elected, the leader
has begun a period of sovereignty (called an epoch) in which it
is the sole node that can propose messages to its followers. The
followers will store them in an ordered message log and accept the
message, by publishing this fact to the leader. Once a message has
been accepted by a majority, it is committed, and a follower can
deliver its contents to the local application. If the leader at any point
becomes unresponsive, the remaining nodes abandon it and start a
new leader election, taking care to ensure that all messages already
committed are preserved into the following epoch and within the
new leader’s log.

An epoch is identified by a tuple composed of an increasing
round number and the identification number of its leader, that
is, 𝑒𝑝𝑜𝑐ℎ = (𝑟𝑜𝑢𝑛𝑑𝑛𝑏𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟𝑖𝑑 ) (see Figure 1). Epochs are totally
ordered by the round number and then by leader ID and increase
over time: it is always the case that a larger epoch comes after



ICPP ’22, August 29-September 1, 2022, Bordeaux, France Izraelevitz et al.

1 typedef pid uint32; // process ID type
2 // all tuples are ordered by values left to right
3 typedef epoch tuple<uint32 round, pid ldr>;
4 typedef msghdr tuple<epoch e, uint32 cnt>;
5 typedef message tuple<msghdr hdr, payload pyld>;
6 typedef vote tuple<epoch e_new, msghdr acpt>;
7 typedef diff map<msghdr, message∗>;
8
9 vector<pid> NodeIDs[NUM_NODES]; //node IDs
10 pid Self; //my process ID
11 epoch E_cur; // our current epoch
12 epoch E_new; // new epoch we plan on joining
13 msghdr Accepted; //last message from leader
14 msghdr Committed; //last committed message
15 msghdr Next; //next message to commit
16 uint32 Count; //num msgs sent this epoch as ldr
17 enum Role = {ELECTING, LEADER, FOLLOWER};
18
19 SST<msghdr> Accept_SST;
20 // used for msg acceptance
21 // Accept_SST[j] : last message j accepted
22
23 SST<vote> Vote_SST;
24 // used for leader election
25 // Vote_SST[j] is j's vote with
26 // Vote_SST[j].e_new.ldr as pending ldr with
27 // ldr's last accepted msg Vote_SST[j].acpt
28
29 SST<msghdr> Commit_SST;
30 // Used for diffs.
31 // Commit_SST[j] : j's last committed msg
32
33 map<msghdr,message∗> Log;
34
35 ringbuffer outgoing_buff;
36 ringbuffer[NUM_NODES] incoming_buff;

Figure 1: Types and Local Process Variables

a smaller one. Each node tracks which epoch they are currently
in (called E_cur), and, if in transition to a new leader, the epoch
(called E_new) they wish to join (if not in transition, the values are
the same). They also track what their Role is in the current epoch:
“leader”, “follower”, or “electing”.

3.2 Normal Broadcast
Broadcast is Acuerdo’s normal mode, in which a single leader
proposes a sequence of messages to its followers in order to en-
sure the messages are failure-safe. Acuerdo’s broadcast mode is
inspired by Zab [18], an atomic broadcast algorithm that lever-
ages FIFO delivery on TCP/IP. Like Zab, Acuerdo’s broadcast mode
has two different tasks for all nodes: accepting and committing.
The leader of an epoch has a third task in addition to these two,
broadcasting. The main difference between Zab’s broadcast mode
and Acuerdo’s broadcast mode is that thanks to the FIFO deliv-
ery of RDMA and a shared state table (SST) data structure [17]
described below, Acuerdo’s followers do not need to acknowledge
every message. Instead they can acknowledge only the most up-
to-date message, minimizing traffic and latency. This difference
is important, as it also removes the need for the leader to receive
acknowledgments for all messages.

During the broadcast phase, nodes are accomplishing three tasks.
The leader broadcasts new messages to its followers, and the fol-
lowers accept these messages by acknowledging receipt. Once a

SSTRDMA Write

RDMA Write

Node 2
N1: x N2: y’ N3: z

RDMA Write

RDMA Write

RDMA Write

RDMA WriteSST
Node 1

N1: x’ N2: y N3: z
SST

Node 3
N1: x N2: y N3: z’

Figure 2: The Shared State Table (SST) allows nodes to com-
municate efficiently when only the last write matters by al-
lowing a node to write into the array element that corre-
sponds to it.

quorum of nodes has accepted the message, it is guaranteed to
survive tolerated failures and can be committed at all nodes.

Broadcasting Within the broadcast mode, the leader broadcasts
messages on behalf of clients to the other replicas (Figure 4). When
the leader of an epoch receives a message from a client to broadcast,
it first computes the message header. The message header consists
of both the epoch tuple in which the message was proposed, i.e.,
(𝑟𝑜𝑢𝑛𝑑𝑛𝑏𝑟 , 𝑙𝑒𝑎𝑑𝑒𝑟𝑖𝑑 ), along with a unique, monotonically increasing
message ID number within the new epoch (generated at the leader).
The total order of the messages is dictated first by the epoch and
then by the message ID. Having computed the header, the leader
broadcasts the message with its header to all processes (including
itself).

