
Compositional Verification of Compiler Optimisations
on Relaxed Memory

Mike Dodds1, Mark Batty2, and Alexey Gotsman3

1 Galois Inc. 2 University of Kent 3 IMDEA Software Institute

Abstract. A valid compiler optimisation transforms a block in a program with-
out introducing new observable behaviours to the program as a whole. Deciding
which optimisations are valid can be difficult, and depends closely on the se-
mantic model of the programming language. Axiomatic relaxed models, such as
C++11, present particular challenges for determining validity, because such mod-
els allow subtle effects of a block transformation to be observed by the rest of the
program. In this paper we present a denotational theory that captures optimisa-
tion validity on an axiomatic model corresponding to a fragment of C++11. Our
theory allows verifying an optimisation compositionally, by considering only the
block it transforms instead of the whole program. Using this property, we realise
the theory in the first push-button tool that can verify real-world optimisations
under an axiomatic memory model.

1 Introduction

Context and objectives. Any program defines a collection of observable behaviours: a
sorting algorithm maps unsorted to sorted sequences, and a paint program responds to
mouse clicks by updating a rendering. It is often desirable to transform a program with-
out introducing new observable behaviours – for example, in a compiler optimisation
or programmer refactoring. Such transformations are called observational refinements,
and they ensure that properties of the original program will carry over to the trans-
formed version. It is also desirable for transformations to be compositional, meaning
that they can be applied to a block of code irrespective of the surrounding program con-
text. Compositional transformations are particularly useful for automated systems such
as compilers, where they are known as peephole optimisations.

The semantics of the language is highly significant in determining which transfor-
mations are valid, because it determines the ways that a block of code being transformed
can interact with its context and thereby affect the observable behaviour of the whole
program. Our work applies to a relaxed memory concurrent setting. Thus, the context of
a code-block includes both code sequentially before and after the block, and code that
runs in parallel. Relaxed memory means that different threads can observe different, ap-
parently contradictory orders of events – such behaviour is permitted by programming
languages to reflect CPU-level relaxations and to allow compiler optimisations.

We focus on axiomatic memory models of the type used in C/C++ and Java. In ax-
iomatic models, program executions are represented by structures of memory actions
and relations on them, and program semantics is defined by a set of axioms constraining

2 Mike Dodds, Mark Batty, and Alexey Gotsman

these structures. Reasoning about the correctness of program transformations on such
memory models is very challenging, and indeed, compiler optimisations have been re-
peatedly shown unsound with respect to models they were intended to support [25,
23]. The fundamental difficulty is that axiomatic models are defined in a global, non-
compositional way, making it very challenging to reason compositionally about the
single code-block being transformed.

Approach. Suppose we have a code-block B, embedded into an unknown program
context. We define a denotation for the code-block which summarises its behaviour in
a restricted representative context. The denotation consists of a set of histories which
track interactions across the boundary between the code-block and its context, but ab-
stract from internal structure of the code-block. We can then validate a transformation
from code-block B to B′ by comparing their denotations. This approach is composi-
tional: it requires reasoning only about the code-blocks and representative contexts; the
validity of the transformation in an arbitrary context will follow. It is also fully abstract,
meaning that it can verify any valid transformation: considering only representative
contexts and histories does not lose generality.

We also define a variant of our denotation that is finite at the cost of losing full ab-
straction. We achieve this by further restricting the form of contexts one needs to con-
sider in exchange for tracking more information in histories. For example, it is unnec-
essary to consider executions where two context operations read from the same write.

Using this finite denotation, we implement a prototype verification tool, Stellite.
Our tool converts an input transformation into a model in the Alloy language [12], and
then checks that the transformation is valid using the Alloy* solver [18]. Our tool can
prove or disprove a range of introduction, elimination, and exchange compiler optimi-
sations. Many of these were verified by hand in previous work; our tool verifies them
automatically.

Contributions. Our contribution is twofold. First, we define the first fully abstract de-
notational semantics for an axiomatic relaxed model. Previous proposals in this space
targeted either non-relaxed sequential consistency [6] or much more restrictive opera-
tional relaxed models [7, 13, 21]. Second, we show it is feasible to automatically ver-
ify relaxed-memory program transformations. Previous techniques required laborious
proofs by hand or in a proof assistant [24, 26, 27, 25, 23]. Our target model is derived
from the C/C++ 2011 standard [22]. However, our aim is not to handle C/C++ per se
(especially as the model is in flux in several respects; see §3.7). Rather we target the
simplest axiomatic model rich enough to demonstrate our approach.

2 Observation and Transformation

Observational refinement. The notion of observation is crucial when determining how
different programs are related. For example, observations might be I/O behaviour or
writes to special variables. Given program executions X1 and X2, we write X1 4ex

X2 if the observations in X1 are replicated in X2 (defined formally in the following).
Lifting this notion, a program P1 observationally refines another P2 if every observable

Compositional Verification of Compiler Optimisations on Relaxed Memory 3

behaviour of one could also occur with the other – we write this P1 4pr P2. More
formally, let J−K be the map from programs to sets of executions. Then we define 4pr

as:
P1 4pr P2

∆⇐⇒ ∀X1 ∈ JP1K.∃X2 ∈ JP2K. X1 4ex X2 (1)

Compositional transformation. Many common program transformations are composi-
tional: they modify a sequential fragment of the program without examining the rest of
the program. We call the former the code-block and the latter its context. Contexts can
include sequential code before and after the block, and concurrent code that runs in par-
allel with it. Code-blocks are sequential, i.e. they do not feature internal concurrency. A
context C and code-block B can be composed to give a whole program C(B).

A transformation B2 B1 replaces some instance of the code-block B2 with B1.
To validate such a transformation, we must establish whether every whole program
containing B1 observationally refines the same program with B2 substituted. If this
holds, we say that B1 observationally refines B2, written B1 4bl B2, defined by lifting
4pr as follows:

B1 4bl B2
∆⇐⇒ ∀C. C(B1) 4pr C(B2) (2)

If B1 4bl B2 holds, then the compiler can replace block B2 with block B1 irre-
spective of the whole program, i.e. B2 B1 is a valid transformation. Thus, deciding
B1 4bl B2 is the core problem in validating compositional transformations.

The language semantics is highly significant in determining observa-
tional refinement. For example, the code blocks B1 : store(x,5) and
B2 : store(x,2); store(x,5) are observationally equivalent in a sequential
setting. However, in a concurrent setting the intermediate state, x = 2, can be observed
in B2 but not B1, meaning the code-blocks are no longer observationally equivalent.
In a relaxed-memory setting there is no global state seen by all threads, which further
complicates the notion of observation.

Compositional verification. To establish B1 4bl B2, it is difficult to examine all pos-
sible syntactic contexts. Our approach is to construct a denotation for each code-block
– a simplified, ideally finite, summary of possible interactions between the block and
its context. We then define a refinement relation on denotations and use it to establish
observational refinement. We write B1 v B2 when the denotation of B1 refines B2.

Refinement on denotations should be adequate, i.e., it should validly approximate
observational refinement: B1 v B2 =⇒ B1 4bl B2. Hence, if B1 v B2, then
B2 B1 is a valid transformation. It is also desirable for the denotation to be fully
abstract: B1 4bl B2 =⇒ B1 v B2. This means any valid transformation can be
verified by comparing denotations. Below we define several versions ofvwith different
properties.

3 Target Language and Core Memory Model

Our language’s memory model is derived from the C/C++ 2011 standard (henceforth
‘C11’), as formalised by [22, 5]. However, we simplify our model in several ways; see

4 Mike Dodds, Mark Batty, and Alexey Gotsman

store(x,0); store(y,0);

store(x,1);

v1 := load(y);

store(y,1);

v2 := load(x);

store(f,0); store(x,0);

store(x,1);

store(f,1);

b := load(f);

if (b == 1)

r := load(x);

Fig. 1. Left: store-buffering (SB) example. Right: message-passing (MP) example.

the end of section for details. In C11 terms, our model covers release-acquire and non-
atomic operations, and sequentially consistent fences. To simplify the presentation, at
first we omit non-atomics, and extend our approach to cover them in §7. Thus, all oper-
ations in this section correspond to C11’s release-acquire.

3.1 Relaxed Memory Primer

In a sequentially consistent concurrent system, there is a total temporal order on loads
and stores, and loads take the value of the most recent store; in particular, they cannot
read overwritten values, or values written in the future. A relaxed (or weak) memory
model weakens this total order, allowing behaviours forbidden under sequential consis-
tency. Two standard examples of relaxed behaviour are store buffering (SB) and message
passing (MP), shown in Figure 1.

