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Abstract. Modern large-scale distributed systems often rely on eventually con-
sistent replicated stores, which achieve scalability in exchange for providing weak
semantic guarantees. To compensate for this weakness, researchers have pro-
posed various abstractions for programming on eventual consistency, such as
replicated data types for resolving conflicting updates at different replicas and
weak forms of transactions for maintaining relationships among objects. How-
ever, the subtle semantics of these abstractions makes using them correctly far
from trivial.
To address this challenge, we propose composite replicated data types, which for-
malise a common way of organising applications on top of eventually consistent
stores. Similarly to a class or an abstract data type, a composite data type en-
capsulates objects of replicated data types and operations used to access them,
implemented using transactions. We develop a method for reasoning about pro-
grams with composite data types that reflects their modularity: the method allows
abstracting away the internals of composite data type implementations when rea-
soning about their clients. We express the method as a denotational semantics for
a programming language with composite data types. We demonstrate the effec-
tiveness of our semantics by applying it to verify subtle data type examples and
prove that it is sound and complete with respect to a standard non-compositional
semantics.

1 Introduction

Background. To achieve availability and scalability, many modern networked sys-
tems use replicated stores, which maintain multiple replicas of shared data. Clients can
access the data at any of the replicas, and these replicas communicate changes to each
other using message passing. For example, large-scale Internet services use data replicas
in geographically distinct locations, and applications for mobile devices keep replicas
locally as well as in the cloud to support offline use. Ideally, we would like replicated
stores to provide strong consistency, i.e., to behave as if a single centralised replica
handles all operations. However, achieving this ideal usually requires synchronisation
among replicas, which slows down the store and even makes it unavailable if network
connections between replicas fail [13, 2]. For this reason, modern replicated stores often
provide weaker guarantees, described by the umbrella term of eventual consistency [4].

Eventually consistent stores adopt an architecture where a replica performs an oper-
ation requested by a client locally without any synchronisation with others and imme-
diately returns to the client; the effects of the operation are propagated to other replicas
only eventually. As a result, different replicas may find out about an operation at differ-
ent points in time. This leads to anomalies, one of which is illustrated by the outcome



Fig. 1. Anomalies illustrating the semantics of causal consistency and causally consistent trans-
actions. The outcomes of operations are shown in comments. The variables v and w are local to
clients. The structures shown on the right are explained in §3.2.

(a) Disallowed
R1: friends[a].add(b) R2: v = wall [a].get // {post}

wall [a].add(post) w = friends[a].get // ∅

ωfa.add(b)

ωwa.add(post)

ωwa.get: {post}

ωfa.get: ∅
sovis, arso

(b) Allowed, even when using transactions
R1: wall [a].add(post1 ) R2: wall [b].add(post2 )

v = wall [b].get // ∅ w = wall [a].get // ∅

ωwa.add(post1)

ωwb.get: ∅

ωwb.add(post2)

ωwa.get: ∅
soso

(c) Disallowed
R1: atomic { R2: atomic {

friends[a].add(b) v = friends[a].get // {b}
friends[b].add(a) } w = friends[b].get // ∅ }

vis, ar
ωfa.add(b)

ωfb.add(a)

ωfa.get: {b}

ωfb.get: ∅
soso

in Figure 1(a). The program shown there consists of two clients operating on set ob-
jects friends[a] and wall [a], which represent information about a user a in a social
network application. The first client, connected to replica 1, makes b a friend of a’s
and then posts b’s message on a’s wall. After each of these operations, replica 1 might
send a message with an update to replica 2. If the messages carrying the additions of b
to friends[a] and post to wall [a] arrive at replica 2 out of order, the second client can
see b’s post , but does not know that b has become a’s friend. This outcome cannot be
produced by any interleaving of the operations shown in Figure 1(a) and, hence, is not
strongly consistent.

The consistency model of a replicated store restricts the anomalies that it exhibits.
In this paper, we consider the popular model of causal consistency [17], a variant of
eventual consistency that strikes a reasonable balance between programmability and
efficiency. A causally consistent store disallows the anomaly in Figure 1(a), because it
respects causal dependencies between operations: if the programmer sees b’s post to a’s
wall, she is also guaranteed to see all events that led to this posting, such as the addition
of b to the set of a’s friends. Causal consistency is weaker than strong consistency; in
particular, it allows reading stale data. This is illustrated by the outcome in Figure 1(b),
which cannot be produced by any interleaving of the operations shown. In a causally
consistent store it may be produced because each message about an addition sent by the
replica performing it may be slow to get to the other replica.

Due to such subtle semantics, writing correct applications on top of eventually con-
sistent stores is very difficult. In fact, finding a good programming model for eventual
consistency is considered one of the major research challenges in the systems commu-
nity [4]. We build on two programming abstractions proposed by researchers to address
this challenge, which we now describe.

One difficulty of programming for eventually consistent stores is that their clients
can concurrently issue conflicting operations on the same data item at different replicas.
For example, spouses sharing a shopping cart in an online store can add and concur-



rently remove the same item. To deal with these situations, eventually consistent stores
provide replicated data types [22] that implement objects, such as registers, counters
or sets, with various strategies for resolving conflicting updates to them. The strategies
can be as simple as establishing a total order on all operations using timestamps and
letting the last writer win, but can also be much more subtle. For example, a set data
type, which can be used to implement a shopping cart, can process concurrent oper-
ations trying to add and concurrently remove the same element so that ultimately the
element ends up in the set.

Another programming abstraction that eventually consistent stores are starting to
provide is transactions, which make it easier to maintain relationships among different
objects. In this paper we focus on causally consistent transactions, implemented (with
slight variations) by a number of stores [25, 17, 18, 23, 16, 1, 3]. When a causally con-
sistent transaction performs several updates at a replica, we are guaranteed that these
will be delivered to every other replica together. For example, consider the execution
in Figure 1(c), where at replica 1 two users befriend each other by adding their iden-
tifiers to set objects in the array friends . If we did not use transactions, the outcome
shown would be allowed by causal consistency, as replica 2 might receive the addition
of b to friends[a], but not that of a to friends[b]. This would break the expected invari-
ant that the friendship relation encoded by friends is symmetric. Causally consistent
transactions disallow this anomaly, but nevertheless provide weaker guarantees than
the classical serialisable ACID transactions. The latter guarantee that operations done
within a transaction can be viewed as taking effect instantaneously at all replicas. With
causally consistent transactions, even though each separate replica sees updates done by
a transaction together, different replicas may see them at different times. For example,
the outcome in Figure 1(b) could occur even if we executed the pair of commands at
each replica in a transaction, again because of delays in message delivery.

A typical way of using replicated data types and transactions for writing applications
on top of an eventually consistent store is to keep the application data as a set of objects
of replicated data types, and update them using transactions over these objects [25, 23,
16, 1]. Then replicated data types ensure sensible conflict resolution, and transactions
ensure the maintenance of relationships among objects. However, due to the subtle se-
mantics of these abstractions, reasoning about the behaviour of applications organised
in this way is far from trivial. For example, it is often difficult to trace how the choice
of conflict-resolution policies on separate objects affects the policy for the whole appli-
cation: as we show in §5, a wrong choice can lead to violations of integrity invariants
across objects, resulting in undesirable behaviour.

Contributions. To address this challenge, we propose a new programming concept
of a composite replicated data type that formalises the above way of organising appli-
cations using eventually consistent stores. Similarly to a class or an abstract data type, a
composite replicated data type encapsulates constituent objects of replicated data types
and composite operations used to access them, each implemented using a transaction.
For example, a composite data type representing the friendship relation in a social net-
work may consist of a number of set objects storing the friends of each user, with
transactions used to keep the relation symmetric. Composite data types can also capture



the modular structure of applications, since we can construct complex data types from
simpler ones in a nested fashion.

We further propose a method for reasoning about programs with composite data
types that reflects their modularity: the method allows one to abstract from the internals
of composite data type implementations when reasoning about the clients of these data
types. Technically, we express our reasoning method as a denotational semantics for a
programming language that allows defining composite data types (§4). As any denota-
tional semantics, ours is compositional and is thus able to give a denotation to every
composite data type separately. This denotation abstracts from the internal data type
structure using what we term granularity abstraction: it does not record fine-grained
events describing operations on the constituent objects that are performed by compos-
ite operations, but represents every invocation of a composite operation by a single
coarse-grained event. Thereby, the denotation allows us to pretend that the compos-
ite data type represents a single monolithic object, no different from an object of a
primitive data type implemented natively by the store. The denotation then describes
the data type behaviour using a mechanism recently proposed for specifying primitive
replicated data types [10]. The granularity abstraction achieved by this coarse-grained
denotational semantics is similar (but not identical, as we discuss in §7) to atomicity
abstraction, which has been extensively investigated in the context of shared-memory
concurrency [12, 24].

Our coarse-grained semantics enables modular reasoning about programs with com-
posite replicated data types. Namely, it allows us to prove a property of a program by: (i)
computing the denotations of the composite data types used in it; and (ii) proving that
the program satisfies the property assuming that it uses primitive replicated data types
with the specifications equal to the denotations of the composite ones. We thus never
have to reason about composite data type implementations and their clients together.

Since we use an existing specification mechanism [10] to represent a composite
data type denotation, our technical contribution lies in identifying which specification
to pick. We show that the choice we make is correct by proving that our coarse-grained
semantics is sound with respect to a fine-grained semantics of the programming lan-
guage (§6), which records the internal execution of composite operations and follows
the standard way of defining language semantics on weak consistency models [10, 6].
We also establish that the coarse-grained semantics is complete with respect to the fine-
grained one: we do not lose precision by reasoning with denotations of composite data
types instead of their implementations. The soundness and completeness results also
imply that our coarse-grained denotational semantics is adequate, i.e., can be used for
proving the observational equivalence of two composite data type implementations.

We demonstrate the usefulness of the coarse-grained semantics by applying the
composite data type denotation it defines to specify and verify small but subtle data
types, such as a social graph (§5). In particular, we show how our semantics lets one
understand the consequences of different design decisions in the implementation of a
composite data type on its behaviour.

Technical challenges. Coming up with a composite data type denotation that would
be sound and complete with respect to the standard fine-grained semantics is far from
straightforward. The reason is that the semantics of causally consistent transactions is



inherently non-compositional, as is common for weak consistency models. It is de-
fined by so-called consistency axioms—global constraints on certain structures over
events and relations that represent all events occurring in a store execution [11, 10, 9]
(§3). Then proving the soundness of our coarse-grained semantics requires us to show
that an execution in the fine-grained semantics can be transformed by collapsing fine-
grained events inside each composite operation into a single coarse-grained event while
preserving the validity of the consistency axioms. This is delicate: e.g., merging two
vertices in a DAG can create a cycle. Our main contribution is to craft the denotation
of a composite data type so that such problems do not arise. The subtle semantics of
causally consistent transactions also makes the proofs of soundness and completeness
of the resulting denotational semantics highly nontrivial.

2 Programming language and composite replicated data types

Store data model. We consider a replicated store organised as a collection of prim-
itive objects. Clients interact with the store by invoking operations on objects from
a set Op, ranged over by o. Every object in the store belongs to one of the primitive
replicated data types B ∈ PrimType, implemented by the store natively. The signature
sig(B) ⊆ Op determines the set of operations allowed on objects of the type B. As
we explain in §3, the data type also determines the semantics of the operations and,
in particular, the conflict-resolution policies implemented by them. For uniformity of
definitions, we assume that each operation takes a single parameter and returns a single
value from a set of values Val, whose elements are ranged over by a, b, c, d. We assume
that Val includes at least Booleans and integers, their sets and tuples thereof. We use a
special value⊥ ∈ Val to model operations that take no parameter or return no value. For
example, primitive data types can include sets with operations add, remove, contains
and get (the latter returning the set contents).

Composite replicated data types. We develop our results for a language of client
programs interacting with the replicated store, whose syntax we show in Figure 2. We
consider only programs well-typed according to the rules also shown in the figure.
The interface to the store provided by the language is typical of existing implemen-
tations [25, 1]. It allows programs to declare objects of primitive replicated data types,
residing in the store, invoke operations on them, and combine these into transactions.
Crucially, the language also allows declaring composite replicated data types from the
given primitive ones and composite objects of these types. These composite objects
do not actually reside in the store, but serve as client-side anchors for compositions of
primitive objects. A declarationD of a composite data type includes several constituent
objects of specified types Tj , which can be primitive types, composite data type decla-
rations or data-type variables α ∈ DVar, bound to either. The constituent objects are
bound to distinct object variables xj , j = 1..m from a set OVar. The declaration D
also defines a set of composite operations O (the type’s signature), with each o ∈ O
implemented by a command Co executed as a transaction accessing the objects xj . We
emphasise the use of transactions by wrapping Co into an atomic block. Since a store
implementation executes a transaction at a replica without synchronising with other
replicas, transactions never abort.



Fig. 2. Programming language and sample typing rules.

Primitive data types B ∈ PrimType Data-type variables α, β ∈ DVar

Ordinary variables v, w ∈ Var = {vin, vout, . . .} Object variables x, y ∈ OVar

Data-type contexts Γ ::= α1 : O1, . . . , αk : Ok Ordinary contexts Σ ::= v1, . . . , vk

Object contexts ∆ ::= x1 : O1, . . . , xk : Ok

D ::= let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O T ::= B | D | α
G ::= v | G+G | G ∧G | G ∨G | ¬G | . . .
C ::= var v. C | v=x.o(G) | v=G | C;C | if G then C else C | while G do C | atomic {C}
P ::= C1 ‖ . . . ‖ Cn | let α = T in P | let x = new T in P

∆ | Σ ` C FV(G) ∪ {v} ⊆ (Σ − {vin, vout})
∆,x : {o} ∪O | Σ ` v = x.o(G)

∆ | Σ, v ` C
∆ | Σ ` var v. C

∆ | Σ ` C
∆ | Σ ` atomic {C}

Γ ` T : O

Γ ` B : sig(B)

Γ ` Tj : Oj for all j = 1..m

x1 : O1, . . . , xm : Om | vin, vout ` Co for all o ∈ O
Γ ` let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O : O

Γ | ∆ ` P Γ ` T : O Γ | ∆,x : O ` P
Γ | ∆ ` let x = new T in P

∆ | ∅ ` Cj for all j = 1..n

Γ | ∆ ` C1 ‖ . . . ‖ Cn

The syntax of commands includes the form var v. C for declaring ordinary vari-
ables v, w ∈ Var, to be used by C, which store values from Val and are initialised to
⊥. Commands Co in composite data type declarations D can additionally access two
distinguished ordinary variables vin and vout (never declared explicitly), used to pass
parameters and return values of operations: the parameter gets assigned to vin at the
beginning of the execution of Co and the return value is read from vout at the end. The
command v = x.o(G) executes the operation o on the object bound to the variable x
with parameter G and assigns the result to v.1

Our type system enforces that commands only invoke operations on objects consis-
tent with the signatures of their types and that all variables be used within the correct
scope; in particular, constituent objects of composite types can only be accessed by their
composite operations. For simplicity, we do not adopt a similar type discipline for val-
ues and treat all expressions as untyped. Finally, for convenience of future definitions,
the typing rule for v = x.o(G) requires that vin and vout do not appear in v or G.

Example: social graph. Figure 3 gives our running example of a composite data
type soc, which maintains friendship relationships and requests between accounts in
a toy social network application. To concentrate on core issues of composite data type
correctness, we consider a language that does not allow creating unboundedly many
objects; hence, we assume a fixed number of accounts N . Using syntactic sugar, the

1 Since the object bound to x may itself be composite, this may result in atomic blocks being
nested. Their semantics is the same as the one obtained by discarding all blocks except the
top-level one. In particular, the atomic blocks that we include into the syntax of commands
have no effect inside operations of composite data types.



Fig. 3. A social graph data type soc.

Dsoc = let { friends = new RWset[N ]; requesters = new RWset[N ] } in {
request(from, to) = atomic {

if (friends[to].contains(from) ∨ requesters[to].contains(from)) then vout = false

else { requesters[to].add(from); vout = true } };
accept(from, to) = atomic {

if (¬requesters[to].contains(from)) then vout = false

else { requesters[to].remove(from); requesters[from].remove(to);

friends[to].add(from); friends[from].add(to); vout = true } };
reject(from, to) = atomic {

if (¬requesters[to].contains(from)) then vout = false

else { requesters[to].remove(from); requesters[from].remove(to); vout = true } };
breakup(from, to) = atomic {

if (¬friends[to].contains(from)) then vout = false

else { friends[to].remove(from); friends[from].remove(to); vout = true } };
get(id) = atomic {vout = (friends[id ].get, requesters[id ].get) } }

constituent objects are grouped into arrays friends and requesters and have the type
RWset of sets with a particular conflict-resolution policy (defined in §3.1). We use these
sets to store account identifiers: friends[a] gives the set of a’s friends, and requesters[a]
the set of accounts with pending friendship requests to a. The implementation maintains
the expected integrity invariants that the friendship relation is symmetric and the friend
and requester sets of any account are disjoint:

∀a, b. friends[a].contains(b)⇔ friends[b].contains(a); (1)
∀a. friends[a].get ∩ requesters[a].get = ∅. (2)

The composite operations allow issuing a friendship request, accepting or rejecting
it, breaking up and getting the information about a given account. For readability, we
use some further syntactic sugar in the operations. Thus, we replace vin with more de-
scriptive names, recorded after the operation name and, in the case when the parameter
is meant to be a tuple, introduce separate names for its components. Thus, from and to
desugar to fst(vin) and snd(vin). We also allow invoking operations on objects inside
expressions and omit unimportant parameters to operations.

The code of the composite operations is mostly as expected. For example, request
adds the user sending the request to the requester set of the user being asked, after
checking, e.g., that the former is not already a friend of the latter. However, this sim-
plicity is deceptive: when reasoning about the behaviour of the data type, we need to
consider the possibility of operations being issued concurrently at different replicas.
For example, what happens if two users concurrently issue friendship requests to each
other? What if two users managing the same institutional account take conflicting de-
cisions, such as concurrently accepting and rejecting a request? As we argue in §5, it
is nontrivial to implement the data type so that the behaviour in the above situations be



acceptable. Using the results in this paper, we can specify the desired social graph be-
haviour and prove that the composite data type in Figure 3 satisfies such a specification.
Our specification abstracts from the internal structure of the data type, thereby allowing
us to view it as no different from the primitive set data types it is constructed from. This
facilitates reasoning about programs using the data type, which we describe next.

Programs. A program P consists of a series of data type and object variable decla-
rations followed by a client. The latter consists of several commands C1, . . . , Cn, each
representing a user session accessing the store concurrently with others; a session is
thus an analogue of a thread in shared-memory languages. An implementation would
connect each session to one of the store replicas (as in examples in Figure 1), but this is
transparent on the language level. Data type variables declared in P are used to specify
the types of objects declared afterwards, and object variables are used inside sessions
Cj , as per the typing rules. Sessions can thus invoke operations on a number of objects
of primitive or composite types. By default, every such operation is executed within a
dedicated transaction. However, like in composite data type implementations, we allow
sessions to group multiple operations into transactions using atomic blocks included
into the syntax of commands. We consider data types T and programs P up to the
standard alpha-equivalence, adjusted so that vin and vout are not renamed.

Technical restriction. To simplify definitions, we assume that commands inside
atomic blocks always terminate and, thus, so do all operations of composite data types.
We formalise this restriction when presenting the semantics of the language in §4. It can
be lifted at the expense of complicating the presentation. Note that the sessions Cj do
not have to terminate, thereby allowing us to model the reactive nature of store clients.

3 Replicated store semantics

A replicated store holds objects of primitive replicated data types and implements op-
erations on these objects. The language of §2 allows us to write programs that interact
with the store by invoking the operations while grouping primitive objects into com-
posite ones to achieve modularity. The main contribution of this paper is a denotational
semantics of the language that allows the reasoning about a program to reflect this
modularity. But before presenting it (in §4), we need to define the semantics of the
store itself: which values can operations on primitive objects return in an execution of
the store? This is determined by the consistency model of causally consistent transac-
tions [25, 17, 18, 23, 16, 11, 3], which we informally described in §1. To formalise it, we
use a variant of the framework proposed by Burckhardt et al. [10, 11, 9], which defines
the store semantics declaratively, without referring to implementation-level concepts
such as replicas or messages. The framework models store executions using structures
on events and relations in the style of weak memory models and allows us to define
the semantics of the store in two stages. We first specify the semantics of single oper-
ations on primitive objects using replicated data type specifications (§3.1), which are
certain functions on events and relations. We then specify allowed executions of the
store, including multiple operations on different objects, by constraining the events and
relations using consistency axioms (§3.2).



A correspondence between the declarative store specification and operational mod-
els closer to implementations was established elsewhere [10, 11, 9]. Although we do
not present an operational model in this paper, we often explain various features of the
store specification framework by referring to the implementation-level concepts they
are meant to model.

The granularity abstraction of the denotational semantics we define in §4 allows
us to pretend that a composite data type is a primitive one. Hence, when defining the
semantics, we reuse the replicated data type specifications introduced here to specify
the behaviour of a composite data type, such as the one in Figure 3, while abstracting
from the internals of its implementation.

3.1 Semantics of primitive replicated data types

In a strongly consistent system, there is a total order on all operations on an object, and
each operation takes into account the effects of all operations preceding it in this order.
In an eventually consistent system, the result of an operation o is determined in a more
complex way:

1. The result of o depends on the set of operations information about which has
been delivered to the replica performing o—those visible to o. For example, in
Figure 1(a) the operation friends[a].get returns ∅ because the message about
friends[a].add(b) has not yet been delivered to the replica performing the get.

2. The result of o may also depend on additional information used to order some
events. For example, we may decide to order concurrent updates to an object using
timestamps, as is the case when we use the last-writer-wins conflicts resolution
policy mentioned in §1.

Hence, we specify the semantics of a replicated data type by a function F that computes
the return value of an operation o given its operation context, which includes all we need
to know about the store execution to determine the value: the set of events visible to o,
together with a pair of relations on them that specify the above relationships.

Assume a countably-infinite set Event of events, representing operations issued to
the store. A relation is a strict partial order if it is transitive and irreflexive. A total
order is a strict partial order such that for every two distinct elements e and f , the order
relates e to f or f to e. We call a pair p ∈ Op× Val = AOp of an operation o together
with its parameter a an applied operation, written as o(a).

DEFINITION 1 An operation context is a tuple N = (p,E, aop, vis, ar), where p ∈
AOp, E is a finite subset of Event, aop : E → AOp, and vis (visibility) and ar (arbitra-
tion) are strict partial orders on E such that vis ⊆ ar.

We call the tuple M = (E, aop, vis, ar) a partial operation context.

We write Ctxt for the set of all operation contexts and denote components of N and
similar structures as in N.E. For a relation R we write (e, f) ∈ R and e R−→ f inter-
changeably. Informally, the orders vis and ar record the relationships between events in
E motivated by the above points 1 and 2, respectively. In implementation terms, the re-
quirement vis ⊆ ar guarantees that timestamps are consistent with message delivery: if



e is visible to f , then e has a lower timestamp than f . We define where vis and ar come
from formally in §3.2; for now we just assume that they are given and define replicated
data type specifications as certain functions of operation contexts including them.

DEFINITION 2 A replicated data type specification is a partial function F : Ctxt ⇀
Val that returns the same value on isomorphic operation contexts and preserves it on
arbitration extensions. Formally, let us order operation contexts by the pre-order v:

(p,E, aop, vis, ar) v (p′, E′, aop′, vis′, ar′) ⇐⇒
p = p′ ∧ ∃π ∈ E →bijective E

′. π(aop) = aop′ ∧ π(vis) = vis′ ∧ π(ar) ⊆ ar′,

where we use the expected lifting of π to relations. Then we require

∀N,N ′ ∈ Ctxt. N v N ′ ∧N ∈ dom(F ) =⇒ N ′ ∈ dom(F ) ∧ F (N) = F (N ′). (3)

Let Spec be the set of data type specifications F and assume a fixed FB for every prim-
itive type B ∈ PrimType provided by the store. The requirement (3) states that, once
arbitration gives all the information that is needed in addition to visibility to determine
the outcome of an operation, arbitrating more events does not change this outcome.

Replicated sets. We illustrate the above definitions by specifying replicated set data
types with different conflict-resolution policies. The semantics of a replicated set is
straightforward when it is add-only, i.e., its signature is {add, contains, get}. An
element a is in the set if there is an add(a) event in the context, or informally, if the
replica performing contains(a) has received a message about the addition of a:

FAOset(contains(a), E, aop, vis, ar) = (∃e ∈ E. aop(e) = add(a)).

We define the result to be⊥ for add operations and define the result of get as expected.2

Things become more subtle if we allow removing elements, since we need to define
the outcome of concurrent operations adding and removing the same element, as in
the context N = (contains(42), {e, f}, aop, vis, ar), where aop(e) = add(42) and
aop(f) = remove(42). There are several possible ways of resolving this conflict [7]: in
add-wins sets (AWset) adds always win against concurrent removes (so that the element
ends up in the set), remove-wins sets (RWset) act vice versa, and last-writer-wins sets
(LWWset) apply operations in the order of their timestamps. We specify the result of
contains in these cases using the vis and ar orders in the operation context:

FAWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ ¬(e
vis−→ f));

FRWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
vis−→ e);

FLWWset(contains(a), E, aop, vis, ar) =

∃e ∈ E. aop(e) = add(a) ∧ (∀f ∈ E. aop(f) = remove(a) =⇒ f
ar−→ e),

if ar is total on {e ∈ E | aop(e) ∈ {add( ), remove( )}};
FLWWset(contains(a), E, aop, vis, ar) = undefined, otherwise.

2 FAOset is undefined on contexts with operations other than those from the signature. The type
system of our language ensures that such contexts do not arise in its semantics.



Thus, the add-wins semantics is formalised by mandating that remove operations cancel
only the add operations that are visible to them; the remove-wins semantics additionally
mandates that they cancel concurrent add operations, but not those that follow them
in visibility. On the above context N , the operation contains(42) returns true iff:
¬(e

vis−→ f) for AWset; f vis−→ e for RWset; and f ar−→ e for LWWset. As we show in §5,
using a remove-wins set for requesters in Figure 3 is crucial for preserving the integrity
invariant (2); friends could well be add-wins, which would lead to different, but also
sensible, data type behaviour.

3.2 Whole-store semantics

We define the semantics of a causally consistent store by the set of its histories, which
are certain structures on events recording all client-store interactions that can be pro-
duced during a run of the store; these include operations invoked on all objects and their
return values. The store has no control over the operations occurring in histories, since
these are chosen by the client; hence, the semantics only constrains return values. Repli-
cated data type specifications define return values of operations in terms of visibility and
arbitration, but where do these orders come from? As we explained in §3.1, intuitively,
they are determined by the way messages are delivered and timestamps assigned in a
run of a store implementation. Since this highly non-deterministic, in general, visibility
and arbitration orders are arbitrary, but not entirely. A causally consistent store provides
to its clients a guarantee that these orders in the contexts of different operations in the
same run are related in certain ways, and this guarantee disallows anomalies such as the
one in Figure 1(a).

We formalise the guarantee using the notion of an execution, which extends a history
with visibility and arbitration orders on its events. A history is allowed by the store
semantics if there is a way to extend it to an execution such that: (i) the return values of
operations in the execution are obtained by applying replicated data type specifications
to contexts extracted from it; and (ii) the execution satisfies certain consistency axioms,
which constrain visibility and arbitration and, therefore, operation contexts.

Histories, executions and the satisfaction of data type specifications. We identify
objects (primitive or composite) by elements of the set Obj, ranged over by ω. A strict
partial order R is prefix-finite if {f | (f, e) ∈ R} is finite for every e.

DEFINITION 3 A history is a tuple H = (E, label, so,∼), where:

– E ⊆ Event.
– label : E → Obj × AOp × Val describes the events in E: if label(e) = (ω, p, a),

then the event e describes the applied operation p on the object ω returning the
value a.

– so ⊆ E × E is a session order, ordering events in the same session according to
the order in which they were submitted to the store. We require that so be prefix-
finite and be the union of finitely many total orders defined on disjoint subsets of E,
which correspond to events in different sessions.

– ∼ ⊆ E × E is an equivalence relation grouping events in the same transaction.
Since all transactions terminate (§2), we require that every equivalence class of ∼



be a finite set. Since every transaction is performed by a single session, we require
that any two distinct events by the same transaction be related by so one way or
another:

∀e, f. e ∼ f ∧ e 6= f =⇒ e
so−→ f ∨ f so−→ e.

We also require that a transaction be contiguous in so:

∀e, f, g. e so−→ f
so−→ g ∧ e ∼ g =⇒ e ∼ f ∼ g.

An execution is a triple X = (H, vis, ar) of a history H and prefix-finite strict
partial orders vis and ar on H.E, such that vis ∪ ar ⊆ {(e, f) | H.obj(e) = H.obj(f)}
and vis ⊆ ar.

We denote the sets of all histories and executions by Hist and Exec. We write H.obj(e),
H.aop(e) and H.rval(e) for the components of H.label(e) and shorten, e.g., X.H.so
to X.so. Note that the set H.E can be infinite, which models infinite runs. Figure 1(a)
graphically represents an execution corresponding to the causality violation anomaly
explained in §1. The relation ∼ is an identity in this case, and the objects in this and
other executions in Figure 1 are add-only sets (AOset, §3.1).