37 // broadcasting
38 On: Broadcast payload pyld per client request
39 Pre: Role == LEADER
40 msghdr hdr = <E_new, ++Count>;
41 outgoing_buff.send_to_all(new message<hdr,pyld>);

Figure 4: Broadcasting

Acuerdo uses RDMA ring buffers to broadcast. The RDMA ring
buffer is a common communication primitive that supports a single
sender and multiple receivers. The ring buffer allows a node to
send messages via broadcast or unicast [11, 25]. To send a message,
the message contents are written to the sender’s local buffer and
then mirrored to a receiver’s remote buffer using RDMA writes.
Receivers poll for new messages at their current incoming tail
until it changes to indicate a new incoming message and its size.
The RDMA ring buffer allows the leader to continually pipeline
messages to followers without waiting for any acknowledgment or
interrupting the remote CPU; received messages will be handled
in a batch at the follower once it discovers them. This mechanism
follows the receiver-side batching style.
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Figure 3: Acuerdo Example

The RDMA ring buffer has several performance benefits impor-
tant to optimize communication between the leader and the follow-
ers. First, polling on incoming RDMA write locations is extremely
efficient for the receiver. So long as the location is unchanged and
cache pressure is moderate, the location will reside in the receiver’s
L1 cache. A cache miss will generally only occur upon actually
receiving a message from the remote sender. Second, ring buffers
support aggressive pipelining: as long as the buffer is not com-
pletely full, the sender can continue sending and eventually the
receiver can catch up by reading and acknowledging all available
messages at once. This pattern fits into the receiver-side batching
model, where the size of a batch is determined by the receiver’s
event loop, and it avoids any waiting at the sender’s side through
RDMA writes. In order to support all-to-all communication, each
node has access to a single outgoing buffer, used to broadcast
to remote nodes, and multiple incoming buffers (one per remote
node), used to receive messages.

We illustrate our protocol using the running example in Fig-
ure 3. The example begins when the leader (in this case node 1)
is in broadcast and shows the leader broadcasting messages to its
followers within epoch (0,1), where 0 is the round number and 1 is
the leader ID. Within epoch (0,1), node 1 first sends two messages
with successive headers ((0,1),1) and ((0,1),2), where the last number
is the message ID number within the epoch.

Accepting All nodes in broadcast mode have two tasks — accept-
ing and committing messages, shown in Figure 5. A node accepts a
message from a leader over a ring buffer only if the message belongs
to the epoch the node is in (line 47). The node adds the message
to the Log, an ordered map which stores messages in their header
order. The node also stores the most recently accepted header in the
Accepted variable, and, finally, responds to the leader to acknowl-
edge the message acceptance using the Accept_SST, which is a
shared state table (SST) data structure.

The shared state table (SST), introduced in [17] and leveraged
in Acuerdo for the both the broadcast and election modes, is an
abstraction specifically designed for RDMAmessages that overwrite
each other, i.e., where the receiver only cares about the last write
received. For instance, this is the case when the writes carry the
value of a monotonically increasing counter. The SST is represented
by a shared array indexed by node ID, which is replicated on all

nodes (as shown in Figure 2). A node has write access to its own slot
in the array, and read access to all others. On writing to its own slot,
a node can push its update to some or all other nodes using RDMA
writes, thereby overwriting its most recent value on remote arrays.
By traversing its local copy of the SST, a node can get a type of
“snapshot” of the shared state. In the case of acceptance, the leader
can traverse its own, in-memory, Accept_SST to determine the
most recently accepted messages at each remote node.

42 // accepting
43 On: Receive
44 message<msghdr<epoch e, uint32 cnt> hdr,
45 payload pd> M via incoming_buff[i]
46
47 if(e == E_new && e == E_cur){
48 // normal message acceptance
49 Log[hdr] = M;
50 Accepted = hdr;
51 Accept_SST[Self] = hdr;
52 Accept_SST.push_mine_to(E_cur.ldr);
53 }
54 elif(E_new ≤ e){
55 // diff acceptance
56 // and transition into broadcast
57 assert(hdr.cnt == 0);
58 E_new = e;
59 E_cur = e;
60 if(e.ldr ≠ Self){Role = FOLLOWER;}
61 diff d = ((diff)M.pyld);
62 ∀N∈Log ∧ N.hdr≥d.minKey() Log.remove(N);
63 ∀(h,n)∈d Log[h] = n;
64 Accepted = hdr; Accept_SST[Self] = hdr;
65 Accept_SST.push_mine_to(E_cur.ldr);
66 Next = <E_cur,0>;
67 }

Figure 5: Accepting

The acceptance mechanism in Acuerdo is also used outside of
normal broadcast to safely transition to a newly elected leader; the
remainder of the acceptance code (line 54 and forward) is used for
this task. We will return to this topic in Section 3.4.

We illustrate the acceptance step using our example execution
in Figure 3. In particular, this example demonstrates how nodes
receive messages and report their message acceptance to the leader
by writing to the remote SST (denoted by red arrows). As nodes
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receive messages via one-sided RDMA writes, they may discover
two messages at once, and will simply accept the later message,
implicitly accepting the earlier one due to RDMA’s FIFO guarantee—
this is the key difference with Zab that allows Acuerdo to have
significant performance improvements. In the running example in
Figure 3, node 3 discovers message ((0,1),2) together with message
((0,1),1), leading to an acceptance notification of only the later
message. This acceptance implicitly acknowledges the first message
and removes a source of latency associated with the process of
catching up.

Committing The other role of nodes in the broadcast mode is
to commit messages once they have been accepted by a quorum,
shown in Figure 6. Nodes commit messages in the order they are
stored in their logs. Nodes keep track of the next message to be com-
mitted (with the Next variable) based on this log order. The leader
determines when to commit a message using its Accept_SST,
which contains information as to what messages have been ac-
cepted at which nodes. Namely, the leader checks if the header
stored in the next message to be committed (the Next variable)
is below or equal to the one posted to its local Accept_SST by
a majority of nodes (a quorum) from the same epoch (line 74). If
so, it commits the message; it will later forward this commit to
its followers off the critical path, pushing a commit SST message
out using a Commit_SST (line 93). Followers determine when to
commit a message based on the leader’s Commit_SST entry at the
current epoch. A follower simply needs to check if the next message
header is below or equal to the header stored in the leader’s entry
of the Commit_SST (line 79).