In most relaxed models v1 = v2 = 0 is a possible post-state for SB. This cannot
occur on a sequentially consistent system: if v1 = 0, then store(y,1) must be ordered
after the load of y, which would order store(x,1) before the load of x, forcing it to
assign v2 = 1. In some relaxed models, b = 1 ∧ r = 0 is a possible post-state for
MP. This is undesirable if, for example, x is a complex data-structure and f is a flag
indicating it has been safely created.

3.2 Language Syntax

Programs in the language we consider manipulate thread-local variables l, l1, l2 . . . ∈
LVar and global variables x, y, . . . ∈ GVar, coming from disjoint sets LVar and GVar.
Each variable stores a value from a finite set Val and is initialised to 0 ∈ Val. Constants
are encoded by special read-only thread-local variables. We assume that each thread
uses the same set of thread-local variable names LVar. The syntax of the programming
language is as follows:

C ::= l := E | store(x, l) | l := load(x) | l := LL(x) | l′ := SC(x, l) | fence |
C1 ‖ C2 | C1;C2 | if (l) {C1} else {C2} | {−}

E ::= l | l1 = l2 | l1 6= l2 | . . .

Many of the constructs are standard. LL(x) and SC(x, l) are load-link and store-
conditional, which are basic concurrency operations available on many platforms (e.g.,
Power and ARM). A load-link LL(x) behaves as a standard load of global variable
x. However, if it is followed by a store-conditional SC(x, l), the store fails and returns
false if there are intervening writes to the same location. Otherwise the store-conditional

Compositional Verification of Compiler Optimisations on Relaxed Memory 5

writes l and returns true. The fence command is a sequentially consistent fence: inter-
leaving such fences between all statements in a program guarantees sequentially consis-
tent behaviour. We do not include compare-and-swap (CAS) command in our language
because LL-SC is more general [2]. Hardware-level LL-SC is used to implement C11
CAS on Power and ARM. Our language does not include loops because our model in
this paper does not include infinite computations (see §3.7 for discussion). As a result,
loops can be represented by their finite unrollings. Our load commands write into a
local variable. In examples, we sometimes use ‘bare’ loads without a variable write.

The construct {−} represents a block-shaped hole in the program. To simplify our
presentation, we assume that at most one hole appears in the program. Transformations
that apply to multiple blocks at once can be simulated by using the fact our approach is
compositional: transformations can be applied in sequence using different divisions of
the program into code-block and context.

The set Prog of whole programs consists of programs without holes, while the set
Contx of contexts consists of programs with a hole. The set Block of code-blocks are
whole programs without parallel composition. We often write P ∈ Prog for a whole
program, B ∈ Block for a code-block, and C ∈ Contx for a context. Given a context C
and a code-block B, the composition C(B) is C with its hole syntactically replaced by
B. For example:

C : load(x); {-}; store(y,l1), B : store(x,2)

−→ C(B) : load(x); store(x,2); store(y,l1)

We restrict Prog, Contx and Block to ensure LL-SC pairs are matched correctly.
Each SC must be preceded in program order by a LL to the same location. Other types
of operations may occur between the LL and SC, but intervening SC operations are
forbidden. For example, the program LL(x); SC(x,v1); SC(x,v2); is forbidden.
We also forbid LL-SC pairs from spanning parallel compositions, and from spanning
the block/context boundary.

3.3 Memory Model Structure

The semantics of a whole program P is given by a set JP K of executions, which consist
of actions, representing memory events on global variables, and several relations on
these. Actions are tuples in the set Action ∆

= ActID × Kind × Option(GVar) × Val∗.
In an action (a, k, z, b) ∈ Action: a ∈ ActID is the unique action identifier; k ∈ Kind
is the kind of action – we use load, store, LL, SC, and the failed variant SCf in the
semantics, and will introduce further kinds as needed; z ∈ Option(GVar) is an option
type consisting of either a single global variable Just(x) or None; and b ∈ Val∗ is the
vector of values (actions with multiple values are used in §4).

Given an action v, we use gvar(v) and val(v) as selectors for the different fields.
We often write actions so as to elide action identifiers and the option type. For example,
load(x, 3) stands for ∃i. (i, load, Just(x), [3]). We also sometimes elide values. We call
load and LL actions reads, and store and successful SC actions writes. Given a set of
actions A, we write, e.g., reads(A) to identify read actions in A. Below, we range over
all actions by u, v; read actions by r; write actions by w; and LL, SC actions by ll and
sc respectively.

6 Mike Dodds, Mark Batty, and Alexey Gotsman

〈l := load(x), σ〉 ∆
= {({load(x, a)}, ∅, σ[l 7→ a]) | a ∈ Val}

〈store(x, l), σ〉 ∆
= {({store(x, a)}, ∅, σ) | σ(l) = a}

〈C1;C2, σ〉
∆
= {(A1 ·∪A2, sb1 ∪ sb2 ∪ (A1 ×A2), σ2) |

(A1, sb1, σ1) ∈ 〈C1, σ〉 ∧ (A2, sb2, σ2) ∈ 〈C2, σ1〉}
〈fence, σ〉 ∆

= {({ll, sc}, {(ll, sc)}, σ) | ll = LL(fen, 0) ∧ sc = SC(fen, 0)}

Fig. 2. Selected clauses of the thread-local semantics. The full semantics is given in [10, §A]. We
write A1 ·∪A2 for a union that is defined only when actions in A1 and A2 use disjoint sets of
identifiers. We omit identifiers from actions to avoid clutter.

The semantics of a program P ∈ Prog is defined in two stages. First, a thread-
local semantics of P produces a set 〈P 〉 of pre-executions (A, sb) ∈ PreExec. A pre-
execution contains a finite set of memory actions A ⊆ Action that could be produced
by the program. It has a transitive and irreflexive sequence-before relation sb ⊆ A×A,
which defines the sequential order imposed by the program syntax.

For example two sequential statements in the same thread produce actions ordered
in sb. The thread-local semantics takes into account control flow in P ’s threads and
operations on local variables. However, it does not constrain the behaviour of global
variables: the values threads read from them are chosen arbitrarily. This is addressed
by extending pre-executions with extra relations, and filtering the resulting executions
using validity axioms.

3.4 Thread-Local Semantics

The thread-local semantics is defined formally in Figure 2. The semantics of a program
P ∈ Prog is defined using function 〈−,−〉 : Prog × VMap → P(PreExec × VMap).
The values of local variables are tracked by a map σ ∈ VMap

∆
= LVar → Val. Given a

program and an input local variable map, the function produces a set of pre-executions
paired with an output variable map, representing the values of local variables at the
end of the execution. Let σ0 map every local variable to 0. Then 〈P 〉, the thread-local
semantics of a program P , is defined as

〈P 〉 ∆
= {(A, sb) | ∃σ′. (A, sb, σ′) ∈ 〈P, σ0〉}

The significant property of the thread-local semantics is that it does not restrict the
behaviour of global variables. For this reason, note that the clause for load in Figure 2
leaves the value a unrestricted. We follow [16] in encoding the fence command by a
successful LL-SC pair to a distinguished variable fen ∈ GVar that is not otherwise read
or written.

3.5 Execution Structure and Validity Axioms

The semantics of a program P is a set JP K of executions X = (A, sb, at, rf,mo, hb) ∈
Exec, where (A, sb) is a pre-execution and at, rf,mo, hb ⊆ A×A. Given an execution
X we sometimes writeA(X), sb(X), . . . as selectors for the appropriate set or relation.
The relations have the following purposes.

Compositional Verification of Compiler Optimisations on Relaxed Memory 7

– Reads-from (rf) is an injective map from reads to writes at the same location of the
same value. A read and a write actions are related w rf−→ r if r takes its value from
w.

– Modification order (mo) is an irreflexive, total order on write actions to each distinct
variable. This is a per-variable order in which all threads observe writes to the
variable; two threads cannot observe these writes in different orders.

– Happens-before (hb) is analogous to global temporal order – but unlike the sequen-
tially consistent notion of time, it is partial. Happens-before is defined as (sb∪rf)+:
therefore statements ordered in the program syntax are ordered in time, as are reads
with the writes they observe.

– Atomicity (at ⊆ sb) is an extension to standard C11 which we use to support LL-
SC (see below). It is an injective function from a successful load-link action to a
successful store-conditional, giving a LL-SC pair.