Given an execution X , we extract the operation context of an event e ∈ X.E by
selecting all events visible to it according to X.vis:

ctxt(X, e) = (X.aop(e), E, (X.aop)|E , (X.vis)|E , (X.ar)|E), (4)

whereE = (X.vis)−1(e) and ·|E is the restriction to events inE. Then, given a function
F : Obj ⇀ Spec that associates data type specifications with some objects, we say that
an execution X satisfies F if the return value of every event in X is computed on its
context according to the specification that F gives for the accessed object.

DEFINITION 4 An execution X satisfies F, written X |= F, if

∀e ∈ X.E. (X.obj(e) ∈ dom(F) =⇒ X.rval(e) = F(X.obj(e))(ctxt(X, e))).

Since a context does not include return values, the above equation determines them
uniquely for the events e satisfying the premise. For example, in the execution in Fig-
ure 1(a) the context of the get from ωfa is empty. Hence, to satisfy F = (λω. FAOset),
the get returns ∅. If we had a vis edge from the add(b) to the get, then the latter would
have to return {b}.
Consistency axioms. We now formulate additional constraints that executions have
to satisfy. They restrict the anomalies allowed by the consistency model we consider
and, in particular, rule out the execution in Figure 1(a).

To define the semantics of transactions, we use the following operation. For a rela-
tion R on a set of events E and an equivalence relation ∼ on E (meant to group events
in the same transaction), we define the factoring R/∼ of R over ∼ as follows:

R/∼ = R ∪ ((∼;R;∼)− (∼)), (5)

where ; composes relations. Thus, R/∼ includes all edges from R and those obtained
from such edges by relating any actions coming from the same transactions as their
endpoints, excluding the case when the endpoints themselves are from the same trans-
action. We also let sameobj(X)(e, f) ⇐⇒ X.obj(e) = X.obj(f).



DEFINITION 5 An execution X = ((E, label, so,∼), vis, ar) is causally consistent if it
satisfies the following consistency axioms:

CAUSALVIS. ((so ∪ vis)/∼)+ ∩ sameobj(X) ⊆ vis;
CAUSALAR. (so ∪ ar)/∼ is acyclic;
EVENTUAL. ∀e ∈ E.

∣∣{f ∈ E | sameobj(X)(e, f) ∧ ¬(e
vis−→ f)}

∣∣ <∞.
We write X |=CC F if X |= F and X is causally consistent.

The axioms follow the informal description of the consistency model we gave in §1.
We explain them below; however, their details are not crucial for understanding the rest
of the paper. Before explaining the axioms, we note that Definitions 4 and 5 allow us to
define the semantics of a store with object specifications given by F : Obj ⇀ Spec as
the set of histories that can be extended to a causally consistent execution satisfying F:

HistCC(F) = {H | ∃vis, ar. (H, vis, ar) |=CC F}. (6)

To prove that a particular store implementation satisfies this specification, for every
history H the implementation produces we have to come up with vis and ar that satisfy
the constraint in (6); this is usually done by constructing them from message delivery
and timestamps in the run of the implementation producingH . Here we rely on previous
correctness proofs of store implementations [10, 11, 9] and use the above declarative
specification of the store semantics without fixing the store implementation.

Causal consistency. The axioms CAUSALVIS and CAUSALAR in Definition 5 en-
sure that visibility and arbitration respect causality between operations. CAUSALVIS
guarantees that an event sees all events on the same object that causally affect it, i.e.,
those preceding it in a chain of session order and visibility edges (ignore the use of
factoring over ∼ for now). Thus, CAUSALVIS disallows the execution in Figure 1(a).
CAUSALAR similarly requires that arbitration be consistent with session order on all
objects (recall that X.vis ⊆ X.ar). EVENTUAL formalises the liveness property that
every replica eventually sees every update: it ensures that an event cannot be invisible
to infinitely many other events on the same object.

Transactions. The use of factoring over the ∼ relation in CAUSALVIS formalises
the guarantee provided by causally consistent transactions that we noted in §1: updates
done by a transaction get delivered to replicas together. According to CAUSALVIS, a
causal dependency established between two actions of different transactions results in
a dependency also being established between any other actions in the two transactions.
Thus, CAUSALVIS disallows the execution in Figure 1(c), where the dashed rectangles
group events into transactions. The axioms allow the execution in Figure 1(b) even
when the operations by the same session are done within a transaction—an outcome
that would not be allowed with serialisable transactions.

4 Coarse-grained language semantics

We now describe our main contribution—a coarse-grained denotational semantics of
programs in the language of §2 that enables modular reasoning. We establish a corre-
spondence between this semantics and the reference fine-grained semantics in §6.



Fig. 4. Key clauses of the session-local semantics of commands. Here FHist and IHist are respec-
tively sets of histories with finite and infinite event sets; σ[v 7→ a] denotes the function that has
the same value as σ everywhere except v, where it has the value a; and [ ] is a nowhere-defined
function. We assume a standard semantics of expressions JGK : LState(Σ)→ Val.

〈∆ | Σ ` C〉 : (dom(∆)→inj Obj)× LState(Σ)→ P((FHist× LState(Σ)) ∪ IHist)

〈v = G〉(obj , σ) = {(Hemp, σ[v 7→ JGKσ]) | Hemp = (∅, [ ], ∅, ∅)}
〈v = x.o(G)〉(obj , σ) = {(He, σ[v 7→ a]) | e ∈ Event ∧ a ∈ Val

∧He = ({e}, [e 7→ (obj (x), o(JGKσ), a)], ∅, {(e, e)})}
〈atomic {C}〉(obj , σ) = {((E, label, so, E × E), σ′) | ((E, label, so,∼), σ′) ∈ 〈C〉(obj , σ)}

4.1 Session-local semantics of commands

The semantics of the replicated store defined by (6) in §3 describes the store behaviour
under any client and thus produces histories with all possible sets of client operations.
However, a particular command C in the language of §2 generates only histories with
certain sequences of operations. Thus, our first step is to define a session-local seman-
tics that, for each (sequential) command C, gives the set of histories that C can possibly
generate. This semantics takes into account only the structure of the command C and
operations on local variables; the return values of operations executed on objects in the
store are chosen arbitrarily. Later (§4.3), we intersect the set of histories produced by
the session-local semantics with (6) to take the store semantics into account.

To track the values of local variablesΣ in the session-local semantics of a command
∆ | Σ ` C (Figure 2), we use local states σ ∈ LState(Σ) = Σ → Val. The semantics
interprets commands by the function 〈∆ | Σ ` C〉 in Figure 4. Its first parameter obj
determines the identities of objects bound to object variables in∆. Given an initial local
state σ as the other parameter, 〈∆ | Σ ` C〉 returns the set of histories produced by
C when run from σ, together with final local states when applicable. The semantics is
mostly standard and therefore we give only key clauses; see §A for the remaining ones.
Recall that, to simplify our formalism, we require every transaction to terminate (§2).
To formalise this assumption, the clause for atomic filters out infinite histories.

4.2 Composite data type semantics

The distinguishing feature of our coarse-grained semantics is its support for granularity
abstraction: the denotation of a composite data type abstracts from its internal structure.
Technically, this means that composite data types are interpreted in terms of replicated
data type specifications, which we originally used for describing the meaning of prim-
itive data types (§3.1). Thus, type variable environments Γ and data types Γ ` T : O
(Figure 2) are interpreted over the following domains:

JΓ K = dom(Γ )→ Spec; JΓ ` T : OK = JΓ K→ Spec.

We use type to range over elements of JΓ K. Two cases in the definition of JΓ ` T : OK
are simple. We interpret a primitive data type B ∈ PrimType as the corresponding
data type specification FB , which is provided as part of the store specification (§3.1):



Fig. 5. (a) A context N of coarse-grained events for the social graph data type soc in Figure 3,
with an event e0 added to represent the operationN.p. Solid edges denote both visibility and arbi-
tration (equal, since the data type does not use arbitration). The dashed edges show the additional
edges in vis′ and ar′ introduced in Definition 7. (b) An execution X belonging to the concreti-
sation of N . The objects ωfa, ωfb, ωra, ωrb correspond to the variables friends[a], friends[b],
requesters[a], requesters[b] of type RWset. Solid edges denote both visibility and arbitration.
We have omitted the session order inside transactions, the visibility and arbitration edges it in-
duces and the transitive consequences of the edges shown. Dashed rectangles group events into
transactions. The function β maps events in X to the horizontally aligned events in N .

request(b,a)

accept(b,a) reject(b,a)

e0: get(a): ({b},∅)

ωfa.contains(b): f
ωra.contains(b): f
ωra.add(b)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)
ωfa.add(b)
ωfb.add(a)

ωra.contains(b): t
ωra.remove(b)
ωrb.remove(a)

ωfa.get: {b}
ωra.get: ∅

c = ({b},∅)

(a) (b)

JBKtype = FB . We define the denotation of a type variable α by looking it up in the
environment type: JαKtype = type(α).

The remaining and most interesting case is the interpretation JΓ ` D : OK of a
composite data type

D = let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O. (7)

For type ∈ JΓ K, the data type specification F = JΓ ` D : OKtype returns a value given
a context consisting of coarse-grained events that represent composite operations on
an object of type D (e.g., the one in Figure 5(a)). This achieves granularity abstraction,
because, once a denotation of this form is computed, it can be used to determine the
return value of a composite operation without knowing the operations on the constituent
objects xj that were done by the implementations Co of the composite operations in its
context (e.g., the ones in Figure 3). We call events describing the operations on xj
fine-grained.

Informally, our approach to defining the denotation F ofD is to determine the value
that F has to return on a context N of coarse-grained events by “running” the imple-
mentations Co of the composite operations invoked in N . This produces an execution
X over fine-grained events that describes how Co acts on the constituent objects xj—a
concretisation of N . The execution X has to be causally consistent and satisfy the data
type specifications for the objects xj . We then define F (N) to be the return value that
the implementation of the composite operation N.p gives in X . However, concretis-
ing N into X is easier said than done: while the history part of X is determined by
the session-local semantics of the implementations Co (§4.1), determining the visibility
and arbitration orders so that the resulting denotation be sound (in the sense described
in §6) is nontrivial and represents our main insight.



To define the denotation of (7) formally, we first gather all histories that an imple-
mentation Co of a composite operation can produce in the session-local semantics 〈·〉
into a summary: given an applied composite operation and a return value, a summary
defines the set of histories that its implementation produces when returning the value.

DEFINITION 6 A summary ρ is a partial map ρ : AOp × Val ⇀ P(FHist) such that
for every (p, a) ∈ dom(ρ), ρ(p, a) is closed under the renaming of events, and for every
H ∈ ρ(p, a), H.so is a total order on H.E and H.∼ = H.E ×H.E.

For a family of commands {∆ | vin, vout ` Co}o∈O and obj : dom(∆) →inj Obj,
we define the corresponding summary J{Co}o∈OK(obj ) : AOp × Val ⇀ P(FHist) as
follows: for o′ ∈ O and a, b ∈ Val, we let

J{Co}o∈OK(obj )(o′(a), b) =

{H | (H, [vin 7→ , vout 7→ b]) ∈ 〈atomic {Co′}〉(obj , [vin 7→ a, vout 7→ ⊥])}.

For example, the method bodies Co in Figure 3 and an appropriate obj define the sum-
mary ρsoc = J{Co}o∈{request,accept,...}K(obj ). This maps the get operation in Fig-
ure 5(a) to a set of histories including the one shown to the right of it in Figure 5(b).

We now define the executions X that may result from “running” the implementa-
tions of composite operations in a coarse-grained context N given by a summary ρ.
The definition below pairs these executions X with the value c returned in them by the
implementation of N.p, since this is what we are ultimately interested in. We first state
the formal definition, and then explain it in detail. We write id for the identity relation.

DEFINITION 7 A pair (X, c) ∈ Exec × Val is a concretisation of a context N with
respect to a summary ρ : AOp × Val ⇀ P(FHist) if for some event e0 6∈ N.E and
function β : X.E → N.E ] {e0} we have

(∀f ∈ (N.E). (X.H)|β−1(f) ∈ ρ(N.aop(f), )) ∧ ((X.H)|β−1(e0) ∈ ρ(N.p, c)); (8)

β(X.so) ⊆ id; (9)
β(X.vis)− id ⊆ vis′; (10)

β−1(vis′) ∩ sameobj(X) ⊆ X.vis; (11)
β(X.ar)− id ⊆ ar′, (12)

where vis′ = N.vis ∪ {(f, e0) | f ∈ N.E} and ar′ = N.ar ∪ {(f, e0) | f ∈ N.E}.
We write γ(N, ρ) for the set of all concretisations of N with respect to ρ.

For example, the pair of the execution and the value in Figure 5(b) belongs to
γ(N, ρsoc) for N in Figure 5(a). When X concretises N with respect to ρ, the his-
tory X.H is a result of expanding every composite operation in N into a history of its
implementation according to ρ. The function β maps every event in X.E to the event
from N it came from, with an event e0 added to N.E to represent the operation N.p;
this is formalised by (8). The condition (9) further requires that the implementation
of every composite operation be executed in a dedicated session. As it happens, it is
enough to consider concretisations of this form to define the denotation.



The conditions (10)–(12) represent the main insight of our definition of the denota-
tion: they tell us how to select the visibility and arbitration orders in X given those in
N . They are best understood by appealing to the intuition about how an implementa-
tion of the store operates. Recall that, from this perspective, visibility captures message
delivery: an event is visible to another event if and only if the information about the
former has been delivered to the replica of the latter (§3.1). Also, in implementations
of causally consistent transactions, updates done by a transaction are delivered to every
replica together (§1). Since composite operations execute inside transactions, the visi-
bility order in N can thus be intuitively thought of as specifying the delivery of groups

of updates made by them: we have an edge e′ vis′−−→ f ′ between coarse-grained events
e′ and f ′ in N (e.g., request and accept in Figure 5(a)) if and only if the updates
performed by the transaction denoted by e′ have been delivered to the replica of f ′.
Now consider fine-grained events e, f ∈ X.E on the same constituent object describ-
ing updates made inside the transactions of e′ and f ′, so that β(e) = e′ and β(f) = f ′

(e.g., ωra.add(b) and ωra.contains(b) in Figure 5(b)). Then we can have e X.vis−−−→ f if

and only if e′ vis′−−→ f ′. This is formalised by (10) and (11).
To explain (12), recall that arbitration captures the order of timestamps assigned

to events by the store implementation. Also, in implementations the timestamps of all
updates done by a transaction are contiguous in this order. Thus, arbitration in N can
be thought of as specifying the timestamp order on the level of whole transactions
corresponding to the composite operations in N . Then (12) states that the order of
timestamps of fine-grained events in X is consistent with that over transactions these
events come from.

To define the denotation, we need to consider only those executions concretising N
that are causally consistent and satisfy data type specifications. Hence, for F : Obj ⇀
Spec we let

γ(N, ρ,F) = {(X, c) ∈ γ(N, ρ) | X |=CC F}.
For example, the execution in Figure 5(b) belongs to γ(N, ρsoc,F) for N in Figure 5(a)
and F = (λω. FRWset). As the following theorem shows, the constraints (8)–(12) are
so tight that the set of concretisations defined in this way never contains two different
return values; this holds even if we allow choosing object identities differently.

THEOREM 8 Given a family {∆ | vin, vout ` Co}o∈O, we have:

∀N. ∀obj 1, obj 2 ∈ [dom(∆)→inj Obj].

∀F1 ∈ [range(obj 1)→ Spec].∀F2 ∈ [range(obj 2)→ Spec].

(∀x ∈ dom(∆).F1(obj 1(x)) = F2(obj 2(x))) =⇒
∀(X1, c1) ∈ γ(N, J{Co}o∈OK(obj 1),F1).

∀(X2, c2) ∈ γ(N, J{Co}o∈OK(obj 2),F2). c1 = c2.

This allows us to define the denotation of (7) according to the outline we gave before.

DEFINITION 9 For (7) we let JΓ ` DKtype = F , where F : Ctxt ⇀ Val is defined as
follows: for N ∈ Ctxt and c ∈ Val, if

∃obj ∈ [{xj | j = 1..m} →inj Obj].∃F ∈ [range(obj )→ Spec].

(∀j = 1..m.F(obj (xj)) = JTjKtype) ∧ ( , c) ∈ γ(N, J{Co}o∈OK(obj ),F),



Fig. 6. Semantics of Γ | ∆ ` P . Here H ]H ′ = (H.E ]H ′.E, H.label ]H ′.label, H.so ∪
H ′.so, H.∼ ∪H ′.∼); undefined if so is H.E ]H ′.E.

JΓ | ∆ ` P K : JΓ K→
∏

obj∈[dom(∆)→injObj]((range(obj )⇀ Spec)→ P(Hist))

Jlet α = T in P K(type, obj ,F) = JP K(type[α 7→ JT Ktype], obj ,F)
Jlet x = new T in P K(type, obj ,F) =

⋃
{JP K(type, obj [x 7→ ω],F[ω 7→ JT Ktype]) |

ω 6∈ range(obj )}
JC1 ‖ . . . ‖ CnK(type, obj ,F) = HistCC(F) ∩

{⊎n
j=1Hj | ∀j = 1..n.

(Hj , ) ∈ 〈Cj〉(obj , [ ]) ∨ Hj ∈ 〈Cj〉(obj , [ ])
}

then F (N) = c; otherwise F (N) is undefined.

The existence and uniqueness of F in the definition follow from Theorem 8. It is easy
to check that F defined above satisfies all the properties required in Definition 2 and,
hence, F ∈ Spec. According to the above definition, the denotation of the data type in
Figure 3 has to give ({b}, ∅) on the context in Figure 5(a).

4.3 Program semantics

Having defined the denotations of composite data types, we give the semantics to a
program in the language of §2 by instantiating (6) with an F computed from these de-
notations and by intersecting the result with the set of histories that can be produced
by the program according to the session-local semantics of its sessions (§4.1). A pro-
gram Γ | ∆ ` P is interpreted with respect to environments type, obj and F, which
give the semantics of data type variables in Γ , the identities of objects in ∆ and the
specifications associated with these objects (Figure 6). A data type variable declaration
extends the type environment with the specification of the data type computed from its
declaration as described in §4.2. An object variable declaration extends obj with a fresh
object and F with the specification corresponding to its type. A client is interpreted by
combining all histories its sessions produce in the session-local semantics with respect
to obj and intersecting the result with (6). Note that we originally defined the store se-
mantics (6) under the assumption that all replicated data types are primitive. Here we
are able to reuse the definition because our denotations of composite data types have
the same form as those of primitive ones.

Using the semantics. Our denotational semantics enables modular reasoning about
programs with composite replicated data types. Namely, it allows us to check if a pro-
gram P can produce a given history H by: (i) computing the denotations F of the
composite data types used in P ; and (ii) checking if the client of P can produce H
assuming it uses primitive data types with the specifications F. Due to the granularity
abstraction in our denotation, it represents every invocation of a composite operation by
a single event and thereby abstracts from its internal structure. In particular, different
composite data type implementations can have the same denotation describing the data
type behaviour. As a consequence, in (ii) we can pretend that composite data types are
primitive and thus do not have to reason about the behaviour of their implementations



and the client together. For example, we can determine how a program using the so-
cial graph data type behaves in the situation shown in Figure 5(a) using the result the
data type denotation gives on this context, without considering how its implementation
behaves (cf. Figure 5(b)). We get the same benefits when reasoning about a complex
composite data type D constructed from simpler composite data types Tj as in (7): we
can first compute the denotations of Tj and then use the results in reasoning about D.

In practice, we do not compute the denotation of a composite data type D using
Definition 9 directly. Instead, we typically invent a specification F that describes the
desired behaviour of D, and then prove that F is equal to the denotation of D, i.e., that
D is correct with respect to F . Definition 9 and, in particular, constraints (8)–(12), give
a proof method for establishing this. The next section illustrates this on an example.

5 Example: social graph

We have applied the composite data type denotation in §4 to specify and prove the
correctness of three composite data types: (i) the social graph data type in Figure 3; (ii)
a shopping cart data type implemented using an add-wins set, which resolves conflicts
between concurrent changes to the quantity of the same product; (iii) a data type that
uses transactions to simultaneously update several objects that resolve conflicts using
the last-writer-wins policy (cf. LWWset from §3.1). The latter example uses arbitration
in a nontrivial way. Due to space constraints, we focus here on the social graph data
type and defer the others to §E.

Below we give a specification Fsoc to the social graph data type, which we have
proved to be the denotation of its implementation Dsoc in Figure 3. The proof is done
by considering an arbitrary context N and its concretisation (X, c) according to Def-
inition 7 and showing that Fsoc(N) = c. The constraints (8)–(12) make the required
reasoning mostly mechanical and therefore we defer the easy proof to §E and only il-
lustrate the correspondence between Dsoc and Fsoc on examples.

The function Fsoc is defined recursively using the following operation that selects
a subcontext of a given event in a context, analogously to the ctxt operation on execu-
tions (4) from §3.2. For a partial context M and an event e ∈M.E, we let

ctxt(M, e) = (M.aop(e), E, (M.aop)|E , (M.vis)|E , (M.ar)|E),

where E = (M.vis)−1(e). Then

Fsoc(get(a),M) =

({b | ∃e ∈ (M.E). (M.aop(e) = accept((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ (M.E). (M.aop(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e))

=⇒ f
vis−→ e},

{b | ∃e ∈ (M.E). (M.aop(e) = request(b, a)) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ (M.E). (M.aop(f)∈ (accept | reject)((b, a) | (a, b)))∧Fsoc(ctxt(M, e))

=⇒ f
vis−→ e});

Fsoc(accept(b, a),M) = (b ∈ snd(Fsoc(get(a),M))).



The results of request, reject and breakup are defined similarly to accept. For
brevity, we use the notation (G1 | G2) above to denote the set arising from picking
eitherG1 orG2 as the subexpression of the expression where it occurs. Even though the
definition looks complicated, its conceptual idea is simple and has a temporal flavour.
Our definition takes into account that: after breaking up, users can become friends again;
and sometimes data type operations are unsuccessful, in which case they return false.
According to the two components of Fsoc(get(a),M):

1. a’s friends are the accounts b with a successful accept operation between a and
b such that any successful breakup between them was in its past, as formalised
by visibility. We determine whether an operation was successful by calling Fsoc

recursively on its subcontext.
2. a’s requesters are the accounts b with a successful request(b, a) operation such

that any successful accept or reject between a and b was in its past.

This specifies the behaviour of the data type while abstracting from its implementation,
thereby enabling modular reasoning about programs using it (§4.3).

Our specification Fsoc can be used to analyse the behaviour of the implementation
in Figure 3. By a simple unrolling of the definition of Fsoc, it is easy to check that the
two sets returned by Fsoc(get(a),M) are disjoint and, hence, the invariant (2) in §2
holds; (1) can be checked similarly. Also, since Fsoc returns ({b}, ∅) on the context in
Figure 5(a), when the same friendship request is concurrently accepted and rejected,
the accept wins. Different behaviour could also be reasonable; the decision ultimately
depends on application requirements.

We now illustrate the correspondence between Dsoc and Fsoc on examples and, on
the way, show that our coarse-grained semantics lets one understand how the choice
of conflict-resolution policies on constituent objects affects the policy of the composite
data type. First, we argue that making requesters remove-wins in Figure 3 is crucial
for preserving the integrity invariant (2) and satisfying Fsoc. Indeed, consider the sce-
nario shown in Figure 7(a). Here two users managing the same account b concurrently
issue friendship requests to a, which initially sees only one of them. If requesters were
add-wins, the accept by a would affect only the request that it sees. The remaining
request would eventually propagate to all replicas in the system, and the calls to get in
the implementation would thus return b as being both a friend and a requester of a’s,
violating (2). The remove-wins policy of requesters ensures that, when a user accepts
or rejects a request, this also removes all identical requests issued concurrently.

If we made friends add-wins, this would make the data type behave differently,
but sensibly, as illustrated in Figure 7(b). Here we again have two concurrently issued
requests from b to a. The account a may also be managed by multiple users, which
concurrently accept the requests they happen to see. One of the users then immedi-
ately breaks up with a. Since friends are remove-wins, this cancels the addition of b
to friends[a] (i.e., ωfa) resulting from the concurrent accept by the other user; thus, b
ends up not being a’s friend, as prescribed by Fsoc. Making friends add-wins would
result in the reverse outcome, and Fsoc would have to change accordingly. Thus, the
conflict-resolution policy on friends determines the way conflicts between accept and
breakup are resolved.



Fig. 7. (Left) Coarse-grained contexts of the social graph data type together with the result that
Fsoc gives on them. (Right) Relevant events of the fine-grained executions of the implementation
in Figure 3 resulting from concretising the contexts according to Definition 7. We use the same
conventions as in Figure 5.
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Finally, if users a and b issue friendship requests to each other concurrently, a de-
cision such as an accept taken on one of them will also affect the other, as illustrated
in Figure 7(c). To handle this situation without violating (2), accept removes not only
the request it is resolving, but also the symmetric one.

6 Fine-grained language semantics, soundness and completeness

To justify that the coarse-grained semantics from §4 is sensible, we relate it to a fine-
grained semantics that follows the standard way of defining language semantics on
weak consistency models [10, 6]. Unlike the coarse-grained semantics, the fine-grained
one is defined non-compositionally: it considers only certain complete programs and
defines the denotation of a program as a whole, without separately defining denotations
of composite data types in it. This denotation is computed using histories that record
all operations on all primitive objects comprising the composite data types in the pro-
gram; hence, the name fine-grained. The semantics includes those histories that can be
produced by the the program in the session-local semantics (§4.1) and are allowed by
the semantics of the store managing the primitive objects the program uses (§3).

We state the correspondence between the coarse-grained and fine-grained seman-
tics as an equivalence of the externally-observable behaviour of a program in the two
semantics. Let us fix a variable xio ∈ OVar and an object io ∈ Obj used to inter-
pret xio. A program P is complete if ∅ | xio : {oio} ` P . The operation oio on xio



models a combined user input-output action, rather than an operation on the store, and
the externally-observable behaviour of a complete program P is given by operations
on xio it performs. Formally, for a history H let observ(H) be its projection to events
on io: {e ∈ H | H.obj(e) = io}. We lift observ to sets of histories pointwise. Then
we define the set of externally-observable behaviours of a complete program P in the
coarse-grained semantics of §4 as JP KCG = observ(JP K([ ], [xio : io], [ ])). Note that our
semantics does not restrict the values returned by oio, thus accepting any input.

To define the fine-grained semantics of a complete program P , we flatten P by in-
lining composite data type definitions using a series of reductions −→ on programs
(defined shortly). Applying the reductions exhaustively yields programs with only ob-
jects of primitive data types, which have the following normal form:

P̄ ::= C1 ‖ . . . ‖ Cn | let x = new B in P̄

Given a complete program P , consider the unique P̄ such that P −→∗ P̄ and
P̄ 6−→ . Then we define the denotation of P in the fine-grained semantics by the set
of externally-observable behaviours that P̄ produces when interacting with a causally
consistent store managing the primitive objects it uses. To formalise this, we reuse the
definition of the coarse-grained semantics and define the denotation of P in the fine-
grained semantics as JP KFG = JP̄ KCG. Since P̄ contains only primitive data types, this
does not use the composite data type denotation of §4.2.

We now define the reduction −→. Let Comm be the set of commands C in Fig-
ure 2. We use an operator subst that takes a mapping S : OVar × Op ⇀ Comm and a
command C or a program P , and replaces invocations of object operations in C or P
according to S. The key clauses defining subst are as follows:

subst(S, v = x.o(G)) = if ((x, o) 6∈ dom(S)) then (v = x.o(G))

else (atomic {var v1. var v2. v1 = G; (S(x, o)[v1/vin, v2/vout]); v = v2})
subst(S, let x = new T in P ) = let x = new T in subst(S|¬x, P )

subst(S, let α = T in P ) = let α = T in subst(S, P )

subst(S,C1 ‖ . . . ‖ Cn) = subst(S,C1) ‖ . . . ‖ subst(S,Cn)

Here v1, v2 are fresh ordinary variables, and S|¬x denotes S with its domain restricted
to (OVar \ {x})×Op. Applying subst to an assignment command does not change the
command, and applying it to all others results in recursive applications of subst to their
subexpressions. Then the relation −→ is defined as follows:

P ::= [−] | let x = new T in P | let α = T in P
P[let α = T in P ] −→ P[P [T/α]]

P[let x = new (let {xj = new Tj}j=1..m in {o = atomic {Co}}o∈O) in P ]

−→ P[let {xj = new Tj}j=1..m in subst({(x, o)7→Co | o ∈ O}, P )],

where xj do not occur in P . The first reduction rule replaces data-type variables by their
definitions, and the second defines the semantics of composite operations via inlining.

Our central technical result is that the coarse-grained semantics of §4 is sound
and complete with respect to the fine-grained semantics presented here: the sets of
externally-observable behaviours of programs in the two semantics coincide.