Upon committing a message, a node caches its header in the
Committed variable as the most recently committed message, and
delivers the message to the local application. As with acceptance,
Acuerdo’s commit sequence is also used outside of normal broadcast
to confirm a newly elected leader (lines 83 and on). We will return
to this in Section 3.4.

The running example in Figure 3 shows messages ((0,1),1) and
((0,1),2) committed at the leading node 1 (shown in green) upon
receiving the acceptance notification from node 3 (the message has
been accepted at node 3 and locally). After node 1 propagates its
commit to the other nodes, they can commit the messages as well.

3.3 Election
The Acuerdo election mechanism gains performance advantages
because it guarantees to elect a node that is aware of any messages
that could have been previously committed. This is a novel prop-
erty in Acuerdo: other systems either need to transfer state to the
leader [21, 24], or use a secondary step to verify the leader is up to
date and retrigger an election if it is not (e.g., RAFT [28], Zab [18],
and DARE [29]), possibly hanging the instance in a livelock.

The Acuerdo election mechanism is initiated at system start-up
or after a node suspects that the current leader has failed (e.g., due to
a heartbeat timeout). The goal of the election protocol is to choose
a leader who (1) has convinced a quorum of followers to join their
epoch and (2) has a log which is at least as up to date as any of their
voters. This second requirement, which we call the “up-to-date”
property, guarantees that the new leader knows of any message

68 // committing
69 On: Periodically when
70 (Role == LEADER || Role == FOLLOWER)
71
72 if( (Role == LEADER &&
73 majorityk∈N(Accept_SST[k] ≥ Next
74 && Accept_SST[k].e == E_cur))
75 ||
76 (Role == FOLLOWER && Commit_SST[E_cur.ldr] ≥ Next
77 && Commit_SST[E_cur.ldr].e == E_cur) ){
78 // normal message commit
79 if(∃M∈Log M.hdr == Next && Next.cnt ≠ 0){
80 deliver(M); Committed = Next;
81 }
82 // diff commit
83 elif(Next.cnt == 0){
84 d = {(h, m) ∈ Log | Committed < h < Next})
85 while(d ≠ NULL){
86 n = d[d.minKey()]; deliver(n);
87 Committed = n.hdr; d.remove(d.minKey());
88 }
89 }
90 Next.cnt++;
91 }
92
93 On: Periodically
94 Commit_SST[Self] = Committed;
95 Commit_SST.push_mine();

Figure 6: Committing

which has been committed in the previous epoch. This avoids a
transfer of messages to the leader before it can begin broadcasting.

The Acuerdo election uses a designated SST for the election itself,
the Vote_SST. This replicated array coordinates the election by
giving every node a view of every other node’s vote. A vote consists
of two pieces of information: (1) the proposed epoch of the new
leader and (2) the last accepted message of the new leader. A node’s
vote is ordered first by the epoch and then by the accepted message
and is always increasing. The election mechanism is a type of “fixed
point” algorithm. At every step, some nodes will increase their votes
in order to converge to a situation where a quorum votes for a single
leader.

While in election mode or after a timeout, nodes repeatedly run
the election mechanism (Figure 7). Nodes have two vote rules that
dictate when they can vote for a candidate. Nodes vote either for
(1) the largest vote they are aware of if the vote’s candidate has
accepted a message with an equal or larger header than the local
node (line 106), or (2) themselves, taking care to ensure that their
vote is increasing (line 100) by creating a larger epoch number with
themselves as the leader (line 102). Nodeswill propose themselves as
candidates only if no suitable other vote exists or the best candidate
has timed out. Regardless of who they vote for, nodes update their
new epoch variable (E_new) to indicate their intention of following
their preferred candidate, update their entry in the Vote_SST, and
use the SST to propagate their vote to all other nodes. This algorithm
terminates provided all non-failed nodes continue to respondwithin
the timeout period. This is in contrast to the election process in
RAFT and DARE which could result in a livelock [28, 29]. Once
termination happens, the mechanism converges on a candidate
who has convinced a majority of nodes to vote for its new epoch
and which is in possession of a log at least as up-to-date as any of
its voters. This property obviates the need for a leader to spend
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96 On: Timeout or Periodically when Role == ELECTING
97 Role = ELECTING;
98 votes_cpy = Vote_SST;
99 mx = max_vote(votes_cpy);
100 if(timed_out || Accepted > mx.acpt){
101 // vote for self
102 E_new = new_bigger_epoch(E_new,mx.e_new,Self);
103 Vote_SST[Self] = <E_new,Accepted>;
104 Vote_SST.push_mine();
105 }
106 elif(mx > Vote_SST[Self] && Accepted ≤ mx.acpt){
107 // join max vote and vote for someone else
108 E_new = mx.e_new;
109 Vote_SST[Self] = <E_new,mx.acpt>;
110 Vote_SST.push_mine();
111 }
112
113 comm_cpy = Commit_SST;
114 if(majorityv∈Vote_SST(v == Vote_SST[Self])
115 && Vote_SST[Self].e_new.ldr == Self){
116 // transition to leader
117 Role = LEADER;
118 Count = 0;
119 foreach(j in NodeIDs){
120 msghdr hdr = <E_new, 0>;
121 payload pd = new diff();
122 for(h in {h' | ∃m’Log[h’] = m’ ∧
123 comm_cpy[j] ≤ h' ≤ Accepted})
124 pd[h] = Log[h];
125 outgoing_buff.send_to(j, new message<hdr,pd>);
126 }
127 }

Figure 7: Leader Election

time to bring its state up to date based on the messages committed
at the followers. Instead, Acuerdo’s election guarantees that the
leader is the most up-to-date node of its quorum. This guarantee is
leveraged during the transition period as explained in Section 3.4.

