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Abstract
Atomic Commit Problem (ACP) is a single-shot agreement problem similar to consensus, meant to model the properties of
transaction commit protocols in fault-prone distributed systems.We argue thatACP is too restrictive to capture the complexities
of modern transactional data stores, where commit protocols are integrated with concurrency control, and their executions for
different transactions are interdependent.As an alternative,we introduceTransactionCertification Service (TCS), a new formal
problem that captures safety guarantees of multi-shot transaction commit protocols with integrated concurrency control. TCS
is parameterized by a certification function that can be instantiated to support common isolation levels, such as serializability
and snapshot isolation. We then derive a provably correct crash-resilient protocol for implementing TCS through successive
refinement. Our protocol achieves a better time complexity than mainstream approaches that layer two-phase commit on top
of Paxos-style replication.

Keywords Atomic commit problem · Two-phase commit · Concurrency control · Transactions · Data replication · Paxos

1 Introduction

Modern data stores are often required to manage massive
amounts of data while providing stringent transactional guar-
antees to their users. They achieve scalability by partitioning
data into independently managed shards (aka partitions)
and fault-tolerance by replicating each shard across a set
of servers [8,15,42,51]. Implementing such systems requires
sophisticated protocols to ensure that distributed transac-
tions satisfy a conjunction of desirable properties commonly
known asACID:Atomicity, Consistency, Isolation andDura-
bility.

Traditionally, distributed computing literature abstracts
ways of achieving these properties into separate problems: in
particular, atomic commit problem (ACP) for Atomicity and
concurrency control (CC) for Isolation. ACP is formalised
as a one-shot agreement problem in which multiple shards
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involved in a transaction need to reach a decision on its
final outcome: commit if all shards voted to commit the
transaction, and abort otherwise [13]. Concurrency control
is responsible for ensuring that the global histories comply
with the desired isolation level. In a typical implementation,
each shard keeps track of the local objects accessed by a
transaction, and determines its vote (commit or abort) on the
transaction outcome based on the locally observed conflicts
with other active transactions. Although both ACP and CC
must be solved in any realistic transaction processing sys-
tem, they are traditionally viewed as disjoint in the existing
literature. In particular, solutions for ACP treat the votes as
the inputs of the problem, and leave the interaction with CC,
which is responsible for generating the votes, outside the
problem scope [2,19,26,46].

This separation, however, is too simplistic to capture the
complexities of many practical implementations in which
commit protocols and concurrency control are tightly inte-
grated, and as a result, may influence each other in subtle
ways. For example, consider the classical two-phase commit
(2PC) protocol [17] for solving ACP among reliable pro-
cesses. A transaction processing system typically executes
a 2PC instance for each transaction [39,40,42,47]. When a
processes pi managing a shard s receives a transaction t ,
it performs a local concurrency-control check and accord-
ingly votes to commit or abort t . The votes on t by different
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processes are aggregated, and the final decision is then dis-
tributed to all processes. If pi votes to commit t , as long
as it does not know the final decision on t , it will have to
conservatively presume t as committed. This may cause pi
to vote abort in another 2PC instance for a transaction t ′
conflicting with t , even if in the end t is aborted. In this
case, the outcome of one 2PC instance (for t ′) depends on
the internals of the execution of another instance (for t) and
the concurrency-control policy used.

At present, the lack of a formal framework capturing such
intricate aspects of real implementations makes them diffi-
cult to understand and prove correct. In this paper, we take
the first step towards bridging this gap. We introduce Trans-
action Certification Service (TCS, Sect. 2), a new formal
problemcapturing the safety guarantees of amulti-shot trans-
action commit protocol with integrated concurrency control.
The TCS exposes a simple interface allowing clients to sub-
mit transactions for certification via a certify request,
which returns commit or abort. A TCS is meant to be
used in the context of transactional processing systems with
optimistic concurrency control, where transactions are first
executed optimistically, and the results (e.g., read and write
sets) are submitted for certification to the TCS. In contrast
to ACP, TCS does not impose any restrictions on the num-
ber of repeated certify invocations or their concurrency.
It therefore lends itself naturally to formalising the interac-
tions between transaction commit and concurrency control.
To this end, TCS is parameterised by a certification function,
which encapsulates the concurrency-control policy for the
desired isolation level, such as serializability and snapshot
isolation [1]. The correctness of TCS is then formulated by
requiring that its certification decisions be consistent with
the certification function.

We leverage TCS to develop a formal framework for
constructing provably correct multi-shot transaction commit
protocols with customisable isolation levels. The core ingre-
dient of our framework is a newmulti-shot two-phase commit
protocol (Sect. 3). It formalises how the classical 2PC inter-
acts with concurrency control in many practical transaction
processing systems [39,40,42,47] in a way that is parametric
in the isolation level provided. The protocol also serves as a
template for deriving more complex TCS implementations.
We prove that the multi-shot 2PC protocol correctly imple-
ments a TCSwith a given certification function, provided the
concurrency-control policies used by each shard match this
function.

We next propose a crash fault-tolerant TCS implementa-
tion and establish its correctness by proving that it simulates
multi-shot 2PC (Sect. 4). A common approach to mak-
ing 2PC fault-tolerant is to get every shard to simulate a
reliable 2PC process using a replication protocol, such as
Paxos [8,15,19,21,51]. Similarly to recent work [29,50], our
implementation optimises the time complexity of this scheme

by weaving 2PC and Paxos together. In particular, our pro-
tocol avoids consistently replicating the 2PC coordinator in
exchange for removing from the coordinator the ability to
unilaterally abort the transaction. This, in its turn, allows
eliminating the Paxos consensus required in the vanilla fault-
tolerant 2PC to persist the final decision on a transaction at
a shard: in case of failures decisions can be reconstructed
from the current state of the shards. In contrast to previous
protocols following the same design, our protocol is both
generic in the isolation level and rigorously proven correct.
It can therefore serve as a reference solution for future dis-
tributed transaction commit implementations. Moreover, a
variant of our protocol has a time complexity matching the
lower bounds for consensus [6,27] and non-blocking atomic
commit [13].

A feature of our protocol that makes it particularly subtle
to prove its correctness is avoiding the consensus on the final
decisionon a transaction and insteadpropagating the decision
to the relevant shard replicas asynchronously. Thismeans that
different shard replicas may receive the decision at different
times, and thus their states may be inconsistent. To deal with
this, in our protocol the votes are computed locally by a single
shard leader based on the information available to it; other
processes merely store the votes. Similarly to [25,37], this
passive replication approach requires care in the design of
recovery from leader failures and arguing its correctness.

2 Transaction certification service

Interface ATransactionCertification Service (TCS) accepts
transactions from T and produces decisions from D =
{abort, commit}. Clients interact with the TCS using
two types of actions: certification requests of the form
certify(t), where t ∈ T , and responses of the form
decide(t, d), where d ∈ D.

In this paper we focus on transactional processing systems
using (backward-oriented) optimistic concurrency control.
Hence, we assume that a transaction submitted to the TCS
includes all the information produced by its optimistic exe-
cution. As an example, consider a transactional system
managing objects in the set Obj with values in the set
Val, where transactions can execute reads and writes on the
objects. The objects are associated with a totally ordered set
Ver of versions with a distinguished minimum version v0.
Then each transaction t submitted to the TCS may be asso-
ciated with the following data:

– Read set R(t) ⊆ Obj × Ver: the set of objects with
their versions that t read, which contains one version per
object.

– Write set of W (t) ⊆ Obj × Val: the set of objects with
their values that t wrote, which contains one value per
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object. We require that any object written has also been
read: ∀(x, _) ∈ W (t). (x, _) ∈ R(t).

– Commit version Vc(t) ∈ Ver: the version to be assigned
to the writes of t . We require that this version be higher
than any of the versions read: ∀(_, v) ∈ R(t). Vc(t) > v.

Certification functions A TCS is parameterized by a certi-
fication function f : 2T × T → D, which encapsulates the
concurrency-control policy for the desired isolation level.
The result f (T , t) is the decision for the transaction t given
the set of the previously committed transactions T . We
require f to be distributive in the following sense:

∀T1, T2, t . f (T1 ∪ T2, t) = f (T1, t) � f (T2, t), (1)

where the � operator is defined as follows: commit �
commit = commit and d � abort = abort for any d.
This requirement is justified by the fact that common defini-
tions of f (T , t) check t for conflicts against each transaction
in T separately.