THEOREM 10 For every complete program P we have JP KFG = JP KCG.

We give a (highly nontrivial) proof in §D. The theorem allows us to reason about pro-
grams using the coarse-grained semantics, which enables granularity abstraction and
modular reasoning (§4.3). It also implies that our denotational semantics is adequate,
i.e., can be used to prove the observational equivalence of two data type implementa-
tions D1 and D2: if JD1K = JD2K, then JC[D1]KFG = JC[D2]KFG for all contexts C of
the form P[let α = [−] in P ]. Note that both soundness and completeness are needed
to imply this property.

7 Related work

One of the classical questions of data abstraction is: how can we define the semantics
of a data type implementation that abstracts away the implementation details, includ-
ing a particular choice of data representation? Our results can be viewed as revisiting
this question, which has so far been investigated in the context of sequential [14] and
shared-memory concurrent [12, 24] programs, in the emerging domain of eventually
consistent distributed systems. Most of the work on data abstraction for concurrency
has considered a strongly consistent setting [12, 24]. Thus, it typically aimed to achieve
atomicity abstraction, which allows one to pretend that a composite command takes
effect atomically throughout the system. Here we consider data abstraction in the more
challenging setting of weak consistency and achieve a weaker and more subtle guar-
antee of granularity abstraction: even though our coarse-grained semantics represents
composite operations by single events, these events are still subject to anomalies of
causal consistency, with different replicas being able to see the events at different times.

We are aware of only a few previous data abstraction results for weak consis-
tency [15, 8, 5]. The most closely related is the one for the C/C++ memory model [6]
by Batty et al. [5]. Like the consistency model we consider, the C/C++ model is de-
fined axiomatically, which leads to some similarities in the general approach followed
in [5] and in this paper. However, other features of the settings considered are dif-
ferent. First, we consider arbitrary replicated data types, whereas, as any model of a
shared-memory language, the C/C++ one considers only registers with the last-writer-
wins conflict-resolution policy. Second, the artefacts related during abstraction in [5]
and in this paper are different. Instead of composite replicated data types, [5] considers
libraries, which encapsulate last-writer-wins registers and operations accessing them
implemented by arbitrary code without using transactions. A specification of a library
is then just another library, but with operations implemented using atomic blocks remi-
niscent of our transactions. Hence, a single invocation of an operation of a specification
library is still represented by multiple events and therefore [5] does not support granu-
larity abstraction to the extent achieved here. Our work can roughly be viewed as start-
ing where [5] left off, with composite constructions whose operations are implemented
using transactions, and specifying their behaviour more declaratively with replicated
data type specifications over contexts of coarse-grained events. It is thus possible that
our approach can be adapted to give more declarative specifications to C/C++ libraries.

Researchers and developers have often implemented complex objects with domain-
specific conflict resolution policies inside replicated stores [21], which requires dealing



with low-level details, such as message exchange between replicas. Our results show
that, using causally consistent transactions, such complex domain-specific objects can
often be implemented as composite replicated data types, using a high-level program-
ming model to compose replicated objects and their conflict-resolution policies. Fur-
thermore, due to the granularity abstraction we established, the resulting objects can be
viewed as no different from those implemented inside the store.

We specify composite replicated data types using the formalism proposed for prim-
itive replicated data types by Burckhardt et al. [10]. Thus, the novelty of our results lies
not in the specification formalism, but in achieving granularity abstraction that lets us
consider a composite data type as primitive and thereby specify it in this way. Burck-
hardt et al. also proposed a method for proving the correctness of data type implemen-
tations. This method considers only primitive data types implemented inside the store
in a low-level way (e.g., using message exchanges), whereas we consider composite
data types implemented using transactions in a higher-level model. Thus, the technical
challenges addressed by the two methods are different.

Partial orders, such as event structures [19] and Mazurkiewicz traces [20], have been
used to define semantics of concurrent or distributed programs by explicitly expressing
the dependency relationships among events such programs generate. Our results extend
this line of semantics research by considering new kinds of relations among events,
describing computations of eventually consistent replicated stores, and studying how
consistency axioms on these relations interact with the granularity abstraction for com-
posite replicated data types.

8 Conclusion

In this paper we have proposed the concept of composite replicated data types, which
formalises a common way of organising applications on top of eventually consistent
stores. We have also presented a coarse-grained denotational semantics for these data
types that supports granularity abstraction: the semantics allows us to abstract from the
internals of a composite data type implementation and pretend that it represents a single
monolithic object, which simplifies reasoning about client programs. Using a nontrivial
example, we have illustrated how the denotation of a data type in our semantics specifies
its behaviour in tricky situations and thereby lets one understand the consequences of
different design decisions in its implementation. Finally, we have shown our semantics
is sound and complete with respect to a standard non-compositional semantics.

As we explained in §1, developing correct programs on top of eventually consis-
tent stores is a challenging yet unavoidable task. Our results mark the first step towards
providing developers with methods and tools for specifying and verifying programs in
this new programming environment and expanding the rich theories of programming
languages, such as data abstraction, to this environment. Even though our results were
developed for a particular popular variant of eventual consistency—causally consistent
transactions—we hope that in the future the results can be generalised to other consis-
tency models with similar formalisations [9, 3].
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A Additional clauses of the session-local semantics

〈var v. C〉(obj , σ) = (IHist ∩ 〈C〉(obj , σ[v 7→ ⊥])) ∪
{(H,σ′|dom(Σ)) | (H,σ′) ∈ 〈C〉(obj , σ[v 7→ ⊥])};

〈if G then C1 else C2〉(obj , σ) =

{
〈C1〉(obj , σ), if JGKσ 6= 0;
〈C2〉(obj , σ), otherwise;

〈C1;C2〉(obj , σ) = seq(〈C1〉(obj , σ), λσ′. 〈C2〉(obj , σ′));

〈while G do C〉(obj , σ) = (greatestFix K)(σ),

where

K = λW. λσ′.

{
{((∅, [ ], ∅, ∅), σ′)} if JGKσ′ = 0;
seq(〈C〉(obj , σ′),W ) otherwise;

seq(U,W ) =

{((E1 ] E2, label1 ] label2, so1 ∪ so2 ∪ (E1 × E2),∼1 ∪ ∼2), σ2) |
((E1, label1, so1,∼1), σ1) ∈ U ∧ ((E2, label2, so2,∼2), σ2) ∈W (σ1)} ∪

{(E1 ] E2, label1 ] label2, so1 ∪ so2 ∪ (E1 × E2),∼1 ∪ ∼2) |
((E1, label1, so1,∼1), σ1) ∈ U ∧ (E2, label2, so2,∼2) ∈W (σ1)} ∪

(IHist ∩ U).

Note that in the clause for local-variable declarations we assume an appropriate alpha-
renaming of bound variables.

B Characterisation of γ(N, ρ, F) in terms of abstraction

In the rest of the appendix, we use an alternative, equivalent characterisation of
γ(N, ρ,F) given in the main text. Our characterisation is based on the notion of abstrac-
tion. This characterisation will help us to manage the complexity of reasoning involved
in the proofs of the theorems.

DEFINITION 11 An abstraction from a history H to a tuple (N, e0, c) of a context N ,
an event e0 6∈ N.E and a value c ∈ Val is a pair (β, ρ) of a function β : H.E →
N.E ] {e0} and an summary ρ : AOp× Val⇀ P(FHist) such that

(∀f ∈ (N.E). H|β−1(f) ∈ ρ(N.aop(f), )) ∧
(H|β−1(e0) ∈ ρ(N.p, c)) ∧ β(H.so) ⊆ id ∧ β(H.∼) ⊆ id.

We write (β, ρ) : H → (N, e0, c) to mean that (β, ρ) is an abstraction of H into
(N, e0, c).



DEFINITION 12 An abstraction from an execution X to (N, e0, c) is an abstraction
(β, ρ) : X.H → (N, e0, c) such that

β(X.vis)− id ⊆ vis′;

β−1(vis′) ∩ sameobj(X) ⊆ X.vis;
β(X.ar)− id ⊆ ar′,

where
vis′ = N.vis ∪ {(f, e0) | f ∈ N.E};
ar′ = N.ar ∪ {(f, e0) | f ∈ N.E}.

We write (β, ρ) : X → (N, e0, c) to mean that (β, ρ) is an abstraction of X into
(N, e0, c).

It is immediate from our definition that

γ(N, ρ) = {(X, c) | ∃e0 6∈ (N.E).∃β. (β, ρ) : X → (N, e0, c)}.

From this observation follows the following lemma:

Lemma 1.

γ(N, ρ,F) = {(X, c) | ∃e0 6∈ (N.E).∃β.(β, ρ) : X → (N, e0, c) ∧X |=CC F}.

C Proof of Theorem 8

In the following we use H.op(e) and H.arg(e) to denote the components of H.aop(e).
We define the notions of morphisms between histories and executions, which gen-

eralise the abstraction from histories or executions to contexts in Definitions 11 and 12.
For ω ∈ Obj we let

Hist(ω) = {H ∈ Hist | H.obj(H.E) = {ω}};
Exec(ω) = {X ∈ Exec | X.H ∈ Hist(ω)}.

DEFINITION 13 A morphism from a history H to another history H ′, such that H ∈
Hist and H ′ ∈ Hist(ω) for some ω, is a pair of a function β : H.E → H ′.E and a
summary ρ : AOp× Val⇀ P(FHist) such that

(∀e ∈ (H ′.E). H|β−1(e) ∈ ρ(H ′.aop(e), H ′.rval(e))) ∧
β(H.so)− id = (H ′.so)|β(H.E) ∧ β(H.∼) = (H ′.∼)|β(H.E).

We write (β, ρ) : H → H ′ to mean that (β, ρ) is a morphism from H to H ′.

LEMMA 14 For every morphism (β, ρ) : H → H ′, we have that

∀e, f ∈ H.E. (e, f) ∈ H.∼ ⇐⇒ (β(e), β(f)) ∈ H ′.∼.



PROOF. Let (β, ρ) be a morphism from H to H ′. Consider e, f ∈ H.E. By the defi-
nition of morphism, β(H.∼) = (H ′.∼)|β(H.E). Hence,

(e, f) ∈ H.∼ =⇒ (β(e), β(f)) ∈ H ′.∼.

Let us move on to the other implication. Assume that (β(e), β(f)) ∈ H ′.∼. Since
β(H.∼) = (H ′.∼)|β(H.E), there exist e′, f ′ ∈ H.E such that

β(e) = β(e′) ∧ β(f) = β(f ′) ∧ (e′, f ′) ∈ H.∼.

Let e′′ = β(e′) and f ′′ = β(f ′). Since (β, ρ) is a morphism,

H|β−1(e′′) ∈ ρ(H ′.aop(e′′), H ′.rval(e′′)) ∧ H|β−1(f ′′) ∈ ρ(H ′.aop(f ′′), H ′.rval(f ′′)).

Recall that every history in the image of ρ uses the complete relation (i.e., a relation
that relates all pairs of events) as its equivalence relation. Also, e, e′ ∈ (H|β−1(e′′)).E
and f, f ′ ∈ (H|β−1(f ′′)).E. Hence,

(e, e′) ∈ H.∼ ∧ (f ′, f) ∈ H.∼.

Since (e′, f ′) ∈ H.∼, by the transitivity ofH.∼, we have that (e, f) ∈ H.∼, as desired.
ut

DEFINITION 15 A morphism from an execution X ∈ Exec to another execution X ′ ∈
Exec(ω) is a morphism (β, ρ) : X.H → X ′.H such that

β(X.vis)− id ⊆ X ′.vis ∧ β−1(X ′.vis) ∩ sameobj(X) ⊆ X.vis
∧ β(X.ar)− id ⊆ X ′.ar.

We write (β, ρ) : X → X ′ to mean that (β, ρ) is a morphism from X to X ′.

DEFINITION 16 An operation context N can be embedded into an execution X at an
event e 6∈ N.E, denoted (N, e) ↪→ X , if and only if for some ω ∈ Obj,

X.E = N.E ] {e} ∧ X.obj(X.E) = {ω} ∧ X.so = ∅ ∧ X.∼ = id

∧ X.vis = N.vis ∪ {(f, e) | f ∈ N.E} ∧ X.ar = N.ar ∪ {(f, e) | f ∈ N.E}.

PROPOSITION 17 For all β, ρ,X,N, e such that e 6∈ N.E, a,

(β, ρ) : X → (N, e, a) ⇐⇒
(∃X ′. (N, e) ↪→ X ′ ∧ (β, ρ) : X → X ′ ∧ a = X ′.rval(e)).

Hence, γ from §4 can be equivalently defined as follows:

γ(N, ρ,F) = {(X, a) | ∃e 6∈ N.E. ∃β.∃X ′. (N, e) ↪→ X ′ ∧ (β, ρ) : X → X ′

∧ a = X ′.rval(e) ∧X |=CC F}.

In the following we sometimes use this fact even without mentioning it explicitly.



For H1, H2 ∈ Hist and π : H1.E →bij H2.E we let

H1 ≈π H2 ⇐⇒ π(H1.label) = H2.label ∧ π(H1.so) = H2.so ∧ π(H1.∼) = H2.∼;

H1 ≈ H2 ⇐⇒ ∃π.H1 ≈π H2.

For X1, X2 ∈ Exec and π : X1.E →bij X2.E we let:

X1 ≈π X2 ⇐⇒ X1.H ≈π X2.H∧π(X1.vis) = X2.vis∧(π(X1.ar)∪X2.ar is acyclic);

X1 ≈rval X2 ⇐⇒ X1.E = X2.E ∧H1.obj = H2.obj ∧H1.aop = H2.aop ∧
X1.so = X2.so ∧X1.∼ = X2.∼ ∧X1.vis = X2.vis ∧X1.ar = X2.ar.

We also let

CExec = {X ∈ Exec | (|X.E| <∞) ∧
∃ω ∈ Obj. X.H ∈ Hist(ω) ∧X.so = ∅ ∧X.∼ = id}.

A history H is sequential if H.so is total on H.E. We write SHist for the set of
sequential histories. It is easy to see that all histories produced by the session-local
semantics are sequential. For H ∈ SHist we write H(n) for the n-th event in H.so,
undefined when there is not one. We also write H|n for the projection of H to the first
n events in H.so; if n > |H.E|, we let H|n = H .

PROPOSITION 18 (DETERMINACY) For ∆ | Σ ` C we have:

∀obj : dom(∆)→inj Obj.∀H1, H2 ∈ Hist.∀σ, σ1, σ2 ∈ LState(Σ).

(H1, σ1), (H2, σ2) ∈ 〈C〉(obj , σ) ∧H1 ≈ H2 =⇒ σ1 = σ2

and

∀obj : dom(∆)→inj Obj.∀H1, H2 ∈ Hist.∀σ ∈ LState(Σ).∀n.
(H1, ), (H2, ) ∈ 〈C〉(obj , σ) ∧H1|n ≈ H2|n ∧ (1 ≤ n ≤ |H1|, |H2|) =⇒

(n+ 1 ≤ |H1| ⇐⇒ n+ 1 ≤ |H2|) ∧
(n+ 1 ≤ |H1| =⇒ H1.obj(H1(n+ 1)) = H2.obj(H2(n+ 1))

∧H1.aop(H1(n+ 1)) = H1.aop(H2(n+ 1))).

THEOREM 19 Given a family of well-typed commands {∆ | vin, vout ` Co}o∈O, we
have:

∀obj ∈ [dom(∆)→inj Obj].∀F ∈ [range(obj )→ Spec].

∀X ′1, X ′2 ∈ CExec.∀X1, X2 ∈ Exec.∀β1, β2.
(β1, J{Co}o∈OK(obj )) : X1 → X ′1 ∧ (β2, J{Co}o∈OK(obj )) : X2 → X ′2 ∧
X ′1 ≈rval X

′
2 ∧X1 |=CC F ∧X2 |=CC F =⇒

X ′1 = X ′2 ∧ ∃π : X1.E →bij X2.E.X1 ≈π X2 ∧ ∀f ∈ X1.E. β1(f) = β2(π(f)).



PROOF. Consider

{xj : Oj | j = 1..m} | vin, vout ` Co, o ∈ O

and
obj ∈ [{xj | j = 1..m} →inj Obj]; F ∈ [range(obj )→ Spec]

and let ρ = J{Co}o∈OK(obj ).
We prove that the following holds for all X ′1, X

′
2 ∈ CExec such that X ′1 ≈rval X

′
2

by induction on |X ′1.E| = |X ′2.E|:

∀X1, X2 ∈ Exec.∀β1, β2.
(β1, ρ) : X1 → X ′1 ∧ (β2, ρ) : X2 → X ′2 ∧X1 |=CC F ∧X2 |=CC F =⇒
X ′1 = X ′2 ∧ ∃π : X1.E →bij X2.E.X1 ≈π X2 ∧ ∀f ∈ X1.E. β1(f) = β2(π(f)).

The base case when |X ′1.E| = |X ′2.E| = 0 is trivial.
Consider X ′1, X

′
2 ∈ CExec, X1, X2 ∈ Exec and β1, β2 such that

X ′1 ≈rval X
′
2 ∧ (β1, ρ) : X1 → X ′1 ∧ (β2, ρ) : X2 → X ′2 ∧X1 |=CC F ∧X2 |=CC F.

Let us choose an event e ∈ X ′1.E that does not have successors in X ′1.so∪X ′1.vis∪
X ′1.ar; this is possible since X ′1 ∈ CExec. Then e ∈ X ′2.E and it does not have succes-
sors in X ′2.so ∪X ′2.vis ∪X ′2.ar. Let

Y ′1 = X ′1|X′1.E−{e} ∧ Y ′2 = X ′2|X′2.E−{e};

then Y ′1 ≈rval Y
′
2 . Let

Y1 = X1|X1.E−β−1
1 (e) ∧ Y2 = X2|X2.E−β−1

2 (e).

It is easy to see that Y1 and Y2 still satisfy CAUSALVIS and CAUSALAR. If (f, g) ∈
X1.vis for some f ∈ β−11 (e) and g ∈ X1.E − β−11 (e), then (e, β1(g)) ∈ X ′1.vis,
contradicting the fact that e does not have successors in X ′1.vis. Hence, such f and g do
not exist, which implies that Y1 |= F. We similarly establish Y2 |= F.

Let
β′1 = β1|X1.E−β−1

1 (e) ∧ β′2 = β2|X2.E−β−1
2 (e).

Is easy to check that

(β′1, ρ) : Y1 → Y ′1 ∧ (β′2, ρ) : Y2 → Y ′2 .

We have thus established all the premisses of the induction hypothesis for Y ′1 and
Y ′2 . Applying it, we get that Y ′1 = Y ′2 and for some π : Y1.E →bij Y2.E we have
Y1 ≈π Y2 and ∀f ∈ Y ′1 .E. β′1(f) = β′2(π(f)).

Let (o, a) = X ′1.aop(e) = X ′2.aop(e). Then

((X1.H)|β−1
1 (e), [vin 7→ , vout 7→X ′1.rval(e)]) ∈ 〈atomic {Co}〉(obj , [vin 7→a, vout 7→⊥])

∧
((X2.H)|β−1

2 (e), [vin 7→ , vout 7→X ′2.rval(e)]) ∈ 〈atomic {Co}〉(obj , [vin 7→a, vout 7→⊥])

(13)



and, in particular, (X2.H)|β−1
2 (e), (X2.H)|β−1

2 (e) ∈ SHist.
For n ≥ 0 let

En1 = (((X1.H)|β−1
1 (e))|n).E ∧ En2 = (((X2.H)|β−1

2 (e))|n).E;

Xn
1 = X1|Y1.E∪En1 ∧ Xn

2 = X2|Y2.E∪En2 .

We prove by induction on n that

∃π′ : En1 →bij E
n
2 . X

n
1 ≈π]π′ Xn

2 ∧ (∀f ∈ Xn
1 .E. β1(f) = β2((π ] π′)(f))).

The base case of n = 0 follows from Y1 ≈π Y2 and ∀f ∈ Y ′1 .E. β′1(f) = β′2(π(f)).
Assume that for some n ≥ 0 and π′ : En1 →bij E

n
2 we have Xn

1 ≈π]π′ Xn
2 and

∀f ∈ Xn
1 .E. β1(f) = β2((π ] π′)(f)). Then

((X1.H)|β−1
1 (e))|n ≈π′ ((X2.H)|β−1

2 (e))|n. (14)

If n ≥ |β−11 (e)|, then the above implies

((X1.H)|β−1
1 (e)) ≈π′ ((X2.H)|β−1

2 (e))||β−1
1 (e)|.

Due to (13), by Proposition 18 we get |β−12 (e)| = |β−11 (e)| (so that Xn
1 = Xn+1

1 and
Xn

2 = Xn+1
2 ) and

((X1.H)|β−1
1 (e))|n+1 = ((X1.H)|β−1

1 (e))

≈π′ ((X2.H)|β−1
2 (e)) = ((X2.H)|β−1

2 (e))|n+1,

as required. We obtain the same when n ≥ |β−12 (e)| in a similar way.
Now assume that n < |β−11 (e)| and n < |β−12 (e)| and let

e1 = ((X1.H)|β−1
1 (e))(n+ 1) ∧ e2 = ((X2.H)|β−1

2 (e))(n+ 1).

Due to (13) and (14), by Proposition 18 we get

X1.obj(e1) = X2.obj(e2) ∧ X1.aop(e1) = X2.aop(e2). (15)

Let π′′ = π′[e1 : e2]; then Xn+1
1 .H ≈π]π′′ Xn+1

2 .H and

β1(e1) = e = β2(e2) = β2((π ] π′′)(e1)),

as required.
We now show (π ] π′′)(Xn+1

1 .vis) = Xn+1
2 .vis. Consider (f, g) ∈ Xn+1

1 .vis:

– If f 6= e1 and g 6= e1, then f, g ∈ Xn
1 .E. Then Xn

1 ≈π]π′ Xn
2 implies

((π ] π′)(f), (π ] π′)(g)) ∈ Xn
2 .vis

and, hence,
((π ] π′′)(f), (π ] π′′)(g)) ∈ Xn+1

2 .vis.



– We have previously shown that there are no f ∈ β−11 (e) and g ∈ X1.E − β−11 (e)
such that (f, g) ∈ X1.vis. Hence, we are left with the case when g = e1, which we
consider in the following.

– If f ∈ En1 , then (f, e1) ∈ X1.so. But then Xn
1 ≈π]π′ Xn

2 implies

((π ] π′)(f), e2) ∈ X2.so

and, by CAUSALVIS for X2, we have

((π ] π′)(f), e2) ∈ X2.vis.

This implies
((π ] π′′)(f), (π ] π′′)(e1)) ∈ X2.vis.

– Assume now that f ∈ X1.E − β−11 (e). Then β1(f) 6= β1(e1) = e and (β1, ρ) :
X1 → X ′1 implies

(β1(f), e) ∈ X ′1.vis.

Since X ′1 ≈rval X
′
2, we also have

(β1(f), e) ∈ X ′2.vis.

Since e = β2(e2) and β1(f) = β2((π ] π′)(f)), this is equivalent to

(β2((π ] π′)(f)), β2(e2)) ∈ X ′2.vis. (16)

We have X1.obj(f) = X1.obj(e1) and Xn
1 ≈π]π′ Xn

2 implies X2.obj((π ]
π′)(f)) = X1.obj(f). From this and (15) we get

X2.obj((π ] π′)(f)) = X2.obj(e2).

Given this and (16), from (β2, ρ) : X2 → X ′2 we get

((π ] π′)(f), e2) ∈ X2.vis,

which implies
((π ] π′′)(f), (π ] π′′)(e1)) ∈ Xn+1

2 .vis.

We have thus shown that (π ] π′′)(Xn+1
1 .vis) = Xn+1

2 .vis.
We now show that

(π ] π′′)(Xn+1
1 .ar) ∪Xn+1

2 .ar

is acyclic. Assume that there is a cycle in this relation. Since Xn
1 ≈π]π′ Xn

2 , we know
that

(π ] π′)(Xn
1 .ar) ∪Xn

2 .ar

is acyclic. Hence, the above cycle contains e2 and an edge

(e2, f) ∈ (π ] π′′)(Xn+1
1 .ar) ∪Xn+1

2 .ar

for some f . Then

(e2, f) ∈ Xn+1
2 .ar ∨ ∃g. (e1, g) ∈ Xn+1

1 .ar.



Using the choice of e1 and e2, similarly to how it was done previously, we can show
that none of these cases is possible, which establishes the desired acyclicity guarantee.

Similarly to how we previously showed that Y1 |= F and Y2 |= F, we can show
Xn+1

1 |= F and Xn+1
2 |= F. Let

Z1 = (Xn+1
1 .H,Xn+1

1 .vis, (Xn+1
1 .ar ∪ (π ] π′′)−1(Xn+1

2 .ar))+) ∧
Z2 = (Xn+1

2 .H,Xn+1
2 .vis, (Xn+1

2 .ar ∪ (π ] π′′)(Xn+1
1 .ar))+).

From the above-established acyclicity guarantee, Z1 and Z2 are executions. Since data
type specifications preserve their value on arbitration extensions, we still have Z1 |= F
and Z2 |= F. Furthermore, from what we have shown so far and (15) it easily follows
that ctxt(Z1, e1) ≈ ctxt(Z2, e2). Since data type specifications give the same values on
isomorphic contexts,

Xn+1
1 .rval(e1) = Z1.rval(e1) = Z2.rval(e2) = Xn+1

2 .rval(e2).

This finally establishes Xn+1
1 ≈π]π′′ Xn+1

2 , completing the induction.
Now choosing n such that n ≥ |β−11 (e)| and n ≥ |β−12 (e)|, we get Xn

1 =
X1 and Xn

2 = X2. Then the statement just proved gives us that for some π′ :
((X1.H)|β−1

1 (e)).E →bij ((X2.H)|β−1
2 (e)).E we have X1 ≈π]π′ X2. As a conse-

quence,
(X1.H)|β−1

1 (e) ≈π′ (X2.H)|β−1
2 (e).

Then by (13) and Proposition 18 we get X ′1.rval(e) = X ′2.rval(e), as required. ut

PROPOSITION 20 Given a family of well-typed commands {∆ | vin, vout ` Co}o∈O,
we have:

∀N. ∀obj 1, obj 2 ∈ [dom(∆)→inj Obj].

∀F1 ∈ [range(obj 1)→ Spec].∀F2 ∈ [range(obj 2)→ Spec].

(∀x ∈ dom(∆).F1(obj 1(x)) = F(obj 2(x))) =⇒
∀(X1, a) ∈ γ(N, J{Co}o∈OK(obj 1),F1).∃X2. (X2, a) ∈ γ(N, J{Co}o∈OK(obj 2),F2).

PROOF OF THEOREM 8. Assume N, obj 1, obj 2,F1,F2, X1, a1, X2, a2 satisfying the
conditions of the theorem. Since

(X1, a1) ∈ γ(N, J{Co}o∈OK(obj 1),F1),

for some e1 6∈ N.E we have

∃β1. (β1, J{Co}o∈OK(obj 1)) : X1 → (N, e1, a1) ∧X1 |=CC F1.

By Proposition 20 there exists Y2 ∈ Exec such that

(Y2, a2) ∈ γ(N, J{Co}o∈OK(obj 1),F1),

i.e.,

∃e2 6∈ N.E. ∃β2. (β2, J{Co}o∈OK(obj 1)) : Y2 → (N, e2, a2) ∧ Y2 |=CC F1.



Then it is easy to see that

∃β′2. (β′2, J{Co}o∈OK(obj 1)) : Y2 → (N, e1, a2) ∧ Y2 |=CC F1.

By Proposition 17, there exist X ′1, X
′
2 such that

(β1, J{Co}o∈OK(obj )) : X1 → X ′1 ∧ (β2, J{Co}o∈OK(obj )) : Y2 → X ′2 ∧
(N, e1) ↪→ X ′1 ∧ (N, e1) ↪→ X ′2 ∧ a1 = X ′1.rval(e1) ∧ a2 = X ′2.rval(e1).

We can ensure that we have X ′1, X
′
2 ∈ CExec; then X ′1 ≈rval X

′
2. By Theorem 19 we

get X ′1 = X ′2, so that a1 = a2, as required. ut

D Proof of Theorem 10

In this section we prove the following statement, which implies Theorem 10.

THEOREM 21 If P −→ P ′, then JP ′KCG = JP KCG.

The case of the first reduction out of the two given in §6 is standard. We therefore only
consider the case of the second, discharged by Theorem 42 in §D (the ⊇ direction, i.e.,
soundness) and Theorem 47 in §D.5 (the ⊆ direction, i.e., completeness). To prove the
former result, we first need to reformulate the data type denotation from Definition 9,
which is the subject of §D.3.

D.1 Properties of the factoring operation (−/∼)

We prove a few useful properties of the factoring operation (−/∼), which will be used
in the proofs of our main results later. Let E be a set of events and ∼ an equivalence
relation on E.

LEMMA 22 For all relations R on E and events e, e0, f, f0 ∈ E,

(e 6∼ f ∧ e ∼ e0
R/∼−−−→ f0 ∼ f) =⇒ e

R/∼−−−→ f.

