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Abstract

This thesis studies the foundations of fault-tolerant distributed computing under unreliable
communication. Motivated by the practical challenges of message loss in modern networks, we
consider a general model where both processes and communication channels may fail. Unlike
classical models, we allow channels to be flaky, meaning they can lose an arbitrary number of
messages without fairness or eventual delivery guarantees. This setting reflects a wide range
of real-world failures observed in modern distributed applications.

Our first contribution is a general characterization of solvability under arbitrary combinations
of process and channel failures. We introduce a framework called a generalized quorum system
(GQS), which precisely captures the minimal connectivity needed to implement classical
shared-memory abstractions such as atomic registers, atomic snapshots, lattice agreement,
and consensus. We prove that a GQS is both necessary and sufficient for solving these
problems, even under extremely weak connectivity conditions. In particular, we show that
these abstractions can be implemented even when read quorums are not strongly connected,
as long as some strongly connected write quorum is reachable from them.

To match this lower bound, we develop algorithms for each of the four problems in an
adversarial model where correct channels are only eventually reliable and faulty channels
are flaky. A key technical challenge is implementing registers under these assumptions. To
address this, we develop two new building blocks: quorum access functions and custom logical
clocks, which enable indirect coordination between weakly connected quorums.

We then shift our attention to a practically motivated class of fail-prone systems in which
at most a minority of processes may crash. This assumption, although restrictive, allows
stronger guarantees and more efficient algorithms. In this setting, we show that consensus
becomes the most difficult abstraction to implement efficiently. Classical mechanisms like
leader election or failure detectors are not effective under flaky communication. To overcome
this, we adapt a recently proposed abstraction of a view synchronizer, which enables groups of
correct processes to coordinate in a common view with a correct leader. Using this abstraction,
we design a modular consensus protocol that guarantees wait-freedom within a connected
core of the system, using bounded memory and without assuming transitive connectivity.

Finally, we demonstrate how our bounds can be used to analyze consensus solvability in
existing models of weak connectivity. In particular, we show that some models strong enough
to implement a leader detector are still too weak to solve consensus.

Overall, this thesis contributes new theoretical foundations, abstractions, and algorithms
for reliable distributed computing under weak connectivity. It provides a unified framework
for reasoning about solvability and complexity in settings that better reflect the behavior of
modern networks.
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Resumen

Esta tesis estudia los fundamentos de la computaciéon distribuida tolerante a fallos en presencia
de comunicacién no confiable. Motivados por los desafios practicos que impone la pérdida de
mensajes en redes modernas, consideramos un modelo general donde tanto los procesos como
los canales de comunicacion pueden fallar. A diferencia de los modelos clasicos, permitimos
canales flaky, que pueden perder una cantidad arbitraria de mensajes sin garantias de equidad
ni entrega eventual. Este escenario refleja una amplia gama de fallos reales observados en
aplicaciones distribuidas actuales.

Nuestra primera contribucién es una caracterizaciéon general de la posibilidad de imple-
mentacién bajo combinaciones arbitrarias de fallos de procesos y canales. Introducimos una
nueva herramienta, el sistema de qudrums generalizado (GQS, por sus siglas en inglés), que
captura de forma precisa la conectividad minima necesaria para implementar abstracciones
clasicas de memoria compartida, como registros atémicos, instantdneas atémicas, acuerdo
sobre reticulos y consenso. Demostramos que un GQS es una condicién necesaria y suficiente
para resolver estos problemas, incluso bajo supuestos de conectividad extremadamente débiles.
En particular, mostramos que estas abstracciones pueden implementarse incluso si los quérums
de lectura no son fuertemente conexos, siempre que exista un quérum de escritura fuertemente
conexo alcanzable desde ellos.

Para igualar esta cota inferior, desarrollamos algoritmos para cada uno de los cuatro problemas
bajo un modelo adversario donde los canales correctos son solo eventualmente fiables y los
canales defectuosos son flaky. Un desafio clave es la implementacion de registros en este
contexto. Para resolverlo, desarrollamos dos mecanismos: funciones de acceso a quérum y
relojes 16gicos personalizados, que permiten la coordinacion indirecta entre quérums débilmente
conectados.

Luego analizamos una clase de sistemas motivada por la practica, en los que como mucho
puede fallar una minoria de procesos. Aunque esta suposicién restringe el conjunto de fallos
posibles, permite ofrecer garantias mas fuertes y algoritmos mas eficientes. En este caso,
demostramos que consenso se vuelve la abstraccion mas dificil de implementar de manera
eficiente. Mecanismos clasicos como detectores de fallos o detectores de lider no son eficaces
bajo canales flaky. Para superar esta dificultad, adaptamos una abstraccion propuesta
recientemente llamada sincronizador de vistas, que permite a grupos de procesos correctos
coordinarse en una vista comin con un lider correcto. Con esta abstraccion, disenamos un
protocolo modular de consenso que garantiza progreso en el ntcleo conectado del sistema,
utiliza memoria acotada y no asume conectividad transitiva.

Finalmente, mostramos como nuestras cotas pueden aplicarse al analisis de modelos existentes
con conectividad débil. En particular, demostramos que algunos modelos suficientemente
fuertes para implementar detectores de lider no alcanzan para resolver consenso.

En conjunto, esta tesis ofrece nuevas bases teoricas, abstracciones y algoritmos para la
computaciéon distribuida confiable bajo conectividad parcial. Proporciona un marco unificado
para razonar sobre posibilidad de implementacién y complejidad en entornos que reflejan
mejor el comportamiento de las redes modernas.
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Chapter 1

Introduction

Tolerating communication channel failures is an important challenge faced by the developers of
modern distributed systems. This issue is of practical significance, as such failures frequently
occur in real-world deployments [15, 20, 44]. They stem from a range of causes — including
physical infrastructure breakdowns, software bugs in network switches, and configuration
errors — and often lead to severe system outages. In fact, Alquraan et al. [10] conducted a
comprehensive study of failures caused by network partitions in widely used replicated data
stores. Their findings showed that the majority of these failures had catastrophic consequences,
and that resolving nearly half required redesigning core system mechanisms. Thus, these
failures were not merely the result of programming errors, but reflected deeper flaws in system
design.

Perhaps the most challenging aspect of real-world network failures is that networks can break
down in arbitrarily complex ways, resulting in a wide variety of connectivity patterns:

e In the simplest case, individual channel failures do not affect the overall network
connectivity (Figure 1.1a).

e Sometimes, the network partitions into multiple components with no connectivity
between them (Figure 1.1b).

o In more complex scenarios, some components remain connected in one direction but
not in the other (Figure 1.1c).

o In the worst case, some components become intermittently connected, leading to the
loss of an arbitrary subset of messages transmitted between them (Figure 1.1d).

The latter pattern has so far received little attention in theoretical research. Most network
models for classical problems in distributed computing assume that channels are either
(eventually) reliable or (eventually) disconnected (Figures 1.1a — c¢). Reliable channels are
sometimes replaced by fair lossy ones, which guarantee delivery only if a message is sent
infinitely many times. However, reliable and fair lossy channels are computationally equivalent:
the former can be implemented from the latter by repeatedly resending each message until it
is acknowledged and by filtering out duplicates [3].
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Figure 1.1: Examples of irregular connectivity patterns: (a) indirect connectivity; (b) clean
partitions; (¢) asymmetric connectivity; and (d) intermittent connectivity. All processes
are correct. Solid arrows indicate reliable channels, dashed arrows denote channels that
may arbitrarily drop messages, and missing arrows represent disconnected channels.

What makes channel failures even more difficult to handle is that they must be tolerated in
conjunction with ordinary process failures, often leading to complex and subtle interactions.
The resulting vast space of faulty behaviors makes the analysis of computability questions
under these failure conditions particularly challenging. It is therefore not surprising that,
with a few exceptions, prior work has studied process and channel failures in isolation from
each other.

In particular, it is well known that tolerating up to k process crashes in a fully connected
network of n processes is possible for a range of problems (e.g., registers and consensus) if
and only if n > 2k + 1 [12, 32]. Subsequent work [42, 50] generalized this result to the case
where the set of possible faulty behaviors is specified as a fail-prone system — a collection of
failure patterns, each defining a set of processes that may crash in a single execution [52].
In this setting, the problems mentioned above are implementable under a given fail-prone
system if and only if there exists a read-write quorum system (QS) in which: any read and
write quorums intersect (Consistency); and some read and write quorums of correct processes
are available in every execution (Availability).

In this thesis, we extend these results to fail-prone systems that may include arbitrary
combinations of both process and channel failures — namely, process crashes and channels
that may arbitrarily drop messages.

Example 1.1. Consider a set of processes P = {a,b,c,d}. Figure 1.2 depicts a fail-prone
system F consisting of failure patterns f;, i = 1..4 (ignore R; and W; for now). Under failure
pattern fi, processes a, b, and ¢ are correct, while d may crash. Channels (c,a), (a,b), and
(b,a) are correct, while all others may fail.

A plausible conjecture for a tight reliability bound under fail-prone systems comprising
arbitrary combinations of process and channel failures might be formulated as follows. There
exists a read-write quorum system QS™ that preserves Consistency but modifies Availability to
require that the processes within the available read or write quorum are strongly connected
by correct channels. This ensures that some process can communicate with both a read and a
write quorum (e.g., one in their intersection), directly enabling the execution of algorithms like
ABD [12] and Paxos [47]. In fact, QS* was shown to be sufficient for partially synchronous
consensus [7, 30, 31, 37].
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Figure 1.2: A fail-prone system F and a generalized quorum system (F,R,WW), where R = {R; |
i=1.4} and W = {W; | i = 1..4}. Solid circles denote correct processes, gray circles
denote processes that may crash, solid arrows denote reliable channels, and missing
arrows denote channels that may fail.

These results, however, leave a noticeable gap. While the existence of QS™ is sufficient in
some cases, it is unknown whether it is necessary for arbitrary fail-prone systems — such as
those with k < |25 |, or those not based on failure thresholds at all [52, 53]. Surprisingly,
we answer this question in the negative. More broadly, this thesis addresses the following
research questions:

« RQ1: How can existing theoretical models be generalized to precisely capture arbitrary
combinations of process and channel failures, including the failure patterns observed in
practical distributed systems?

« RQ2: What are the minimal reliability conditions on processes and communication
channels under which classical fault-tolerant abstractions — such as atomic registers,
atomic snapshots, lattice agreement, and consensus — can be solved?

« RQ3: What novel abstractions, algorithms, and techniques are necessary to efficiently
implement these fault-tolerant primitives under adversarial conditions, including arbi-
trary process crashes and unconstrained message loss?

By addressing these questions, this thesis provides a unified theoretical foundation and
practical methodologies for designing robust distributed systems that tolerate both process
and channel failures. Our results consist of lower and upper bounds that characterize the
fundamental limits of reliability under such failures (§3.5).

Lower bounds. We first present a general framework that extends the classical notion
of a fail-prone system [52] to account for both process and channel failures (§3.2). This
framework allows us to express, for example, whether an algorithm is intended to tolerate the
failure patterns illustrated in Figure 1.1. We then use this framework to establish minimal
connectivity requirements necessary to implement atomic registers, atomic snapshots, lattice
agreement, and consensus.

To obtain strong lower bounds, we consider strong network models in which correct channels are
reliable and faulty channels are disconnected, i.e., drop all messages. We assume asynchrony
for registers, snapshots, and lattice agreement (model Magrp in Figure 1.3), and partial
synchrony [32] for consensus (model Mpgrp): executions begin asynchronously and eventually
become synchronous. The most notable aspect of our lower bounds is that, unlike prior
work under unreliable connectivity (e.g., [5, 61]), they are proven under a weak termination
guarantee that only requires obstruction-free termination at a subset of the processes (§3.3).

3
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Figure 1.3: System models categorized by synchrony assumptions and channel types.

Informally, we establish two necessary conditions for implementing the problems listed above
(§4.1 and §5.1):

1. All processes where obstruction-freedom holds must be strongly connected via correct
channels.

2. There must be sufficient reliable connectivity for some correct write quorum to be both
strongly connected and unidirectionally reachable from some correct read quorum — a
condition we formalize through a novel generalized quorum system (GQS) (§3.4).

We prove that, given a fail-prone system F comprising an arbitrary set of process-channel
failure patterns, if atomic registers, atomic snapshots, lattice agreement, or consensus are
implementable under F, then F admits a GQS.

Example 1.2. Consider the fail-prone system F = {f; | i = 1..4} in Figure 1.2. The families
of read quorums R = {R; | i = 1..4} and write quorums W = {W,; | i = 1..4} form a
generalized quorum system: each Wj is strongly connected and reachable from R; via channels
correct under the failure pattern f;. None of the read quorums R; are strongly connected,
thus relaxing the connectivity requirements of QS*.

Our results also show that any solution to the problems above can guarantee termination only
within the write quorums of some GQS (e.g., processes a and b under failure pattern f; from
Figure 1.2). Such a restricted termination guarantee is expected in our setting, as channel
failures may isolate some correct processes, making it impossible to ensure termination for all
of them.

The above results generalize the celebrated CAP theorem [19, 38|, which states that it is
impossible to guarantee all three of Consistency, Availability, and network Partition-tolerance
(§4.2). Whereas CAP asserts only that some channels must be correct to ensure consistency and
availability, we identify which ones are needed. Furthermore, while CAP requires availability
at all processes, we characterize the conditions under which it can be ensured in just a part
of the system.

Upper bounds. Next, we propose algorithms for atomic registers, atomic snapshots, lattice
agreement, and consensus that match our lower bounds (§4.3 and §5.2). These algorithms
assume the existence of a GQS and guarantee wait-freedom at its write quorums. They are
designed to operate in an adversarial model where correct channels are only eventually reliable

4
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and faulty channels are flaky, i.e., they may drop an arbitrary subset of messages sent on
them, without any guarantee of fairness (models Magr and Mpgr in Figure 1.3).

Flakiness is a broad failure mode that captures a range of patterns observed in practice,
including both full and intermittent loss of connectivity. It also subsumes previously studied
variants of lossy channels, such as eventually disconnected [7, 25] and fair lossy [3, 16].
Although irregular connectivity patterns have been investigated before [6, 7, 30, 31, 37], to
the best of our knowledge, we are the first to propose implementations of registers, snapshots,
lattice agreement, and consensus in the presence of flaky channels.

Implementing registers on top of a GQS presents a unique challenge. To complete a register
operation invoked at a process, that process must communicate with both a read and a write
quorum — a typical pattern in algorithms like ABD. However, due to the limited connectivity
within read quorums, the process cannot query a read quorum simply by sending messages to
its members and awaiting responses.

Example 1.3. Assume that a register operation is invoked at process a under failure pattern
f1 from Figure 1.2. In this case, all channels incoming to process ¢ € Ry may have disconnected.
This makes it impossible for a to request information from this member of the read quorum
by sending a message to it. Of course, ¢ could periodically push information to a through the
correct channel (¢, a), without waiting for explicit requests. However, because the network is
asynchronous, it is difficult for a to determine whether the information received from c is up
to date — that is, whether it reflects all updates that precede the current operation invocation
at a, a critical requirement for ensuring linearizability.

We address this challenge using a novel logical clock that processes use to tag the information
they push downstream. The clock is cooperatively maintained by processes when updating a
write quorum or querying a read quorum. We encapsulate the corresponding protocol into
reusable quorum access functions, which are then used to construct an ABD-like algorithm
for registers. Since snapshots and lattice agreement can be reduced to registers, the upper
bounds for those problems follow as well.

Next, we show that the existence of a GQS also constitutes a tight bound on the connectivity
required to implement consensus under partial synchrony. Interestingly, we find that imple-
menting consensus under arbitrary process and channel failures is simpler than implementing
registers, because a process can exploit the eventual timeliness of the network to determine
whether the information it receives is up to date.

Bounded process failures. The upper bounds presented earlier allow us to show that our
bounds are tight, thereby settling the computability question. However, the corresponding
algorithms are inneficient in terms of both latency and message complexity. To address this
issue, we shift our attention to a practically motivated class of fail-prone systems in which at
most a minority of processes may fail. While this assumption restricts the set of admissible
failure patterns, it yields stronger connectivity guarantees (§4.4.1 and §5.3) that can be
leveraged to design more efficient implementations — specifically, implementations in which
the time required to complete an operation can be bounded in terms of message delays and
the rate at which processes exchange state (§4.4.2 and §5.4).

5
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Informally, we show that for any n-process implementation of the problems mentioned before,
if the implementation tolerates k process crashes and n = 2k + 1, then any process where
obstruction-freedom holds must belong to a set of at least k£ 4+ 1 correct processes that are
strongly connected by correct channels. We call the largest such set the connected core of the
network. For example, in Figure 1.1a, the connected core is {a, b, ¢}, whereas in Figures 1.1b—d
it is {a, c}.

The implementation of consensus is the more challenging one. Although classical abstractions
such as failure detectors or leader election mechanisms [24] can be adapted to solve consensus
in models with disconnections or fair-lossy channels [7, 25, 30, 37, 61], they are no longer
effective in the presence of flaky channels. Intuitively, this is because they may fail to correctly
identify processes with reliable connectivity — a requirement for ensuring the liveness of
consensus.

Example 1.4. Suppose that the pattern of message loss experienced by the channels (a,b),
(b,a), (b,c), and (c,b) in Figure 1.1d is such that all leader election messages are delivered.
Thus, it is possible for process b to be elected as a leader. However, since any message sent
by process b after being elected can be dropped — regardless of how many times it is resent —
the process may not be able to drive consensus to completion, thereby violating liveness.

To overcome the limitations of failure and leader detectors under flaky channels, we take a
different approach: we generalize the abstraction of a wview synchronizer [17, 18, 54, 55],
recently proposed for Byzantine consensus, to benign failure settings with flaky channels.
Roughly, a view synchronizer enables a commonly used design pattern in which the protocol
execution is divided into views (also known as rounds), each with a designated leader that
coordinates process interactions within that view.

The task of the synchronizer is to ensure that a sufficiently large set of correct processes
eventually spends enough time in the same view with a correct leader, who can then drive
consensus to completion. Supporting this functionality under the model Mpgr is nontrivial,
as during asynchronous periods clocks can diverge and messages used to synchronize views
may be lost or delayed. View synchronizers encapsulate the logic required to handle these
challenges, thereby enabling the modular design of consensus protocols.

In contrast to failure or leader detectors, a synchronizer does not attempt to identify the
set of misbehaving processes (which, as argued above, is difficult with flaky channels), but
instead delegates this responsibility to the top-level protocol. The protocol can monitor the
current leader using timeouts and other protocol-specific logic, and request the synchronizer
to switch to another view with a different leader if it detects a lack of progress. For example,
if processes a and c¢ in Figure 1.1d do not observe progress from process b due to message loss,
they would eventually initiate a view change and try a different leader.

We present a specification of a view synchronizer sufficient to implement consensus in the
presence of flaky channels, along with an implementation and a proof that the implementation
satisfies this specification (§5.4.1, §5.4.2 and §5.4.3). While handling crashes is easier than
Byzantine faults, flaky channels introduce a distinct challenge: processes outside the connected
core (such as process b in Figures 1.1b—d) may falsely suspect the current leader and should not
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be able to force a view change, thereby disrupting a functioning view. Using our synchronizer,
we then design a consensus protocol that tolerates flaky channels and prove its correctness.

Finally, we demonstrate how our lower and upper bounds can be applied to establish consensus
solvability in various existing models of weak connectivity [5, 6, 33, 43, 51] (§5.5). In particular,
we show that some connectivity models strong enough to implement the 2 leader detector
are nevertheless too weak to implement consensus.

To conclude, we observe that all upper bounds under bounded process failures are achieved
using bounded-memory algorithms, reflecting the practical performance motivations underlying
this part of the thesis.

The results presented in this thesis are based on the following peer-reviewed publications:

e Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, Fedor Ryabinin.
Tight Bounds on Channel Reliability via Generalized Quorum Systems.
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Published by ACM. CORE A*.
Available at: https://doi.org/10.1145/3732772.3733529.

o Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman.
Fault-Tolerant Computing with Unreliable Channels. Best Paper Award.
In Proceedings of the 27th International Conference on Principles of Dis-
tributed Systems (OPODIS 2023), volume 286 of LIPIcs, pages 21:1-21:21. Editors:
Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, Yukiko Yamauchi.
Published by Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. CORE B.
Available at: https://doi.org/10.4230/LIPIcs.0PODIS.2023.21.
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Chapter 2

Background

This chapter provides the background needed to make the thesis self-contained. It introduces
the system model, correctness conditions, core concepts, and classical abstractions that are
used throughout the thesis.

We begin by recalling that modern distributed systems are typically composed of a group of
processes. A process abstracts a unit of computation — such as a physical or virtual machine,
a processor, or a thread of execution in a concurrent environment. A key goal in designing
such systems is to enable these processes to cooperate on a shared task.

The environment — whether it’s a single computer, a data center, or a system spread across
the globe — introduces several challenges. One of them is to design mechanisms that enable
reliable cooperation, even in the presence of process or network failures, or under adversarial
conditions. The central difficulty in distributed computing is to build algorithms that let
working processes continue collaborating correctly on the common task, despite partial failures.

To manage the complexity of distributed systems, recurring patterns of cooperation are often
encapsulated in well-defined abstractions. These act as modular building blocks upon which
more complex systems can be designed. In this thesis, we focus on four such abstractions:
atomic registers, atomic snapshots, lattice agreement, and consensus.

Before we define these abstractions formally, we first introduce the computational model in
which they are expressed. This includes identifying the main elements of a distributed system
— processes, communication channels, timing assumptions, and failures — and abstracting
their behavior to avoid low-level implementation details. This formalization helps us reason
precisely about the correctness and complexity of distributed algorithms.

2.1 Basic Definitions

Processes. A unit capable of performing computation in a distributed system is modeled
as a process. We assume the system consists of a fixed set of processes P, known to all
participants. Each process runs its own algorithm; together, these local programs define a
distributed algorithm.



Alejandro Naser-Pastoriza

1 when received ACCEPT(b, k, m) from p;,

2 pre: status € {LEADER, FDLLDWER} Abal =b
3 loglk] =m

4 send ACCEPT_ACK(b, k) to p;

Figure 2.1: Example of a handler.

When a process deviates from the prescribed algorithm, we say that a failure has occurred.
The types of failures allowed define the process abstraction. In this thesis, we assume the
crash-stop model, in which a process may halt and never resume execution.

Channels. We consider message-passing systems, where processes communicate by exchanging
messages over channels that abstract the underlying physical network. Channels may lose,
duplicate, reorder, or arbitrarily delay messages, but they do not corrupt them or generate
spurious ones.

Timing. It is also important to specify the system’s timing assumptions — such as whether
processes have access to clocks or whether communication delays are bounded. In this thesis,
we consider both asynchronous systems, which make no such assumptions, and models with
partial synchrony. The precise assumptions will be introduced later, as needed.

System Model. A distributed system model is defined by combining the abstractions
introduced above. Reasoning about distributed algorithms begins by fixing the model in which
they are intended to operate. This model then serves as a foundation for introducing higher-
level abstractions that capture recurring patterns of interaction in distributed applications.

2.2 Pseudocode

We describe our algorithms using pseudocode that follows a reactive model, where each
algorithm consists of a set of event handlers. Each handler specifies how a process responds
to a particular type of event.

In this asynchronous, event-driven model, each process behaves as a state machine whose
transitions are triggered by events: either the reception of one or more messages or the
satisfaction of conditions on local variables. A handler is written using a when block, followed
by a sequence of instructions, as illustrated in Figure 2.1.

Each process handles events atomically and one at a time — no two events are processed
concurrently by the same process. The only exception is when a handler is suspended on
an await statement, in which case other handlers may execute until the condition of await
is satisfied. After completing one event, a process checks whether another event has been
triggered. This check is assumed to be fair and is implicit — it is not shown in the pseudocode.

Handlers may also be guarded by preconditions on the local state (line 2 in Figure 2.1). A
handler executes only when its event is triggered and its condition is satisfied. We assume
the runtime system buffers such events until their conditions hold.

10



Chapter 2. Background

2.3 Correctness Conditions

The correctness of a distributed algorithm is typically defined in terms of safety and liveness
properties. A safety property ensures that nothing bad ever happens, while a liveness
property guarantees that something good eventually happens. We describe these two classes
of properties below.

A safety property asserts that an algorithm never violates a certain invariant. If a violation
does occur, it must happen in finite time, and the property cannot be restored afterward.
Formally, a property is a safety property if, whenever it is violated in an execution o, there
exists a finite prefix o’ such that every extension of ¢’ also violates it.

A liveness property, in contrast, asserts that some desired event will eventually occur. Such
properties cannot be violated in finite time: for any finite execution, it remains possible that
the property will be satisfied later. Formally, a property is a liveness property if every finite
execution o can be extended to an infinite execution o’ that satisfies it.

A correct implementation of a shared object must also guarantee that operations eventually
complete for some correct processes. These guarantees are formalized through progress
conditions, which are a subclass of liveness properties. Obstruction-freedom holds at a process
if every operation it invokes eventually completes, provided the process runs alone for long
enough without interference from others. Wait-freedom holds at a process if every operation
it invokes eventually completes, regardless of the behavior or failures of other processes.

2.4 Fail-Prone Systems

In classical models of distributed computing, failure assumptions are often cardinality-based —
for example, assuming that at most k out of 2k 4+ 1 processes may crash. A more general
and modular approach is to explicitly specify the failure scenarios that an algorithm must
tolerate. This is formalized through the notion of a fail-prone system [52].

A failure pattern captures a single failure scenario, describing which processes may fail in an
execution. Formally, a failure pattern is a set f C P. A fail-prone system captures all failure
scenarios that an algorithm must tolerate. Formally, a fail-prone system is a collection F C 27
of possible failure patterns. An algorithm is said to tolerate JF if it satisfies its correctness
properties in every execution where the set of faulty processes is contained in some f € F.