Our running example (Figure 3) shows an election (shown in
blue) after the original leader (node 1) times out, having failed to
send message ((0,1),3) to node 2. Node 2 falls to election, proposing
itself as leader of epoch (0,2). However, once node 3 joins the elec-
tion, it rejects node 2’s candidacy, as node 3 has a more up-to-date
log that includes message ((0,1),3). Subsequently, node 2 votes for
node 3 as its proposed vote is higher, increasing its vote to vote
for a better candidate. Having collected the votes of nodes 2 and
3, node 3 wins the election and can begin epoch (0,3) by sending a
diff message, described in the next section.

3.4 Transition into Broadcast
Acuerdo’s novel election mechanism guarantees that the elected
leader is up to date, and consequently there is no need to verify
the election in the transition period. Instead the transition period
leverages ring buffers to quickly arrive at consensus regarding the
last message committed prior to the current leader’s reign.

In order to enter into broadcast, the leader must ensure that all
of its followers have equivalent commit logs, that is, they all agree
on what messages were included in the previous epoch. In order
to ensure this invariant, the first message that the leader sends,
and that a follower will receive, is a diff message through the ring
buffer. As the first message sent by the leader of the new epoch, a
diff always has a message header of count zero. The diff message
not only provides notification that a new leader has been elected,

but also includes a list of whatever messages the follower may be
missing. Diffs are handled in similar ways to regular messages, in
that they are both accepted and committed using the same actions.

The construction of the diff message is shown in Figure 7 and
starts at line 119. Upon receiving and accepting this diff (message
number zero in the epoch) a node can transition out of the election
state and into the broadcast state as a follower. Since the header of
the latest committed message implicitly acknowledges the headers
of all previously committed messages, the diff only needs to include
messages that have not yet been committed at the receiving node.

When a follower receives a diff, it accepts this diff on the condition
that it has not voted for a larger epoch; that is, so long as its proposed
new epoch, E_new, is less than or equal to the epoch in the diff’s
header (Figure 5, line 54). In the case when the proposed new epoch,
E_new, matches the incoming diff’s epoch, this indicates the local
node voted for the new leader. If the proposed new epoch,E_new, is
smaller, this indicates the local node voted for some other candidate
with a smaller vote, or entirely missed the election. Accepting
this incoming diff means that the follower has officially joined the
new epoch and is ready to accept additional messages from this
leader. Therefore, the follower sets both the current epoch and the
proposed new epoch to the diff’s epoch and transitions into the
follower role. The node then applies the diff to its local state in
order to synchronize its own Log with that of its new leader, first
by removing any uncommitted values newer than the diff’s first
message, and then replacing them by the contents of the diff. It
then stores the diff’s message header as the last accepted message
and pushes this fact via the Accept_SST.

To commit a diff, a follower uses the same criteria as a normal
message (upon notification from the leader). Committing a diff
(Figure 6, line 83) means committing all the included messages that
have not been committed earlier and delivering them to the local
application.

The final section of our running example shows the transition
back into broadcast (Figure 3 in pink). Having won the election,
node 3 becomes the leader of epoch (0,3). It then sends a diffmessage
to all nodes with header ((0,3),0), which includes any messages they
might be missing. In particular, the diff includes message ((0,1),3),
which has not yet been received by node 2. Nodes that receive
the diff then transition into the new epoch (0,3) as followers; they
subsequently accept node 3’s diff and future messages.

4 EXPERIMENTAL RESULTS
We ran our experiments on Cloudlab, an open platform for running
network experiments that gives exclusive access to the nodes [36].
In particular, our experiments used a cluster with nodes that have an
Intel E5-2640v4 processor each running Ubuntu 18.04 (for reference,
Cloudlab calls this cluster xl170). Each node has 64GB of DRAM
and a dual-port Mellanox ConnectX-4 25 GB NIC. The experiment
network is confined to a single chassis hosting a Mellanox 2410
switch that connects each core with 25Gb ethernet links that sup-
port RDMA over Converged Ethernet (RoCE). Code was compiled
using g++ 7.5.0 at the -O3 optimization level.

We ran our experiments on a number of available atomic broad-
cast algorithms, designed for both TCP and RDMA (we review the
latter in more detail in Section 5):
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derecho Derecho is an atomic broadcast protocol built for
RDMA [16, 17]. Unlike Acuerdo, Derecho uses a virtual syn-
chrony model — that is, all nodes are assumed to be up and
failed nodes are configured out of the system. This model fa-
cilitates the transfer of large messages, since the protocol can
use a peer-to-peer style transfer for these [4]. Derecho can
operate in two modes. In derecho-leader, only the leader
sends messages. In derecho-all, all acceptors send messages
in a round-robin pattern.

apus Apus is another atomic broadcast protocol designed for
RDMA; like Acuerdo, it uses a leader-based approach [38].
Leaders have exclusive access to remote logs; this property
is controlled at the RDMA connection. Apus uses a more
traditional Paxos-based commit protocol than Acuerdo: it
executes a separate consensus instance on every message,
which has been identified as a major performance and scala-
bility bottleneck in practical systems (e.g., [22]).

libpaxos Libpaxos is an open-source implementation of the stan-
dard Paxos algorithm which operates over TCP [32].

zookeeper Apache ZooKeeper [14] is a distributed coordina-
tion service implemented over the Zab protocol [18, 37].
ZooKeeper includes a distributed key value store on top of a
Zab instance, which runs over TCP; we use the most recent
version (3.4.14).

etcd Etcd [13] is an open source implementation of the RAFT [28]
algorithm operating over TCP. Like ZooKeeper, etcd includes
a key value store on top of the underlying atomic broadcast
engine. Our experiments used the most recent version (3.4.7).

