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Abstract
We study implementations of basic fault-tolerant primitives, such as consensus and registers, in
message-passing systems subject to process crashes and a broad range of communication failures.
Our results characterize the necessary and sufficient conditions for implementing these primitives as a
function of the connectivity constraints and synchrony assumptions. Our main contribution is a new
algorithm for partially synchronous consensus that is resilient to process crashes and channel failures
and is optimal in its connectivity requirements. In contrast to prior work, our algorithm assumes the
most general model of message loss where faulty channels are flaky, i.e., can lose messages without
any guarantee of fairness. This failure model is particularly challenging for consensus algorithms,
as it rules out standard solutions based on leader oracles and failure detectors. To circumvent this
limitation, we construct our solution using a new variant of the recently proposed view synchronizer
abstraction, which we adapt to the crash-prone setting with flaky channels.
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1 Introduction

We are concerned with implementing basic fault-tolerant primitives, such as registers and
consensus, in systems where processes can crash and communication channels may lose
messages. This setting is of practical importance, since channel failures regularly occur
in real-world deployments [10, 15, 33]. They arise from a variety of reasons – physical
infrastructure failures, bugs in switch software, configuration errors – and they often lead to
system outages. For example, Alquraan et al. [7] conducted a comprehensive study of failures
due to network partitions in widely used replicated data stores. It found that a majority of
such failures led to catastrophic effects and that the resolution of almost half of these failures
required redesigning a system mechanism. Thus, the failures were not simply due to coding
bugs, but to design flaws.

Perhaps the most challenging aspect of real-world network failures is that the ways
the network can break down can be arbitrarily complex, resulting in a wide variety of
connectivity configurations. While in the simplest case individual channel failures may not
affect the overall network connectivity (Figure 1a), in more complex scenarios the network
may become partitioned into multiple components, some of which may end up connected in
one direction, but not in the other (Figure 1b). In the worst case, some components may
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Figure 1 Examples of irregular connectivity configurations: (a) indirect connectivity; (b) asym-
metric connectivity; and (c) flaky connectivity. All processes are correct.

become intermittently connected, causing an arbitrary subset of the messages transmitted
between them to get lost (Figure 1c).

Intermittent connectivity has so far received little attention in the theory research. Most
network models for studying consensus assume that channels are either (eventually) reliable
or (eventually) disconnected (Figures 1a-b). Reliable channels are sometimes replaced by
fair lossy ones, which only guarantee to deliver a message if it was sent infinitely many times.
However, reliable and fair lossy channels are computationally equivalent: the former can be
implemented from the latter by repeatedly resending each message until it gets acknowledged
and filtering out duplicates [1].

Although the classical abstractions of failure or leader detectors [17] can be adapted to
solve consensus in the above settings [4, 21, 22, 26, 35, 46], they are no longer useful in the
presence of unconstrained message loss. Intuitively, the reason is that in this case they may
fail to correctly identify processes with reliable connectivity, which is necessary to ensure the
liveness of consensus. For example, suppose that the pattern of message loss experienced
by the channels 2 ↔ 1 and 2 ↔ 3 in Figure 1c is such that all leader election messages are
getting through. Thus, it is possible for process 2 to be elected as a leader. However, since
any message sent by process 2 after being elected can be dropped (no matter how many
times it is resent), the process may not be able to drive consensus to completion, violating
liveness.

In this paper we investigate the possibility of implementing basic fault-tolerant abstractions
resilient to a broad range of communication failures, including those induced by intermittent
connectivity. To this end, we obtain several lower and upper bounds that characterize the
solvability of registers and consensus as a function of the channel failure model, connectivity
constraints and synchrony assumptions. Our main contribution is a new crash fault-tolerant
algorithm that solves partially synchronous consensus under the most general model of
message loss and is optimal in terms of its network connectivity requirements. Our algorithm
furthermore offers a new way of constructing modular protocols for unreliable networks,
which does not rely on the leader election or failure detection abstractions. Below we review
our results in more detail.

Lower bounds. We first present a general framework for specifying fault-tolerance assump-
tions on process and channel failures (§2-3) by generalizing the classical notion of a fail-prone
system [39]. For example, this framework allows us to specify whether an algorithm is meant
to tolerate the failure patterns depicted in Figure 1. We then use this framework to establish
minimal connectivity requirements necessary to implement registers or consensus (§4). To
obtain strong lower bounds, we consider strong network models where correct channels are
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Reliable/Disconnected Eventually reliable/Flaky
(lower bound) (upper bound)

Asynchronous (register) MARD MAEF

Partially synchronous (consensus) MPRD MPEF

Figure 2 System models with different channel types and synchrony assumptions.

reliable and faulty channels are disconnected, i.e., drop all messages. We consider asynchrony
for registers (model MARD in Figure 2) and partial synchrony [23] for consensus (model
MPRD): the execution starts with an asynchronous period and then becomes synchronous.
The most interesting aspect of our lower bounds is that, unlike the prior work on consensus
under unreliable connectivity (e.g., [2, 49]), they are proven for a very weak termination
guarantee that only requires obstruction-free termination at a subset of processes. Informally,
we show that for any n-process implementation of a register or consensus:
1. All processes where obstruction-freedom holds must be strongly connected via correct

channels.
2. If the implementation tolerates k process crashes and n = 2k + 1, then any process where

obstruction-freedom holds must belong to a set of ≥ k + 1 correct processes strongly
connected by correct channels.

We call the largest set satisfying the condition in (2) the connected core of the network. For
example, in Figure 1a the connected core is {1, 2, 3}, whereas in Figures 1b-c it is {1, 3}.

The above results generalize the celebrated CAP theorem [14, 27], which says that it
is impossible to guarantee all of Consistency, Availability and network Partition-tolerance
(§4.1). Whereas CAP only says that to ensure availability and consistency, some channels
must be correct, we establish how many are needed; and whereas CAP requires availability at
all processes, we establish conditions required to ensure it only in a part of the system. Result
(2) furthermore establishes stronger requirements for algorithms resilient to a minority of
crashes (which is optimal [23,37]). It shows that, even if obstruction-freedom is required only
at a single process, a majority thereof must still be strongly connected by correct channels.

Upper bounds. The second part of our contribution is to propose algorithms for registers
and consensus that match our lower bounds. These algorithms assume the existence of the
connected core and guarantee wait-freedom at all of its members. They are designed to
work in an adversarial model where correct channels are only eventually reliable and faulty
channels are flaky, i.e., can drop any messages sent on them without any guarantee of fairness
(models MAEF and MPEF in Figure 2). Flakiness is a very broad failure mode that captures
a number of failure patterns occurring in practice, including both full and intermittent loss
of connectivity. It also subsumes the previously considered variants of lossy channels, such as
eventually disconnected [4, 18] and fair lossy [1, 11]. Although irregular connectivity patterns
have been studied before [3, 4, 21, 22, 26], to the best of our knowledge we are the first to
propose register and consensus implementations in the presence of flaky channels.