For example, the classical threshold failure assumption — at most k process failures — corre-
sponds to the fail-prone system:

F={fCP|Ifl <k}

Fail-prone systems offer a flexible way to describe complex failure models. They allow
capturing constraints that go beyond thresholds — for example, that certain processes fail
together, or that some are always correct. This level of generality is especially useful when
reasoning about fault-tolerant algorithms for non-uniform environments.

11
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2.5 Quorum Systems

Fault-tolerant distributed algorithms typically ensure the consistency of replicated state using
quorums, i.e., intersecting sets of processes. It is common to distinguish between two classes
of quorums — read and write quorums — so that the intersection is required only between
quorums from different classes.

Classical quorum systems are defined under the assumption that only processes may fail, and
that channels between correct processes are reliable. In this setting, failure assumptions are
captured by a fail-prone system [52], as defined in the previous section.

Definition 2.1. A quorum system is a triple (F, R, W), where F is a fail-prone system,
R C 2% is a family of read quorums, W C 2% is a family of write quorums, and the following
conditions hold:

o Consistency: for all R€ R and W € W, RNW # 0.

o Availability: for all f € F, there exist R € R and W € W such that all processes in
RUW are correct according to f, i.e., RUW C P\ f.

Example 2.2. Consider a system with n processes, where up to k < |%5* | may fail. Let:
o F={fCP||f|] <k} uptok process failures.
e R={RCP||R|>n—k}—read quorums of size at least n — k.
e W={W CP||W|>k+1} — write quorums of size at least k + 1.

Then (F,R,W) is a quorum system with respect to F [12, 42].

This example illustrates the usefulness of distinguishing between read and write quorums: it
allows smaller write quorums in exchange for larger read quorums. In the special case where

k= L”glj, we get R = W, so both read and write quorums are majorities.

2.6 Core Objects: Specifications and Implementations

This section introduces the shared objects that are the focus of this thesis: multi-writer
multi-reader (MWMR) atomic registers, single-writer multi-reader (SWMR) atomic snapshots,
lattice agreement, and consensus. These abstractions capture common cooperation patterns
in distributed computing and are used extensively in the design of fault-tolerant distributed
systems.

We begin by formalizing the safety properties that define the correct behavior of read/write
objects. Then, for each abstraction, we describe a classical implementation under the
assumption of asynchronous reliable channels and crash-stop processes. These implementations
rely on the quorum system described in Example 2.2, tolerate up to k£ process crashes, and
guarantee wait-freedom at all correct processes. Together, these baseline algorithms serve as
a reference point for the fault-tolerant constructions we present later in the thesis.

12
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2.6.1 Common Definitions

An operation op’ follows an operation op, denoted op — op/, if op’ is invoked after op returns;
op’ is concurrent with op if neither op — op’ nor op’ — op. An execution is sequential if no
two operations in it are concurrent.

An execution o of an object (e.g., a register or snapshot) is linearizable [40] if there exists
a set of responses R and a sequence m = opy, 0p,, ... of all complete operations in ¢ (and
some subset of incomplete operations paired with responses in R), such that 7 is a correct
sequential execution and satisfies op; — op; = @ < j.

An execution o satisfies safeness if the subsequence of ¢ consisting of all write operations
and all read operations not concurrent with any writes is linearizable. An implementation of
an object is safe [46] if all its executions satisfy safeness; it is atomic if all its executions are
linearizable.

2.6.2 MWDMR Atomic Registers

Specification. Let Value be an arbitrary domain of values. A multi-writer multi-reader
atomic register supports two operations: write(z), which stores a value = € Value and returns
ack; and read, which retrieves the current value from the register and returns it. A sequential
execution of these operations is correct if every read operation returns the value written by
the most recent preceding write, or a special value 1 € Value if there is no such preceding
write.

Implementation. In Figure 2.2, we present the implementation of a multi-writer multi-reader
(MWMR) variant of the single-writer multi-reader (SWMR) atomic register implementation
originally proposed by Attiya, Bar-Noy, and Dolev [12, 50].

The implementation tags values with versions from N x N, ordered lexicographically. A version
is a pair consisting of a monotonically increasing number and a process identifier. Each
register process maintains a local state (val, ver), where val is the most recent value written to
the register at this process, and ver is its associated version. Each process also maintains a
monotonically increasing sequence number seq, which is used to generate a unique identifier
for each register operation invoked at the process. This identifier is included in all messages
exchanged during the operation, enabling the process to associate incoming responses with
the corresponding invocation.

To execute a write(z) operation (line 4), a process follows two phases:

o Get phase. The process increments its sequence number (line 5) and broadcasts
GET_REQ(seq) to all processes (line 6). Upon receiving a GET_REQ(s) message (line 20),
each process replies with its current value and version by sending GET_RESP(val, ver, s)
(line 21). The writer waits to collect such replies from a read quorum R (line 7). It
then selects the maximum version (k, _) among the responses and constructs a new
version (k + 1,4) using its own identifier 7 (line 8). This ensures that the new version is
strictly greater than any previously observed, preserving a consistent and increasing
order across writes.

13
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1 seq < 0
2 val < L
3 ver < (0,1)

4 function write(z):

5
6
7

10

11

12
13
14
15

16
17
18

19

20
21

22
23
24
25
26

To execute a read() operation (line 12), a process follows two similar phases:

seq < seq + 1

send GET_REQ(seq) to all

wait until received {GET_RESP(val;,ver;,seq) | p; € R}
from some read quorum R

(k,_) < max{ver; | p; € R}

send SET_REQ(z, (k + 1,7),seq) to all

wait until received {SET_RESP(seq) | p;, € W}
from some write quorum W

return ack

function read():

seq < seq + 1

send GET_REQ(seq) to all

wait until received {GET_RESP(val;,ver;,seq) | p; € R}
from some read quorum R

let p, € R be such that Vp; € R. ver, > ver;

send SET_REQ(val, very,seq) to all

wait until received {SET_RESP(seq) |p, € W}
from some write quorum W

return valy

when received GET_REQ(s) from p;

send GET_RESP(val, ver, s) to p;

when received SET_REQ(val, ver, s) from p;,

if ver > ver then
val < wal
ver <— ver
send SET_RESP(s) to p,

Figure 2.2: MWMR atomic register protocol at a process p;.

« Set phase. The process then stores the pair (z, (k + 1,7)) at some write quorum. To
this end, it sends SET_REQ(z, (k 4+ 1,7),seq) to all processes (line 9). Upon receiving
such a message (line 22), a process updates its local value and version if the received
version is greater than or equal to its current one (lines 23-25), and then replies with a
SET_RESP(seq) message (line 26). The writer waits to collect acknowledgments from a
write quorum W (line 10) and then returns ack (line 11). This ensures that the value
x is stored at a sufficiently large set of processes to be retrievable by subsequent read

operations.

14
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« Get phase. The process increments its sequence number (line 13) and sends GET_REQ(seq)
to all processes (line 14). As before, each process responds with its local value and
version (lines 20-21). The reader waits to collect GET_RESP(val;, ver;, seq) messages
from a read quorum R (line 15) and selects the pair (valy, very) such that very is the
maximum among the received versions (line 16). This ensures that the reader observes
a value that reflects the most recent completed write, or a concurrent one that has
already reached a write quorum.

o Set phase. To ensure that the read value remains visible to future operations, the
reader performs a write-back. This step is necessary to propagate the observed value
to a write quorum, preventing it from being overwritten or lost due to concurrent or
incomplete writes. The reader sends SET_REQ(valy, very, seq) to all processes (line 17).
Each recipient compares the received version with its local one, updates its state if
the received version is greater or equal (lines 22-25), and replies with SET_RESP(seq)
(line 26). The reader waits for responses from a write quorum W (line 18) and then
returns valy, (line 19). Like in the Set phase of a write operation, this guarantees that
the value wvalj, is stored at a write quorum and can be retrieved by subsequent read
operations.

2.6.3 SWMR Atomic Snapshots

Specification. Let Value be an arbitrary domain of values. A single-writer multi-reader
atomic snapshot object consists of a collection of segments, where each segment holds a value
in Value. In the single-writer setting, each process is assigned a unique segment that only
it can write to, while all processes may read from any segment. The object supports two
operations: write(z), which stores a value x € Value in the process’s own segment and returns
ack; and read, which retrieves the values of all segments as a vector over Value. A sequential
execution is correct if every read operation returns a vector that reflects the most recent
preceding write to each segment, or a special value L € Value if there is no such preceding
write.

Implementation. In Figure 2.3, we present the SWMR atomic snapshot implementation by
Afek et al. [2]. Our description of the algorithm and its behavior borrows explanations and
intuition from their original presentation.

The construction builds on the abstraction of atomic registers introduced earlier, used as
black-box shared objects. Each process p; owns a register r;, which it writes and all processes
read. Each register stores three fields: a value val(r;) € Value, initially 1; a sequence number
seq(r;) € Z, initially 0; and a view view(r;) € Value", initially L™. Each process also maintains
a local boolean vector moved|l...n], initially all zero, used to track whether any process
appears to have performed a write during a read.

The helper operation collect reads the current contents of all n registers in arbitrary order
and returns a vector of triples (val(r;), seq(r;), view(r;)) for j = 1...n. These represent the
most recent value, sequence number, and view stored by each process.

The snapshot algorithm relies on two fundamental insights:
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1 seq < 0

2 function read():

3 for j=1...ndo

4 moved[j] < 0

5 let a = collect

6 let b = collect

7 if Vj € {1...n}. seq(a;) =seq(b;) then // nobody moved
8 return (val(by),...,val(b,))

9 for j=1...ndo

10 if seq(a;) # seq(b;) then  // p; moved

11 if moved[j] then // p; moved once before!
12 return view(b;)

13 else

14 moved[j] + 1

15 go to line 5

16 function write(z):
17 seq < seq + 1
18 let s = read()
19 ri.write(z, seq, s)

Figure 2.3: SWMR atomic snapshot protocol at a process p;.

e Observation 1. If two consecutive collects return identical results, and the second
begins after the first ends, then the returned values form a consistent snapshot.

« Observation 2. If a read observes a process perform two distinct writes (i.e., its
sequence number changes twice), then that process must have completed a write
operation during the read.

To execute a read() operation (line 2), a process repeatedly collects the state of the system
until it can return a consistent snapshot. It begins by initializing the moved vector to all
zeros (line 3). It then performs two consecutive collects: the first into vector a (line 5) and
the second into vector b (line 6). If seq(a;) = seq(b;) for all j € {1,...,n}, then the reader
returns the vector (val(by),...,val(b,)) as the snapshot result (line 8), by Observation 1.

If some process p; has changed its sequence number — i.e., seq(a;) # seq(b;) — the reader
records that p; has moved (line 9). If this is the second time p; is observed to move (i.e.,
moved[j] = 1), then, by Observation 2, p; must have completed a write during the read. In
that case, the reader returns the view stored in p;’s register, i.e., view(b;) (line 12). Otherwise,
the reader marks moved[j] = 1 and restarts the double collect process (line 15).

This loop guarantees termination. In each iteration, the reader either returns a snapshot,
or marks a process as having moved. Therefore, if it has not returned earlier, after at most
n + 1 iterations some process must be observed to have moved twice, triggering a return via
view(b;) (line 12). This ensures that the read operation is wait-free.
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1 let S be a shared atomic snapshot object
2 function propose(z):

3 S.write(x)

4 let s = S.read()

5 return | |s

Figure 2.4: Lattice agreement protocol at a process p;.

To execute a write(x) operation (line 16), a process first increments its local sequence number
(line 17), then invokes read() (line 18) to obtain a vector s € Value™ representing a consistent
snapshot of the system. It then writes the triple (x,seq, s) to its own register r; (line 19).
This view enables future readers to reuse the writer’s snapshot if they observe that the
write completed during their own read, thereby ensuring consistency even in the presence of
concurrent updates.

2.6.4 Lattice Agreement

Specification. In the lattice agreement problem, each process p; may invoke an operation
propose(z;) with its input value z;. This invocation terminates with an output value y;. Both
input and output values are elements of a semi-lattice with a partial order < and a join
operation | |. An algorithm that solves lattice agreement must satisfy the following conditions
for all 7 and j:

« Comparability. Either y; < y; or y; < ;.
o Downward validity. If process p; outputs y;, then x; < ;.

« Upward validity. If process p; outputs y;, then y; < [|X, where X is the set of z; for
which propose(z;) was invoked.

Implementation. In Figure 2.4, we present a simple implementation of lattice agreement
that builds on the abstraction of atomic snapshots introduced earlier, used as a black-box
shared object. Each process p; accesses the snapshot object S through its dedicated segment,
using the operations write and read.

To execute propose(x) (line 2), a process writes its input value z to its segment of S (line 3),
then invokes S.read() to capture a snapshot of the system state (line 4). This yields a vector
s containing the latest values written by all processes. The process returns the join of the
values in s under the lattice’s | | operator (line 5).

The algorithm satisfies the properties of lattice agreement. For Downward validity, each process
reads after writing its input z;, so x; must appear in the snapshot and thus z; < y;. For Upward
validity, the snapshot contains only values written by processes that invoked propose(z;), so
y; < X, where X is the set of all such ;. For Comparability, note that each process writes
exactly once to its segment, and the snapshot object is atomic. Hence, any two snapshots
reflect sets of inputs where one is included in the other. Since joins are monotonic under
inclusion, the outputs must be comparable in the lattice.
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2.6.5 Consensus

Specification. Let Value be an arbitrary domain of values. The consensus object provides
a single operation propose(x), x € Value, which returns a value in Value. The object has
to satisfy the standard safety properties: all terminating propose() invocations must return
the same value (Agreement); and propose() can only return a value passed to some propose()
invocation (Validity).

Implementation. In Figure 2.5, we present an implementation of consensus in the style of
Flexible Paxos [42]. The algorithm is designed to guarantee the safety properties of consensus
— Agreement and Validity. In the next section, we introduce a mechanism to ensure termination,
thereby satisfying the liveness requirement.

We begin with a high-level overview of the protocol and a description of the local state
maintained by each process. The protocol follows a leader-driven approach. To propose a
value, a process must first be elected as leader. A leader wins an election once it receives votes
from a read quorum, thereby obtaining the right to propose values. To this end, the process
stores the value it wishes to propose in the variable my_val and broadcasts an invitation for
other processes to join its ballot and vote for it as leader.

Once elected, the process enters a period of execution called a ballot. At any time, each
process participates in a unique ballot, stored in the variable bal. A control variable phase
tracks the current stage of the protocol: ELECTION, PROPOSE, ACCEPT, or DECIDE.

To reach a decision, the leader must convince every member of a write quorum to accept
its proposal. To this end, it broadcasts the proposal to all processes. Upon receiving it, a
follower acknowledges the message, thereby accepting the proposal. Each process persists
its most recently accepted value in the variable val and records the ballot in which it was
accepted in cbal. Once a write quorum has accepted the same value in the same ballot, the
proposal is considered agreed and can be safely decided.

We now describe the protocol in more detail. The execution proceeds in two phases. In the
first phase, a process attempts to gather support from a read quorum to participate in its
current ballot. During this phase, it collects information about any values that may have
already been accepted in earlier ballots by other processes. This information is essential to
preserve consistency across proposals and to ensure that previously chosen values are not
inadvertently overwritten.

To propose a value x, process p; invokes propose(x) (line 4). It sets my_val = z, chooses a
ballot number b > bal such that leader(b) = p;, and initiates a leader election by broadcasting
a message 1A(b) to all processes (line 6). This message expresses its intent to lead ballot b
and marks the beginning of the ELECTION phase.

Upon receiving a message 1A(b) (line 9), a process checks whether b > bal. If so, it joins ballot
b by updating bal and entering the ELECTION phase. It replies with 1B(b, cbal,val) (line 13),
reporting the most recently accepted value and the ballot in which it was accepted.

The leader waits to collect 1B messages from a read quorum R. If all reports indicate that no
value has been previously accepted (i.e., z; = L for all p; € R), the leader is free to propose
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1 bal,cbal <~ 0,0
2 val,my_val < 1, |
3 phase <~ ELECTION

4 function propose(z):

my_val < x

send 1A(b | b > bal A leader(b) = p;) to all
async wait until phase = DECIDE
return val

0w I O !

9 when received 1A(b) from p;,
10 pre: b > bal

11 bal < b

12 phase <— ELECTION

13 send 1B(b, cbal, val) to p;

14 when received {1B(bal, cbal;, z;) | p; € R} from a read quorum R
15 pre: phase = ELECTION
16 if Vp; € R. ; = L then

17 if my_val = 1 then return

18 send 2A(bal, my_val) to all

19 else

20 let p; € R be such that z; # 1 and
21 (Vpr € R. x, # L = cbaly, < cbal;)
22 send 2A(bal, z;) to all

23 phase <~ PROPOSE

24 when received 2A(b, x)
25 pre: bal <b

26 val <~z

27 bal, cbal < b, b

28 send 2B(b, z) to all
29 phase <~ ACCEPT

30 when received {2B(bal, z) | p; € W} from a write quorum W
31 val <z

32 cbal < bal

33 phase < DECIDE

Figure 2.5: Consensus protocol at a process p;.

its own value my_val (line 16). Otherwise, to preserve agreement, it selects the value z; that
was accepted in the highest reported ballot cbal; (line 21).

In the second phase, the leader attempts to get a write quorum to accept the proposed value
v. To this end, it broadcasts a message 2A(bal,v) to all processes and transitions to the
PROPOSE phase (line 23).

19



Alejandro Naser-Pastoriza

When a process receives 2A(b, v) (line 24), it checks that b > bal and, if so, updates bal, sets
cbal = b and val = v, and broadcasts an acknowledgment 2B(b, v) to all processes (line 28).
The process then transitions to the ACCEPT phase.

Finally, if the leader or any other process receives 2B(b, v) acknowledgments from a write
quorum W (line 30), it concludes that the value v has been accepted by a write quorum.
It sets val = v, records cbal = bal = b, and transitions to the DECIDE phase (line 33). This
transition satisfies the guard checked by the proposer in line 7, allowing the invocation of
propose(z) to return val to the application.

The protocol guarantees that only one value can be decided across all ballots. This can be
proved based on the intersection of read and write quorums, together with the requirement
that leaders adopt the highest accepted value previously reported.

2.7 Failure Detectors

It is well established that termination of consensus cannot be guaranteed in asynchronous
systems subject to crash failures [36]. The core challenge lies in the inability to distinguish
a process that has crashed from one that is merely slow. To circumvent this limitation,
consensus protocols must rely on some degree of synchrony.

These synchrony assumptions are needed only to enable failure detection — the ability to
eventually suspect crashed processes. As a result, they are typically captured through failure
detectors: modules that provide possibly unreliable information about which processes may
have crashed. A failure detector can be seen as an oracle that each process periodically queries
for hints about which processes are still alive. Therefore, when used as black-box components,
failure detectors make it possible to solve consensus in an otherwise asynchronous system.

The weakest failure detector that suffices for solving consensus under crash failures is 2 [24].
It provides an eventual leader election mechanism: for an arbitrary period of time, leadership
may be unstable — leaders may change, multiple leaders may coexist, and some may crash.
However, € guarantees that eventually all correct processes agree on the same correct process,
which remains the leader forever. This enables termination by providing a stable and correct
process capable of eventually driving the protocol to completion. In this section, we present
its formal specification and provide a simple implementation under partial synchrony [32].

To implement €2, we rely on the Fventually Perfect Failure Detector P, which provides each
process with information about which other processes are believed to have crashed. This
information may be inaccurate for an arbitrary period, but eventually all faulty processes are
permanently suspected, and all correct ones are permanently trusted. At a high level, the
detector operates by exchanging periodic heartbeat messages and progressively increasing
timeouts to tolerate delays — this is where synchrony is required. Each process uses this
information to select the highest-ranked process not suspected as its current leader. Eventually,
all correct processes make the same choice, thereby implementing €.

We then revisit the consensus implementation from Figure 2.5. We modularize it by decoupling
the leader election mechanism — based on {2 — from the core consensus logic. Our presentation
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builds on ideas from Algorithm 5.5 in [21], but the original algorithm contains a subtle bug
that breaks correctness under certain message interleavings. We illustrate this issue and
explain how to fix it.

2.7.1 Eventually Perfect Failure Detector ¢P

Specification. The eventually perfect failure detector ©P provides two upcalls: suspect(p)
and restore(p), where p € P. The call suspect(p) indicates that process p is believed to have
crashed, whereas restore(p) revokes that suspicion. A process may be suspected and later
restored an arbitrary number of times. The detector must satisfy the following properties:
eventually, every process that crashes is permanently suspected by every correct process
(Strong completeness); and eventually, no correct process is suspected by any correct process
(Eventual strong accuracy).

Implementation. Figure 2.6 presents the implementation of P due to Cachin et al. [21]. Our
description of the algorithm and its behavior borrows intuition from their original presentation.
The algorithm assumes partial synchrony [32] (see §3.1) and that all channels are reliable.

The protocol uses periodic heartbeat exchanges to monitor the liveness of other processes.
Each process p; maintains two local sets: alive, which tracks the processes that responded in
the current round, and suspected, which contains the processes currently considered faulty.
Initially, alive includes all processes (line 1), suspected is empty (line 3), and a delay parameter
delay is initialized to a constant C' > 0 (line 2). This parameter defines the timeout between
consecutive heartbeat rounds.

On startup, p; sets a timer to expire after delay time units (line 5). When the timer expires, p;
first checks whether any process appears in both alive and suspected (line 7). This condition
indicates a false suspicion: the process was previously suspected but responded during this
round. In that case, delay is increased by C' (line 8), allowing more time for heartbeat
responses in future rounds. This adaptive mechanism ensures that delay eventually grows
large enough to accommodate network delay between correct processes, thereby satisfying
Eventual strong accuracy.

Next, p; iterates over all processes in P (line 9). If a process p has not responded during
the round, i.e., p ¢ alive, and was not previously suspected, then p is added to suspected
(line 11) and the upcall suspect(p) is triggered (line 12). Conversely, if p did respond during
the round, i.e., p € alive, and had previously been suspected, then it is removed from suspected
(line 14) and restore(p) is triggered (line 15). Regardless of their status, all processes are sent
a heartbeat request HEARTBEAT_REQUEST in every round (line 16). After the loop, the set
alive is cleared in preparation for the next round (line 17), and the timer is restarted using
the current value of delay (line 18).

When p; receives a HEARTBEAT_REQUEST message from some p;, it replies immediately with
a HEARTBEAT_RESPONSE message (line 20). Upon receiving HEARTBEAT_RESPONSE from p;, p;
records p; in alive (line 22), meaning it was responsive during this round. As soon as a crashed
process stops replying, it is no longer added to alive and will eventually be suspected and
never restored, ensuring Strong completeness.
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1 alive + P
2 delay «+ C
3 suspected < ()

4 on startup
5 start_timer(heartbeat_timer, delay)

6 when the timer heartbeat_timer expires
7 if alive N suspected # ) then

8 delay < delay 4+ C'

9 for p € P do

10 if p ¢ alive A p ¢ suspected then
11 suspected < suspected U {p}
12 trigger suspect(p)

13 else if p € alive A p € suspected then
14 suspected <— suspected \ {p}
15 trigger restore(p)

16 send HEARTBEAT REQUEST to p
17 alive <

18 start_timer(heartbeat_timer, delay)

19 when received HEARTBEAT_REQUEST from p;
20 send HEARTBEAT_RESPONSE to p;

21 when received HEARTBEAT _RESPONSE from p;
22 alive « aliveU {p;}

Figure 2.6: oP protocol at a process p;. C is a positive constant.

2.7.2 Eventual Leader Detector (2

Specification. The eventual leader detector €2 provides a single upcall, trust(p), where p € P,
indicating that process p is currently trusted as the leader. Once this happens, p is considered
trusted until a subsequent upcall names a different process. The detector must satisfy the
following properties: eventually, every correct process trusts some correct process (Accuracy);
and eventually, no two correct processes trust different correct processes (Agreement).

Implementation. In Figure 2.7, we present an implementation of ) that builds on the
eventually perfect failure detector ©P, used as a black-box shared object. Each process p; has
access to P using the upcalls suspect and restore.

The implementation maintains a local variable suspected, initialized to the empty set (line 2),
which stores the processes that p; currently believes to have crashed. The output of the failure
detector is stored in the variable leader (line 1), which identifies the process currently trusted
as leader by p;. Initially, this value is L.

When ¢P notifies p; via the upcall suspect(p), the process adds p to its suspected set (line 4),
indicating that p is currently believed to have crashed. Similarly, upon receiving restore(p),
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leader < L
suspected <« ()

N =

on suspect(p)
4 suspected < suspected U {p}

w

(S}

on restore(p)
6 suspected < suspected \ {p}

7 when leader # max(P \ suspected)
8 leader <— max(P \ suspected)
9 trigger trust(leader)

Figure 2.7: () protocol at a process p;.

the process removes p from suspected (line 6), reflecting that p is now considered alive. This
ensures that the suspected set always reflects p;’s current view of which processes are faulty,
as determined by the underlying P detector.

Whenever leader differs from the process of highest identifier among those not in suspected (i.e.,
max (P \ suspected)), p; updates leader accordingly (line 8) and triggers the upcall trust(leader)
(line 9). This mechanism guarantees that the identity of the currently trusted leader is always
aligned with the most up-to-date view of suspected processes.

The use of max(P \ suspected) ensures that processes eventually converge toward trusting the
same leader. Since ¢P satisfies Strong completeness, every process that crashes is eventually
and permanently added to suspected. Moreover, Eventual strong accuracy guarantees that
eventually no correct process is suspected by any correct process. As a result, there is a time
after which P \ suspected contains only correct processes, and all correct processes agree on
the same maximum element. From that point onward, every correct process outputs the same
correct leader forever, thereby satisfying both Accuracy and Agreement.

2.8 Consensus Termination via ()

The liveness property of consensus requires that every propose invocation at a correct process
eventually terminates. While the protocol in Figure 2.5 is safe under all execution scenarios,
it does not guarantee this property: there is no assurance that processes will remain in a
given ballot for sufficiently long to allow the process leading that ballot to drive the protocol
to completion.

