
Theoretical Computer Science 855 (2021) 141–160
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Specification and space complexity of collaborative text

editing

Hagit Attiya a,∗, Sebastian Burckhardt b, Alexey Gotsman c, Adam Morrison d,
Hongseok Yang e, Marek Zawirski f

a Technion, Israel
b Microsoft Research, United States of America
c IMDEA Software Institute, Spain
d Tel Aviv University, Israel
e KAIST, Republic of Korea
f Google, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 March 2020
Received in revised form 16 October 2020
Accepted 26 November 2020
Available online 9 December 2020
Communicated by L. Christoph

Keywords:
Collaborative text editing
Specification
Metadata lower bound
Eventual consistency

Collaborative text editing systems allow users to concurrently edit a shared document,
inserting and deleting elements (e.g., characters or lines). There are a number of protocols
for collaborative text editing, but so far there has been no abstract, high-level specification
of their desired behavior, which is decoupled from their actual implementation. Several
of these protocols have been shown not to satisfy even basic expectations. This paper
provides a precise specification of a replicated abstract list object, which models the core
functionality of replicated systems for collaborative text editing. We define a strong list
specification, which we prove is implemented by an existing protocol, as well as a weak
list specification, which admits additional protocol behaviors.
A major factor determining the efficiency and practical feasibility of a collaborative text
editing protocol is the space overhead of the metadata that the protocol must maintain to
ensure correctness. We show that for a large class of list protocols, implementing either
the strong or the weak list specification requires a metadata overhead that is at least linear in
the number of elements deleted from the list. The class of protocols to which this lower
bound applies includes all list protocols that we are aware of, in particular CRDT and OT
protocols, and we show that one of these protocols almost matches the bound. The result
holds for peer-to-peer protocols, even if the network guarantees causal atomic broadcast.
The result also holds for the metadata cost at the clients in client/server protocols.1

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Collaborative text editing systems, like Google Docs [10,9], Apache Wave [1], or wikis [17], allow users at multiple sites
to concurrently edit the same document. To achieve high responsiveness and availability, such systems often replicate the

* Corresponding author.
E-mail address: hagit@cs.technion.ac.il (H. Attiya).

1 A preliminary version of the paper appeared in [4]. The current version adds Section 7 and Appendix A, includes proof for Section 4, fixes mistakes,
presentation issues and typos, and expands and updates the discussion of related work.
https://doi.org/10.1016/j.tcs.2020.11.046
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.11.046
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.11.046&domain=pdf
mailto:hagit@cs.technion.ac.il
https://doi.org/10.1016/j.tcs.2020.11.046

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
R1 R2 R3 R1 R2 R3

ins(x,0) : x ins(x,0) : x

ins(a,0) ins(b,1) ins(a,0) del(x) : ε ins(b,1)
: ax : xb : ax : xb

read : axb read : ?

(a) (b)

Fig. 1. Example scenarios of collaborative text editing. Events are presented in format “operation: return value”. An arrow from an event e′ to an event e
expresses that the effects of e′ get incorporated at e’s replica before e executes.

document in geographically distributed sites or on user devices. A user can modify the document at a nearby replica, which
propagates the modifications to other replicas asynchronously. This propagation can be done either via a centralized server or
peer-to-peer. An essential feature of a collaborative editing system is that all changes eventually propagate to all replicas and
get incorporated into the document in a consistent way. In particular, such systems aim to guarantee eventual consistency: if
users stop modifying the document, then the replicas will eventually converge to the same state [36,35].

Fig. 1(a) gives an example scenario of a document edited at several replicas. First, replica R2 inserts x at the first position
(zero-indexed) into the empty list. This insertion then propagates to replica R1, which inserts a to the left of x, and to R3,
which inserts b to the right of x. Later the modifications made by R1 and R3 propagate to all other replicas, including R2;
when the latter reads the list, it observes axb. In this scenario, the desired system behavior is straightforward, but sometimes
this is not the case. To illustrate this point, consider the scenario in Fig. 1(b) (also known as the TP2 puzzle [21]), where R2
deletes x from the list before the insertions of a and b propagate to it. One might expect the read by R2 to return ab, given
the orderings ax and xb established at other replicas. However, some implementations allow ba as a response [27]; e.g., we
demonstrate in Appendix A that this is the case in the Jupiter protocol [20] used in public collaboration systems [37].

Users would like to have highly available protocols, which respond to their operations immediately, without perform-
ing any communication. There have been a number of proposals of highly available collaborative editing protocols, us-
ing techniques such as operation transformations (OT) [12,25,29,30] and conflict-free replicated data types (also known as
CRDTs) [23,39,26]. It is challenging to specify the desired behavior of collaborative editing protocols, without referring to
the actual implementation, in particular, for identifying the visible operations that should be reflected in the responses of
operations. Abstracting away implementation details is essential for studying inherent properties and limitations. Instead,
existing specifications [30,18] refer to implementation details, e.g., messages sent and received; this does not provide a com-
mon ground on which to compare different implementation approaches for the same specification [32]. In addition, several
of the protocols have been shown not to satisfy even the basic expectation of eventual consistency [15].