For example, given the above domain of transactions,
the following certification function encapsulates the clas-
sical concurrency-control policy for serializability [49]:
f (T , t) = commit iff none of the versions read by t have
been overwritten by a transaction in T , i.e.,

∀x, v. (x, v) ∈ R(t) 	⇒
(∀t ′ ∈ T . (x, _) ∈ W (t ′) 	⇒ Vc(t

′) ≤ v). (2)

A certification function for snapshot isolation (SI) [1] is sim-
ilar, but restricts the certification check to the objects the
transaction t writes: f (T , t) = commit iff

∀x, v. (x, v) ∈ R(t) ∧ (x, _) ∈ W (t) 	⇒
(∀t ′ ∈ T . (x, _) ∈ W (t ′) 	⇒ Vc(t

′) ≤ v). (3)

It is easy to check that the certification functions (2) and (3)
are distributive.

Histories We represent TCS executions using histories—
finite sequences of certify and decide actions such
that every transaction appears at most once as a parame-
ter to certify, and each decide action is a response to
exactly one preceding certify action. For a history h we
let act(h) be the set of actions in h. For actions a, a′ ∈ act(h),
we write a ≺h a′ when a occurs before a′ in h. A history
h is complete if every certify action in it has a matching
decide action.Acomplete history is sequential if it consists
of consecutive pairs of certify and matching decide
actions. A transaction t commits in a history h if h contains
decide(t, commit). We denote by committed(h) the pro-
jection of h to actions corresponding to the transactions that

are committed in h. For a complete history h, a linearization
� of h [24] is a sequential history such that: (i) h and � contain
the same actions; and (ii)

∀t, t ′.decide(t, _) ≺h certify(t ′) 	⇒
decide(t, _) ≺� certify(t ′).

TCS correctness A complete sequential history h is legal
with respect to a certification function f , if its certification
decisions are computed according to f :

∀a = decide(t, d) ∈ act(h).

d = f ({t ′ | decide(t ′, commit) ≺h a}, t).

A history h is correct with respect to f if h | committed(h)

has a legal linearization. A TCS implementation is correct
with respect to f if so are all its histories.

Using the TCS specification A correct TCS can be readily
used in a transaction processing system (TPS). For exam-
ple, consider the domain of transactions defined earlier. A
typical TPS based on optimistic concurrency control will
ensure that transactions submitted for certification read ver-
sions that already exist in the database. Formally, this means
that for every history h induced by the actions of the TCS
interface, it holds: if t is a transaction such that certify(t)
occurs in h, and (x, v) ∈ R(t), then there exists a transaction
t ′ such that (x, _) ∈ W (t ′) ∧ Vc(t ′) = v, and h contains
decide(t ′, commit) before certify(t). It is easy to see
that this implies that if h is correctwith respect to the certifica-
tion function for serializability (2), then ordering committed
transactions as prescribed by a legal linearization of h results
in a correct serial history: the value of every object read by a
transaction t is the one written by the latest preceding trans-
actionwriting to that object. Hence, TCS correct with respect
to certification function (2) can indeed be used to implement
a serializabile TPS.

3 Multi-shot 2PC and shard-local
certification functions

We now present a multi-shot version of the classical
two-phase commit (2PC) protocol [17], parametric in the
concurrency-control policy used by each shard. We then
prove that the protocol implements a correct transaction
certification service parameterised by a given certification
function, provided per-shard concurrency control matches
this function. Like 2PC, our protocol assumes reliable pro-
cesses. In the next section, we establish the correctness of a
protocol that allows crashes by proving that it simulates the
behaviour of multi-shot 2PC.
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System model We consider an asynchronous message-
passing system consisting of a set of processes P . In this
section we assume that processes are reliable and are con-
nected by reliable FIFO channels. We assume a function
client : T → P determining the client process that issued a
given transaction. The data managed by the system are parti-
tioned into shards from a setS. A function shards : T → 2S

determines the shards that need to certify a given transaction,
which are usually the shards storing the data the transac-
tion accesses. Each shard s ∈ S is managed by a process
proc(s) ∈ P . For simplicity, we assume that there is a one-
to-one mapping between the shards and the processes. We
sometimes apply proc to a set of shards to get the set of
processes managing them.

Protocol: common case We give the pseudocode of the pro-
tocol in Fig. 1 and illustrate its message flow in Fig. 2a. Each
handler in Fig. 1 is executed atomically.

To certify a transaction t , a client sends it in a PREPARE
message to the relevant shards (line 6)1. A process managing
a shard arranges all transactions received into a total certifi-
cation order, stored in an array txn; a next variable points to
the last filled slot in the array. Upon receiving a transaction t
(line 8), the process stores t in the next free slot of txn. The
process also computes its vote, saying whether to commit
or abort the transaction, and stores it in an array vote. We
explain the vote computation in the following; intuitively, the
vote is determined by whether the transaction t conflicts with
a previously received transaction.After the processmanaging
a shard s receives t , we say that t is prepared at s. The process
keeps track of transaction status in an array phase, whose
entries initially store start, and are changed to prepared
once the transaction is prepared. Having prepared the trans-
action t , the process sends a PREPARE_ACK message with
its position in the certification order and the vote to a coor-
dinator of t . This is a process determined using a function
coord : T → P such that ∀t . coord(t) ∈ proc(shards(t)).

The coordinator of a transaction t acts once it receives
a PREPARE_ACK message for t from each of its shards s,
which carries the vote ds by s (line 14). The coordinator
computes the final decision on t using the� operator (Sect. 2)
and sends it in DECISION messages to the client and to all
the relevant shards. When a process receives a decision for a
transaction (line 18), it stores the decision in a dec array, and
advances the transaction’s phase todecided. Note that we do
not allow the coordinator to unilaterally abort a transaction:
this allows minimising latency in a fault-tolerant version of
the protocol we present in Sect. 4.

1 In practice, the client only needs to send the data relevant to the
corresponding shard. We omit this optimisation to simplify notation.

Fig. 1 Multi-shot 2PC protocol at a process pi managing a shard s0

Vote computation A process managing a shard s computes
votes as a conjunction of two shard-local certification func-
tions fs : 2T × T → D and gs : 2T × T → D. Unlike
the certification function of Sect. 2, the shard-local functions
are meant to check for conflicts only on objects managed by
s. They take as their first argument the sets of transactions
already decided to commit at the shard, and respectively,
those that are only prepared to commit (line 11). We require
that the above functions be distributive, similarly to (1).

For example, consider the transaction model given in
Sect. 2 and assume that the set of objects Obj is partitioned
among shards: Obj = ⊎

s∈S Objs . Then one possible way to
define the shard-local certification functions for serializabil-
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(a) (b) (c)

Fig. 2 Message flow diagrams illustrating the behaviour of a multi-shot 2PC; b multi-shot 2PC with shards replicated using Paxos; c optimised
protocol weaving together multi-shot 2PC and Paxos

ity is as follows: fs(T , t) = commit iff

∀x ∈ Objs .∀v. (x, v) ∈ R(t) 	⇒
(∀t ′ ∈ T . (x, _) ∈ W (t ′) 	⇒ Vc(t

′) ≤ v), (4)

and gs(T , t) = commit iff

∀x ∈Objs .∀v.

((x, _) ∈ R(t) 	⇒ (∀t ′ ∈ T . (x, _) /∈ W (t ′))) ∧
((x, _) ∈ W (t) 	⇒ (∀t ′ ∈ T . (x, _) /∈ R(t ′))).

(5)

The function fs certifies a transaction t against previously
committed transactions T similarly to the certification func-
tion (2), but taking into account only the objects managed by
the shard s. The function gs certifies t against transactions T
prepared to commit.

The first conjunct of (5) aborts a transaction t if it read
an object written by a transaction t ′ prepared to commit.
To motivate this condition, consider the following example.
Assume that a shard managing an object x votes to commit
a transaction t ′ that read a version v1 of x and wants to write
a version v2 > v1 of x . If the shard now receives another
transaction t that read the version v1 of x , the shard has to
abort t : if t ′ does commit in the end, allowing t to commit
would violate serializability, since it would have read stale
data. On the other hand, once the shard receives the abort
decision on t ′, it is free to commit t .

The second conjunct of (5) aborts a transaction t if it writes
to an object read by a transaction t ′ prepared to commit.
To motivate this, consider the following example, adapted
from [45]. Consider a transaction t1 that reads versions v1
and v2 of x and y respectively, and wants to write y with a
commit version v′

2 > v2, and a transaction t2 that reads the
same versions v1 and v2 of x and y, and wants to write x

with a commit version v′
1 > v1. Suppose that x and y are

stored at two distinct shards s1 and s2 respectively. Assume
further that s1 receives t1 first and votes to commit it, and
s2 receives t2 first and votes to commit it as well. If s1 now
receives t2 and s2 receives t1, the second conjunct of (5) will
force them to abort: if the shards let the transactions commit,
the resulting execution would not be serializable, since one
of the transactions must read the value written by the other.