We show how to ensure the liveness of consensus by relying on the (2 eventual leader detector
(see §2.7.2), used as a black box in an otherwise asynchronous system with reliable channels.
In particular, we examine a protocol by Cachin et al. [21] that introduces an {2-based ballot
change mechanism designed to eventually establish a stable and correct leader. This leader
should then be able to propose and stabilize a ballot that is not rejected by any correct
process, enabling consensus to terminate. These requirements are formally specified in [21,
Module 5.3].
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1 bal + 1
2 next_bal < ¢
trusted < p;

w

4 on trust(p)

5 if p # trusted then

6 send NACK to trusted

7 trusted < p

8 if p = p; then

9 next_bal <— next_bal + |P|
10 send 1A(next_bal) to all

11 when received 1A(b) from p;
12 if trusted = p; A b > bal then

13 bal < b
14 else
15 send NACK to p;

16 when received NACK

17 if trusted = p; then

18 next_bal <— next_bal + |P|
19 send 1A(next_bal) to all

Figure 2.8: Ballot change mechanism from [21, Algorithm 5.5].

As we will demonstrate, however, the implementation by Cachin et al. fails to meet these
guarantees and does not ensure liveness as intended. We describe the protocol, illustrate the
flaw, and propose a fix. This case highlights the difficulty of ensuring liveness: the original
implementation in the book [21] contained a bug, later corrected in errata [22]; yet even
with this fix, the protocol may still fail to terminate. Hence, it provides a valuable point of
comparison for our solutions in models with channel failures.

Implementation. In Figure 2.8, we present the protocol by Cachin et al. [21, Algorithm 5.5]
incorporating published errata [22] and written in our style. The protocol builds on the )
leader detector, used as a black-box shared object. Each process p; has access to {2 through
the trust upcall.

Fach process p; maintains three local variables: next_bal, the highest ballot number that
p; has attempted to lead (initialized to ¢ in line 2); bal, the highest ballot in which p; has
participated (initialized to 1, line 1); and trusted, which stores the identifier of the currently
trusted leader (initialized to pi, line 3). These initial values imply that all processes initially
consider p; to be the leader in ballot 1, and have already participated in that ballot.

Whenever () outputs trust(p), the handler checks whether this represents a change in leadership.
If so, it notifies the previously trusted process by sending it a NACK (line 6). This serves to
inform the old leader that it is no longer considered the leader by the current process. The
handler then updates trusted (line 7). If the newly trusted process is p; itself, it increments
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next_bal by |P| (line 9) to ensure ballot uniqueness, and broadcasts a 1A message with the
updated ballot number (line 10).

Upon receiving a message 1A(b) from a process p;, a process checks whether p; is currently
trusted and whether b exceeds its local bal. If both conditions hold, it accepts the ballot and
updates bal (line 13). Otherwise, it rejects the message and replies with a NACK (line 15).

Intuitively, the latter NACK serves to notify the prospective leader that the sender is already
in a higher ballot. This indicates that the leader should retry with a larger ballot number in
order to eventually reach and be accepted by all correct processes. To this end, if a leader
receives a NACK while still trusted, it increments next_bal and broadcasts a new 1A message
(lines 18-19).

A counterexample to Eventual Leadership [21, Module 5.3]. The ballot change mech-
anism requires that, eventually, all correct processes start a final ballot, initiate no further
ones, and agree on the same final ballot led by a correct process. This property, known as
Eventual Leadership, is not satisfied by the implementation in Figure 2.8. We demonstrate this
by constructing an execution in which ballots grow unboundedly, even after €2 has stabilized.

Let P = {p1,p2,ps3}, and assume all processes are correct. Initially, trusted = p; at every
process. Suppose that € triggers trust(p;) at p; and p3 at the beginning of the execution and
never triggers another upcall at those processes. At pp, this satisfies the guard in line 8, so it
sets next_bal = 4 and broadcasts 1A(4). At ps, since it does not trust itself, the guard fails
and no action is taken.

Next, €2 triggers trust(ps) at po, followed by trust(p;). The first upcall causes py to send a
NACK to p; and update trusted = p3; the second causes it to send a NACK to p3 and update
trusted = p;. Since ps never trusts itself, the guard in line 8 is never satisfied, so it does not
initiate any ballots. No further trust upcalls occur at any process, so €2 has stabilized on p;.

Deliver the NACK to ps first. Since p3 does not trust itself, the guard in line 17 fails and the
message is ignored. Then deliver the NACK to p;. Since p; trusts itself, it increments next_bal
to 7 and broadcasts 1A(7) (lines 18-19). At this point, all processes trust p;, all have bal = 1,
and the only messages in transit are 1A(4) and 1A(7) from p;. We refer to this point in the
execution as (x).

Deliver 1A(4) and 1A(7) to p; in order. It accepts both, updating bal = 7 (line 13). Now
assume that p, and p3 receive 1A(7) before 1A(4). Since p; is trusted and 7 > bal = 1, they
accept it and update bal = 7 (line 13). Later, when they receive 1A(4), they reject it and send
a NACK to p; (line 15).

Deliver the NACKs to p;. In response, it satisfies the guard at line 17 twice, increments next_bal
to 10 and then to 13 (line 18), and broadcasts 1A(10) and 1A(13) (line 19). At this point, all
processes trust pp, all have bal = 7, and the only messages in transit are 1A(10) and 1A(13)
from p;. This matches the previous configuration (%), and the cycle can repeat indefinitely.

This violates Eventual Leadership, as the system never converges on a final ballot. The root
cause is that every NACK — whether caused by a delayed or outdated ballot — is treated as
evidence of failure, triggering unnecessary escalation.
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1 bal + 1
2 next_bal < ¢
trusted < p;

w

4 on trust(p)
5 if p # trusted then

6 send NACK(co) to trusted
7 trusted < p

8 if p = p; then

9 next_bal <— next_bal + |P|
10 send 1A(next_bal) to all

11 when received 1A(b) from p;
12 if trusted # p; then

13 send NACK(co) to p;
14 else if b < bal then

15 send NACK(bal) to p,
16 else

17 bal <~ b

18 when received NACK(b)

19 if trusted = p; A b > next_bal then
20 next_bal < next_bal + |P|

21 send 1A(next_bal) to all

Figure 2.9: Ballot change mechanism with our fix for suppressing stale NACKs.

Refined Handling of NACK Messages. To prevent ballot growth due to obsolete NACKs,
we refine the protocol to distinguish between valid and stale rejections. Specifically, each
NACK now includes the sender’s current ballot value bal (line 15) or oo (lines 6 and 13). Upon
receiving a NACK(b), a trusted leader process p; reacts only if the received ballot b exceeds
its own next_bal (line 19). This guard ensures that the rejection indeed indicates that the
leader must increase its ballot to reach all correct processes. If the condition fails, it means
the leader has already sent a 1A message with a ballot number higher than the one reported,
and no update is needed.

This change prevents feedback loops caused by delayed 1A messages. Consider again the
previous counterexample: 1A(4) is delivered after 1A(7) has already been accepted, triggering
stale NACKs that unnecessarily cause p; to increase its ballot again. With the new guard
at line 19, such rejections no longer lead to ballot escalation, as they correspond to ballot
values that do not exceed the leader’s current next_bal. In this example, the second rejection
received by p; is NACK(7), but p; has already updated next_bal = 7 after processing the first
rejection. Since 7 % 7, the guard fails and no new ballot is initiated.

Alternatively, the issue could be avoided by assuming FIFO channels, which would ensure
that 1A messages are received in order and cannot cause rejections based on outdated ballots.
However, our solution achieves the same effect without imposing additional assumptions.
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Correctness. We now show that the protocol in Figure 2.9 satisfies Eventual Leadership. Let
q denote the correct process that is eventually trusted by all correct processes, as guaranteed
by Q. We prove that all correct processes eventually adopt the same ballot led by g.

Lemma 2.3. There exists a time after which only q can increase its ballot next_bal.

Proof. Let t be a time after which all correct processes permanently trust g. From that time
on, the guards in line 8 (local trust) and line 19 (trusted = p;) can be satisfied only at q.
Therefore, only ¢ can increase its ballot. O

Lemma 2.4. Process q broadcasts only finitely many 1A messages.

Proof. Process ¢ broadcasts 1A only in the following cases:

1. At line 8, when g becomes trusted. Since €) converges, this can occur only finitely many
times.

2. At line 19, upon receiving a NACK(b) with b > next_bal. Such NACKs are of two kinds:

e Those from lines 6 and 13, which require the sender not to trust ¢q. These vanish
once €2 converges, so only finitely many exist.

« Those from line 15, meaning the sender had bal = b when sending NACK(b). Since
b > next_bal at ¢ and ballots created by ¢ are never larger than its current next_bal,
ballot b must have been created by some process other than ¢q. By Lemma 2.3,
eventually no process other than ¢ can create new ballots. Hence only finitely
many such ballots exist, and ¢ can increase past each at most once.

Therefore ¢ broadcasts 1A only finitely many times, as required. m

Theorem 2.5. There exists a ballot b* led by q such that eventually every correct process
adopts b* and never abandons it.

Proof. Let b* be the maximum ballot ever broadcast by ¢ in a 1A message, guaranteed to
exist by Lemma 2.4. When sending this message, ¢ must trust itself, as ensured by the guards
at lines 8 and 19. Moreover, ¢ cannot later stop trusting itself. If it did, then — since q is
eventually trusted permanently by itself — it would eventually retrust itself. This would cause
a new 1A with ballot greater than b* (line 10), contradicting maximality.

Now consider an arbitrary correct process p that receives 1A(b*). If p does not trust ¢, or if
b* < bal at p, then p replies with a NACK(') for some &' > b*. Since next_bal is the last value
sent in an 1A, at this point ¢ has next_bal = b* and still trusts itself. Thus, receiving such a
NACK(b') would satisfy line 19 at ¢ and trigger a new 1A with ballot greater than b* — again a
contradiction. Hence p must adopt b* (line 17).

Suppose now that some correct process other than ¢ that has adopted b* later stops trusting
g. Then line 6 would send a NACK(co0) to ¢, which would again trigger line 19 and force a
ballot greater than b* — contradicting maximality. Hence any process that adopts b* continues
to trust g forever. Moreover, no process can adopt another ballot: doing so requires trusting
its sender, but every correct process trusts ¢, and ¢ never broadcasts a different ballot. [
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1 function propose(z):

2 my_val < x

3 async wait until phase = DECIDE
4 return val

5 when received 1A(b) from p;,
6 if trusted # p; then

7 send NACK(co) to p;

8 else if b < bal then

9 send NACK(bal) to p,

10 else

11 bal < b

12 phase <— ELECTION

13 send 1B(b, cbal, val) to p;

Figure 2.10: Modification of the handlers of propose(z) and receipt of 1A(b).

Putting it together. Finally, to obtain the desired live implementation of consensus, we
merge the code in Figures 2.5 and 2.9, modifying the handlers for propose(z) and for the
reception of 1A(b) as shown in Figure 2.10.
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Modeling Framework and Core
Contributions

This chapter introduces the computational framework used throughout the thesis and presents
our core contributions. We begin by defining a system model that accounts for adversarial
channel behavior. We then extend the notion of fail-prone systems to include channel failures
and introduce a novel liveness condition tailored to this setting. Building on these foundations,
we introduce the abstraction of generalized quorum systems (GQS), which characterize the
reliability required to solve classical problems under arbitrary fail-prone systems. Finally, we
present our main results, showing that a GQS is necessary and sufficient to implement atomic
registers, atomic snapshots, lattice agreement, and consensus in our adversarial setting.

3.1 System Model

We consider a message-passing system consisting of a set of n processes P that may fail by
crashing. A process is correct if it never crashes, and faulty otherwise. Processes communicate
by exchanging messages through a set of unidirectional channels C: for every pair of processes
p,q € P there is a channel (p, ¢) € C that allows p to send messages to gq.

We consider two notions of channel correctness (reliable and eventually reliable) and two
notions of channel faultiness (disconnected and flaky). Given correct processes p and ¢:

o a channel (p, q) is reliable if it delivers every message sent by p to g;

o a channel (p, q) is eventually reliable if there exists a time ¢ such that the channel delivers
every message sent by p to g after ¢;

 a channel (p,q) is disconnected if it drops all messages sent by p to ¢; and
« a channel (p,q) is flaky if it drops an arbitrary subset of messages sent by p to g.

Flakiness is a very broad failure mode: it subsumes disconnections and allows the channel to
choose which messages to drop, without any guarantee of fairness. Thus, flaky channels are
strictly more permissive than fair lossy, which are computationally equivalent to reliable.
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Our lower bounds assume the stronger notion of channel correctness (reliable) and the more
restrictive notion of faultiness (disconnected), whereas our upper bounds assume the weaker
notion of channel correctness (eventually reliable) and the broader notion of faultiness (flaky).
We combine these channel reliability assumptions with two types of synchrony guarantees for
correct channels, which yields four models used in our results (see Figure 1.3).

We use the asynchronous model in our results about registers, snapshots and lattice agreement,
and the partially synchronous model [24, 32] in our results about consensus. The latter assumes
the existence of a global stabilization time (GST) and a bound § such that after GST, every
message sent by a correct process on a correct channel is received within § time units of its
transmission. Messages sent before GST may experience arbitrary delays. Additionally, the
model assumes that processes have clocks that may drift unboundedly before GST, but do
not drift thereafter. Both GST and ¢ are unknown.

3.2 Fail-Prone Systems under Channel Failures

To state our results, we need a way of specifying which processes and channels may fail during
an execution. We do this by generalizing the classical notion of a fail-prone system [52] (see
§2.4) to include channel failures. Our formulation is generic, irrespective of a specific process
or channel failure type. The exact failure types are defined when we instantiate the system
model to present our results.

A failure pattern is a pair (P,C) € 27 x 2¢ that defines which processes and channels are
allowed to fail in a single execution. Here, C' contains only channels between correct processes,
as channels incident to faulty processes are considered faulty by default:

(p,q) €C = {p,q}NP=0.

Given a failure pattern f = (P, C), an execution o is f-compliant if at most the processes
in P and the channels in C fail in 0. A fail-prone system F is then defined as a set of such
failure patterns (see Figure 1.2). In this way, the extended notion captures a broader range of
failure scenarios, including arbitrary combinations of process and channel failures.

Example 3.1. The standard failure model where any minority of processes can fail and
channels between correct processes are correct is captured by the fail-prone system

Fu={(Q,0) | QCPAIQI <[5}

3.3 Liveness under Channel Failures

Defining liveness properties under our failure model is subtle, since channel failures may
isolate some correct processes, making it impossible to ensure termination at all of them. To
address this, we adapt the classical notions of obstruction-freedom and wait-freedom (§2.3) by
parameterizing them based on the allowed failures and the corresponding subsets of correct
processes where termination is required. We use the weaker obstruction-freedom in our lower
bounds and the stronger wait-freedom in our upper bounds.
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For a failure pattern f = (P,C) and a set of processes T'C P\ P, we say that an algorithm
A is (f, T)-wait-free if, for every process p € T', operation op, and f-compliant fair execution
o of A, if op is invoked by p in o, then op eventually returns. For example, we may require
an algorithm to be (f, T1)-wait-free for the failure pattern f; in Figure 1.2 and T} = {a, b}.
This means that operations invoked at a and b must return despite the failures of process d

and channels (a, c), (b,¢) and (c,b).

An operation op eventually executes solo in an execution o if there exists a suffix ¢’ of o
such that all operations concurrent with op in ¢’ are invoked by faulty processes. We say
that an algorithm A is (f, T)-obstruction-free if, for every process p € T, operation op, and
f-compliant fair execution o of A, if op is invoked by p and eventually executes solo in o,
then op eventually returns. This notion of obstruction-freedom aligns with its well-known
shared memory counterparts [13, 34, 41].

We now lift the notions of obstruction-freedom and wait-freedom to a fail-prone system F and
a termination mapping T : F — 27 — a function mapping each failure pattern f = (P,C) € F
to a subset of correct processes whose operations are required to terminate despite the failures
specified by f. We say that an algorithm A is (F, 7)-wait-free if, for every f € F, A satisfies
(f, 7(f))-wait-freedom. The definition of (F, 7)-obstruction-freedom is analogous.

Example 3.2. The standard guarantee of wait-freedom under a minority of process failures
corresponds to (Fas, Tar)-wait-freedom, where F), is defined in Example 3.1 and 7 selects
the set of all correct processes:

3.4 Generalized Quorum Systems

The existence of a classical quorum system (§2.5) is sufficient to implement atomic registers,
atomic snapshots, lattice agreement and consensus in a model without channel failures. We
now generalize this notion to account for adversarial channel behavior.

A straightforward generalization would preserve Consistency, but modify Availability to require
that the processes within the available read or write quorum are strongly connected by correct
channels. This ensures that some process can communicate with both a read and a write
quorum (e.g., one in their intersection), directly enabling the execution of algorithms like ABD
or Paxos. Surprisingly, we find that this connectivity requirement is unnecessarily restrictive:
the above-listed problems can be solved even when read quorums are not strongly connected.

To define the extended notion of a quorum system suitable for our failure model, we introduce
the following concepts.

o Network graph: let G = (P,C) be the directed graph with processes as vertices and
channels as edges.

o Residual graph: for a failure pattern f = (P, C), let G\ f be the subgraph of G obtained
by removing all processes in P, their incident channels, and all channels in C.
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o f-availability: a set @) is f-available if it consists of correct processes and is strongly
connected in G\ f. This implies that all processes in () can communicate with each
other via channels correct according to f.

o f-reachability: a set W is f-reachable from a set R if both W and R are correct according
to f, and every member of W can be reached by every member of R via a directed path

ingGg\ f.

Example 3.3. In Figure 1.2, for each ¢ = 1..4, the write quorum W, is f;-available and
fi-reachable from the read quorum R;.

Definition 3.4. A generalized quorum system is a triple (F,R,W), where F is a
fail-prone system, R C 27 is a family of read quorums, W C 2% is a family of write quorums,
and the following conditions hold:

 Consistency. For every R€ R and W € W, RNW # (.

o Availability. For all f € F, there exist W € W and R € R such that W is f-available,
and W is f-reachable from R.

Informally, Availability ensures that under any failure scenario described by JF, an operational
write quorum can unidirectionally receive information from an operational read quorum.
A classical quorum system is a special case of a generalized quorum system. Indeed, if
F disallows channel failures between correct processes, then any correct write quorum can
trivially be reached from any correct read quorum, and Definition 3.4 reduces to Definition 2.1.

Example 3.5. Consider the fail-prone system F = {f; | ¢ = 1..4} in Figure 1.2 and let
W={W,;|i=1.4} and R = {R; | ¢ = 1..4}. Then the triple (F,R,W) is a generalized

quorum system. Indeed:
« Consistency. For each i,j = 1..4, R, N W, # (.
o Availability. For each i = 1.4, W; is f;-available, and W; is f;-reachable from R;.

The above (F, R, W) is a valid generalized quorum system even though processes in each
read quorum are not strongly connected via correct channels. This relaxation allows read
quorums to form under a broader range of failure scenarios. In contrast, processes within
each write quorum validating Availability must be strongly connected via correct channels. In
fact, for a given failure pattern f, we can show that all write quorums validating Availability
with respect to f must also be strongly connected via correct channels.

Proposition 3.6. Let (F,R, W) be a generalized quorum system. For each f € F, the
following set of processes is strongly connected in G\ f:

U=|J{W |W eWA (W is f-available) ANIR € R.(W is f-reachable from R)}.

Proof. Fix f € F and let py,py € U. Then there exist Wy, Wy € W such that
o (p1 € Wy) A (W is f-available) A IRy € R. (W is f-reachable from R;); and
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o (pa € Wo) A (Wy is f-available) A 3Ry € R. (W is f-reachable from R»).

Because any read and write quorums intersect, W, N Ry # 0. Fix ¢ € Wi N Ry. Since W is
f-available, there exists a path via correct channels from p; to ¢. And since W5 is f-reachable
from R,, there exists a path via correct channels from ¢ to ps. Thus, ps is reachable from p,
via correct channels. O

For f € F we denote the strongly connected component of G\ f containing U by Uy: this
component includes all write quorums that validate Availability with respect to f. The
Availability property of the generalized quorum system ensures that Uy # 0.

3.5 Main Results

We now formally state our main results, which are proved in the remainder of the thesis. We
show that the existence of a generalized quorum system is a tight bound on the combinations
of process and channel failures that can be tolerated by any implementation of MWMR
atomic registers, SWMR atomic snapshots, and lattice agreement.

The following theorem, proved in §4.1, establishes that the existence of a generalized quorum
system is necessary to implement any of these objects under the model Mrp (asynchronous
/ reliable / disconnected). This holds under a weak termination guarantee that only requires
obstruction-freedom at some non-empty set of processes for each failure pattern.

Theorem 3.7. Let F be a fail-prone system and 7 : F — 2F be a termination mapping
such that for each f € F, 7(f) # 0. Assume that there exists an (F,T)-obstruction-free
implementation of any of the following objects over the model Marp: MWMR atomic registers,
SWMR atomic snapshots, or lattice agreement. Then there exist R and W such that (F, R, W)
is a generalized quorum system. Moreover, for each f € F, we have 7(f) C Uy.

The next theorem, proved in §4.3, establishes a matching upper bound under the more
adversarial model Magp (asynchronous / eventually reliable / flaky). It shows that the
existence of a generalized quorum system is sufficient to implement each of the three objects.
For each f € F, these implementations provide wait-freedom within Uy.

Theorem 3.8. Let (F,R,W) be a generalized quorum system and 7 : F — 2F be the
termination mapping such that for each f € F, 7(f) = Us. Then there exists an (F,T)-wait-
free implementation for each of the following objects over the model Magr: MWMR atomic
registers, SWMR atomic snapshots, and lattice agreement.

Theorem 3.7 shows that Uy is the largest set of processes for which termination can be guar-
anteed under the failure pattern f. Thus, the two theorems together imply that if termination
can be ensured for at least one correct process under f, then it can also be ensured for all
processes in Uy.

Example 3.9. Consider the generalized quorum system (F, R, W) from Figure 1.2. Then
Up, = {a,b}, Uy, = {b,c}, Us, = {c,d} and Uy, = {d,a}. Consider 7 such that 7(f;) = Uy,
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i = 1..4. By Theorem 3.8, there exists an (F, 7)-wait-free implementation for any of the three
objects considered. Suppose now that we change f; to f] that additionally fails the channel
(a,b). Let F' = {f1, fo, f3, fa}. Tt is easy to check that there do not exist R’ and W’ that
would form a generalized quorum system (F', R, W’). Thus, Theorem 3.7 establishes that
no implementation of any of the three objects can guarantee obstruction-freedom, and by
extension wait-freedom, at any process under F’.

Our results consider the weakest variant of lattice agreement [14] (see §2.6.4), which is
single-shot and therefore cannot be used for implementing multi-shot objects, such as registers.
Thus, to prove the lower bound (Theorem 3.7), we first establish it for lattice agreement.
Since SWMR atomic snapshots can be constructed from MWMR atomic registers (§2.6.3),
and lattice agreement can in turn be constructed from snapshots (§2.6.4), we naturally get
the lower bounds for the former two problems. As a byproduct of these, we derive in §4.2 a
more precise formulation of the celebrated CAP theorem.

To prove the upper bound (Theorem 3.8), we construct an (F, 7)-wait-free implementation of
MWMR atomic registers; then the above-mentioned constructions imply the upper bounds
for snapshots and lattice agreement.

Next, we show that the existence of a generalized quorum system also is a tight bound on the
combinations of process and channel failures that can be tolerated by any implementation of
consensus in the partially synchronous model.

The following theorem, proved in §5.1, establishes that the existence of a generalized quorum
system is necessary to implement consensus under the model Mpgrp (partially synchronous /
reliable / disconnected). Like Theorem 3.7, it only requires obstruction-freedom to hold at
some non-empty set of processes for each failure pattern.

Theorem 3.10. Let F be a fail-prone system and 7 : F — 27 be a termination mapping
such that for each f € F, 7(f) # 0. If there exists an (F,T)-obstruction-free implementation
of consensus over the model Mpgrp, then there exist R and W such that (F,R,W) is a
generalized quorum system. Moreover, for each f € F we have 7(f) C Uy.

Finally, the next theorem, proved in §5.2, establishes a matching upper bound under the
more adversarial model Mpgr (partially synchronous / eventually reliable / flaky). It shows
that the existence of a generalized quorum system is sufficient to implement consensus. Like
Theorem 3.8, for each f € F, the implementation guarantees wait-freedom within Uy.

Theorem 3.11. Let (F,R,W) be a generalized quorum system and 7 : F — 27 be the
termination mapping such that for each f € F, 7(f) = Us. Then there exists an (F,T)-wait-
free implementation of consensus over the model Mpgr.

The upper bounds in Theorems 3.8 and 3.11 establish the tightness of our lower bounds,
settling the computability question. However, the associated algorithms are inefficient. To
improve efficiency, we consider a practically motivated class of systems where at most a
minority of processes may fail. This restriction enables stronger connectivity guarantees
(§4.4.1, §5.3) and supports more efficient implementations with bounded operation latency
and memory usage (§4.4.2, §5.4).
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3.6 Comparison with Existing Results

Research on tolerating channel failures has primarily focused on consensus solvability in
synchronous systems, where an adversary can disconnect channels in every round but cannot
crash processes [4, 27, 28, 58, 62, 63, 64]. The seminal paper by Dolev [29] and subsequent
work (see [61] for a survey) explored this problem in general networks as a function of the
network topology, process failure models, and synchrony constraints. However, this work
considers only consensus formulations requiring termination at all correct processes, which in
its turn requires them to be reliably connected. In contrast, we consider more general liveness
conditions where termination is only required at specific subsets of correct processes. Our
results demonstrate that this relaxation leads to a much richer characterization of connectivity,
which notably does not require all correct processes to be bi-directionally connected.