PROOF. Let R, e, e0, f, f0 be a relation and events satisfying the assumption of the
lemma. If e0

R−→ f0, by the definition of the factoring operation,

e
R/∼−−−→ f.

Otherwise, there exist e1, f1 ∈ E such that

(e0 6∼ f0 ∧ e0 ∼ e1
R−→ f1 ∼ f0).

Since ∼ is transitive,
e ∼ e1 ∧ f1 ∼ f.

Furthermore, e 6∼ f and e1
R−→ f1. Hence,

e
R/∼−−−→ f,

as desired. ut



LEMMA 23 The factoring operation (−/∼) is a monotone closure operator. That is,
for all relations R,S on E,

R ⊆ (R/∼) ∧ ((R/∼)/∼) = (R/∼) ∧ (R ⊆ S =⇒ (R/∼) ⊆ (S/∼)).

PROOF. The first conjunct R ⊆ (R/∼) is an immediate consequence of the definition
of factoring. For the second, by the same consequence again, it suffices to prove that

((R/∼)/∼) ⊆ (R/∼).

For the sake of contradiction, suppose that ((R/∼)/∼) 6⊆ (R/∼). Then, there exist
e, e′, f, f ′ such that

e 6∼ f ∧ e ∼ e′ R/∼−−−→ f ′ ∼ f ∧ (e, f) 6∈ (R/∼).

The first two conjuncts imply e
R/∼−−−→ f by Lemma 22. This contradicts the third con-

junct.
It remains to show the monotonicity of the factoring operation. Assume thatR ⊆ S.

Pick e, f ∈ E such that e
R/∼−−−→ f . If e R−→ f , then

e
S/∼−−−→ f.

Otherwise, there exist e0, f0 ∈ E such that

e 6∼ f ∧ e ∼ e0
R−→ f0 ∼ f.

Since R ⊆ S, the above formula implies e0
S−→ f0. Hence, by the formula again, we

have that e
S/∼−−−→ f . ut

LEMMA 24 The factoring operation preserves union: for all relations R,S on E,

(R ∪ S)/(∼) = (R/∼) ∪ (S/∼).

PROOF. By the monotonicity of the factoring operation (Lemma 23), we have that

(R/∼) ∪ (S/∼) ⊆ (R ∪ S)/(∼).

Hence, it suffices to prove the other subset relationship. Pick e, f ∈ E such that

e
(R∪S)/∼−−−−−−→ f.

If e R∪S−−−→ f , by the definition of factoring,

e
(R/∼)∪(S/∼)−−−−−−−−−→ f.

Otherwise, there exist e0, f0 ∈ E such that

e 6∼ f ∧ e ∼ e0
R∪S−−−→ f0 ∼ f.



Then, e0
R−→ f0 or e0

S−→ f0. In the former case, we have

(e, f) ∈ (R/∼) ⊆ (R/∼) ∪ (S/∼).

Similarly, in the latter case, we have

(e, f) ∈ (S/∼) ⊆ (R/∼) ∪ (S/∼).

ut

LEMMA 25 For all relations R on E,

(R/∼)+/(∼) = (R/∼)+.

This means that the transitive closure is well-defined over the set of ∼-factored rela-
tions.

PROOF. It suffices to show that for all events e, e0, e1, . . . , en, f with n > 0,

(e 6∼ f ∧ e ∼ e0 ∧ en ∼ f ∧ ∀i ∈ {0, . . . , n−1}. ei
R/∼−−−→ ei+1) =⇒ e

(R/∼)+−−−−−→ f.

Let e, e0, e1, . . . , en, f be the events satisfying the assumption of the above implication.
Then,

e 6∼ en. (17)

This is because otherwise e ∼ f by the transitivity of ∼, but this would contradict
the assumption that e 6∼ f . Furthermore, e ∼ e0 by assumption. Hence, there exists
m ∈ {0, . . . , n−1} such that

e ∼ em ∧ e 6∼ em+1.

By Lemma 22,

e
R/∼−−−→ em+1. (18)

Furthermore, by a similar argument now applied to f and em (instead of e and en), we
get k ∈ {m+ 1, . . . , n} such that

ek ∼ f ∧ ek−1 6∼ f.

By Lemma 22 again,

ek−1
R/∼−−−→ f. (19)

If k − 1 = m, then e ∼ ek−1. Since e 6∼ f , the relationship in (19) implies the desired

e
R/∼−−−→ f,

because of Lemma 22. Assume now that k − 1 6= m. Then, k − 1 ≥ m+ 1. From (18)
and (19), it follows that

e
R/∼−−−→ em+1

(R/∼)∗−−−−−→ ek−1
R/∼−−−→ f.



This implies the desired e
(R/∼)+−−−−−→ f . ut

Finally, we show a few properties that describe interactions between factoring and
a function on events. Let E0, E1 be sets of events, and ∼0,∼1 equivalence relations on
E0 and E1, respectively. Also, consider a function β : E0 → E1 such that

∀e, f ∈ E0. e ∼0 f ⇐⇒ β(e) ∼1 β(f).

The following lemmas hold for these E0, E1,∼0,∼1 and β.

LEMMA 26 For all relations R0 on E0, and R1 on E1, if

R0/∼0 = R0 ∧ R1/∼1 = R1 ∧ R+
1 = R1,

then for all e, f ∈ E0 such that e 6∼0 f ,

(β(e)
((β(R0)/∼1)∪R1)

+

−−−−−−−−−−−−→ β(f)) ⇐⇒ (e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ f).

PROOF. First, we prove the right-to-left implication. Consider e, f ∈ E0 such that

e
R0∪(β−1(R1)/∼0)−−−−−−−−−−−−→ f.

We will prove that

β(e)
(β(R0)/∼1)∪R1−−−−−−−−−−→ β(f). (20)

Note that from this follows the right-to-left implication. By the choice of e and f ,

e
R0−−→ f ∨ e

β−1(R1)/∼0−−−−−−−−→ f.

Since β(R0) ⊆ (β(R0)/∼1), the first disjunct above implies the desired (20). Now
suppose that the second disjunct holds. Note that (β ◦ β−1)(R1) ⊆ R1. Hence, if

e
β−1(R1)−−−−−→ f,

we get
β(e)

R1−−→ β(f).

This gives the desired relationship in (20). On the other hand, if for some e′, f ′ ∈ E0,

e ∼0 e
′ β
−1(R1)−−−−−→ f ′ ∼0 f ∧ e 6∼0 f,

then
β(e) ∼1 β(e′)

(β◦β−1)(R1)−−−−−−−−→ β(f ′) ∼1 β(f) ∧ β(e) 6∼1 β(f),

because β preserves ∼0 and reflects ∼1. Since (β ◦ β−1)(R1) ⊆ R1, the above rela-
tionship implies that

β(e)
R1/∼1−−−−→ β(f).



Recall that R1/∼1 = R1 by the assumption of the lemma. Hence, this relationship
between β(e) and β(f) gives the desired (20).

Next, we prove the left-to-right implication claimed in the lemma. Consider e, f ∈
E0 such that

β(e)
((β(R0)/∼1)∪R1)

+

−−−−−−−−−−−−→ β(f).

We have to show that
e

(R0∪(β−1(R1)/∼0))
+

−−−−−−−−−−−−−−→ f. (21)

Let R′0 = β(R0)/∼1. By our choice of e and f , there exist a sequence (e0, e1, . . . , en)
in E1 with n ≥ 1 such that

β(e) = e0 ∧ β(f) = en ∧ ∀0 ≤ i < n. (ei
R′0−−→ ei+1 ∨ ei

R1−−→ ei+1).

We will show (21) by induction on the number of times that the first disjunct involving
R′0 holds.

The base case is that it never holds for any element in the sequence (e0, . . . , en). In
this case, we have

β(e) = e0
R+

1−−→ en = β(f).

ButR1 is transitive by assumption. Hence, β(e)
R1−−→ β(f), which then gives the desired

(21).
Now let us consider the inductive case. In this case, there exists 0 ≤ j < n such

that ej
R′0−−→ ej+1. Unpacking this, we get ej

β(R0)/∼1−−−−−−→ ej+1, which is equivalent to the
following:

∃e′j , e′j+1 ∈ E1.(
ej ∼1 e

′
j

β(R0)−−−−→ e′j+1 ∼1 ej+1 ∧
(
(ej = e′j ∧ e′j+1 = ej+1) ∨ (ej 6∼1 ej+1)

))
.

(22)
The first conjunct above implies that

∃e′′j , e′′j+1 ∈ E0. β(e′′j ) = e′j ∧ β(e′′j+1) = e′j+1 ∧ e′′j
R0−−→ e′′j+1.

Let

k = min{i | ei ∼1 β(e′′j ) ∧ 0 ≤ i ≤ j} and

l = max{i | β(e′′j+1) ∼1 ei ∧ j + 1 ≤ i ≤ n}.

Because of Lemmas 23 and 24,

(R′0 ∪R1)/(∼1) = ((β(R0)/∼1)/∼1)∪ (R1/∼1) = (β(R0)/∼1)∪R1 = (R′0 ∪R1).

Hence,

((k > 0 ∧ ek−1
R′0∪R1−−−−→ β(e′′j )) ∨ (k = 0 ∧ β(e) ∼1 β(e′′j )))

∧ ((l < n ∧ β(e′′j+1)
R′0∪R1−−−−→ el+1) ∨ (l = n ∧ β(e′′j+1) ∼1 β(f)))



Since β reflects ∼1, the above formula implies

((β(e)
(R′0∪R1)

+

−−−−−−−→ β(e′′j ) ∧ e 6∼0 e
′′
j ) ∨ (e ∼0 e

′′
j ))

∧ ((β(e′′j+1)
(R′0∪R1)

+

−−−−−−−→ β(f) ∧ e′′j+1 6∼0 f) ∨ (e′′j+1 ∼0 f)).

By the induction hypothesis, the above formula implies that

((e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ e′′j ) ∨ (e ∼0 e
′′
j ))

∧ ((e′′j+1

(R0∪(β−1(R1)/∼0))
+

−−−−−−−−−−−−−−→ f) ∨ (e′′j+1 ∼0 f)).

We do the case analysis depending on which disjunct holds in the two conjuncts above.

1. Subcase e ∼0 e
′′
j and e′′j+1 ∼0 f : Since e′′j

R0−−→ e′′j+1 and e 6∼0 f by assumption,

e
R0/∼0−−−−→ f.

Since R0 is ∼0-factored, this gives the desired (21).
2. Subcase e ∼0 e

′′
j and e′′j+1 6∼0 f : Then,

e′′j+1

(R0∪(β−1(R1)/∼0))
+

−−−−−−−−−−−−−−→ f. (23)

We consider two cases depending on whether e 6∼0 e
′′
j+1. Suppose that e 6∼0 e

′′
j+1.

Then, since e′′j
R0−−→ e′′j+1,

e
R0/∼0−−−−→ e′′j+1.

SinceR0 is∼0-factored (i.e.,R0/∼0 = R0), this and the relationship in (23) imply
that

e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ f.

Now suppose that e ∼0 e′′j+1. Then, since e 6∼0 f by assumption and (R0 ∪
(β−1(R1)/∼0))+ is ∼0-factored, the relationship in (23) implies that

e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ f.

3. Subcase e 6∼0 e
′′
j and e′′j+1 ∼0 f : This subcase is symmetric to the previous one.

4. Subcase e 6∼0 e
′′
j and e′′j+1 6∼0 f : Then,

e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ e′′j ∧ e′′j+1

(R0∪(β−1(R1)/∼0))
+

−−−−−−−−−−−−−−→ f.

Since e′′j
R0−−→ e′′j+1, we get the desired

e
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ f.



This concludes the proof of this lemma. ut

LEMMA 27 For all relations R0 on E0, and R1 on E1, if

R0/∼0 = R0 ∧ R1/∼1 = R1 ∧ R+
1 = R1

∧ both R1 and (R0 ∪ (β−1(R1)/∼0)) are acyclic

∧ β(R0 ∩ ∼0)− id ⊆ R1

then (((β(R0)− id)/∼1) ∪R1) is acyclic.

PROOF. Let R′0 = (β(R0) − id)/∼1. For the sake of contradiction, suppose that
(R′0 ∪R1) is cyclic. Then, there exist

e0, . . . , en ∈ E1 for some n ≥ 1

such that
(∀0 ≤ i < n. ei

R′0∪R1−−−−→ ei+1) ∧ en
R′0∪R1−−−−→ e0.

We prove that the existence of such a cycle leads to contradiction, using induction on
the number of times that R′0 is used in the cycle.

The base case is that R′0 is not used at all. In this case, the sequence (e0, . . . , en)
demonstrates that R1 is cyclic. This contradicts our acyclicity assumption on R1.

Let us move on to the inductive case. Suppose that R′0 is used m > 0 times in the
cycle (e0, . . . , en). Then, there exists 0 ≤ k ≤ n such that

ek
R′0−−→ e(k+1)mod (n+1).

By the definition of R′0, there exist e, f ∈ E0 such that

β(e) 6= β(f) ∧ e
R0−−→ f ∧

((β(e) = ek ∧ β(f) = e(k+1)mod (n+1)) ∨
(ek ∼1 β(e) ∧ β(f) ∼1 e(k+1)mod (n+1) ∧ ek 6∼1 e(k+1)mod (n+1))).

The second disjunct in the last conjunct implies that

β(e) 6∼1 β(f)

Hence, regardless of whether the first or second disjunct holds in the last conjunct, we
have that

(β(f)
(R′0∪R1)

+/∼1−−−−−−−−−→ β(e)). (24)

We do the case analysis on whether e ∼0 f . Suppose that e ∼0 f . Then,

β(e)
β(R0∩∼0)−id−−−−−−−−−→ β(f).

Thus, by the assumption that β(R0 ∩ ∼0)− id ⊆ R1,

β(e)
R1−−→ β(f).



This means that the cycle (e0, . . . , en) can be formed by using R′0 in m − 1 times as
well. This lets us use the induction hypothesis and obtain contradiction.

Suppose now that e 6∼0 f . Since ∼0 is symmetric, f 6∼0 e. Using this fact, we start
from (24) and reason as follows:

(β(f)
(R′0∪R1)

+/∼1−−−−−−−−−→ β(e)) =⇒ (β(f)
(R′0∪R1)

+

−−−−−−−→ β(e))

=⇒ (β(f)
(β(R0)/∼1∪R1)

+

−−−−−−−−−−−→ β(e))

=⇒ (f
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ e).

The first implication holds because all of R′0, R1 and R′0 ∪ R1 are ∼1-factored (Lem-
mas 23 and 24), and the set of such ∼1-factored relations is closed under the transitive
closure operation (Lemma 25). The second implication unrolls the definition of R′0 and
uses the monotonicity of λR′. (R′/∼1 ∪R1)+ (Lemma 23). The last implication holds
because of Lemma 26. Since

e
R0−−→ f,

we have that
e

(R0∪(β−1(R1)/∼0))
+

−−−−−−−−−−−−−−→ e,

which contradicts the acyclicity of (R0 ∪ (β−1(R1)/∼0))+. ut

We call a relation R (not necessarily a strict partial order) prefix-finite if for every
e, {f | (f, e) ∈ R+} is finite.

LEMMA 28 For all relations R,S on a set E, if R is prefix-finite but (R ∪ S) is not,
there exists e ∈ E such that

{f | f S ∪ (S;(R∪S)∗;S)−−−−−−−−−−−→ e}

is infinite. Here (−;−) is the usual operation for relational composition.

PROOF. Consider relations R,S on a set E such that R is prefix-finite but (R ∪ S) is
not. Let

R0 = (R ∪ S).

Since R0 is not prefix-finite, there exists e ∈ E such that

E′ = {f | f
R+

0−−→ e}

is infinite. Since R is prefix-finite, there should be infinitely-many elements of E′ that
are not related to e via R+. This means that the following subset of E′ is infinite:

E′′ = {f | ∃ef ∈ E. f
R∗0 ;S−−−→ ef

R∗−−→ e}.

Pick a witness ef for each f in E′′ that satisfies the condition in the definition of E′′.
Because of the prefix-finiteness of R, the set of these chosen witnesses ef has to be



finite. This means that one witness ef is reused infinitely-many times so that it is related
to infinitely-many different f ’s in the set E′′ above. Let us denote this witness by ew.
By the reasoning just given, the set

E′′′ = {f | f R∗0 ;S−−−→ ew}.

is infinite. Now notice that E′′′ satisfies the following equality:

E′′′ = {f | ∃e′f ∈ E. f
R∗−−→ e′f

S ∪ (S;R∗0 ;S)−−−−−−−−→ ew}.

Choose a witness e′f for each f ∈ E′′′ that satisfies the condition in the definition ofE′′′

above. This time the set of chosen witnesses e′f is infinite. This is because otherwise
there would exist one witness e′f that is related to infinitely-many elements in E′′′ by
R∗, but the existence of such a witness contradicts the prefix-finiteness of R. Since
there are infinitely-many witnesses e′f , the following set is also infinite:

{e′f | e′f
S ∪ (S;R∗0 ;S)−−−−−−−−→ ew},

as claimed by the lemma. ut

LEMMA 29 For all relations R0 on E0, and R1 on E1, if

R0/∼0 = R0 ∧ R1/∼1 = R1 ∧ R+
1 = R1

∧ both R1 and (R0 ∪ (β−1(R1)/∼0)) are prefix-finite

∧ every equivalence class of ∼1 is finite

then ((β(R0)/∼1) ∪R1) is prefix-finite.

PROOF. Let R′0 = β(R0)/∼1. For the sake of contradiction, suppose that (R′0 ∪ R1)
is not prefix-finite. Note that R1 is prefix-finite by assumption. By Lemma 28, there
exists e ∈ E1 such that

E′1 = {f | f R′0 ∪ (R′0;(R
′
0∪R1)

∗;R′0)−−−−−−−−−−−−−−−→ e}

is infinite. Since every equivalence class of ∼1 is finite, the following subset of E′1 is
also infinite:

E′′1 = {f | f R′0 ∪ (R′0;(R
′
0∪R1)

∗;R′0)−−−−−−−−−−−−−−−→ e ∧ f 6∼1 e}.

Now we can pick countably many elements f1, . . . , fn, . . . from E′′1 such that

∀i, j ≥ 1. i 6= j =⇒ fi 6∼1 fj ,

because, again, every equivalence class of ∼1 is finite. Since fi is in the domain of the
relation R′0 and R′0 = β(R0)/∼1, there exist f ′1, . . . , f

′
n, . . . ∈ E0 such that

(∀i, j ≥ 1. i 6= j =⇒ f ′i 6= f ′j) ∧ (∀i ≥ 1. β(f ′i) ∼1 fi).



Also, since e is in the range of the relation R′0, there exists e′ ∈ E0 such that

e ∼1 β(e′).

Recall that fi 6∼1 e for every i ≥ 1, and that β preserves ∼0. Hence, for every i ≥ 1,

β(f ′i) 6∼1 β(e′) ∧ f ′i 6∼0 e
′. (25)

Also, for every i,

fi
R′0 ∪ (R′0;(R

′
0∪R1)

∗;R′0)−−−−−−−−−−−−−−−→ e,

so that

fi
(R′0∪R1)

+

−−−−−−−→ e.

Since (R′0 ∪ R1)+ is ∼1-factored (Lemmas 23, 24 and 25), the above relationship and
the property in (25) imply that

β(f ′i)
(R′0∪R1)

+

−−−−−−−→ β(e′) for every i ≥ 1.

Because of (25), we can apply Lemma 26 here and derive

f ′i
(R0∪(β−1(R1)/∼0))

+

−−−−−−−−−−−−−−→ e′ for every i ≥ 1.

This contradicts the prefix-finiteness of (R0 ∪ (β−1(R1)/∼0)), the assumption of this
lemma. ut

D.2 Generalised axioms and lifting operation

For X ∈ Exec and R ⊆ (X.E)2 we write (X,R) |=CCS F if X |= F and X satisfies
the following version of the axioms CAUSALVIS and CAUSALAR, and the additional
axiom PREFIXFINITEAR′:

CAUSALVIS′. ((X.so ∪X.vis ∪R)/(X.∼))+ ∩ sameobj(X) ⊆ X.vis.
CAUSALAR′. (X.so ∪X.ar ∪R)/(X.∼) is acyclic.
PREFIXFINITEAR′. (X.so ∪X.ar ∪R)/(X.∼) is prefix-finite.

We write X |=CCS F if X |= F and X satisfies CAUSALVIS and CAUSALAR (but not
necessarily EVENTUAL).

For

X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, β : X.E → H ′.E

we define

lift(X,H ′, R, β) = (H ′, ((H ′.so ∪ (β(X.vis)− id) ∪R)/(H ′.∼))+,

((H ′.so ∪ (β(X.ar)− id) ∪R)/(H ′.∼))+).

LEMMA 30 For all

X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, (β, ρ) : X.H → H ′,

if R′ = H ′.so ∪ (R/(H ′.∼)) is acyclic and prefix-finite, and (X,β−1(R′+)) satisfies
CAUSALVIS′, CAUSALAR′ and PREFIXFINITEAR′, then lift(X,H ′, R, β) is an execu-
tion satisfying CAUSALVIS and CAUSALAR.



PROOF. Let
X = (H, vis, ar) = ((E, label, so,∼), vis, ar);

H ′ = (E′, label′, so′,∼′);
vis′ = ((so′ ∪ (β(vis)− id) ∪R)/∼′)+;

ar′ = ((so′ ∪ (β(ar)− id) ∪R)/∼′)+.

Recall that β preserves ∼ and reflects ∼′ by Lemma 14. We will use this fact without
mentioning it explicitly in this proof.

We need to discharge the following four requirements:

1. vis′ ⊆ ar′;
2. vis′ and ar′ are defined on the same object (in this case ω);
3. vis′ and ar′ are prefix-finite strict partial orders on E′; and
4. (H ′, vis′, ar′) satisfies CAUSALVIS and CAUSALAR.

The first requirement holds because vis ⊆ ar, and vis′ and ar′ are obtained by applying
the following monotone operation on those vis and ar:

λR0. ((so′ ∪ (β(R0)− id) ∪R)/∼′)+.

This operation is monotone because it uses only monotone operators; for the mono-
tonicity of (−/∼′), see Lemma 23. The second requirement is an immediate conse-
quence of the assumption that H ′ ∈ Hist(ω). Since vis′ and ar′ are both transitive by
definition and ar′ includes vis′, the third requirement follows if we show that ar′ is
acyclic and prefix-finite. We will prove the acyclicity of ar′ later when we discharge the
last requirement, in particular, the CAUSALAR axiom. For the prefix-finiteness of ar′,
we first notice that

ar′ = ((so′ ∪ (β(ar)− id) ∪R)/∼′)+

= ((so′/∼′) ∪ ((β(ar)− id)/∼′) ∪ (R/∼′))+

= (so′ ∪ ((β(ar)− id)/∼′) ∪ (R/∼′))+

= (((β(ar)− id)/∼′) ∪ (so′ ∪ (R/∼′)))+

= (((β(ar)− id)/∼′) ∪R′)+

⊆ ((β(ar/∼)/∼′) ∪R′+)+.

The second equality holds because the factoring distributes over union (Lemma 24),
and the third follows from the fact that so′ is ∼′-factored. The fifth equality just rolls
the definition of R′, and the last subset relationship uses the monotonicity of factoring
(Lemma 23). Note that sinceR′ is∼′-factored, so isR′+ (Lemma 25). Furthermore,∼′
is the equivalence relation from the history H ′, all of its equivalence classes are finite
sets. Thus, by Lemma 29, it suffices to prove the prefix-finiteness of

R′+ and (ar/∼) ∪ (β−1(R′+)/∼).

By assumption, R′ is prefix-finite, so R′+ is prefix-finite as well. For the latter relation,
we have

(ar/∼) ∪ (β−1(R′+)/∼) = (ar ∪ β−1(R′+))/∼



since the factoring operation preserves union (Lemma 24). The RHS of the equation
above is prefix-finite because (X,β−1(R′+)) satisfies the PREFIXFINITEAR′ axiom.

The rest of the proof focuses on showing the fourth requirement.

CAUSALVIS. We prove the axiom as follows:

((so′ ∪ vis′)/∼′)+ = ((so′/∼′) ∪ (vis′/∼′))+

= ((so′/∼′) ∪ (((so′ ∪ (β(vis)− id) ∪R)/∼′)+/∼′))+

= ((so′/∼′) ∪ ((so′ ∪ (β(vis)− id) ∪R)/∼′)+)+

= ((so′/∼′) ∪ ((so′ ∪ (β(vis)− id) ∪R)/∼′))+

= ((so′ ∪ (β(vis)− id) ∪R)/∼′)+

= vis′.

The first equality holds because factoring distributes over union (Lemma 24), and the
second simply unrolls the definition of vis′. The third equality uses the fact that the
set of factored relations is closed under transitive closure (Lemma 25), and the next
equality is a simple fact on transitive closure. The fifth equality uses the distributivity
of factoring over union (Lemma 24). The last equality is just the rolling of the definition
of vis′.

CAUSALAR. We need to prove the acyclicity of the following relation:

(so′ ∪ ar′)/∼′ = (so′ ∪ ((so′ ∪ (β(ar)− id) ∪R)/∼′)+)/∼′.

We simplify the RHS of this equation using properties of ∼′:

(so′ ∪ ((so′ ∪ (β(ar)− id) ∪R)/∼′)+)/∼′

= (so′/∼′) ∪ (((so′ ∪ (β(ar)− id) ∪R)/∼′)+/∼′)
= (so′/∼′) ∪ ((so′ ∪ (β(ar)− id) ∪R)/∼′)+

= (so′/∼′) ∪ ((so′/∼′) ∪ ((β(ar)− id)/∼′) ∪ (R/∼′))+

= ((so′/∼′) ∪ ((β(ar)− id)/∼′) ∪ (R/∼′))+

= (so′ ∪ ((β(ar)− id)/∼′) ∪ (R/∼′))+

= (((β(ar)− id)/∼′) ∪R′)+

= (((β(ar)− id)/∼′) ∪ (R′+))+

= (((β(ar/∼)− id)/∼′) ∪ (R′+))+.

The first equality uses the distributivity of factoring over union, the second follows from
Lemma 25, and the third uses the same distributivity again. The fourth is an immediate
consequence of the transitive closure operation, and the fifth equality holds because
so′/∼′ = so′. The sixth equality rolls the definition of R′. The next equality is a simple
consequence of transitive closure. The last equality holds because β preserves ∼ and
reflects ∼′, so that

((β(ar)− id)/∼′) = ((β(ar/∼)− id)/∼′).



By our simplification above, it is sufficient to prove the acyclicity of the following
relation:

S = ((β(ar/∼)− id)/∼′) ∪ (R′+)).

Note that

(R′+)/∼′ = (so′ ∪ (R/∼′))+/∼′ = (so′ ∪ (R/∼′))+ = R′+.

The second equality holds because (so′ ∪ (R/∼′)) is ∼′-factored (due to so′/∼′ = so′

and Lemmas 23 and 24) and the set of∼′-factored relations is closed under the transitive
closure operator (Lemma 25). Furthermore, ar/∼ is∼-factored (Lemma 23). Hence, by
Lemma 27, to show the acyclicity of S, it suffices to prove the facts below:

1. The relations R′+ and ((ar/∼) ∪ (β−1(R′+)/∼)) are acyclic.
2. β((ar/∼) ∩ ∼)− id ⊆ R′+.

The acyclicity of R′+ is one of the assumptions of this lemma. The other relation
((ar/∼) ∪ (β−1(R′+)/∼)) is same as

(ar ∪ β−1(R′+))/∼

by Lemma 24. Hence, its acyclicity follows from the fact that (X,β−1(R′+)) satisfies
CAUSALAR′. For the second condition, consider e, f ∈ X.E such that

β(e) 6= β(f) ∧ e
(ar/∼)∩∼−−−−−−→ f.

By the definition of factoring, the latter condition implies that e ar−→ f and e ∼ f . Since
e ∼ f , we have

e
so−→ f ∨ f

so−→ e.

The second disjunct here is not possible because it would contradict the fact that X
satisfies the CAUSALAR axiom. Thus, the first disjunct holds, from which it follows
that

β(e)
β(so)−−−→ β(f).

Since β(e) 6= β(f) and (β, ρ) is a morphism from X.H to H ′, the above relationship
implies

(β(e), β(f)) ∈ so′ ⊆ R′+,

as desired. ut

LEMMA 31 For all

X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, (β, ρ) : X.H → H ′,

if R′ = H ′.so ∪ (R/(H ′.∼)) is acyclic and prefix-finite, and (X,β−1(R′+)) satisfies
CAUSALVIS′ and CAUSALAR′, then (β, ρ) is a morphism from X to lift(X,H ′, R, β).



PROOF. Let X ′ = lift(X,H ′, R, β). By assumption, (β, ρ) is a morphism from X.H
to X ′.H . Furthermore, X ′ is an execution by Lemma 30. Thus, it is sufficient to prove
that

β(X.vis)− id ⊆ X ′.vis, β−1(X ′.vis) ∩ sameobj(X) ⊆ X.vis,
β(X.ar)− id ⊆ X ′.ar. (26)

The first and the last requirements hold because by the definition of the lift operator, we
have

X ′.vis = ((H ′.so ∪ (β(X.vis)− id) ∪R)/(H ′.∼))+ ⊇ β(X.vis)− id,

X ′.ar = ((H ′.so ∪ (β(X.ar)− id) ∪R)/(H ′.∼))+ ⊇ β(X.ar)− id.