A simple way of implementing (5) is, when preparing a
transaction, to acquire read locks on its read set and write
locks on its write set; the transaction is aborted if the locks
cannot be acquired. The shard-local certification functions
are a more abstract way of defining the behaviour of this and
other implementations [39,40,42,45,47]. They can also be
used to define weaker isolation levels than serializability. As
an illustration, we can define shard-local certification func-
tions for snapshot isolation as follows: fs(T , t) = commit
iff

∀x ∈ Objs .∀v. (x, v) ∈ R(t) ∧ (x, _) ∈ W (t) 	⇒
(∀t ′ ∈ T . (x, _) ∈ W (t ′) 	⇒ Vc(t

′) ≤ v),

and gs(T , t) = commit iff

(x, _) ∈ W (t) 	⇒ (∀t ′ ∈ T . (x, _) /∈ W (t ′)).

The function fs restricts the global function (3) to the objects
managed by the shard s. Since snapshot isolation allows read-
ing stale data, the function gs only checks for write conflicts.

We next formulate conditions sufficient to ensure that
shard-local certification functions correctly approximate a
given global function f . For a set of transactions T ⊆ T ,
we write T | s to denote the projection of T on shard s, i.e.,
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{t ∈ T | s ∈ shards(t)}. Then we require that

∀t ∈ T .∀T ⊆ T . f (T , t) = commit ⇐⇒
∀s ∈ shards(t). fs((T | s), t) = commit. (6)

In addition, for each shard s, the two functions fs and gs are
required to be related to each other as follows:

∀t . s ∈ shards(t) 	⇒
(∀T . gs(T , t) = commit 	⇒ fs(T , t) = commit); (7)

∀t, t ′. s ∈ shards(t)∩ shards(t ′) 	⇒
(gs({t}, t ′)= commit 	⇒ fs({t ′}, t)= commit). (8)

Property (7) requires the conflict check performed by gs to be
noweaker than the one performedby fs . Property (8) requires
a form of commutativity: if t ′ is allowed to commit after a
still-pending transaction t , then t would be allowed to commit
after t ′. The above shard-local functions for serializability
and snapshot isolation satisfy (6)–(8).

Forgetting and recalling decisions The protocol in Fig. 1
has two additional handlers at lines 21 and 24, executed
non-deterministically. As we show in Sect. 4, these are
required for the abstract protocol to capture the behaviour
of optimised fault-tolerant TCS implementations. Because
of process crashes, such implementations may temporarily
lose the information about some final decisions, and later
reconstruct it from the votes at the relevant shards. In the
meantime, the absence of the decisions may affect some vote
computations as we explained above. The handler at line 21
forgets the decision on a transaction (but not its vote). The
handler at line 24 allows processes to resend the votes they
know to the coordinator,whichwill then resend the final deci-
sions (line 14). This allows a process that forgot a decision
to reconstruct it from the votes stored at the relevant shards.

Correctness The following theorem establishes the correct-
ness of multi-shot 2PC provided the shard-local concurrency
control given by fs and gs is related to the shard-agnostic
concurrency control given by a global certification function
f as prescribed by (6)–(8).

Theorem 1 A transaction certification service implemented
using the multi-shot 2PC protocol in Fig. 1 is correct with
respect to a certification function f , provided shard-local
certification functions fs and gs satisfy (6)–(8).

To facilitate the proof of Theorem 1, we first introduce a
low-level specification TCS-LL1, and prove that it is correctly
implemented by multi-shot 2PC (Lemma 1). We then show
that every history satisfying TCS-LL1 is correct with respect
to f (Lemma 2). The structure of all our proofs is illustrated

Fig. 3 Constraints on the votes and decisions computed by the multi-
shot 2PC protocol

Fig. 4 High-level structure of
the correctness proofs. An arrow
from X to Y means that X is a
refinement of Y . MS-2PC stands
for the multi-shot 2PC protocol
in Fig. 1, and CFT-Commit for
the fault-tolerant commit
protocol in Fig. 5

in Fig. 4. The low-level specification TCS-LL1 is defined as
follows.

Consider a history h. Let T denote the set of transac-
tions t such that certify(t) is an event in h, and d[t]
denote the decision value d of t ∈ T ifdecide(t, d) is
an event in h. The history h satisfies TCS-LL1 if for some
of transactions t ∈ T and shards s ∈ shards(t) there
exist ds[t] ∈ D, poss[t] ∈ N and Ts[t], Ps[t] ∈ 2T

such that all the constraints in Fig. 3 are satisfied. A
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protocol is a correct implementation of TCS-LL1 if each
of its finite histories satisfies TCS-LL1.

The conditions in Fig. 3 can be intuitively understood from
the proof sketch of the following easy lemma,which connects
them to the pseudocode in Fig. 1.

Lemma 1 The multi-shot 2PC protocol in Fig. 1 is a correct
implementation of TCS-LL1.

Proof sketch We informally explain how to select the
required ds[t] ∈ D, poss[t] ∈ N and Ts[t], Ps[t] ∈ 2T . Fix a
finite execution of the protocol producing a history h. Let T
be the set of transactions t such that certify(t) is an event
in h. For some of transactions t ∈ T and shards s ∈ shards(t)
we define the certification order position poss[t] and the vote
ds[t] computed by the protocol for shard s as follows:

Consider t ∈ T and s ∈ shards(t). Assume the
process proc(s) sent PREPARE_ACK(s, k, t, d) and
right after this it had txn = txn and vote = vote.
Then for every j ≤ k we let poss[txn[ j]] = j and
ds[txn[ j]] = vote[ j].

It is easy to see that this defines poss[t] and ds[t] uniquely.
Furthermore, by the structure of the handler at line 14 in
Fig. 1, for each t such that decide(t, d[t]) occurs in h,
ds[t] is defined for all s ∈ shards(t) and (9) holds. It is also
easy to check that the order determined by poss is down-
closed (10) and distinct transactions are assigned to distinct
positions by poss (11). By the structure of the vote compu-
tation at line 11, for a transaction t and a shard s ∈ dest(t),
constraints (12)–(14) are satisfied for some sets of transac-
tions Ts[t] and Ps[t], determining transactions respectively
considered committed and pending when computing the vote
on t at s. The relation �rt lifts the real-time order between
certification requests to transactions certified. The relation
t ′ �dec t means that the final decision on transaction t ′ is
taken into account when computing a vote on a transaction
t . The relation �rt ∪ �dec is acyclic (16), because if t ′ �rt t
or t ′ �dec t , then a DECISION(t ′, _) message must be sent
before a DECISION(t, _) message can be sent. ��

Theorem 1 follows from Lemma 1 and the following
lemma.

Lemma 2 If shard-local certification functions fs and gs sat-
isfy (6)–(8), then every history satisfying TCS-LL1 is correct
with respect to f .

Proof We construct a linearization of h | committed(h) by
arranging committed certification requests in h in any order
consistent with �rt ∪ �dec. By (16) at such an order exists.
To prove the lemma, it is enough to show that the resulting
linearization is legal with respect to f . We do this by induc-
tion on its length k ≥ 0. This trivially holds when k = 0.

Assume now that the linearization �k of length k is legal and
consider a linearization �k+1 of length k + 1.

For all i = 1..(k + 1), let decide(ti , commit) be
the i-th decide action in �k . Let T0 = ∅, and for all
j = 1..k let Tj = Tj−1 ∪ {t j }. By the induction hypoth-
esis, f (Ti−1, ti ) = commit for all i = 1..k. We show that
f (Tk, tk+1) = commit, which implies that �k+1 is legal with
respect to f .

Let

T = {ti | ¬(decide(ti , _) ≺h certify(tk+1)) ∧
1 ≤ i ≤ k}

and T ′ = Tk \ T . Fix a shard s ∈ shards(tk+1). Let

U0 = {t ′ | poss[t ′] < poss[tk+1]} ∩ (Tk | s).

Then

U0 ⊆ {t ′ | poss[t ′] < poss[tk+1] ∧ d[t ′] = commit}. (17)

Wehave d[tk+1] = commit, which by (9) implies ds[tk+1] =
commit. Then by (12) we have

fs(Ts[tk+1], tk+1) � gs(Ps[tk+1], tk+1) =
ds[tk+1] = commit,

From (17), (13) and (14), we get U0 ⊆ Ts[tk+1] ∪ Ps[tk+1].
Then by (7) and (1), we have

fs(U0, tk+1) = commit. (18)

By (15), (T ′ | s) ⊆ U0. We now augment U0 with the
transactions in (T | s) \U0 as follows. Let t1, . . . , tm where
m = |(T | s) \ U0| be the set of transactions in (T | s) \
U0 sorted according to poss . Consider a sequence of sets
U0, . . . ,Um such that Ui = Ui−1 ∪ {t i } for i = 1..m. We
now prove that fs(Ui , tk+1) = commit for i = 0..m by
induction on i .

