
The CISE Tool:
Proving Weakly-Consistent Applications Correct

Mahsa Najafzadeh
Sorbonne-Universités-UPMC

& Inria
France

mahsa.najafzadeh@lip6.fr

Alexey Gotsman
MDEA Software Institute

Spain
alexey.gotsman@imdea.org

Hongseok Yang
University of Oxford

UK
hongseok00@gmail.com

Carla Ferreira
NOVA LINCS, DI, FCT, U.

NOVA de Lisboa
Portugal

carla.ferreira@fct.unl.pt

Marc Shapiro
Sorbonne-Universités-UPMC

& Inria
France

marc.shapiro@acm.org

ABSTRACT
Designers of a replicated database face a vexing choice between
strong consistency, which ensures certain application invariants
but is slow and fragile, and asynchronous replication, which is
highly available and responsive, but exposes the programmer
to unfamiliar behaviours. To bypass this conundrum, recent re-
search has studied hybrid consistency models, in which updates
are asynchronous by default, but synchronisation is available
upon request. To help programmers exploit hybrid consistency,
we propose the first static analysis tool for proving integrity in-
variants of applications using databases with hybrid consistency
models. This allows a programmer to find minimal consistency
guarantees sufficient for application correctness.

Keywords
Program Analysis; Consistency; Invariant

1. INTRODUCTION
To achieve availability and scalability, many modern dis-

tributed systems rely on replicated databases, which maintain
multiple replicas of shared data. Clients can access the data at
any of the replicas, and these replicas communicate changes
to each other using message passing. For example, large-scale
Internet services use data replicas in geographically distinct
locations, and applications for mobile devices keep replicas lo-
cally to support offline use. Ideally, we would like replicated
databases to provide strong consistency, i.e., to behave as if a
single centralised node handles all operations. However, achiev-
ing this ideal usually requires synchronisation among replicas,
which slows down the database and even makes it unavailable if
network connections between replicas fail [1, 7].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [14]. In these databases, a replica performs
an operation requested by a client locally without any synchroni-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PaPOC’16, April 18-21, 2016, London, United Kingdom
c© 2016 ACM. ISBN 978-1-4503-4296-4/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2911151.2911160

sation with other replicas and immediately returns to the client;
the effect of the operation is propagated to the other replicas only
eventually. Unfortunately, this way of processing operations ex-
poses applications to undesirable concurrency behaviours, which
may cause bugs such as state divergence or invariant violation
[6].

For instance, consider a bank account replicated at different
bank branches, which supports operations deposit and withdraw.
A programmer would like to ensure an integrity invariant that
the balance is never negative. Assume that the balance is initially
e100. Eventual consistency will allow two users to concurrently
withdraw e60 at different branches and thus violate the integrity
invariant. To ensure the invariant in this example, we have to
introduce synchronisation between replicas, and, since synchro-
nisation is expensive, we would like to introduce it sparingly. To
allow this, some research [3, 9, 12, 13] and commercial [2, 4, 10]
databases now provide hybrid consistency models that allow the
programmer to request stronger consistency for certain opera-
tions and thereby introduce synchronisation. For example, to
preserve the integrity invariant in our banking application, only
withdraw operations need to use strong consistency, and hence,
synchronise to ensure that the account is not overdrawn; deposit
operations may use eventual consistency and hence proceed
without synchronisation.

Unfortunately, using hybrid consistency models effectively is
far from trivial. Requesting stronger consistency in too many
places may hurt performance and availability, and requesting
it in too few places may violate correctness. Striking the right
balance requires the programmer to reason about the applica-
tion behaviour on the subtle semantics of the consistency model,
taking into account which anomalies are disallowed by a partic-
ular consistency strengthening and whether disallowing these
anomalies is enough to ensure correctness.

To help programmers exploit hybrid consistency models, we
propose the first static analysis tool (called CISE: ’Cause I’m
Strong Enough) for proving integrity invariants of applications
using replicated databases with a range of hybrid models. Our
tool is based on a novel proof rule, which we have proved
sound [8]. The tool automates the proof rule by discharging
its obligations using an SMT solver. If an obligation fails, the
tool provides a counter-example, which the developer can use to
understand the source of the problem. Using the tool, we have
verified several example applications that require strengthening
consistency in nontrivial ways [8]. These include an extension
of the above banking application, an online auction service and
a course registration system. A demo of the tool is available

http://dx.doi.org/10.1145/2911151.2911160

online [11].
In the rest of this paper, we explain our static analysis by the

example of the above banking application.