We introduce an implementation-independent specification of a replicated list object. The list object allows its clients
to insert and delete elements into the list at different replicas and thereby captures the core aspects of collaborative text
editing [12] (Section 3). Our specification has two flavors. The strong specification ensures that orderings of list elements
observed by different clients are consistent. This includes transitive consequences of orderings over subsequently deleted
elements, such as x in Fig. 1(b), and thus, the strong specification disallows the response ba for the read in this figure. The
weak specification does not take transitivity into account, thus allowing the read in Fig. 1(b) to return either ba or ab. We
show that both of these specifications ensure eventual consistency.

We prove that the strong specification is correctly implemented by a variant of the RGA (Replicated Growable Array)
protocol [26], which is in the style of replicated data types [23] (Section 4). The protocol represents the list as a tree, with
read operations traversing the tree in a deterministic order. Inserting an element a right after an element x (as in Fig. 1(b))
adds a as a child of x in the tree. Deleting an element x just marks it as such; the node of x is left in the tree, creating
a so-called tombstone. Keeping the tombstone enables the protocol to correctly incorporate insertions of elements received
from other replicas that are ordered right after x (e.g., that of b in Fig. 1(b)).

The simplicity of handling deletions via tombstones in the RGA protocol comes with a high space overhead. More pre-
cisely, the metadata overhead [6] of a list implementation is the ratio between the size of a replica’s state (in bits) and
the size of the user-observable content of the state, i.e., the list that will be read in this state. As we show, the metadata
overhead of the RGA protocol is O (D lg k), where D is the number of deletions issued by clients and k is the total number
of operations (Section 4). The number of deletions can be high. For example, a 2009 study [39] indicates that the “George
W. Bush” Wikipedia page has about 500 lines. However, since modifications are usually handled as deleting the original line
and then inserting the revised line, the page had accumulated about 1.6 million deletions.2

Other CRDT protocols do not keep tombstones, e.g., Treedoc [23], Logoot [39] or WOOT [22], but the replica state contains
metadata, e.g., labels, that grows linearly in the number of deletions. OT protocols [12] pay metadata overhead by logging
unacknowledged updates in each replica.

2 Wikipedia stores this information also to track the document’s edit history.
142

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Our main result is that this overhead is indeed, in some sense, inherent. We prove that any push-based protocol that
implements the weak list specification for n ≥ 3 replicas incurs a metadata overhead of �(D), where D is the number
of deletions. In a push-based protocol, each replica propagates list updates to its peers as soon as possible, and merges
remote updates into its state as soon as they arrive (we give a precise definition in Section 5). This assumption captures
the operation of all highly-available protocols that we are aware of and it includes both CRDT and OT protocols. The lower
bound holds even if the network guarantees causal atomic broadcast [11].

We first establish our lower bound for the peer-to-peer model. Client/server protocols attempt to save space on replicas
by keeping it on a central server. Replicas communicate only with the server and not directly with each other, and so the
server does more than merely relay messages between replicas. Using the fact that the lower bound holds for a network
with causal atomic broadcast, we extend it to show that, in a push-based client/server list protocol, the metadata overhead
at the clients is still �(D). This shows that relying on a central server does not reduce the metadata overhead at the clients.

We prove our lower bound using an inductive information-theoretic argument, which we consider to be the novel tech-
nical contribution of this paper. For every d ≈ D/2-bit string w , we construct a particular execution αw of the protocol such
that, at its end, the user-observable state σw of some replica is a list of size O (1) bits. We then show that, given σw , we
can decode w by exercising the protocol in a black-box manner. This implies that all states σw must be distinct and, since
there are 2d of them, one of these states must take at least d bits. The procedure that decodes w from σw is nontrivial and
represents the key insight of our proof. It recovers w one bit at a time using a “feedback loop” between two processes: one
performs a black-box experiment on the protocol to recover the next bit of w , and the other reconstructs the corresponding
steps of the execution αw ; the messages sent in the reconstructed part of αw then form the basis for the experiment to
decode the next bit of w .

The class of push-based protocols, to which our metadata overhead lower bound proof applies, is specified with low-level
properties that partially restrict implementation details of the protocol. We show, however, that under a weaker network
model (defined in Section 7), if a protocol has invisible reads (which do not change the state of the replica), then being push-
based follows from guaranteeing the higher-level property of eventual consistency. Hence, our lower bound also applies to
protocols satisfying the latter property.

2. System model

We are concerned with highly available implementations of a replicated object [5,6], which supports a set of opera-
tions Op. Such an implementation consists of replicas that receive and respond to user operations on the object and use
message passing to communicate changes to the object’s state. The high availability property sets this model apart from
standard message-passing models: we require that replicas respond to user operations immediately—without performing
any communication—so that user operations complete regardless of network latency and network partitions (e.g., device
disconnection).

Replicas. We model a replica as a state machine R = (Q , M, �, σ0, E, �), where Q is a set of internal states, M is a set of
possible messages, � ⊆ Q × (M ∪{⊥}) is a set of replica states, σ0 = (q0, ⊥) ∈ � is the initial state, E is a set of possible events,
and � : � × E ⇀ � is a (partial) transition function. Note that a replica state explicitly includes a send buffer, containing the
message pending transmission or ⊥, which indicates that no message is pending. If �(σ , e) is defined, we say that event
e is enabled in state σ . Transitions determined by � describe local steps of a replica in which it interacts with users and
other replicas. These interactions are modeled by three kinds of events:

• do(op, v): a user invokes an operation op ∈ Op on the replicated object and immediately receives a response v from the
replica;

• send(m): the replica broadcasts a message m ∈ M; and
• receive(m): the replica receives a message m ∈ M .