The semantics JP K of a program P is the set of executions X ∈ Exec compatible
with the thread-local semantics and the validity axioms, denoted valid(X):

JP K ∆
= {X | (A(X), sb(X)) ∈ 〈P 〉 ∧ valid(X)} (3)

The validity axioms on an execution (A, sb, at, rf,mo, hb) are:

– HBDEF: hb = (sb ∪ rf)+ and hb is acyclic.
This axiom defines hb and enforces the intuitive property that there are no cycles
in the temporal order. It also prevents an action reading from its hb-future: as rf is
included in hb, this would result in a cycle.

– HBVSMO: ¬∃w1, w2. w1

hb **
w2

mo
jj

This axiom requires that the order in which writes to a location become visible
to threads cannot contradict the temporal order. But take note that writes may be
ordered in mo but not hb.

– COHERENCE: ¬∃w1, w2, r. w1
mo //

rf

33w2
hb // r

This axiom generalises the sequentially consistent prohibition on reading over-
written values. If two writes are ordered in mo, then intuitively the second over-
writes the first. A read that follows some write in hb or mo cannot read from writes
earlier in mo – these earlier writes have been overwritten. However, unlike in se-
quential consistency, hb is partial, so there may be multiple writes that an action
can legally read.

– RFVAL: ∀r. (¬∃w′. w′ rf−→ r) =⇒ (val(r) = 0∧
(¬∃w.w hb−→ r ∧ gvar(w) = gvar(r)))

Most reads must take their value from a write, represented by an rf edge. However,
the RFVAL axiom allows the rf edge to be omitted if the read takes the initial value
0 and there is no hb-earlier write to the same location. Intuitively, an hb-earlier
write would supersede the initial value in a similar way to COHERENCE.

8 Mike Dodds, Mark Batty, and Alexey Gotsman

– ATOM: ¬∃w1, w2, ll, sc. w1

rf
��

mo // w2

mo

��
ll at // sc

This axiom is adapted from [16]. For an LL-SC pair ll and sc, it ensures that there
is no mo-intervening write w2 that would invalidate the store.

store(f, 0)

sb, hb

��mo

��

store(x, 0)
sb, hb,mo

xx
sb, hb

��
rf,hb

yy

store(x, 1)

sb, hb

��

load(f, 1)

sb, hb

��
store(f, 1)

rf, hb

88

load(x, 0)

Fig. 3. An invalid execution of MP.

Our model forbids the problematic relaxed be-
haviour of the message-passing (MP) program in
Figure 1 that yields b = 1 ∧ r = 0. Figure 3
shows an (invalid) execution that would exhibit
this behaviour. To avoid clutter, here and in the
following we omit hb edges obtained by transi-
tivity and local variable values. This execution is
allowed by the thread-local semantics of the MP
program, but it is ruled out by the COHERENCE
validity axiom. As hb is transitively closed, there
is a derived hb edge store(x, 1)

hb−→ load(x, 0),
which forms a COHERENCE violation. Thus, this
is not an execution of the MP program. Indeed,
any execution ending in load(x, 0) is forbidden for the same reason, meaning that the
MP relaxed behaviour cannot occur.

3.6 Relaxed Observations

Finally, we define a notion of observational refinement suitable for our relaxed model.
We assume a subset of observable global variables, OVar ⊆ GVar, which can only be
accessed by the context and not by the code-block. We consider the actions and the hb
relation on these variables to be the observations. We write X|OVar for the projection of
X’s action set and relations to OVar, and use this to define 4ex for our model:

X 4ex Y
∆⇐⇒ A(X|OVar) = A(Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X|OVar)

This is lifted to programs and blocks as in §2, def. (1) and (2). Note that in the more
abstract execution, actions on observable variables must be the same, but hb can be
weaker. This is because we interpret hb as a constraint on time order: two actions that
are unordered in hb could have occurred in either order, or in parallel. Thus, weakening
hb allows more observable behaviours (see §2).

3.7 Differences from C11

Our language’s memory model is derived from the C11 formalisation in [5], with a
number of simplifications. We chose C11 because it demonstrates most of the impor-
tant features of axiomatic language models. However, we do not target the precise C11
model: rather we target an abstracted model that is rich enough to demonstrate our ap-
proach. Relaxed language semantics is still a very active topic of research, and several

Compositional Verification of Compiler Optimisations on Relaxed Memory 9

C11 features are known to be significantly flawed, with multiple competing fixes pro-
posed. Some of our differences from [5] are intended to avoid such problematic features
so that we can cleanly demonstrate our approach.

In C11 terms, our model covers release-acquire and non-atomic operations (the lat-
ter addressed in §7), and sequentially consistent fences. We deviate from C11 in the
following ways:

– We omit sequentially consistent accesses because their semantics is known to be
flawed in C11 [17]. We do handle sequentially consistent fences, but these are
stronger than those of C11: we use the semantics proposed in [16]. It has been
proved sound under existing compilation strategies to common multiprocessors.

– We omit relaxed (RLX) accesses to avoid well-known problems with thin-air val-
ues [4]. There are multiple recent competing proposals for fixing these problems,
e.g. [15, 14, 20].

– Our model does not include infinite computations, because their semantics in C11-
style axiomatic models remains undecided in the literature [4]. However, our proofs
do not depend on the assumption that execution contexts are finite.

– Our language is based on shared variables, not dynamically allocated addressable
memory, so for example we cannot write y:=*x; z:=*y. This simplifies our the-
ory by allowing us to fix the variables accessed by a code-block up-front. We be-
lieve our results can be extended to support addressable memory, because C11-style
models grant no special status to pointers; we elaborate on this in §4.

– We add LL-SC atomic instructions to our language in addition to C11’s standard
CAS. To do this, we adapt the approach of [16]. This increases the observational
power of a context and is necessary for full abstraction in the presence of non-
atomics; see §8. LL-SC is available as a hardware instruction on many platforms
supporting C11, such as Power and ARM. However, we do not propose adding LL-
SC to C11: rather, it supports an interesting result in relaxed memory model theory.
Our adequacy results do not depend on LL-SC.

4 Denotations of Code-Blocks

We construct the denotation for a code-block in two steps: (1) generate the block-local
executions under a set of special cut-down contexts; (2) from each execution, extract a
summary of interactions between the code-block and the context called a history.

4.1 Block-Local Executions

The block-local executions of a block B ∈ Block omit context structure such as syntax
and actions on variables not accessed in the block. Instead the context is represented
by special actions call and ret, a set AB , and relations RB and SB , each covering
an aspect of the interaction of the block and an arbitrary unrestricted context. Together,
each choice of call, ret,AB ,RB , and SB abstractly represents a set of possible syntactic
contexts. By quantifying over the possible values of these parameters, we cover the
behaviour of all syntactic contexts. The parameters are defined as follows:

10 Mike Dodds, Mark Batty, and Alexey Gotsman

– Local variables. A context can include code that precedes and follows the block
on the same thread, with interaction through local variables, but – due to syn-
tactic restriction – not through LL/SC atomic regions. We capture this with
special action call(σ) at the start of the block, and ret(σ′) at the end, where
σ, σ′ : LVar → Val record the values of local variables at these points. Assume
that variables in LVar are ordered: l1, l2, . . . , ln. Then call(σ) is encoded by the ac-
tion (i, call,None, [σ(l1), . . . σ(ln)]), with fresh identifier i. We encode ret in the
same way.

– Global variable actions. The context can also interact with the block through con-
current reads and writes to global variables. These interactions are represented by
setAB of context actions added to the ones generated by the thread-local semantics
of the block. This set only contains actions on the variables VSB that B can access
(VSB can be constructed syntactically). Given an execution X constructed using
AB (see below) we write contx(X) to recover the set AB .

– Context happens-before. The context can generate hb edges between its actions,
which affect the behaviour of the block. We track these effects with a relation RB
over actions in AB , call and ret:

RB ⊆ (AB ×AB) ∪ (AB × {call}) ∪ ({ret} × AB) (4)

The context can generate hb edges between actions directly if they are on the same
thread, or indirectly through inter-thread reads. Likewise call / ret may be related
to context actions on the same or different threads.

– Context atomicity. The context can generate at edges between its actions that we
capture in the relation SB ⊆ AB ×AB . We require this relation to be an injective
function from LL to SC actions. We consider only cases where LL/SC pairs do not
cross block boundaries, so we need not consider boundary-crossing at edges.

Together, call, ret, AB , RB , and SB represent a limited context, stripped of syn-
tax, relations sb, mo, and rf, and actions on global variables other than VSB . When
constructing block-local executions, we represent all possible interactions by quanti-
fying over all possible choices of σ, σ′, AB , RB and SB . The set JB,AB , RB , SBK
contains all executions of B under this special limited context. Formally, an execution
X = (A, sb, at, rf,mo, hb) is in this set if:

1. AB ⊆ A and there exist variable maps σ, σ′ such that {call(σ), ret(σ′)} ⊆ A. That
is, the call, return, and extra context actions are included in the execution.