Early models, such as send omission [39] and generalized omission [59], extended crash failures
by allowing processes to fail in sending or receiving messages. These models were shown to be
computationally equivalent to crash failures in both synchronous [56] and asynchronous [26]
systems. However, they are overly restrictive as they classify any non-crashed process with
unreliable connectivity as faulty. In contrast, our approach allows correct processes to have
unreliable connectivity.

Santoro and Widmayer introduced the mobile omission failure model [62], which decouples
message loss from process failures. They demonstrated that solving consensus in a synchronous
round-based system without process failures requires the communication graph to contain
a strongly connected component in every round [62, 63]. In contrast, our lower bounds
show that implementing consensus —or even a register— in a partially synchronous system
necessitates connectivity constraints that hold throughout the entire execution.

Failure detectors and consensus have been shown to be implementable in the presence of
network partitions in [7, 30, 31, 37] provided a majority of correct processes is strongly
connected and can eventually communicate in a timely fashion. In contrast, we show that
much weaker connectivity constraints, captured via GQS, are necessary and sufficient for
implementing both register and consensus. Aguilera et al. [6] and subsequent work [5, 33,
43, 51] studied the implementation of Q2 (§2.7.2) — the weakest for consensus [23] — under
various weak models of synchrony, link reliability, and connectivity. This work however,
mainly focused on identifying minimal timeliness requirements sufficient for implementing
(2 while assuming at least fair-lossy connectivity between each pair of processes. Given that
reliable channels can be implemented on top of fair-lossy ones, our results imply that these
connectivity conditions are too strong. Furthermore, while the weak connectivity conditions
of system S introduced in [6] were shown to be sufficient for implementing €2, in §5.5 we will
prove them to be insufficient for consensus.

Alquraan et al. [10] presented a study of system failures due to faulty channels, which we
already mentioned in Chapter 1. This work highlights the practical importance of designing
provably correct systems that explicitly account for channel failures. Follow-up work [9, 57]
proposed practical systems for tolerating channel failures, but did not investigate optimal
fault-tolerance assumptions.
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Chapter 4

Atomic Registers, Atomic Snapshots
and Lattice Agreement

In this chapter, we study the implementation of multi-writer multi-reader atomic registers,
single-writer multi-reader atomic snapshots, and lattice agreement in asynchronous systems
subject to arbitrary process and channel failures. We show that a generalized quorum system
(GQS), as introduced in Chapter 3, provides a tight reliability bound for solvability: such an
object can be implemented if and only if the underlying fail-prone system admits a GQS.

The main complexity lies in establishing the upper bounds (see Example 1.3). Classical
implementations of these objects for models with reliable connectivity, such as those presented
in §2.6, rely on bidirectional connectivity between quorums — for example, by following a
traditional request/response pattern of quorum access. In contrast, our failure model allows
processes to have only unidirectional connectivity or none at all, invalidating these assumptions
and making classical algorithms inapplicable.

This asymmetry poses a significant challenge for implementing these objects, as it rules
out symmetric communication patterns. To address this, in §4.3 we introduce novel logical
clocks that enable write and read quorums to reliably track state updates without requiring
bidirectional communication. These clocks provide the missing coordination mechanism for
implementing shared objects in settings previously considered too unreliable.

Having established tight bounds for solvability, in §4.4 we turn our attention to a practically
motivated class of fail-prone systems in which at most a minority of processes may fail. While
this assumption narrows the set of admissible failure patterns, it yields stronger connectivity
guarantees that we leverage to design more efficient implementations — ones where operation
latency can be bounded by message delays and state exchange rates. These implementations
also use bounded memory, reflecting practical system constraints.

Finally, as a byproduct of the lower bounds obtained in §4.1, we derive in §4.2 a more precise
formulation of the celebrated CAP theorem. While the classical version states that wait-free
atomic registers cannot be implemented under arbitrary message loss, the resulting bound is
not tight. Our result refines this by identifying exactly where availability can be guaranteed:
termination is possible only at processes that are strongly connected by correct channels.
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Figure 4.1: Illustration of the sets Ry and Sy for k € {u,v}.

4.1 Lower Bound for Lattice Agreement

We now prove Theorem 3.7 for lattice agreement. Then the existing constructions of snapshots
from registers (§2.6.3) and of lattice agreement from snapshots (§2.6.4) imply that the theorem
also holds for these objects. Our proof relies on the following lemma, which establishes that
processes where obstruction-freedom holds must be strongly connected by correct channels.

Lemma 4.1. Let f be a failure pattern and T C P. If some algorithm A is an (f,T)-
obstruction-free implementation of lattice agreement over Muarp (asynchronous / reliable /
disconnected), then T is strongly connected in G\ f.

Proof. Assume by contradiction that A is an (f, T')-obstruction-free implementation of lattice
agreement, but 7' is not strongly connected in G\ f. Thus, there exist u,v € T" such that
there is no path from u to v in G\ f, or from v to u. Without loss of generality, assume the
former. Let S, be the strongly connected component of G\ f containing u, and S, be the
strongly connected component of G\ f containing v. By assumption, S, NS, = 0. Let R,
be the set of processes outside S, that can reach u in G\ f, and R, be the set of processes
outside S, that can reach v in G\ f. Refer to Figure 4.1 for a visual depiction.

The next claims follow directly from the definitions of Ry and Sy for each k € {u,v}.
CLAIM 1. For any k € {u,v}, Ry U Sk is unreachable from P\ (R U Sk) in G\ f.
CLAIM 2. For any k € {u,v}, Ry is unreachable from Si in G\ f.

Cram 3. S, N(R,US,) =0.

Proof of Claim 3. Assume by contradiction that S, N (R, U S,) # 0. Let w € S, N (R, US,).
Since w € S, there exists a path from u to w. Since w € R, U S, there exists a path from w
to v. Concatenating these paths creates a path from u to v, contradicting the assumption
that no such path exists. O

Let £ be a semi-lattice with partial order < such that z,,z, € L, z, ﬁ x, and x, ﬁ T
Let «; be a fair execution of A where the processes and channels in f fail at the beginning,
process u invokes propose(z,), and no other operation is invoked in «;. Because u € T and A
is (f, T)-obstruction-free, the propose(z,) operation must eventually terminate with a return
value y,. By Downward validity (see §2.6.4), =, < y,. By Upward validity, since no other
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propose() was invoked, y, < x,. Thus, y, = x,. Let ay be the prefix of a; ending with the
response to propose(). By Claim 1, R, U S, is unreachable from P\ (R, U S,), and thus,
the actions by processes in R, U S, do not depend on those by processes in P\ (R, US,).
Then a3 = as|gr,us,, the projection of oy to actions by processes in R, U S,, is an execution
of A. By Claim 2, R, is unreachable from S,,, and thus, the actions by processes in R,, do
not depend on those by processes in S,. Then a = as|gr,asls, is an execution of A. Finally,
as|g, contains no propose invocations (only startup steps).

Let 81 be a fair execution of A that starts with all the actions from as|g,, followed by the
failure of all processes and channels in f, followed by a propose(x,) invocation by the process
v. Because v € T and A is (f, T)-obstruction-free, the propose(x,) operation must eventually
terminate with a return value y,. By Downward validity, x, < y,. By Upward validity, since
no other propose() was invoked, y, < x,. Thus, y, = z,. Let 82 be the prefix of §; ending
with the response to propose(). By Claim 1, R, U S, is unreachable from P\ (R, U S,). By
Claim 2, R, is unreachable from S,. Therefore, R, is unreachable from P\ R,. By Claim 1,
R, U S, is unreachable from P\ (R, U S,). Therefore, R, U R, U S, is unreachable from
P\ (R,UR,US,). Thus, the actions in Sy by processes in R, U R, U S, do not depend on
those by processes in P\ (R, U R, US,). Then, 5 = Bs|r,ur,us, is an execution of A. Recall
that 5y starts with as|g,, and hence, so does 3. Let ¢ be the suffix of 5 such that § = as|g,d.

Consider the execution o = as|g,0as|s, where no process or channel fails. By Claim 3,
S.N(R,US,) = 0, and by the definition of R, we have S,NR, = 0. Hence, S,N(R,UR,US,) =
(). Then, given that § only contains actions by processes in R, U R, U S,,, we get

0| ryur,us, = (as|r,0s|s,) | RuUR,US, = Q3RO = [

Thus, o is indistinguishable from [ to the processes in R, U R, U S,. Also,

0|Su - (a3|Ru5a3|Su)|Su - a3|5u = (a3|Rua3|Su)|Su - alsu

Thus, o is indistinguishable from « to the processes in S,. Finally, o|p\(r,us.ur.,us,) = €.
Thus, for every process, o is indistinguishable to this process from some execution of A.
Furthermore, each message received by a process in ¢ has previously been sent by another
process. Therefore, o is an execution of A. However, in this execution u decides z,,, v decides
Zy, and x,, x, are incomparable in £. This contradicts the Comparability property of lattice
agreement. The contradiction derives from assuming that 7" is not strongly connected in
G\ f, so the required follows. ]

Proof of Theorem 3.7 for lattice agreement. Let A be an (F, 7)-obstruction-free implementa-
tion of lattice agreement. For a failure pattern f € F, Lemma 4.1 implies that the set 7(f) of
processes where obstruction-freedom holds must be transitively connected via correct channels.
Let then Wy be the strongly connected component of G\ f containing 7(f) and R be the set
of processes that can reach Wy in G\ f, including Wy itself. Finally, let R = {R; | f € F}
and W= {W; | feF}

We show that (F, R, W) is a generalized quorum system. Assume by contradiction that
this is not the case. Note that for every f € F we have that W; is f-available and Wy is
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OND

Ry

Figure 4.2: Illustration of the sets Wy, and Ry, for k € {f, g}.

f-reachable from Ry. Thus, (F,R,W) satisfies Availability. Since by assumption (F, R, W) is
not a generalized quorum system, then it must fail to satisfy Consistency. Hence, there exist
f,g € F such that Wy N R, = 0. Refer to Figure 4.2 for a visual depiction.

The next claims follow directly from the definitions of Ry and W}, for each k € {f, g}.
CrLAaM 1. For any k € {f, g}, Ry is unreachable from P\ Ry in G \ k.
CLAIM 2. For any k € {f, g}, Rr \ Wy, is unreachable from Wy, in G\ k.

Let £ be a semi-lattice with partial order < such that z1, 25 € L, 21 ﬁ To and x ﬁ 1. Let oy
be a fair execution of A where the processes and channels in f fail at the beginning, a process
p1 € 7(f) invokes propose(z;), and no other operation is invoked in «;. Because p; € 7(f)
and A is (f, 7(f))-obstruction-free, the propose(x;) operation must eventually terminate with
a return value y;. By Downward validity, 21 < y;. By Upward validity, since no other propose()
was invoked, y; < x1. Thus, y; = x1. Let as be the prefix of a; ending with the response to
propose(). By Claim 1, Ry is unreachable from P \ Ry, and thus, the actions by processes in
Ry do not depend on those by processes in P\ R;. Then az = as|g, is an execution of A.
By Claim 2, Ry \ W; is unreachable from Wy, and thus, the actions by processes in Ry \ Wy
do not depend on those by processes in W;. Then a = a3|Rf\Wfa3]Wf is an execution of A.
Finally, as|g,\w, contains no propose invocations (only startup steps).

Let /31 be a fair execution of A that starts with all the actions from as|g AW followed by the
failure of all processes and channels in g, followed by a propose(zs) invocation by a process
p2 € 7(g). Because ps € 7(g) and A is (g, 7(g))-obstruction-free, the propose(xs) operation
must eventually terminate with a return value y,. By Downward validity, zo < y,. By Upward
validity, since no other propose() was invoked, y < x5. Thus, yo = x9. Let B2 be the prefix of
1 ending with the response to propose() and let ¢ be the suffix of 85 such that 35 = as|g,\w,0.
By Claim 1, R, is unreachable from P \ R, and thus, the actions in § by processes in R, do
not depend on those by processes in P\ R,. Then, 8 = as|r,\w,|r, is an execution of A.

Consider the execution o = ag|g AWy a3]Wf<5 \ R, Where no process or channel fails. We have:
UIRf\Rg = (Oéisf\WfOé:s’Wf(S\Rg)’Rf\Rg = (a3!Rf\WfOé3’Wf)’Rf\Rg = Oé\Rf\Rg-
Thus, o is indistinguishable from « to the processes in R \ R,. Also, since Wy N R, = 0:
olr, = (as|rpw,aslw,0|r, )| r, = (@s3|rR\W,0|R,)|R, = BlR,-
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Thus, ¢ is indistinguishable from /3 to the processes in R,. Finally, o|p\(r sUR,) = €. Thus, for
every process, o is indistinguishable to this process from some execution of A. Furthermore,
each message received by a process in ¢ has previously been sent by another process. Therefore,
o is an execution of A. However, in this execution p; decides x1, ps decides x5, and x1, x5 are
incomparable in £. This contradicts the Comparability property of lattice agreement. The
contradiction derives from assuming that (F, R, W) is not a generalized quorum system, so
the required follows. Finally, for each f € F we have 7(f) C Wy C Uy. O

4.2 CAP Revisited

Before turning our attention to the upper bounds, we first highlight a few corollaries of our
lower bounds. These results are of independent interest because they generalize the celebrated
CAP theorem [19], which asserts that no system can simultaneously guarantee consistency,
availability, and network partition tolerance.

The CAP formalization by Gilbert and Lynch [38] considers an asynchronous system without
process failures. It models consistency as implementing an atomic register, availability as
providing wait-freedom at all processes, and partition tolerance as tolerating channels that
may lose any subset of messages (in our terminology, flaky).

Theorem 4.2 (CAP). It is impossible to implement a wait-free atomic register in a message-
passing system where processes do not fail, but all channels are flaky.

Despite its fame, the CAP theorem yields only a weak lower bound. First, it is not tight: the
theorem merely states that, to implement a wait-free atomic register, some channels must be
correct, but clearly a single correct channel is not sufficient in general. Second, CAP requires
availability at all processes, and is thus not applicable when aiming to ensure availability in
only a part of the system, as formalized by the liveness notions in §3.3.

Our first result lifts these limitations and further strengthens CAP by considering a stronger
model, Magrp (asynchronous / reliable / disconnected), where channels may only fail by
disconnection. Informally, we show that processes where obstruction-freedom holds must be
transitively connected via correct channels — no such process can be partitioned from the rest.

Corollary 4.3. Let f be a failure pattern and T C P. If some algorithm A is an (f,T)-
obstruction-free implementation of an atomic register over M arp, then T is strongly connected

inG\ f.

The corollary follows from Lemma 4.1 via reduction: the constructions of snapshots from
registers (§2.6.3) and of lattice agreement from snapshots (§2.6.4) imply that registers can be
used to solve lattice agreement. Thus, if the lower bound holds for lattice agreement, it must
also hold for registers.

In turn, the above yields the following corollary in the special case when the failure pattern f
disallows process failures and obstruction-freedom is required at all processes:

Corollary 4.4. Let f be a failure pattern that disallows process failures: 3C C C. f = (0,C).
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If some algorithm A is an (f, P)-obstruction-free implementation of an atomic register over
Marp, then the graph G\ f is strongly connected.

This implies CAP (Theorem 4.2): if an algorithm A implements a wait-free atomic register,
then it also implements an obstruction-free atomic register, and by the above corollary, all
processes must be strongly connected by correct channels.

Corollary 4.4 also yields a tight lower bound. To see this, consider its lifting to an arbitrary
fail-prone system F and the termination mapping 7p = Af. P:

Corollary 4.5. Let F be a fail-prone system that disallows process failures: Vf € F. 3C C
C.f=(0,C). If some algorithm A is an (F, Tp)-obstruction-free implementation of an atomic
register over Magrp, then for all f € F, the graph G\ f is strongly connected.

Then, the following proposition implies a matching upper bound: it shows that a wait-free
atomic register can be implemented in the more adversarial model Mgr (asynchronous /

eventually reliable / flaky). The proposition follows directly from our more general upper
bound (Theorem 3.8).

Proposition 4.6. Let F be a fail-prone system that disallows process failures and such that
for all f € F, the graph G\ [ is strongly connected. Then there exists an (F,Tp)-wait-free
implementation of an atomic register over M agr.

4.3 Upper Bound for Atomic Registers

Fix a generalized quorum system (F,R,W) and a termination mapping 7 : F — 2 such
that 7(f) = Uy for each f € F, where Uy is defined after Proposition 3.6. Without loss of
generality, we assume that for each f € F, the connectivity relation of the graph G\ f is
transitive; if not, transitivity can be easily simulated by having all processes forward every
received message.

To implement atomic registers using the generalized quorum system, each process in the
termination set must be able to retrieve information from both a read and a write quorum
— a common pattern in algorithms like ABD [12]. This is challenging in our setting, since
processes within a read quorum may not be strongly connected by correct channels. As a
result, some members may lack incoming correct channels from other processes and be unable
to receive their messages.

Example 4.7. Consider the generalized quorum system in Figure 1.2 and the failure pattern
f1. The available read and write quorums are Ry = {a,c} and W, = {a, b}, respectively. Since
Theorem 3.8 requires 7(f1) = Uy,, any register implementation that satisfies the theorem
must ensure wait-freedom within W; — in particular, at a. However, all channels incoming
to process ¢ may have failed. This makes it impossible for some members of Wy, such as
a, to request information from some members of R;, such as ¢, by sending them an explicit
message to this end.
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4.3.1 Quorum Access Functions

We encapsulate the mechanisms needed to address these challenges (Examples 1.3 and 4.7)
using the following quorum access functions, which allow a process to obtain up-to-date
information from a quorum. We assume that the top-level protocol, such as a register
implementation, maintains a local state from a set S at each process. The interface of the
quorum access functions is as follows:

o quorum_get() € 25: returns the states of all members of some read quorum; and

o quorum_set(u): applies the update function u:S — S to the states of all members of
some write quorum. We assume that update functions are uniquely identifiable.

We require that these functions satisfy the following properties:

« Validity. For any state s returned by quorum_get(), there exists a set of previous
invocations {quorum_set(w;) | ¢ = 1..k} such that s results from applying the update
functions in {u; | i = 1..k} to the initial state in some order.

o Real-time ordering. If quorum_set(u) terminates, then its effect is visible to any subsequent
call to quorum_get() — that is, the set returned by quorum_get() includes at least one
state to which u has been applied.

o Liveness. The functions are (F, 7)-wait-free: they terminate at every member of 7(f)
for any f € F.

Note that the uniqueness of update functions guarantees that the specification is well-defined.
As we show in the following, quorum access functions are sufficient to construct an ABD-like
algorithm for atomic registers.

Quorum access functions for classical quorum systems. To illustrate the concept
of quorum access functions, in Figure 4.3 we provide their implementation under a classical
quorum system that disallows channel failures (Definition 2.1).

Each process stores the state of the top-level protocol, such as a register implementation, in a
state variable. This state is managed by the implementation of the quorum access functions,
but its structure is opaque: it can only manipulate the state by applying update functions
passed by the callers. Each process also maintains a monotonically increasing seq number
(initially 0), which is used to generate a unique identifier for each quorum access function
invocation at this process. This identifier is then added to every message exchanged by the
implementation, so that the process can tell which messages correspond to which invocations.

Upon a call to quorum_get() at a process, it broadcasts a GET_REQ message (line 5). Any
process receiving this request responds with a GET_RESP message that carries its current state
(line 9). The quorum_get() invocation returns once it accumulates such responses from a read
quorum (line 6). It is precisely here that this implementation requires a process at which
termination must be ensured to have bidirectional reliable communication with every member
of some read quorum, implying that the read quorum must be strongly connected by reliable
channels. Also, to cope with message loss on channels that are only eventually reliable, the
messages GET_REQ are periodically retransmitted (line 5).
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[uny

seq < 0
state € S // opaque state of the top-level protocol

N

function quorum_get():
seq < seq + 1
periodically send GET_REQ(seq) to all
wait until received {GET_RESP(seq, s;) | p; € R} from some R € R
return {s; | p; € R}

N O ov ko w

when received GET_REQ(k) from p;,
9 send GET_RESP(k, state) to p,

®

10 function quorum_set(u):

11 seq <—seq + 1

12 periodically send SET_REQ(seq, u) to all

13 wait until received {SET_RESP(seq) | p; € W} from some W € W

14 when received SET_REQ(k, u) from p;
15 state < u(state)
16 send SET_RESP(k) to p,

Figure 4.3: Quorum access functions for a classical quorum system: the protocol at a process p;.

Upon a call to quorum_set(u) at a process, it broadcasts a SET_REQ message carrying the
update function w (line 12). Any process receiving this request applies u to its current
state and responds with SET_RESP (line 16). The quorum_set() invocation returns once it
accumulates such responses from a write quorum (line 13). Like before, to cope with message
loss, the messages SET_REQ are periodically retransmitted (line 12).

It is easy to see that the above implementation satisfies both Validity and Real-time ordering.
The latter follows from the fact that any read and write quorums intersect. Since a call to
quorum_set(u) completes only after applying the update function u to all members of some
write quorum, any subsequent call to quorum_get() will collect responses from a read quorum
that intersects the earlier write quorum. Therefore, at least one member of the read quorum
(i.e., one in the intersection) must reflect u and return it in its response. Validity holds because
each quorum_get() collects states from a read quorum, and every such state results from
applying a subset of past update functions in some order.

Finally, this implementation guarantees wait-freedom at every correct process (Liveness):
Availability ensures that there exist a read quorum and a write quorum of correct processes;
then the fact that the fail-prone system disallows channel failures ensures that any correct
process can communicate with both of these quorums.

Quorum access functions for generalized quorum systems. We now show how we
can implement the quorum access functions for generalized quorum systems, despite the lack
of strong connectivity within read quorums.

We use Example 4.7 for illustration. Recall that in this example we need to ensure termination
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1 seq < 0
2 clock < 0
3 state € S // opaque state of the top-level protocol

4 function quorum_get():

seq < seq + 1

periodically send CLOCK_REQ(seq) to all

wait until received {CLOCK_RESP(seq, ¢;) | pj € Weei} from some W,y € W

Cget, — max{c; | pj € Wiyet}

wait until received {GET_RESP(s;,¢;) | pj € Ry} from some Ry € R
where Vj. ¢; > cget

10 return {s; | p; € Rget}

© 0w N O !

11 when received CLOCK_REQ(k) from p;
12 send CLOCK_RESP(k, clock) to p,

13 periodically
14 clock < clock + 1
15 send GET_RESP(state, clock) to all

16 function quorum_set(u):

17 seq < seq + 1

18 periodically send SET_REQ(seq, u) to all

19 wait until received {SET_RESP(seq,c;) | pj € Wt} from some Wy, € W

20 Cset < max{c; | pj € Wt }

21 wait until received {GET_RESP(_,c¢;) | pj € Rst} from some Ry € R
where Vj. ¢; > Cget

22 when received SET_REQ(k, u) from p;,
23 state < u(state)

24 clock < clock + 1

25 send SET_RESP(k, clock) to p;

Figure 4.4: Quorum access functions for a generalized quorum system: protocol at a process p;.

within W) and, in particular, at a. To achieve this, an implementation of quorum_get() at a
needs to obtain state snapshots from every member of R;. However, channel failures may
make it impossible for a to send a message to ¢ € Ry \ W to request this information. Of
course, ¢ could just periodically propagate its state to all processes it is connected to, without
them asking for it explicitly: by Availability, W; is f-reachable from R;, so that messages
sent by ¢ will eventually reach a. But because the network is asynchronous, the process a
cannot easily determine when the information it receives is up to date, i.e., when it captures
the effects of all quorum_set() invocations that completed before quorum_get() was invoked at
a — as necessary to satisfy Real-time ordering.

To address this challenge, each process maintains a monotonically increasing logical clock,
stored in the variable clock (initially 0). This clock, which is different from the usual logical
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clocks for tracking causality [35, 45], is used by processes to tag their state. We then modify
the implementation of the quorum access functions in Figure 4.3 as shown in Figure 4.4:

» Periodic state propagation (line 13): A process periodically advances its clock and
propagates its current state along with clock in a GET_RESP message, without waiting
for an explicit request. This is how the clock value tags the state and indicates the
logical time at which the process held it.

« Clock updates during state changes (line 22): When handling a SET_REQ(k, u)
message, a process increments its clock and sends it as part of the SET_RESP message.
The process thereby indicates the logical time by which it has incorporated u into its
state.

« Delaying the completion of quorum_set (line 16): Upon a quorum_set(u) invocation,
the process broadcasts v in a SET_REQ message and waits for SET_RESP messages from
every member of some write quorum Wy, as in the classical implementation. The
process selects the highest clock value among the responses received and stores it in
a variable cgt. It then waits until some read quorum R, reports having clock > ¢y
before completing the invocation. As we show in the following, this wait serves to ensure
that future quorum_get() invocations observe the update w.

« Clock cutoff for quorum_get (line 4): Upon a quorum_get() invocation, the process
first determines a clock value cget, delimiting how up-to-date the states it will return
should be. To this end, the process broadcasts a CLOCK_REQ message. Any process
receiving this message responds with a CLOCK_RESP message that carries its current
clock value. The process executing quorum_get() waits until it receives such responses
from all members of some write quorum and picks the highest clock value among those
received — this is the desired clock cut-off cge¢. Finally, the process waits until it receives
GET_RESP(s;, ¢;) messages with ¢; > ¢y from all members of some read quorum and
returns the states s; to the caller.

As in the implementation for classical quorum systems, to tolerate message loss on eventually
reliable channels, processes periodically retransmit the CLOCK_REQ and SET_REQ messages
(lines 6 and 18).

Note that quorum_set and quorum_get operations work in tandem: quorum_set delays its
completion until clocks have advanced sufficiently at a read quorum; this allows quorum_get
to establish a clock cutoff capturing all prior completed updates. Interestingly, quorum_set
uses read quorums for this purpose, while quorum_get uses write quorums — an inversion of
the traditional quorum roles.

It is easy to see that this implementation validates the Validity property of the quorum access
functions. We now prove that it also validates Real-time ordering. First, consider ¢y computed
by a quorum_set(u) invocation (lines 17-20). The following lemma shows that querying the
states of a read quorum with clocks > ¢ is sufficient to observe wu.