4.1 Broadcast Performance
We evaluated raw broadcast speed by running experiments on a
stable network where no nodes failed. Both throughput and la-
tency were monitored for the same experiment across varying
loads. The client regulates the system load, ensuring that at most
a fixed number of messages (the “window”) are outstanding and
unacknowledged. At low loads, the system responds quickly with
very low latency. As load increases, bandwidth tends to increase
with slight impact on latency until the system reaches maximum
bandwidth and latency spikes, giving a “knee” in the graph.

We increased the window size by powers of two, starting at one,
until reaching the saturation of the system. Message sizes are fixed
for the entire experiment at either 10 or 1000 bytes, and we provide
results for small (three) and large (seven) replica counts (the leader
is included in this count). Leaders broadcast messages immediately,
without batching, upon receiving messages from a client.

Figure 8 shows the results of these raw performance experiments.
For small node counts and message sizes, Acuerdo outperforms all
competitors in both latency and throughput. The comparison with
the next closest competitor, Derecho-leader, is illustrative of the
design decisions made within Acuerdo.

Acuerdo has far better latency than Derecho-leader, and im-
proves over all other competitors by at least an order of magnitude.
Messages can be committed to the Acuerdo instance within around
10 usec for small groups and messages. This compares to at least
19 usec for small messages in Derecho.

The performance difference is a consequence of two design deci-
sions made within Acuerdo, both chosen to avoid waiting (and con-
sequently reduce latency). First, Derecho’s design, like Acuerdo’s,
uses a ring buffer for communication between nodes. However,
they differ in when a message slot can be reused. Acuerdo can
reuse a slot once the receiver has simply accepted the message.
Long buffers are sufficient to cover any transient interruptions, and
with receiver-side batching, it is easy for the receiver to catch up.
In contrast, Derecho can only reuse a slot once the message has
been committed across all active nodes, thereby magnifying the
impact of a single slow node. This design decision makes sense in
virtual synchrony, where slow nodes already impact throughput,
and is consequently tightly integrated into Derecho’s failure recov-
ery algorithm. Second, Derecho uses a virtual synchrony design —
messages are committed once all active nodes have acknowledged
them. As a consequence, a single slow node will force the entire
cluster to commit operations at its speed, whereas Acuerdo will
simply leave the node behind to catch up later.

Similar waiting-based issues impact the other RDMA-based sys-
tem, APUS. APUS constructs small batches consisting of at most
a single message from each client (it assumes messages from dis-
parate clients are unordered). However, APUS is only able to have a
single pending batch at any one time — its underlying Paxos-based
implementation [26] was designed for networks that reorder mes-
sages and can only process a single, complete batch at any one time.
Any delay on any message in the batch will cause a total system
stall. In contrast, Acuerdo and Derecho can process partial batches
by taking advantage of FIFO delivery guarantees.

Another point to note is that Acuerdo significantly outperforms
Derecho’s single leader results across all replicas for both latency
and throughput. For throughput, this difference has to do with the
ring buffer implementation: Acuerdo uses a single RDMAwrite and
Derecho uses two. As the minimum size of an RDMA message is 80
bytes, for small messages, this design decision means that Acuerdo
is twice as bandwidth-efficient (6 MB/s vs. 3 MB/s for Derecho with
10 byte messages on 3 nodes).

Importantly, this difference is not a simple implementation de-
tail, but rather a consequence of the algorithm’s expected use case:
Derecho is designed for large message transfers, while Acuerdo is
designed for smaller ones. To send a Derecho message, the mes-
sage is sent in a single RDMA write, and then a separate counter
is incremented with a second RDMA write. The counters, which
track the number of messages sent between each pair of nodes,
are subsequently forwarded across the instance to determine mes-
sage acceptance information, and can be “wedged” upon entering a
leader change due to failure. The use of separate paths for message
metadata (the counter) and the data within allows Derecho to vary
the data delivery method depending on the size of the message:
for very large messages, Derecho can use a peer-to-peer delivery
system to reduce the load on the leader bandwidth [4]. In con-
trast, Acuerdo is optimized for small messages and tightly couples
message metadata with data, thereby improving performance for
messages small enough to transfer efficiently via RDMA writes
from the leader.

Derecho’s all-to-all variant takes the optimization argument fur-
ther, prioritizing bandwidth over latency. In all-to-all mode, Dere-
cho does not elect a leader, but instead allows each node to propose
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Figure 8: Broadcast performance. This experiment shows latency (usec) and throughput (MB/sec) under varying load. The
“knee” in the graph occurs when the system begins to suffer from queuing effects and maximum bandwidth is reached; ideal
performance lies in the bottom right corner. The load varies the outstanding messages from the client in range (20, 21, . . . , 2𝑁 )
to saturation. Note log scale on y-axis.

a message according to a round-robin policy. This strategy allows
the cluster to avoid throttling on a single leader’s send bandwidth
(see Acuerdo’s latency spikes when saturated) when transferring
large messages across large clusters, but leaves the system even
more vulnerable to slow nodes when transferring small messages:
it fails to provide good latency in this scenario. This result can be
seen in Figure 8 by the vertical difference between derecho-all (blue
line) and acuerdo (red line) before Acuerdo’s saturation point.

4.2 Election Performance
Acuerdo elections result in very little downtime. Table 1 shows the
election duration as the number of replicas grows. Our experiment
runs for several minutes and sets the leader to propose 10-byte
messages in an open loop. We then repeatedly cause the leader to
sleep five seconds after winning its election. The election is timed
from the point at which the new leader detects the old leader as
down until the new leader can begin sending its first new message.
That is, the time includes the election protocol and the diff transfer,
but does not include the time it takes to detect a failure. We report
the average duration for all elections across the run. Interestingly,
we found election times were far more sensitive to the proportion of
“long-latency” nodes (nodes that take longer, in general, to respond)
than to the overall number of replicas. For instance, a cluster of

seven nodes is more affected by two long-latency nodes than a
cluster of nine as the long-latency nodes are less likely to enter
the active quorum or election. The displayed data shows averages
across runs, where we migrate the active set of nodes between
machines to eliminate this effect.