A protocol is a collection R of replicas.
We require that a replica can execute any user operation with its return values computed deterministically: for any

operation op ∈ Op, exactly one do(op, v) event is enabled in σ . We also assume that the response of a user operation
depends only on the replica’s internal state: for every (q, m) ∈ � and (q, m′) ∈ �, if do(op, v) is enabled in state (q, m), then
do(op, v) is enabled in state (q, m′).

We require that a send(m) event is enabled in state σ if and only if σ = (q, m) for some replica q and m
= ⊥, and in
this case �((q, m), send(m)) = (q, ⊥). We also require that a replica can accept any message: for any message m, receive(m)

is enabled in σ . We assume that messages are unique and that a message’s sender is uniquely identifiable (e.g., messages
are tagged with the sender id and a sequence number). We also assume that a replica broadcasts messages to all replicas,
including itself3; replicas can implement point-to-point communication by ignoring messages for which they are not the
intended recipient.

3 The latter is used to support atomic broadcast [11], defined later.
143

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Executions. An execution of a protocol R is a (possibly infinite) sequence of events occurring at the replicas in R.4 For each
event e, we let repl(e) ∈ R be the replica at which it occurs, and for each do event e = do(op, v) we let op(e) = op and
rval(e) = v . A (finite or infinite) sequence of events e1, e2, . . . occurring at a replica R = (Q , M, �, σ0, E, �) is well-formed if
there is a sequence of states σ1, σ2, . . . such that σi = �(σi−1, ei) for all i. If the sequence is of length n, we refer to σn as
the state of R at the end of the sequence.

We consider only well-formed executions, in which for every replica R ∈R:
(1) the subsequence of events at R , denoted α|R , is well-formed; and
(2) every receive(m) event at R is preceded by a send(m) event in α.

Let α be an execution. Event e ∈ α happens before event e′ ∈ α [16] (written e
hb(α)−−−→ e′ , or simply e hb−→ e′ if the context

is clear) if one of the following conditions holds:

(1) Thread of execution: repl(e) = repl(e′) and e precedes e′ in α.
(2) Message delivery: e = send(m) and e′ = receive(m).

(3) Transitivity: There is an event f ∈ α such that e hb−→ f and f
hb−→ e′ .

Network model. To ensure that every operation eventually propagates to all the replicas, we require that the network does
not remain indefinitely disconnected. A replica R has a message pending in event e of execution α if R ’s has a send(m) event
enabled in the state at the end of α′|R , where α′ is the prefix of α ending with e.

Definition 1. The network is sufficiently connected in an infinite well-formed execution α of a protocol R if the following
conditions hold for all replicas R ∈ R:

(1) Eventual transmission: if R has a message pending infinitely often in α, then R also sends a message infinitely often in
α; and

(2) Eventual delivery: if R sends a message m, then every replica R ′
= R eventually receives m.

Collaborative editing protocols generally assume causal message delivery [29,26]. We model this by considering only
executions that satisfy causal broadcast [7]:

Definition 2. An execution α of a protocol R satisfies causal broadcast if for any messages m, m′ , whenever send(m) hb−→
send(m′), any replica R can receive m′ only after it receives m.

In fact, our results hold even under a more powerful atomic broadcast [11] model, which delivers all messages to all
replicas in the exact same order.

Definition 3. An execution α of a protocol R satisfies causal atomic broadcast if the following conditions hold:

(1) Causal broadcast: α satisfies causal broadcast.
(2) No duplicate delivery: each send(m) event in α is followed by at most one receive(m) event per replica R ′ ∈R.
(3) Consistent order: if R receives m before m′ , then any other replica R ′ receives m before m′ .

These broadcast primitives can be implemented when not provided by the network [7]; by providing them “for free,” we
strengthen our lower bounds and ensure their independence from the complexity of implementing the broadcast primitive.

3. Collaborative text editing

Following Ellis and Gibbs [12], we model the collaborative text editing problem (henceforth, simply collaborative editing)
as the problem of implementing a highly available replicated list object whose elements are from some universe U . Users
can insert elements, remove elements and read the list using the following operations, which form Op:

• ins(a, k) for a ∈ U and k ∈ N: inserts a at position k in the list (starting from 0) and returns the updated list. For k
exceeding the list size, we assume an insertion at the end. We assume that users pass identifiers a that are globally
unique.

• del(a) for a ∈ U : deletes the element a and returns the updated list. We assume that users pass only identifiers a that
appear in the return value of the preceding operation on the same replica.

4 Formally, an execution consists of events instrumented with unique event ids and replicas. In the paper we do not use this more accurate formulation
so as to avoid clutter.
144

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
• read: returns the contents of the list.