The rest of the proof will focus on showing the second requirement in (26). During
the proof, we will use the fact that β preserves ∼ and reflects ∼′ (Lemma 14), without
mentioning it explicitly.

Let R′ = H ′.so ∪ (R/H ′.∼). To discharge the requirement, we use one important
assumption that (X,β−1(R′+)) satisfies CAUSALVIS′:

X.vis ⊇ ((X.so ∪X.vis ∪ β−1(R′+))/(X.∼))+ ∩ sameobj(X).

Hence, the requirement follows if we show that

((X.so ∪X.vis ∪ β−1(R′+))/(X.∼))+ ⊇ β−1(X ′.vis).

By the definition of X ′, this proof obligation is equivalent to

((X.so ∪X.vis ∪ β−1(R′+))/(X.∼))+

⊇ β−1(((H ′.so ∪ (β(X.vis)− id) ∪R)/(H ′.∼))+).
(27)

But the RHS is the same as

β−1(((H ′.so/H ′.∼) ∪ ((β(X.vis)− id)/H ′.∼) ∪ (R/H ′.∼))+)

because of the distributivity of the factoring−/H ′.∼ with respect to the union operator
(Lemma 24). Since H ′.so/H ′.∼ = H ′.so and R′ = (H ′.so ∪ (R/H ′.∼)),

β−1((H ′.so ∪ ((β(X.vis)− id)/H ′.∼) ∪ (R/H ′.∼))+)

= β−1((((β(X.vis)− id)/H ′.∼) ∪R′)+)

= β−1((((β(X.vis)− id)/H ′.∼) ∪R′+)+).

Meanwhile, the LHS of (27) is the same as

((X.so/X.∼) ∪ (X.vis/X.∼) ∪ (β−1(R′+)/X.∼))+,

because (−/X.∼) distributes over union (Lemma 24). Hence, our proof obligation can
be further simplified to

((X.so/X.∼) ∪ (X.vis/X.∼) ∪ (β−1(R′+)/X.∼))+

⊇ β−1((((β(X.vis)− id)/H ′.∼) ∪R′+)+).
(28)



Pick e, f ∈ X.E such that

β(e)
(((β(X.vis)−id)/H′.∼)∪R′+)+−−−−−−−−−−−−−−−−−−−→ β(f). (29)

We have to show that

e
((X.so/X.∼)∪(X.vis/X.∼)∪(β−1(R′+)/X.∼))+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ f. (30)

The rest of our proof uses case split on whether e X.∼−−−→ f .
Assume that e X.∼−−−→ f . Then,

e
X.so−−−→ f ∨ f

X.so−−−→ e.

Note that the first disjunct implies the desired relationship in (30). The second disjunct
also does, because it never holds. To see this, suppose that it did hold. Then, we would
have

β(f) = β(e) ∨ β(f)
H′.so−−−→ β(e).

Both disjuncts here imply the presence of cycle in

(((β(X.vis)− id)/H ′.∼) ∪R′+)+ = (X ′.vis).

This contradicts the fact thatX ′ is an execution (so its visibility relation is a strict partial
order) (Lemma 30).

Now assume that (e, f) 6∈ X.∼. We weaken the relationship in (29) slightly and
derive:

β(e)
((β(X.vis/X.∼)/H′.∼)∪R′+)+−−−−−−−−−−−−−−−−−−−→ β(f) (31)

Note that (X.vis/X.∼) is X.∼-factored (Lemma 23), and also that R′+ is X ′.∼-
factored (Lemma 25). Hence, we can apply Lemma 26 to the relationship in (31), and
obtain

e
((X.vis/X.∼)∪(β−1(R′+)/X.∼))+−−−−−−−−−−−−−−−−−−−−−→ f,

which gives the desired relationship in (30). ut

D.3 Reformulation of data type denotations

Recall that a relationR on a setE is a partial equivalence relation if it is an equivalence
relation on a subsetE0 ofE. This subsetE0 is called the domain ofR, denoted dom(R).

For X ∈ Exec and a partial equivalence relation R on X.E such that R ⊆ X.∼, we
let

proj(X,R) =

((X.E|dom(R), X.label|dom(R), X.so ∩R, X.∼ ∩R), X.vis|dom(R), X.ar|dom(R)).

LEMMA 32 For all X ∈ Exec and partial equivalence relations R on X.E such that
R ⊆ X.∼ and dom(R) is finite, the projection proj(X,R) is also an execution.



PROOF. Consider an execution X ∈ Exec and a partial equivalence relation R on
X.E such that R ⊆ X.∼. Let

((E, label, so,∼), vis, ar) = X, ((E′, label′, so′,∼′), vis′, ar′) = proj(X,R).

First, we discharge the requirements on ∼′. Since R ⊆ ∼, we have that

R = (∼ ∩R) = ∼′.

Hence,∼′ is an equivalence relation on dom(R), which is equal to (E∩dom(R)) = E′.
Also, since ∼′ is included in ∼ and every equivalence class of ∼ is finite, equivalence
classes of ∼′ are also all finite. Finally, for all e, f ∈ E′,

(e ∼′ f) =⇒ ((e ∼ f) ∧ (e
R−→ f))

=⇒ (((e
so−→ f) ∨ (f

so−→ e)) ∧ (e
R−→ f))

=⇒ ((e
so∩R−−−→ f) ∨ (f

so∩R−−−→ e)).

The last implication uses the symmetry of the partial equivalence relation R.
Second, we handle the requirements on so′. Since so′ is obtained by restricting so,

it inherits the prefix-finiteness of so. By the same reason, so′ is irreflexive. It is also
transitive, because it is the intersection of two transitive relations so and R. Thus, to
prove that so′ is a total order on finitely many disjoint subsets of E′, it suffices to find
a partition E of E′ with finitely many components, such that two different elements in
E′ are related by so′ in one way or the other if and only if they belong to the same
part of this partition. Recall that so is the union of total orders on components of some
partition EE = {Ej}j∈J of E. Let ER be the collection of all equivalence classes of R,
and define a new collection of subsets of (E ∩ dom(R)) = E′ as follows:

E = {Ej ∩ ER | Ej ∈ EE ∧ ER ∈ ER}.

Then, E forms a partition ofE′. By construction, so′ relates two different elements e and
f from E′ in one way or the other if and only if e and f belong to the same component
of this partition E . Also, since dom(R) is finite by assumption, E has only finitely many
components. The remaining requirement on so′ is that so′ is ∼′-factored. This follows
from the fact that no e, e′, f, f ′ ∈ E′ satisfy

e ∼′ e′ so′−−→ f ′ ∼′ f ∧ ¬(e ∼′ f).

To see this impossibility, just notice that the above formula implies

e
R−→ e′

R−→ f ′
R−→ f ∧ ¬(e

R−→ f),

which is impossible because R is transitive.
Third, we discharge the conditions on vis′ and ar′. Both are the restrictions of vis

and ar by the same relation dom(R)×dom(R), so they inherit the prefix-finiteness and
irreflexivity of vis and ar, and relate events on the same objects only. Furthermore, by



the same reason and the assumption that vis ⊆ ar, we have that vis′ ⊆ ar′. It remains
to show the transitivity of vis′ and ar′. This is easy because vis′ and ar′ both are the
intersection of two transitive relations: vis andE′×E′ in the case of vis′; ar andE′×E′
in the case of ar′. ut

The next lemma uses the notation of factoring

S/R

for partial equivalence relationsR. The definition of S/R in this case is the same as that
for the original factoring in §3.2.

LEMMA 33 Let X ∈ Exec be an execution and R a partial equivalence relations on
X.E such that R ⊆ X.∼.

1. If X.so is R-factored (i.e., (X.so/R) ⊆ X.so), and X satisfies CAUSALVIS and
CAUSALAR, then proj(X,R) also satisfies CAUSALVIS and CAUSALAR.

2. If dom(R) is closed under taking the inverse image with respect to X.vis, that is,

{e | ∃f ∈ dom(R). e
X.vis−−−→ f} ⊆ dom(R),

then
∀F. (X |= F =⇒ proj(X,R) |= F).

PROOF. Consider an execution X ∈ Exec and a partial equivalence relation R on
X.E such that R ⊆ X.∼. Let

((E, label, so,∼), vis, ar) = X, ((E′, label′, so′,∼′), vis′, ar′) = proj(X,R).

We first prove the claim of the lemma regarding the CAUSALAR and CAUSALVIS
axioms. Assume that X.so is R-factored and the execution X satisfies CAUSALAR and
CAUSALVIS.

Note that in order to prove proj(X,R) satisfies CAUSALAR, we just need to show
that

((ar′ ∪ so′)/∼′) ⊆ ((ar ∪ so)/∼), (32)

because X already satisfies CAUSALAR and the RHS relation above is already acyclic.
Let us simplify the proof obligation in (32) slightly by reasoning about its LHS as
follows:

((ar′ ∪ so′)/∼′) = ((ar′/∼′) ∪ (so′/∼′)) = ((ar′/∼′) ∪ so′) ⊆ ((ar′/∼′) ∪ so).

Here the first equality uses the distributivity of factoring over union (Lemma 24), the
second uses the fact that so′ is ∼′-factored, and the last subset relation holds because
so′ is defined as the intersection of so with R. Our transformation above implies that in
order to prove (32), it suffices to show

(ar′/∼′) ⊆ ((ar/∼) ∪ so).



Since ar′ ⊆ ar as well, we can further simplify the above subset relationship to the
following property:

∀e, e′, f, f ′ ∈ dom(R). ((e ∼′ e′ ar′−→ f ′ ∼′ f) ∧ ¬(e ∼′ f)) =⇒ (e
(ar/∼)∪so−−−−−−→ f).

(33)
Pick e, e′, f, f ′ that satisfy the assumption of the implication in (33). If ¬(e ∼ f), then

e
ar/∼−−−→ f , because ∼′ ⊆ ∼ and ar′ ⊆ ar. The desired conclusion in (33) follows from

this. If e ∼ f , we have
(e

so−→ f) ∨ (f
so−→ e).

The first disjunct immediately implies the conclusion of (33). The second disjunct is,
on the other hand, not possible. Suppose that it was. Since e 6∼′ f , we also have that
e′ 6∼′ f ′. Furthermore, so isR-factored and∼′ is the same asR. Hence, we should have
that

f ′
so−→ e′.

This means that (so ∪ ar) is cyclic, which contradicts the assumption that X satisfies
CAUSALAR.

Our proof that proj(X,R) satisfies CAUSALVIS has a similar structure as the proof
that we have just given. In this case, we should show that

((vis′ ∪ so′)/∼′)+ ⊆ vis′.

By definition, the LHS relation is defined over E′, and the RHS relation is the same as
vis ∩ (E′ × E′). Thus, the above subset relationship is equivalent to

((vis′ ∪ so′)/∼′)+ ⊆ vis.

Meanwhile, since X satisfies CAUSALVIS, we have that

((vis ∪ so)/∼)+ ⊆ vis.

Hence, it suffices to prove that

((vis′ ∪ so′)/∼′) ⊆ ((vis ∪ so)/∼).

Recall that the factoring distributes over union (Lemma 24), and that so′ and so are
already factored via ∼′ and ∼, respectively. Hence, we can further simplify the above
subset relationship as follows:

((vis′/∼′) ∪ so′) ⊆ ((vis/∼) ∪ so). (34)

But so′ = (so ∩∼′) ⊆ so and vis′ = (vis ∩ (E′ ×E′)) ⊆ vis. Hence, one way to prove
the subset relationship in (34) is to show that

∀e, e′, f, f ′ ∈ E′. ((e ∼′ e′ vis−→ f ′ ∼′ f) ∧ ¬(e ∼′ f)) =⇒ (e
(vis/∼)∪so−−−−−−→ f). (35)

Pick e, e′, f, f ′ from E′ that satisfy the assumption of the implication above. If ¬(e ∼
f), then e

vis/∼−−−→ f and the desired conclusion of (35) follows. If (e ∼ f), then

(e
so−→ f) ∨ (f

so−→ e).



If the first disjunct holds, the conclusion of (35) follows immediately. The second dis-
junct, on the other hand, never holds. This is because otherwise we have f ′ so−→ e′, so
that

f ′
vis−→ e′.

But we already have e′ vis−→ f ′, so by the transitivity of vis, we get e′ vis−→ e′, which
contradicts the irreflexivity of vis.

We now move on to the next claim of the lemma. Assume that

{e | ∃f ∈ dom(R). e
X.vis−−−→ f} ⊆ dom(R).

Consider a specification map F such thatX |= F. We should show that proj(X,R) |= F.
Let X ′ = proj(X,R). Pick e ∈ E′ such that X ′.obj(e) ∈ dom(F). Define

N = ctxt(X, e) and N ′ = ctxt(X ′, e).

We need to prove that
X ′.rval(e) = F(X ′.obj(e))(N ′).

This proof obligation can be discharged if we show that N = N ′. This is because from
this equality follows that

X ′.rval(e) = X.rval(e) = F(X.obj(e))(N) = F(X ′.obj(e))(N ′).

Proving the equality N = N ′ is easy. Since dom(R) is closed under taking the inverse
image with respect to X.vis and it is the same as E′, we have that

{f ∈ E | (f, e) ∈ X.vis} = ({f ∈ E | (f, e) ∈ X.vis} ∩ E′)
= {f ∈ E′ | (f, e) ∈ X.vis× (E′ × E′)}
= {f ∈ E′ | (f, e) ∈ X ′.vis}.

The desired equality N = N ′ follows from this. ut

For a function β : E → E′ and a subset E′0 ⊆ E′, we define a partial equivalence
relation on E as follows:

per(β,E′0) = {(e, f) | e, f ∈ E ∧ β(e) = β(f) ∧ β(e) ∈ E′0}.

COROLLARY 34 For all objects ω, executions X ∈ Exec and X ′ ∈ Exec(ω), mor-
phisms (β, ρ) : X → X ′, specification maps F, and subsets E′0 of X ′.E, if E′0 is finite
and closed under the inverse image of X ′.vis, then the projection proj(X, per(β,E′0))
is an execution. Furthermore, if X satisfies CAUSALVIS, CAUSALAR, and F, then so
does the projection.

We sometimes denote the projection proj(X, per(β,E′0)) in this corollary using a sim-
pler notation:

proj(X,β,E′0).



PROOF OF COROLLARY 34. Pick

ω ∈ Obj, X ∈ Exec, X ′ ∈ Exec(ω), (β, ρ) : X → X ′, F

that satisfy the assumptions of this corollary. Also choose a finite subset E′0 of X ′.E.
Let

R = per(β,E′0).

We will derive the claimed conclusion of the corollary using Lemmas 32 and 33. Specif-
ically, we will show that

dom(R) is finite ∧ R ⊆ X.∼ ∧ (X.so/R) ⊆ X.so
∧ {e | ∃f ∈ dom(R). e

X.vis−−−→ f} ⊆ dom(R).

(36)

The first conjunct of (36) is a consequence of the facts that E′0 is finite and the
inverse image of β for a finite set is also finite—the image should be the finite union
of the event sets of histories selected from ρ(p, b) for some (p, b) but every history in
ρ(p, b) has a finite event set.

We move on to the second conjunct of (36). Consider e, f ∈ E such that e R−→ f .
Then, β(e) = β(f) by the definition of R. Since X ′.∼ is an equivalence relation, this

implies that β(e)
X′.∼−−−→ β(f). Now we use the fact that β reflects the equivalence

relation (Lemma 14), and conclude that e X.∼−−−→ f , as desired.
Next, we prove the third conjunct of (36). Consider e, e′, f, f ′ ∈ X.E such that

e
R−→ e′

X.so−−−→ f ′
R−→ f ∧ ¬(e

R−→ f).

If ¬(e
X.∼−−−→ f), we have that

e
X.so/X.∼−−−−−−→ f,

because R ⊆ X.∼. But X.so is already X.∼-factored, so e X.so−−−→ f , as desired. Now
assume that e X.∼−−−→ f . Then,

(e
X.so−−−→ f) ∨ (f

X.so−−−→ e).

The first disjunct is the very conclusion that we look for. The second disjunct, on the
other hand, never holds. Suppose that it did. Note that

β(e) 6= β(f) ∧ β(e′) 6= β(f ′)

because ¬(e
R−→ f) but e R−→ e′ and f ′ R−→ f . Then, by the definition of morphism,

β(f)
X′.so−−−→ β(e) ∧ β(e′)

X′.so−−−→ β(f ′).

Since β(e) = β(e′) and β(f) = β(f ′), the relationships above imply that X ′.so is
reflexive, which contradicts the fact that X ′.so is a strict partial order.



Finally, we show the last conjunct of (36). Pick e, f ∈ X.E such that

f ∈ dom(R) ∧ e
X.vis−−−→ f.

If β(e) = β(f), then e R−→ f , so e should be in dom(R). Otherwise,

β(e)
X′.vis−−−→ β(f).

Recall that by assumption,E′0 is closed under the inverse image ofX ′.vis. Furthermore,
since f ∈ dom(R), we should have that β(f) ∈ E′0. Hence, β(e) ∈ E′0 as well. This
means that e ∈ dom(R). ut

LEMMA 35 For all objects ω, executions X ∈ Exec and X ′ ∈ Exec(ω), morphisms
(β, ρ) : X → X ′, and events e ∈ X ′.E, we have the following well-formed abstraction:

(β, ρ) : proj(X,R)→ (ctxt(X ′, e), e,X ′.rval(e)) where R = per(β, ctxt(X ′, e).E∪{e}).

PROOF. Pick ω,X,X ′, (β, ρ), e. Let

N = ctxt(X ′, e), a = X ′.rval(e), EN = N.E ∪ {e},
R = per(β,EN ), X0 = proj(X,R).

Since X ′.vis is prefix-finite, N.E is finite. Hence, EN is also finite. Furthermore, EN
is closed under the inverse image of X ′.vis, because X ′.vis is transitive. What we have
just shown implies that proj(X,R) is a well-defined execution (Corollary 34). Let

vis′ = N.vis ∪ {(f, e) | f ∈ N.E}, ar′ = N.ar ∪ {(f, e) | f ∈ N.E}.

It suffices to show that

(∀f ∈ (N.E). (X0.H)|β−1(f) ∈ ρ(N.aop(f), X ′.rval(f)))

∧ ((X0.H)|β−1(e) ∈ ρ(N.p, a)) ∧ β(X0.so) ⊆ id

∧ β(X0.∼) ⊆ id ∧ β(X0.vis)− id ⊆ vis′

∧ β(X0.ar)− id ⊆ ar′ ∧ β−1(vis′) ∩ sameobj(X0) ⊆ X0.vis.

(37)

The first two conjuncts of (37) hold because (β, ρ) is a morphism fromX toX ′ and
so, for every f ∈ EN ,

(X0.H)|β−1(f) = (X.H)|β−1(f) ∈ ρ(X ′.aop(f), X ′.rval(f)).

The next two conjuncts of (37) are immediate consequences of the definitions of R
and the projection proj(X,R), as shown below:

β(X0.so) = β(X.so ∩R) ⊆ β(R) ⊆ id,

β(X0.∼) = β(X.∼ ∩R) ⊆ β(R) ⊆ id.



We prove the fifth conjunct of (37) as follows:

β(X0.vis)− id ⊆ (β(X.vis)− id) ∩ (EN × EN )

⊆ X ′.vis ∩ (EN × EN )

= vis′.

Here the first subset relationship holds because X0.vis is a restriction of X.vis and it is
defined over dom(R) = β−1(EN ). The next subset relationship uses the fact that (β, ρ)
is a morphism from X to X ′. The following equality is an immediate consequence of
the definition of vis′.

The proof of the sixth conjunct is similar:

β(X0.ar)− id ⊆ (β(X.ar)− id) ∩ (EN × EN )

⊆ X ′.ar ∩ (EN × EN )

= ar′.

The first subset relationship uses the facts that X0.ar is defined over dom(R) and that
it is a restriction of X.ar. The second subset relationship holds because (β, ρ) is a mor-
phism from X to X ′. The last equality comes from the fact that X ′.ar is an acyclic
relation and includes X ′.vis.

Finally, we prove the last conjunct of (37) as follows:

β−1(vis′) ∩ sameobj(X0) ⊆ (β−1(X ′.vis) ∩ sameobj(X)) ∩ (dom(R)× dom(R))

⊆ X.vis ∩ (dom(R)× dom(R))

= X0.vis.

The first subset relationship uses the definitions of vis′ and X0, the second comes from
the fact that (β, ρ) is a morphism from X to X ′, and the following equality follows
from the definition of X0.vis. ut

PROPOSITION 36 For all

F, X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, (β, ρ) : X.H → H ′

if R′ = (H ′.so ∪ (R/H ′.∼)) is acyclic and prefix-finite, and (X,β−1(R′+)) |=CCS F,
then the following properties hold for X ′ = lift(X,H ′, R, β):

1. X ′ is an execution, and satisfies CAUSALVIS and CAUSALAR.
2. (β, ρ) is a morphism from X to X ′.
3. For every e ∈ X ′.E, if we let R0 = per(β, {e} ∪ ctxt(X ′, e).E), then

proj(X,R0) |=CC F ∧ (β, ρ) : proj(X,R0)→ (ctxt(X ′, e), e,X ′.rval(e)).

PROOF. The first property follows from Lemma 30, and the second from Lemma 31.
For the third property, we note that since (X,β−1(R′+)) |=CCS F,

X |=CC F.



Pick e ∈ X ′.E. Let

EN = {e} ∪ ctxt(X ′, e).E and R0 = per(β,EN ).

Then, sinceX ′.vis is prefix-finite,EN is finite. Also, it is closed under the inverse image
of X ′.vis. Thus, by Corollary 34, proj(X,R0) is an execution such that

proj(X,R0) |=CC F.

Furthermore, by Lemma 35, we have the following well-defined abstraction:

(β, ρ) : proj(X,R0)→ (ctxt(X ′, e), e,X ′.rval(e)).

ut

LEMMA 37 For all F , F and ρ, we have that

∀N. ∀(X, a) ∈ γ(N, ρ,F). F (N) = a

if and only if for all

X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, β : X.E → H ′.E,

we have that(
(β, ρ) : X.H → H ′ ∧ (H ′.so ∪ (R/H ′.∼)) is acyclic and prefix-finite

∧ (X,β−1
(
(H ′.so ∪ (R/H ′.∼))+

)
) |=CCS F

)
=⇒ lift(X,H ′, R, β) |=CC [ω 7→ F ]

PROOF. Consider arbitrary F , F and ρ. We show the equivalence in the proposition
for these F , F and ρ.

“Only if”. Pick

X ∈ Exec, ω ∈ Obj, H ′ ∈ Hist(ω), R ⊆ (H ′.E)2, β ∈ [X.E → H ′.E]

such that

(β, ρ) : X.H → H ′ ∧ (H ′.so ∪ (R/H ′.∼)) is acyclic and prefix-finite

∧ (X,β−1
(
(H ′.so ∪ (R/H ′.∼))+

)
) |=CCS F.

We need to show that
lift(X,H ′, R, β) |= [ω 7→ F ].

Let
X ′ = lift(X,H ′, R, β).

By Proposition 36, X ′ is an execution satisfying CAUSALVIS and CAUSALAR. Hence,
it is sufficient to prove that

X ′ |= [ω 7→ F ].



Pick e ∈ X ′.E. Then,
X ′.obj(e) = ω.

Let

N = ctxt(X ′, e), a = X ′.rval(e), and R0 = per(β, {e} ∪N.E).

Then by Proposition 36,

proj(X,R0) |=CC F ∧ (β, ρ) : proj(X,R0)→ (N, e, a).

This implies that
(proj(X,R0), a) ∈ γ(N, ρ,F).

Thus, by the assumption of the proposition,

F (N) = a.

We have just shown that X ′ |= [ω 7→ F ], as required.

“If”. Pick
N and (X, a) ∈ γ(N, ρ,F).

We have to prove that
F (N) = a.

Since (X, a) ∈ γ(N, ρ,F), there exist β and e such that

e 6∈ N.E ∧ (β, ρ) : X → (N, e, a) ∧ X |=CC F.

By the second conjunct here, for every f ∈ N.E, there exists af ∈ Val such that

(X.H)|β−1(f) ∈ ρ(N.aop(f), af ).

We abuse the notations slightly and let ae = a and N.aop(e) = N.p. Pick an arbitrary
object ω ∈ Obj. Define an execution X ′ as follows:

X ′.E = N.E ] {e′} ∧ X ′.label(f) = (ω,N.aop(f), af ) (for all f ∈ N.E ∪ {e})
∧ X ′.so = ∅ ∧ X ′.∼ = id

∧ X ′.vis = N.vis ∪ {(f, e) | f ∈ N.E}
∧ X ′.ar = N.ar ∪ {(f, e) | f ∈ N.E}.

It is relatively easy to check that X ′ is an execution, if we do not forget to use the
following facts: (i) X ′.E = N.E ∪ {e} is finite; (ii) e is not in N.E; (iii) both N.vis
and N.ar are strict partial orders; (iv) N.vis ⊆ N.ar. Also, since (β, ρ) is an abstraction
from X to (N, e, a), we have the following morphism from X to X ′:

(β, ρ) : X → X ′.

Let
H ′ = X ′.H and R′ = H ′.so ∪ (X ′.vis/H ′.∼).



Then, R′ = X ′.vis. Hence, it is acyclic. This also implies that R′ is prefix-finite, be-
cause it is defined over the finite set X ′.E. We will next show that (X,β−1(R′+))
satisfies CAUSALVIS′, CAUSALAR′ and PREFIXFINITEAR′.

Let us start with CAUSALVIS′. Note that, since X ′.vis is transitive,

β−1(R′+) = β−1((X ′.vis)+) = β−1(X ′.vis).

Using X ′.so = ∅, X ′.∼ = id and properties of β, we get

β(X.so ∪X.vis)− id = (β(X.so)− id) ∪ (β(X.vis)− id)

⊆ X ′.so ∪X ′.vis
= X ′.vis.

From these observations and the same fact that X ′.so is the empty relation and X ′.∼ is
the identity relation we derive the following equalities:

((X.so ∪X.vis ∪ β−1(R′+))/X.∼)+

= ((X.so ∪X.vis ∪ β−1(X ′.vis+))/X.∼)+

= ((X.so ∪X.vis ∪ β−1(X ′.vis))/X.∼)+

= (((X.so ∪X.vis)/X.∼) ∪ (β−1(X ′.vis)/X.∼))+

= (((X.so ∪X.vis)/X.∼) ∪ β−1(X ′.vis))+

= ((X.so ∪X.vis)/X.∼)+ ∪ (β−1(X ′.vis))+

= ((X.so ∪X.vis)/X.∼)+ ∪ β−1(X ′.vis).

The first equality holds because R′ = X ′.vis, the second follows from the transitivity
of X ′.vis, and the third uses the distributivity of the quotienting over the relation union.
The fourth follows from the fact that for all e1, e2, e3, e4 ∈ X.E,

((e1, e2) ∈ X.∼ ∧ (e2, e3) ∈ β−1(X ′.vis) ∧ (e3, e4) ∈ X.∼)
=⇒ (e1, e4) ∈ β−1(X ′.vis).

(38)

The last equality holds because the inverse image of a transitive relation is also transi-
tive. The most tricky part is the fifth equality. It holds because for all e0, e1, e2, e3, e4 ∈
X.E,

((e0, e1)∈X.∼ ∧ (e1, e2)∈ (X.so∪X.vis) ∧ (e2, e3)∈X.∼ ∧ (e3, e4)∈β−1(X ′.vis))

=⇒ ((e0, e1) ∈ X.∼ ∧ (e1, e2) ∈ (X.so ∪X.vis) ∧ (e2, e4) ∈ β−1(X ′.vis))

=⇒ ((e0, e1) ∈ X.∼ ∧ (e1, e4) ∈ β−1(X ′.vis))

=⇒ (e0, e4) ∈ β−1(X ′.vis),

where the first and third steps use (38) and the second step uses the transitivity ofX ′.vis
and the inclusion β(X.so∪X.vis) ⊆ (id∪X ′.vis). Because of what we have just shown,

((X.so ∪X.vis ∪ β−1(R′+))/(X.∼))+ ∩ sameobj(X)

= ((X.so ∪X.vis)/(X.∼))+ ∩ sameobj(X) ∪ β−1(X ′.vis) ∩ sameobj(X)

⊆ X.vis.



The last subset relationship holds becauseX satisfies the CAUSALVIS axiom and (β, ρ)
is a morphism from X to X ′.

To show CAUSALAR′, we notice that

β((X.so ∪X.vis ∪X.ar)/X.∼)− id ⊆ X ′.vis ∪X ′.ar (39)

and also that

(X.so ∪X.vis ∪X.ar ∪ β−1(R′+))/X.∼
= (X.so ∪X.vis ∪X.ar ∪ β−1(X ′.vis+))/X.∼
= (X.so ∪X.vis ∪X.ar ∪ β−1(X ′.vis))/X.∼
= ((X.so ∪X.vis ∪X.ar)/X.∼) ∪ β−1(X ′.vis).