Lemma 4.8. Assume that cge is computed by a quorum_set(u) invocation at a process Pset
(lines 17-20). Consider a set of messages {GET_RESP(s;,¢;) | pj € R} sent by all members of
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some read quorum IR, each having c; > cst. Then some s; has incorporated w.

Proof. To compute the value of ¢, the process pset waits for SET_RESP( _, cg) messages from all
members p; of a write quorum We;. Since any read quorum intersects any write quorum, there
exists p; € RN We. Because p; € Wy, this process sends a SET_RESP(_, ¢}) message t0 Pset
during the quorum_set(u) invocation. The process py.; computes ¢ = max{cj | p; € Wit },
so that ¢t > ¢). Because p; € R, this process also sends a GET_RESP(s;, ¢;) message with
€l > Cset > ¢;. At this moment p; has clock = ¢;. Hence, if p; sends the GET_RESP(s;, ¢;)
message before sending the SET_RESP(_, ¢;) message, then due to the increment at line 24
and the fact that process clocks never decrease, we must have ¢; < ¢j. But this contradicts
the fact ¢; > ¢ that we established earlier. Hence, p; must send the SET_RESP(_, ¢}) message

before sending the GET_RESP(s;, ¢;) message and, therefore, s; incorporates u. O

In the light of the above lemma, for quorum_get() to validate Real-time ordering, it just needs to
find a clock value that is > cgy of any previously completed quorum_set(). As we show in the
following proof, this is precisely what is achieved by the computation of cge in quorum_get().

Theorem 4.9 (Real-time ordering). If a quorum_set(u) operation terminates, then its effect is
visible to any subsequent quorum_get() invocation.

Proof. Assume that quorum_set(u) terminates at a process pge; before quorum_get() is invoked
at a process pget. Since any read quorum intersects any write quorum, there exists p; €
Rget N Weer. Since p; € Ry, before quorum_set(u) terminated, peet received GET_RESP(_, ¢))
from p; with ¢ > ¢ (line 21). Hence, by the time quorum_set(u) terminated, p; had
clock > ¢t. We also have p; € Wiy, and thus pget received CLOCK_RESP(_, ¢;) from p; at
line 7. This message was sent at line 12 after quorum_get() had been invoked, and thus,
after quorum_set(u) had terminated. Above we established that by the latter point p; had
clock > cget, and thus, ¢; > ceer. The process pger computed cgey = max{c; | pj € Weet } at
line 8, so that cge; > ¢; > Cger. Then each GET_RESP(s;, ¢;) that peeq received from p; € Ry at
line 9 satisfies ¢; > Cget > Coot- By Lemma 4.8, some s; has incorporated u, as required. [

Theorem 4.10 (Liveness). The protocol in Figure 4.4 is (F,T)-wait-free.

Proof. We prove the liveness of quorum_get(); the case of quorum_set() is analogous. Fix a
failure pattern f € F and a process p € 7(f) that executes quorum_get(). By Availability,
there exist W € W and R € R such that W is f-available, and W is f-reachable from R. By
Proposition 3.6, W C Uy. Then since 7(f) = Uy and p € 7(f), p is strongly connected to W
via channels correct under f. Therefore, p will be able to eventually exchange the CLOCK_REQ
and CLOCK_RESP messages with every member of W, thus exiting the wait at line 7. Recall
that W is f-reachable from R and each process periodically increments its clock value and
propagates it in a GET_RESP message (line 13). Hence, p will eventually receive GET_RESP
messages from all members of R with high enough clock values to exit the wait at line 9 and
return. 0
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1 S = Value x Version // register state type

2 function write(x):

3 S <« quorum_get()

4 (k,_) < max{s.ver | s € S}

5t (k+1,9)

6 u 4— (As. if t > s.ver then return (z,t) else return s)
7 quorum_set(u)

function read():
9 S < quorum_get()
10 let s’ € S be such that Vs € S. s’.ver > s.ver

®

11 u 4 (As. if s'.ver > s.ver then return s’ else return s)
12 quorum_set(u)
13 return s'.val

Figure 4.5: Atomic Register protocol at a process p;.

4.3.2 Registers via Quorum Access Functions

In Figure 4.5 we give an implementation of an atomic register using the above quorum
access functions, which validates Theorem 3.8. The implementation follows the structure
of a multi-writer multi-reader variant of ABD [12, 50] (see §2.6.2): the main novelty of our
protocol lies in the implementation of the quorum access functions.

Let Value be the domain of values the register stores. Like ABD, our implementation tags
values with versions from Version = N x N, which are ordered lexicographically. A version is
a pair of a monotonically increasing number and a process identifier. Each register process
maintains a state consisting of a pair (val, ver), where val is the most recent value written to
the register at this process and ver is its version. Hence, we instantiate S in Figure 4.4 to
S = Value x Version, with (_L,0) as the initial state. Note that versions are unrelated to the
logical clocks in the implementation of the quorum access functions.

To execute a write(x) operation (line 2), a process proceeds in two phases:

» Get phase. The process uses quorum_get() to collect the states from some read quorum.
Based on these, it computes a unique version ¢, higher than every received one.

« Set phase. The process next uses quorum_set() to store the pair (z,?) at some write
quorum. To this end, it passes as an argument a function u that describes how each
member of the write quorum should update its state (expressed using A-notation, line 6).
Given a state s of a write quorum member, the function acts as follows: if the new
version t is higher than the old version s.ver, then the function returns a state with the
new value x and version t; otherwise it returns the unchanged state s. Recall that the
implementation of quorum_set() uses the result of this function to replace the states at
the members of a write quorum.

To execute a read() operation (line 8), a process follows two similar phases:
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o Get phase. The process uses quorum_get() to collect the states from all members of
some read quorum. It then picks the state s’ with the largest version among those
received. The value part s'.val of this state will be returned as a response to the read().

« Set phase. Before returning from read(), the process must guarantee that the value
read will be seen by any subsequent operation. To this end, it writes the state s’ back
using similar steps to the Set phase for the write() operation.

4.3.3 Correctness

The Liveness property of the quorum access functions trivially implies that the protocol in
Figure 4.5 is (F, 7)-wait-free. We now show that the protocol in Figure 4.5 is linearizable [40],
thereby completing the proof of Theorem 3.8.

To each (possibly infinite) execution o of the algorithm, we associate:
« a set V(o) consisting of all the operations in o, i.e., reads and writes; and

o arelation rt(o) C V(o) x V(0), defined as follows: for all 01,0, € V(0), (01,02) € rt(o)
if and only if 0; completes before 0, is invoked.

We denote the read operations in ¢ by R(o) and the write operations in o by W (o).
The following definition and theorem are inspired by the dependency graph framework intro-

duced by Adya [1].

Definition 4.11. Let o be an ezecution. A dependency graph for o is a tuple G =
(V(o),vis, rt(o), wr,ww, rw), where vis is a visibility predicate over V(o) and the relations
wr,ww, rw C V(o) x V(o) are such that:

1. vis holds for all complete operations;
2. (i) if (w,r) € wr, then w € W (o), vis(w), r € R(c), r completes and val(w) = val(r);
(i1) for all wy,wq,m € V(o) such that (wy,r) € wr and (wq, ) € wr, we have wy = ws;

(iii) if r € R(o) is complete and there is no w € W (o) such that (w,r) € wr, then r
returns the initial value 1 ; and

(iv) if w € W(o) is incomplete and there is no r € R(o) such that (w,r) € wr, then
—vis(w);

3. ww is a total order over {w | w € W(o) Avis(w)}; and

4w = {(r,w) | . (W,r)ewrA (W, w)€ww} U
{(r,w) | r € R(o) Nw € W(o) Avis(w) A =3Fw'. (w',r) € wr}.

A dependency graph G = (V (o), vis, rt(a), wr,ww, rw) consists of a set of vertices V(o) and
edges rt(o) Uwr Uww U rw. To prove linearizability, we rely on the following theorem.

Theorem 4.12. An execution o is linearizable if there exist vis, wr, ww, and rw such that
G = (V(o),vis, rt(o), wr,ww, rw) is an acyclic dependency graph.
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Proof. Let R'(0) be the set of incomplete read operations in the execution o and let V'(0) =
{o|o€ V(o) Avis(o)} \ R'(c). Since G is acyclic, the subgraph G’ of G induced by V'(o) is
also acyclic. Thus, the partial order over V'(o) induced by G’ can be extended to a total order
< such that for every edge (01,07) € G’, we have 0; < 05. We now argue that the history m,
obtained by ordering operations in V’(o) according to < and completing incomplete writes, is
a linearization of . We first prove that 7 is well-formed:

o All complete operations are visible, so 7w contains all complete operations.
o If (01,00) € rt(0), then 0y < 09, so 7 preserves the real-time order, i.e., rt(c) C .

o 7 is well-formed in that only finitely many operations can precede any complete operation
o: since o completes in ¢, only finitely many operations can start before it returns. Let
S be the set of such operations. Every operation in V'(0) \ S starts after o returns in o,
so o precedes it in real time. Since rt(c) C 7, only operations in S can precede o in <
and therefore in 7.

o The same holds for incomplete operations. The definition of V’(¢) implies that an
incomplete operation can only be a visible write. By Definition 4.11 — 2 — (4v), for any
visible write w, there exists a complete read r such that (w,r) € wr. It follows that

w < 1, so w precedes r in 7. Since r has only finitely many predecessors in 7, the same
holds for w.

Finally, we show that 7 satisfies the semantics of a register. That is, for any read operation r
in 7, either there exists a latest write operation w that precedes r in 7 and val(w) = val(r),
or no such w exists and val(r) = L. Assume by contradiction that such a w exists but
val(w) # val(r). There are two cases:

o If val(r) = L, then since no w' € W (o) has val(w') = L, there is no w’ € W (o) such
that (w’,r) € wr. By definition of rw, for all visible w’, we must have (r,w’) € rw, hence
r < w. This contradicts the assumption that w precedes r in .

o Ifval(r) # L, then by Definition 4.11 — 2 — (¢i¢) and (7), there exists w’ € W (o) such that
vis(w'), val(w') = val(r), and (w’,r) € wr, implying w’ < r. Since vis(w), vis(w') and ww
is a total order over all the visible writes, we have that (w,w’) € ww or (w',w) € ww.
If (w,w") € ww, then w < w’ < r, contradicting that w is the latest write before r in
7. If instead (w’,w) € ww, then by the definition of rw we must have (r,w) € rw, so
r < w, contradicting that w precedes r in 7.

Now assume that no such w exists. We must show that val(r) = L. Assume by contradiction
that val(r) # L. Then, by Definition 4.11 — 2 — (i74), there exists w’ € W (o) such that vis(w’)
and (w',r) € wr. It follows that w’ < r, so w’ precedes r in 7. Thus there exists a latest write
preceding r in 7, contradicting the assumption that no such w exists. ]

We now prove that every execution of the protocol in Figure 4.5 is linearizable. Fix one
such execution ¢. Our strategy is to find witnesses for vis, wr, ww and rw that validate the
conditions of Theorem 4.12. To this end, consider the function 7: 0 — (NU {oco}) x N that
maps each operation o € V(o) to a version as follows:
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« If o € R(0) and o executes line 10 in Figure 4.5, then 7(0) = s'.ver.

« If o € W(o) and o executes line 5 in Figure 4.5, then 7(0) = t.

o Otherwise, 7(0) = (00,1), where p; is the process that executes o.
We then define the required witnesses as follows:

o vis(0) is true if o completes or if 0 € W (o) and there exists a complete read r € R(0)
such that 7(o) = 7(r);

(w,r) € wr if and only if w € W(o), r € R(0), r completes, and 7(w) = 7(r);
e (w,w) € ww if and only if w,w" € W(0o), vis(w), vis(w'), and 7(w) < 7(w'); and
e rw is derived from wr and ww as per the dependency graph definition.
Our proof relies on the next proposition. We omit its easy proof which follows from the
Validity property of the quorum access functions:
Proposition 4.13. The following hold:
1. For every wy,wy € W(0o), 7(wy) = 7(wsy) implies wy = ws.
2. For every w € W(o), 7(w) > (0,0).

3. For every r € R(o) that completes, either T(r) = (0,0) or there exists w € W (o) such
that vis(w) and 7(r) = 7(w).

4. For everyr € R(o) and w € W (o), 7(r) = 7(w) implies val(r) = val(w).

Our proof also relies on the following auxiliary lemma:

Lemma 4.14. The following hold:
1. For allr,w € V (o), if (r,w) € rw then 7(r) < 7(w).

2. For all 01,00 € V(0), if (01,02) € rt(0), then 7(01) < 7(03). Moreover, if 0y is a write,
then 7(01) < 7(02).

Proof. We prove each item separately:
1. Let r,w € V(o) be such that (r,w) € rw. There are two cases:

« Suppose that for some w’ we have (w',r) € wr and (w',w) € ww. The definition of
wr implies that 7(r) = 7(w’), and the definition of ww implies that 7(w') < 7(w).
Then 7(r) < 7(w).

« Suppose now that =3w’. (w’,r) € wr. We show that 7(r) = (0,0). Indeed,
if 7(r) # (0,0), then by Proposition 4.13.3, there exists w € V(o) such that
7(r) = 7(w). But then (w,r) € wr, contradicting the assumption that there is no
such write. At the same time, Proposition 4.13.2 implies that 7(w) > (0,0). Then

7(r) < 7(w).

2. Let 01,00 € V(o) be such that (o01,0,) € rt(o). Because o1 precedes 09, 01 completes.
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Let u be the update function computed during o;’s invocation at lines 6 (if o1 is a write)
or line 11 (if 0; is a read). The definitions of u imply that right after a process applies
it to its state it has ver > 7(07).

Let p; be the process that invokes 0,. Suppose the quorum_get invocation by o0,
does not complete. Then, by the definition of 7, we have 7(0y) = (00,1), and thus
7(01) < 7(02), as required. Otherwise, let S = {s; | i = 1..k} be the states returned
by the corresponding quorum_get() invocation (lines 3 and 9). The Validity property
of the quorum access functions ensures that for each s; € S there exists a set of
previous invocations {quorum_set(u}) | j = 1..k;} such that s; is the result of applying
the update functions in {uz | 7 = 1..k;} to the initial state in some order. Since the
quorum_get() invocation happens after quorum_set(u) has completed, by the Real-time
ordering property there is at least one state s, to which u has been applied: u = uj for
some j. Because the update functions passed by the protocol to quorum_set() never
decrease ver, we then have s,.ver > 7(01). There are two cases:

o Suppose 0y is a write. Because 7(09) is greater than the maximum ver value among
the states in S (lines 4-5), we have 7(01) < 7(02).

o Suppose 0, is a read. Because 7(0z) is the maximum ver value among the states in
S (line 10), we have 7(01) < 7(02). O

Theorem 4.15. G = (V (o), vis, rt(c), wr,ww, rw) is an acyclic dependency graph.

Proof. From Proposition 4.13 and the definitions of vis, wr, ww and rw it follows that G is a
dependency graph. We now show that (G is acyclic. By contradiction, assume that the graph
G contains a cycle 0y, ...,0, = 01. Then n > 1. By Lemma 4.14 and the definitions of 7, ww
and wr, we must have 7(01) < --+ < 7(0,) = 7(01), so that 7(0;) = -+ = 7(0,). Furthermore,
if (0,0') is an edge of G and o' is a write, then 7(0) < 7(0’). Hence, all the operations in the
cycle must be reads, and thus, all the edges in the cycle come from rt(c). Then there exist
reads 71, ro in the cycle such that r; completes before 75 is invoked and 7y completes before
ry is invoked, which is a contradiction. O

4.4 Bounded Process Failures

The upper bound presented in §4.3 is correct under very general conditions and answers a
fundamental computability question. However, its progress relies on processes from some read
quorum asynchronously and independently bumping their clocks to reach the desired cut-off.
As a result, the time it takes for an operation to complete may grow arbitrarily large, even
under favourable network conditions.

To address this issue, we turn our attention to a practically motivated class of fail-prone
systems in which at most a minority of processes may fail. While this assumption narrows the
set of admissible failure patterns, it yields stronger connectivity guarantees that we leverage
to design a more efficient implementation — one where operation latency can be bounded by
message delays and state exchange rates. This implementation also uses bounded memory,
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Q) B )

Figure 4.6: A 1-fail-prone system JF consisting of failure-patterns f;, i = 1..3.

reflecting practical system considerations. The resulting protocol is therefore better suited for
practical use.

4.4.1 Lower Bounds

When there are no restrictions on the fail-prone system, a straightforward lifting of Lemma 4.1
yields the following:

Corollary 4.16. Let F be a fail-prone system and 7 : F — 2% a termination mapping.
If some algorithm A is an (F,T)-obstruction-free implementation of lattice agreement over
Marp (asynchronous / reliable / disconnected), then for all f € F, 7(f) is strongly connected

inG\ f.

However, when the number of process failures is bounded, stronger connectivity guarantees
emerge. To formalize this, we introduce the following notion. A k-fail-prone system F allows
any set of k processes or fewer to fail, but disallows the failure of more than k£ processes:

(VP CP.|P|<k=>3CCC. (P,C)eF) AV(P,C)eF.|P|<k).

Example 4.17. Consider the set of processes P = {a,b,c}. In Figure 4.6, we depict a
1-fail-prone system consisting of failure patterns f;, ¢ = 1..3. Under the failure pattern fi,
processes a and b are correct while ¢ may crash. The channels (a,b) and (b, a) are correct,
while all others may fail.

Example 4.18. The system Fy; from §3.2 is | 25+ |-fail-prone.

The following theorem establishes the minimal connectivity required to implement lattice
agreement, atomic snapshots, or atomic registers over the model Magrp (asynchronous /
reliable / disconnected), in systems where any set of k or fewer processes may fail. Like
our general lower bound (Theorem 3.7), this result assumes a weak termination guarantee:
obstruction-freedom is required to hold only at some non-empty set of processes for each
failure pattern. The theorem states that, regardless of how small this set is, it must be
contained in a group of more than k correct processes that are strongly connected by correct
channels.

Theorem 4.19. Let F be a k-fail-prone system and 7 : F — 27 a termination mapping

such that for each f € F, 7(f) # 0. Assume that there exists an (F,T)-obstruction-free
implementation of any of the following objects over the model Marp: MWMR atomic registers,
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SWMR atomic snapshots, or lattice agreement. Then for all f € F, there exists a strongly
connected component of G\ f that contains T(f) and has a cardinality greater than k.

As before, we prove Theorem 4.19 for lattice agreement. Since SWMR atomic snapshots can
be constructed from MWMR, atomic registers (§2.6.3), and lattice agreement can in turn be
built from snapshots (§2.6.4), the lower bounds for the former two problems follow.

Proof of Theorem 4.19 for lattice agreement. The result follows from Theorem 3.7 together
with the following claim: if a k-fail-prone system F admits a generalized quorum system,
then for every f € F, f-available write quorums must have size strictly greater than k.

Suppose, for contradiction, that there exists a failure pattern f € F such that some f-available
write quorum has size at most k. Let W be one such quorum. Since F is a k-fail-prone system
and |[W| < k, there exists a failure pattern g € F such that every process in W is faulty in g.
By the Availability property of generalized quorum systems, there must exist a read quorum R
such that every process in R is correct in g. Hence W N R = (), contradicting the Consistency
property of generalized quorum systems. Therefore, every f-available write quorum W must
satisfy |[W| > k.

Finally, by Theorem 3.7 we have that for every f € F and every f-available write quorum W,
W C Uy. Hence |Uy| > k and 7(f) C Uy. O

Theorem 4.19 is most interesting in the common practical case of n = 2k + 1, which is the
minimal number of processes needed to tolerate k crashes in asynchronous registers [49] and
partially synchronous consensus [32]. In this case the theorem ensures that for each failure
pattern f, the graph G\ f has a strongly connected component containing > k + 1 processes.
More generally, for arbitrary G and f, we call a strongly connected component of G \ f
containing a majority of processes in G a connected core of the graph. It is easy to see that
there can exist at most one connected core for a given G and f.

Example 4.20. Consider the 1-fail-prone system from Figure 4.6. For the failure pattern f;
the connected core is {a, b}, for the failure pattern f, the connected core is {b, ¢}, and for the
failure pattern f3 the connected core is {c,a}.

We now demonstrate that the restricted class of fail-prone systems considered in this section
induces connectivity requirements that correspond to a particular instance of a generalized
quorum system, thereby ensuring that our results remain consistent with the general framework.
Specifically, we show that the existence of a connected core for each failure pattern yields
such a quorum system.

For each f € F, let Sy denote the connected core guaranteed by Theorem 4.19 — a set of more
than k correct processes that are strongly connected by correct channels under f. Define
R=A{S;|feF}and W= {S;| f € F}. Then (F,R,W) forms a generalized quorum
system: since each Sy contains a majority, read and write quorums intersect; and its strong
connectivity under f ensures that it is both f-available and f-reachable from itself. Hence,
the Consistency and Availability conditions of a GQS are satisfied.
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4.4.2 Upper bounds

We now describe a protocol for implementing atomic registers in the model Mg, under the
assumption that any minority of processes may fail. The protocol is efficient in that it ensures
bounded latency, bounded memory usage, and bounded message complexity per operation.

The design follows the modular construction presented in Figure 4.5, which separates the logic
of register emulation from the mechanism used to access quorums. In particular, it assumes
the existence of abstract quorum access functions — quorum_get() and quorum_set(u) — that
retrieve and propagate state, respectively. This construction already guarantees the desired
efficiency properties modulo the implementation of the quorum access functions. Thus, to
obtain an efficient protocol for atomic registers, it suffices to implement quorum access with
the same guarantees.

To this end, in Figure 4.7 we present a protocol that leverages the existence of a connected
core in every execution to achieve the desired efficiency bounds. Unlike §4.3, we do not
assume that the connectivity graph induced by correct processes and reliable channels is
transitively connected — since we are concerned with practicality, we must account for this, as
dissemination across multiple hops can become a dominant cost in efficiency. To handle this,
the protocol relies on repeated gossip to disseminate state. Despite this, it uses only bounded
metadata, and its progress depends solely on message delays and the rate of state exchange —
making it better suited for practical use than the general upper bound of §4.3.

State and communication. Like in §4.3, each process stores the state of the top-level
protocol, such as a register implementation, in a state variable. This state is managed by the
implementation of the quorum access functions, but its structure is opaque: it can only be
manipulated through update functions passed by the callers. Each process also maintains a
monotonically increasing sequence number seq (initially 0), which is used to generate a unique
identifier for each quorum access invocation. This identifier is included in every metadata
entry, allowing processes to associate messages with the correct operation.

To track the state of quorum gets and sets across the system, each process maintains the
following bounded metadata:

 get_req[i] stores the most recent get request issued by p;, tagged with seq;
o get_respli][j] records p;’s response to p;’s latest get request;

« set_req[i] stores the most recent set request issued by p;, as a pair (seq, u), where u is
the corresponding update function; and

« set_resp|i][j] records p;’s acknowledgement of p;’s latest set request.

For simplicity, the pseudocode in Figure 4.7 separates computation from communication. Most
handlers update metadata arrays locally, without sending messages. Instead, each process
periodically sends a single STATE message (line 26) that includes all relevant metadata.

Upon receiving a STATE message (line 27), a process merges the received metadata into its
own (lines 28 — 37), keeping only the most recent entries based on sequence numbers. This
ensures that information is disseminated across the system using only bounded memory, even
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[uny

seq < 0
state € S // opaque state of the top-level protocol

N

function quorum_get():
pre: status = IDLE
seq < seq + 1
get_reqli] < seq
status <~ GET_QUERY
async wait until status = GET_DONE
return {get_resp[j][i].val | get_resp[j][i].seq = seq}

© 000 N O ok W

10 when Jj. get_req[j].seq > get_respli][j].seq
11 get_resp|i][j] < (get_reqlj].seq, state)

12 when status = GET_QUERY A |{j | get_resp[j][i].seq = seq}| > 5
13 status <~ GET_DONE

14 function quorum_set(u):

15 pre: status = IDLE

16 seq <— seq + 1

17 set_req|i] < (seq, u)

18 status < SET_QUERY

19 async wait until status = SET_DONE

20 when 3j. set_req[j].seq > set_respli][j].seq
21 state < set_req[j].u(state)
22 set_resp|i][j] < set_req[j].seq

23 when status = SET_QUERY A |{j | set_resp[j][i].seq = seq}| > &
24 status <— SET_DONE

25 periodically
26 send STATE(get_req, get_resp, set_req, set_resp) to all

27 when received STATE(Geq, Gresps Steqs Sresp)
28 for p; € P do

29 if Gelj].-seq > get_req[j].seq then

30 get_req[j] <= GreqlJ]

31 if Syeql7]-seq > set_req[j].seq then

32 set_req[j] <= Sreqly]

33 for p, € P do

34 if Grespli]lk].seq > get_resplj][k].seq then
35 get_resp|j][k] <= Glresp|][#]

36 if Spespi][k].seq > set_resp|j][k].seq then
37 set_resp[j][k] <= Sresp[7][¥]

Figure 4.7: Quorum access functions under bounded process failures: the protocol at a process p;.
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when communication proceeds across multiple hops due to indirect connectivity. The periodic
propagation of state also copes with message loss on channels that are only eventually reliable.

Protocol operation. Upon a call to quorum_get() (line 3), the process increments its local
sequence number, records the request in get_req[i], and sets status = GET_QUERY (lines 5-7).
This request is disseminated to all processes via periodic STATE messages (line 26). When
another process p; receives a fresher request from p; (line 10), it responds by recording its
current local state in get_resp[j|[i]. These responses are eventually propagated back to p;
through gossip and merged as part of the handler in lines 28-37. As responses accumulate, p;
checks whether a quorum of responses match its current sequence number (line 12). Once
this occurs, it sets status = GET_DONE (line 13) and returns the set of states retrieved from
the quorum (line 9).