First, note that (18) implies that the claim is true for
i = 0. Next, assume that fs(Uj , tk+1) = commit for all
j = 0..(i − 1), and consider fs(Ui , tk+1) where Ui =
Ui−1 ∪ {t i }. Since t i comes before tk+1 in the lineariza-
tion, we cannot have tk+1 �dec t i . Hence, we must have
tk+1 ∈ Ps[t i ] and, by (1), gs({tk+1}, t i ) = commit. By
(8), this implies fs({t i }, tk+1) = commit. From this and
the induction hypothesis, by (1) we get

fs(Ui , tk+1) = fs(Ui−1 ∪ {t i }, tk+1) = commit,

which concludes the proof of the induction step.
We have established fs(Um, tk+1) = commit. Since (Tk |

s) = ((T ∪ T ′) | s) = Um , this implies fs((Tk | s), tk+1) =
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commit. Thus, for all s ∈ shards(tk+1) we have fs((Tk |
s), tk+1) = commit, which by (6) implies f (Tk, tk+1) =
commit, as required. ��

4 Fault-tolerant commit protocol

System model We now weaken the assumptions of the
previous section by allowing processes to fail by crashing,
i.e., permanently stopping execution. We still assume that
processes are connected by reliable FIFO channels in the
following sense: messages are delivered in the FIFO order,
and messages between non-faulty processes are guaranteed
to be eventually delivered. Each shard s is nowmanaged by a
group of 2k+1 processes, out of which at most k can fail.We
call a set of k + 1 processes in this group a quorum for s. For
a shard s we redefine proc(s) to be the set of processes man-
aging this shard. For simplicity, we assume that the groups
of processes managing different shards are disjoint.

Vanilla protocol A straightforwardway to implement a TCS
in the above model is to use state-machine replication [44]
to make a shard simulate a reliable process in multi-shot
2PC; this is usually based on a consensus protocol such as
Paxos [30]. In this case, final decisions on transactions are
never forgotten, and hence, the handlers at lines 21 and 24 are
not simulated. Even though this approach is used by several
systems [8,15,51], multiple researchers have observed that
the resulting protocol requires an unnecessarily high number
of message delays [29,31,50]. Namely, every action of multi-
shot 2PC in Fig. 2a requires an additional round trip to a
quorum of processes in the same shard to persist its effect,
resulting in themessage-flowdiagram inFig. 2b.Note that the
coordinator actions have to be replicated as well, sincemulti-
shot 2PC will block if the coordinator fails. The resulting
protocol requires 7 message delays for a client to learn a
decision on a transaction.

Optimised protocol overview In Fig. 5 we give a commit
protocol that reduces the number ofmessage delays byweav-
ing together multi-shot 2PC across shards and a Paxos-like
protocol within each shard. We omit details related to mes-
sage retransmissions from the code.We illustrate themessage
flow of the protocol in Fig. 2c and summarise the key invari-
ants used in its proof of correctness in Fig. 6.

A process maintains the same variables as in the multi-
shot 2PC protocol (Fig. 1) and a few additional ones. Every
process in a shard is either the leader of the shard or a fol-
lower. If the leader fails, one of the followers takes over. A
status variable records whether the process is a leader, a
follower or is in a special recovering state used during
leader changes. A period of time when a particular process
acts as a leader is denoted using integer ballots. For a ballot

b ≥ 1, the process leader(b) = ((b − 1) mod (2 f + 1)) is
the leader of the ballot. We use the whole set of integers as
ballots because a given process may play the role of a leader
multiple times. At any given time, a process participates in a
single ballot, which is stored in a variable cballot and never
decreases. During leader changes we also use an additional
ballot variable ballot.

Unlike the vanilla protocol illustrated in Fig. 2b, our pro-
tocol does not perform consensus to persist the contents of a
DECISIONmessage in a shard. Instead, the final decision on
a transaction is sent to the members of each relevant shard
asynchronously. This means that different shard members
may receive the decision on a transaction at different times.
Since the final decision on a transaction affects vote compu-
tations on transactions following it in the certification order
(Sect. 3), computing the vote on a later transaction at dif-
ferent shard members may yield different outcomes. To deal
with this, in our protocol only the leader constructs the cer-
tification order and computes votes. Followers are passive:
they merely copy the leader’s decisions. A final decision is
taken into account in vote computations at a shard once it is
received by the shard’s leader.

Failure-free case To certify a transaction t , a client sends it
in a PREPARE message to the relevant shards (line 10). A
process pi handles the message only when it is the leader of
its shard s0 (line 12). We defer the description of the cases
when another process p j is resending thePREPAREmessage
to pi (line 13), and when pi has already received t in the past
(line 15).

Upon receiving PREPARE(t), the leader pi first deter-
mines a process p that will serve as the coordinator of t . If
the leader receives t for the first time (line 17), then, similarly
to multi-shot 2PC, it appends t to the certification order and
computes the vote based on the locally available information.
The leader next performs an analogue of “phase 2” of Paxos,
trying to convince its shard s0 to accept its proposal. To this
end, it sends an ACCEPT message to s0 (including itself, for
uniformity), which is analogous to the “2a”message of Paxos
(line 23). Themessage carries the leader’s ballot, the transac-
tion t , its position in the certification order, the vote and the
identity of t’s coordinator. The leader code ensures Invari-
ant 1 in Fig. 6: in a given ballot b, a unique transaction-vote
pair can be assigned to a slot k in the certification order.

A process handles an ACCEPT message only if it partic-
ipates in the corresponding ballot (line 25). If the process
has not heard about t before, it stores the transaction and the
vote and advances the transaction’s phase to prepared. It
then sends an ACCEPT_ACK message to the coordinator of
t , analogous to the “2b” message of Paxos. This confirms
that the process has accepted the transaction and the vote.
The certification order at a follower is always a prefix of the
certification order at the leader of the ballot the follower is

123



Multi-shot distributed transaction commit

Fig. 5 Fault-tolerant commit protocol at a process pi in a shard s0
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Fig. 6 Key invariants of the fault-tolerant protocol. We let α�k be the
prefix of the sequence α of length k

in, as formalised by Invariant 2. This invariant is preserved
when the follower receives ACCEPT messages due to the
FIFO ordering of channels.

The coordinator of a transaction t acts once it receives a
quorum of ACCEPT_ACK messages for t from each of its
shards s ∈ shards(t), which carry the vote ds by s (line 31).
The coordinator computes the final decision on t and sends
it in DECISION messages to the client and to each of the

relevant shards. When a process receives a decision for a
transaction (line 35), the process stores it and advances the
transaction’s phase todecided. Note that, as in themulti-shot
2PC protocol in Sect. 3, the coordinator cannot unilaterally
abort a transaction.

Once the final decision on a transaction is delivered to the
leader of a shard, it is taken into account in future vote com-
putations at this shard. Taking as an example the shard-local
functions for serializability (4) and (5), if a transaction that
wrote to an object x is finally decided to abort, then deliver-
ing this decision to the leader may allow another transaction
writing to x to commit.

Leader recovery We next explain how the protocol deals
with failures, starting from a leader failure. The goal of the
leader recovery procedure is to preserve Invariant 3: if in a
ballot b a shard s accepted a vote d on a transaction t at the
position k in the certification order, then this vote will per-
sist in all future ballots; this is furthermore true for all votes
the leader of ballot b took into account when computing d.
The latter property is necessary for the shard to simulate the
behaviour of a reliable process in multi-shot 2PC that main-
tains a unique certification order. To ensure this property, a
new leader is elected in two stages (similarly to [25,37]).
First, processes vote to join the ballot of a prospective leader,
which they record in a variable ballot; like cballot, this vari-
able can only increase. Then, before normal processing can
resume, followers receive and accept an initial state from the
new leader and set cballot to ballot . We thus always have
cballot ≤ ballot, as stated by Invariant 4.