The implementation for consensus is the more challenging one (§5). Since, as we explained
above, failure and leader detectors are not useful in the presence of flaky channels, we take a
different approach: we generalize the abstraction of a view synchronizer [12,13,40,41], recently
proposed for Byzantine consensus, to benign failure settings with flaky channels. Roughly, a
view synchronizer facilitates a commonly used design pattern in which the protocol execution
is divided into views (aka rounds). Each view has a designated leader that coordinates
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the process interactions within that view. The task of the synchronizer is to ensure that
sufficiently many correct processes are eventually able to spend sufficient time in the same
view with a correct leader, which would then be able to drive consensus to completion.
Supporting this functionality under partial synchrony is nontrivial, as during asynchronous
periods clocks can diverge and messages used to synchronize views could get lost or delayed.
View synchronizers encapsulate the necessary logic to deal with these complexities, thereby
enabling modular design of consensus protocols.

In contrast to failure or leader detectors, a synchronizer does not attempt to identify the
set of misbehaving processes (which, as we argued above, is impossible with flaky channels),
but instead delegates this task to the top-level protocol. This can monitor the current leader
using timeouts and other protocol-specific logic and ask the synchronizer to switch to another
view with a different leader if it detects a lack of progress. For example, if processes 1 and 3
in Figure 1c do not observe progress on behalf of process 2 due to message loss, they would
eventually initiate a view change and try another leader.

We present a specification of a view synchronizer sufficient to implement consensus
in the presence of flaky channels, its implementation, and prove that the implementation
satisfies our specification. Even though handling crashes is easier than Byzantine faults, flaky
channels create another challenge: processes outside the connected core (such as process 2 in
Figures 1b-c) falsely suspecting the current leader should not be able to force a view change,
disrupting a working view. Using our synchronizer we then design a consensus protocol that
tolerates flaky channels and prove its correctness.

Finally, we also demonstrate how our lower and upper bounds can be applied to establish
consensus solvability in various existing models of weak connectivity [2, 3, 24, 32, 38]. In
particular, we show that some connectivity models strong enough to implement the Ω leader
detector are nevertheless too weak to implement consensus (§6).

2 System Model

We consider a set P of n processes which can fail by crashing. A process is correct if it never
crashes, and faulty otherwise. Processes communicate by exchanging messages through a set
of unidirectional channels C: for every pair of processes p, q ∈ P there is a channel (p, q) ∈ C
for sending messages from p to q.

We consider two notions of channel correctness (reliable and eventually reliable) and two
notions of channel faultiness (disconnected and flaky). Given correct processes p and q:

a channel (p, q) is reliable if it delivers every message sent by p to q;
a channel (p, q) is eventually reliable if there exists a time t such that the channel delivers
every message sent by p to q after t;
a channel (p, q) is disconnected if it drops all messages sent by p to q; and
a channel (p, q) is flaky if it drops an arbitrary subset of messages sent by p to q.

Flakiness is a very broad failure mode: it subsumes disconnections and allows the channel to
choose which messages to drop, without any guarantee of fairness. Thus, flaky channels are
strictly more permissive than fair lossy, which are computationally equivalent to reliable, as
we explained in §1.

Our lower bounds assume the stronger notion of channel correctness (reliable) and the
more restrictive notion of faultiness (disconnected), whereas our upper bounds assume weaker
correctness (eventually reliable) and broader faultiness (flaky). We combine these channel
reliability assumptions with two types of synchrony guarantees for correct channels, which
yields four models used in our results (Figure 2). We use the asynchronous model in our
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results about registers, and the partially synchronous model [17, 23] in our results about
consensus. The latter assumes that there exists a global stabilization time GST and a duration
δ such that after GST message delays between correct processes connected by correct channels
are bounded by δ. However, messages sent before GST can get arbitrarily delayed. Partial
synchrony also assumes that processes have clocks that can drift unboundedly from the real
time before GST, but do not drift thereafter. Both GST and δ are unknown to our protocols.

To state our results we need an ability to restrict which processes and channels can fail.
We do this by generalizing the classical notion of a fail-prone system [39], which we formulate
in a generic fashion irrespective of a specific channel failure type (flaky or disconnected). We
specify the failure type when stating our lower or upper bounds. A failure pattern is a pair
(P, C) ∈ 2P × 2C that defines which processes and channels fail in a single execution. We
assume that C only contains channels between pairs of correct processes, since those incident
to faulty processes fail automatically: (p, q) ∈ C =⇒ {p, q} ∩ P = ∅. For a failure pattern
f = (P, C), an execution σ of the system is f -compliant if exactly the processes in P and
the channels in C fail in σ. A fail-prone system F is a set of failure patterns. For example, a
standard fail-prone system where any minority of processes can fail and channels between
correct processes cannot fail corresponds to FM = {(Q, ∅) | Q ⊆ P ∧ |Q| ≤ ⌊ n−1

2 ⌋}.

3 Correctness Properties

We consider algorithms A that implement shared memory objects O, such as a register or
consensus, in the models just introduced. For an arbitrary domain of values Val, the register
interface consists of operations write(v), v ∈ Val and read(), which return ack and a value in
Val, respectively. The interface of a consensus object consists of a single operation propose(v),
v ∈ Val, which returns a value in Val.

Safety. The consensus object is required to satisfy the standard safety properties: (Agree-
ment) all terminating propose invocations must return the same value; and (Validity) propose
can only return a value passed to some propose invocation.

We now specify the safety properties for registers. An operation op′ follows an operation
op, denoted op → op′, if op′ is invoked after op returns; op′ is concurrent with op if neither
op → op′ nor op′ → op. The O’s sequential specification specifies the behavior of O in the
executions in which no operations are concurrent with each other. The sequential specification
of a register requires every read to return the value written by the latest preceding write
operation. An execution σ of A is linearizable [30] if there exists a set of responses X and
a sequence π = op1, op2, . . . of all complete operations in σ and some subset of incomplete
operations paired with responses in X such that π complies with O’s sequential specification
and satisfies opi → opj =⇒ i < j. An execution σ of a register satisfies safeness if the
subsequence of σ consisting of all write operations and all read operations not concurrent
with any writes is linearizable. An implementation A of a register is safe [34] if each one of
its executions satisfies safeness; A is atomic if each one of its executions is linearizable.

Liveness. Due to faulty channels, some correct processes may not be able to terminate,
e.g., if they are partitioned off from the rest of the system. Therefore, to state liveness we
parameterize the classical notions of obstruction-freedom and wait-freedom by the failures
allowed and the subsets of correct processes where termination is required. We use the weaker
obstruction-freedom in our lower bounds and the stronger wait-freedom in our upper bounds.

OPODIS 2023



21:6 Fault-Tolerant Computing with Unreliable Channels

For a failure pattern f = (P, C), we say that A is (f, T )-wait-free if T ⊆ P \ P and for
every process p ∈ T , operation op and f -compliant fair execution σ of A, if op is invoked by
p in σ, then op eventually returns. An operation op eventually executes solo in an execution
σ if either (i) op returns in σ, or (ii) there exists a suffix σ′ of σ such that for all operations
op′, if op′ is concurrent with op in σ, then the process that invoked op′ is crashed in σ′. We
say that A is (f, T )-obstruction-free if T ⊆ P \ P and for every process p ∈ T , operation op
and f -compliant fair execution σ of A, if op is invoked by p and eventually executes solo
in σ, then op eventually returns. Note that our notion of obstruction-freedom mirrors its
well-known shared memory counterparts, such as solo termination [25] and the formalization
of obstruction-freedom [31] given in [9].