Upon a call to quorum_set(u) (line 14), the process increments its local sequence number,
stores the update function in set_req[i], and sets status = SET_QUERY (lines 16-18). This
intent to perform an update is gossiped to all processes via periodic STATE messages (line 26).
When another process p; receives a fresher request from p; (line 20), it applies the update
function to its local state (line 21) and records the acknowledgement in set_respl[j][i] (line 22).
These acknowledgements are eventually delivered back to p; through gossip and merged in
the handler in lines 28-37. As acknowledgements accumulate, p; monitors the number of
responses matching its current sequence number (line 23). Once it observes a quorum, it sets
status = SET_DONE (line 24) and returns from the call.

Each process stores at most one metadata entry per process and per operation, and no
unbounded buffering is required. All communication occurs via bounded-size STATE messages.
This design guarantees bounded memory usage, bounded message complexity, and progress
that depends solely on the rate at which messages are delivered and exchanged — thereby
meeting the efficiency goals outlined at the start of this section.

Correctness. The proof that this protocol satisfies Validity and Real-time ordering follows
the same structure as for the quorum access functions in classical quorum systems (see §4.3.1).
Therefore, we focus here on proving liveness.

Lemma 4.21. Let F be a fail-prone system such that for all f € F, the graph G\ f contains
a connected core Sy, and let T : F — 27 be the termination mapping such that for each f € F,
7(f) = Sy. Then the algorithm in Figures 4.7 is (F, T)-wait-free.

Proof. We prove the liveness of quorum_get(); the case of quorum_set(u) is analogous. Fix a
failure pattern f € F and a process p; € 7(f) = Sy that invokes quorum_get(). By assumption,
Sy is a set of correct processes that are strongly connected by correct channels under f.

Upon invoking quorum_get(), the process p; increments its local sequence number and sets
status = GET_QUERY (lines 5-7). This request is then gossiped periodically to all processes
(line 26). Since the processes in Sy are strongly connected under f and p; € Sy, every member
of §; will eventually receive p;’s updated get_req[i]. Whenever a process p; € Sy observes
that get_req[i] carries a higher sequence number than previously seen (line 10), it records its
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current local state in get_resp|[j][é]. This metadata is then propagated back to p; via periodic
STATE messages, which are merged upon receipt (lines 28-37). Since gossip is repeated and
all channels between members of Sy are eventually reliable under f, p; will eventually receive
responses from all members of a majority quorum within Sy with matching sequence numbers.
This is guaranteed because p; does not increment seq or begin a new quorum access operation
until the current one has completed. At that point, the guard in line 12 is satisfied, and p;
sets status = GET_DONE (line 13), allowing the operation to complete. O
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Chapter 5

Consensus

In this chapter, we study the implementation of consensus in partially synchronous systems
subject to arbitrary process and channel failures. We show that a generalized quorum system
is also a tight reliability bound for consensus. This result complements the bounds established
for atomic registers, atomic snapshots and lattice agreement in the asynchronous setting.

In §5.1, we first establish that a generalized quorum system is a lower bound. To this end,
we show how consensus can be used to implement a MWMR, atomic register in a partially
synchronous system. We then reduce the lower bound for consensus to the lower bound for
registers proved in §4.1.

Then, in §5.2, we present an upper bound that matches this lower bound. Assuming the
existence of a generalized quorum system, we give a consensus algorithm that guarantees
wait-freedom within its write quorums. Similar to the assumptions in the previous chapter,
we consider an adversarial model where correct channels are only eventually timely and
faulty channels are flaky, meaning they may drop any number of messages without fairness
guarantees. In this setting, consensus is simpler to implement than registers: a process can
leverage the eventual synchrony of the network to determine whether the information it
receives is up to date. This property is crucial for safety but difficult to guarantee in the
asynchronous model.

Having established tight bounds for solvability, we then turn — as in the previous chapter — to
a practically motivated class of fail-prone systems in which at most a minority of processes
may fail (§5.3). We prove that if consensus is solvable under an F-fail-prone system, then a
connected core must exist in every execution. The key challenge then becomes leveraging
this stronger connectivity guarantee to design a more efficient implementation of consensus
— one where operation latency can be bounded by message delays and state exchange rates.
Furthermore, we require this implementation to use bounded memory and guarantee wait-

freedom within the connected core.

As explained in Chapter 1, classical abstractions such as failure or leader detectors (see §2.7)
lose their utility under flaky channels, since message loss renders these algorithms inapplicable.
We therefore take a different approach and adapt the recently proposed abstraction of a view
synchronizer [17, 18, 54, 55|, which generalizes these mechanisms and enables coordination
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despite arbitrary message loss. At a high level, the synchronizer aims to gather a sufficiently
large set of well-connected correct processes into a view led by a well-connected correct leader,
and to keep them in that view long enough to drive the protocol to completion. We present
its specification (§5.4.1), an implementation (§5.4.2), and prove that this implementation
meets the specification under partial synchrony (§5.4.3).

We then present a modular consensus protocol (§5.4.4) that leverages the synchronizer
to coordinate processes within the connected core and achieves the desired efficiency and
termination guarantees. As in §4.4.1, the algorithm explicitly accounts for propagation of
information and does not assume that the connectivity graph is transitively connected.

Finally, in §5.5, we demonstrate how our lower and upper bounds can be applied to establish
consensus solvability in various existing models of weak connectivity [5, 6, 33, 43, 51]. In
particular, we show that some connectivity models strong enough to implement the €2 leader
detector are nevertheless too weak to solve consensus.

5.1 Lower Bound

We now argue that Theorem 3.10 holds. The proof of the lower bound for lattice agreement
(§4.1) remains valid in the partially synchronous model Mpgp: since the execution o con-
structed in that proof is finite, it is also valid under partial synchrony, where all actions occur
before GST. As in the asynchronous case, the lower bound for lattice agreement implies the
one for registers under partial synchrony [2, 14]. Since, as we show next, consensus can be
used to implement a MWMR atomic register under partial synchrony, the lower bound for
consensus follows directly from the lower bound for registers.

5.1.1 Registers from Consensus

It is well-known that wait-free atomic registers can be implemented from wait-free consensus in
the classical crash-stop model with reliable channels. We now show that a similar result holds
for obstruction-freedom in the model Mpgp (partially synchronous / reliable / disconnected).

In Figure 5.1, we present an algorithm that achieves this by using an infinite array of
obstruction-free consensus instances. Each operation — read or write — is encoded as a com-
mand and proposed sequentially in these instances until it is chosen. Both operations terminate
at the first instance where their command is decided. In this way, processes agree on a total
order of operations, which defines the sequence of commands applied to the register.

Theorem 5.1. Let F be a fail-prone system and 7 : F — 2F be a termination mapping such
that for each f € F, 7(f) # 0. Then the algorithm in Figure 5.1 is an (F,T)-obstruction-free
implementation of a MWMR atomic register over Mpgrp.

Proof. 1t is straightforward to verify that the algorithm implements a MWMR atomic register.
Therefore, we focus on proving obstruction-freedom. Let f € F, o be an f-compliant
execution of the algorithm in Figure 5.1, p € 7(f), and arg_op be an operation invoked by p
that executes solo in 0. We show that arg_op must eventually return.
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1 idx <0
2 val + L
3 let C' be an infinite array of (F,7)-obstruction-free consensus instances over Mpgrp

4 upon invocation of arg_op
5 pre:op=_1Aarg_op# L

6 Op < arg_op

7 while TRUE do

8 let op = C/[idx|.propose(op)
9

idx < idx + 1
10 if op = write(v) then
11 val < v
12 if op = op then
13 op+ L
14 if op = read then ret_val < val
15 else ret_wal < ACK
16 return ret_val in response to op

Figure 5.1: Protocol at a process p;. Let Value be an arbitrary domain of values. The operation
arg_op can either be read() or write(v) for v € Value.

Let ¢ be such that arg_op is first proposed in the ¢-th instance of consensus at a time ¢, and
assume, for the sake of contradiction, that arg_op never returns. Since arg_op executes solo
in o, it is not concurrent with any operation invoked by another correct process. Because
arg_op never returns, it follows that no operation invocation by a correct process occurs at
any time > t. Hence, from time ¢ onwards, the only outstanding operations are either arg_op
itself or operations invoked by faulty processes. Therefore, every proposal by p at a time > ¢
executes solo in o.

We now show that for each j > 7, arg_op is proposed by p in the j-th instance of consensus
p.C[j]. Since i is defined as the first instance of consensus where arg_op is proposed by p, the
claim trivially holds for j = ¢. Suppose now that arg_op is proposed in the k-th instance of
consensus for some k > i. Because the k-th instance of consensus is (F, 7)-obstruction-free and
C'[k].propose(arg_op) executes solo in o, the operation C[k].propose(arg_op) must eventually
return with some value op # arg_op. Consequently, the handler at line 4 ensures that arg_op
is proposed by p in the (k + 1)-th instance of consensus, as required.

Therefore, there exists r > i such that p invokes C[r].propose(arg_op) after all faulty processes
have crashed, so that p is the only process to propose in C[r]. Since the r-th instance of consen-
sus is (F, 7)-obstruction-free and C'[r|.propose(arg_op) executes solo in o, C|r].propose(arg_op)
must eventually return some value op # arg_op. However, because p is the only process to
propose in C[r] and the decided value must come from a proposal, this contradicts the safety

property of consensus. Hence, our assumption was false and arg_op must eventually return in
0. ]
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1 view, aview < 0,0
2 val,my_val < 1 1
3 phase € {ENTER, PROPOSE, ACCEPT, DECIDE }

4 function propose(z):

5 my_val < x
6 async wait until phase = DECIDE
7 return val

8 when received {1B(view,v;,z;) | p; € R} from some R € R
9 pre: phase = ENTER
10 if Vp; € R. ; = L then

11 if my_val = 1 then return

12 send 2A(view, my_val) to all

13 else

14 let p; € R be such that z; # 1L A
(Vpr € Rz # L = v, < vj)

15 send 2A(view, z;) to all

16 phase <~ PROPOSE

17 when received 2A(view, z)
18 pre: phase € {ENTER, PROPOSE}

19 val <+ z
20 aview < view
21 send 2B(view, z) to all

22 phase <— ACCEPT

23 when received {2B(view, z) | p; € W} from some W € W
24 val <

25 aview <— view

26 phase <— DECIDE

27 on startup or when the timer view_timer expires

28 view < view + 1
29 start_timer(view_timer, view - C)
30 send 1B(view, aview, val) to leader(view)

31 phase <— ENTER

Figure 5.2: Consensus protocol at a process p;. C' is any positive constant.

5.2 Upper Bound

We now present a consensus protocol in the model Mpgp (partially synchronous / eventually
reliable / flaky) that validates Theorem 3.11. To this end, we fix a generalized quorum system
(F,R,W) and a termination mapping 7 : F — 2” such that 7(f) = Uy holds for each f € F.
As in §4.3, we assume without loss of generality that the connectivity relation of the graph
G\ f is transitive for each f € F. Our protocol for consensus is given in Figure 5.2.
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Consensus vs registers under channel failures. Interestingly, solving consensus under
process and channel failures is simpler than implementing registers. The main challenge in
implementing registers was determining whether the information received by a process is up
to date (§4.3). This is particularly difficult in the asynchronous model with unidirectional
connectivity, where processes cannot rely on bidirectional exchanges to confirm freshness. In
the partially synchronous model, however, processes can exploit the eventual timeliness of the
network to make this determination. Technically, this is achieved using a view synchronizer [11,
54], explained next. Then the connectivity stipulated by a generalized quorum system is
sufficient to implement (F, 7)-wait-free consensus using an algorithm similar to Paxos [47].

View synchronization. As observed in Chapter 1, it can be hard or even impossible
to implement Q (§2.7.2) in the presence of channel failures. Intuitively, the difficulty is
that an implementation may be unable to reliably identify processes with sufficiently robust
connectivity, which is necessary to ensure the liveness of consensus. To address this, we
construct our solution by combining the classical single-decree Paxos algorithm [47] with the
communication-less view synchronizer [11, 54]. Our key observation is that this combination
remains correct and ensures progress even under the limited process and channel reliability
guarantees provided by (F, R, W).

The consensus protocol works in a succession of views, each with a designated leader process
leader(v) = P((w—1) mod ny+1- Thus, the role of the leader rotates round-robin among the
processes. The current view is tracked in a variable view. The protocol synchronizes views
among processes via growing timeouts [11, 54]. Namely, each process spends the time v - C' in
view v, where C' is an arbitrary positive constant. To ensure this, upon entering a view v, the
process sets a timer view_timer for the duration v - C' (line 29). When the timer expires, the
process increments its view (line 28). Hence, the time spent by a process in each view grows
monotonically as views increase. Even though processes do not communicate to synchronize
their views, this simple mechanism ensures that all correct processes overlap for an arbitrarily
long time in all but finitely many views.

Proposition 5.2. Let d > 0 be arbitrary. There exists a view V such that for every v >V,
all correct processes overlap in v for at least d time units.

Proof. Let D, D" > 0 be such that after GST, no correct process is ahead of real time by more
than D and none is behind by more than D’. For a view v, let e, and [, denote the real times
at which a process would enter and leave v, respectively, if its clock did not drift:
v—1 -1
e, = S iC = (”2)“0 and 1, = e, +0vC.
After GST, any correct process enters v no later than e, + D’ and leaves v no earlier than
l, — D. Hence, every correct process is in v throughout the interval [e, + D', [, — D], whose
length is
(l,—D)—(e,+D") = (l,—e,) —(D+D") = vC—(D+D").

Choose V large enough that (i) ey > GST and (i) VC > d+ D + D'. Then for every v >V
we have vC' >V C > d+ D+ D', so the common-overlap interval [e, + D', [, — D] has length
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strictly greater than d. Therefore, all correct processes overlap in every view v > )V for at
least d. O]

Protocol operation. A process stores its initial proposal in my_val, the last proposal it
accepted in val, and the view in which this happened in aview. A variable phase tracks the
progress of the process through the phases of the protocol. Upon entering a view v, the
process sends its last-accepted value to leader(v) in an 1B message (line 30). This message
is analogous to Paxos’s 1B; there is no analog of 1A, since leader election is handled by the
synchronizer.

A leader waits to collect 1B messages from all processes in some read quorum for its view
(line 8); messages from lower views (out of date) are ignored. From these messages, the leader
computes its proposal as in Paxos: if any process has previously accepted a value, the leader
selects the one accepted in the maximal view; if no such value exists and propose() has already
been invoked at the leader, it proposes its own value; otherwise, it skips its turn.

A process awaits a 2A message from the leader of its view (line 17) and, upon receipt, accepts
by updating val and aview, then broadcasts a 2B message. When a process receives matching
2B messages from all processes in some write quorum (line 23), it concludes that a decision has
been reached and sets phase = DECIDE. If a propose() is pending, this satisfies the condition
at line 6, and the process returns the decided value to the caller.

Proof of Theorem 3.11. It is easy to see that the protocol satisfies Validity. The proof of
Agreement is virtually identical to that of Paxos, relying on the Consistency property of the
generalized quorum system. We now prove that the protocol is (F, 7)-wait-free.

Fix a failure pattern f € F and a process p € 7(f) that invokes propose(x) for some z at a
time ¢'. By Availability, there exist W € W and R € R such that W is f-available, and W is
f-reachable from R. By Proposition 3.6, W C Uy. Then since p € 7(f) = Uy, p is strongly
connected to all processes in W via channels correct under f. Thus, the following hold after
GST: (i) R can reach p through timely channels; and (i) p can exchange messages with every
member of W via timely channels.

By Proposition 5.2 and since leaders rotate round-robin, there exists a view v led by p such
that all correct processes enter v after max(GST, ') and overlap in this view for more than
3. We now show that this overlap is sufficient for p to reach a decision. Let ¢ be the earliest
time by which every correct process has entered v. Then no correct process leaves v until
after ¢t + 30. When a process enters v, it sends a 1B message to p (line 30). By (i), p is
guaranteed to receive 1B messages for view v from every member of R by the time t + 9,
thereby validating the guard at line 8. As a result, by this time, p will send its proposal in a
2A message while still in v. By (i), each process in W will receive this message no later than
t + 26, and respond with a 2B message that will reach p (line 17). Thus, by the time ¢ + 36, p
is guaranteed to collect 2B messages for view v from every member of W (line 23). After this
p sets phase = DECIDE, thus satisfying the guard at line 6 and deciding. [

64



Chapter 5. Consensus

5.3 Lower Bound under Bounded Process Failures

The lower bounds in §4.4.1 also apply to consensus under partial synchrony, that is, in the
model Mpgrp (partially synchronous / reliable / disconnected), with analogs of Lemma 4.1
and Theorem 4.19 stated as follows:

Lemma 5.3. Let f be a failure pattern and T C P. If some algorithm A is an (f,T)-
obstruction-free implementation of consensus over Mprp, then T is strongly connected in

G\ f.

Theorem 5.4. Let F be a k-fail-prone system and 7 : F — 27 be a termination mapping
such that for each f € F, 7(f) # 0. Assume that there exists an (F,T)-obstruction-free
implementation of consensus over Mprp. Then for all f € F, there exists a strongly connected
component of G\ f that contains T(f) and has a cardinality greater than k.

To see why these results hold, observe first that Lemma 4.1 and Theorem 4.19 also remain
valid if the model M agrp is replaced with Mpgrp: since the executions o constructed in
their proofs are finite, they are also valid executions under Mpgrp, where all actions occur
before GST. The claim then follows from Theorem 5.1, which states that registers can be
implemented from consensus.

While the solution presented in §5.2 establishes a tight upper bound and resolves a fundamental
solvability question, the synchronizer it relies on — though simple and well-known — is inefficient,
incurring high latency. This limits its practicality, especially in settings where responsiveness
is important. To address this, we follow the same approach as in §4.4.2 and consider the case
where at most k& out of n = 2k + 1 processes may fail. Then, by Theorem 5.4, this assumption
implies the existence of a connected core in every admissible failure pattern, which we can
exploit to design an upper bound with stronger latency guarantees, even in the presence of
channel failures. This result is considerably more challenging than the upper bound in §4.4.2,
and we prove it in the rest of the chapter.

5.4 Upper Bound under Bounded Process Failures

In this section, we present a consensus protocol in the model Mpgp for systems in which any
minority of processes may fail. That is, we consider a fail-prone system F such that for each
f € F, the graph G\ f contains a connected core. For the remainder of the section we fix a
failure pattern f € F and let S be the corresponding connected core.

As explained in Chapter 1, classical failure detectors and leader election mechanisms are
ineffective in the presence of flaky channels. Instead, our protocol builds on a view syn-
chronizer [17, 18, 54, 55], which divides execution into a sequence of views, each led by a
designated process. At a high level, the synchronizer aims to gather sufficiently many correct
processes with enough connectivity (e.g., those in §) into a view led by a well-connected
leader and to keep them in that view long enough to reach agreement.

Supporting this in the presence of flaky channels is nontrivial, since processes outside the
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e Monotonicity. A process may only enter increasing views:
Vi,v,0". Ei(v)l A E;(V)] = (v<v < E;(v) < E;i(v))

e Validity. A process only enters view v + 1 if some process from S has attempted to advance
from view v:

Vi,v. Bj(v+ 1)) = A . (v)| A AF . (v) < Ei(v+1)

e Bounded Entry. For some view V and duration d, if a process from S enters v > V and no
process from S attempts to advance to a higher view within d, then every process from S will
enter v within d:

SV, d Yo > V. B (o)l A (A (0) < B (v) +d) =
(Vpi €S. EZ(U)\L) N (Egst(v) < Eﬁsrst(v) + d)

o Startup. If > § processes from S invoke advance, then some process from S will enter view 1:
(BPCS. P> 5 A (Vpi€ P AiO)) = Ef (1))

e Progress. If a process from S enters v and, for some set P C S of > 5 processes, any process
in P that enters v eventually invokes advance, then some process from § will enter v + 1:

Yo. B (v)) A BPCS.|P|>% A (Vp; € P. Ei(v)l = A;(v)]) = Ef (v+1)]
Notation:
o E;(v): the time when process p; enters a view v
o Ef .(v), ES, (v): the earliest and the latest time when a process from S enters a view v

o Ai(v), AS  (v), AS . (v): similarly for times of attempts to advance from a view v

e g(z)!, g(x)1: g(z) is defined/undefined

Figure 5.3: Synchronizer properties satisfied in executions with connected core S.

connected core — such as process b in Figures 1.1b-c — may fail to observe progress by the
leader of a functional view and request a premature view change. To address this, we first
present the specification (§5.4.1) and implementation (§5.4.2) of a synchronizer that tolerates
such disruptions. We then use it to build a consensus protocol (§5.4.4) that operates correctly
despite this adversarial failure mode.

5.4.1 Synchronizer Specification

We consider a synchronizer interface defined in [17, 54]. Let View = {1,2,...} be the set of
views, ranged over by v; we use 0 to denote an invalid initial view. The synchronizer produces
notifications new_view(v) at a process, informing it to enter view v. To trigger these, the
synchronizer provides a function advance(), which signals that the process wishes to advance
to a higher view. We assume that a process does not invoke advance() twice without an
intervening new_view notification.

In Figure 5.3 we give a specification of a view synchronizer for the system model Mpgp,
adapted from the Byzantine setting [17]. The Monotonicity property ensures that a process’s
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view can only increase. Validity requires that a process may enter view v + 1 only if some
process in the connected core S has called advance in v, preventing poorly connected processes
from forcing spurious view changes (e.g., process b in Figure 1.1c, where S = {a, ¢}). Bounded
Entry ensures that if some process in S enters a view v, then all processes in S will do so
within at most d time units (for a constant d), provided that no process in S advances further
within that interval; otherwise, some processes may skip v entirely. Bounded Entry only
holds from some view V onward, since a synchronizer may not guarantee it before GST. The
Startup property ensures that if more than £ processes in S attempt to advance from view 0,
then some process in S enters view 1. Finally, Progress states that if a process in S enters
view v, and more than § processes in § eventually call advance while in v, then some process
in S will enter view v 4+ 1 (e.g., @ and ¢ in Figure 1.1c).

Together, these properties ensure the liveness of consensus despite flaky channels. Informally,
Progress lets processes iterate over views until finding one with a well-connected leader;
Bounded Entry allows all members of S to converge quickly into that view; and Validity
ensures they remain there despite disruptions from poorly connected processes.

5.4.2 Synchronizer Implementation

In Figure 5.4 we present an algorithm that implements the specification in Figure 5.3 under
the model Mpgr. The implementation requires only bounded space, even though correct
channels are eventually timely and may drop messages before GST.

Each process stores its current view in curr_view and maintains an array views that records,
for every process, the highest view it wishes to advance to. When a process invokes advance
(line 1), the synchronizer does not immediately switch views. Instead, it updates its entry
in views and propagates the entire array in a WISH message (line 3), thereby advertising its
intent to advance. Upon receiving a WISH message (line 6), a process merges the received
information into its own views array, keeping the maximum view for each entry (line 8).
This mechanism ensures that information is relayed even between processes that lack direct
connectivity through a correct channel.

Since the membership of § is unknown to the processes, the synchronizer cannot initiate a
view change based on a single advance() call: it cannot tell whether this process belongs to S.
Instead, we require wishes to advance from a majority of processes, which guarantees that at
least one comes from S. Concretely, upon receiving a WISH message, a process computes v as
the (| 5] + 1)-st highest view in views (line 9). Thus, at least one process in S must wish to
advance to a view > v'. The process then enters v’ if v' > curr_view (line 12). Note that a
process may be forced to switch views even if it did not invoke advance, which helps lagging
processes catch up. To satisfy Bounded Entry, the process disseminates the information
that triggered its entry into the new view (line 13), ensuring that others follow promptly.
Finally, to cope with message loss before GST, each process periodically resends its views
array (line 4).

It remains to show that the synchronizer satisfies Progress. This property requires that
more than half of the processes in S invoke advance. Because these processes are sufficiently
well-connected, the corresponding WISH messages eventually propagate within S, enabling
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1 function advance():
2 views[i] < curr_view + 1
3 send WISH(views) to all

'y

periodically © every p time units
send WISH(views) to all

(S}

6 when received WISH(V)

7 for p; € P do

8 views[j| <— max(views[j], V[j])

9 v« max{v | Ip;. views[j] = v A [{px | views[k] > v}| > 5}
10 if v/ > curr_view then

11 curr_view < v/

12 trigger new_view(v')

13 send WISH(views) to all

Figure 5.4: Synchronizer protocol at a process p;.

the guard at line 10 (e.g., processes a and ¢ in Figure 1.1¢). Note that Progress would not
hold if it only required a majority of advance calls from arbitrary processes: for example, if
the majority included a and b, we could not guarantee that all corresponding WISH messages
propagate.

5.4.3 Synchronizer Correctness

Theorem 5.5. Let F be a fail-prone system such that for each f € F, G\ f contains a
connected core. Then, for any f € F with an associated connected core S, every f-compliant
fair execution of the algorithm in Figure 5.4 over the model Mpgr satisfies the properties in
Figure 5.5.

To prove Theorem 5.5, let F be a fail-prone system satisfying the stated condition: for each
f € F, the graph G\ f contains a connected core. Fix an arbitrary failure pattern f € F and
let S be its corresponding connected core. We show that every f-compliant fair execution of
the algorithm in Figure 5.4 over the model Mpgr satisfies the properties in Figure 5.3. The
argument relies on the following propositions, whose proofs are straightforward and thus we
omit them.

Proposition 5.6. If a message WISH(V) is sent at a time t, then V[i] < p;.curr_view(t) + 1
for every process p;.

Proposition 5.7. If a process p; has p;.views(t)[j] > 0, then there exists an array V and a
time t' <t such that V[j] = p;.views(t)[j] and p; sends WISH(V) at t'.