Furthermore, (X.so∪X.vis∪X.ar)/(X.∼) is acyclic. Thus, if (X.so∪X.vis∪X.ar∪
β−1(R′+))/(X.∼) is cyclic, this cycle should contain an edge from β−1(X ′.vis). But
in this case, because of (39), β maps this cycle to a cycle inX ′ that has edges only from
X ′.vis and X ′.ar. This contradicts the fact that X ′.vis ∪X ′.ar is acyclic.

The last axiom is PREFIXFINITEAR′. Since (β, ρ) is a morphism fromX toX ′ and
X ′.E is finite, X.E should also be finite. This implies the PREFIXFINITEAR′ axiom.

We have thus established that (X,β−1(R′+)) satisfies CAUSALVIS′, CAUSALAR′

and PREFIXFINITEAR′. Since R′ = X ′.vis is acyclic and prefix-finite,
lift(X,H ′, X ′.vis, β) is an execution satisfying CAUSALVIS and CAUSALAR by
Lemma 30. Furthermore, since X |=CC F and H ′ ∈ Hist(ω), by our assumption we
have

lift(X,H ′, X ′.vis, β) |= [ω 7→ F ]. (40)

We now show a certain correspondence between lift(X,H ′, X ′.vis, β) andX ′. First,
their histories are the same since we chose H ′ = X ′.H .

Next,

lift(X,H ′, X ′.vis, β).vis = ((H ′.so ∪ (β(X.vis)− id) ∪X ′.vis)/X ′.∼)+

= ((β(X.vis)− id) ∪X ′.vis)+

= (X ′.vis)+ = X ′.vis.

The second equality holds becauseH ′.so = ∅ andX ′.∼ = id. The third equality comes
from the fact that (β, ρ) is a morphism from X to X ′ and so β(X.vis) − id ⊆ X ′.vis.
The fourth follows from the transitivity of X ′.vis.

Third,

lift(X,H ′, X ′.vis, β).ar = ((H ′.so ∪ (β(X.ar)− id) ∪X ′.vis)/X ′.∼)+

= ((β(X.ar)− id) ∪X ′.vis)+

⊆ (X ′.ar ∪X ′.vis)+

= (X ′.ar)+ = X ′.ar.

The second equality holds because H ′.so = ∅ and X ′.∼ = id. The next inclusion holds
because (β, ρ) is a morphism and so β(X.ar)− id ⊆ X ′.ar. The last two equalities use
the facts that X ′.vis ⊆ X ′.ar and X ′.ar is transitive.



Thus, lift(X,H ′, X ′.vis, β) andX ′ are identical, except the latter may have a bigger
arbitration relation. Since F preserves its value on arbitration extensions (Definition 2),
from (40) we get

X ′ |= [ω 7→ F ].

This in turn gives

a = X ′.rval(e) = F (ctxt(X ′, e)) = F (N),

as required. ut

We compare specifications F, F ′ ⊆ Spec using the following order:

F v F ′

if and only if

∀N ∈ Ctxt. N ∈ dom(F ) =⇒ (N ∈ dom(F ′) ∧ F (N) = F ′(N)).

Using this order, we define an operation that selects minimal specifications from a given
set of specifications: for all F ⊆ Spec,

max(F) = {F ∈ F | ¬∃F ′ ∈ F . F 6= F ′ ∧ F v F ′}.

Then from Lemma 37 we get

COROLLARY 38

{JΓ ` let {xj = new Tj}j=1..m in {o(vin) : vout = atomic {Co}}o∈O : OKη} =

max



{F | ∀obj ∈ [{xj | j = 1..m} →inj Obj]. ∃F ∈ [range(obj )→ Spec].

(∀j = 1..m.F(obj (xj)) ∈ JTjKη) ∧
(∀X ∈ Exec.∀ω ∈ Obj.∀H ′ ∈ Hist(ω).∀R ⊆ (H ′.E)2.∀β : X.E → H ′.E.

((β, J{Co}o∈OK(obj )) : X.H → H ′

∧ (H ′.so ∪ (R/H ′.∼) is acyclic and prefix-finite)

∧ (X,β−1((H ′.so ∪ (R/H ′.∼))+)) |=CCS F)

=⇒ lift(X,H ′, R, β) |=CC [ω 7→ F ])}


.

D.4 Soundness

Throughout this section, we fix an object variable environment {xj : Oj | j = 1..m}
and a collection of commands

{xj : Oj | j = 1..m} | vin, vout ` Co, o ∈ O.

DEFINITION 39 For H,H ′ ∈ Hist we write (β, ρ, ω) : H ⇒ H ′ if the function β :
H.E → H ′.E, summary ρ : AOp×Val⇀ P(FHist) and object ω ∈ Obj are such that

(∀e ∈ H ′.E. (H ′.obj(e) 6= ω =⇒ e ∈ H.E ∧ β(e) = e ∧H.label(e) = H ′.label(e))

∧ (H ′.obj(e) = ω =⇒ e 6∈ H.E ∧H|β−1(e) ∈ ρ(H ′.aop(e), H ′.rval(e))))

∧ β(H.so)− id = (H ′.so)|β(H.E)

∧ β(H.∼) = (H ′.∼)|β(H.E).



We note that (β, ρ, ω) : H ⇒ H ′ implies

∀e, f, g ∈ H.E. e H.so−−−→ f
H.so−−−→ g ∧ β(e) = β(g) =⇒ β(e) = β(f) = β(g), (41)

for otherwise we would have β(e)
H′.so−−−→ β(f)

H′.so−−−→ β(g) and β(e) = β(g), contra-
dicting the transitivity and irreflexivity of H ′.so.

Let

LCM(obj , σ) = {H | H ∈ 〈C〉(obj , σ) ∨ (H, ) ∈ 〈C〉(obj , σ)}.

PROPOSITION 40 Assume

∆ ∪ {x : O} | Σ ` C;

∆ ∪ {xj : Oj | j = 1..m} | Σ ` subst({(x, o) 7→ Co | o ∈ O}, C).

Then

∀obj : dom(∆ ∪ {xj : Oj | j = 1..m})→inj Obj.

∀σ : Σ → Val.∀ω ∈ Obj− range(obj ).

∀H ∈ Lsubst({(x, o) 7→ Co | o ∈ O}, C)M(obj , σ).

∃H ′ ∈ LCM(obj |OVar−{xj |j=1..m}[x 7→ ω], σ).∃β : H.E → H ′.E.

((β, J{Co}o∈OK(obj |{xj |j=1..m}), ω) : H ⇒ H ′).

Let PC range over clients:

PC ::= C1 ‖ . . . ‖ Cn.

We let

〈C1 ‖ . . . ‖ Cn〉obj =
{⊎n

j=1
Hj | ∀j = 1..n.Hj ∈ LCjM(obj , [ ])

}
.

Then the clause for the denotation of a client can be rewritten as

JC1 ‖ . . . ‖ CnK(type, obj ,F)

= {H | H ∈ 〈C1 ‖ . . . ‖ Cn〉obj ∧ ∃vis, ar. (H, vis, ar) |=CC F}.

From Proposition 40 we get

COROLLARY 41 Assume

∅ | ∆ ∪ {x : O} ` PC;

∅ | ∆ ∪ {xj : Oj | j = 1..m} ` subst({(x, o) 7→ Co | o ∈ O}, PC).

Then

∀obj : dom(∆ ∪ {xj : Oj | j = 1..m})→inj Obj.∀ω ∈ Obj− range(obj ).

∀H ∈ 〈subst({(x, o) 7→ Co | o ∈ O}, PC)〉obj .
∃H ′ ∈ 〈PC〉(obj |OVar−{xj |j=1..m}[x 7→ ω]).∃β : H.E → H ′.E.

((β, J{Co}o∈OK(obj ), ω) : H ⇒ H ′).



We now discharge the most difficult case in the soundness direction of Theo-
rem 21—that of the data-type-inlining reduction.

THEOREM 42 (SOUNDNESS) Let

D = (let {xj = new Tj}j=1..m in {o(vin) : vout = atomic {Co}}o∈O);

P 2 = (let x = new D in P );

P 1 = (let {xj = new Tj}j=1..m in subst({(x, o) 7→ Co | o ∈ O}, P )),

where P 1 and P 2 are complete. Then JP 1KCG ⊆ JP 2KCG.

PROOF. Let

∅ | {xio : {oio}} ∪∆ ∪ {x : O} ` P 2
C ;

∅ | {xio : {oio}} ∪∆ ∪ {xj : Oj | j = 1..m} ` P 1
C

be the client parts of P 1 and P 2, respectively, so that

P 1
C = subst({(x, o) 7→ Co | o ∈ O}, P 2

C).

Consider any obj 0 : (dom(∆) ∪ {xio} ∪ {xj | j = 1..m}) →inj Obj such
that obj 0(xio) = io and F0 : (range(obj 0) − {io}) → Spec such that ∀j =
1..m.F0(obj (xj)) ∈ JTjK[ ]. Further, consider any execution

X0 = (H0, vis0, ar0) = ((E0, label0, so0,∼0), vis0, ar0) ∈ JP 1
CK([ ], obj 0,F0).

In the following, we also use selectors such as obj0 for this and other executions. We
also take ω ∈ Obj − range(obj 0) and define obj ′0 = obj 0|OVar−{xj |j=1..m}[x 7→ ω].
Let

F = JDK[ ]; L = range(obj 0|{xj |j=1..m}); F′0 = F0|Obj−L[ω 7→ F ].

The goal of the following development is to construct X ′′0 such that

observ(X0.H) = observ(X ′′0 .H) ∧X ′′0 ∈ JP 2
CK([ ], obj ′0,F′0).

Since X0 ∈ JP 1
CK([ ], obj 0,F0), we have H0 ∈ 〈P 1

C〉obj 0 and X0 |=CC F0. From
the former, by Corollary 41 for some

H ′0 = (E′0, label
′
0, so

′
0,∼′0) ∈ 〈P 2

C〉obj
′
0 (42)

and β0 : H0.E → H ′0.E we have (β0, J{Co}o∈OK(obj ), ω) : H0 ⇒ H ′0.
Let

F = F0|L; obj = obj 0|{xj |j=1..m};

X = (H, vis, ar) = ((E, label, so,∼), vis, ar) = X0|E
and β = β0|E for E = {e | obj′0(β0(e)) = ω};

H ′ = (E′, label′, so′,∼′) = H ′0|E′ for E′ = {e | obj′0(e) = ω};



It is easy to see that

(∀e ∈ E. obj(e) ∈ L) ∧ (∀e ∈ E0 − E. obj0(e) 6∈ L). (43)

Then observ(H0) = observ(H ′0). We also have X ∈ Exec, H ′ ∈ Hist(ω) and
(β, J{Co}o∈OK(obj )) : H → H ′.

For r ⊆ E0×E0 we let lib(r) = r|E and client(r) = r|E0−E ; for r ⊆ E′0×E′0 we
let lib′(r) = r|E′ .

Let

Q = β0(((so0 ∪ vis0)/∼0)+)− id;

R = lib′((so′0 ∪ (Q/∼′0))+);

X ′ = (H ′, ((so′ ∪ (β(vis)− id) ∪R)/∼′)+, ((so′ ∪ (β(ar)− id) ∪R)/∼′)+).

Then, since F = JDK[ ], by Corollary 38 and Lemmas 30 and 31 we get

((((R/∼′) ∪ so′) is acyclic and prefix-finite) ∧ (X,β−1((so′ ∪ (R/∼′))+)) |=CCS F)

=⇒ X ′ ∈ Exec ∧X ′ |=CCS [ω 7→ F ] ∧ (β, J{Co}o∈OK(obj )) : X → X ′.
(44)

Proposition A: Q/∼′0 is transitive. Take e′, f ′, g′ ∈ E′0 such that

e′
Q/∼′0−−−−→ f ′

Q/∼′0−−−−→ g′

and consider three cases.

1. e′ ∼′0 f ′ ∼′0 g′. Then

e′
Q−→ f ′

Q−→ g′.

Taking into account (β0, J{Co}o∈OK(obj ), ω) : H0 ⇒ H ′0, for some e, f1, f2, g ∈
E0 we have

β0(e) = e′; β0(f1) = β0(f2) = f ′; β0(g) = g′;

e
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f1 ∼0 f2
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ g.

Then e ∼0 f1 ∼0 f2 ∼0 g and, hence,

e
so0−−→ f1 ∼0 f2

so0−−→ g

and any pair of the four events is related by so0. The case of g so0−−→ e contra-
dicts (41); hence, e so0−−→ g. If β0(e) = β0(g), then

f ′
so′0−−→ g′

so0−−→ f ′,

contradicting the properties of so′0. Hence, β0(e) 6= β0(g) and (e′, g′) ∈ Q.



2. f ′ 6∼′0 g′. Then for some e′1, f
′
1, f
′
2, g
′
1 ∈ E′0 we have

e′ ∼′0 e′1
Q−→ f ′1 ∼′0 f ′ ∼′0 f ′2

Q−→ g′1 ∼′0 g′.

Hence, for some e1, f1, f2, g1 ∈ E0 we have

β0(e1) = e′1; β0(f1) = f ′1; β0(f2) = f ′2; β0(g1) = g′1;

e1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f1 ∼0 f2
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ g1

and f2 6∼0 g1. Because of the latter, for some f3 ∈ E0 we have

e1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f1 ∼0 f2
(so0∪vis0)/∼0−−−−−−−−−→ f3

((so0∪vis0)/∼0)
+

−−−−−−−−−−−→ g1

and f2 6∼0 f3. By the definition of factoring, this implies

e1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f1
(so0∪vis0)/∼0−−−−−−−−−→ f3

((so0∪vis0)/∼0)
+

−−−−−−−−−−−→ g1,

and f1 6∼0 g1, so that e1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ g1.
Since f1 6∼0 g1, we cannot have e1 ∼0 g1: if this were the case, then similarly to
the above we would be able to show that

f1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ e1,

contradicting CAUSALAR for X0. Since β0(e1) = β0(g1) implies e1 ∼0 g1, we
get that β0(e1) 6= β0(g1) and, therefore, (e′1, g

′
1) ∈ Q. Since e1 6∼0 g1, we cannot

have e′1 6∼0 g
′
1 and, hence, (e′, g′) ∈ Q.

3. e′ 6∼′0 f ′. This case is analogous to the previous one.
�

Proposition B: (so′0 ∪ (Q/∼′0))+ = so′0 ∪ ((so′0)∗; (Q/∼′0); (so′0)∗). Consider
(e′0, f

′
0) ∈ (so′0 ∪ (Q/∼′0))+. Then there is a path from e′0 to f ′0 in so′0 ∪ (Q/∼′0).

By Proposition A, Q/∼′0 and so′0 are transitive. Hence, we can assume that the edges
from these two relations alternate on the path.

Consider first the case when all events on the path are from the same transaction
according to ∼′0. Then every edge is in so′0 ∪Q and, since Q ⊆ Q|β0(E0), the path is in

so′0 ∪ ((so′0)∗; (so′0|β0(E0) ∪Q)+; (so′0)∗)

⊆ so′0 ∪ ((so′0)∗; ((β0(so0)− id) ∪Q)+; (so′0)∗)

⊆ so′0 ∪ ((so′0)∗;Q+; (so′0)∗)

⊆ so′0 ∪ ((so′0)∗;Q/∼′0; (so′0)∗)

as required.
Assume now that the path contains events from at least two different transactions.

We can ensure that the path does not contain edges

e1
so′0∪(Q/∼

′
0)−−−−−−−−→ e2



for e1 ∼′ e2, since, e.g., we can replace any sequence of edges

e1
so′0∪(Q/∼

′
0)−−−−−−−−→ e2

so′0∪(Q/∼
′
0)−−−−−−−−→ . . . en

so′0∪(Q/∼
′
0)−−−−−−−−→ en+1

such that e1 ∼′ e2 ∼′ . . . ∼′ en and en 6∼′ en+1 by a single edge

e1
so′0∪(Q/∼

′
0)−−−−−−−−→ en+1

for which e1 6∼′ en+1.
Assume the path contains a fragment of the form

e′
Q/∼′0−−−−→ f ′

so′0−−→ g′
Q/∼′0−−−−→ h′; (45)

then e′ 6∼′0 f ′, f ′ 6∼′0 g′ and g′ 6∼′0 h′. Then for some e′0, f
′
0, g
′
0, h
′
0 ∈ E′0 we have

e′ ∼′0 e′0
Q−→ f ′0 ∼′0 f ′

so′0−−→ g′ ∼′0 g′0
Q−→ h′0 ∼′0 h′,

Hence,

e′ ∼′0 e′0
Q−→ f ′0

so′0−−→ g′0
Q−→ h′0 ∼′0 h′,

Since Q ⊆ Q|β0(E0), we have

(f ′0, g
′
0) ∈ so′0|β0(E0) = (β0(so0)− id) ⊆ Q,

and thus
e′ ∼′0 e′0

Q−→ f ′0
Q−→ g′0

Q−→ h′0 ∼′0 h′.

This implies

e′
Q/∼′0−−−−→ f ′0

Q/∼′0−−−−→ g′0
Q/∼′0−−−−→ h′.

Then by the transitivity of Q/∼′0 we get

e′
Q/∼′0−−−−→ h′.

In this case we can thus replace the fragment (45) by this edge.
Applying the above steps repeatedly, we can ensure that the path does not have

fragments of the form (45), which means that (e′0, f
′
0) ∈ so′0∪((so′0)∗; (Q/∼′0); (so′0)∗).

�

Proposition C: so′0 ∪ (Q/∼′0) is acyclic. By Proposition B and the facts that so′0 and
Q/∼′0 are transitive and irreflexive, if there is a cycle in so′0 ∪ (Q/∼′0), then it can be
converted into the form

e′
Q/∼′0−−−−→ f ′

so′0−−→ e′.

If e′ ∼′0 f ′, then e′
Q−→ f ′ and, hence, f ′

so′0|β0(E0)−−−−−−→ e′. The latter implies f ′
Q−→ e′,

which yields a contradiction with the acyclicity of Q/∼′0.



Now assume e′ 6∼′0 f ′. Then for some e′0, f
′
0 ∈ E′0 we have

e′ ∼′0 e′0
Q−→ f ′0 ∼′0 f ′

so′0−−→ e′.

This implies

e′0
Q−→ f ′0

so′0−−→ e′0,

which yields a contradiction as above. �

Proposition D: β−1((so′ ∪ (R/∼′))+) = lib(((so0 ∪ vis0)/∼0)+) − sameop, where
sameop = {(e, f) | β(e) = β(f)}. By Proposition B we have:

β−1((so′ ∪ (R/∼′))+)

= β−1((so′ ∪ (lib′((so′0 ∪ (Q/∼′0))+)/∼′))+)

= β−1(lib′((so′0 ∪ (Q/∼′0))+))

= β−1((so′0 ∪ (Q/∼′0))+)

= β−1(so′0 ∪ ((so′0)∗; (Q/∼′0); (so′0)∗))

= β−1(so′) ∪ β−1((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗).

We have:

β−1(so′) = β−1(so′|β(E)) = β−1(β(so)− id) = so− sameop.

We now show

β−1((so′0)∗; ((β0(((so0∪vis0)/∼0)+)−id)/∼′0); (so′0)∗) = lib(((so0∪vis0)/∼0)+)−sameop.

Take (e, f) ∈ lib(((so0 ∪ vis0)/∼0)+)− sameop. Then

(β(e), β(f)) ∈ β(lib(((so0 ∪ vis0)/∼0)+)− sameop) = β(((so0 ∪ vis0)/∼0)+)− id,

which implies the required.
Now take

(e, f) ∈ β−1((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗).

Then

(β(e), β(f)) ∈ (so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗.

Hence, for some e′0, f
′
0 ∈ E′0 we have

β(e)
(so′0)

∗

−−−−→ e′0
(β0(((so0∪vis0)/∼0)

+)−id)/∼′0−−−−−−−−−−−−−−−−−−−→ f ′0
(so′0)

∗

−−−−→ β(f).

Assume e′0 ∼′0 f ′0; then

β(e)
(so′0)

∗

−−−−→ e′0
β0(((so0∪vis0)/∼0)

+)−id−−−−−−−−−−−−−−−→ f ′0
(so′0)

∗

−−−−→ β(f).



Therefore, for some e0, f0 ∈ E such that β(e0) = e′0 and β(f0) = f ′0 we have

e
(so0)

∗

−−−−→ e0
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f0
(so0)

∗

−−−−→ f.

This implies

e
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f.

By Proposition C we have β(e) 6= β(f), which, together with the above, establishes the
required.

Consider now the case when e′0 6∼′0 f ′0. Then for some e′1, f
′
1 ∈ E′0 we have

β(e)
(so′0)

∗

−−−−→ e′0 ∼′0 e′1
β0(((so0∪vis0)/∼0)

+)−−−−−−−−−−−−−→ f ′1 ∼′0 f ′0
(so′0)

∗

−−−−→ β(f)

and e′1 6∼′0 f ′1.

If β(e) ∼′0 e′0, then β(e)
(so′0)

∗|β0(E0)−−−−−−−−→ β(e) ∼′0 e′1.

If β(e) 6∼′0 e′0, then β(e) 6= e′0 and β(e)
(so′0)

∗|β0(E0)−−−−−−−−→ e′1 ∼′0 e′1.
We can make a similar argument for β(f) and f ′0. Thus, for some e′0, f

′
0 ∈ E′0 we

have that

β(e)
(so′0)

∗|β0(E0)−−−−−−−−→ e′0 ∼′0 e′1
β0(((so0∪vis0)/∼0)

+)−−−−−−−−−−−−−→ f ′1 ∼′0 f ′0
(so′0)

∗|β0(E0)−−−−−−−−→ β(f).

Then for some e0, e1, f0, f1 ∈ E0 we have

β(e0) = e′0; β(e1) = e′1; β(f0) = f ′0; β(f1) = f ′1;

e
(so0)

∗

−−−−→ e0 ∼0 e1
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f1 ∼0 f0
(so0)

∗

−−−−→ f,

and e1 6∼0 f1. This implies

e
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f.

By Proposition C we have β(e) 6= β(f), which, together with the above, establishes the
required. �

Proposition E: so0 ∪ ar0/∼ is prefix-finite. Assume there is e ∈ E0 such that the set

We = {f | f (so0∪ar0/∼0)
+

−−−−−−−−−→ e}

is infinite. Recall that so0 partitions events in E0 into finitely many sessions. Let Ue
be the set of events in the same session as e. Since so0 is prefix-finite and X0 satisfies
CAUSALAR, we can assume without loss of generality that We ∩Ue = ∅ and for every
f ∈We there exists ef 6∈ Ue such that

f
((so0∪ar0/∼0)∩(E0−Ue)2)∗−−−−−−−−−−−−−−−−−→ ef

(ar0/∼0)−−−−−→ e.

Since ar0 is prefix-finite, the set {ef | f ∈ We} is finite. Hence, there exists ef0 such
that

{f | f ((so0∪ar0/∼0)
∗)∩(E0−Ue)2−−−−−−−−−−−−−−−−−→ ef0}



is infinite. Continuing repeatedly as above, after finitely many steps we can eliminate
all the sessions except one, which contradicts the prefix-finiteness of so0. �

Proposition F: (X,β−1((so′0 ∪ (R/∼′))+) |=CCS F. We first show that X satisfies the
required axioms using the fact that X0 |=CC F0.

– CAUSALVIS′. Consider

(e, f)

∈ ((so ∪ vis ∪ β−1((so′0 ∪ (R/∼′))+))/∼)+ ∩ sameobj(X)

= ((so ∪ vis ∪ (lib(((so0 ∪ vis0)/∼0)+)− sameop))/∼)+ ∩ sameobj(X)

⊆ ((so0 ∪ vis0)/∼0)+ ∩ sameobj(X0),

(we used Proposition D). Then by CAUSALVIS for X0 we have (e, f) ∈ vis0. We
also know obj(e) = obj(f) ∈ L, so that by (43) we get (e, f) ∈ vis.

– CAUSALAR′. Using Proposition D, we get:

((so ∪ ar ∪ β−1((so′0 ∪ (R/∼′))+))/∼)+

= ((so ∪ ar ∪ lib(((so0 ∪ vis0)/∼0)+)− sameop)/∼)+

⊆ ((so0 ∪ ar0)/∼0)+.

Hence, the validity of CAUSALAR for X0 implies the validity of CAUSALAR′ for
X .

– PREFIXFINITEAR′. We need to show that (so∪ ar∪ β−1((so′0 ∪ (R/∼′))+))/∼ is
prefix-finite. It is sufficient to prove that ((so ∪ ar ∪ β−1((so′0 ∪ (R/∼′))+))/∼)+

is prefix-finite. Above we showed that

((so ∪ ar ∪ β−1((so′0 ∪ (R/∼′))+))/∼)+ ⊆ ((so0 ∪ ar0)/∼0)+,

which is prefix-finite by Proposition E.

Let us now show that X |= F. Consider e ∈ E; then obj(e) ∈ L and, in particular,
obj(e) 6= io. From (43) it follows that ctxt(X0, e) = ctxt(X, e) and

rval(e) = rval0(e) = F0(obj0(e))(ctxt(X0, e)) = F(obj(e))(ctxt(X, e)),

as required. �

Proposition G: ((R/∼′) ∪ so′) is prefix-finite. Similarly to how it was done in Propo-
sition D we get

((R/∼′) ∪ so′)+ = so′0 ∪ ((so′0)∗; (Q/∼′0); (so′0)∗).

Since so′0 is prefix-finite, it is sufficient to show that for any e, the set

{f | f Q/∼′0−−−−→ e}

is finite. Since Q = β0(((so0 ∪ vis0)/∼0)+)− id, this follows from Proposition E. �



From Propositions C, F, G and (44) we then get X ′ |=CCS [ω 7→ F ] and

(β, J{Co}o∈OK(obj )) : X → X ′. (46)

Let
vis′0 = client(vis0) ∪ ((so′ ∪ (β(vis)− id) ∪R)/∼′)+;

ar′0 = client(ar0) ∪ ((so′ ∪ (β(ar)− id) ∪R)/∼′)+;

X ′0 = (H ′0, vis
′
0, ar

′
0).

Proposition H: For S = β0(((so0 ∪ ar0)/∼0)+)− id,

– S/∼′0 is transitive;
– (so′0 ∪ (S/∼′0))+ = so′0 ∪ ((so′0)∗; (S/∼′0); (so′0)∗);
– so′0 ∪ (S/∼′0) is acyclic.

Proved the same way as Propositions A, B, C. �

Proposition I: X ′0 ∈ Exec, X ′0 |=CCS F′0 and X ′0 satisfies the following version of
EVENTUAL:

∀e ∈ E′0. obj
′
0(e) 6= ω =⇒

¬(∃ infinitely many f ∈ E′0. sameobj(X ′0)(e, f) ∧ ¬(e
vis′0−−→ f)).

(47)

Since ar0 and X ′.ar are prefix-finite, we have that so is ar′0. We now show that X ′0
satisfies the required axioms.

– CAUSALAR. We have:

((so′0 ∪ ar′0)/∼′0)+

= ((so′0 ∪ client(ar0) ∪ ((so′ ∪ (β(ar)− id) ∪R)/∼′)+)/∼′0)+

= ((so′0 ∪ β0(client(ar0)) ∪
((so′ ∪ (β(ar)− id) ∪
lib′((so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+))/∼′)+)/∼′0)+

⊆ so′0 ∪ ((β0(client(ar0)) ∪ (β0(((so0 ∪ ar0)/∼0)+)− id))/∼′0)+

= (so′0 ∪ ((β0(((so0 ∪ ar0)/∼0)+)− id)/∼′0))+.

Let
S = β0(((so0 ∪ ar0)/∼0)+)− id.

It is thus enough to show that the relation so′0 ∪ (S/∼′0) is acyclic. This follows
from Proposition H.

– CAUSALVIS. We need to prove

((so′0 ∪ vis′0)/∼′0)+ ∩ sameobj(X ′0) ⊆ vis′0.



Using Proposition B we obtain:

vis′0
= client(vis0) ∪ ((so′ ∪ (β(vis)− id) ∪R)/∼′)+

= client(vis0) ∪ ((so′ ∪ (β(vis)− id) ∪
lib′((so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+))/∼′)+

= client(vis0) ∪ ((lib′((so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+))/∼′)+

= client(vis0) ∪ lib′((so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+)

= client(vis0) ∪ lib′(so′0 ∪ ((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗));

((so′0 ∪ vis′0)/∼′0)+

= ((so′0 ∪ client(vis0) ∪
lib′((so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+))/∼′0)+

⊆ ((so′0 ∪ client(vis0) ∪ (so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+)/∼′0)+

= (so′0 ∪ ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0))+.

= so′0 ∪ ((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗).

Hence, we need to show

(so′0∪((so′0)∗; ((β0(((so0∪vis0)/∼0)+)− id)/∼′0); (so′0)∗))∩sameobj(X ′0) ⊆
client(vis0)∪ lib′(so′0 ∪ ((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗)).