We next lift these notions to a fail-prone system F and a termination mapping τ : F → 2P

– a function mapping each failure pattern to the set of correct processes whose operations
are required to terminate (thus, ∀f = (P, C) ∈ F . τ(f) ⊆ P \ P ). Namely, we say that A is
(F , τ)-obstruction-free (respectively, wait-free) if for every f ∈ F , A is (f, τ(f))-obstruction-
free (respectively, wait-free). For example, the standard guarantee of wait-freedom under a
minority of processes failures corresponds to (FM , τM )-wait-freedom, where FM is defined in
§2 and τM is such that ∀f = (P, ∅) ∈ FM . τM (f) = P \ P .

4 Inherent Connectivity Requirements for Registers and Consensus

We now investigate which connectivity requirements are necessary to implement first registers
and then consensus in the models of Figure 2. We start with a few simple results that serve
as a stepping stone for our later lower bounds. These results are also of independent interest
because they generalize the celebrated CAP theorem [14]: it is impossible to guarantee all of
Consistency, Availability and network Partition-tolerance.

4.1 CAP Revisited
The CAP formalization by Gilbert and Lynch [27] considers an asynchronous system without
process failures. It models consistency as implementing an atomic register, availability as
providing wait-freedom at all processes, and partition-tolerance as tolerating channels that
can lose any messages (in our terminology, flaky).

▶ Theorem 1 (CAP). It is impossible to implement a wait-free atomic register in a message-
passing system where processes do not fail, but all channels are flaky.

Despite its fame, the CAP theorem yields only a weak lower bound. First, it is not tight:
the theorem only says that, to implement a wait-free atomic register, some channels must be
correct, but obviously, a single correct channel would not be sufficient in general. Second,
CAP requires availability at all processes and thus is not applicable if we are trying to ensure
availability at least in a part of the system, as formalized by the notions of liveness in §3.
Our first result lifts these limitations and also strengthens CAP in other ways: it considers
a weaker object, obstruction-free safe register, and a stronger system model MARD, where
channels can only fail by disconnection. Informally, we show that, in this setting, all processes
where obstruction-freedom holds must be transitively connected via correct channels: no
such process can be partitioned off from the rest.

Formally, let G = (P, C) be the directed graph constructed by taking processes as vertices
and channels as edges. For a failure pattern f = (P, C), let G \ f denote the subgraph of G
obtained by removing all processes in P along with their incident channels, as well as all
channels in C.
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▶ Theorem 2. Let f be a failure pattern and T ⊆ P. If some algorithm A implements an
(f, T )-obstruction-free safe register over MARD (asynchronous / reliable / disconnected),
then T is strongly connected in G \ f .

Before proving the theorem, we note some of its consequences. The theorem yields the
following corollary in the special case when the failure pattern f disallows process failures
and obstruction-freedom is required at all processes.

▶ Corollary 3. Let f be a failure pattern that disallows process failures: ∃C ⊆ C. f =
(∅, C). If some algorithm A implements an (f, P)-obstruction-free safe register over MARD
(asynchronous / reliable / disconnected), then the graph G \ f is strongly connected.

This implies CAP (Theorem 1): if an algorithm A implements an atomic wait-free register,
then it also implements an obstruction-free safe register, and by the above corollary, all
processes must be strongly connected by correct channels. Corollary 3 also yields a tight
lower bound. To see this, consider its lifting to an arbitrary fail-prone system F and the
termination mapping τP = λf. P:

▶ Corollary 4. Let F be a fail-prone system that disallows process failures: ∀f ∈ F . ∃C ⊆
C. f = (∅, C). If some algorithm A implements an (F , τP)-obstruction-free safe register over
MARD (asynchronous / reliable / disconnected), then for all f ∈ F the graph G \f is strongly
connected.

Then the following proposition implies a matching upper bound: it shows that a wait-free
atomic register can be implemented in the more adversarial model MAEF (asynchronous /
eventually reliable / flaky). The proposition follows from a more general result we present
later (Theorem 8).

▶ Proposition 5. Let F be a fail-prone system that disallows process failures and such that
for all f ∈ F , the graph G \ f is strongly connected. Then there exists an algorithm A
implementing an (F , τP)-wait-free atomic register over MAEF (asynchronous / eventually
reliable / flaky).

Proof of Theorem 2. Assume by contradiction that A is an (f, T )-obstruction-free imple-
mentation of a safe register, but T is not strongly connected in G \ f . Then for some u, v ∈ T ,
either there is no path from u to v or from v to u in G \ f . Without loss of generality we
assume the former. Let Su be the strongly connected component of G \ f containing u, and
Sv the strongly connected component of G \ f containing v; then Su ∩ Sv = ∅. Let Ru be
the set of processes outside Su that can reach u in G \ f , and Rv the set of processes outside
Sv that can reach v (see Figure 3).

▷ Claim 1. For any k ∈ {u, v}, Rk ∪ Sk is unreachable from P \ (Rk ∪ Sk) in G \ f .

▷ Claim 2. For any k ∈ {u, v}, Rk is unreachable from Sk in G \ f .

The above claims easily follow from the definitions of Rk and Sk.

▷ Claim 3. Su ∩ (Rv ∪ Sv) = ∅.

Proof. Assume by contradiction that Su ∩ (Rv ∪ Sv) ̸= ∅ and let w ∈ Su ∩ (Rv ∪ Sv). Because
w ∈ Su, there exists a path from u to w. Because w ∈ Rv ∪ Sv, there exists a path from w

to v. By concatenating these two paths we get a path from u to v in G \ f , contradicting our
assumption that there is no such path. ◁
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Ru

Rv

SvSu
✗

Figure 3 Illustration of the sets used in the proof of Theorem 2.

Let α1 be a fair execution of A where processes and channels in f fail at the beginning,
the process u invokes a read operation, and no other operation is invoked in α1. Because
u ∈ T and A is (f, T )-obstruction-free, the read operation must eventually terminate. Since
there are no write invocations, the read must return 0 – the initial value of the register.
Let α2 be the prefix of α1 ending with this response. By Claim 1, Ru ∪ Su is unreachable
from P \ (Ru ∪ Su). Thus, the actions by processes in Ru ∪ Su do not depend on those by
processes in P \ (Ru ∪ Su). Then the projection of α2 to actions by processes in Ru ∪ Su

is an execution of A: α3 = α2|Ru∪Su . By Claim 2, Ru is unreachable from Su. Thus, the
actions by processes in Ru do not depend on those by processes in Su. Then α = α3|Ru

α3|Su

is also an execution of A. Notice that α3|Ru does not contain any operation invocation, but
it contains steps taken by processes upon startup.