The definition above restricts user behavior to simplify our technical development. Note that these restrictions are in-
significant from a practical viewpoint, because they can be easily enforced: (1) identifiers can be made unique by attaching
replica identifiers and sequence numbers; and (2) before each deletion, we can read the list and skip the deletion if the
deleted element does not appear in the list.

3.1. Preliminaries: replicated data types

We cannot specify the list object with a standard sequential specification, since replicas may observe only subsets of
operations executed in the system, as a result of remote updates being delayed by the network. We address this difficulty
by specifying the response of a list operation based on operations that are visible to it. Intuitively, these are the prior
operations executed at the same replica and remote operations whose effects have propagated to the replica through the
network. Formally, we use a variant of a framework by Burckhardt et al. [6] for specifying replicated data types [28]. We
specify the list object by a set of abstract executions, which record the operations performed by users (represented by do
events) and visibility relationships between them. Since collaborative editing systems generally preserve causality between
operations [29], here we consider only causal abstract executions, where the visibility relation is transitive. In the following
definition, a sequence H of do events is instrumented with unique event ids and replicas, as in the case of an execution α.
To avoid clutter, we do not use this more accurate representation.

Definition 4. A causal abstract execution is a pair (H, vis), where H is a sequence of do events, and vis ⊆ H × H is an acyclic
visibility relation (with (e1, e2) ∈ vis denoted by e1

vis−→ e2) such that: (1) if e1 precedes e2 in H and repl(e1) = repl(e2), then
e1

vis−→ e2; (2) if e1
vis−→ e2, then e1 precedes e2 in H ; and (3) vis is transitive (if e1

vis−→ e2 and e2
vis−→ e3, then e1

vis−→ e3).

Fig. 1 graphically depicts abstract executions, where vis is the transitive closure of arrows in the figure and H is the result
of some topological sort of vis. The visibility relation abstracts away message-delivery information about the execution, by
only postulating the existence of a consistent (acyclic) way to relate events.

An abstract execution A′ = (H ′, vis′) is a prefix of abstract execution A if: (1) H ′ is a prefix of H ; and (2) vis′ = vis∩ (H ′ ×
H ′). A specification of an object is a prefix-closed set of abstract executions. A protocol correctly implements a specification
when the outcomes of operations that it produces in any (concrete) execution can be justified by some abstract execution
allowed by the specification.

Definition 5. An execution α of a protocol R complies with an abstract execution A = (H, vis) if for every replica R ∈ R,
H |R = α|do

R , where α|do
R denotes the subsequence of do events by replica R in α.

Definition 6. A protocol R satisfies a specification S if every execution α of R that satisfies causal broadcast complies with
some abstract execution A ∈ S .

3.2. Specifying the list object

We present two list specifications: strong and weak. The strong specification ensures that orderings of list elements ob-
served by different clients are consistent, including transitive consequences of orderings over subsequently deleted elements.
The specification thus disallows the response ba for the read in Fig. 1(b). The weak specification does not take transitivity
into account, and thus allows both ba and ab as responses.

We denote by elems(A) the set of all elements inserted into the list in an abstract execution A = (H, vis):

elems(A) = {a | do(ins(a, _), _) ∈ H}.
Recall that we assume all inserted elements to be unique, and so there is a one-to-one correspondence between inserted
elements and insert operations. For brevity, we write e1 ≤vis e2 for e1 = e2 ∨ e1

vis−→ e2.

Definition 7. An abstract execution A = (H, vis) belongs to the strong list specification Astrong if and only if there is some
relation lo ⊆ elems(A) × elems(A), called the list order, such that:

1. Each event e = do(op, w) ∈ H returns a sequence of elements w = a0 . . .an−1, where ai ∈ elems(A), such that
(a) w contains exactly the elements visible to e that have been inserted, but not deleted:

∀a.a ∈ w ⇐⇒ (do(ins(a, _), _) ≤vis e) ∧ ¬(do(del(a), _) ≤vis e).

(b) The order of the elements is consistent with the list order: ∀i, j. (i < j) =⇒ (ai, a j) ∈ lo.
145

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
(c) Elements are inserted at the specified position: if op = ins(a, k), then a = amin{k,n−1} .
2. The list order lo is transitive, irreflexive and total, and thus determines the order of all insert operations in the execution.

x

a b

For example, the strong list specification is satisfied by the abstract execution in
Fig. 1(a) and the one in Fig. 1(b) with the read returning ab; this is justified by the list
order a → x → b. (See the picture on the right.) On the other hand, the specification is
not satisfied by the execution in Fig. 1(b) with the read returning ba: for the outcomes
of operations in this execution to be consistent with item 1 of Definition 7, the list
order would have to be as shown above; but this order contains a cycle, contradicting
item 2. In Section 4, we prove that the strong specification is implemented by an existing protocol, RGA [26]. However,
some protocols, such as Jupiter [20], provide weaker guarantees and, in particular, allow the outcome ba in Fig. 1(b) [27].
We therefore introduce the following weak list specification, to which our lower bound result applies (Section 6).

Definition 8. An abstract execution A = (H, vis) belongs to the weak list specification Aweak if and only if there is some
relation lo ⊆ elems(A) × elems(A) such that:

1. Condition 1 in Definition 7 is satisfied.
2. lo is irreflexive and, for all events e = do(op, w) ∈ H , it is transitive and total on {a | a ∈ w}.