We now describe the recovery procedure in detail. When a
process pi suspects the leader of its shard of failure, it may try
to become a new leader by executing the recover function
(line 39). The process picks a ballot that it leads higher than
the last ballot it joined and sends it in a NEW_LEADER mes-
sage to the shard members (including itself); this message
asks the group members to support the process as the new
leader and is analogous to the “1a” message in Paxos. When
a process receives a NEW_LEADER(b) message (line 41), it
first checks that the proposed ballot b is higher than the last
ballot it joined. In this case, it sets its ballot to b and changes
its status to recovering, which causes it to stop processing
PREPARE, ACCEPT and DECISION messages (due to the
guards at lines 12, 25 and 36). It then replies to the new leader
with a NEW_LEADER_ACK message containing all compo-
nents of its state; this message serves as a vote for the new
leader and is analogous to the “1b” message of Paxos.

The new leader waits until it receivesNEW_LEADER_ACK
messages from a quorum of shard members (line 46). Based
on the states reported by the processes, it computes a new
state from which to start certifying transactions. Like in
Paxos, the leader focusses on the states of processes that
reported the maximal cballot (line 49): if the k-th transac-
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tion is prepared at such a process, then the leader marks it as
accepted and copies the vote; furthermore, if the transaction
is decided at some process (with any ballot number), then
the leader marks it as decided and copies the final decision.
Given Invariant 2, we can show that the resulting certifica-
tion order does not have holes: if a transaction is prepared
or decided, then so are the previous transactions in the cer-
tification order.

The leader sets next to the length of the merged sequence
of transactions, cballot to the new ballot and status to
leader, which allows it to start processing new transactions
(lines 58-60). It then sends a NEW_STATE message to other
shard members, containing the new state (line 61). Upon
receiving thismessage (line 62), a process overwrites its state
with the one provided, changes its status to follower, and
sets cballot to b, thereby recording the fact that it has syn-
chronised with the leader of b. Note that the process will not
accept transactions from the new leader until it receives the
NEW_STATE message. This ensures that Invariant 2 is pre-
served when the process receives the first ACCEPT message
in the new ballot.

Coordinator recovery If a process that accepted a trans-
action t does not receive the final decision on it, this may
be because the coordinator of t has failed. In this case the
process may decide to become a new coordinator by exe-
cuting the retry function (line 70). For this the process
just re-sends the PREPARE(t) message to the shards of t .
A leader handles the PREPARE(t) message received from
another process p j similarly to one received from a client. If
it has already certified the transaction t , it re-sends the cor-
responding ACCEPT message to the shard members, asking
them to reply to p j (line 15).Otherwise, it handles t as before.
In the end, a quorum of processes in each shard will reply to
the new coordinator (line 30), which will then broadcast the
final decision (lines 32–33). Note that the check at line 15
ensures Invariants 5 and 6: in a given ballot b, a transaction t
can only be assigned to a single slot in the certification order,
and all transactions in the txn array are distinct.

Our protocol allows any number of processes to become
coordinators of a transaction at the same time: unlike in the
vanilla protocol of Fig. 2b, coordinators are not consistently
replicated. Nevertheless, the protocol ensures that they will
all reach the same decision, even in case of leader changes.
We formalise this in Invariant 7: part (a) ensures an agreement
on the decision on the k-th transaction in the certification
order at a given shard; part (b) ensures a system-wide agree-
ment on the decision on a given transaction t . The latter part
establishes that the fault-tolerant protocol computes a unique
decision on each transaction.

Optimisations Our protocol allows the client and the rel-
evant servers to learn the decision on a transaction in four

message delays, including communication with the client
(Fig. 2c). As in standard Paxos, this can be further reduced
to three message delays at the expense of increasing the
number of messages sent by eliminating the coordinator:
processes can send their ACCEPT_ACKmessages for a trans-
action directly to all processes in the relevant shards and to
the client. Each process can then compute the final decision
independently. The resulting time complexity matches the
lower bounds for consensus [6,27] and non-blocking atomic
commit [13].

In practice, the computation of a shard-local function for s
depends only on the objects managed by s: e.g., Objs for (4)
and (5). Hence, once a process at a shard s receives the final
decision on a transaction t , it may discard the data of t irrel-
evant to s. Note that the same cannot be done when t is only
prepared, since the complete information about it may be
needed to recover from coordinator failure (line 70).

Protocol correctness We only establish the safety of the
protocol (in the sense of the correctness condition in Sect. 2)
and leave guaranteeing liveness to standard means, such as
assuming either an oracle that is eventually able to elect a
consistent leader in every shard [5], or that the system even-
tually behaves synchronously for sufficiently long [12].

Theorem 2 The fault-tolerant commit protocol in Fig. 5 sim-
ulates the multi-shot 2PC protocol in Fig. 1.

We give the proof of the theorem below. Its main idea is to
show that, in an execution of the fault-tolerant protocol, each
shard produces a single certification order on transactions
from which votes and final decisions are computed. These
certification orders determine the desired execution of the
multi-shot 2PC protocol. We prove the existence of a single
per-shard certification order using Invariant 3, showing that
certification orders and votes used to compute decisions per-
sist across leader changes. However, this property does not
hold of final decisions, and it is this feature that necessitates
adding transitions for forgetting and recalling final decisions
to the protocol in Fig. 1 (lines 21 and 24).

For example, assume that the leader of a ballot b at a
shard s receives the decision abort on a transaction t . The
leader will then take this decision into account in its vote
computations, e.g., allowing transactions conflicting with t
to commit. However, if the leader fails, a new leader may
not find out about the final decision on t if this decision has
not yet reached other shard members. This leader will not be
able to take the decision into account in its vote computations
until it reconstructs the decision from the votes at the relevant
shards (line 70). Forgetting and recalling the final decisions
in the multi-shot 2PC protocol captures how such scenarios
affect vote computations.

We first prove the nontrivial Invariants 3 and 7 fromFig. 6.
The following proof of Invariant 3 relies on a straighfor-
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ward auxiliary Invariant 8, where we order phases as follows:
start < accepted < decided.

Proof of Invariant 3. We prove the invariant by induction on
b′. Assume that the invariant holds for all b′ < b′′. We now
show it for b′ = b′′. Assume that at some point a quorum
Q of processes in s have received ACCEPT(b, k, t, d, _) and
responded to it with ACCEPT_ACK(s, b, k, t, d), and at the
time leader(b) sent ACCEPT(b, k, t, d, _) it had txn�k = txn
and vote�k = vote. We prove by induction on the length of
the protocol execution that, whenever at a process pi ∈ s
we have cballot = b′′ > b, we also have txn�k = txn and
vote�k = vote. The property holds trivially at the start of
the execution, since at this time at all processes we have
cballot = ⊥ < b. The only transition that can nontrivially
affect the validity of the above property is the transition in
line 46. Assume that after this transition cballot = b′′ > b
at pi . We show that we also have txn�k = txn and vote�k =
vote. Assume that during the transition in line 46 the process
pi received messages

NEW_LEADER_ACK(b′′, cballot j , txn j , vote j , dec j , phase j )

from a quorum Q′ of processes p j . Let b0 = max{cballot j |
p j ∈ Q′} and J = { j | cballot j = b0}. Then by the check
at line 42 and Invariant 4, we have b0 < b′′.

WehaveQ∩Q′ �= ∅. Thus, someprocess process p j0 must
have sent both ACCEPT_ACK and NEW_LEADER_ACKmes-
sages. Then p j0 must have sent its ACCEPT_ACK message
before the NEW_LEADER_ACK message. By the precondi-
tion in line 25, when p j0 sent the ACCEPT_ACK message,
it must have had cballot = b. Then when p j0 sent its
NEW_LEADER_ACK message, it had cballot ≥ b. Hence,
cballot j0 ≥ b and b0 ≥ b, so that b0 �= 0 and J �= ∅.

Consider first the case when b0 = b. Since p j0 ∈ Q′
has received and acknowledged ACCEPT(b, k, t, d, _), by
Invariant 2 we have txn = txn j0�k and vote = vote j0�k .
Furthermore, for any other process p j such that j ∈ J , if
phase j [k] ≥ prepared, then txn j0�k is a prefix of txn and
vote j0�k is a prefix of vote. By Invariant 8 we also have ∀l ≤
k. phase j0 [l] ≥ prepared. Hence, right after pi executes the
transition in line 46, we have txn = txn�k and vote = vote�k ,
as required.

Assume now that b0 > b. Consider an arbitrary j ∈ J ,
so that cballot(p j ) = b0. Then by induction hypothesis we
have txn = txn j�k and vote = vote j�k . By Invariant 8 we
also have ∀l ≤ k. phase j [l] ≥ prepared. Then right after
pi executes the transition in line 46, we have txn = txn�k
and vote = vote�k , as required. ��

We next prove Invariant 7. By the structure of the handler
at line 31, this invariant actually follows from Invariant 9,
since, if a coordinator has computed the final decision on a

transaction, then a quorumof processes in each relevant shard
has accepted a corresponding vote.Wenowprove Invariant 9.