Let β1 be a fair execution of A where processes and channels in f fail at the beginning.
The execution β1 starts with all the actions from α3|Ru

followed by a write(1) invocation
by process v, and no other operation is invoked in β1. Because v ∈ T and A is (f, T )-
obstruction-free, the write operation must eventually terminate. Let β2 be the prefix of β1
ending with this response. By Claim 1, Ru ∪ Su is unreachable from P \ (Ru ∪ Su). By
Claim 2, Ru is unreachable from Su. Therefore, Ru is unreachable from P \ Ru. By Claim 1,
Rv ∪ Sv is unreachable from P \ (Rv ∪ Sv). Therefore, Ru ∪ Rv ∪ Sv is unreachable from
P \ (Ru ∪ Rv ∪ Sv). Thus, the actions by processes in Ru ∪ Rv ∪ Sv do not depend on those
by processes in P \ (Ru ∪ Rv ∪ Sv). Then β = β2|Ru∪Rv∪Sv

is an execution of A. Recall that
β1 starts with α3|Ru

, and hence, so does β. Let δ be the suffix of β such that β = α3|Ru
δ.

Consider the execution σ = α3|Ru
δα3|Su

where the actions occur before processes and
channels in f fail. By Claim 3, Su ∩ (Rv ∪ Sv) = ∅, and by the definition of Ru, we
have Su ∩ Ru = ∅. Hence, Su ∩ (Ru ∪ Rv ∪ Sv) = ∅. Then, given that δ only contains
actions by processes in Ru ∪ Rv ∪ Sv, we get: σ|Ru∪Rv∪Sv

= (α3|Ru
δα3|Su

)|Ru∪Rv∪Sv
=

α3|Ruδ = β and σ|Su = (α3|Ruδα3|Su)|Su = α3|Su = (α3|Ruα3|Su)|Su = α|Su . Therefore, σ

is indistinguishable from β to the processes in Ru ∪ Rv ∪ Sv and from α to the processes in
Su. Finally, σ|P\(Ru∪Su∪Rv∪Sv) = ε.

Thus, for every process, σ is indistinguishable to this process from some execution of A.
Furthermore, each message received by a process in σ has previously been sent by another
process. Therefore, σ is an execution of A. However, in this execution write(1) terminates
before a read that fetches 0 is invoked. This contradicts the assumption that A implements
a safe register. The contradiction shows that T must be strongly connected in G \ f . ◀

4.2 Connectivity Requirements under Bounded Process Failures
Consider a straightforward lifting of Theorem 2 to fail-prone systems:
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▶ Corollary 6. Let F be a fail-prone system and τ : F → 2P a termination mapping. If some
algorithm A implements an (F , τ)-obstruction-free safe register over MARD (asynchronous /
reliable / disconnected), then for all f ∈ F , τ(f) is strongly connected in G \ f .

This result does not make any assumptions about the fail-prone system, and its CAP-like
specialization given by Corollary 4 only considers fail-prone systems without process failures.
However, algorithms are commonly designed to tolerate a bounded number of process failures,
and we next show that stronger connectivity requirements are necessary in this case. To
formalize this class of algorithms, we use the following notion. A k-fail-prone system F
allows any set of k processes or fewer to fail, but disallows failures of more than k processes:

(∀P ⊆ P. |P | ≤ k =⇒ ∃C ⊆ C. (P, C) ∈ F) ∧ (∀(P, C) ∈ F . |P | ≤ k).

For example, the system FM from §2 is ⌊ n−1
2 ⌋-fail-prone.

The following theorem establishes minimal connectivity constraints required to implement
a safe register under the model MARD in the presence of k process crashes. It assumes a
particularly weak termination guarantee which only requires obstruction-freedom to hold at
some non-empty set of processes for each failure pattern. The theorem states that, no matter
how small this set is, it must be part of a set of > k correct processes strongly connected by
correct channels.

▶ Theorem 7. Let F be a k-fail-prone system and τ : F → 2P a termination mapping
such that ∀f = (P, C) ∈ F . τ(f) ̸= ∅. Assume that some algorithm A implements an (F , τ)-
obstruction-free safe register over MARD (asynchronous / reliable / disconnected). Then for
all f ∈ F , there exists a strongly connected component of G \ f that contains τ(f) and has a
cardinality greater than k.

Proof. Let f ∈ F and S be the strongly connected component of G \ f containing τ(f).
Assume by contradiction that |S| ≤ k. Pick an arbitrary process p ∈ τ(f); then p is correct
according to f . Let α1 be a fair execution of A where processes and channels in f fail at
the beginning, the process p invokes a read operation, and no other operation is invoked in
α1. Because p ∈ τ(f) and A is (F , τ)-obstruction-free, the read operation must eventually
terminate. Since there are no write invocations, the read must return 0 – the initial value
of the register. Let α2 be the prefix of α1 ending with this response. Let R be the set of
processes outside S that can reach S in G \ f . Similarly to the proof of Theorem 2, the
definitions of R and S imply the following claims.

▷ Claim 1. R ∪ S is unreachable from P \ (R ∪ S) in G \ f .

▷ Claim 2. R is unreachable from S in G \ f .

Claim 1 implies that the actions by processes in R∪S do not depend on those by processes
in P \ (R ∪ S). Then α3 = α2|R∪S is an execution of A. Claim 2 implies that the actions
by processes in R do not depend on those by processes in S. Then α = α3|Rα3|S is also an
execution of A.

Since |S| ≤ k and F is a k-fail-prone system, there exists C ′ ⊆ C such that f ′ = (S, C ′) ∈
F . Pick an arbitrary process q ∈ τ(f ′); then q ̸∈ S. Let β1 be a fair execution of A where
processes and channels in f ′ fail at the beginning. The execution β1 starts with all the
actions from α3|R followed by a write(1) invocation by process q, and no other operation is
invoked in β1. Because q ∈ τ(f ′) and A is (F , τ)-obstruction-free, the write operation must
eventually terminate. Let β be the prefix of β1 ending with this response and let δ be the
suffix of β such that β = α3|Rδ.
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Consider the execution σ = α3|Rδα3|S where the actions occur before processes and
channels in f fail. Given that δ does not contain any actions by processes in S, we get:
σ|S = α3|S = (α3|Rα3|S)|S = α|S and σ|P\S = α3|Rδ = β. Therefore, σ is indistinguishable
from α to the processes in S and from β to the processes in P \ S.

Thus, for every process, σ is indistinguishable to this process from some execution of A.
Furthermore, each message received by a process in σ has previously been sent by another
process. Therefore, σ is an execution of A. However, in this execution write(1) terminates
before a read that fetches 0 is invoked. This contradicts the assumption that A implements
a safe register. The contradiction derives from assuming that |S| ≤ k, so that |S| > k. ◀

Theorem 7 is most interesting in the common practical case of n = 2k + 1, which is the
minimal number of processes needed to tolerate k crashes in asynchronous registers [37]
and partially synchronous consensus [23]. In this case the theorem ensures that for each
failure pattern f , the graph G \ f has a strongly connected component containing ≥ k + 1
processes. More generally, for arbitrary G and f , we call a strongly connected component of
G \ f containing a majority of processes in G a connected core of the graph. It is easy to see
there can exist at most one connected core for given G and f . For example, in Figure 1a the
connected core is {1, 2, 3}, whereas in Figures 1b-c it is {1, 3}. As we now show, the lower
bound of Theorem 7 is tight for n = 2k + 1. In fact, assuming the existence of a connected
core, we can implement an atomic register that is wait-free at all members of the connected
core under the more adversarial model MAEF (asynchronous / eventually reliable / flaky).