2. There exists a set Al and relation sbl such that (i) (Al, sbl, σ′) ∈ 〈B, σ〉; (ii) Al =
A\ (AB ∪{call, ret}); (iii) sbl = sb\{(call, u), (u, ret) | u ∈ Al}. That is, actions
from the code-block satisfy the thread-local semantics, beginning with map σ and
deriving map σ′. All actions arising from the block are between call and ret in sb.

3. X satisfies the validity axioms, but with modified axioms HBDEF′ and ATOM′. We
define HBDEF′ as: hb = (sb∪rf∪RB)+ and hb is acyclic. That is, context relation
RB is added to hb. ATOM′ is defined analogously with SB added to at.

Compositional Verification of Compiler Optimisations on Relaxed Memory 11

hb, RB

hb, RB

mo

sb, hb

rf, hb

rf, hb

store(f,1)
load(f,1)

load(x,1)

call

sb, hb

sb, hb

ret

store(x,2)

store(x,1)

hb, RB

store(f,1)

call

ret

store(x,2)

store(x,1)
G

G

G

Fig. 4. Left: block-local execution. Right: corresponding history.

We say that AB , RB and SB are consistent with B if they act over variables in the
set VSB . In the rest of the paper we only consider consistent choices of AB , RB , SB .
The block-local executions of B are then all executions X ∈ JB,AB , RB , SBK.4

Example block-local execution. The left of Figure 4 shows a block-local execution for
the code-block

l1 := load(f); l2 := load(x) (5)

Here the set VSB of accessed global variables is {f, x}, As before, we omit local vari-
ables to avoid clutter. The context action set AB consists of the three stores, and RB is
denoted by dotted edges.

In this execution, both AB and RB affect the behaviour of the code-block. The
following path is generated by RB and the load of f = 1:

store(x, 2)
mo−−→ store(x, 1)

RB−−→ store(f, 1)
rf−→ load(f, 1)

sb−→ load(x, 1)

Because hb includes sb, rf, and RB , there is a transitive edge store(x, 1)
hb−→

load(x, 1). The edge store(x, 2) mo−−→ store(x, 1) is forced because the HBVSMO axiom
prohibits mo from contradicting hb. Consequently, the COHERENCE axiom forces the
code-block to read x = 1.

4.2 Histories

From any block-local execution X , its history summarises the interactions between the
code-block and the context. Informally, the history records hb over context actions, call,
and ret. More formally the history, written hist(X), is a pair (A, G) consisting of an

4 This definition relies on the fact that our language supports a fixed set of global variables, not
dynamically allocated addressable memory (see §3.7). We believe that in the future our results
can be extended to support dynamic memory. For this, the block-local construction would need
to quantify over actions on all possible memory locations, not just the static variable set VSB .
The rest of our theory would remain the same, because C11-style models grant no special
status to pointer values. Cutting down to a finite denotation, as in §5 below, would require
some extra abstraction over memory – for example, a separation logic domain such as [9].

12 Mike Dodds, Mark Batty, and Alexey Gotsman

Execution 1: History 1:

store(f,1)

rf?

sb

rf

mo

sb

load(f,1)

load(x,0)

call

sb

sb

ret

store(y,1)

store(y,2)
sb

load(y)

G

store(f,1)

call

ret

G

Execution 2: History 2:

store(f,1)

rf?

sb

mo

call

ret

store(y,1)

store(y,2)
sb

load(y)

sb

load(x,0)

sb

store(f,1)

call

ret

Fig. 5. Executions and histories illustrating the guarantee relation.

action setA and guarantee relationG ⊆ A×A. Recall that we use contx(X) to denote
the set of context actions in X . Using this, we define the history as follows:

– The action set A is the projection of X’s action set to call, ret, and contx(X).
– The guarantee relation G is the projection of hb(X) to

(contx(X)× contx(X)) ∪ (contx(X)× {ret}) ∪ ({call} × contx(X)) (6)

The guarantee summarises the code-block’s effect on its context: it suffices to only
track hb and ignore other relations. Note the guarantee definition is similar to the con-
text relation RB , definition (4). The difference is that call and ret are switched: this
is because the guarantee represents hb edges generated by the code-block, while RB
represents the edges generated by the context. The right of Figure 4 shows the history
corresponding to the block-local execution on the left.

To see the interactions captured by the guarantee, compare the block given in def. (5)
with the block l2:=load(x). These blocks have differing effects on the following syn-
tactic context:

store(y,1); store(y,2); store(f,1) || {-}; l3:=load(y)

For the two-load block embedded into this context, l1 = 1 ∧ l3 = 1 is not a possible
post-state. For the single-load block, this post-state is permitted.5

In Figure 4.2, we give executions for both blocks embedded into this context. We
draw the context actions that are not included into the history in grey. In these execu-
tions, the code block determines whether the load of y can read value 1 (represented by
the edge labelled ‘rf?’). In the first execution, the context load of y cannot read 1 be-
cause there is the path store(y, 1)

mo−−→ store(y, 2)
hb−→ load(y) which would contradict

the COHERENCE axiom. In the second execution there is no such path and the load may
read 1.

5 We choose these post-states for exposition purposes – in fact these blocks are also distinguish-
able through local variable l1 alone.

Compositional Verification of Compiler Optimisations on Relaxed Memory 13

It is desirable for our denotation to hide the precise operations inside the block –
this lets it relate syntactically distinct blocks. Nonetheless, the history must record hb
effects such as those above that are visible to the context. In Execution 1, the COHER-
ENCE violation is still visible if we only consider context operations, call, ret, and the
guarantee G – i.e. the history. In Execution 2, the fact that the read is permitted is like-
wise visible from examining the history. Thus the guarantee, combined with the local
variable post-states, capture the effect of the block on the context without recording the
actions inside the block.

4.3 Comparing Denotations

The denotation of a code-block B is the set of histories of block-local executions of B
under each possible context, i.e. the set

{hist(X) | ∃AB , RB , SB . X ∈ JB,AB , RB , SBK}

To compare the denotations of two code-blocks, we first define a refinement relation on
histories: (A1, G1) vh (A2, G2) holds iff A1 = A2 ∧G2 ⊆ G1. The history (A2, G2)
places fewer restrictions on the context than (A1, G1) – a weaker guarantee corresponds
to more observable behaviours. For example in Figure 4.2, History 1 vh History 2 but
not vice versa, which reflects the fact that History 1 rules out the read pattern discussed
above.

We write B1 vq B2 to state that the denotation of B1 refines that of B2. The
subscript ‘q’ stands for the fact we quantify over both A and RB . We define vq by
lifting vh:

B1 vq B2
∆⇐⇒ ∀A, R, S. ∀X1 ∈ JB1,A, R, SK.

∃X2 ∈ JB2,A, R, SK. hist(X1) vh hist(X2)
(7)

In other words, two code-blocks are relatedB1 vq B2 if for every block-local execution
of B1, there is a corresponding execution of B2 with a related history. Note that the
corresponding history must be constructed under the same cut-down context A, R, S.

THEOREM 1 (ADEQUACY OF vq) B1 vq B2 =⇒ B1 4bl B2.

THEOREM 2 (FULL ABSTRACTION OF vq) B1 4bl B2 =⇒ B1 vq B2.

As a corollary of the above theorems, a program transformation B2 B1 is valid
if and only ifB1 vq B2 holds. We prove Theorem 1 in [10, §B]. We give a proof sketch
of Theorem 2 in §8 and a full proof in [10, §F].

4.4 Example Transformation

We now consider how our approach applies to a simple program transformation:

B2 : store(x,l1); store(x,l1) B1 : store(x,l1)

14 Mike Dodds, Mark Batty, and Alexey Gotsman

Execution X1: Execution X2: History:

R

sb, hb

rf, hb
load(x,1)

store(x,1)

call

sb, hb

ret

R

sb, hb

rf, hb
load(x,1)

store(x,1)

store(x,1)

call

sb, hb

sb, hb

ret load(x,1)

call

ret

G

Fig. 6. History comparison for an example program transformation.

To verify this transformation, we must show that B1 vq B2. To do this, we must
consider the unboundedly many block-local executions. Here we just illustrate the rea-
soning for a single block-local execution; in §5 below we define a context reduction
which lets us consider a finite set of such executions.