3 nodes 5 nodes 7 nodes 9 nodes
.3 ms 6.8 ms 12.1 ms 12.6ms

Table 1: Average Acuerdo election duration as a function of
replica count (includes the diff transfer).

4.3 Application Use Case
In order to experiment with Acuerdo in an application use case, we
integrated an Acuerdo instance with an RDMA hash table (similar
to [11]). The replicated hash table sits at all Acuerdo replicas, each
of which has a complete copy. This scenario is an expected use-case
for Acuerdo; it replicates the data structure across multiple nodes
for fault tolerance.

The hash table is accessed by a separate, external, client ma-
chine that can send requests via RDMA to the Acuerdo instance.
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Using Acuerdo, we replicate update commands (create, set, delete)
received from the client for crash resilience; once commands are
committed by Acuerdo they are delivered to the replica’s local hash-
table copy and acknowledged to the client. Hash-table gets can
be done directly via RDMA from the client to any replica, thereby
bypassing the Acuerdo instance.

To benchmark this configuration, we used the YCSB benchmark
suite, commonly used for testing key-value stores. We specifically
use the YCSB-load test [10], which continually applies writes in a .99
skewed zipfian distribution, to show the effects of using the Acuerdo
protocol. This hash-table configuration is effectively equivalent to
an Apache ZooKeeper [14] or etcd [13] deployment with in-memory
storage. Figure 9 shows the result of this comparison. As expected,
the Acuerdo deployment significantly outperforms both systems,
generally by around 10x for ZooKeeper and 50x for etcd.
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Figure 9: Throughput (ops/sec) on YCSB-load as a function
of node count. Note log scale on y-axis.

5 RELATEDWORK
Acuerdo is one of a long series of atomic broadcast protocols, the
most well-known of which are Paxos [21], Zab [18, 37], View-
stamped Replication [24] and Raft [28]. The design of Acuerdo
is closest to that of Zab, used in the popular ZooKeeper coordina-
tion kernel [14, 35]. Like Acuerdo, Zab is leader-based and relies
on FIFO communication links. The contribution of Acuerdo lies in
a broadcast protocol that avoids waiting and in exploiting RDMA
to do so.

The election phase of Acuerdo is one of the main differences
from that of Zab. The published description of Zab [18] allows an ar-
bitrary process to become a leader. This makes recovery expensive,
since a prospective leader has to transfer the state from a majority
of other processes to determine the state in which the broadcast
needs to be restarted. Zab’s actual implementation in ZooKeeper
tried to avoid the need for this transfer by electing a leader that
is already up to date, but this implementation was later shown to
be incorrect [27]. The optimized leader election has never been
properly fixed: currently ZooKeeper has to perform an additional
message exchange (and wait) after the leader is elected to check
if its state is up to date. If this check fails, the election process is
restarted. The election in Acuerdo yields a leader that dominates
the state of a majority of acceptors; no expensive state transfer
from acceptors to the leader is necessary.

Other atomic algorithms have also been designed for RDMA.
The earliest, DARE [29], uses a novel broadcast method that lever-
ages the ability of nodes to temporarily close RDMA connections.

Acceptors following a leader close their (data) connections to all
other nodes, giving the leader exclusive access to the acceptor’s
memory and allowing the acceptor’s CPU to remain effectively
passive. Leaders use this exclusive access during broadcast to ma-
nipulate the remote logs stored in the acceptors’ memory. While
a novel idea, DARE’s usage of this exclusive access by the leader
is unfortunately relatively slow as it relies on fine-grained RDMA
completions: in order to send a message to a remote acceptor, lead-
ers must first write to the log, ensure the write is completed, then
mark the entry as valid. For leader election, DARE uses an algo-
rithm which combines ideas from both ZooKeeper and Raft. Similar
to Acuerdo, its leader election guarantees that the leader of a new
epoch will know all committed messages from the prior epoch.
Unlike Acuerdo, however, DARE’s leader election requires every
acceptor to vote at most once per election round. Consequently,
DARE can deadlock when several acceptors fall into an election but
split their vote among several valid contenders; this split vote dead-
lock will result in another expensive timeout and election round.
To deal with this deadlock issue, DARE uses randomized timeouts
to avoid large numbers of acceptors falling to an election at once,
necessitating somewhat slack timeout values.

APUS [38] is a more recent work that significantly improves
on DARE’s performance. APUS accelerates broadcast by a sim-
ple batching strategy that includes in each batch a single message
from each active client. In APUS, the remote acceptor periodically
acknowledges to the leader batches of messages that have been de-
livered. The leader, upon receiving a quorum of acknowledgments,
can commit the message in some later packet. The use of batching
here, along with a more effective acknowledgment implementation
that avoids the use of RDMA completion queues, significantly im-
proves APUS’s performance over DARE. For leader election, APUS
uses a Paxos-based protocol similar to Raft [26].

Derecho [16, 17] is another consensus algorithm explicitly de-
signed for RDMA, but it takes a significantly different approach
from APUS, DARE, and Acuerdo. Unlike the other algorithms,
which use a quorum of acceptors to ensure a message is commit-
ted, Derecho uses a virtual synchrony model [6, 7, 9]. In virtual
synchrony, in order for a message to be committed, it must be repli-
cated to all active nodes. Failures, which in a quorum system can
be transient, are treated as hard outages and the node is configured
out from the active group (but can later be reconfigured back in).
Derecho runs as fast as the slowest node in the system. In contrast,
Acuerdo gets its speedup by being able to run as fast as the fastest
quorum.