▶ Theorem 8. Let F be a fail-prone system such that for all f ∈ F , the graph G \ f contains
a connected core Sf , and let τ : F → 2P be the termination mapping such that ∀f ∈ F .
τ(f) = Sf . Then there exists an (F , τ)-wait-free implementation of an atomic register over
the model MAEF (asynchronous / eventually reliable / flaky).

We defer the proof of the theorem to [42, §A]. The proof constructs the desired implementation
as a variant of ABD [8] that uses gossip-style data propagation to deal with indirect
connectivity. The most interesting aspect of this implementation is that, despite the need for
gossip, it uses only bounded space. We illustrate the technique for bounding space when
presenting our consensus implementation in §5.

4.3 Connectivity Requirements for Consensus
The lower bounds in the previous section also apply to consensus under partial synchrony,
with analogs of Theorems 2 and 7 formulated as follows:

▶ Theorem 9. Let f be a failure pattern and T ⊆ P. If some algorithm A is an (f, T )-
obstruction-free implementation of consensus over MPRD (partially synchronous / reliable /
disconnected), then T is strongly connected in G \ f .

▶ Theorem 10. Let F be a k-fail-prone system and τ : F → 2P be a termination mapping such
that ∀f = (P, C) ∈ F . τ(f) ̸= ∅. Assume that some algorithm A is an (F , τ)-obstruction-free
implementation of consensus over MPRD (partially synchronous / reliable / disconnected).
Then for all f ∈ F , there exists a strongly connected component of G \ f that contains τ(f)
and has a cardinality greater than k.

To see why these theorems hold observe first that Theorems 2 and 7 also hold if the
model MARD is replaced with MPRD: since the executions σ constructed in the proofs of
the theorems are finite, they are also valid executions under MPRD where all actions occur
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before GST. Then the required follows from the fact that registers can be implemented from
consensus. We formally prove this for our setting in [42, §B].

Finally, similarly to Theorem 8, for the case of n = 2k + 1 we can prove an upper bound
matching Theorem 10 in the model MPEF (partially synchronous / eventually reliable /
flaky). This result is much more difficult than the upper bound for registers, and we prove it
in the next section.

▶ Theorem 11. Let F be a fail-prone system such that for all f ∈ F , the graph G \ f

contains a connected core Sf , and let τ : F → 2P be the termination mapping such that
∀f ∈ F . τ(f) = Sf . Then there exists an (F , τ)-wait-free implementation of consensus over
the model MPEF (partially synchronous / eventually reliable / flaky).

5 Consensus in the Presence of Flaky Channels

We now present a consensus protocol in the model MPEF that validates Theorem 11. Consider
a fail-prone system F satisfying the conditions of the theorem: for each f ∈ F , the graph
G \ f contains a connected core. For the remainder of the section we fix a failure pattern
f ∈ F and let S be the corresponding connected core. Since, as we explained in §1, classical
failure and leader detectors are not useful in the presence of flaky channels, we take a different
approach. Our protocol is implemented on top of a view synchronizer [12, 13,40,41], which
enables the processes to divide their execution into a series of views, each with a designated
leader. At a high level, the synchronizer’s goal is to bring sufficiently many correct processes
with enough connectivity (e.g., those from S) into a view led by a well-connected leader and
keep them in that view for sufficiently long to reach an agreement. Supporting this in the
presence of flaky channels is nontrivial as the processes outside the connected core (such as
process 2 in Figures 1b-c) may fail to observe progress on behalf of the leader of a functional
view and request a premature view change. We first present the specification (§5.1) and the
implementation (§5.2) of a synchronizer that addresses this challenge. We then use it to
construct a consensus protocol (§5.3) satisfying the requirements of Theorem 11.

5.1 Synchronizer Specification
We consider a synchronizer interface defined in [12, 40]. Let View = {1, 2, . . . } be the set
of views, ranged over by v; we use 0 to denote an invalid initial view. The synchronizer
produces notifications new_view(v) at a process, telling it to enter a view v. To trigger these,
the synchronizer allows a process to call a function advance(), which signals that the process
wishes to advance to a higher view. We assume that a process does not call advance() twice
without an intervening new_view notification.

In Figure 4 we give a specification of a view synchronizer for the system model MPEF,
which is an adaptation of the one for the Byzantine setting [12]. The Monotonicity property
ensures that, at any given process, its view can only increase. The Validity property ensures
that a process may only enter a view v + 1 if some process in the connected core S has called
advance in v. This prevents processes with bad connectivity from disrupting S by forcing
view changes (e.g., process 2 in Figure 1c, where S = {1, 3}). The Bounded Entry property
ensures that, if some process from S enters a view v, then all processes from S will do so
at most d units of time of each other (for some constant d). This only holds if within d no
process from S attempts to advance to a higher view, as this may make some processes from
S skip v and enter a higher view directly. Bounded Entry only holds starting from some
view V, since a synchronizer may not be able to guarantee it for views entered before GST.
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Monotonicity. A process may only enter increasing views:
∀i, v, v′. Ei(v)↓ ∧ Ei(v′)↓ =⇒ (v < v′ ⇐⇒ Ei(v) < Ei(v′))

Validity. A process only enters v + 1 if some process from S has attempted to advance from v:
∀i, v. Ei(v + 1)↓ =⇒ AS

first(v)↓ ∧ AS
first(v) < Ei(v + 1)

Bounded Entry. For some V and d, if a process from S enters v ≥ V and no process from S
attempts to advance to a higher view within d, then every process from S will enter v within d:
∃V, d. ∀v ≥ V. ES

first(v)↓ ∧ ¬(AS
first(v) < ES

first(v) + d) =⇒
(∀pi ∈ S. Ei(v)↓) ∧ (ES

last(v) ≤ ES
first(v) + d)

Startup. If > n
2 processes from S invoke advance, then some process from S will enter view 1:

(∃P ⊆ S. |P | > n
2 ∧ (∀pi ∈ P. Ai(0)↓)) =⇒ ES

first(1)↓

Progress. If a process from S enters v and, for some set P ⊆ S of > n
2 processes, any process

in P that enters v eventually invokes advance, then some process from S will enter v + 1:
∀v. ES

first(v)↓ ∧ (∃P ⊆ S. |P | > n
2 ∧ (∀pi ∈ P. Ei(v)↓ =⇒ Ai(v)↓)) =⇒ ES

first(v + 1)↓

Notation:

Ei(v): the time when process pi enters a view v

ES
first(v), ES

last(v): the earliest and the latest time when a process from S enters a view v

Ai(v), AS
first(v), AS

last(v): similarly for times of attempts to advance from a view v

g(x)↓, g(x)↑: g(x) is defined/undefined

Figure 4 Synchronizer properties satisfied in executions with connected core S.

The Startup property ensures that if more than n
2 processes from S attempt to advance from

view 0, then some process from S will enter view 1. The Progress property determines the
conditions under which some process from S will enter a view v + 1: this will happen if a
process from S enters the view v, and for some set P of more than n

2 processes from S, any
process in P entering v eventually invokes advance (e.g., 1 and 3 in Figure 1c).