In Figure 6, we illustrate the necessary reasoning for an execution X1 ∈
JB1,A, R, SK, with a context action set A consisting of a single load x = 1, a con-
text relation R relating ret to the load, and an empty S relation. This choice of R
forces the context load to read from the store in the block. We can exhibit an execution
X2 ∈ JB2,A, R, SK with a matching history by making the context load read from the
final store in the block.

5 A Finite Denotation

The approach above simplifies contexts by removing syntax and non-hb structure, but
there are still infinitely many A/R/S contexts for any code-block. To solve this, we
introduce a type of context reduction which allows us to consider only finitely many
block-local executions. This means that we can automatically check transformations by
examining all such executions. However this ‘cut down’ approach is no longer fully
abstract. We modify our denotation as follows:

– We remove the quantification over context relation R from definition (7) by fixing
it as ∅. In exchange, we extend the history with an extra component called a deny.

– We eliminate redundant block-local executions from the denotation, and only con-
sider a reduced set of executions X that satisfy a predicate cut(X).

These two steps are both necessary to achieve finiteness. Removing the R relation
reduces the amount of structure in the context. This makes it possible to then remove
redundant patterns – for example, duplicate reads from the same write.

Before defining the two steps in detail, we give the structure of our modified refine-
ment vc. In the definition, histE(X) stands for the extended history of an execution X ,

Compositional Verification of Compiler Optimisations on Relaxed Memory 15

and vE for refinement on extended histories.

B1 vc B2
∆⇐⇒ ∀A, S.∀X1 ∈ JB1,A, ∅, SK.

cut(X1) =⇒ ∃X2 ∈ JB2,A, ∅, SK. histE(X1) vE histE(X2) (8)

As with vq above, the refinement vc is adequate. However, it is not fully abstract
(we provide a counterexample in [10, §D]). We prove the following theorem in [10, §E].

THEOREM 3 (ADEQUACY OF vc) B1 vc B2 =⇒ B1 4bl B2.

5.1 Cutting Predicate

Removing the context relation R in definition (8) removes a large amount of structure
from the context. However, there are still unboundedly many block-local executions
with an empty R – for example, we can have an unbounded number of reads and writes
that do not interact with the block. The cutting predicate identifies these redundant
executions.

We first identify the actions in a block-local execution that are visible, meaning they
directly interact with the block. We write code(X) for the set of actions in X generated
by the code-block. Visible actions belong to code(X), read from code(X), or are read
by code(X). In other words,

vis(X)
∆
= code(X) ∪ {u | ∃v ∈ code(X). u

rf−→ v ∨ v rf−→ u}

Informally, cutting eliminates three redundant patterns: (i) non-visible context
reads, i.e. reads from context writes; (ii) duplicate context reads from the same write;
and (iii) duplicate non-visible writes that are not separated in mo by a visible write.
Formally we define cut′(X), the conjunction of cutR for read, and cutW for write.

cutR(X)
∆⇐⇒ reads(X) ⊆ vis(X)∧

∀r1, r2 ∈ contx(X). (r1 6= r2 ⇒ ¬∃w.w
rf−→ r1 ∧ w

rf−→ r2)

cutW(X)
∆⇐⇒ ∀w1, w2 ∈ (contx(X) \ vis(X)).

w1
mo−−→ w2 ⇒ ∃w3 ∈ vis(X). w1

mo−−→ w3
mo−−→ w2

cut′(X)
∆⇐⇒ cutR(X) ∧ cutW(X)

The final predicate cut(X) extends this in order to keep LL-SC pairs together: it re-
quires that, if cut′() permits one half of an LL-SC, the other is also permitted implicitly
(for brevity we omit the formal definition of cut() in terms of cut′).

It should be intuitively clear why the first two of the above patterns are redundant.
The main surprise is the third pattern, which preserves some non-visible writes. This is
required by Theorem 3 for technical reasons connected to per-location coherence. We
illustrate the application of cut() to a block-local execution in Figure 7.

16 Mike Dodds, Mark Batty, and Alexey Gotsman

mo

mo

mo

rf

rf

store(x,0)

load(y,0)

call

store(x,3)

ret

load(x,0)

load(x,0)
store(x,1)

store(x,2)

[a]
store(y,0)rf

[d]

[c]

rf

load(x,2)
[b]

rf load(x,3)

)

)

)

[a] Forbidden by cutW(). Two
non-visible stores without a vis-
ible store intervening in mo.

[b] Forbidden by cutR(). Load is
non-visible as it reads from a
context store.

[c] Forbidden by cutR(). Both
reads are visible, but are du-
plicates, reading from the same
write.

[d] Allowed. Visible load and store.

Fig. 7. Left: block-local execution which includes patterns forbidden by cut(). Right: key ex-
plaining the patterns forbidden or allowed.

5.2 Extended History (histE)

In our approach, each block-local execution represents a pattern of interaction between
block and context. In our previous definition of vq, constraints imposed by the block
are captured by the guarantee, while constraints imposed by the context are captured
by the R relation. The definition (8) of vc removes the context relation R, but these
constraints must still be represented. Instead, we replace R with a history component
called a deny. This simplifies the block-local executions, but compensates by recording
more in the denotation.

D rf

mo

sb

store(x,1)store(x,0)

call

sb

ret

load(x,1)

Fig. 8. A deny edge.

The deny records the hb edges that cannot be enforced
due to the execution structure. For example, consider the
block-local execution6 of Figure 8.

This pattern could not occur in a context that gener-
ates the dashed edge D as a hb – to do so would violate
the HBVSMO axiom. In our previous definition of vq, we
explicitly represented the presence or absence of this edge
through the R relation. In our new formulation, we repre-
sent such ‘forbidden’ edges in the history by a deny edge.

The extended history of an execution X , written histE(X) is a triple (A, G,D),
consisting of the familiar notions of action set A and guarantee G ⊆ A × A, together
with deny D ⊆ A×A as defined below:

D
∆
= {(u, v) |HBvsMO-d(u, v)∨Cohere-d(u, v)∨RFval-d(u, v)} ∩

(
(contx(X)× contx(X)) ∪ (contx(X)× {call}) ∪ ({ret} × contx(X))

)

Each of the predicates HBvsMO-d, Cohere-d, and RFval-d generates the deny for
one validity axiom. In the diagrammatic definitions below, dashed edges represent the
deny edge, and hb∗ is the reflexive-transitive closure of hb:

6 We use this execution for illustration, but in fact the cut() predicate would forbid the load.

Compositional Verification of Compiler Optimisations on Relaxed Memory 17

HBvsMO-d(u, v): ∃w1, w2. w1
hb∗ // u

D // v
hb∗ // w2

mo

ll

Coherence-d(u, v): w1
mo //

rf

11w2
hb∗ // u

D // v
hb∗ // r

RFval-d(u, v): ∃w, r. gvar(w) = gvar(r)∧

¬∃w′. w′ rf−→ r ∧ w
hb∗ // u

D // v
hb∗ // r

One can think of a deny edge as an ‘almost’ violation of an axiom. For example, if
HBvsMO-d(u, v) holds, then the context cannot generate an extra hb-edge u hb−→ v – to
do so would violate HBVSMO.

Because deny edges represent constraints on the context, weakening the deny places
fewer constraints, allowing more behaviours, so we compare them with relational in-
clusion:

(A2, G2, D2) vE (A2, G2, D2)
∆⇐⇒ A1 = A2 ∧G2 ⊆ G1 ∧D2 ⊆ D1

This refinement on extended histories is used to define our refinement relation on
blocks, vc, def. (8).

5.3 Finiteness

THEOREM 4 (FINITENESS) If for a block B and state σ the set of thread-local ex-
ecutions 〈B, σ〉 is finite, then so is the set of resulting block-local executions, {X |
∃A, S.X ∈ JB,A, ∅, SK ∧ cut(X)}.

Proof (sketch). It is easy to see for a given thread-local execution there are finitely many
possible visible reads and writes. Any two non-visible writes must be distinguished by
at least one visible write, limiting their number. ut

Theorem 4 means that any transformation can be checked automatically if the two
blocks have finite sets of thread-local executions. We assume a finite data domain,
meaning action can only take finitely many distinct values in Val. Recall also that our
language does not include loops. Given these facts, any transformations written in our
language will satisfy finiteness, and can therefore by automatically checked.

6 Prototype Verification Tool

Stellite is our prototype tool that verifies transformations using the Alloy* model
checker [12, 18]. Our tool takes an input transformation B2 B1 written in a C-
like syntax. It automatically converts the transformation into an Alloy* model encoding
B1 vc B2. If the tool reports success, then the transformation is verified for unbound-
edly large syntactic contexts and executions.