Proposition 5.8. If a process p; enters a view v, then there exists a process p; € S, an array
V' and a time t < E;(v) such that V[j] > v and p; sends WISH(V) at t.
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Proposition 5.9. If a process p; sends WISH(V') with V[i]| = v+ 1 at a time t, then

Lemma 5.10 (Validity). A process only enters v + 1 if some process from S has attempted
to advance from v:

Vi,v. Bi(v+ 1)) = Af_ (v)| A Af . (v) < Ei(v+1).

Proof. Let i and v be such that E;(v+ 1)]. By Proposition 5.8, there exists a process p; € S,
an array V and a time ¢t < E;(v + 1) such that V[j] > v + 1 and p; sends WISH(V) at ¢.
Suppose V[j] = v + 1. Then, by Proposition 5.9, A;(v)] A A;(v) < t. Therefore, AS . (v)|
and

Af o (v) < Aj(v) <t < Ei(v+1).

Suppose now V[j| > v + 1. By Proposition 5.6,
p;.curr_view(t) > V[j] — 1 > v.

Let p, be the first process to enter a view v, > v at a time ¢, < t. The process py enters
vy upon executing line 12, and by lines 9 and 10, py.views(t;) includes more than 7 entries
> vg. Because there are at most § processes not in S, there exists a process p; € S and a
view v; > vy, such that py.views(ty)[l] = v;. By Proposition 5.7, there exists an array V' and a
time ¢; <t such that V'[l] = v; and p; sends WISH(V') at ¢;. By Proposition 5.6,

prcurr_view(t;) > v — 1> v, — 1 > w.
Because py, is the first process to enter a view > v at ¢ and ¢; < t; then p;.curr_view(t;) < v.
Therefore, p;.curr_view(t;) = v and v; = v + 1. Then, by Proposition 5.9, A;(v)] A A;(v) <.
Therefore, Ag . (v)] and

AZv) S Ai(v) <t <t <t < By(v+1).

Lemma 5.11. S does not skip views:
Yu,v. 0 < v <V A Bgg (V) = ES (v)) A ES (v) < Egg (V).

Proof. Let v' > 2 and assume that a process enters v, so that Eg(v')). We prove by
induction that for each k satisfying 1 < k < ¢’ — 1, some process in S enters v — k earlier
than Ffs(v') and thus

Eizigrst<vl - k)\l/ A Eit'igrst(vl - k) < EﬁrSt(UI)'

For the base case assume that a process enters v’. Then by Lemma 5.10, there exists a process
p; € S such that
Ai(v = 1)L AN A (V= 1) < Egest (V).
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Because p;.curr_view(A;(v' — 1)) =v" — 1 then

E (v =1} ANE(v —1) < AV — 1) < Egest (V).

For the inductive step assume that the required holds for some k so that
ES (V= k)| ANES (v —k) < Egse (V).
Then by Lemma 5.10, there exists a process p; € S such that
A0 —k—=1)) ANAW —k—1) < ES (v — k).
Because p;.curr_view(A;(v/ —k —1)) =v" — k — 1 then
E(W —k—-1)] ANE(@W —k—1) < A0 —k—1) < ES (v — k) < Egt (V).

]

Lemma 5.12. Let A = diameter(S)d. Consider a view v > 0 and assume that v is entered
by some process in S. If E§ . (v) > GST and no process in S attempts to advance from v
before E5 . (v) + A, then all processes in' S enter v and ES (v) < ES . (v) + A.

Proof. Suppose there exists a process p; and a time t < E§_ (v)+A such that p;.curr_view(t) =
v' > v. By Lemma 5.11,

EﬁrSt(v + 1)\1/ A Eﬁrst(v + 1) < Eﬁrst(vl) <t.
Thus, by Lemma 5.10,
Agrst(v)\l/ A Aérst(”) < EﬁrSt(v + 1) S t S El‘fisrst(v) + A’

contradicting the assumption that no process in § attempts to advance from v before
Eg . (v) + A. Therefore, for all times t < ES _ (v) + A and processes p;, p;.curr_view(t) < v.

Let p; be the process in S to enter v at the time ES. (v) and p; € S. We prove by induction
on the distance d from p; to p; (considering the reliable links that make up S) that

Since p; is the only process at distance 0 from p;, the result trivially holds for d = 0. Assume
now the result holds for all processes in S at a distance d from p; and suppose the distance
from p; to p; is d + 1. Therefore, there exists a process p; € S such that the distance from p;
to pi is d and the distance from pj, to p; is 1. By induction hypothesis p;, enters v no later
than E;(v) + dd. The process py enters view v upon executing line 12, and by lines 9 and 10,

Pr-views(Ey(v)) includes more than § entries > v.

Line 13 guarantees that upon entering v, py sends a WISH(py.views(Ex(v))) to every process.
Since the link between p; and p; is timely after GST, the WISH message is received by p;
at a time ¢; < E;(v) + (d + 1)d. Upon receipt of the WISH message, p; executes lines 7 and
8, ensuring that p;.views(t;) > py.views(Ej(v)). Therefore, p;.views(t;) includes more than
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% entries > v, and thus p; is guaranteed to enter a view v' > v no later than ¢;. Because

t; < E§.(v) + A and no process can have a view > v before E§ (v) + A, it follows that
v" = v. Therefore, p; enters v no later than ¢; and thus

E;i(v) <t; < Ej(v) + (d+ 1)0.

Thus, all processes in S enter v and ES (v) < ES (v) + A. O

Lemma 5.13 (Bounded Entry). For some V and d, if a process from S enters a view v >V
and no process from S attempts to advance to a higher view within time d, then every process
from S will enter v within d:

3V7d V'U Z V Egrst(v)i A _'(Agrst<v) < Eft'lgrst(v) + d) =
(Vpi € S Ei(v)d) A (B (v) < B (v) + ).

Proof. Let
V =max{v | By (v)} A Efy(v) < GST} +1
so that
VU 2 V Ef‘isrst(v)\l/ = Egrst(v) 2 GST
and d = diameter(S)J. Then, by Lemma 5.12, Bounded Entry holds. O

Given arrays V and V' we say that V' < V' if and only if Vi. V[i] < V'[i].
Lemma 5.14. If a process sends WISH(V') before sending WISH(V'), then V < V.

Proof. Let p; € P and t and ¢’ be the times at which a process p; sends WISH(V') and WISH(V"),
respectively. Notice that V[j] = p;.views(t)[j] and V'[j] = p;.views(t')[j]. Since p;.views[j] is
non-decreasing, as guaranteed by lines 2 and 8§,

piview(t)[j] < p;.view(t')[5].

Therefore, V[j] < V’[j]. Since p; was picked arbitrarily, V' < V. O

Lemma 5.15. For all processes p; € S, times t > GST + p and arrays V', if p; sends WISH(V')
at a time < t, then there exists an array V' >V and a time t' such that GST <t <t and p;
sends WISH(V') at t'.

Proof. Let s <t be the time at which p; sends WISH(V'). If s > GST, then choosing t’ = s
and V' =V validates the lemma. Assume now that s < GST. Since after GST the p;’s local
clock advances at the same rate as real time, there exists a time ¢’ satisfying GST < ¢’ <t

such that p; executes the retransmission code in lines 4 and 5 at t’. Then, there exists an
array V' such that p; sends WISH(V') at t/. By Lemma 5.14, V' > V. ]

Lemma 5.16 (Startup). If more than § processes from S invoke advance, then some process
from S will enter view 1:

(3P CS. |P| >g A (Vp; € P. A(0)))) = ES (1))
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Proof. Assume by contradiction that there exists a set P C S of more than 7 processes such
that Vp; € P. A;(0)], and no process in S enters view 1. By Lemma 5.11, the latter implies

Yo > 0.Vp, € S. Ei(v)T. (5.1)

We now show that for every p; € S and p; € P, there exists an array V; and a time ¢; such
that V;[j] > 1 and p; receives WISH(V;) at ¢;. Fix p; € P. We prove the result by induction
on the distance d from p; to p; (considering the reliable links that make up S).

Since A;(0)J, lines 2 and 3 guarantee that there exists an array V; and a time ¢; such that
Vilj] = 1 and p; sends WISH(V;) at ¢;. Since messages sent to itself are always delivered and
p; is the only process at distance 0 from p;, the result trivially holds for d = 0.

Assume now the result holds for all processes at a distance d from p; and suppose that p; € S
is a process at a distance d 4 1 from p;. Therefore, there exists a process p; € S such that the
distance from p; to py is d and the distance from pj, to p; is 1. By induction hypothesis there
exists an array V; and a time ¢; such that V;[j] > 1 and pj, receives WISH(V;) at t;. Upon
receipt of the WISH message, p, executes lines 7 and 8, ensuring that

pr-views(t;)[j] = V[j] = 1.

Because the periodic handler in line 4 fires every p units of time, there exists an array Vj, and a
time ¢ < t; + p such that Vi[j] > 1 and py sends WISH(V}) at t. Let T, = max(GST +p, t}.).
By Lemma 5.15, there exists an array Vi, > Vi and a time t; such that GST < ¢, < T} and
pr sends WISH(V}) at ¢;. Since the link between py and p; is timely after GST, the WISH(V})
is received by p; no later than t; + 6. And because Vj, > Vs then

Vil > Viu[j] > 1.

This completes the induction.

Let p, € S be any process and, for each p; € P, let V; and ¢; be such that V;[i] > 1 and
i receives WISH(V;) at t;. Let T = maxt;. Lines 7 and 8 guarantee that p;.views(7)[i] > 1
for each p; € P. Since |P| > 7, p;.views(T) includes more than % entries > 1, and thus,
pv'(T) > 1. By (5.1), pr.curr_view(T") = 0. Hence, line 10 ensures that p; enters a view > 1

by T', contradicting (5.1). O

Lemma 5.17 (Progress). If a process from S enters a view v and, for some set P C S of
more than 3 processes, any process in P that enters v eventually invokes advance, then some
process from S will enter v + 1:

Vu. E5 (V)L ABP CS. |P| > g A (Vp; € P.E;(v)) = Ai(v)])) = ES. (v+1)].

Proof. Assume by contradiction that there exists a set P C S of more than § processes such
that
Vpi € P. Bi(v)l = A;(v)l A ES(v)),

and no process in S enters view v + 1. By Lemma 5.11, the latter implies

Vo' > . Vp; € S. Ei(v)T. (5.2)
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Let p; € S be the first process to enter v. We show that every process p; € S enters v by
induction on the distance d from p; to p; (considering the reliable links that make up S). Since
p; is the only process at distance 0 from p;, the result trivially holds for d = 0. Assume now
the result holds for all processes in S at a distance d from p; and suppose the distance from
pi to p; is d 4 1. Therefore, there exists a process p; € S such that the distance from p; to py
is d and the distance from p; to p; is 1. By induction hypothesis p;, enters v. The process py
enters view v upon executing line 12, and by lines 9 and 10, py.views(Ej(v)) includes more

than 7 entries > v.

Line 13 guarantees that upon entering v, py sends WISH(py.views(Ex(v))) to every process.
Let T, = max(GST + p, Ex(v)). By Lemma 5.15, there exists an array Vi > py.views(Ey(v))
and a time t; such that GST < ¢, < T} and py sends WISH(V}) at tx. Since the link between
pr and p; is timely after GST, the WISH message is received by p; at a time t;. Upon receipt
of the WISH message, p; executes lines 7 and 8, ensuring that

p;.views(t;) > Vi, > py.views(E(v)).

Therefore, p;.views(t;) includes more than § entries > v, and thus p; is guaranteed to enter a
view v’ > v no later than ¢;. By (5.2), p; never enters a view > v and thus p; enters v. This
completes the induction. Because every process from S enters v, we have

and thus

We now show that for every p; € S and p; € P, there exists an array V; and a time ¢; such
that V;[j] > v+1 and p; receives WISH(V;) at t;. Fix p; € P. We prove the result by induction
on the distance d from p; to p; (considering the reliable links that make up S).

Since A;(v)], lines 2 and 3 guarantee that there exists an array V; and a time ¢; such that
Viljl = v+ 1 and p; sends WISH(V;) at t;. Since messages sent to itself are always delivered
and p; is the only process at distance 0 from p;, the result trivially holds for d = 0.

Assume now the result holds for all processes at a distance d from p; and suppose that p; € S
is a process at a distance d 4 1 from p;. Therefore, there exists a process p; € S such that
the distance from p; to py is d and the distance from pj, to p; is 1. By induction hypothesis
there exists an array V; and a time ¢; such that V;[j] > v+ 1 and py, receives WISH(V;) at ¢;.
Upon receipt of the WISH message, p; executes lines 7 and 8, ensuring that

pr-views(t;)[j] > V[j] > v+ 1.

Because the periodic handler in line 4 fires every p units of time, there exists an array
Vi and a time tp < t; + p such that Vi/[j] > v+ 1 and p; sends WISH(Vy) at tp. Let
T, = max(GST + p,t}). By Lemma 5.15, there exists an array Vj; > Vi and a time ¢; such
that GST < t;, < Ty and pj, sends WISH(V}) at t;. Since the link between py and p; is timely
after GST, the WISH(V},) is received by p; no later than t; + §. And because Vj, > Vi then

Vilil 2 Vi[jl Z v+ 1.
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[uny

on startup
advance()

N

3 function propose(z):

4 my_val < x

5 wait until phase = DECIDED
6 return val

7 on new_view(v)

8 view <— v
9 start_timer(decision_timer, timeout)
10 M1BJi] + (view, aview, val)

11 phase < ENTERED

12 when the timer decision_timer expires
13 timeout < timeout + 7y
14 advance()

15 periodically > every p time units
16 send STATE(M1B, M2A, M2B) to all

17 when received STATE( V1B, V2A, V2B)
18 for p; € P do

19 if V1B[j|.view > M1B[j].view then
20 M1B[j] « V1B[j]
21 if V2A[j].view > M2A[j].view then
22 M2A[j] « V2A[j]
23 if V2B[j|.view > M2B|[j].view then
24 M2B[j] « V2Blj]

Figure 5.5: Consensus protocol at a process p; (part 1).

This completes the induction.

Let p; € S be any process and, for each p; € P, let V; and t; be such that V;[i] > v+ 1 and p,
receives WISH(V;) at t;. Let T = maxt;. Lines 7 and 8 guarantee that p;.views(T")[i] > v + 1
for each p; € P. Since |P| > %, py.views(T') includes more than 7 entries > v + 1, and thus,
pv'(T) > v+ 1. By (5.2), pi.curr_view(T') < v. Hence, line 10 ensures that p;, enters a view
> v+ 1 by T, contradicting (5.2). O

Proof of Theorem 5.5. The guard at line 10 ensures Monotonicity. Validity, Bounded Entry,
Startup and Progress are given by Lemmas 5.10, 5.13, 5.16 and 5.17, respectively. O

5.4.4 Consensus Protocol

In Figures 5.5-5.6 we present an implementation of consensus over the model Mpgp, resilient
to the failure of any minority of processes. The protocol is a variation of single-decree
Paxos [47], where liveness is ensured with the help of a view synchronizer. The protocol
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25 when phase = ENTERED A leader(view) = p; A [{p; | p; € P AMI1B[j].view = view}| > %
26 Q< {p; | p; € P AMI1B[j].view = view}
27 if Vp;. p; € Q = M1BJj].val = L then

28 if my_val = L then return
29 M2A[i] < (view, my_val)
30 else
31 let p; € @ be such that
M1B[j].val # L A Vpy € Q. M1BIk].cview < M1B([j]. cview
32 M2A[i] + (view, M1B[j].val)

33 phase <— PROPOSED

34 when phase € {ENTERED, PROPOSED} A p; = leader(view) A M2A[l].view = view
35 (aview, val) < M2A[[]

36 M2BJi] + (aview, val)

37 phase < ACCEPTED

38 when Jv,z.v > view A [{p; | p; € P AM2B[j] = (v, 2)}| > &
39 val < x

40 stop_timer(decision_timer)

41 phase <+ DECIDED

Figure 5.6: Consensus protocol at a process p; (part 2).

operates in a succession of views produced by the synchronizer. Each view v has a fixed
leader leader(v) = p((v—1) mod n)+1, responsible for proposing a value to the other processes,
which then vote on the proposal. Processes monitor the leader’s behavior and request the
synchronizer to advance to another view if they suspect that the leader is faulty or poorly
connected. As in §4.4.2, a notable aspect of this implementation is that, despite relying on
gossip, it uses only bounded space and its progress depends directly on message delivery
delays and the rate of state exchange.

State and communication. A process stores its current view in a variable view, and a
variable phase tracks its progress through the different phases of the protocol. The initial
proposal is stored in my_val (line 4). The process also keeps the last proposal it accepted
from a leader in val, and the view in which this happened in aview.

Processes exchange messages analogous to the 1B, 2A, and 2B messages from Paxos, each
tagged with the view where the message was issued. There is no analog of 1A messages,
since leader election is controlled by the synchronizer. Because correct processes may not be
directly connected by correct channels, each process must forward information received from
others. Moreover, since correct channels are only eventually timely, this forwarding must be
repeated periodically. If implemented naively, this would require unbounded space to store all
messages pending forwarding. Instead, it suffices to store, for each message type and sender,
only the message with the highest view. These are kept in the arrays M1B, M2A, and M2B.

For clarity, the pseudocode in Figures 5.5-5.6 separates computation from communication.
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Most handlers do not send messages but only update the arrays M1B, M2A, and M2B. Then,
instead of sending individual 1B, 2A, or 2B messages as in Paxos, a process periodically sends
the whole arrays in one STATE message (line 16). Upon receipt of a STATE message (line 17),
a process merges the information into its arrays, keeping the entries with the highest view.
This ensures information is propagated between processes without direct connectivity, while
still using bounded space.

Normal protocol operation. When the synchronizer instructs a process to enter a new
view v (line 7), the process sets view = v and writes the information about the last value it
accepted into its entry in the M1B array. This information will be propagated to the leader
of the view as described above. A leader waits until its M1B array contains a majority of
entries corresponding to its view (line 25). Based on these, the leader computes its proposal
and stores it into its entry of the M2A array. The computation is done similarly to Paxos:
if some process has previously accepted a value, the leader selects the one accepted in the
maximal view (line 31); otherwise, the leader is free to propose its own value. If propose()
has already been invoked at the leader, it selects my_val (line 29); if not, the leader skips its
turn (line 28).

Each process waits until its M2A array contains a proposal by the leader of its view (line 34).
The process then accepts the proposal by updating its val and aview, and notifies all processes
by storing the information about the accepted value into its entry of the M2B array. Finally,
once a process has a majority of matching entries in its M2B array (line 38), it knows that
a decision has been reached and sets phase = DECIDED. If there is an ongoing propose()
invocation, the condition at line 5 is satisfied and the process returns the decision to the
client.

Triggering view changes. We now describe when a process invokes advance(), which is
key to ensuring liveness. This occurs either on startup (line 2) or when the process suspects
that the current leader is faulty or poorly connected. To this end, when a process enters a
view, it sets a timer decision_timer of duration timeout (line 9) and stops it once a decision is
reached (line 40). If the timer expires before a decision is made, the process invokes advance
(line 14). A process may incorrectly suspect a correct leader if timeout is initially too short
relative to the actual message delay o, which is unknown to the process. To overcome this, the
process increases timeout each time the timer expires (line 13), thereby adapting its suspicion
threshold to the network latency.

5.4.5 Correctness

It is easy to see that the protocol in Figures 5.5-5.6 satisfies the safety properties of consensus,
as the argument is virtually identical to that of Paxos [47]. We therefore focus on proving
liveness.

Theorem 5.18. Let F be a fail-prone system such that for all f € F, the graph G\ f contains
a connected core Sy, and let T : F — 27 be the termination mapping such that for each f € F,
7(f) = Sf. Then the algorithm in Figures 5.5-5.6 is (F, T)-wait-free.
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Fix a failure pattern f and let S be the corresponding connected core guaranteed to exist by
the assumptions of Theorem 5.18. We prove liveness by showing that the protocol establishes
properties reminiscent to those of failure detectors [24]. First, similarly to their completeness
property, we prove that every correct process eventually attempts to advance from a view
where no progress is possible (e.g., because the leader is faulty or has insufficient connec-
tivity). We say that a process p; decides in a view v if it executes line 41 while having view = v.

Lemma 5.19. If a correct process p; enters a view v, never decides in v and never enters a
view higher than v, then p; eventually invokes advance in v.

Proof. Upon entering v the process p; starts decision_timer (line 9). The process p; cannot
stop the timer at line 9, since together with Monotonicity, this would imply that p; enters a
view higher than v. The process p; cannot stop the timer at line 40 either, since this would

imply that p; decides in v. Therefore the timer must expire, after which p; invokes advance in
v (line 14). O

Our next lemma is similar to the eventual accuracy property of failure detectors. It shows
that if the timeout values are high enough, then eventually any process in S that enters a
view where progress is possible (the leader is correct and has sufficient connectivity) will never
attempt to advance from it.

For a failure pattern f with an associated connected core S, let diameter(S) be the longest
distance in the graph G\ f between two vertices in S. Also, let V and d be the view and
the time duration for which Bounded Entry holds, and A = (§ + p)diameter(S). Finally, let
timeout;(v) denote the value of timeout at the process p; while in view wv.

Lemma 5.20. Let v >V be a view such that leader(v) € S, E5 . (v) > GST and leader(v)
invokes propose no later than Ej5. . (v). If at each process p; € S that enters v we have
timeout;(v) > d + 3A, then no process in S invokes advance in v.

Lemma 5.20 together with Validity implies that all processes in & will stay in a view where
progress is possible provided the timers are high enough. However, to apply it we need to argue
that, if processes from S keep changing views due to lack of progress, all of them will increase
their timeouts high enough to satisfy the bounds in Lemma 5.20. To this end, we prove the
following generalization of Lemma 5.20: in a sufficiently high view v with a leader from the
connected core, if the timeout at a process from S that enters v is high enough, then this
process cannot be the first to initiate a view change. Hence, for the protocol to enter another
view, some other process with a lower timeout must call advance and thus increase its duration.

Lemma 5.21. Let v >V be a view such that leader(v) € S, E5 . (v) > GST and leader(v)
invokes propose no later than E5.(v). If p; € S enters v and timeout;(v) > d + 3A, then p;
s not the first process in S to invoke advance in v.

The proof of Lemma 5.21 relies on the following technical proposition. It states that the
processes from S exchange their most up to date information within time A, as long as they
do not enter a higher view.
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Proposition 5.22. Let t > GST be such that no process in S enters a view higher than v
before t + A. Then the following hold:

1. Ypi,pj,pk € S.  pi.M1B(t)[k].view = v => p; M1B(t + A)[k] = p; M1B(¢)[k].

2. Vpi,p; €S. Vpi. pi.M2A(t)[k].view = v => p; M2A(t + A)[k] = p;. M2A(t)[k].

3. Vpi,p; € S. V. pi.M2B(t)[k].view = v => p; M2B(t + A)[k] = p;.M2B(t)[k].
Informally, each process propagates its state every p units of time (line 16). Upon receipt of
the state (line 17), processes update their vectors with the most up to date information (lines
20, 22 and 24). Because no process from S is further than diameter(S) from p;, its state is
guaranteed to be received by every other process in S no later than ¢t + A. And because no

process from S enters a view higher than v at least until after ¢t + A, these values remain
unchanged until then.

Proof of Proposition 5.22. Let’s consider the case of M2B; the other cases are similar. Fix
pi € S and let t > GST be a time, p, € P and z be a value such that p;.M2B(t)[k] = (v, x).
Let p; € S and dist(p;, p;) be the distance from p; to p; in G\ f. We now show that

p;-M2B(t + (p + )dist(p;, p;))[K] = (v, ).

We prove the result by induction on the distance d from p; to p;. Since p; is the only process
at distance 0 from p;, the result trivially holds for d = 0. Assume now that the result holds
for all processes in § at distance d from p; and suppose that the distance from p; to p; is
d + 1. Therefore, there exists a process p,, € S such that the distance from p; to p,, is d and
the distance from p,, to p; is 1. By induction hypothesis,

Pm-M2B(t + (p + 9)d)[k] = (v, x).
Because no process in S enters a view higher than v before ¢t + A, the value of
Pm-M2B(t + (p + 6)d) (K]

remains unchanged from ¢ + (p + 0)d until £ + A.

Because the handler at line 15 runs every p units of time, there exists a time t; and a vector

V2B such that
t+(p+o)d<t,<t+(p+d)d+p,

V2Blk] = (v,z) and p,, sends STATE(_, _, V2B) at ts (line 16). Since the channel between p,,
and p; is reliable after GST, the STATE(_, _, V2B) message is received by p; at a time ¢, such
that

t,<ts+d<t+(p+0)d+p+d=t+(p+0)(d+1).
Thus the process p; executes the handler at line 17 by ¢,.
If p;.M2B(t,)[k].view = v, and since at most one value can be proposed per view, then

p;-M2B(t,)[k] = (v, x). If p;.M2B(¢,)[k].view < v, then p; sets p;.M2B(t,)[k] = (v, z) (line 24).
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Because no process in S enters a view higher than v before ¢t + A, then p;.M2B(t,)[k].view
cannot be greater than v, and also p;.M2B remains unchanged from ¢, until ¢ + A. Therefore,

p; M2B(t + (p+ 6)(d + 1) [k] = (v, ).

]

Proof of Lemma 5.21. Let T = E§ _(v) +d + 3A. By contradiction, assume that p; is the
first process in S to call advance in v. This only occurs if decision_timer expires at p; (line
14). Because p; is the first process to call advance in v and timeout;(v) > d 4+ 3A, no process
in S invokes advance in v until after 7. Then by Bounded Entry all processes in S enter v by

Eiéslst(v) S Effrst(v) + d

By Validity no process can enter v + 1 until after 7', and by Lemma 5.11, the same holds for
any view > v. Thus, all processes in § stay in v at least until 7. We now show that during
this time processes in S exchange the messages needed for p; to decide and stop the timer,
thereby reaching a contradiction.

Let p; = leader(v). We first prove that p; proposes a value in view v. Indeed, pick an arbitrary
process p; € S. Upon entering v, p; sets M1B[j] = (v, _, _) and phase = ENTERED (lines 10
and 11). By Proposition 5.22,

pi-M1B(E;(v) + A)[j] = p;-M1B(E;(v))[j].