The most recent work, Mu [2], introduces a novel mechanism
of using the RDMA completion for acceptance acknowledgment.
Mu does not require follower CPUs to wake up to acknowledge
messages, instead using RDMA completions from the NIC as the ack.
As such, Mu requires closing and opening the RDMA connection in
the case of an election since followers must ensure the only open
connection is to the leader. Unfortunately, Mu’s software is both
tuned and specialized for an Infiniband network and was incapable
of running on our RoCE cluster.
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6 CONCLUSION
In this paper we have introduced Acuerdo, a novel atomic broadcast
protocol designed from the ground up for RDMA. Acuerdo takes
advantage of several RDMA design points in order to maximize
its performance and avoid waiting. Acuerdo maintains excellent
bandwidth performance when compared to other RDMA atomic
broadcast protocols, but improves latency by almost 2𝑥 and experi-
ences minimal downtime upon leader failure.

ACKNOWLEDGMENTS
This work was supported by the European Research Council (Start-
ing Grant RACCOON) and Genuen.

REFERENCES
[1] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi,

Stanko Novaković, Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh,
Kiran Tati, Rajesh Venkatasubramanian, and Michael Wei. 2018. Remote re-
gions: a simple abstraction for remote memory. In 2018 USENIX Annual Technical
Conf. (USENIX ATC 18). USENIX Association, 775–787. https://www.usenix.org/
conference/atc18/presentation/aguilera

[2] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,
Athanasios Xygkis, and Igor Zablotchi. 2020. Microsecond Consensus for Mi-
crosecond Applications. In 14th USENIX Symp. on Operating Systems Design and
Implementation (OSDI 20). USENIX Association, 599–616. https://www.usenix.
org/conference/osdi20/presentation/aguilera

[3] Dotan Barak. 2019. Tips and tricks to optimize your RDMA code.
(2019). http://www.rdmamojo.com/2013/06/08/tips-and-tricks-to-optimize-your-
rdma-code/.

[4] Jonathan Behrens, Sagar Jha, Ken Birman, and Edward Tremel. 2018. RDMC: A
Reliable RDMA Multicast for Large Objects. In 2018 48th Annual IEEE/IFIP Intl.
Conf. on Dependable Systems and Networks (DSN). 71–82. https://doi.org/10.1109/
DSN.2018.00020

[5] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow. 9,
7 (2016), 528–539.

[6] Ken Birman and Thomas A. Joseph. 1987. Exploiting Virtual Synchrony in
Distributed Systems. In Eleventh ACM Symp. on Operating Systems Principles
(SOSP ’87). ACM, Austin, Texas, USA, 123–138. https://doi.org/10.1145/41457.
37515

[7] Kenneth P. Birman and Thomas A. Joseph. 1987. Reliable Communication in the
Presence of Failures. ACM Trans. on Computer Systems 5, 1 (Jan. 1987), 47–76.
https://doi.org/10.1145/7351.7478

[8] Yanzhe Chen, XingdaWei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast and
General Distributed Transactions Using RDMA and HTM. In Eleventh European
Conf. on Computer Systems (EuroSys ’16). London, United Kingdom, 26:1–26:17.

[9] Gregory V. Chockler, Idit Keidar, and Roman Vitenberg. 2001. Group Communi-
cation Specifications: A Comprehensive Study. Comput. Surveys 33, 4 (Dec. 2001),
427–469. https://doi.org/10.1145/503112.503113

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In 1st ACM
Symp. on Cloud Computing (SoCC ’10). ACM, Indianapolis, Indiana, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[11] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In 11th USENIX Conf. on Networked Systems
Design and Implementation (NSDI’14). USENIX Association, Seattle, WA, 401–414.
http://dl.acm.org/citation.cfm?id=2616448.2616486

[12] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Compro-
mises: Distributed Transactions with Consistency, Availability, and Performance.
In 25th Symp. on Operating Systems Principles (SOSP ’15). ACM, Monterey, Cali-
fornia, 54–70. https://doi.org/10.1145/2815400.2815425

[13] The Linux Foundation. 2020. etcd: A distributed, reliable key-value store for the
most critical data of a distributed system. https://etcd.io/.

[14] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In 2010 USENIX
Conf. on USENIX Annual Technical Conf. (USENIX ATC’10). USENIX Association,
Boston, MA, 11–11. http://dl.acm.org/citation.cfm?id=1855840.1855851

[15] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer’s
Manual. Technical Report 325462-060US. Intel Corporation.

[16] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman.

2019. Derecho: Fast State Machine Replication for Cloud Services. ACM Trans.
on Computer Systems 36, 2 (April 2019). https://doi.org/10.1145/3302258

[17] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Matthew Milano, Weijia Song,
Edward Tremel, Sydney Zink, Ken Birman, and Robbert Van Renesse. 2017.
Building Smart Memories and High-speed Cloud Services for the Internet of
Things with Derecho. In 2017 Symp. on Cloud Computing (SoCC ’17). ACM, Santa
Clara, California, 632–632. https://doi.org/10.1145/3127479.3134597

[18] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. 2011. Zab: High-
performance Broadcast for Primary-backup Systems. In 2011 IEEE/IFIP 41st Intl.
Conf. on Dependable Systems&Networks (DSN ’11). IEEE Computer Society, 245–
256. https://doi.org/10.1109/DSN.2011.5958223

[19] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
Efficiently for Key-value Services. In 2014 ACM Conf. on SIGCOMM (SIGCOMM
’14). ACM, Chicago, IL, 295–306. https://doi.org/10.1145/2619239.2626299

[20] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In 12th USENIX Symp. on Operating Systems Design and Implementation (OSDI
16). USENIX Association, 185–201. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/kalia

[21] Leslie Lamport. 1998. The Part-time Parliament. ACM Trans. on Computer Systems
16, 2 (May 1998), 133–169. https://doi.org/10.1145/279227.279229

[22] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K.
Ports. 2016. Just Say No to Paxos Overhead: Replacing Consensus with Network
Ordering. In 12th USENIX Conf. on Operating Systems Design and Implementation
(OSDI’16). USENIX Association, Savannah, GA, USA, 467–483. http://dl.acm.org/
citation.cfm?id=3026877.3026914

[23] ARM Limited. 2009. Implementing DMA on ARM SMP Systems. Technical Report
Application Note 228 (ARM DAI0228A).