Proof of Invariant 9 (a) Assume that quorums of pro-
cesses in s have sent ACCEPT_ACK(s, b1, k, t1, d1) and
ACCEPT_ACK(s, b2, k, t2, d2). Then ACCEPT(b1, k, t1,
d1, _) and ACCEPT(b2, k, t2, d2, _) have been sent to s.
Assume without loss of generality that b1 ≤ b2. If b1 = b2,
then by Invariant 1 we must have t1 = t2 and d1 = d2.
Assume now that b1 < b2. By Invariant 3, right before
leader(b2) sends the ACCEPT message, it has txn[k] = t1
and vote[k] = d1. But then due to the check at line 15, we
again must have t1 = t2 and d1 = d2.

(b) Assume that quorums of processes in s have sent
ACCEPT_ACK(s, b1, k1, t, d1) andACCEPT_ACK(s, b2, k2,
t, d2). ThenACCEPT(b1, k1, t, d1, _) andACCEPT(b2, k2, t,
d2, _) have been sent to s. Without loss of generality, we can
assume b1 ≤ b2. We first show that k1 = k2. If b1 = b2,
then we must have k1 = k2 by Invariant 5. Assume now
that b1 < b2. By Invariant 3, right before leader(b2) sends
the ACCEPTmessage, it has txn[k1] = t . But then due to the
check at line 15 and Invariant 6, we again must have k1 = k2.
Hence, k1 = k2. But then by Invariant 9a we must also have
d1 = d2. ��

The proof of Theorem 2 relies on auxiliary Invariants 10
and 11, which we prove next.

Proof of Invariant 10 We prove the invariant by induction
on the length of the protocol execution. The transitions that
may set phase[k] = decided and thereby affect the validity
of the invariant are those at lines 35, 46 and 62. The transition
at line 35 trivially preserves the invariant. If a transition at
lines 46 or 62 is executed and sets phase[k] = decided, then
the premiss of the invariant must have held earlier at some
process with ballot ≤ b′. Then the required follows from the
induction hypothesis. ��

Proof of Invariant 11 Follows from Invariants 10 and 3. ��
To prove Theorem 2, we introduce another low-level TCS
specification TCS-LL2 (see Fig. 4), which is a strengthening
of TCS-LL1, and prove that it is correctly implemented by the
fault-tolerant commit protocol in Fig. 5 (Lemma 3). We then
show that for every history h satisfying TCS-LL2 there is an
execution of the multi-shot 2PC protocol in Fig. 1 producing
a history h′ that is a permutation of h preserving its real-
time order (Lemma 4), which implies Theorem 2. Note that
although by Lemma 2, it would have been sufficient to argue
that our fault-tolerant commit protocol implements TCS-LL1
to establish its correctness, a refined specification TCS-LL2
allows us to obtain a stronger result, namely, that it simu-
lates multi-shot 2PC. The low-level specification TCS-LL2 is
defined as follows.
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Consider a history h. Let T denote the set of transac-
tions t such that certify(t) is an event in h, and d[t]
denote the decision value of t ∈ T if decide(t, d) is
an event in h. The history h satisfies TCS-LL2 if for some
of transactions t ∈ T and shards s ∈ shards(t) there
exist ds[t] ∈ D, poss[t] ∈ N and Ts[t], Ps[t] ∈ 2T

such that all the constraints in Fig. 3 are satisfied and
the relation <V over V = {(s, t) | ds[t] is defined} is
acyclic, where (s′, t ′) <V (s, t) iff one of the following
holds:

(i) s′ = s ∧ poss[t ′] < poss[t];
(ii) t ′ �rt t ; or
(iii) t ′ ∈ Ts[t] ∨ (poss[t ′] < poss[t] ∧ ds[t ′] =

commit ∧ d[t ′] = abort ∧ t ′ /∈ Ps[t]).
A protocol is a correct implementation of TCS-LL2 if
each of its finite histories satisfies TCS-LL2.

Note that item (iii) above mirrors the definition of �dec in
Fig. 3. The relation <V determines an order on vote compu-
tations that must be respected by the execution of multi-shot
2PC we construct to produce the desired decisions.

Lemma 3 The fault-tolerant commit protocol in Fig. 5 is a
correct implementation of TCS-LL2.

Proof Fix a finite execution of the fault-tolerant commit
protocol producing a history h. Let T be the set of transac-
tions t such that certify(t) is an event in h. For some of
transactions t ∈ T and shards s ∈ shards(t) we define the
certification order position poss[t] and the vote ds[t] com-
puted by the protocol as follows:

Consider t ∈ T and s ∈ shards(t). Assume that a quo-
rum of processes in s received ACCEPT(b, k, t, d, _)
and responded to it with ACCEPT_ACK(s, b, k, t, d),
and at the time leader(b) sent ACCEPT(b, k, t, d, _) it
had txn�k = txn and vote�k = vote. Then for every j ≤
k we let poss[txn[ j]] = j and ds[txn[ j]] = vote[ j].

According to Invariants 3 and 6, this defines poss[t] and
ds[t] uniquely and (11) in Fig. 3 holds. Furthermore, by
the structure of the handler at line 31, for each t such
that decide(t, d[t]) occurs in h, ds[t] is defined for all
s ∈ shards(t) and (9) holds. By construction, (10) holds. We
prove (12)–(14) using the following proposition.

Proposition 1 The following always holds at any process in
a shard s:

∀k. (vote[k] is defined) 	⇒
∃T , P. vote[k] = fs(T , txn[k]) � gs(P, txn[k]) ∧
T = {txn[k′] | k′ < k ∧ vote[k′] = commit ∧

d[txn[k′]] = commit} \ P ∧

P ⊆ {txn[k′] | k′ < k ∧ vote[k′] = commit} ∧
(∀t ∈ T . (DECISION(t, commit) has been sent)) ∧
(∀k′ < k. vote[k′] = commit ∧ txn[k′] /∈ T ∪ P

	⇒ (DECISION(t,abort) has been sent)).

Proof We prove this by induction on the length of the pro-
tocol execution. The validity of the above property can be
nontrivially affected only by the transitions at lines 21, 28, 46
and 62.

First consider a transition at line 21 that computes vote[k]
as follows:

vote[k] = fs(T , txn[k]) � gs(P, txn[k]);
T = {txn[k′] | k′ < k ∧ phase[k′] = decided ∧

dec[k′] = commit};
P = {txn[k′] | k′ < k ∧ phase[k′] = prepared ∧

vote[k′] = commit}.

Then by Invariants 10 and 11,

T = {txn[k′] | k′ < k ∧ vote[k′] = commit ∧
d[txn[k′]] = commit} \ P ∧

(∀t ∈ T . (DECISION(t, commit) has been sent)) ∧
(∀k′ < k. vote[k′] = commit ∧ txn[k′] /∈ T ∪ P
	⇒ (DECISION(t,abort) has been sent))

which implies the required.
We next consider the transition at line 46 by a process pi .

Then pi has received messages

NEW_LEADER_ACK(b′′, cballot j , txn j , vote j , dec j , phase j )

from a quorum of processes p j . Let b0 = max{cballot j |
p j ∈ Q′} and J = { j | cballot j = b0}.

Consider k such that vote[k] is defined at pi after the
transition. By induction hypothesis, we have:

(vote j [k] is defined) 	⇒
∃T , P. vote j [k] = fs(T , txn j [k]) � gs(P, txn j [k]) ∧
T = {txn j [k′] | k′ < k ∧ vote j [k′] = commit ∧

d[t ′] = commit} \ P ∧
P ⊆ {txn j [k′] | k′ < k ∧ vote j [k′] = commit} ∧
(∀t ∈ T . (DECISION(t, commit) has been sent)) ∧
(∀k′ < k. vote j [k′] = commit ∧ txn j [k′] /∈ T ∪ P

	⇒ (DECISION(t,abort) has been sent)).

From Invariant 2 it follows that

∀ j1, j2 ∈ J . (vote j1 [k′] is defined) ∧
(vote j2 [k′] is defined) 	⇒ vote j1[k′] = vote j2 [k′].
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Hence,

∃ j0 ∈ J .∀k′ ≤ k. vote[k′] = vote j0 [k′].