Let

(e′, f ′) ∈ (so′0 ∪ ((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗))
∩ sameobj(X ′0).

Then either e′, f ′ ∈ E′ or e′, f ′ ∈ E′0 − E′. The former case is obvious. Consider
the case when e′, f ′ ∈ E′′0 − E′. If (e′, f ′) ∈ so′0 ∩ sameobj(X ′0), then (e′, f ′) ∈
so0 ∩ sameobj(X0) ⊆ vis0, and thus (e′, f ′) ∈ client(vis0). The remaining case is
that

(e′, f ′) ∈ ((so′0)∗; ((β0(((so0 ∪ vis0)/∼0)+)− id)/∼′0); (so′0)∗) ∩ sameobj(X ′0).

As in the proof of Proposition D, we can show that this implies

e′
((so0∪vis0)/∼0)

+

−−−−−−−−−−−→ f ′.

and, hence,

(e′, f ′) ∈ ((so0 ∪ vis0)/∼0)+ ∩ sameobj(X ′0) ⊆ vis0,

as required.
– (47). Assume that for some e ∈ E′0 such that obj′0(e) 6= ω we have

∃ infinitely many f ∈ E′0. sameobj(X ′0)(e, f) ∧ ¬(e
vis′0−−→ f).

Then all fs are in E0−E and, correspondingly, ¬(e
vis0−−→ f), yielding a contradic-

tion with EVENTUAL for X0.



Finally, let us show that X ′0 |= F′0. Consider e ∈ E′0 such that obj′0(e) 6= io.
Given (43), it is easy to see that ctxt(X ′0, e) = ctxt(X0, e), if obj′0(e) 6= ω, and
ctxt(X ′0, e) = ctxt(X ′, e), otherwise, from which the required follows. �

Proposition J: There exists X ′′0 ∈ Exec such that

X ′′0 |=CC F′0 ∧ X ′′0 .H = H ′0 ∧ X ′′0 .vis ⊇ X ′0.vis ∧ X ′′0 .ar ⊇ X ′0.ar.

By Proposition I we have X ′0 |=CCS F′0 and (47). Hence, the following holds for
Y = X ′0:

Y |=CCS F′0 ∧ Y.H = H ′0 ∧ Y.vis ⊇ X ′0.vis ∧ Y.ar ⊇ X ′0.ar
∧ Y |{e|obj′0(e)6=ω} = X ′0|{e|obj′0(e)6=ω};

(48)

∀e ∈ E′0. obj
′
0(e) 6= ω =⇒

¬(∃ infinitely many f ∈ E′0. sameobj(X ′0)(e, f) ∧ ¬(e
Y.vis−−−→ f));

(49)

(β, J{Co}o∈OK(obj )) : X → Y |{e|obj′0(e)=ω}. (50)

Consider an arbitrary execution Y satisfying these conditions. If Y satisfies EVEN-
TUAL, then we can let X ′′0 = Y . Otherwise, there exist events e ∈ E′0 such that

∃ infinitely many f ∈ E′0. obj
′
0(e) = obj′0(f) ∧ ¬(e

Y.vis−−−→ f). (51)

From (49) it follows that for all such events e we have obj′0(e) 6= ω. Out of all events e
satisfying (51), let us take an event e0 that is minimal in ((so′0 ∪Y.vis)/∼′0)+, i.e., such
that there does not exist an event e ∈ E′0 for which (51) holds and

e
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0.

Let

J0 = {e | e ∼′0 e0 ∧ (51) holds};

J = {f ∈ E′0 | ∃e ∈ J0. obj
′
0(e) = obj′0(f) ∧ ¬(e

Y.vis−−−→ f)}.

As in Proposition E, we can show that ((so′0 ∪Y.ar)/∼′0)+ is prefix-finite. Hence, there
are at most finitely many f ∈ J such that

∃e ∈ J0. f
((so′0∪Y.ar)/∼

′
0)

+

−−−−−−−−−−−→ e.

Let J1 be the subset of J resulting from removing all such f as well as all f such that
f ∼′0 e0; then J1 is infinite.

Next, let

G = {e ∈ E′0 | e
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0 ∨ (e ∼′0 e0 ∧ e 6∈ J0)};



then G is finite and (51) is false for every e ∈ G by (47) and the choice of e0 and J0.
Let

G′ = {g ∈ E′0 | ∃e ∈ G. obj
′
0(e) = obj′0(g) ∧ ¬(e

Y.vis−−−→ g)};

then G′ is finite. Hence, there are only finitely many f ∈ J1 such that

∃g ∈ G′. f ((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g.

Let J2 be the subset of J1 resulting from removing all such f . Then J2 is infinite.
Since Y.vis ⊇ X ′0.vis ⊇ β(vis) andX satisfies EVENTUAL, there are at most finitely

many f ∈ J2 such that obj(β−1(f)) ∩ obj(β−1(J0)) 6= ∅. Let J ′ be the set of such f
and

J3 = J2 − {f ′ | ∃f ∈ J ′. f ′
((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ f}.

Then J3 is still infinite. Finally, take some element e ∈ J3 that is minimal in ((so′0 ∪
Y.vis)/∼′0)+, i.e.,

¬∃e′ ∈ J2. e′
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e.

Let
J4 = J3 − {e′ | e ∼′0 e′}. (52)

To summarise, J4 includes all but finitely many f ∈ E′0 such that

∃e ∈ J0. obj′0(e) = obj′0(f) ∧ ¬(e
Y.vis−−−→ f)

and for any f ∈ J4 we have:

obj(β−1(f)) ∩ obj(β−1(J0)) 6= ∅; (53)
¬(f ∼′0 e0); (54)

¬∃e ∈ J0. f
((so′0∪Y.ar)/∼

′
0)

+

−−−−−−−−−−−→ e; (55)

∀e, g ∈ E′0. (obj
′
0(e) = obj′0(g) ∧ (e

((so′0∪Y.vis)/∼
′
0)

+

−−−−−−−−−−−→ e0 ∨ (e ∼′0 e0 ∧ e 6∈ J0))

∧ f ((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g) =⇒ e
Y.vis−−−→ g.

(56)

Let

U = {(e, f) | e ∈ J0 ∧ f ∈ J4 ∧ obj′0(e) = obj′0(f)}.
Y ′ = (H ′0, Y.vis ∪ U, (Y.ar ∪ U)+).

We now show that Y ′ |=CCS F′0. We start by showing that Y ′ satisfies CAUSALAR.
Assume there is a cycle in

(so′0 ∪ (Y.ar ∪ U)+)/∼′0.

Then there is also a cycle in

(so′0 ∪ Y.ar ∪ U)/∼′0.



Since Y |=CCS F′0, the cycle has edges from U/∼′0. Without loss of generality we can
assume that there is a single such edge on the cycle (the cycle can be transformed to
ensure this), so that the cycle is of the form

e′
U/∼′0−−−→ f ′

((so′0∪Y.ar)/∼
′
0)

+

−−−−−−−−−−−→ e′

for some e′, f ′ ∈ E′0. Then by (54) we have

f
((so′0∪Y.ar)/∼

′
0)

+

−−−−−−−−−−−→ e0

for some f ∈ J4, which contradicts (55). Hence, Y ′ satisfies CAUSALAR.
We now prove that Y ′ satisfies CAUSALVIS. Consider e, g ∈ E′0 such that

obj′0(e) = obj′0(g) and

e
((so′0∪Y.vis∪U)/∼′0)

+

−−−−−−−−−−−−−→ g.

If the path from e to g contains only edges from (so′0∪Y.vis)/∼′0, then, since Y satisfies
CAUSALVIS, (e, g) ∈ Y.vis and we are done. Now assume that the path contains edges
from U/∼′0. Without loss of generality we can assume that there is a single such edge
on the path, so that the path is of the form

e
((so′0∪Y.vis)/∼

′
0)
∗

−−−−−−−−−−−→ e′
U/∼′0−−−→ f ′

((so′0∪Y.vis)/∼
′
0)
∗

−−−−−−−−−−−→ g

for some e′, f ′ ∈ E′0. Hence, we have

e
((so′0∪Y.vis)/∼

′
0)
∗

−−−−−−−−−−−→ e′ ∼′0 e′′
U−→ f ′′

((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g

for some e′′ ∈ J0 and f ′′ ∈ J4. If e 6∼′0 e′, then the above implies

e
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0

and by (56) we have (e, g) ∈ Y.vis. If e ∼′0 e′ and e 6∈ J0, then by (56) we again get
(e, g) ∈ Y.vis. The only remaining case is e ∈ J0, so that

e ∼′0 e′′
U−→ f ′′

((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g.

Assume (e, g) 6∈ Y.vis. We show that g ∈ J4, so that (e, g) ∈ U ⊆ Y ′.vis. This follows
from the following claims:

– We cannot have g ∼′0 e0. For in this case we would have

e0 ∼′0 e′′
U−→ f ′′

((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g ∼′0 e0.

By (54), this implies

f ′′
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0,

which contradicts (55).



– We cannot have

g
((so′0∪Y.ar)/∼

′
0)

+

−−−−−−−−−−−→ e′′′

for any e′′′ ∈ J0. For in this case we would have

e′′′ ∼′0 e′′
U−→ f ′′

((so′0∪Y.vis)/∼
′
0)

+∪∼′0−−−−−−−−−−−−−−→ g
((so′0∪Y.ar)/∼

′
0)

+

−−−−−−−−−−−→ e′′′

By (54), this implies

f ′′
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e′′′,

which contradicts (55). Hence, g ∈ J1.
– There cannot exist e1, e2 such that

(e1
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0 ∨ (e1 ∼′0 e0 ∧ e1 6∈ J0)) ∧

obj′0(e1) = obj′0(e2) ∧ ¬(e1
Y.vis−−−→ e2) ∧ g ((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ e2.

For in this case we would have

f ′′
((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ g
((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ e2,

which implies

f ′′
((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ e2.

Hence,

(e1
((so′0∪Y.vis)/∼

′
0)

+

−−−−−−−−−−−→ e0 ∨ (e1 ∼′0 e0 ∧ e1 6∈ J0)) ∧

obj′0(e1) = obj′0(e2) ∧ ¬(e1
Y.vis−−−→ e2) ∧ f ′′ ((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ e2.

which contradicts f ′′ ∈ J4. Hence, g ∈ J2.

Since

f ′′
((so′0∪Y.vis)/∼

′
0)

+∪∼′0−−−−−−−−−−−−−−→ g ∧ f ′′ ∈ J4,

we also have g ∈ J3 and g ∈ J4. This shows that Y ′ indeed satisfies CAUSALVIS.
Finally, from (53) and (50) we get that

(β, J{Co}o∈OK(obj )) : X → Y ′|{e|obj′0(e)=ω}.

From this and Y |= F′0, by Corollary 34 and Lemma 35 we get Y ′ |= F′0.
We have thus shown how to convert an execution Y satisfying (48) and (49) into

an execution Y ′ satisfying the same properties, but containing fewer events invalidating
EVENTUAL. Continuing this ad infinitum, in the limit we obtain the desired X ′′0 . In
particular, the prefix-finiteness ofX ′′0 .vis andX ′′0 .ar is ensured by the removal of finitely
many elements from J3 in (52). �



By (42) we have H ′0 ∈ 〈P 2
C〉obj

′
0; therefore, by Proposition J, X ′′0 ∈

JP 2
CK([ ], obj ′0,F′0). We have also previously established observ(H0) = observ(H ′0).

We have thus shown the following:

∀obj 0 : (dom(∆) ∪ {xio} ∪ {xj | j = 1..m})→inj Obj.

∀F0 : (range(obj 0)− {io})→ Spec.

∀ω ∈ Obj− range(obj 0). (obj 0(xio) = io) ∧ (∀j = 1..m.F0(obj (xj)) = JTjK[ ]) =⇒
∀X0 ∈ JP 1

CK([ ], obj 0,F0).∃X ′′0 .
X ′′0 ∈ JP 2

CK([ ], obj 0|OVar−{xj |j=1..m}[x 7→ω],F0|Obj−range(obj0|{xj |j=1..m})[ω 7→JDK[ ]]).

∧ observ(X0.H) = observ(X ′′0 .H).

It is easy to see that this implies the statement of Theorem 42. ut

D.5 Completeness

Let us again fix an object variable environment {xj : Oj | j = 1..m} and a collection
of commands

{xj : Oj | j = 1..m} | vin, vout ` Co, o ∈ O.

LEMMA 43 Consider executions X,X ′, X ′0, Y
′, object ω and abstraction (β, ρ) such

that

X ′ = X ′0|{e|X′0.obj(e)=ω} ∧ Y ′ = X ′0|{e|X′0.obj(e)6=ω} ∧ X.E ∩ Y ′.E = ∅ ∧
X.obj(X.E) ∩X ′0.obj(X ′0.E) = ∅ ∧ (β, ρ) : X → X ′.

Let

X0 = ((Y ′.E ]X.E, Y ′.label ]X.label,
Y ′.so ∪X.so ∪ {(e, f) | e ∈ Y ′.E ∧ f ∈ X.E ∧ (e, β(f)) ∈ X ′0.so} ∪
{(e, f) | e ∈ X.E ∧ f ∈ Y ′.E ∧ (β(e), f) ∈ X ′0.so},

Y ′.∼ ∪X.∼ ∪ {(e, f) | e ∈ Y ′.E ∧ f ∈ X.E ∧ (e, β(f)) ∈ X ′0.∼} ∪
{(e, f) | e ∈ X.E ∧ f ∈ Y ′.E ∧ (β(e), f) ∈ X ′0.∼}),

Y ′.vis ∪X.vis, Y ′.ar ∪X.ar).
(57)

If X ′0 and X are causally consistent, then X0 is a causally consistent execution.

PROOF. We first show CAUSALAR. Then it is easy to check that X0 is indeed an exe-
cution. Let β′ : X0.E → X ′0.E be defined as follows:

β′(e) = (if e ∈ X.E then β(e) else e).

From (β, ρ) : X → X ′ and the constraint on ρ in the assumptions of the theorem, we
get that for all e, f ∈ X0.E:

(e, f) ∈ X0.ar =⇒ (β′(e), β′(f)) ∈ X ′0.ar ∪ (id ∩ (X ′.E)2);

(e, f) ∈ X0.so =⇒ (β′(e), β′(f)) ∈ X ′0.so ∪ (id ∩ (X ′.E)2);

(e, f) ∈ X0.∼ ⇐⇒ (β′(e), β′(f)) ∈ X ′0.∼.



Hence,

∀e, f. (e, f) ∈ (X0.so ∪X0.ar)/(X0.∼)
=⇒ (β′(e), β′(f)) ∈ (X ′0.so ∪X ′0.ar)/(X ′0.∼) ∪ (id ∩ (X ′.E)2).

(58)

Assume there is a cycle in (X0.so ∪X0.ar)/(X0.∼). Consider first the case when
β′ maps all events on the cycle to the same event in X ′0; then all of these events belong
to X.E. Consider two adjacent events e, f ∈ X on the cycle. Since β(e) = β(f), we
have (e, f) ∈ X.∼ and e and f must be related by X.so. But then (e, f) ∈ X.so∪X.ar
and, since X is causally consistent, it must be that (e, f) ∈ X.so. Thus, the existence
of the cycle contradicts the acyclicity of X.so.

If β′ maps at least two events on the cycle to different events in X ′0, then (58)
implies that β′ maps the cycle to one in (X0.so∪X0.ar)/(X0.∼), contradicting causal
consistency of X0.

We now show CAUSALVIS. Consider (e, f) ∈ (X0.so∪X0.vis)/(X0.∼). Similarly
to the above, we can show that either

(β′(e), β′(f)) ∈ (X ′0.so ∪X ′0.vis)/(X ′0.∼)

or β′(e) = β′(f) and (e, f) ∈ X.so. Now consider

(e0, f0) ∈ ((X0.so ∪X0.vis)/(X0.∼))+ ∧ sameobj(X0).

Then either

(β′(e0), β′(f0)) ∈ ((X ′0.so ∪X ′0.vis)/(X ′0.∼))+ ∧ sameobj(X ′0)

or β′(e0) = β′(f0) and (e0, f0) ∈ X.so. In the latter case we have (e0, f0) ∈ X.vis
sinceX is causally consistent. In the former case we get (β′(e0), β′(f0)) ∈ X ′0.vis since
X ′0 is causally consistent. If β′(e0), β′(f0) ∈ Y ′.E, then (e0, f0) = (β′(e0), β′(f0))
and (e0, f0) ∈ X0.vis. If β′(e0), β′(f0) ∈ X ′.E, then (β, ρ) : X → X ′ implies
(e0, f0) ∈ X.vis ⊆ X0.vis.

Finally, EVENTUAL for X0 trivially follows from EVENTUAL for X and X ′0. ut

LEMMA 44 Let

J∅ ` let {xj = new Tj}j=1..m in {o(vin) : vout = atomic {Co}}o∈O : OK[ ] = F

and consider X ′ ∈ Exec(ω) such that X ′ |=CC [ω 7→ F ]. Further, consider obj ∈
[{xj | j = 1..m} →inj Obj] and let F ∈ [range(obj ) → Spec] be such that ∀j =
1..m.F(obj (xj)) = JTjK[ ]. Then there exists X ∈ Exec such that X |=CC F and
(β, J{Co}o∈OK(obj )) : X → X ′ for some β.

PROOF. We construct the required execution X as a limit of a sequence of executions
constructed for fragments of X ′.

Consider a finite set of events E ⊆ X ′.E that is closed under X ′.so−1 and X ′.ar−1

and let Y ′ = X ′|E . It is easy to see that Y ′ |=CC [ω 7→ F ]. Assume we have constructed
Y ∈ Exec such that

(β0, ρ) : Y → Y ′ ∧ Y |=CC F



for some β0. If Y ′ = X ′, we are done. Otherwise, let us choose an event e0 ∈ X ′.E−E
that is minimal in X ′.so ∪X ′.ar, i.e.,

¬∃e ∈ X ′.E − E. e X′.so∪X′.ar−−−−−−−→ e0.

Let X ′0 = X ′|E∪{e0}; then X ′0 |=CC [ω 7→ F ]. Note that e0 that does not have succes-
sors in X ′0.so ∪X ′0.ar. We now construct X0 ∈ Exec such that

(β0, ρ) : X0 → X ′0 ∧ X0 |=CC F.

Let ρ = J{Co}o∈OK(obj ), N = ctxt(X ′0, e0) and a = X ′0.rval(e0). Since X ′0 |=CC

[ω 7→ F ], we have F (N) = a. Therefore, by Propositions 17 and 20, we get

∃β, Z, Z ′. (N, e0) ↪→ Z ′ ∧ (β, ρ) : Z → Z ′ ∧ Z |=CC F ∧ a = Z ′.rval(e).

Let W ′ = Z ′|N.E and W1 = Z|β−1(N.E). From (β, ρ) : Z → Z ′ and Z |=CC F it
follows that

(β|β−1(N.E), ρ) : W1 →W ′ ∧ W1 |=CC F.

Let

W2 = ((β−10 (N.E), Y.label|β−1
0 (N.E), Y.so|{(e,f)|β0(e)=β0(f)}, Y.∼|{(e,f)|β0(e)=β0(f)}),

Y.vis|β−1
0 (N.E), Y.ar|β−1

0 (N.E)).

From (β0, ρ) : Y → Y ′ and Y |=CC F it follows that

(β0|β−1
0 (N.E), ρ) : W2 →W ′ ∧ W2 |=CC F.

Then by Theorem 19 we get that W2 ≈π W1 for some π : W2.E →bij W1.E such that

∀f ∈W2.E. β0(f) = β(π(f)).

Without loss of generality we can assume that Y.E ∩ Z.E = ∅. Let

X0 =

((Y.E ] β−1(e0), Y.label ] Z.label|β−1(e0),

Y.so ∪ Z.so|β−1(e0) ∪ {(e, f) | e ∈ Y.E ∧ f ∈ β−1(e0) ∧ (β0(e), e0) ∈ X ′0.so}
Y.∼ ∪ Z.∼|β−1(e0) ∪ {(e, f) | e ∈ Y.E ∧ f ∈ β−1(e0) ∧ (β0(e), e0) ∈ X ′0.∼} ∪
{(e, f) | e ∈ β−1(e0) ∧ f ∈ Y.E ∧ (e0, β0(f)) ∈ X ′0.∼}),

Y.vis ∪ Z.vis|β−1(e0) ∪ {(e, f) | e ∈W2.E ∧ f ∈ β−1(e0) ∧ (π(e), f) ∈ Z.vis},
R+),

where

R = Y.ar ∪ Z.ar|β−1(e0) ∪ {(e, f) | e ∈W2.E ∧ f ∈ β−1(e0) ∧ (π(e), f) ∈ Z.ar}
∪ {(e, f) | e, f ∈W2.E ∧ (π(e), π(f)) ∈W1.ar}.

Let β′ : X0.E → X ′0.E be defined as follows:

β′(e) = (if e ∈ Y.E then β0(e) else e0).



We first show β′(X0.vis) − id ⊆ X ′0.vis and β′(X0.ar) − id ⊆ X ′0.ar. Since (β0, ρ) :
Y → Y ′, we have

β′(Y.vis)− id ⊆ Y ′.vis ⊆ X ′0.vis.

Now consider e ∈W2.E and f ∈ β−1(e0) such that (π(e), f) ∈ Z.vis and

β0(e) = β′(e) 6= β′(f) = e0.

We have
(β(π(e)), β(f)) = (β0(e), e0).

Then since (β, ρ) : Z → Z ′, we get

(β′(e), β′(f)) = (β0(e), e0) ∈ Z ′.vis ⊆ X ′0.vis.

This shows β′(X0.vis)− id ⊆ X ′0.vis. We can similarly show β′(X0.ar)− id ⊆ X ′0.ar.
We have (β′, ρ) : X0.H → X ′0.H by the construction of X0. To show (β′, ρ) :

X0 → X ′0 it remains to establish β′−1(X ′0.vis)∩sameobj(X0) ⊆ X0.vis. Since (β0, ρ) :
Y → Y ′, we have

β′−1(Y ′.vis) ∩ sameobj(Y ) ⊆ Y.vis ⊆ X0.vis.

Now consider

e′ ∈ Y ′.E, e ∈ β−10 (e′) ⊆ Y.E, f ∈ β−1(e0) ⊆ Z.E

such that (e′, e0) ∈ X ′0.vis and Y.obj(e) = Z.obj(f). We need to show that (e, f) ∈
X0.vis. Since (e′, e0) ∈ X ′0.vis, we have e′ ∈ Z ′.E, so that (e′, e0) ∈ Z ′.vis. Then
π(e) ∈ Z.E. Since W1 ≈π W2, we have

(β(π(e)), β(f)) = (β0(e), e0) = (e′, e0) ∈ Z ′.vis

and
Z.obj(π(e)) = Y.obj(e) = Z.obj(f).

Taking into account (β, ρ) : Z → Z ′ we get (π(e), f) ∈ Z.vis, which implies (e, f) ∈
X0.vis, as required. Hence, (β′, ρ) : X0.H → X ′0.H .

We now show that X0 satisfies CAUSALAR and CAUSALVIS, similarly how we
proceeded in the proof of Lemma 43. This implies that X0 is an execution.

Since (β′, ρ) : X0 → X ′0, for all e, f ∈ X0.E:

(e, f) ∈ X0.ar =⇒ (β′(e), β′(f)) ∈ X ′0.ar ∪ id;

(e, f) ∈ X0.so =⇒ (β′(e), β′(f)) ∈ X ′0.so ∪ id;

(e, f) ∈ X0.∼ ⇐⇒ (β′(e), β′(f)) ∈ X ′0.∼.

Hence,

∀e, f. (e, f) ∈ (X0.so ∪X0.ar)/(X0.∼)

=⇒ (β′(e), β′(f)) ∈ (X ′0.so ∪X ′0.ar)/(X ′0.∼) ∪ id.



Assume there is a cycle in (X0.so ∪ X0.ar)/(X0.∼). Then there is also a cycle in
(X0.so ∪ R)/(X0.∼). If β′ does not map all events on the cycle to the same event
in X ′0, then the above shows that β′ maps the cycle to one in (X ′0.so ∪ R)/(X ′0.∼),
contradicting causal consistency of X ′0.

Consider now the case when β′ maps all events on the cycle to the same event
e′ ∈ X ′0.E. Consider (e, f) ∈ (X0.so∪R)/(X0.∼) such that β′(e) = β′(f) = e′. Then
(e, f) ∈ X0.∼. Hence, (e, f) ∈ X0.so∪R and either (e, f) ∈ X0.so or (f, e) ∈ X0.so.
It is easy to see that we cannot have (e, f) ∈ X0.so and (f, e) ∈ X0.so. Assume
(e, f) ∈ R and (f, e) ∈ X0.so. If we had (e, f) ∈ Y.ar or (e, f) ∈ Z.ar|β−1(e0), then
this would contradict the causal consistency of Y or Z. Hence, we can only have

e, f ∈W2.E ∧ (π(e), π(f)) ∈W1.ar

and (f, e) ∈ Y.so. Then X0.obj(e) = X0.obj(f) and, since Y is causally consistent,
we have (f, e) ∈ Y.vis and, hence, (f, e) ∈ Y.ar. But, together with the above, this
contradicts W2 ≈π W1. Thus, we must have (e, f) ∈ X0.so. In this way, we get a cycle
in X0.so, which we cannot have by the construction of X0. We have thus established
thatX0 satisfies CAUSALAR. Then CAUSALVIS is shown as in the proof of Lemma 43.

Finally, we prove thatX0 |= F. Consider e ∈ X0.E such thatX0.obj(e) ∈ dom(F).
First assume that e ∈ Y.E. Since Y |= F and Y.ar ⊆ X0.ar, we have

X0.rval(e) = Y.rval(e) = F(Y.obj(e))(ctxt(Y, e)) = F(X0.obj(e))(ctxt(X0, e)),

as required.
Assume now that e ∈ β−1(e0). Since Z |= F, we have

X0.rval(e) = Z.rval(e) = F(Z.obj(e))(ctxt(Z, e)) = F(X0.obj(e))(ctxt(Z, e))

We now establish a correspondence between ctxt(Z, e) and ctxt(X0, e). First, of all,
we have ctxt(X0, e).p = X0.aop(e) = Z.aop(e) = ctxt(Z, e).p. We now show that
there is a bijection between the events in these contexts.

– Consider f ∈ ctxt(X0, e).E. Then (f, e) ∈ X0.vis and, hence, either f ∈ W2.E
and (π(f), e) ∈ Z.vis or f ∈ β−1(e0) and (f, e) ∈ Z.vis. For f ∈ ctxt(X0, e).E
let

π′(f) = (if f ∈W2.E then π(f) else f).

Then f ∈ ctxt(X0, e).E implies π′(f) ∈ ctxt(Z.e).E, so that π′ :
ctxt(X0, e).E → ctxt(Z, e).E.

– Consider f ′ ∈ ctxt(Z, e).E. Then (f ′, e) ∈ Z.vis and, hence, either f ′ ∈ β−1(e0)
and (f ′, e) ∈ X0.vis or f ′ ∈ W1.E and (π−1(f ′), e) ∈ X0.vis. Thus, if (f ′, e) ∈
Z.vis then for some f ∈ ctxt(X0, e).E we have π′(f) = f ′.

Hence, π′ is a bijection.
Consider f, g ∈ ctxt(X0, e).E ⊆W2.E ∪ β−1(e0). We have the following cases:

– f, g ∈ β−1(e0). Then

(f, g) ∈ ctxt(X0, e).vis ⇐⇒ (π′(f), π′(g)) = (f, g) ∈ Z.vis.



– f ∈W2.E and g ∈ β−1(e0). Then

(f, g) ∈ ctxt(X0, e).vis ⇐⇒ (π′(f), π′(g)) = (π(f), g) ∈ Z.vis.

– f, g ∈W2.E. Since W2 ≈π W1, we get

(f, g) ∈ ctxt(X0, e).vis ⇐⇒ (π′(f), π′(g)) = (π(f), π(g)) ∈ Z.vis.

Hence, π′(ctxt(X0, e).vis) = ctxt(Z, e).vis.
We now prove a similar statement about arbitration. Consider (f, g) ∈ ctxt(Z, e).ar;

then f, g ∈W1.E ∪ β−1(e0). We have the following cases:

– f, g ∈ β−1(e0). Then

(π′−1(f), π′−1(g)) = (f, g) ∈ ctxt(X0, e).ar.

– f ∈W1.E and g ∈ β−1(e0). Then

(π′−1(f), π′−1(g)) = (π−1(f), g) ∈ X0.ar.

– f, g ∈W1.E. Then

(π′−1(f), π′−1(g)) = (π−1(f), π−1(g)) ∈ X0.ar.