An Alloy model consists of a collection of predicates on relations, and an instance
of the model is a set of relations that satisfy the predicates. As previously noted in [28],
there is therefore a natural fit between Alloy models and axiomatic memory models.

At a high level, our tool works as follows:

18 Mike Dodds, Mark Batty, and Alexey Gotsman

1. The two sides of an input transformation B1 and B2 are automatically converted
into Alloy predicates expressing their syntactic structure. Intuitively, these block
predicates are built by following the thread-local semantics from §3.

2. The block predicates are linked with a pre-defined Alloy model expressing the
memory model and vc.

3. The Alloy* solver searches (using SAT) for a history of B1 that has no matching
history of B2. We use the higher-order Alloy* solver of [18] because the standard
Alloy solver cannot support the existential quantification on histories in vc.

The Alloy* solver is parameterised by the maximum size of the model it will exam-
ine. However, our finiteness theorem for vc (Theorem 4) means there is a bound on the
size of cut-down context that needs to be considered to verify any given transformation.
If our tool reports that a transformation is correct, it is verified in all syntactic contexts
of unbounded size.

Given a query B1 vc B2, the required context bound grows in proportion to the
number of internal actions on distinct locations in B1. This is because our cutting pred-
icate permits context actions if they interact with internal actions, either directly, or by
interleaving between internal actions. In our experiments we run the tool with a model
bound of 10, sufficient to give soundness for all the transformations we consider. Note
that most of our example transformations do not require such a large bound, and execu-
tion times improve if it is reduced.

If a counter-example is discovered, the problematic execution and history can be
viewed using the Alloy model visualiser, which has a similar appearance to the ex-
ecution diagrams in this paper. The output model generated by our tool encodes the
history of B1 for which no history of B2 could be found. As vc is not fully abstract,
this counter-example could, of course, be spurious.

Stellite currently supports transformations on code-blocks with atomic reads, writes,
and fences. It does not yet support code-blocks with non-atomic accesses (see §7), LL-
SC, or branching control-flow. We believe supporting the above features would not
present fundamental difficulties, since the structure of the Alloy encoding would be
similar. Despite the above limitations, our prototype demonstrates that our cut-down
denotation can be used for automatic verification of important program transformations.

Experimental results. We have tested our tool on a range of different transformations.
A table of experimental results is given in Figure 9. Many of our examples are de-
rived from [23] – we cover all their examples that fit into our tool’s input language.
Transformations of the sort that we check have led to real-world bugs in GCC [19]
and LLVM [8]. Note that some transformations are invalid because of their effect
on local variables, e.g. skip l := load(x). The closely related transformation
skip load(x) throws away the result of the read, and is consequently valid.

Our tool takes significant time to verify some of the above examples, and two of
the transformations cause the tool to time out. This is due to the complexity and non-
determinism of the C11 model. In particular, our execution times are comparable to ex-
isting C++ model simulators such as Cppmem when they run on a few lines of code [3].
However, our tool is a sound transformation verifier, rather than a simulator, and thus
solves a more difficult problem: transformations are verified for unboundedly large syn-
tactic contexts and executions, rather than for a single execution.

Compositional Verification of Compiler Optimisations on Relaxed Memory 19

Introduction, validity, time (s)
skip fc X 76

skip ld(x) X 429

skip l := ld(x) x 18

l := ld(x) l := ld(x); st(x, l) x 72

l := ld(x) l := ld(y); l := ld(x) ? ∞
l := ld(x) l := ld(x); l := ld(x) X 20k

st(x, l) st(x, l); st(x, l) x 136

fc fc; fc X 248

Elimination, validity, time (s)
fc skip x 15

l := ld(x) skip x 17

l := ld(x); st(x, l) l := ld(x) x 64

l := ld(x); l := ld(x) l := ld(x) X 2k

st(x, l); l := ld(x) st(x, l) X 9k

st(x,m); st(x, l) st(x, l) X 24k

fc; fc fc X 382

Exchange, validity, time (s)
fc; l := ld(x) l := ld(x); fc x 26

fc; st(x, l) st(x, l); fc x 50

l := ld(x); fc fc; l := ld(x) x 79

st(x, l); fc fc; st(x, l) x 145

l := ld(x); st(y,m) st(y,m); l := ld(x) x 28

m := ld(y); l := ld(x) l := ld(x);m := ld(y) x 118

st(y,m); l := ld(x) l := ld(x); st(y,m) ? ∞
st(y,m); st(x, l) st(x, l); st(y,m) x 641

Fig. 9. Results from executing Stellite on a 32 core 2.3GHz AMD Opteron, with 128GB RAM,
over Linux 3.13.0-88 and Java 1.8.0 91. load/store/fence are abbreviated to ld/st/fc. X and
x denote whether the transformation satisfies vc.∞ denotes a timeout after 8 hours.

7 Transformations with Non-Atomics

We now extend our approach to non-atomic (i.e. unsynchronised) accesses. C11 non-
atomics are intended to enable sequential compiler optimisations that would otherwise
be unsound in a concurrent context. To achieve this, any concurrent read-write or write-
write pair of non-atomic actions on the same location is declared a data race, which
causes the whole program to have undefined behaviour. Therefore, adding non-atomics
impacts not just the model, but also our denotation.

7.1 Memory Model with Non-atomics

Non-atomic loads and stores are added to the model by introducing new com-
mands storeNA(x, l) and l := loadNA(x) and the corresponding kinds of actions:
storeNA, loadNA ∈ Kind. We let NA be the set of all actions of these kinds. We partition
global variables so that they are either only accessed by non-atomics, or by atomics.
We do not permit non-atomic LL-SC operations. Two new validity axioms ensure that
non-atomics read from writes that happen before them, but not from stale writes:

– RFHBNA: ∀w, r ∈ NA. w
rf−→ r =⇒ w

hb−→ r

– COHERNA: ¬∃w1, w2, r ∈ NA. w1
hb //

rf

33w2
hb // r

20 Mike Dodds, Mark Batty, and Alexey Gotsman

store(y,0); storeNA(x, 1);

storeNA(x,1);

store(y,1);

l1 := loadNA(x);

l2 := load(y);

l3 := loadNA(x);

store(y, 0)

sb, hb

��mo

��

storeNA(x, 0)

sb, hb

xx
sb, hb

��
rf

vv
storeNA(x, 1)

sb, hb

��

ll
race
33

rf

��

loadNA(x, 0)

sb, hb

��
store(y, 1)

rf, hb

33 load(y, 1)

sb, hb

��
loadNA(x, 1)

store(y,0); storeNA(x, 1);

storeNA(x,1);

store(y,1);

l1 := loadNA(x);

l3 := loadNA(x);

l2 := load(y);

store(y, 0)

sb, hb

��mo

��

storeNA(x, 0)

sb, hb

xx
sb, hb

��
rf

xx
rf

vv

storeNA(x, 1)

sb, hb

��

ll
race
33loadNA(x, 0)

sb, hb

��
store(y, 1)

rf, hb **

loadNA(x, 0)

sb, hb

��
load(y, 1)

Fig. 10. Top left: augmented MP, with non-atomic accesses to x, and a new racy load. Top right:
the same code optimised with B2 B1. Below each: a valid execution.

Modification order (mo) does not cover non-atomic accesses, and we change the
definition of happens-before (hb), so that non-atomic loads do not add edges to it:

– HBDEF: hb = (sb ∪ (rf ∩ {(w, r) | w, r /∈ NA}))+

Consider the code on the left in Figure 10: it is similar to MP from Figure 1, but we
have removed the if-statement, made all accesses to x non-atomic, and we have added
an additional load of x at the start of the right-hand thread. The valid execution of this
code on the left-hand side demonstrates the additions to the model for non-atomics:

– modification order (mo) relates writes to atomic y, but not non-atomic x;
– the first load of x is forced to read from the initialisation by RFHBNA; and
– the second read of x is forced to read 1 because the hb created by the load of y

obscures the now-stale initialisation write, in accordance with COHERNA.

The most significant change to the model is the introduction of a safety axiom, data-
race freedom (DRF). This forbids non-atomic read-write and write-write pairs that are
unordered in hb:

DRF: ∀u, v ∈ A.
(
∃x. u 6= v ∧ u = (store(x,)) ∧
v ∈ {(load(x,)), (store(x,))}

)
=⇒

(
u

hb−→ v ∨ v hb−→ u
∨u, v /∈ NA

)

We write safe(X) if an execution satisfies this axiom. Returning to the left of Fig-
ure 10, we see that there is a violation of DRF – a race on non-atomics – between the
first load of x and the store of x on the left-hand thread.