Unlike the strong specification, the weak one allows the list order lo to have cycles; the order is required to be acyclic
only on the elements returned by some operation. In particular, the weak specification allows the execution in Fig. 1(b) with
the read returning ba, which is justified using the above cyclic list order. Since at the time of the read, x is deleted from
the list, the specification permits us to decide how to order a and b without taking into account the orderings involving x:
a → x and x → b. Since the conference publication of this work, it has been proved that Jupiter indeed satisfies the weak
list specification [38].

Eventual consistency A desirable property of highly available replicated objects is eventual consistency. Informally, this guar-
antees that, if users stop issuing update requests, then the replicas will eventually converge to the same state [36,35]. Our
specifications imply a related convergence property: in an abstract execution satisfying Astrong or Aweak , two read operations
that see the same sets of list updates return the same response. This is because such operations will return the same ele-
ments (Definition 7, item 1a) and in the same order (Definition 7, item 1b). From the convergence property we can establish
that our specifications imply eventual consistency for a class of protocols that guarantee the following property of eventual
visibility, which (informally) requires that the effects of every update operation eventually propagate to all replicas.

Definition 9. An abstract execution A = (H, vis) satisfies eventual visibility if for every update event e ∈ H , there are only
finitely many events e′ ∈ H such that ¬(e vis−→ e′).

Definition 10. A protocol R satisfying the weak (respectively, strong) list specification guarantees eventual visibility if every
execution α of R that satisfies causal broadcast complies with some abstract execution A ∈ Aweak (respectively, A ∈Astrong)
that satisfies eventual visibility.

Informally, eventual consistency holds for a protocol guaranteeing eventual visibility because: in an abstract execution
with finitely many list updates, eventual visibility ensures that all but finitely many reads will see all the updates; then
convergence ensures that they will return the same list. To guarantee eventual visibility, a protocol would rely on the
network being sufficiently connected (Definition 1).

3.3. Metadata overhead

In addition to the user-observable list contents, the replica state in a list protocol typically contains user-unobservable
metadata that is used internally to provide correct behavior. The metadata overhead is the proportion of metadata relative
to the user-observable list content.

Formally, let the size of an internal replica state q or a list w ∈ U∗ be the number of bits required to represent it in some
encoding; we denote the size of x by |x|. The metadata overhead [6] of a state σ = (q, m) is |q|/|w| for the unique w such
that do(read, w) is enabled in σ ; here w represents the user-observable contents of σ . Note that the contents of the send
buffer is not part of the metadata.

Definition 11 ([6]). The worst-case metadata overhead of a protocol over a given subset of its executions is the largest meta-
data overhead of the state of any replica in any of these executions.
146

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Fig. 2. Illustration of TI trees. Each box shows a tree, with the set of nodes that define it, its graphical representation, and the sequence of elements it
denotes. The tree on the right results from an insert operation for element b at position 2. The order on the timestamps is t1 < t2 < t3 < t4.

4. An implementation of the strong list specification

We now present an implementation of the list object, which is a reformulation of the RGA (Replicated Growable Array)
protocol [26], and prove that it implements the strong list specification.

4.1. Timestamped insertion trees

Our representation of the list at a replica uses a timestamped insertion (TI) tree data structure. It stores both the list
content and timestamp metadata used for deterministically resolving the order between elements concurrently inserted at
the same position.

A tree is a finite set N of nodes, each corresponding to an element inserted into the list. A node is a tuple n = (a, t, p),
where a ∈ U is the element, t ∈ C is a timestamp for the insertion, and p ∈ (U ∪ {◦}) is either the parent node (identified by
its symbol) or the symbol ◦ representing the tree root. We define the set C of timestamps and a total order on them later
(Section 4.2). For a node n = (a, t, p) we let n.a = a, n.t = t , and n.p = p. For two nodes n, n′ with n′.p = n.t , we say n is
the parent of n′ and write n

pa−→ n′ .

Definition 12. A set of nodes N is a TI tree if
(1) timestamps or symbols uniquely identify nodes:

∀n,n′ ∈ N. (n.t = n′.t ∨ n.a = n′.a) =⇒ n = n′;
(2) all parents are present: if n ∈ N and n.p
= ◦, then n′ pa−→ n for some n′ ∈ N; and (3) parents are older than their children:
n

pa−→ n′ =⇒ n.t < n′.t .

Fig. 2 shows examples of TI trees and illustrates the read and insert operations explained below.

Read. To read the list, we traverse the tree N by depth-first search, starting at the root. We assemble the visited elements
into a sequence s(N) using prefix order (the parent precedes its children) and visit the children in decreasing timestamp
order.

Insert. To insert a new element a at position k into the list, let s(N) = a0 . . .an−1 and pick a new timestamp t that is larger
than any of the timestamps appearing in N . Then let p be the element to the left of the insertion position: p = ak−1 (if
k > 0) or p = ◦ (if k = 0). We now add a new node (a, t, p) to N . Note that a newly inserted node is the child of the
immediately preceding element with the highest timestamp. Thus, it is visited immediately after that element during a
read, which makes it appear at the correct position in the list.