Hence π−1(ctxt(Z, e).ar) ⊆ ctxt(X0, e).ar.
From the above correspondence between ctxt(Z, e) and ctxt(X0, e) and the prop-

erties of data type specifications, we get

X0.rval(e) = F(X0.obj(e))(ctxt(Z, e)) = F(X0.obj(e))(ctxt(X0, e)),

which establishes X0 |= F. Hence, X0 |=CC F.
Applying the above construction of X0 from Y ad infinitum starting with E = ∅

and empty Y and Y ′, in the limit we obtain X ∈ Exec such that

(β, ρ) : X → X ′ ∧ X |=CCS F

for some β (in particular, the prefix-finiteness of X.ar follows from (β, ρ) : X → X ′).
We now show that X satisfies EVENTUAL, thereby establishing X |=CC F. Assume

EVENTUAL does not hold, i.e., for some e ∈ X.E we have

∃ infinitely many f ∈ X.E. sameobj(X)(e, f) ∧ ¬(e
X.vis−−−→ f).

Let {fk}∞k=1 be a set of such fs. Since for any f ∈ X ′.E, β−1(f) is finite, we can
assume without loss of generality that β(e) 6= β(fk) for any k and β(fj) 6= β(fk) for
any j and k such that j 6= k. But then, since (β, ρ) : X → X ′, we have

¬(β(e)
X′.vis−−−→ β(fk)),

for k, which contradicts EVENTUAL for X ′. ut



PROPOSITION 45 Assume

∆ ∪ {x : O} | Σ ` C;

∆ ∪ {xj : Oj | j = 1..m} | Σ ` subst({(x, o) 7→ Co | o ∈ O}, C).

Then

∀obj : dom(∆ ∪ {x : O} ∪ {xj : Oj | j = 1..m})→inj Obj.

∀σ : Σ → Val.∀H,H ′.∀β : H.E → H ′.E.

(((β, J{Co}o∈OK(obj |{xj |j=1..m}), obj (x)) : H ⇒ H ′) ∧
H ′ ∈ LCM(obj |OVar−{xj |j=1..m}, σ))

=⇒ H ∈ Lsubst({(x, o) 7→ Co | o ∈ O}, C)M(obj |OVar−{x}), σ).

COROLLARY 46 Assume

∅ | ∆ ∪ {x : O} ` PC;

∅ | ∆ ∪ {xj : Oj | j = 1..m} ` subst({(x, o) 7→ Co | o ∈ O}, PC).

Then

∀obj : dom(∆ ∪ {x : O} ∪ {xj : Oj | j = 1..m})→inj Obj.

∀H,H ′.∀β : H.E → H ′.E.

(((β, J{Co}o∈OK(obj |{xj |j=1..m}), obj (x)) : H ⇒ H ′) ∧
H ′ ∈ 〈PC〉(obj |OVar−{xj |j=1..m}))

=⇒ H ∈ 〈subst({(x, o) 7→ Co | o ∈ O}, PC)〉(obj |OVar−{x})).

THEOREM 47 (COMPLETENESS) Let

D = (let {xj = new Tj}j=1..m in {o(vin) : vout = atomic {Co}}o∈O);

P 2 = (let x = new D in P );

P 1 = (let {xj = new Tj}j=1..m in subst({(x, o) 7→ Co | o ∈ O}, P )),

where P 1 and P 2 are complete. Then JP 2KCG ⊆ JP 1KCG.

PROOF. Let
∅ | {xio : {oio}} ∪∆ ∪ {x : O} ` P 2

C ;

∅ | {xio : {oio}} ∪∆ ∪ {xj : Oj | j = 1..m} ` P 1
C

be the client parts of P 1 and P 2, respectively, so that

P 1
C = subst({(x, o) 7→ Co | o ∈ O}, P 2

C).

Consider any obj ′0 : (dom(∆)∪{xio, x : O})→inj Obj such that obj ′0(xio) = io and
F′0 : (range(obj ′0)− {io})→ Spec such that F′0(obj ′0(x)) = JDK[ ]. Let obj ′0(x) = ω.
Further, consider any execution

X ′0 ∈ JP 2
CK([ ], obj ′0,F′0).



Then
X ′0.H ∈ 〈P 2

C〉obj
′
0 ∧ X ′0 |=CC F′0.

Let X ′ = X ′0|{e|X′0.obj(e)=ω}. Pick any obj : {xj | j = 1..m} →inj Obj such that
range(obj ) ∩ range(obj ′0) = ∅ and let F ∈ [range(obj ) → Spec] be such that ∀j =
1..m.F(obj (xj)) = JTjK[ ]. It is easy to check that X ′0 |=CC F′0 implies X ′ |=CC

[ω 7→ (JDK[ ])]. Then by Lemma 44 there exists X and β such that X |=CC F and
(β, J{Co}o∈OK(obj )) : X → X ′ for some β. Without loss of generality we can assume
that X.E ∩X ′0.E = ∅.

Let Y ′ = X ′0|{e|X′0.obj(e)6=ω} and letX0 be defined by (57). Then by Lemma 43,X0

is causally consistent. Define

obj 0 : (dom(∆) ∪ {xio} ∪ {xj | j = 1..m})→inj Obj;

F0 : (range(obj 0)− {io})→ Spec

as follows: obj 0(xj) = obj (xj) and obj 0(x) = obj ′0(x) for all other x; F0(ω′) = F(ω′)
for ω′ ∈ range(obj ) and F0(ω′) = F′0(ω′) for all other ω′. It is easy to see thatX0 |= F,
so that X0 |=CC F.

Let β′ : X0.E → X ′0.E be defined as follows:

β′(e) = (if e ∈ X.E then β(e) else e).

From (β, J{Co}o∈OK(obj )) : X → X ′ it follows that (β′, J{Co}o∈OK(obj ), ω) :
X.H ⇒ X ′.H . Then, since X ′0.H ∈ 〈P 2

C〉obj
′
0, by Corollary 46 we have X0.H ∈

〈P 2
C〉obj 0. As we also have X0 |=CC F, we get X0 ∈ JP 1

CK([ ], obj 0,F0). Furthermore,
observ(X0.H) = observ(X ′0.H), as required. ut

E Proof of the social graph data type and additional examples

E.1 Proof of the social graph data type

We now prove that the data type from Figure 3 has the specification Fsoc from §5 as its
denotation. Take any

obj ∈ {friends[a], requesters[a] | a = 1..N} →inj Obj

and let F = λω. FRWset. Let ρ = J{Co}o∈OK(obj ), where O is the data type signature
and Co are the commands from Figure 3. It is easy to check that for any context N over
the data type operations we have γ(N, ρ,F) 6= ∅. We now prove that for any context N
we have

∀X, c. (X, c) ∈ γ(N, ρ,F) =⇒ c = Fsoc(N)

by induction on the size ofN.E. Consider a contextN such that |N.E| = n and assume
the above holds for all contexts with |N.E| < n. Let

N = (p,M), E′ = N.E, aop′ = N.aop

and vis′ and ar′ are as in Definition 7.



Take (X, c) ∈ γ(N, ρ,F), where X = (H, vis, ar) = ((E, label, so,∼), vis, ar) (we
also use derived selectors, such as obj). Then for some e0 6∈ E′ and β we have

(β, ρ) : X → (N, e0, c) ∧X |=CC F.

Hence, for some {cf ∈ Val | f ∈ E′} we have

(∀f ∈ E′. H|β−1(f) ∈ ρ(aop′(f), cf )) ∧
(H|β−1(e0) ∈ ρ(p, c)) ∧ β(H.so) ⊆ id ∧ β(H.∼) ⊆ id

and (10)–(12) hold.
From the induction hypothesis and Lemma 35 it is easy to establish

∀f ∈ E′. cf = Fsoc(ctxt(M,f)). (59)

We need to show that c = Fsoc(N).
Let us first consider the case when p = get(a). Then we have:

fst(c) =

{b | ∃e ∈ E. obj(e) = obj (friends[a]) ∧ aop(e) = add(b) ∧
∀f ∈ E. obj(f) = obj(e) ∧ aop(f) = remove(b) =⇒ f

vis−→ e};
snd(c) =

{b | ∃e ∈ E. obj(e) = obj (requesters[a]) ∧ aop(e) = add(b) ∧
∀f ∈ E. obj(f) = obj(e) ∧ aop(f) = remove(b) =⇒ f

vis−→ e};
fst(Fsoc(N)) =

{b | ∃e ∈ E′. (aop′(e) = accept((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ E′. (aop′(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e))

=⇒ f
vis′−−→ e};

snd(Fsoc(N)) =

{b | ∃e ∈ E′. (aop′(e) = request(b, a)) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ E′. (aop′(f) ∈ (accept | reject)((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e))

=⇒ f
vis′−−→ e}.

– Take b ∈ fst(c). Then for some e ∈ E we have

(obj(e) = obj (friends[a]) ∧ aop(e) = add(b) ∧ ∀f ∈ E. obj(f) = obj(e)

∧aop(f) = remove(b)) =⇒ f
vis−→ e.

(60)

Then aop′(β(e)) ∈ accept((b, a) | (a, b))), cβ(e) = true and by (59),
Fsoc(ctxt(M,β(e))) = true. Consider f ∈ E′ such that

(aop′(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)).

Then f 6= β(e) and by (59) we have cf = true. Hence, for some e′ ∈ E such that
β(e′) = f we have

obj(e′) = obj (friends[a]) ∧ aop(e′) = remove(b).



Then by (60) we have e′ vis−→ e. By (10) this entails f vis′−−→ β(e). This shows
b ∈ fst(Fsoc(N)).

– Take b ∈ fst(Fsoc(N)). Then for some e ∈ E′ we have

(aop′(e) = accept((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ E′. (aop′(f) ∈ breakup((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e))

=⇒ f
vis′−−→ e.

(61)

By (59) we get ce = true. Hence, for some e′ ∈ E such that β(e′) = e we have

obj(e′) = obj (friends[a]) ∧ aop(e′) = add(b).

Consider f ∈ E such that

obj(f) = obj(e′) ∧ aop(f) = remove(b).

Then aop′(β(f)) ∈ breakup((b, a) | (a, b)), cβ(f) = true and by (59) we have

Fsoc(ctxt(M,β(f))) = true. Hence, by (61) we have β(f)
vis′−−→ β(e′). Then

by (11) we have f vis−→ e′, which shows that b ∈ fst(c).
– Take b ∈ snd(c). Then for some e ∈ E we have

(obj(e) = obj (requesters[a]) ∧ aop(e) = add(b) ∧ ∀f ∈ E. obj(f) = obj(e)

∧ aop(f) = remove(b)) =⇒ f
vis−→ e.

(62)
Then aop′(β(e)) = request(b, a) and cβ(e) = true. Also, by (59),

Fsoc(ctxt(M,β(e))) = true.

Consider f ∈ E′ such that

(aop′(f) ∈ (accept | reject)((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e)).

Then f 6= β(e) and by (59) we have cf = true. Hence, for some e′ ∈ E such that
β(e′) = f we have

obj(e′) = obj (requesters[a]) ∧ aop(e′) = remove(b).

Then by (62) we have e′ vis−→ e. By (10) this entails f vis′−−→ β(e). This shows
b ∈ snd(Fsoc(N)).

– Take b ∈ snd(Fsoc(N)). Then for some e ∈ E′ we have

(aop′(e) = request(b, a)) ∧ Fsoc(ctxt(M, e)) ∧
∀f ∈ E′. (aop′(f) ∈ (accept | reject)((b, a) | (a, b))) ∧ Fsoc(ctxt(M, e))

=⇒ f
vis′−−→ e.

(63)



Fig. 8. A shopping-cart data type. We use some syntactic sugar and a generalisation removeAll

of the remove operation of AWset.

Dcart = let {items = new AWset;

inline resolve(book) = {
var entries = {(book , n) | (book , n) ∈ items.get};
items.removeAll(entries); return max({n | ( , n) ∈ entries}∪ {0})}} in {

inc(book , n) = atomic { var m = resolve(book); items.add(book ,m + n) };
dec(book , n) = atomic { var m = resolve(book);

if (m − n > 0) then items.add(book ,m − n) };
count(book) = atomic { var m = resolve(book); items.add(book ,m); vout = m } }

By (59) we get ce = true. Hence, for some e′ ∈ E such that β(e′) = e we have

obj(e′) = obj (requesters[a]) ∧ aop(e′) = add(b).

Consider f ∈ E such that

obj(f) = obj(e′) ∧ aop(f) = remove(b).

Then aop′(β(f)) ∈ (accept | reject)((b, a) | (a, b)), cβ(f) = true and by (59)

we have Fsoc(ctxt(M,β(f))) = true. Hence, by (63) we have β(f)
vis′−−→ β(e′).

Then by (11) we have f vis−→ e′, which shows that b ∈ snd(c).

The above establishes c = Fsoc(N).
We now consider the case when p = accept(b, a); the others are analogous. We

have
Fsoc(N) = (b ∈ snd(Fsoc(get(a),M)))

and

c = true ⇐⇒ (∃e ∈ E. obj(e) = obj (requesters[a]) ∧ aop(e) = add(b) ∧
∀f ∈ E. obj(f) = obj(e) ∧ aop(f) = remove(b) =⇒ f

vis−→ e).

But we have already shown that the above is equivalent to b ∈ snd(Fsoc(get(a),M)),
as required. ut

E.2 A shopping-cart data type

The example appearing in Figure 8 implements a shopping cart for an online book-
store. Conceptually, a shopping cart is a map from book titles to non-negative integers,
representing the number of copies requested. The data type provides three operations:
inc(book , n) and dec(book , n) for increasing or decreasing the count associated with
a book by a positive integer n, and count(book) for querying the count (an operation
giving the full cart contents can be implemented similarly). The cart can be accessed
concurrently in different sessions, e.g., by spouses. This can lead to conflicts when the



Fig. 9. (a) A context of the data type in Figure 8; and (b) an execution belonging to its concreti-
sation. We use the same conventions as in Figure 5.

inc(b,2) inc(b,3)

e0: count(b): 3
f:

(a) (b) ω.get(b): ∅
ω.removeAll(∅)
ω.add((b,2))

ω.get(b): ∅
ω.removeAll(∅)
ω.add((b,3))

ω.get: {(b,2), (b,3)}
ω.removeAll({(b,2), (b,3)})
ω.add((b,3))

count for the same book is updated concurrently, as in the context shown in Figure 9(a).
Our implementation takes one possible choice of resolving such conflicts so that in-
creases win against concurrent decreases or smaller increases; this results in customers
buying more. Thus, its denotation returns 3 on the context in Figure 9(a).

The implementation represents the cart using an add-wins set that stores pairs of
a book ordered and the corresponding positive count. Multiple concurrent updates to
the count of the same book result in separate entries (book , n1), . . . , (book , nk); see the
event f in the execution in Figure 9(b), which concretises the context in Figure 9(a).
To resolve such conflicts, an operation involving the book replaces the above entries
by their maximum max{n1, . . . , nk} (implemented by the macro resolve). Using an
add-wins set to represent items is crucial for the correctness of our implementation: it
ensures that removeAll in resolve removes only the entries it computes the maximum
of; in a remove-wins set it would also cancel all concurrent operations.

Below we prove that the shopping cart data type has the following specification
Fcart as its denotation in our semantics. Informally, Fcart applies the sequential se-
mantics of shopping cart (formalised by the function G below) to all maximal paths
of events in visibility in the context (where maximality is given with respect to the
subsequence order) and takes the maximum of the results:

Fcart(inc(book , n),M) = Fcart(dec(book , n),M) = ⊥;

Fcart(count(book),M) = max({0} ∪ {G(π, 0) | π is a
maximal vis-path of events in M.E that operate on book}),

where G(π,m) are defined as follows:

G(ε,m) =m

G(eπ,m) =G(π,max {0,m−n}) ifM.aop(e) = dec(book , n)

G(eπ,m) =G(π,m+n) ifM.aop(e) = inc(book , n)

G(eπ,m) =G(π,m) otherwise

Thus, Fcart explains the outcome of operations in the distributed setting M in terms of
their sequential executions consistent with visibility: the number of copies of book is
the maximum possible value that can result from such executions.



Proof of the shopping-cart data type. Let {Co}o∈O be the implementations of op-
erations of the shopping-cart data type. We will prove that

∀N. ∀e. ∀obj ∈ [{items} →inj Obj]. ∀F. ∀X. ∀β.
(e 6∈ (N.E) ∧ F(obj (items)) =FAWset ∧ (β, J{Co}oKobj ) :X→(N, e, ) ∧X |=CC F)

=⇒
∃e0 ∈ β−1(e). X.op(e0) = get ∧
∀book . max ({0}∪ {n | (book , n)∈X.rval(e0)}) =Fcart(contains(book), N.M),

(64)
where N.M is the partial operation context of M (i.e., M except the first component of
the applied operation).

Before proving this implication, we show that it entails the correctness of our spec-
ification Fcart for the shopping-cart data type. Consider

N, e 6∈ (N.E), obj ∈ [{items} →inj Obj], F, X, β, c ∈ Val

such that

F(obj (items)) = FAWset ∧ (β, J{Co}o∈OKobj ) : X → (N, e, c) ∧ X |=CC F.

We need to show that Fcart(N) = c. By the definition of (β, J{Co}o∈OKobj ) : X →
(N, e, c), we have

(X.H)|β−1(e) ∈ J{Co}o∈OKobj (N.p, c). (65)

Recall that the shopping-cart data type implements only three operations, that is, those
in O = {inc, dec, contains}. Hence, by the semantics of {Co}o∈O, the set member-
ship in (65) implies that for some nonnegative integers book ′ and n′,

(N.p = inc(book ′, n′) ∧ c = ⊥) ∨ (N.p = dec(book ′, n′) ∧ c = ⊥)

∨ (N.p = contains(book ′)).

It is easy to see that the desired Fcart(N) = c follows in the first two cases. In the third
case, we use (64) and deduce that

∃e0 ∈ β−1(e). X.op(e0) = get ∧(
max ({0} ∪ {n | (book ′, n) ∈ X.rval(e0)}) = Fcart(contains(book ′), N.M)

)
.

By (65) and the definition of J{Co}o∈OK (in particular, the part for Ccontains), the LHS
of the above equation is equal to c. But the RHS of the equation is precisely Fcart(N).
Hence, the above equation implies that Fcart(N) = c, as desired.

We now go back to the proof of (64). Consider

N, e 6∈ (N.E), obj ∈ [{items} →inj Obj], F, X, β

such that

F(obj (items)) = FAWset ∧ (β, J{Co}o∈OKobj ) : X → (N, e, )

∧ X |=CC F.



We should show that

∃e0 ∈ β−1(e). X.op(e0) = get ∧(
∀book . max ({0}∪ {n | (book , n)∈X.rval(e0)}) =Fcart(contains(book), N.M)

)
,

where N.M is the partial operation context of N . Note that in the implementation of
all the operations of the shopping-cart data type, the macro resolve(book) for some
nonnegative integer book is run first, and this macro starts by calling the get operation
of the items object. Furthermore, (X.H)|β−1(e) should describe the computation of
one of such shopping-cart operations, because (X.H)|β−1(e) ∈ J{Co}o∈OKobj (N.p, ).
Hence,

∃e0 ∈ β−1(e). X.op(e0) = get.

It is sufficient to show that this e0 satisfies the following property:

∀book . max ({0} ∪ {n | (book , n) ∈ X.rval(e0)}) = Fcart(contains(book), N.M).
(66)

We will prove the following slightly more general fact. For every E′ ⊆ (N.E) closed
under N.vis−1 (i.e., N.vis−1(E′) ⊆ E′), if we let E′0 = β−1(E′) and N ′ = N |E′ , we
have that

∀book . Fcart(contains(book), N ′.M) =

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0)}).

(67)

where N ′.M is the partial context of N ′. Note that this implies (66) because

E′0 = β−1(N.E) =⇒ ctxt(X, e0) = (get, E′0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0).

Our proof of (67) is based on the induction on the size of E′. The base case is that
E′ = ∅. In this case, the RHS of (67) is 0. Also, sinceE′ is empty, so isE′0 = β−1(E′).
Thus, FAWset(get, . . .) on the LHS of (67) returns the empty set, from which follows
that the LHS is 0.

Next we handle the inductive case. Let E′ be a nonempty N.vis−1-closed subset of
N.E. Let

E′0 = β−1(E′) and N ′ = N |E′ .

Pick a nonnegative integer book . Let π be a maximal vis-path of events inE′ that operate
on book and G(π) = Fcart(contains(book), N ′.M), if such π exists. Otherwise, we
set π = ε, so thatG(π) = Fcart(contains(book), N ′.M) even in this degenerate case.
If G(π) = 0,

Fcart(contains(book), N ′.M) = 0 ≤
max ({0} ∪ {n | (book , n) ∈ FAWset(get, E

′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0)}).

Otherwise, π should be of the form π′f . Let

E′′ = (N.vis)−1(f), E′′0 = β−1(E′′), N ′′ = N |E′′ , E′′′ = E′′ ∪ {f},
E′′′0 = β−1(E′′′), and N ′′′ = N |E′′′ .



By the induction hypothesis,

Fcart(contains(book), N ′′.M) =

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}).

By the claim that we will show at the end of this proof, the above equality implies that

Fcart(contains(book), N ′′′.M) =

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

Hence,

Fcart(contains(book), N ′.M)

= G(π)

= Fcart(contains(book), N ′′′.M)

= max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

≤ max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0)}).

The last inequality holds because for every nonnegative integer n,

(book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )

=⇒ (book , n) ∈ FAWset(get, E
′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0).

(68)

This implication itself holds for the following reason. π′f is a maximal vis-path
of events that operate on book , so f is not N.vis-related to any inc(book , . . .)
or dec(book , . . .) events in E′0. This and the fact that (β, J{Co}o∈OKobj ) :
X → (N, e, ) together ensure that all the uncancelled add(book , . . .) events in
(E′′′0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 ) remain uncancelled in the bigger operation con-
text (E′0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0). From this follows the implication in (68).

Now let n be the maximum of

{n | (book , n) ∈ FAWset(get, E
′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0)},

if this set is not empty. Otherwise, we set n = 0. If n = 0,

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′
0, X.aop|E′0 , X.vis|E′0 , X.ar|E′0)})

= 0

≤ Fcart(contains(book), N ′.M).

Assume now that n 6= 0. Then, there exists f0 ∈ E′0 such that X.aop(f0) =
add(book , n) and f0 is not (X.vis)-related to any event in E′0 that removes (book , n).
Let

f = β(f0), E′′ = (N.vis)−1(f), E′′0 = β−1(E′′), N ′′ = N |E′′ ,
E′′′ = E′′ ∪ {f}, E′′′0 = β−1(E′′′), and N ′′′ = N |E′′′ .



By the induction hypothesis,

Fcart(contains(book), N ′′.M) =

max ({0} ∪ {m | (book ,m) ∈ FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}).

By the claim that we will show at the end of this proof, the above equality implies that

Fcart(contains(book), N ′′′.M) =

max ({0} ∪ {m | (book ,m) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

All the shopping-cart operations on book remove every entry involving book from the
items object before adding any entry on book to the same object. Also, the adding
operation happens at the end of these operations, if it ever happens. Thus,

{m | (book ,m) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )} = {n}.

From the same reason and the fact that f0 is not (X.vis)-related to any event in E′0
that removes (book , n), it follows that f is not (N.vis)-related to any event in E′ that
operates on book . Because of these two observations,

n = Fcart(contains(book), N ′′′.M) ≤ Fcart(contains(book), N ′.M).

The only remaining part of our proof is to discharge the following claim: for all
f ∈ N.E and nonnegative integers book , if we let

E′′ = (N.vis)−1(f), E′′0 = β−1(E′′), N ′′ = N |E′′ ,
E′′′ = E′′ ∪ {f}, E′′′0 = β−1(E′′′), and N ′′′ = N |E′′′ ,

and

Fcart(contains(book), N ′′.M) =

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}),

(69)
then

Fcart(contains(book), N ′′′.M) =

max ({0} ∪ {n | (book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

(70)
Pick f ∈ N.E and book . Define E′′, E′′′, E′′0 , E

′′′
0 , N

′′, N ′′′ as described in our claim
above. Also, assume that these data satisfy the equality in (69). We will prove the re-
quired equality in (70) by the case analysis on N.aop(f). Since

∀f ′ ∈ (N.E). (X.H)|β−1(f ′) ∈ J{Co}o∈OKobj (N.aop(f ′), )

and J{Co}o∈OKobj is defined only for the inc, dec and contains operations with
nonnegative integer arguments, we only need to consider the following three cases of
N.aop(f):

N.aop(f) = inc(book ′, n′) ∨ N.aop(f) = dec(book ′, n′)

∨ N.aop(f) = contains(book ′)

for some nonnegative integers book ′ and n′.



– Assume that N.aop(f) = inc(book ′, n′) for nonnegative integers book ′ and n′. If
book 6= book ′,

Fcart(contains(book), N ′′′.M)

=Fcart(contains(book), N ′′.M)

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

The first equality comes from the definition of Fcart and the fact that book ′ 6= book ,
and the second holds because of the assumption (69). The third holds because none
of the events in E′′′0 −E′′0 is an inc or dec operation involving book . Assume now
that book = book ′.

Fcart(contains(book), N ′′′.M)

=Fcart(contains(book), N ′′.M) +n′

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}) +n′

= max{n | (book , n)∈FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

The first equality holds because N ′′′ is the extension of N ′′ with the N ′′′.vis-
maximum event f and the operation performed by f is inc(book ′, n′) =
inc(book , n′). The second comes from the assumption (69). The third holds be-
cause the implementation of the inc(book ′, n′) operation removes all the elements
involving book ′ from the items set and adds the following tuple to the set:

(book ′,

max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}) +n′).

Furthermore, by the same reason, for every nonnegative integer n,

(book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )

⇐⇒
n=

max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )}) +n′.

From this and the fact that n′ ≥ 0 follows the last equality in our derivation above.
– Assume that N.aop(f) = dec(book ′, n′) for nonnegative integers book ′ and n′.

The overall structure of the proof of this case is similar to that of the previous one.
If book 6= book ′,

Fcart(contains(book), N ′′′.M)

= Fcart(contains(book), N ′′.M)

= max ({0}∪ {n | (book , n) ∈ FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})

= max ({0}∪ {n | (book , n) ∈ FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).



The reasons for all the equalities are identical to those used in the previous case.
The first equality comes from the definition of Fcart and the fact that book ′ 6= book ,
and the second from the assumption (69). The third holds because none of the
events in E′′′0 − E′′0 is an inc or dec operation involving book . Assume now that
book = book ′.

Fcart(contains(book), N ′′′.M)

= max{0, Fcart(contains(book), N ′′.M)−n′}
= max{0, max ({0}∪

{n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})

−n′}
= max({0}∪ {n | (book , n)∈FAWset(get, E

′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

The first equality holds because N ′′′ is the extension of N ′′ with f , this f event is
a maximum according to the N ′′′.vis relation, and the operation performed by f is
dec(book ′, n′) = dec(book , n′). The second comes from the assumption (69). Fi-
nally, observe that the implementation of the inc(book ′, n′) operation removes all
the elements involving book = book ′ from the items object and adds the following
tuple to the object:

(book ,

max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})−n′)

if the second component of the tuple is positive; otherwise, it does not add any
tuple. The third equality follows from this observation.

– Assume that N.aop(f) = contains(book ′) for a nonnegative integer book ′. If
book 6= book ′,

Fcart(contains(book), N ′′′.M)

=Fcart(contains(book), N ′′.M)

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

The reasons for all the equalities are identical to those used in the previous two
cases. Assume now that book = book ′.

Fcart(contains(book), N ′′′.M)

=Fcart(contains(book), N ′′.M)

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})

= max({0}∪ {n | (book , n)∈FAWset(get, E
′′′
0 , X.aop|E′′′0 , X.vis|E′′′0 , X.ar|E′′′0 )}).

The first equality holds because N ′′′ is the extension of N ′′ with f , this f event
is maximum in N ′′′.E according to the N ′′′.vis relation, and the operation per-
formed by f is contains(book ′) = contains(book). The second comes from
the assumption (69). The third equality holds because the implementation of the



contains(book ′) operation removes all the elements involving book = book ′ from
the items object and adds the following tuple to the object:

(book ,

max({0}∪ {n | (book , n)∈FAWset(get, E
′′
0 , X.aop|E′′0 , X.vis|E′′0 , X.ar|E′′0 )})).

ut

E.3 An example of composing last-writer-wins objects

We now illustrate that composing objects with last-writer-wins conflict-resolution poli-
cies yields an object with the same policy. To this end, we use the primitive data type
LWWreg of a last-writer-wins register. The data type has the signature {write, read}
and its specification FLWWreg is defined as follows. We let FLWWreg((write, a),M) = ⊥
and let FLWWreg((read,⊥),M) be defined if and only if M.ar is a total order on the set
{e ∈M.E |M.aop(e) = (write, )}; in this case FLWWreg returns the parameter of the
last write event in this order, or ⊥ if there are no such events.

The following composite data type combines operations on a pair of last-writer-wins
registers:

DPair = let {x1 = new LWWreg;x2 = new LWWreg} in {
write(v1, v2) = atomic { x1.write(v1);x2.write(v2) };

read = atomic { vout = (x1.read, x2.read) } }

This data type satisfies the specification FPair that is analogous to FLWWreg, but oper-
ates on pairs of values: FPair((get,⊥),M) returns the pair of values supplied as the
parameter to the last write operation in the context according to M.ar, or ⊥ if there
are none; it is undefined if M.ar does not totally order write operations. We omit the
trivial proof that FPair is indeed the denotation of DPair.