Then the induction hypothesis implies

∃T , P.

vote[k] = fs(T , txn[k]) � gs(P, txn[k]) ∧
T = {txn[k′] | k′ < k ∧ vote[k′] = commit ∧

d[t ′] = commit} \ P ∧
P ⊆ {txn[k′] | k′ < k ∧ vote[k′] = commit} ∧
(∀t ∈ T . (DECISION(t, commit) has been sent)) ∧
(∀k′ < k. vote[k′] = commit ∧ txn[k′] /∈ T ∪ P

	⇒ (DECISION(t,abort) has been sent))

as required.
Finally, the cases of the transitions at line 62 and 28 triv-

ially follow from the induction hypothesis. ��
We now prove (12)–(14). Take the earliest point in the

execution where we can define ds[t] as per the definition
given earlier. Let b be the ballot used in this definition. Then
by Proposition 1 at this point at the leader of b for some
Ts[t], Ps[t] we have

ds[t] = fs(Ts[t], t) � gs(Ps[t], t) ∧
Ts[t] = {txn[k′] | k′ < k ∧ vote[k′] = commit∧

d[t ′] = commit} \ Ps[t] ∧
Ps[t] ⊆ {txn[k′] | k′ < k ∧ vote[k′] = commit} ∧
(∀t ′ ∈ Ts[t]. (DECISION(t ′, commit) has been sent)) ∧
(∀k′ < k. vote[k′] = commit ∧ txn[k′] /∈ Ts[t] ∪ Ps[t]
	⇒ (DECISION(t ′,abort) has been sent)).

(19)

But then from the first three conjuncts we get

ds[t] = fs(Ts[t], t) � gs(Ps[t], t) ∧
Ts[t] = {t ′ | poss[t ′] < poss[t] ∧ d[t ′] = commit} \ Ps[t] ∧
Ps[t] ⊆ {t ′ | poss[t ′] < poss[t] ∧ ds[t ′] = commit},

which establishes (12)–(14) for the Ts[t], Ps[t] fixed above.
We next prove (15). Consider t, t ′, s such that

decide(t, _) ≺h certify(t ′) ∧
s ∈ shards(t) ∩ shards(t ′).

Let DECISION(b, poss[t], _) be the message send to the
shard s when the decide(t, _) action was generated. Let
b′ be some ballot at which poss[t ′] is defined according
to the above definition. Assume first that b′ < b. Then
by Invariant 3 when the leader of b starts operating, it
has txn[poss[t ′]] = t ′. But then certify(t ′) must have

occurred before decide(t, _). Hence, b ≤ b′. By Invari-
ant 3 when the leader of b′ receives PREPARE(t ′), it has
txn[poss[t]] = t . But then poss[t] < poss[t ′], which
proves (15).

Finally, we prove that <V is acyclic; it is easy to check
that then (16) also holds. Let us denote by <i, <ii and <iii

the relations on V defined by the corresponding items in the
definition of <V , but the latter two relating only pairs with
distinct shards. Consider a path π in <V starting from an
edge of type (ii) or (iii). Due to (15), if (s, t ′) <V (s, t), then
poss[t ′] < poss[t]. Hence, we can assume that any edge on
π of type (ii) or (iii) is between pairs with distinct shards and
thus belongs to <ii or <iii, respectively. Then without loss
of generality we can assume that the path π is of the form
defined by the regular expression ((<ii ∪ <iii);<?

i )
+, where

? denotes reflexive closure. We now prove that if

((s′, t ′), (s, t)) ∈ (<ii ∪ <iii);<?
i .

then: (*) a message DECISION(t ′, d[t ′]) was sent in the
execution, and this had happened before any message
DECISION(t, _) was sent. This implies that π cannot form
a cycle. Then, since <i is acyclic, so is <V .

We first show the property (*) in the case when ((s′, t ′),
(s, t)) ∈ <ii;<?

i . Then for some transaction t ′′ we have
t ′ �rt t ′′ and poss[t ′′] ≤ poss[t]. Take the earliest
point in the execution where we can define poss[t ′′]. Since
poss[t ′′] ≤ poss[t], this point is no later than the earli-
est point at which we can define poss[t]. Then a message
DECISION(t, _) could not have been sent by this point.
Furthermore, certify(t ′′) must have occurred before the
point where we define poss[t ′′]. Since t ′ �rt t ′′, a message
DECISION(t ′, d[t ′]) must have also been sent before. But
then DECISION(t ′, d[t ′]) is sent before DECISION(t, _),
as required.

We now show the property (*) in the case when ((s′, t ′),
(s, t)) ∈ <iii;<?

i . Then for some transaction t ′′ we have

(t ′ ∈ Ts[t ′′] ∨ (poss[t ′] < poss[t ′′] ∧ ds[t ′] = commit

∧ d[t ′] = abort ∧ t ′ /∈ Ps[t ′′]))

and poss[t ′′] ≤ poss[t]. Again, take the earliest point in
the execution where we can define poss[t ′′] and ds[t ′′], and
hence, Ts[t ′′] and Ps[t ′′] (by (19)). Since poss[t ′′] ≤ poss[t],
this point is no later than the earliest point at which we can
define poss[t]. Then a message DECISION(t, _) could not
have been sent by this point. If t ′ ∈ Ts[t ′′], then by (19) a
message DECISION(t ′, commit) has been sent earlier. If

t ′ /∈ Ts[t ′′] ∧ poss[t ′] < poss[t ′′] ∧ ds[t ′] = commit

∧ d[t ′] = abort ∧ t ′ /∈ Ps[t ′′],
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then at the point when we define poss[t ′′] we have
txn[poss[t ′]] = t ′ and vote[poss[t ′]] = commit, so
that by (19) a message DECISION(t ′,abort) has been
sent earlier. Thus, at the point when we define poss[t ′′],
DECISION(t ′, _) message has been sent, and a message
DECISION(t, _) has not been sent, which implies the
required. ��

Lemmas 2 and 3 already imply that the fault-tolerant pro-
tocol in Fig. 5 correctly implements a certification service.
Theorem 2, showing that this protocol simulates multi-shot
2PC, follows from Lemma 3 and the following lemma:
the relationship between histories established by the lemma
implies refinement [14].

Lemma 4 If a history h satisfies TCS-LL2, then there exists an
execution of the multi-shot 2PC protocol in Fig. 1 producing
a history h′ that is a permutation of h preserving its real-time
order.

Proof For each shard s, let us define arrays txns[ ] and
votes[ ] as follows: if poss[t] = k, then txns[k] = t and
votes[k] = ds[t]. Given (10) and (11), this definition is well-
formed. We construct the desired execution of the multi-shot
2PC protocol so that at its end, the arrays txn and vote at
a shard s contain txns and votes , respectively. Let <P be
any total order containing <V , which exists because <V is
acyclic. We construct the execution according to the follow-
ing rules:

– For each vote ds[t] we execute the handler at line 8 for
receiving a PREPARE(t) message at shard s in the order
given by <P . Since <i ⊆ <V ⊆ <P , the position k
assigned to the transaction t by this handler is poss[t].

– Right before executing the handler at line 8 at shard s pro-
cessingPREPARE(t), we execute the handler at line 21 to
forget the decisions on all transactions that are currently
decided at the shard, but are in Ps[t]. Furthermore, for
all transactions t ′ that are prepared at the shard and are
such that

t ′ ∈ Ts[t] ∨ (poss[t ′] < poss[t ′′] ∧ ds[t ′] = commit

∧ d[t ′] = abort ∧ t ′ /∈ Ps[t ′′]),

weexecute the handler at line 24 at all shards indest(t ′) to
resend PREPARE_ACK messages, the handler at line 14
at coord(t) to process them and send DECISION mes-
sages, and the handler at line 18 at shard s to process the
DECISIONmessage. Since <iii ⊆ <V , all such transac-
tions t ′ have already been decided and, hence, the handler
at line 24 can indeed be executed for them. By (12)–(14),
the vote on t computed by the handler at line 8 is equal
to ds[t].

– For each transaction t decided in h, we execute the
handler at line 14 for t and, hence, generate event
decide(t, _), immediately after the last shard processes
a PREPARE(t) message for the first time. By (9), the
decision computed by this handler is equal to d[t].

– For each transaction t such thatds[t] is defined for some s,
we execute the handler at line 6 for t immediately before
a PREPARE(t) is processed for the first time. For each
transaction t such that certify(t) occurs in h, but ds[t]
is not defined for any s, we execute the handler at line 6
for t at the end of the execution. Since <ii ⊆ <V , this
implies that the history h′ of the execution we construct
preserves the real-time order of h.