As we show below, the above properties work in tandem to ensure the liveness of consensus
in the presence of flaky channels. Informally, Progress allows processes to iterate over views
in search for one with a well-connected leader; Bounded Entry enables all processes in the
connected core to promptly enter this view; and Validity ensures that these processes can
stay in it despite any disruption from processes with flaky connectivity.

5.2 Synchronizer Implementation
In Figure 5 we present an algorithm that implements the specification in Figure 4 in the
model MPEF. This implementation requires only bounded space, despite the fact that correct
channels in MPEF are only eventually reliable, and thus can lose messages before GST. A
process stores its current view in a variable curr_view. A process also maintains an array
views tracking, for every other process, the highest view to which it wishes to advance. When
the process invokes advance (line 1), the synchronizer does not immediately switch to the
next view. Instead, it updates its entry in the views array and propagates the whole array in
a WISH message, advertising its wish to advance (line 3). Upon the receipt of a WISH message
(line 6), a process incorporates the information received into its views array, keeping entries
with the highest view (line 7). This mechanism ensures that information is propagated
between processes that do not have direct connectivity via a correct channel.
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1 function advance():
2 views[i] ← curr_view + 1
3 send WISH(views) to all

4 periodically ▷ every ρ time units
5 send WISH(views) to all

6 when received WISH(V )
7 for pj ∈ P do views[j] ← max(views[j], V [j])
8 v′ ← max{v | ∃pj . views[j] = v ∧ |{pk | views[k] ≥ v}| > n

2 }
9 if v′ > curr_view then

10 curr_view ← v′

11 trigger new_view(v′)
12 send WISH(views) to all

Figure 5 Synchronizer at a process pi.

Since the membership of S is unknown to the processes, to satisfy Validity the synchronizer
cannot initiate a view change based on an advance() call by a single process: the synchronizer
cannot tell whether this process is from S or not. Instead, we require wishes to advance from
a majority of processes, so that at least one of them must be from S. In more detail, upon
receiving a WISH message, we compute v′ as the (⌊ n

2 ⌋ + 1)-st highest view in views (line 8).
Thus, at least one process from S wishes to advance to a view ≥ v′. In this case the current
process enters v′ if this view is greater than its curr_view (line 11). Note that a process may
be forced to switch views even if it did not invoke advance; this helps lagging processes to
catch up. To satisfy Bounded Entry, the process disseminates the information that made it
enter the new view (line 12) to ensure that other processes also do so promptly. Finally, to
deal with message loss before GST, a process periodically resends its views array (line 4).

We can also prove that the synchronizer satisfies Progress: this property requires > n
2

advance calls by processes in S, which are well-connected enough for the corresponding
WISHes to eventually propagate within S and enable the guard at line 9 (e.g., processes 1
and 3 in Figure 1c). Note that Progress wouldn’t hold if it required > n

2 advance calls by
any processes, not necessarily in S (e.g., processes 1 and 2): in this case we wouldn’t be able
to guarantee that all the corresponding WISHes eventually propagate. We defer the proof of
correctness of the synchronizer to [42, §C].

▶ Theorem 12. Let F be a fail-prone system such that for each f ∈ F , G \ f contains a
connected core. Then for any f ∈ F with an associated connected core S, every f -compliant
fair execution of the algorithm in Figure 5 over the model MPEF satisfies the properties in
Figure 4.

5.3 Consensus Protocol
In Figure 6 we present a consensus protocol in the model MPEF (partially synchronous
/ eventually reliable / flaky) that validates Theorem 11. The protocol is a variation of
single-decree Paxos [35] where liveness is ensured with the help of a view synchronizer. Thus,
the protocol works in a succession of views produced by the synchronizer. Each view v has
a fixed leader leader(v) = p((v−1) mod n)+1 responsible for proposing a value to the other
processes, which vote on the proposal. Processes monitor the leader’s behavior and ask the
synchronizer to advance to another view if they suspect that the leader is faulty or has a
bad connectivity.
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1 on startup
2 advance()

3 function propose(x):
4 my_proposal← x

5 wait until phase = DECIDED
6 return val

7 on new_view(v)
8 view← v

9 start_timer(decision_timer, timeout)
10 M1B[i]← (view, cview, val)
11 phase← ENTERED

12 when the timer decision_timer expires
13 timeout← timeout + γ

14 advance()

15 periodically ▷ every ρ time units
16 send STATE(M1B, M2A, M2B) to all

17 when received STATE(V1B, V2A, V2B)
18 for pj ∈ P do
19 if V1B[j].view > M1B[j].view then
20 M1B[j] ← V1B[j]
21 if V2A[j].view > M2A[j].view then
22 M2A[j] ← V2A[j]
23 if V2B[j].view > M2B[j].view then
24 M2B[j] ← V2B[j]

25 when phase = ENTERED ∧ leader(view) = pi ∧
|{pj | pj ∈ P ∧M1B[j].view = view}| > n

2
26 Q ← {pj | pj ∈ P ∧M1B[j].view = view}
27 if ∀pj . pj ∈ Q =⇒ M1B[j].val = ⊥ then
28 if my_proposal = ⊥ then return
29 M2A[i]← (view, my_proposal)
30 else
31 let pj ∈ Q be such that

M1B[j].val ̸= ⊥ ∧
∀pk ∈Q. M1B[k].cview ≤ M1B[j].cview

32 M2A[i]← (view, M1B[j].val)
33 phase← PROPOSED

34 when phase ∈ {ENTERED, PROPOSED} ∧
pl = leader(view) ∧M2A[l].view = view

35 (cview, val)← M2A[l]
36 M2B[i]← (cview, val)
37 phase← ACCEPTED

38 when ∃v, x. v ≥ view ∧
|{pj | pj ∈ P ∧M2B[j] = (v, x)}| > n

2
39 val ← x

40 stop_timer(decision_timer)
41 phase ← DECIDED

Figure 6 Consensus protocol at a process pi.

State and communication. A process stores its current view in a variable view. A variable
phase tracks the progress of the process through different phases of the protocol. The initial
proposal is stored in my_proposal (line 4). The process also maintains the last proposal it
accepted from a leader in val, and the view in which this happened in cview.

Processes exchange messages analogous to the 1B, 2A and 2B messages from Paxos, each
tagged with the view where the message was issued. There is no analog of 1A messages,
because leader election is controlled by the synchronizer. Since correct processes may not be
directly connected by correct channels, each process has to forward the information it receives
from others. Since correct channels in MPEF are only eventually reliable, this furthermore
has to be repeated periodically. If implemented naively, this would require unbounded space
to store all the messages that need to be forwarded. Instead, we observe that it is sufficient
to store, for each message type and sender, only the message of this type received from this
sender with the highest view. These are stored in the arrays M1B, M2A and M2B.