4.2. The RGA protocol

We now define the RGA protocol Rn
rga for n replicas. Each replica stores a TI tree, as well as a set of elements that

represent tombstones, used to handle deletions (Section 1). Insertions and deletions are recorded in a send buffer, which is
periodically transmitted to other replicas by causal broadcast.

State and messages. Timestamps are pairs (x, i), where x ∈ N and i ∈ {1, . . . , n} is a replica identifier. They are ordered
lexicographically:

(x, i) < (x′, i′) ⇐⇒ (x < x′) ∨ ((x = x′) ∧ (i < i′)).

Messages are of the form (A, K), where A is a set of nodes (representing insert operations) and K is a set of elements
(representing delete operations), and either A or K is non-empty. The state of a replica is (N, T , (A, K)), where: N is a TI
147

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Fig. 3. Illustration of an RGA execution, with time proceeding from top to bottom. Bullets show the transitions of the replicas R1, R2, and R3, and in some
places we indicate the current state of the tree N and the tombstone set T . The order on the timestamps is t1 < t2 < t3.

tree, representing the replica-local view of the list; T ⊆ U is the set of tombstones; and (A, K) is a send buffer, containing
the message to send next. A pair (∅, ∅) indicates that no message is pending (thus corresponding to ⊥ in Section 2). The
initial state is (∅, ∅, (∅, ∅)).

do transitions. To execute an insert operation at a replica i in a state (N, T , (A, K)), we construct a node as de-
scribed in the “Insert” procedure of Section 4.1 and add it to both N and A. As the timestamp of the node we take
((1 + (the largest timestamp in N)), i), or (1, i) if N = ∅. This timestamp is guaranteed to be globally unique. To execute a
delete operation, we add the deleted element to both T and K . All operations return the local view of the list, which is
obtained by traversing N as described in the “Read” procedure of Section 4.1, and then removing all elements belonging to
T .

send transition. is enabled whenever either A or K is nonempty. It sends (A, K) as the message and sets both A and K to
empty.

receive transition. for a message (Am, Km) adds Am to N and Km to T . The protocol relies on causal delivery of messages,
which ensures that no parents can be missing from N . In particular, N stays a TI tree after adding Am .

We show an example execution in Fig. 3, which matches the example in Fig. 1(b) and complies with the strong list
specification.

4.3. Correctness and complexity

The following theorems state the correctness and asymptotic complexity bounds of RGA.

Theorem 1. The protocol Rn
rga satisfies the strong list specification and guarantees eventual visibility.

Theorem 2. The worst-case metadata overhead of Rn
rga over executions with k operations and D deletions is O (D lgk).

Proof. Since timestamps grow with the number of operations performed, they can be encoded in O (lg k). Also, for simplic-
ity, we assume that elements in A can be encoded in O (lg k) (if the elements in A are larger than that, we can modify the
algorithm to affix an O (lg k) identifier to each inserted element, and only keep those identifiers around after elements are
deleted).

We consider a replica with state (N, T , (A, K)). Let w = a1 . . .an be the list represented (i.e. the list returned by a read
operation), and let si be the size of ai . Then, the size of the represented data is sw = ∑

i si . To obtain the metadata overhead,
we need to divide the size of the replica state by the size of the represented data. To compute the size of the data in the
replica state, observe the following:

• for each element ai in the list, N stores a triple of size si + O (lg k) + O (lg k).
• for each element deleted from the list, N stores a triple of size O (lg k) + O (lg k) + O (lg k).
• always A ⊆ N and K ⊆ T (follows easily from transition rules).

Thus, the respective sizes are
148

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
sN =
∑

i

(si + O (lg k)) ≤ O (lg k)(
∑

i

(si + 1))

= O (lg k)(
∑

i

si) (by si + 1 ≤ 2si)

sT = D · O (lg k)

sA ≤ sN

sK ≤ sT

And we get

sN + sT + sA + sK

sw
≤ 2sN + 2sT

sw

≤ 2
O (lg k)(

∑
i si) + D · O (lg k)

(
∑

i si)
≤ 2(O (lg k) + D · O (lg k)) = O ((lg k)(1 + D)). �

We now proceed to prove Theorem 1.
Let α be a concrete execution of Rn

rga that satisfies causal broadcast. Without loss of generality, we assume that in α
all operations are delivered to all replicas: for each insertion or deletion operation e, and each replica R , there exists an
event e′ at R such that e deliv−−→ e′ . If α is infinite, this already follows from our definition of a sufficiently connected network.
Otherwise, we can simply append some additional send and/or receive events to α.

Let H be the subsequence of all do events in α; then α complies with H . Let vis be defined as follows: for e, e′ ∈ H ,
e′ vis−→ e if and only if e′ hb−→ e. It is easy to see that A = (H, vis) is an abstract execution satisfying eventual visibility. We
now show that A satisfies the strong list specification. To this end, we prove the conditions of Definition 7 in the following
order: (1c), (1a), (1b), (2).

Condition (1c) follows directly from the properties of the TI data structure. To prove (1a), we need to show that what is
stored in N and T corresponds to the insertion and deletion operations that are visible. The following two lemmas do just
that, and together imply condition (1a).