2. SYSTEM MODEL
An application consists of a set of operations Op over some

set of objects, and invariants over the objects. The database
system consists of a set of replicas, each maintaining a full copy
of the database state State.

The replication model uses a Read-One-Write-All (ROWA)
approach [5]. A client operation is initially executed at a single
replica, which we refer to as its origin replica. This updates the
replica state deterministically, and immediately returns a value
to the client. After this, the replica sends a message to all other
replicas containing the effector of the operation, which describes
the updates done by the operation to the database state. Upon
receipt, the replicas apply the effector to their state. Effectors of
causally-dependent operations are executed in the same order at
every replica; effectors of independent (concurrent) operations
are executed in any order.

More precisely, the semantics of operations is defined by a
partial function

F ∈Op→ (State⇀ (Val× (State→State)×P(Token))).

Given a state σ ∈ State in which an operation o ∈ Op executes
at its origin replica, F(o)(σ) determines:

• The return value of the operation, from a set Val. We use
a special value ⊥ for operations that return no value.

• A function defining the effector of the operation. This will
be applied by every replica to its state: immediately at
the origin replica, and after receiving the corresponding
message at all other replicas.

• A set of tokens, used to introduce synchronisation. We
explain them later.

For instance, consider the naïve banking application in Fig-
ure 1. A client can read the balance from the local replica, make
deposits to and withdrawals from the account, and compute in-
terest, all without communicating with the other replicas. Each
operation is associated with a precondition—a predicate over
the state of its origin replica and parameters that determines
when the operation can be safely executed (and the F function
defined). A minimal precondition of the deposit(amount) and
withdraw(amount) operations is amount ≥ 0. Their effectors
add amount to (respectively, subtract it from) the balance. The
interest operation’s precondition is true and its effector multi-
plies the balance by the interest rate. (As we will see later, the
analysis shows that the precondition of withdraw needs to be
strengthened, and that this effector of interest is unsafe.)

3. CISE ANALYSIS

3.1 Safety Analysis
The first CISE proof obligation, called the safety analysis, ver-

ifies that the effector of every operation maintains the invariant
when applied to any state where the operation’s precondition is
true (not necessarily the one in which the operation was gener-
ated).

Let’s try out the safety analysis on the simple banking appli-
cation of Figure 1. According to the analysis, the effectors of
deposit and interest always maintain the invariant. However, for
withdraw, the obligation fails and our tool produces a counter-
example: if the balance is zero, a non-zero withdraw operation
makes the balance negative. Therefore, we must fix the issue

σinit = 0

I = (balance ≥ 0)

Token = ∅
Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+

amount), ∅)
Finterest()(balance) = (⊥, (λbalance′. (1.05∗

balance′)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), ∅)

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()
amount ≥ 0 withdraw(amount)

Figure 1: A simple banking application (incorrect).

σinit = 0

I = balance ≥ 0

Token = {τ}
./ = {(τ, τ)}

Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+
amount), ∅)

Finterest()(balance) = (⊥, (λbalance′. (balance′ + 0.05

∗balance)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), {τ})

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()
balance ≥ amount ≥ 0 withdraw(amount)

Figure 2: A corrected banking application.

by strengthening its precondition, so that the amount debited is
less or equal than the current balance.

With this correction, the safety analysis succeeds. The cor-
rected preconditions are shown at the bottom of Figure 2.

3.2 Commutativity Analysis
Effectors of concurrent operations may execute in different

orders at different replicas. The second CISE obligation, called
the commutativity analysis, checks if all pairs of effectors of
such operations commute: executing them in any order yields
the same result, whatever the starting state.

Let us check this obligation for the specification in Figure 1.
Predictably, applying the commutativity analysis proves that
deposit and withdraw effectors commute. However, the effector
of interest does not commute with that of the other operations,
and the tool returns a counter-example. Consider two replicas 1
and 2. The balance is initially e100. Replica 1 is the origin for
an interest operation. Replica 2 is the origin for a deposit(20)
operation. Replica 1 first applies the effector of interest and then
that of deposit, whereas replica 2 applies them in the opposite
order. Depending on the order of execution, the result is different,
and the replicas diverge.

We fix this by changing the interest operation to compute the
absolute interest at the origin replica and letting its effector add
this amount to the local balance of every replica (Figure 2). With
this corrected specification, our tool proves that the effector of
interest does commute with those of the other operations.