For simplicity, the pseudocode in Figure 6 separates computation from communication.
Most of the handlers do not send messages, but instead just modify the arrays M1B, M2A
and M2B. Then instead of sending individual 1B, 2A or 2B messages like in Paxos, a process
periodically sends whole arrays M1B, M2A and M2B in one big STATE message (line 16).
Upon receipt of a STATE message (line 17), a process incorporates the information received
into its arrays M1B, M2A and M2B, keeping entries with the highest view. This mechanism
ensures that information is propagated between processes that do not have direct connectivity
while using only bounded space.
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Normal protocol operation. When the synchronizer tells a process to enter a new view v

(line 7), the process sets view = v and writes the information about the last value it accepted
into its entry in the M1B array. This information will be propagated to the leader of the
view as described above. A leader waits until its M1B array contains a majority of entries
corresponding to its view (line 25). Based on these, the leader computes its proposal and
stores it into its entry of the M2A array. The computation is done similarly to Paxos. If some
process has previously accepted a value, the leader picks the value accepted in the maximal
view (line 31). Otherwise, the leader is free to propose its own value. If propose() has already
been invoked at the leader, it selects my_proposal (line 29). If this has not happened yet, the
leader skips its turn (line 28).

Each process waits until its M2A array contains a proposal by the leader of its view
(line 34). The process then accepts the proposal by updating its val and cview. It also notifies
all other processes about this by storing the information about the accepted value into its
entry of the M2B array. Finally, once a process has a majority of matching entries in its M2B
array (line 38), it knows that the decision has been reached, and it sets phase = DECIDED.
If there is an ongoing propose() invocation, the condition at line 5 is then satisfied and the
process returns the decision to the client.

Triggering view changes. We now describe when a process invokes advance(), which is key
to ensuring liveness. This occurs either on startup (line 2) or when the process suspects
that the current leader is faulty or has bad connectivity. To this end, when a process enters
a view, it sets a decision_timer for a duration timeout (line 9) and stops the timer when a
decision is reached (line 40). If the timer expires before this, the process invokes advance
(line 14). A process may wrongly suspect a good leader if the timeout is initially set too low
with respect to the message delay δ, unknown to the process. To deal with this, a process
increases timeout whenever the timer expires (line 13).

Correctness. It remains to prove that the algorithm in Figure 6 validates Theorem 11. The
proof of the safety properties of consensus is virtually identical to that of Paxos [35]. Hence,
we focus on proving liveness. Here we present a proof sketch that highlights the use of the
synchronizer specification and defer the proofs of auxiliary lemmas to [42, §D].

Fix a failure pattern f and let S be the corresponding connected core guaranteed to
exist by the assumptions of Theorem 11. We prove liveness by showing that the protocol
establishes properties reminiscent of those of failure detectors [17]. First, similarly to their
completeness property, we prove that every correct process eventually attempts to advance
from a view where no progress is possible (e.g., because the leader is faulty or has insufficient
connectivity). We say that a process pi decides in a view v if it executes line 41 while having
view = v.

▶ Lemma 13. If a correct process pi enters a view v, never decides in v and never enters a
view higher than v, then pi eventually invokes advance in v.

Informally, the lemma holds because each process monitors the progress of a view using
decision_timer.

Our next lemma is similar to the eventual accuracy property of failure detectors. It shows
that if the timeout values are high enough, then eventually any process in S that enters a
view where progress is possible (the leader is correct and has sufficient connectivity) will not
attempt to advance from it. Formally, let diameter(S) be the longest distance in the graph
G \ f between two vertices in S. Also, let V and d be the view and the time duration for
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which Bounded Entry holds (Figure 4), and let timeouti(v) be the value of timeout at the
process pi while in view v.

▶ Lemma 14. Let v ≥ V be a view such that leader(v) ∈ S, ES
first(v) ≥ GST and leader(v)

invokes propose no later than ES
first(v). If at each process pi ∈ S that enters v we have

timeouti(v) > d + 3(δ + ρ)diameter(S), then no process in S invokes advance in v.

Intuitively, the lemma holds because Bounded Entry ensures that all processes from S will
enter v promptly; then since the timeouts are high enough, processes will have sufficient time
to exchange the messages needed to reach a decision and stop the timers.

Proof sketch for Theorem 11. By contradiction, assume there exists f ∈ F , pj ∈ τ(f) = S
and an f -compliant fair execution of the algorithm in Figure 6 such that pj invokes propose
at a time t, but the operation never returns. Using Progress and Lemma 13, we first prove
that in this case the protocol keeps moving through views forever:

▷ Claim 1. Every view is entered by some process in S.

We next prove the following:

▷ Claim 2. Every process in S executes the timer expiration handler at line 12 infinitely
often.

Since a process increases timeout every time decision_timer expires, by Claim 2 all processes
will eventually have timeout > d + 3(δ + ρ)diameter(S). Since leaders rotate round-robin, by
Claim 1 there will be infinitely many views led by pj . Hence, there exists a view v1 ≥ V led
by pj such that ES

first(v1) ≥ max{GST, t} and for any process pi ∈ S that enters v1 we have
timeouti(v1) > d + 3(δ + ρ)diameter(S). Then by Lemma 14, no process in S calls advance
in v1. On the other hand, by Claim 1 some process in S enters v1 + 1. Then by Validity,
some process in S calls advance in v1, which is a contradiction. ◀

6 Possibility and Impossibility of Classical Consensus via Ω

We now present some interesting consequences of our results. It is well-known that the
failure detector Ω [16,17] is sufficient for implementing wait-free consensus resilient to ⌊ n−1

2 ⌋
failures in non-partitionable systems under crash [17, 35], crash/recovery [5], or general
omission [35, 48] failures. We now investigate if this is still the case under flaky channels
and limited connectivity. Below we demonstrate that the answer depends on the amount of
connectivity in the underlying network, as established by our lower and upper bounds.

Lower bound. We first show that, on the negative side, there are some weakly synchronous
environments where Ω is implementable, but obstruction-free consensus is impossible even if
at most one process can crash. One such environment is the system S of Aguilera et al. [3],
where in every execution, all channels can be flaky except those emanating from an a priori
unknown correct process (timely source); the latter channels are required to be eventually
reliable and timely. In our framework, S is represented by the set of executions in MPEF
compliant with the following fail-prone system:

FS = {(P, C) | |P | < n ∧ ∃p ∈ P \ P. ∀q ∈ P \ (P ∪ {p}). (p, q) ̸∈ C}.

We now use Theorem 10 to prove that consensus is impossible even in a stronger variant
of S where only up to a threshold k of processes are allowed to fail. Formally, for n and k

such that 0 < k < n, let FS,k = FS ∩ {(P, C) | |P | ≤ k}. Then FS,k is a k-fail-prone system.
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▶ Theorem 15. Let n and k be such that 0 < k < n, and τ : FS,k → 2P be a termination
mapping such that ∀f ∈ FS,k. τ(f) ̸= ∅. Then no algorithm can implement an (FS,k, τ)-
obstruction-free consensus in MPEF.

Proof. By contradiction, assume such an algorithm exists. First, a usual partitioning
argument similar to that of Dwork et al. [23] can be used to show that we must have n > 2
and k ≤ ⌊ n−1

2 ⌋. Then, since MPRD is stronger than MPEF, Theorem 10 requires that for all
f ∈ FS,k, G \ f must contain a strongly connected component of size > ⌊ n−1

2 ⌋ ≥ 1. However,
for a failure pattern f = (P, C) ∈ FS,k such that

|P | = ∅ ∧ ∃p ∈ P. ∀q ∈ P \ (P ∪ {p}). ∀r ∈ P \ P. (q, r) ∈ C,

all strongly connected components of G \ f are of size 1: a contradiction. ◀

Upper bounds. On the positive side, we now show that strengthening connectivity as-
sumptions does enable consensus to be solved in many previously proposed models of weak
synchrony, such as systems S+ and S++ of Aguilera et al. [3] and those defined in [2,24,32,38].
These papers show that Ω can be implemented in their respective models, but (with an
exception of [2]) do not give a consensus algorithm.