Compositional Verification of Compiler Optimisations on Relaxed Memory 21

Let JP KNAv be defined same way as JP K is in §3, def. (3), but with adding the ax-
ioms RFHBNA and COHERNA and substituting the changed axiom HBDEF. Then the
semantics JP K of a program with non-atomics is:

JP K ∆
= if ∀X ∈ JP KNAv . safe(X) then JP KNAv else >

The undefined behaviour > subsumes all others, so any program observationally
refines a racy program. Hence we modify our notion of observational refinement on
whole programs:

P1 4
NA
pr P2

∆⇐⇒ (safe(P2) =⇒ (safe(P1) ∧ P1 4pr P2))

This always holds when P2 is unsafe; otherwise, it requires P1 to preserve safety and
observations to match. We define observational refinement on blocks, 4NA

bl , by lifting
4NA

pr as per §2, def. (2).

7.2 Denotation with Non-atomics

We now define our denotation for non-atomics,vNA
q , building on the ‘quantified’ deno-

tation vq defined in §4. (We have also defined a finite variant of this denotation using
the cutting strategy described in §5 – we leave this to [10, §C].)

Non-atomic actions do not participate in happens-before (hb) or coherence order
(mo). For this reason, we need not change the structure of the history. However, non-
atomics introduce undefined behaviour >, which is a special kind of observable be-
haviour. If a block races with its context in some execution, the whole program becomes
unsafe, for all executions. Therefore, our denotation must identify how a block may race
with its context. In particular, for the denotation to be adequate, for any context C and
two blocks B1 vNA

q B2, we must have that if C(B1) is racy, then C(B2) is also racy.
To motivate the precise definition of vNA

q , we consider the following (sound) ‘anti-
roach-motel’ transformation7, noting that it might be applied to the right-hand thread of
the code in the left of Figure 10:

B2 : l1 := loadNA(x); l2 := load(y); l3 := loadNA(x)

 B1 : l1 := loadNA(x); l3 := loadNA(x); l2 := load(y)

In a standard roach-motel transformation [25], operations are moved into a synchro-
nised block. This is sound because it only introduces new happens-before ordering be-
tween events, thereby restricting the execution of the program and preserving data-race
freedom. In the above transformation, the second NA load of x is moved past the atomic
load of y, effectively out of the synchronised block, reducing happens-before ordering,
and possibly introducing new races. However, this is sound, because any data-race gen-
erated by B1 must have already occurred with the first NA load of x, matching a racy
execution of B2. Verifying this transformation requires that we reason about races, so
vNA

q must account for both racy and non-racy behaviour.

7 This example was provided to us by Lahav, Giannarakis and Vafeiadis in personal communi-
cation.

22 Mike Dodds, Mark Batty, and Alexey Gotsman

The code on the left of Figure 10 represents a context, composed with B2, and the
execution of Figure 10 demonstrates that together they are racy. If we were to apply our
transformation to the fragment B2 of the right-hand thread, then we would produce the
code on the right in Figure 10. On the right in Figure 10, we present a similar execution
to the one given on the left. The reordering on the right-hand thread has led to the second
load of x taking the value 0 rather than 1, in accordance with RFHBNA. Note that the
execution still has a race on the first load of x, albeit with different following events.
As this example illustrates, when considering racy executions in the definition of vNA

q ,
we may need to match executions of the two code-blocks that behave differently after a
race. This is the key subtlety in our definition of vNA

q .
In more detail, for two related blocksB1 vNA

q B2, ifB2 generates a race in a block-
local execution under a given (reduced) context, then we require B1 and B2 to have
corresponding histories only up to the point the race occurs. Once the race has occurred,
the following behaviours of B1 and B2 may differ. This still ensures adequacy: when
the blocks B1 and B2 are embedded into a syntactic context C, this ensures that a race
can be reproduced in C(B2), and hence, C(B1) 4NA

pr C(B2).
By default, C11 executions represent a program’s complete behaviour to termina-

tion. To allow us to compare executions up to the point a race occurs, we use prefixes of
executions. We therefore introduce the downclosure X↓, the set of (hb ∪ rf)+-prefixes
of an execution X:

X↓
∆
= {X ′ | ∃A. X ′ = X|A ∧ ∀(u, v) ∈ (hb(X) ∪ rf(X))+. (v ∈ A ⇒ u ∈ A)}

Here X|A is the projection of the execution X to actions in A. We lift the downclosure
to sets of executions in the standard way.

Now we define our refinement relation B1 vNA
q B2 as follows:

B1 vNA
q B2

∆⇐⇒ ∀A, R, S. ∀X1 ∈ JB1,A, R, SKNAv .∃X2 ∈ JB2,A, R, SKNAv .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) vh hist(X2)) ∧
(¬safe(X2) =⇒ ∃X ′2 ∈ (X2)

↓.∃X ′1 ∈ (X1)
↓.

¬safe(X ′2) ∧ hist(X ′1) vh hist(X
′
2))

In this definition, for each execution X1 of block B1, we witness an execution X2

of block B2 that is related. The relationship depends on whether X2 is safe or unsafe.

– If X2 is safe, then the situation corresponds to vq – see §4, def. (7). In fact, if B2

is certain to be safe, for example because it has no non-atomic accesses, then the
above definition is equivalent to vq.

– If X2 is unsafe then it has a race, and we do not have to relate the whole executions
X1 and X2. We need only show that the race in X2 is feasible by finding a prefix in
X1 that refines the prefix leading to the race in X2. In other words, X2 will behave
consistently with X1 until it becomes unsafe. This ensures that the race in X2 will
in fact occur, and its undefined behaviour will subsume the behaviour of B1. After
X2 becomes unsafe, the two blocks can behave entirely differently, so we need not
show that the complete histories of X1 and X2 are related.

Compositional Verification of Compiler Optimisations on Relaxed Memory 23

Execution X1 Execution X2 History

race
loadNA(x,0)

call
sb, hb

ret

rf, hb

loadNA(x,0)

load(y,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)
race

race
loadNA(x,0)

call
sb, hb

ret'

rf, hb load(y,1)

loadNA(x,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)

call

ret

G

store(y,1)

storeNA(x,1)

G

Fig. 11. History comparison for an NA-based program transformation

Recall the transformationB2 B1 given above. To verify it, we must establish that
B1 vNA

q B2. As before, we illustrate the reasoning for a single block-local execution –
verifying the transformation would require a proof for all block-local executions.

In Figure 11 we give an execution X1 ∈ JB1,A, R, SK, with a context action set A
consisting of a non-atomic store of x = 1 and an atomic store of y = 1, and a context
relationR relating the store of x to the store of y. Note that this choice of context actions
matches the left-hand thread in the code listings of Figure 10, and there are data races
between the loads and the store on x.

To prove the refinement for this execution, we exhibit a corresponding unsafe exe-
cutionX2 ∈ JB2,A, R, SKv . The histories of the complete executionsX1 andX2 differ
in their return action. In X2 the load of y takes the value of the context store, so COH-
ERNA forces the second load of x to read from the context store of x. This changes the
values of local variables recorded in ret′. However, because X2 is unsafe, we can select
a prefixX ′2 which includes the race (we denote in grey the parts that we do not include).
Similarly, we can select a prefix X ′1 of X1. We have that hist(X ′1) = hist(X ′2) (shown
in the figure), even though the histories hist(X1) and hist(X2) do not correspond.

THEOREM 5 (ADEQUACY OF vNA
q) B1 vNA

q B2 =⇒ B1 4NA
bl B2.

THEOREM 6 (FULL ABSTRACTION OF vNA
q) B1 4NA

bl B2 ⇒ B1 vNA
q B2.

We prove Theorem 5 in [10, §B] and Theorem 6 in [10, §F]. Note that the prefixing
in our definition of vNA

q is required for full abstraction—but it would be adequate to
always require complete executions with related histories.

8 Full Abstraction

The key idea of our proofs of full abstraction (Theorems 2 and 6, given in full in [10,
§F]) is to construct a special syntactic context that is sensitive to one particular his-
tory. Namely, given an execution X produced from a block B with context happens-
before R, this context CX guarantees: (1) that X is the block portion of an execution of
CX(B); and (2) for any block B′, if CX(B′) has a different block history from X , then

24 Mike Dodds, Mark Batty, and Alexey Gotsman

u

R

��

sb,hb
��

write(hu,v, 1)
rf,hb
// read(hu,v, 1)

sb,hb

��
v

write(gu,v, 1)

rf,G

��

sb,hb

��
u

hb
// v

sb,hb
��

read(gu,v, 1)

Fig. 12. The execution shapes generated by the special context for, on the left, generation of R,
and on the right, errant history edges.

this is visible in different observable behaviour. Therefore for any blocks that are dis-
tinguished by different histories, CX can produce a program with different observable
behaviour, establishing full abstraction.