Because no process enters a view > v until after T', the value of p;.M1B[j] remains unchanged
from E;(v) + A until 7. Then, since p; was picked arbitrarily, by Fg  (v) + A the array
pi-M1B contains |S| > % entries with view v. Thus, the precondition at line 25 is satisfied at
i at a time t,; such that

Egrst(v) S tpl S ES

last

(v) + A< ES  (v)+d+ A,

Since p; invokes propose no later than E§ . (v), pi.my_val(t,) # L. Therefore, by t, the
process p; sets M2A[l] = (v, z) for some x, and phase = PROPOSED (lines 29, 32 and 33).
Moreover, the guard at line 25 and line 33 guarantee that the proposed value x is unique for
view v.

We next prove that all processes in S accept the proposal x made by p; in view v. Indeed,
pick an arbitrary process p; € S. By Proposition 5.22,

p;-M2A(t, + A)[l] = pi.M2A(t,)[1].
Thus, the precondition at line 34 is satisfied at p; at a time ¢,; such that
taj <ty + A< ES (v) +d+2A.

Therefore, by t,; the process p; sets M2B[j] = (v,z) and phase = ACCEPTED (lines 36 and 37).
Finally, we prove that p; decides in view v. Indeed, pick an arbitrary process p; € S. By
Proposition 5.22,

pi-M2B(taj + A)[]] = pj'MzB(taj)[j] = (U,CL’).
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Because no process enters a view > v until after 7', the value of p;.M2B[j] remains unchanged
from t,; + A until 7. Then, since p; was picked arbitrarily, by max{t,; | p; € S} + A the
array p;.M2B contains |S| > % entries equal to (v,z). Thus, the precondition at line 38 is
satisfied at p; at a time t4 such that

ta < BSo(v) +d+3A =T,

Therefore, by t4; the process p; stops the timer decision_timer (line 40) before it expires, which
contradicts the fact that decision_timer expires at p; while in v. O]

Finally, we prove the liveness of the algorithm in Figures 5.5-5.6.

Proof of Theorem 5.18. By contradiction, assume there exists f € F, p; € 7(f) =S and an
f-compliant fair execution of the algorithm in Figures 5.5-5.6 such that p; invokes propose at
a time ¢,; but that the operation never returns. We first prove that in this case the protocol
keeps moving through views forever.

CLAIM 1. Every view is entered by some process in S.

Proof. Since all processes in S invoke advance upon starting, by Startup some process in &
enters view 1. We now show that infinitely many views are entered by some process in S.
Assume the contrary, so that there exists a maximal view v entered by any process in S. Let
P C & be any set of more than 7 processes and consider an arbitrary process p; € P that
enters v.

Suppose p; decides in v. Then there exists a time ¢, a view v' > v and a value = such that
p;-M2B(t) contains more than % entries equal to (v/,x). Let @ be the set of processes these
entries correspond to. Then one of them must be from §. Because no process from S enters
a view > v, the precondition at line 34 ensures that v = v. For similar reasons, the value
of p;.M2B remains unchanged from t onwards. Then there exists a time ¢’ > GST such that
pi-M2B(t') contains more than % entries equal to (v, z).

By Proposition 5.22,

for each p; € Q). Because no process from S enters a view > v, the value of p;.M2B remains
unchanged from ¢’ + A onwards. Then the precondition at line 38 is satisfied at p; at a time
tqi. Therefore, by tq; the process p; sets val = x and phase = DECIDED. But then the propose
operation invoked by p; returns by max{t,;, 4}, contradicting the assumption that it never
does so.

Therefore, p; never decides in v. Then by Lemma 5.19, p; eventually invokes advance in v.
Since p; was picked arbitrarily, we have

By Progress, E§.. (v + 1)}, which contradicts the fact that v is the maximal view entered
by any process in §. Thus, processes in S keep entering views forever. The claim then
follows from Lemma 5.11 ensuring that, if a view is entered by a process in S, then so are all
preceding views. O]
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CLAIM 2. FEwvery process in S executes the timer expiration handler at line 12 infinitely often.

Proof. Assume the contrary and let Cg, and Ci,¢ be the sets of processes in S that execute
the timer expiration handler finitely and infinitely often, respectively. Then Cj, # @, and by
Claim 1 and Validity, Ciyy # @. Let view vy be the first view such that v, >V and E§ ., (v9)
> max{GST, ,,}; such a view exists by Claim 1. The timeout value increases unboundedly at
processes from Ci,¢, and does not change after some view v3 at processes from Cf,. By Claim
1 and since leaders rotate round-robin, there exists a view vy > max{vq, v3} led by p; such
that any process p; € Ciyr that enters vy has timeout;(v4) > d + 3A. By Claim 1 and Validity,
at least one process in S calls advance in wvy; let py be the first process to do so. Because
vy > v3, this process cannot be in Cf,, since none of these processes can increase their timers
in vy. Then py € Ciy, contradicting Lemma 5.21. O

Since a process increases timeout every time decision_timer expires, by Claim 2 all processes
will eventually have
timeout > d + 3(0 + p)diameter(S).

Since leaders rotate round-robin, by Claim 1 there will be infinitely many views led by p;,.
Hence, there exists a view v; >V led by p; such that E§ (v;) > max{GST,t,;} and for any
process p; € S that enters v; we have

timeout;(v1) > d + 3(0 + p)diameter(S).

Then by Lemma 5.20, no process in S calls advance in v;. On the other hand, by Claim 1
some process in S enters v; + 1. Then by Validity, some process in S calls advance in vy,
which is a contradiction. O]

5.5 Possibility and Impossibility of Consensus via ()

We now present some interesting consequences of our results. It is well known that the failure
detector 2 [23, 24] (see §2.7.2) is sufficient for implementing wait-free consensus resilient
to |%51] failures in non-partitionable systems subject to crash [24, 47], crash/recovery [8],
or general omission [47, 60] failures. For instance, we presented one such implementation
in §2.8. We now investigate whether this remains true under flaky channels and limited
connectivity. As we show below, the answer depends on the amount of connectivity available
in the underlying network, as established by our lower and upper bounds.

Lower bound. On the negative side, we first show that there exist weakly synchronous
environments where () is implementable, but obstruction-free consensus is impossible even if
at most one process may crash. One such environment is the system S of Aguilera et al. [6],
where in every execution all channels may be flaky except those emanating from an a priori
unknown correct process (the timely source); the latter channels are required to be eventually
reliable and timely. In our framework, S is represented by the set of executions in Mpgp
compliant with the following fail-prone system:

Fs={(L,C)[|P|<nAIpeP\P.VgeP\(PU{p}). (p,q) ¢ C}.
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We now use Theorem 5.4 to show that consensus is impossible even in a stronger variant of .S
where only up to a threshold k& of processes are allowed to fail. Formally, for n and k such
that 0 < k <mn, let Fgr = Fs N{(P,C) | |P| < k}. Then Fgy is a k-fail-prone system.

Theorem 5.23. Let n and k be such that 0 < k <n, and 7 : Fgj — 27 be a termination
mapping such that for each f € Fsi, 7(f) # 0. Then no algorithm can implement (Fsy, T)-
obstruction-free consensus in Mpgp.

Proof. Suppose, for contradiction, that such an algorithm exists. A standard partitioning
argument, as in Dwork et al. [32], implies that we must have n > 2 and k < |%*]. Since
Mpgp is stronger than Mpgr, Theorem 5.4 then requires that for all f € Fgy, the graph
G \ f contains a strongly connected component of size greater than k& > 1. However, consider
a failure pattern f = (P, C) € Fgy, such that

P=0A3peP.VgeP\{p}. VreP.(q,r) € C.

In this case, G\ f consists only of trivial strongly connected components of size 1, contradicting
the requirement above. Hence no such algorithm exists. O]

Upper bounds. On the positive side, we show that stronger connectivity assumptions do
make consensus solvable in several previously proposed models of weak synchrony, including
the systems ST and ST of Aguilera et al. [6] and the models of [5, 33, 43, 51]. These works
establish that €2 can be implemented in their respective settings, but — with the exception
of [5] — do not provide a consensus algorithm.

To establish that consensus is possible in these models, we introduce an intermediate model
S*. In §*, all channels may be asynchronous and flaky except those connecting an a priori
unknown correct process (the hub [6]) to every other process in both directions; these hub
channels are required to be eventually reliable, though still potentially asynchronous. In our
framework, S8* is captured as the set of executions of Mgr that are compliant with the
following fail-prone system:

Fs» ={(P,C) | [Pl<n A FpeP\P.VgecP\(PU{p}). (p.q) €C A (q,p) & C}.

Thus, for every f € Fs., the graph G\ f is strongly connected. Moreover, if at most |25+ |
processes fail in f, then G\ f is a connected core. Hence, by §4.4.2, we obtain:

Corollary 5.24. A wait-free atomic register can be implemented in S* provided that at most
|25+ processes may crash.

Since wait-free consensus tolerating any number of < n process crashes can be implemented
using atomic registers together with 2 [48], Corollary 5.24 implies the following.

Corollary 5.25. Wait-free consensus can be implemented in S* augmented with €, provided
that at most | "5+ | processes may crash.
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We now use this result to prove the next corollary.

Corollary 5.26. Wait-free consensus can be implemented over the systems St and ST of [0],
as well as the models of [5, 33, 43, 51], provided that at most L”T_lj processes may crash.

Proof. We first argue that the systems listed in the statement are at least as strong as S*.
In system ST [6], every execution has a fair hub, i.e., a correct process connected to all
others by fair-lossy channels [3] in both directions. Since eventually reliable channels can be
implemented on top of fair-lossy ones in an asynchronous system, S is as strong as S*. In
ST+ [6] and [5], every pair of processes is connected by fair-lossy channels, and thus S+ is
also as strong as S*. Finally, the models of [33, 43, 51] assume reliable channels between
every pair of processes, making them strictly stronger than S*. Since €2 can be implemented
in all these models [5, 6, 33, 43, 51], Corollary 5.25 yields the result. ]
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Chapter 6

Conclusions

This thesis explored the foundations of fault-tolerant distributed computing under unreliable
communication. Motivated by the practical challenges of message loss in modern networks,
we considered a general model where both processes and channels may fail. In contrast to
classical assumptions, we allowed flaky channels, which may drop messages arbitrarily without
fairness or eventual delivery guarantees.

Our first contribution was a general characterization of solvability under arbitrary combinations
of process and channel failures. To capture the minimal connectivity requirements for
implementing classical shared-memory abstractions, we introduced the notion of a generalized
quorum system (GQS). We showed that a GQS characterize the necessary and sufficient
connectivity assumptions for implementing atomic registers, snapshots, lattice agreement,
and consensus. In particular, we proved that these problems can be solved even when
none of the available read quorums are strongly connected — provided that some strongly
connected write quorum is reachable from some read quorum. To match this lower bound, we
presented algorithms for all four abstractions in a model with flaky channels. To solve atomic
registers, we developed a new abstraction: quorum access functions, which leverage gossip-style
communication and a novel logical clock to coordinate between indirectly connected quorums.

Having addressed this fundamental question, we then focused on a practically motivated class
of fail-prone systems in which any minority of processes may fail. While this assumption
restricts the class of admissible failure patterns, it yields stronger connectivity guarantees
that can be exploited to design more efficient implementations — ones in which the time and
memory required for an operation to complete can be bounded in terms of message delays
and propagation. In this setting, we showed that consensus becomes the most challenging
abstraction. To solve it, we adapted the view synchronizer abstraction, which enables a group
of correct processes to spend sufficient time in a common view with a correct leader, without
relying on traditional failure detectors such as €. Using this abstraction, we presented a
consensus algorithm that tolerates flaky channels, works under partial synchrony, and uses
bounded memory.

Taken together, our results show that the difficulty of solving classical problems in distributed
computing depends strongly on the type of fault assumptions considered. In the general model,
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registers are the most difficult abstraction, and termination guarantees must be weakened. In
more constrained settings, consensus becomes the hardest problem, but stronger termination
and complexity guarantees become achievable.

Overall, this thesis contributes a general framework for reasoning about fault-tolerant dis-
tributed computing under unreliable communication, and provides new abstractions and
techniques for designing provably correct algorithms in this setting.

6.1 Future Lines of Research

Several questions remain open. First, the upper bounds presented for shared-memory objects
under a GQS incur high time and message complexity. It is worth investigating whether
this cost is inherent, or whether more efficient algorithms can be developed under the same
reliability assumptions.

Second, the upper bound for consensus under a GQS assumes that all correct channels are
eventually timely. In the same way we established tight bounds for reliability, it would be
interesting to determine whether one can also identify tight bounds on which subset of correct
channels need to be eventually synchronous for consensus to be solvable.

Third, further research is required to understand the solvability and complexity of other
classical distributed computing problems under arbitrary process and channel failures. No-
tably, problems such as k-set agreement, approximate agreement, renaming, k-exclusion,
k-assignment, and crusader agreement remain unexplored in this generalized context. Deter-
mining their solvability conditions, lower bounds, and designing efficient algorithms for these
problems will significantly enrich the theoretical foundations of fault-tolerant distributed
computing.

Finally, future work may investigate whether the lower bounds identified here can be mitigated
under additional system assumptions or alternative abstractions, such as probabilistic models
of message loss or lightweight failure detectors. Empirical studies would also help assess
the practical relevance of the proposed abstractions by identifying which failure patterns
arise most often in real systems. Such patterns may differ from the $-fail-prone case, yet
still provide stronger connectivity guarantees that can be exploited to design more efficient
algorithms, thereby bridging the theoretical results with practical implementations.

86



References

[10]

[11]

[12]

Atul Adya. “Weak Consistency: A Generalized Theory and Optimistic Implementations
for Distributed Transactions”. Also as Technical Report MIT/LCS/TR-786. Ph.D.
Cambridge, MA, USA: MIT, Mar. 1999.

Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.
“Atomic snapshots of shared memory”. In: J. ACM 40.4 (1993), pp. 873-890.

Yehuda Afek, Hagit Attiya, Alan D. Fekete, Michael J. Fischer, Nancy A. Lynch, Yishay
Mansour, Da-Wei Wang, and Lenore D. Zuck. “Reliable Communication Over Unreliable
Channels”. In: J. ACM 41.6 (1994), pp. 1267-1297.

Yehuda Afek and Eli Gafni. “Asynchrony from Synchrony”. In: International Conference
on Distributed Computing and Networking (ICDCN). 2013.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.
“Communication-Efficient Leader Election and Consensus with Limited Link Synchrony”.
In: Symposium on Principles of Distributed Computing (PODC). 2004.

Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. “On
implementing Omega in systems with weak reliability and synchrony assumptions”. In:
Distributed Comput. 21.4 (2008), pp. 285-314.

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. “Using the heartbeat failure
detector for quiescent reliable communication and consensus in partitionable networks”.
In: Theor. Comput. Sci. 220.1 (1999), pp. 3-30.

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. “Failure Detection and Consensus
in the Crash-Recovery Model”. In: Distributed Comput. 13.2 (2000), pp. 99-125.
Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany. “To-
ward a Generic Fault Tolerance Technique for Partial Network Partitioning”. In: Sym-
posium on Operating Systems Design and Implementation (OSDI). 2020.

Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany. “An
Analysis of Network-Partitioning Failures in Cloud Systems”. In: Symposium on Oper-
ating Systems Design and Implementation (OSDI). 2018.

Lacramioara Astefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord,
Sara Tucci-Piergiovanni, and Eugen Zalinescu. “Tenderbake - A Solution to Dynamic
Repeated Consensus for Blockchains”. In: Symposium on Foundations and Applications
of Blockchain (FAB). 2021.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. “Sharing Memory Robustly in Message-
Passing Systems”. In: J. ACM 42.1 (1995), pp. 124-142.

87



Alejandro Naser-Pastoriza

[13]

[14]

Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. “Lower Bound on the Step
Complexity of Anonymous Binary Consensus”. In: Symposium on Distributed Computing
(DISC). 2016.

Hagit Attiya, Maurice Herlihy, and Ophir Rachman. “Atomic snapshots using lattice
agreement”. In: Distrib. Comput. 8.3 (1995), pp. 121-132.

Peter Bailis and Kyle Kingsbury. “The network is reliable”. In: Commun. ACM 57.9
(2014), pp. 48-55.

Anindya Basu, Bernadette Charron-Bost, and Sam Toueg. “Simulating reliable links
with unreliable links in the presence of process crashes”. In: Workshop on Distributed
Algorithms (WDAG). 1996.

Manuel Bravo, Gregory Chockler, and Alexey Gotsman. “Liveness and latency of
Byzantine state-machine replication”. In: Symposium on Distributed Computing (DISC).
2022.

Manuel Bravo, Gregory Chockler, and Alexey Gotsman. “Making Byzantine consensus
live”. In: Distributed Comput. 35.6 (2022), pp. 503-532.

Eric A. Brewer. “Towards robust distributed systems (abstract)”. In: Symposium on
Principles of Distributed Computing (PODC). 2000.

Marc Brooker, Tao Chen, and Fan Ping. “Millions of Tiny Databases”. In: Symposium
on Networked Systems Design and Implementation (NSDI). 2020.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to Reliable and
Secure Distributed Programming. 2nd. Springer Publishing Company, Incorporated,
2011.

Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Errata for Introduction to
Reliable and Secure Distributed Programming. https://www.distributedprogramming.
net/docs/Errata.pdf. Accessed: July 23, 2025.

Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. “The weakest failure
detector for solving consensus”. In: J. ACM 43.4 (1996), pp. 685-722.

Tushar Deepak Chandra and Sam Toueg. “Unreliable Failure Detectors for Reliable
Distributed Systems”. In: J. ACM 43.2 (1996), pp. 225-267.

Gregory Chockler, Idit Keidar, and Roman Vitenberg. “Group Communication Spec-
ifications: A Comprehensive Study”. In: ACM Comput. Surv. 33.4 (2001), pp. 427—
469.

Brian Coan. “A Compiler That Increases the Fault Tolerance of Asynchronous Protocols”.
In: IEEE Trans. Comput. 37.12 (1988), pp. 1541-1553.

Etienne Coulouma and Emmanuel Godard. “A Characterization of Dynamic Networks
Where Consensus Is Solvable”. In: Structural Information and Communication Com-
plexity (SIROCCO). 2013.

Etienne Coulouma, Emmanuel Godard, and Joseph Peters. “A characterization of
oblivious message adversaries for which Consensus is solvable”. In: Theoretical Computer
Science 584 (2015), pp. 80-90.

Danny Dolev. “The Byzantine Generals Strike Again”. In: J. Algorithms 3.1 (1982),
pp. 14-30.

Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. Failure detectors in
omission failure environments. Tech. rep. TR96-1608. Department of Computer Science,
Cornell University, 1996.

88


https://www.distributedprogramming.net/docs/Errata.pdf
https://www.distributedprogramming.net/docs/Errata.pdf

References

[38]

[39]

[40]

[41]

Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. “Failure detectors in
omission failure environments (Brief Announcement)”. In: Symposium on Principles of
Distributed Computing (PODC). 1997.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. “Consensus in the presence
of partial synchrony”. In: J. ACM 35.2 (1988), pp. 288-323.

Antonio Fernandez Anta and Michel Raynal. “From an Intermittent Rotating Star to a
Leader”. In: Conference on Principles of Distributed Systems (OPODIS). 2007.

Faith Fich, Maurice Herlihy, and Nir Shavit. “On the Space Complexity of Randomized
Synchronization”. In: J. ACM 45.5 (1998), pp. 843-862.

Colin Fidge. “Timestamps in message-passing systems that preserve the partial ordering”.
In: Australian Computer Science Conference (ASCS). 1988.

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. “Impossibility of Dis-
tributed Consensus with One Faulty Process”. In: J. ACM 32.2 (Apr. 1985), pp. 374—
382.

Roy Friedman, Idit Keidar, Dahlia Malkhi, Ken Birman, and Danny Dolev. Deciding in
partitionable networks. Tech. rep. TR95-1554. Department of Computer Science, Cornell
University, 1995.

Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-Tolerant Web Services”. In: SIGACT News 33.2 (2002), pp. 51-59.
Vassos Hadzilacos. Byzantine agreement under restricted type of failures (not telling
the truth is different from telling lies). Tech. rep. TR-18-63. Department of Computer
Science, Harvard University, 1983.

Maurice Herlihy. “Wait-Free Synchronization”. In: ACM Transactions on Programming
Languages and Systems 13.1 (1991), pp. 124-149.

Maurice Herlihy, Victor Luchangco, and Mark Moir. “Obstruction-Free Synchronization:
Double-Ended Queues as an Example”. In: International Conference on Distributed
Computing Systems (ICDCS). 2003.

Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. “Flexible Paxos: Quorum
intersection revisited”. In: Conference on Principles of Distributed Systems (OPODIS).
2016.

Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. “Chasing the Weakest
System Model for Implementing €2 and Consensus”. In: IEEE Trans. Dependable Secur.
Comput. 6.4 (2009), pp. 269-281.

Chris Jensen, Heidi Howard, and Richard Mortier. “Examining Raft’s Behaviour during
Partial Network Failures”. In: Workshop on High Availability and Observability of Cloud
Systems (HAOC). 2021.

Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”.
In: Commun. ACM 21.7 (1978), pp. 558-565.

Leslie Lamport. “On Interprocess Communication - Part I: Basic Formalism, Part II:
Algorithms”. In: Distributed Comput. 1.2 (1986), pp. 77-101.

Leslie Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput. Syst. 16.2
(1998), pp. 133-169.

Wai-Kau Lo and Vassos Hadzilacos. “Using Failure Detectors to Solve Consensus
in Asynchronous Shared-Memory Systems (Extended Abstract)”. In: Workshop on
Distributed Algorithms (WDAG). 1994.

89



Alejandro Naser-Pastoriza

[52]
[53]

[54]

[55]

[56]
[57]

[58]

[62]
[63]

[64]

Nancy Lynch. “Distributed Algorithms”. In: Morgan Kaufmann, 1996. Chap. 17.
Nancy A. Lynch and Alexander A. Shvartsman. “RAMBO: A Reconfigurable Atomic
Memory Service for Dynamic Networks”. In: Symposium on Distributed Computing
(DISC). 2002.

Dahlia Malkhi, Florin Oprea, and Lidong Zhou. “Q2 Meets Paxos: Leader Election and
Stability Without Eventual Timely Links”. In: Symposium on Distributed Computing
(DISC). 2005.

Dahlia Malkhi and Michael K. Reiter. “Byzantine Quorum Systems”. In: Distributed
Comput. 11.4 (1998), pp. 203-213.

Moni Naor and Avishai Wool. “The load, capacity and availability of quorum systems”.
In: Symposium on Foundations of Computer Science (FOCS). 1994.

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. “Cogsworth:
Byzantine View Synchronization”. In: Cryptoeconomics Systems Conference (CES).
2020.

Oded Naor and Idit Keidar. “Expected Linear Round Synchronization: The Missing
Link for Linear Byzantine SMR”. In: Symposium on Distributed Computing (DISC).
2020.

Gil Neiger and Sam Toueg. “Automatically Increasing the Fault-Tolerance of Distributed
Algorithms”. In: J. Algorithms 11.3 (1990), pp. 374-419.

Harald Ng, Seif Haridi, and Paris Carbone. “Omni-Paxos: Breaking the Barriers of
Partial Connectivity”. In: Furopean Conference on Computer Systems (EuroSys). 2023.
Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. “Topological Characterization
of Consensus under General Message Adversaries”. In: Symposium on Principles of
Distributed Computing (PODC). 2019.

Kenneth J. Perry and Sam Toueg. “Distributed agreement in the presence of processor
and communication faults”. In: IEEE Trans. Software Eng. 12.3 (1986), pp. 477-482.
Roberto De Prisco, Butler W. Lampson, and Nancy A. Lynch. “Revisiting the PAXOS
algorithm”. In: Theor. Comput. Sci. 243.1-2 (2000), pp. 35-91.

Dimitris Sakavalas and Lewis Tseng. Network Topology and Fault-Tolerant Consensus.
Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers,
2019.

Nicola Santoro and Peter Widmayer. “Time is not a healer”. In: Symposium on Theo-
retical Aspects of Computer Science (STACS). 1989.

Nicola Santoro and Peter Widmayer. “Distributed function evaluation in the presence
of transmission faults”. In: Symposium on Algorithms (SIGAL). 1990.

Ulrich Schmid, Bettina Weiss, and Idit Keidar. “Impossibility Results and Lower Bounds
for Consensus under Link Failures”. In: SIAM Journal on Computing 38.5 (2009).

90



	Acknowledgements
	Abstract
	Resumen
	List of Figures
	Abbreviations and acronyms
	Introduction
	Background
	Basic Definitions
	Pseudocode
	Correctness Conditions
	Fail-Prone Systems
	Quorum Systems
	Core Objects: Specifications and Implementations
	Common Definitions
	MWMR Atomic Registers
	SWMR Atomic Snapshots
	Lattice Agreement
	Consensus

	Failure Detectors
	Eventually Perfect Failure Detector P
	Eventual Leader Detector 

	Consensus Termination via 

	Modeling Framework and Core Contributions
	System Model
	Fail-Prone Systems under Channel Failures
	Liveness under Channel Failures
	Generalized Quorum Systems
	Main Results
	Comparison with Existing Results

	Atomic Registers, Atomic Snapshots and Lattice Agreement
	Lower Bound for Lattice Agreement
	CAP Revisited
	Upper Bound for Atomic Registers
	Quorum Access Functions
	Registers via Quorum Access Functions
	Correctness

	Bounded Process Failures
	Lower Bounds
	Upper bounds


	Consensus
	Lower Bound
	Registers from Consensus

	Upper Bound
	Lower Bound under Bounded Process Failures
	Upper Bound under Bounded Process Failures
	Synchronizer Specification
	Synchronizer Implementation
	Synchronizer Correctness
	Consensus Protocol
	Correctness

	Possibility and Impossibility of Consensus via 

	Conclusions
	Future Lines of Research

	References