To show that consensus is indeed possible in these models, we introduce an intermediate
model S⋆ in which all channels can be asynchronous and flaky apart from those connecting
an a priori unknown correct process (a hub [3]) to all the other processes in both directions;
the latter channels are required to be eventually reliable (but can still be asynchronous).
In our framework, S⋆ is represented by the set of executions of MAEF compliant with the
following fail-prone system:

FS⋆ = {(P, C) | |P | < n ∧ ∃p ∈ P \ P. ∀q ∈ P \ (P ∪ {p}). (p, q) ̸∈ C ∧ (q, p) ̸∈ C}.

Thus, for all f ∈ FS⋆ , G \ f is strongly connected, and in the case when at most ⌊ n−1
2 ⌋

processes fail in f , G \ f is a connected core. Then from Theorem 8, we get

▶ Corollary 16. It is possible to implement a wait-free atomic register in S⋆ if at most ⌊ n−1
2 ⌋

processes can crash.

Since wait-free consensus tolerating any number of < n process crashes can be implemented
using atomic registers and Ω [36], Corollary 16 implies

▶ Corollary 17. It is possible to implement a wait-free consensus in S⋆ augmented with Ω if
at most ⌊ n−1

2 ⌋ processes can crash.

We now use this result to prove

▶ Corollary 18. It is possible to implement wait-free consensus over the systems S+ and
S++ of [3] and the models of [2, 24,32,38], provided at most ⌊ n−1

2 ⌋ processes can crash.

Proof. We first show that the systems enumerated in the theorem’s statement are as strong
as S⋆. System S+ [3] stipulates that every execution has a fair hub, i.e., a correct process
which is connected to all other processes via fair-lossy channels [1] in both directions. Since
eventually reliable channels can be built on top of fair-lossy ones in an asynchronous system,
S+ is as strong as S⋆. In S++ [3] and [2], every pair of processes is assumed to be connected by
fair-lossy channels. Thus, similarly to the above, S++ is as strong as S⋆. Finally, the models
of [24,32,38] assume that every pair of processes is connected via reliable channels, which
again means that these models are strictly stronger than S⋆. Since Ω can be implemented in
all models mentioned above [2, 3, 24,32,38], Corollary 17 implies the required. ◀
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7 Related Work

Fault-tolerant distributed computing in the presence of message loss has been extensively
studied in the past. Early work focused on the models that, in addition to crashes, allow
processes to also fail to either send messages (send omission) [28] or both send and receive
messages (generalized omission) [47]. Both these models have been shown to be equivalent to
the crash failures in their computational power in both synchronous [43] and asynchronous [19]
systems. They are however too strong to capture partitionable systems, as they would
automatically classify any non-crashed process with unreliable connectivity as faulty.

The classical paper by Dolev [20] as well as more recent work (see [49] for survey) study
consensus solvability in general networks as a function of the network topology, process
failure models, and synchrony constraints. These papers however, only consider the classical
(i.e., non-partitionable) version of consensus, which requires agreement to be reached by all
correct processes. They also do not consider failure models with flaky channels.

In a seminal paper [50], Santoro and Widmayer proposed a mobile omission failure model,
which treats message loss independently of process failures. They showed that in order to
solve consensus in a synchronous round-based system in the absence of process failures,
it is necessary and sufficient to ensure that the communication graph contains a strongly
connected component in every round [50, 51]. In contrast, our lower bounds demonstrate
that in order to implement consensus (or even a register) in a partially synchronous system,
some processes must remain strongly connected throughout the entire execution.

Subsequent work explored fault-tolerant computation in the presence of both faulty
links and processes under weakened synchrony assumptions. Basu et al. [11] established a
separation between reliable channels and either eventually reliable or fair-lossy channels in
terms of their power to solve certain problems (such as uniform reliable broadcast and k-set
agreement) under asynchrony. However, their notion of a reliable link [29] is too strong to
be implementable in practice as it requires every message transmitted via a complete send
invocation to be eventually delivered to a correct destination even if the sender later crashes.

Several generalizations of the classical failure detector abstractions of [17] for partitionable
systems were proposed in [4,21,22,26] and shown sufficient for consensus in [4,21,26]. However,
as we explain in §1, the failure detectors introduced in these papers cannot be implemented
in the presence of flaky channels.

Aguilera et al. [3] and follow-up work [2,24,32,38] studied the problem of implementing a
failure detector Ω (which is the weakest for consensus [16]), under various weak models of
synchrony, link reliability, and connectivity. However, these results are inapplicable in our
setting as the models considered in these papers disallow full partitions.

As we show in §6, our connectivity bounds for consensus are also applicable in non-
partitionable systems with unreliable channels. In particular, they imply that Ω is not the
only factor determining consensus solvability, and that the degree of connectivity being
assumed also plays an important role. This suggests an interesting tradeoff across all three
modeling dimensions of synchrony, channel reliability, and connectivity considered in this
paper. In particular, to solve consensus we assume that every non-faulty channel is eventually
timely [23], whereas the algorithm of [2] can cope with weaker synchrony constraints. However,
unlike [2], which assumes complete connectivity via fair-lossy channels, our implementation is
able to tolerate an adversarial message loss (flakiness). Whether this tradeoff is fundamental,
or our synchrony assumptions can be further relaxed remains the subject of future work.

Alquraan et al. [7] present a study of system failures due to network partitions, which
we already mentioned in §1. This work highlights the practical importance of coming up



A. Naser-Pastoriza, G. Chockler and A. Gotsman 21:19

with provably correct designs that explicitly consider channel failures. A follow-up paper [6]
introduces a communication layer that can mask channel failures, but only when access to
low-level networking infrastructure is available. OmniPaxos [44] ensures liveness of consensus
under channel failures, but only handles disconnected channels, not flaky ones.

Raft [45,46] elects leaders in a randomized way: a prospective leader picks a view number
and requests Votes from a majority of processes (analogous to 1A messages of Paxos). This
may lead to split votes when multiple processes are competing to get elected, in which
case each process waits for a randomized timeout and retries. While this mechanism works
reasonably well in practice, it does not guarantee termination under partial synchrony even
with perfect connectivity. Raft also includes a Pre-Vote optimization, which, as Jensen et al.
point out [33], can help maintain liveness under intermittent connectivity. The optimization
requires that before sending Vote requests, a prospective leader gathers a majority of Pre-
Votes from other processes, certifying that they are ready to vote for it. This is similar to
gathering WISHes from a majority of processes in our synchronizer before entering a view
(Figure 5). But unlike our synchronizer Pre-Vote is a best-effort technique, since in between
a process granting a Pre-Vote and receiving the corresponding Vote request it may vote for
someone else, thereby creating a split vote. Nevertheless, the presence of techniques similar
to ours in existing practical algorithms makes us hopeful that our work could be used to
make Paxos-based systems provably live even under adversarial network conditions.
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