3.3 Stability Analysis
The safety analysis verified that that the effector of each opera-

tion o maintains the invariant when executed in a state satisfying
the precondition of the operation. The precondition holds at
o’s origin replica, but how do we know that it will hold when
o’s effector is applied at a different replica, which concurrently
executes effectors of other operations? The third obligation of
CISE analysis, called stability analysis, checks if executing the
effector of any other operation o′ maintains the precondition of
o.

Let us illustrate the stability analysis of the withdraw oper-
ation in Figure 1. The precondition of the withdraw operation
is stable under the effectors of deposit and interest, but it is
not stable under the effector of withdraw. The tool returns
the following counter-example. Let the balance be e2. The
precondition to withdraw(1) is verified. However, a concur-
rent withdraw(2) (whose precondition is also OK) at a different
replica makes the balance zero, now violating the precondition
of withdraw(1). If we were to continue, and to apply the effec-
tor of the first withdrawal operation at the second replica, the
balance would become negative.

To fix the problem, the developer of the banking applica-
tion may disallow the execution of withdrawals without syn-
chronisation. To model such concurrency control, we use
tokens Token = {τ, . . .} and a symmetric conflict relation
./ ⊆ Token × Token between pairs of them. In the banking
application, we associate a token τ to withdraw such that τ ./ τ
(similarly to a mutual exclusion lock). This ensures that any two
withdrawals synchronise.

Figure 2 presents a corrected banking application, incorporat-
ing all the changes outlined above. Our static analysis confirms
that this application indeed maintains the integrity invariant.

4. CONCLUSIONS AND FUTURE
WORK

We implemented the CISE Tool to automatically discharge
the CISE analysis. The tool enables an application developer to
check whether her application maintains crucial application in-
variants, over a replicated database with a given synchronisation
protocol.

In the future, we plan to study proof rules for reasoning about
integrity invariants on consistency models weaker than causal
consistency. We also intend to automate the analysis of counter-
examples in order to generate corrections semi-automatically.

References
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: CAP is only part of the story.
IEEE Computer, 45(2), 2012.

[2] Amazon. Supported operations in DynamoDB.
http://docs.aws.amazon.com/amazondynamodb/latest/
\developerguide/APISummary.html, 2015.

[3] V. Balegas, N. Preguiça, R. Rodrigues, S. Duarte, C. Fer-
reira, M. Najafzadeh, and M. Shapiro. Putting consistency
back into eventual consistency. In Euro. Conf. on Comp.
Sys. (EuroSys), pages 6:1–6:16, Bordeaux, France, Apr.
2015.

[4] Basho Inc. Using strong consistency in Riak.
http://docs.basho.com/riak/latest/dev/advanced/strong-
consistency/, 2015.

[5] P. Bernstein, V. Radzilacos, and V. Hadzilacos. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley Publishing Company, 1987.

[6] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. Fur-
man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Mel-
nik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Wood-
ford. Spanner: Google’s globally-distributed database. In
Symp. on Op. Sys. Design and Implementation (OSDI),
pages 251–264, Hollywood, CA, USA, Oct. 2012. Usenix.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. SIGACT News, 33(2):51–59, 2002.

[8] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and
M. Shapiro. ’Cause I’m strong enough: Reasoning about
consistency choices in distributed systems. In Symp. on
Principles of Prog. Lang. (POPL), pages 371–384, St. Pe-
tersburg, FL, USA, 2016.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In Symp. on Op. Sys.
Design and Implementation (OSDI), pages 265–278, Hol-
lywood, CA, USA, Oct. 2012.

[10] Microsoft. Consistency levels in DocumentDB.
http://azure.microsoft.com/en-us/documentation/articles/
documentdb-consistency-levels/, 2015.

[11] M. Najafzadeh and M. Shapiro. Demo of the CISE tool,
Nov. 2015. Video of demo, with explanations.

[12] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Symp. on Op.
Sys. Principles (SOSP), pages 385–400, Cascais, Portugal,
Oct. 2011. Assoc. for Computing Machinery.

[13] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In SOSP, 2013.

[14] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

http://docs.aws.amazon.com/amazondynamodb/latest/\developerguide/APISummary.html
http://docs.aws.amazon.com/amazondynamodb/latest/\developerguide/APISummary.html

	Introduction
	System Model
	CISE Analysis
	Safety Analysis
	Commutativity Analysis
	Stability Analysis

	Conclusions and Future Work