Special context construction. The precise definition of the special context construction
CX is given in [10, §F] – here we sketch its behaviour. CX executes the context opera-
tions from X in parallel with the block. It wraps these operations in auxiliary wrapper
code to enforce context happens-before, R, and to check the history. If wrapper code
fails, it writes to an error variable, which thereby alters the observable behaviour.

The context must generate edges in R. This is enforced by wrappers that use watch-
dog variables to create hb-edges: each edge (u, v) ∈ R is replicated by a write and read
on variable h(u,v). If the read on h(u,v) does not read the write, then the error variable
is written. The shape of a successful read is given on the left in Figure 12.

The context must also prohibit history edges beyond those in the original guarantee
G, and again it uses watchdog variables. For each (u, v) not in G, the special context
writes to watchdog variable g(u,v) before u and a reads g(u,v) after v. If the read of
g(u,v) does read the value written before u, then there is an errant history edge, and the
error location is written. An erroneous execution has the shape given on the right in
Figure 12 (omitting the write to the error location).

Full abstraction and LL-SC. Our proof of full abstraction for the language with C11
non-atomics requires the language to also include LL-SC, not just C11’s standard CAS:
the former operation increases the observational power of the context. However, without
non-atomics (§4) CAS would be sufficient to prove full abstraction.

9 Related Work

Our approach builds on our prior work [3], which generalises linearizability [11] to
the C11 memory model. This work represented interactions between a library and its
clients by sets of histories consisting of a guarantee and a deny; we do the same for
code-block and context. However, our previous work assumed information hiding, i.e.,
that the variables used by the library cannot be directly accessed by clients; we lift this
assumption here. We also establish both adequacy and full abstraction, propose a finite
denotation, and build an automated verification tool.

Compositional Verification of Compiler Optimisations on Relaxed Memory 25

Our approach is similar in structure to the seminal concurrency semantics of
Brookes [6]: i.e. a code block is represented by a denotation capturing possible in-
teractions with an abstracted context. In [6], denotations are sets of traces, consisting of
sequences of global program states; context actions are represented by changes in these
states. To handle the more complex axiomatic memory model, our denotation consists
of sets of context actions and relations on them, with context actions explicitly repre-
sented as such. Also, in order to achieve full abstraction, Brookes assumes a powerful
atomic await() instruction which blocks until the global state satisfies a predicate.
Our result does not require this: all our instructions operate on single locations, and our
strongest instruction is LL-SC, which is commonly available on hardware.

Brookes-like approaches have been applied to several relaxed models: operational
hardware models [7], TSO [13], and SC-DRF [21]. Also, [7, 21] define tools for ver-
ifying program transformations. All three approaches are based on traces rather than
partial orders, and are therefore not directly portable to C11-style axiomatic memory
models. All three also target substantially stronger (i.e. more restrictive) models.

Methods for verifying code transformations, either manually or using proof assis-
tants, have been proposed for several relaxed models: TSO [24, 26, 27], Java [25] and
C/C++ [23]. These methods are non-compositional in the sense that verifying a transfor-
mation requires considering the trace set of the entire program — there is no abstraction
of the context. We abstract both the sequential and concurrent context and thereby sup-
port automated verification. The above methods also model transformations as rewrites
on program executions, whereas we treat them directly as modifications of program
syntax; the latter corresponds more closely to actual compilers. Finally, these methods
all require considerable proof effort; we build an automated verification tool.

Our tool is a sound verification tool – that is, transformations are verified for all
context and all executions of unbounded size. Several tools exist for testing (not verify-
ing) program transformations on axiomatic memory models by searching for counter-
examples to correctness, e.g., [16] for GCC and [8] for LLVM. Alloy was used by [28]
in a testing tool for comparing memory models – this includes comparing language-
level constructs with their compiled forms.

10 Conclusions

We have proposed the first fully abstract denotational semantics for an axiomatic re-
laxed memory model, and using this, we have built the first tool capable of automatically
verifying program transformation on such a model. Our theory lays the groundwork for
further research into the properties of axiomatic models. In particular, our definition of
the denotation as a set of histories and our context reduction should be portable to other
axiomatic models based on happens-before, such as those for hardware [1].

Acknowledgements. Thanks to Jeremy Jacob, Viktor Vafeiadis, and John Wickerson
for comments and suggestions. Dodds was supported by a Royal Society Industrial Fel-
lowship, and undertook this work while faculty at the University of York. Batty is sup-
ported by a Lloyds Register Foundation and Royal Academy of Engineering Research
Fellowship.

26 Mike Dodds, Mark Batty, and Alexey Gotsman

References

1. J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, 2014.

2. J. H. Anderson and M. Moir. Universal constructions for multi-object operations. In Sympo-
sium on Principles of Distributed Computing (PODC), pages 184–193, 1995.

3. M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concurrency. In Sym-
posium on Principles of Programming Languages (POPL), pages 235–248, 2013.

4. M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and P. Sewell. The problem of
programming language concurrency semantics. In European Symposium on Programming
(ESOP), pages 283–307, 2015.

5. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In
Symposium on Principles of Programming Languages (POPL), pages 55–66, 2011.

6. S. Brookes. Full abstraction for a shared-variable parallel language. Information and Com-
putation, 127(2):145–163, 1996.

7. S. Burckhardt, M. Musuvathi, and V. Singh. Verifying local transformations on relaxed
memory models. In International Conference on Compiler Construction (CC), pages 104–
123, 2010.

8. S. Chakraborty and V. Vafeiadis. Validating optimizations of concurrent C/C++ programs.
In International Symposium on Code Generation and Optimization (CGO), pages 216–226,
2016.

9. D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on separation logic.
In International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 287–302, 2006.

10. M. Dodds, M. Batty, and A. Gotsman. Compositional verification of compiler optimisations
on relaxed memory (extended version). arXiv CoRR, 1802.05918, 2018.

11. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

12. D. Jackson. Software Abstractions – Logic, Language, and Analysis. MIT Press, revised
edition, 2012.

13. R. Jagadeesan, G. Petri, and J. Riely. Brookes is relaxed, almost! In International Conference
on Foundations of Software Science and Computational Structures (FOSSACS), pages 180–
194, 2012.

14. A. Jeffrey and J. Riely. On thin air reads towards an event structures model of relaxed
memory. In Symposium on Logic in Computer Science (LICS), pages 759–767, 2016.

15. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics for
relaxed-memory concurrency. In Symposium on Principles of Programming Languages
(POPL), pages 175–189, 2017.

16. O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire consistency. In Sympo-
sium on Principles of Programming Languages (POPL), pages 649–662, 2016.

17. O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential consistency
in C/C++11. In Conference on Programming Language Design and Implementation (PLDI),
pages 618–632, 2017.

18. A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A general-purpose higher-order
relational constraint solver. In International Conference on Software Engineering (ICSE),
pages 609–619, 2015.

19. R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a theory of sound op-
timisations in the C11/C++11 memory model. In Conference on Programming Language
Design and Implementation (PLDI), pages 187–196, 2013.

Compositional Verification of Compiler Optimisations on Relaxed Memory 27

20. J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that permits
optimisation and avoids thin-air executions. In Symposium on Principles of Programming
Languages (POPL), pages 622–633, 2016.

21. D. Poetzl and D. Kroening. Formalizing and checking thread refinement for data-race-free
execution models. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 515–530, 2016.

22. The C++ Standards Committee. Programming Languages — C++. 2011. ISO/IEC JTC1
SC22 WG21.

23. V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Zappa Nardelli. Common
compiler optimisations are invalid in the C11 memory model and what we can do about it.
In Symposium on Principles of Programming Languages (POPL), pages 209–220, 2015.

24. V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination optimisations. In Interna-
tional Conference on Static Analysis (SAS), pages 146–162, 2011.

25. J. Ševčı́k and D. Aspinall. On validity of program transformations in the Java memory model.
In European Conference on Object-Oriented Programming (ECOOP), pages 27–51, 2008.

26. J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell. Relaxed-memory
concurrency and verified compilation. In Symposium on Principles of Programming Lan-
guages (POPL), pages 43–54, 2011.

27. J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell. CompCertTSO: A
verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22:1–22:50, June 2013.

28. J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides. Automatically compar-
ing memory consistency models. In Symposium on Principles of Programming Languages
(POPL), pages 190–204, 2017.