For each element a ∈ elems(A), let ea be the event that inserted it into the list, and let (a, ta, pa) be the tuple constructed
during insertion.

Lemma 3. Let e be an event in α, and let (N ′, _, _) be state of the replica repl(e) after executing e. Then N ′ contains all nodes that were
inserted by e or insertion operations visible to e: N ′ = {(a, ta, pa) | ea ≤vis e}.

Proof. By induction over α and considering the type of event e.
If e is an Insert. By the induction hypothesis (or initial state definition, if e is the first event of the replica), N in the

prestate matches visible insertion operations not counting e itself. Then e happens and its tuple is also added to N , thus
preserving the invariant.

If e is a Receive. vis−1(e) contains the union of visible operations vis−1(e′) of the sending event e′ and the predecessor
event on the same replica. Symmetrically, E is updated to contain the delivered insertion tuples, which capture all insertions
between the last send event e′′ of the sender preceding e′ , and e′ . Because of the causal broadcast guarantee, and by the
induction hypothesis, any insertions visible to e′′ must have already been delivered to replica executing e, so the updates
correspond.

In all other cases, neither the visible insertion operations nor N are updated. �
Lemma 4. Let e be an event of α, and let (_, T ′, _) be the state of the replica repl(e) after executing e. Then, T ′ contains all elements
that were deleted by e or deletion operations visible to e: T ′ = {a | do(del(a)) ≤vis e}.

The proof of the lemma is analogous to that of Lemma 3.
To prove conditions (1b) and (2) of Definition 7, we need to first define the list order relation. To prepare for this

definition, we first observe the following.

Lemma 5. Let (N, _, _) be the state of a replica. Then N is a TI tree.

Proof. By construction, each inserted node has a unique timestamp (because the timestamp contains the replica identifier
and is larger than all previous timestamps by the same replica). Thus, any of the nodes appearing anywhere in the execu-

tion satisfy TI tree conditions (1) and (3). To prove condition (2), note first that (a, ta, _)
pa−→ (b, tb, _) implies ea

vis−→ eb by
Lemma 3, because the parent is in the set N of the replica that performs the insertion. Now, consider the tree N in the
149

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
post-state of some event e. Using Lemma 3, we see that if (b, tb, ta) is in N , then ea
vis−→ eb

vis−→ e, thus by transitivity of vis

also ea
vis−→ e, thus (a, ta, _) ∈ N . �

Now we can define the list order relation: for a, b ∈ elems(H), we let a lo−→ b if and only if there exists an e ∈ α with
post-state (N, _, _) such that a appears before b in s(N). It may appear at first that the various N could lead to contradictory
orderings. However, this is not so: this list order satisfies condition (2) of Definition 7:

Lemma 6. Let A, B be two TI trees such that A ⊆ B. Then s(A) is a subsequence of s(B).

Proof. This is easy to see for the special case where B = A �{(a, t, p)} for some a, t , p. Indeed, because A and B are TI trees,
a must have no children in B , and the depth-first traversal of B takes the same course as the one for A except for visiting
the node a and then immediately returning to its parent. Thus, s(B) is equal to s(A) with a inserted at some position.

From the above special case we get to the general case by induction, adding one node at a time: there always exists at
least one node in B \ A whose parent is in A or is ◦, and can thus be added to A without breaking the conditions for TI
trees. �
Lemma 7. lo defines a total order on elems(A).

Proof. Irreflexive. All N are TI trees by Lemma 5, and thus contain no duplicate elements. Total. Let a, b ∈ elems(H), inserted
by events ea and eb , respectively. Since ea enables a send event, repl(ea) must eventually send a message containing (a, _, _),
and repl(eb) must receive it (recall that we only consider executions where every message is delivered), either before or
after eb . After both of those, the replica state on repl(eb) contains in N nodes for both a and b, thus s(N) orders them.
Transitive. Let a, b, c ∈ elems(H). Assume that s(N1) orders a before b and s(N2) orders b before c. Since all insertions are
eventually propagated to all replicas, there exists a N3 in some replica state such that N1 ⊆ N3 and N2 ⊆ N3. By Lemma 6
and Lemma 5, in s(N3), a appears before b and b before c. Thus a appears before c in s(N3). �

Finally, because returned lists are ordered by s(N), the list order also satisfies (b) of Definition 7, which concludes the
proof of Theorem 1.

5. Push-based protocols

Our lower bound results hold for push-based protocols, a class of protocols that contains the protocols of several collab-
orative editing systems [20,23,26,29], including the RGA protocol of Section 4. Informally, a replica in a push-based protocol
propagates list updates to its peers as soon as possible and merges remote updates into its state as soon as they arrive (as
opposed to using a more sophisticated mechanism, such as a consensus protocol).

We define push-based protocols assuming that the network provides causal broadcast, because when this is not the case,
a protocol may need to delay merging arriving updates to enforce causality. Formally, we require that, in a push-based
protocol, every operation observe all operations that happen before it, that list insertions always generate a message, and
that a deletion—which, unlike an insertion, may not be unique—generates a message if it does not already observe another
deletion of the same element.