��
5 Related work

The notion of atomicity was coined by Gray as an infor-
mal requirement that a transaction “either happens or it does
not” [18]. The Atomic Commit Problem (ACP) was later
introduced to formalise atomicity as a variant of a distributed
agreement problem. The existing work on ACP treats it as
a one-shot problem with the votes being provided as the
problem inputs. The classic ACP solution is the Two-Phase
Commit (2PC) protocol [17], which blocks in the event of the
coordinator failure. The non-blocking variant of ACP known
as Non-Blocking Atomic Commit (NBAC) [46] has been
extensively studied in both the distributed computing and
database communities [13,19–21,23,26,41,46]. The Three-
PhaseCommit (3PC) family of protocols [2,3,13,26,46] solve
NBAC by augmenting 2PC with an extra message exchange
round in the failure-free case. Paxos Commit [19] and Guer-
raoui et al. [21] avoid extra message delays by instead
replicating the 2PCparticipants through consensus instances.
While our fault-tolerant protocol builds upon similar ideas
to optimise the number of failure-free message delays, it
nonetheless solves a more general problem (TCS) by requir-
ing the output decisions to be compatible with the given
isolation level.

Recently, Guerraoui and Wang [22] have systematically
studied the failure-free complexity ofNBAC(in terms of both
message delays and number of messages) for various combi-
nations of the correctness properties and failure models. The
complexity of certifying a transaction in the failure-free runs
of our crash fault-tolerant TCS implementation (provided
the coordinator is replaced with all-to-all communication)
matches the tight bounds for themost robust versionofNBAC
considered in [22], which suggests it is optimal. A com-
prehensive study of the TCS complexity in the absence of
failures is the subject of future work.

Our multi-shot 2PC protocol is inspired by how 2PC is
used in a number of systems [8,15,39,40,42,45,47]. Unlike
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prior works, we formalise how 2PC interacts with concur-
rency control in such systems in a way that is parametric in
the isolation level provided and give conditions for its cor-
rectness, i.e., (6)–(8). A number of systems based on deferred
update replication [38] used non-fault-tolerant 2PC for trans-
action commit [39,40,42,47]. Our formalisation of the TCS
problem should allow making them fault-tolerant using pro-
tocols of the kind we presented in Sect. 4.

Multiple researchers have observed that implementing
transaction commit by layering 2PC on top of Paxos is sub-
optimal and proposed possible solutions [11,29,31,45,50].
In comparison to our work, they did not formulate a stand-
alone certification problem, but integrated certification with
the overall transaction processing protocol for a particular
isolation level and corresponding optimisations.

In more detail, Kraska et al. [29] and Zhang et al. [50] pre-
sented sharded transaction processing systems, respectively
calledMDCCandTAPIR, that aim tominimise the latency of
transaction commit in a geo-distributed setting.Theprotocols
used are leaderless: to compute the vote, the coordinator of a
transaction contacts processes in each relevant shard directly;
if there is a disagreement between the votes computed by dif-
ferent processes, additionalmessage exchanges are needed to
resolve it. This makes the worse-case failure-free time com-
plexity of the protocols higher than that of our fault-tolerant
protocol. The protocols were formulated for particular iso-
lation levels (a variant of Read Committed in MDCC and
serializability in TAPIR) and without rigorous proofs of cor-
rectness. Our fault-tolerant commit protocol borrows some
of the key design decisions from the above systems, such
as not replicating the 2PC coordinator. Our contribution is
to provide a simple, generic and provably correct protocol
that can serve as a reference solution for future distributed
transaction commit implementations.

Ding et al. proposed a transaction processing system with
optimistic concurrency control called Centiman [10]. The
flow of transaction certification in Centiman is similar to
our multi-shot 2PC (Sect. 3), with the transaction coordina-
tor gathering votes from processes responsible for validating
transactions in each shard. However, Centiman ensures fault-
tolerance differently from our protocol in Sect. 4, by largely
outsourcing it to an external storage service. We believe that
ourmethod of proving correctness of transaction certification
can be applied to systems like Centiman, by establishing a
simulation relation that maps steps of the protocol to the cor-
responding steps of multi-shot 2PC.

Sciascia et al. proposed Scalable Deferred Update Repli-
cation [45] for implementing serializable transactions in
sharded systems. Like the vanilla protocol in Sect. 4, their
protocol keeps shards consistent using black-box consensus.
It avoids executing consensus to persist a final decisionby just
not taking final decisions into account in vote computations.
This solution, specific to their conflict check for serializabil-

ity, is suboptimal: if a prepared transaction t aborts, it will
still cause conflicting transactions to abort until their read
timestamp goes above the write timestamp of t .

Dragojević et al. presented a FaRM transactional process-
ing system based on RDMA [11]. Like in our fault-tolerant
protocol, in the FaRM atomic commit protocol only shard
leaders compute certification votes. However, recovery in
FaRM is designed differently than in our protocol, relying
on an external reconfiguration engine. Since the conference
publication of this work, the approach we propose has also
been applied to the class of systems similar to FaRM [4].

Mahmoud et al. proposed Replicated Commit [31], which
reduces the latency of transaction commit by layering Paxos
on top of 2PC, instead of the other way round. However,
like the original 2PC, this protocol may block in case of data
centre failures.

In [33], Maiyya et al. proposed the Consensus and Com-
mitment (C&C) framework integrating the consensus and
atomic commitment protocols into a generic template, which
the authors then used to instantiate three transaction commit
protocols for sharded and replicated data. Unlike our TCS
framework, C&C is formulated in terms of the concrete pro-
tocols (Paxos and 2PC), rather than an abstract problem, and
therefore, cannot capture a full variety of possible imple-
mentations. It also assumes that the transaction commits are
requested one at a time, and is not generic in the isolation
level. As a result, the protocols derived from C&C cannot
easily accommodate common-case optimisations, resulting
in suboptimal performance. For example, themost optimised
protocol, G-PAC, requires 6 message delays to commit a
single transaction in a failure-free run, whereas our fault-
tolerant protocol requires only 4. In addition, both C&C and
its derived algorithmswere not formally specified and proven
correct, which resulted in the discovery of several nontrivial
safety issues in them [34,35].

MaaT, an optimistic concurrency control (OCC) scheme
introduced in [32], aims to reduce the number of concur-
rency conflicts in a sharded cloud database by associating
each transaction with a pair of timestamps whose values are
dynamically adjusted based on the versions of the objects
accessed by the transaction. Although at present, MaaT does
not fit our proof methodology, which stipulates a standard
OCC based on read and write sets, its high-level properties
can still be captured through our TCS framework. Also the
current implementation of MaaT has limited fault-tolerance
as the shards are assumed to be non-replicated.

Schiper et al. proposed an alternative approach to imple-
menting deferred update replication in sharded systems [43].
This distributes transactions to shards for certification using
genuine atomic multicast [9], which avoids the need for a
separate fault-tolerant commit protocol. However, atomic
multicast is more expensive than consensus: the best known
implementation requires 4 message delays to deliver a mes-
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sage, in addition to a varying convoy effect among different
transactions [7]. The resulting overall latency of certification
is 5 message delays plus the convoy effect.

An alternative approach to transaction processing avoids
aborts by pre-determining the order of transaction execu-
tion [36,48], thus implementing a form of atomic multi-
cast [9]. The techniques described in this paper can also be
applied to minimise the latency of this primitive [16].

Our fault-tolerant protocol follows the primary/backup
state machine replication approach in imposing the leader
order on transactions certified within each shard. This is
inspired by the design of some total order broadcast pro-
tocols, such as Zab [25] and Viewstamped Replication [37].
Kokocinski et al. [28] have previously explored the idea of
delegating the certification decision to a single leader in the
context of deferred update replication. However, they only
considered a non-sharded setting, and did not provide full
implementation details and a correctness proof. In particu-
lar, it is unclear how correctness is maintained under leader
changes in their protocol.

For conciseness, in this paper we focussed on transaction
processing systems using optimistic concurrency control.
But we believe that our framework can also be generalised to
systems that employpessimistic concurrency control, follow-
ing the analogy between shard-local certification functions
and object-level locks we pointed out in Sect. 3. In particu-
lar, our fault-tolerant protocol could be adjusted so that the
locks protecting objects are solelymanaged by shard leaders,
and acquiring locks during transaction execution ensures that
shard-local certification functions evaluate to commit when
the transaction is submitted for certification.Weplan to report
in detail on extensions of our framework to pessimistic con-
currency control in future papers.

6 Conclusion

In this paper we have made the first step towards building a
theory of distributed transaction commit in modern transac-
tion processing systems,which captures interactions between
atomic commit and concurrency control. We proposed a new
problem of transaction certification service and an abstract
protocol solving it among reliable processes. From this, we
have systematically derived a provably correct optimised
fault-tolerant protocol.
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