[24] Barbara Liskov and James Cowling. 2012. Viewstamped Replication Revisited.
Technical Report MIT-CSAIL-TR-2012-021. Massachusetts Institute of Technol-
ogy.

[25] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K.
Panda. 2003. High Performance RDMA-based MPI Implementation over Infini-
Band. In 17th Annual Intl. Conf. on Supercomputing (ICS ’03). ACM, San Francisco,
CA, USA, 295–304. https://doi.org/10.1145/782814.782855

[26] David Mazieres. 2007. Paxos made practical. Unpublished manuscript (Jan. 2007).
[27] André Medeiros. 2012. ZooKeeper’s atomic broadcast protocol: Theory and

practice. (2012). Available from www.tcs.hut.fi/Studies/T-79.5001/reports/2012-
deSouzaMedeiros.pdf.

[28] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Conf. on USENIX Annual Technical Conf.
(USENIX ATC’14). USENIX Association, Philadelphia, PA, 305–320. http://dl.acm.
org/citation.cfm?id=2643634.2643666

[29] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine
Replication on RDMA Networks. In 24th Intl. Symp. on High-Performance Parallel
and Distributed Computing (HPDC ’15). ACM, Portland, Oregon, USA, 107–118.
https://doi.org/10.1145/2749246.2749267

[30] Renato J. Recio, Bernard Metzler, Paul R. Culley, Jeff Hilland, and Dave Garcia.
2007. A Remote Direct Memory Access Protocol Specification. Technical Report
RFC 5040. Internet Engineering Task Force.

[31] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990), 299–319.

[32] Daniele Sciascia and Marco Primi. 2013. LibPaxos. (2013).
http://libpaxos.sourceforge.net/.

[33] Hemal Shah, Felix Marti, Wael Noureddine, Asgeir Eiriksson, and Robert Sharp.
2014. Remote Direct Memory Access RDMA Protocol Extensions. Technical Report
RFC 7306. ISSN: 2070-1721. Internet Engineering Task Force.

[34] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopoulos,
Aleksandar Dragojević, Dushyanth Narayanan, and Miguel Castro. 2019. Fast
General Distributed Transactions with Opacity. In 2019 Intl. Conf. on Management
of Data (SIGMOD ’19). ACM, Amsterdam, Netherlands, 433–448. https://doi.org/
10.1145/3299869.3300069

[35] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio Junqueira. 2012.
Dynamic Reconfiguration of Primary/Backup Clusters. In 2012 USENIX Conf.
on Annual Technical Conf. (USENIX ATC’12). USENIX Association, Boston, MA,
39–39. http://dl.acm.org/citation.cfm?id=2342821.2342860

[36] University of Utah. 2022. CloudLab. (2022). https://www.cloudlab.us/.
[37] Robbert van Renesse, Nicholas Schiper, and Fred B. Schneider. 2015. Vive La

Difference: Paxos vs. Viewstamped Replication vs. Zab. IEEE Trans. on Dependable
and Secure Computing 12, 4 (July 2015), 472–484. https://doi.org/10.1109/TDSC.
2014.2355848

[38] ChengWang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. 2017. APUS:
Fast and Scalable Paxos on RDMA. In 2017 Symp. on Cloud Computing (SoCC ’17).
ACM, Santa Clara, California, 94–107. https://doi.org/10.1145/3127479.3128609

https://www.usenix.org/conference/atc18/presentation/ aguilera
https://www.usenix.org/conference/atc18/presentation/ aguilera
https://www.usenix.org/conference/osdi20/presentation/ aguilera
https://www.usenix.org/conference/osdi20/presentation/ aguilera
https://doi.org/10.1109/DSN.2018.00020
https://doi.org/10.1109/DSN.2018.00020
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/7351.7478
https://doi.org/10.1145/503112.503113
https://doi.org/10.1145/1807128.1807152
http://dl.acm.org/citation.cfm?id=2616448.2616486
https://doi.org/10.1145/2815400.2815425
https://etcd.io/
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/3302258
https://doi.org/10.1145/3127479.3134597
https://doi.org/10.1109/DSN.2011.5958223
https://doi.org/10.1145/2619239.2626299
https://www.usenix.org/conference/osdi16/technical-sessions/ presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/ presentation/kalia
https://doi.org/10.1145/279227.279229
http://dl.acm.org/citation.cfm?id=3026877.3026914
http://dl.acm.org/citation.cfm?id=3026877.3026914
https://doi.org/10.1145/782814.782855
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1145/3299869.3300069
http://dl.acm.org/citation.cfm?id=2342821.2342860
https://doi.org/10.1109/TDSC.2014.2355848
https://doi.org/10.1109/TDSC.2014.2355848
https://doi.org/10.1145/3127479.3128609

	Abstract
	1 Introduction
	2 Background
	2.1 RDMA
	2.2 Atomic Broadcast

	3 The Acuerdo Protocol
	3.1 Acuerdo Overview
	3.2 Normal Broadcast
	3.3 Election
	3.4 Transition into Broadcast

	4 Experimental Results
	4.1 Broadcast Performance
	4.2 Election Performance
	4.3 Application Use Case

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