Definition 13. A protocol R satisfying the weak (strong) list specification is push-based if the following hold:

• For any execution α of R satisfying causal broadcast and e = do(ins(a, _), _) ∈ α, replica repl(e) has a message pending
after e.

• For any execution α of R satisfying causal broadcast and e = do(del(a), _) ∈ α, if there does not exist event e′ =
do(del(a), _) ∈ α that happens before e, then replica repl(e) has a message pending after e.

• For every execution α of R satisfying causal broadcast there exists an abstract execution A = (H, vis) ∈ Aweak (A ∈
Astrong) that α complies with, such that ∀e′, e ∈ H . e′ vis−→ e ⇐⇒ e′ hb−→ e.

Our proof of Theorem 1 also establishes that the RGA protocol is push-based. More generally, the class of push-based
protocols contains both op-based protocols [6], in which a message carries a description of the latest operations that the
sender has performed (e.g., RGA), and state-based protocols [6], in which a message describes all operations the sender
knows about (i.e., its state). An OT protocol satisfying one of our specifications will also be push-based, as OT protocols
propagate updates to remote replicas immediately [3,20].

6. Lower bounds on metadata overhead

Here we show a lower bound on the worst-case metadata overhead (Definition 11) of push-based protocols satisfying
the weak (or strong) list specification.
150

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Input:@ w = w1, . . . , wd

// R1 starts in its initial
// state σ0.
ins1([0]0, 0)

for i = 1, . . . , d
// The state of R1

// here is σi .
send1(mi)

if wi = 1 then
ins1([i]i just after]i−1)

else
ins1([i]i just before [i−1)

// The state of R1

// here is σi+1.
send1(md+1)

ins1(∗ between [d and]d)

send1(md+2)

for i = 0, . . . , d
del1([i)

del1(]i)

if D = 2(d + 1) + 1 then
ins1(b, 0)

del1(b)

send1(md+3)

read1 = ∗
// The state of R1

// here is σw .

Input: σw

// R1 starts in its initial
// state σ0, which
// does not depend on w .
ins1([0]0, 0)

for i = 1, . . . , d
// We now know σi ,
// so can generate mi .
send1(mi)

wi ← Recover(σw , m1, . . . , mi)

if wi = 1 then
ins1([i]i just after]i−1)

else
ins1([i]i just before [i−1)

// We now know σi+1.
output w

Input: σw , m1, . . . , mi

// We perform the state
// transitions below on
// copies of the state
// machines, with R2

// starting in its initial
// state and R1 in state σw .
// The replica state in the
// outer decoding procedure
// is unaffected.
for j = 1, . . . , i

receive2(m j)

receive1(m j)

read2 = . . . [i−1]i−1 . . .

ins2(x between [i−1 and]i−1)

send2(mx)

receive2(mx)

receive1(mx)

if read1 = x ∗
return 1

else // read1 = ∗ x
return 0

(a) Execution αw , at the end of
which the state of R1 encodes w

(b) Decoding w given σw (c) Recover(σw , m1, . . . , mi)

Fig. 4. Encoding and decoding procedures. Events are subscripted with the id of their replica.

The proof of this result is nontrivial. It relies on an inductive coding argument, in which a string w is encoded in an
execution. Later, the string w is recovered (decoded) bit by bit, using a feedback loop between two replica: one performs
a black-box experiment on the protocol to recover the next bit of w , and the other reconstructs the corresponding steps
the execution. The messages sent in the reconstructed part of the execution then form the basis decoding the next bit
of w .

Theorem 8. Let R be a push-based protocol with n ≥ 3 replicas that satisfies the weak list specification. The worst-case metadata
overhead of R over executions with D deletions is �(D).

This follows from the following theorem.

Theorem 9. Let R be a push-based protocol with n ≥ 3 replicas that satisfies the weak list specification. For every integer D ≥ 4, and
for every replica R1 ∈ R, there exists an execution αD of R with D deletions such that: (1) the metadata overhead of some state σ of
R1 in αD is �(D); (2) αD satisfies causal atomic broadcast; and (3) R1 does not receive any message before σ in αD .

Proof. Let d = �(D − 2)/2�. We show that there exists an execution of R with D deletions that satisfies the desired condi-
tions, in which the user-observable contents of some internal state is a list with a single element, and yet the size of this
state is at least d bits. It follows that the metadata overhead of this state is �(D).

We show the existence of this execution using an information-theoretic argument. Namely, for every d-bit string w we
construct an execution αw that satisfies causal atomic broadcast and in which: (1) replica R1 performs D deletions and
receives no messages; (2) at the end of αw , the user-observable list at R1 contains the single element “∗” and R1 has no
messages pending; and yet (3) we can decode w given only σw , the state of R1 at the end of αw (this decoding process
exercises the protocol R in a black-box manner). Hence, all states σw must be distinct. Since there are 2d of them, one of
these states σw0 must take at least d bits. The metadata overhead of σw0 is therefore �(D), and thus αw0 is the desired
execution.

Encoding w . Given a d-bit string w = w1 . . . wd , we construct an execution αw of R that builds a list encoding the path from
the root of a binary tree of height d to the w-th leaf (when w is interpreted as the binary representation of an integer).
Fig. 4(a) details the construction: it shows pseudocode which, as it executes, constructs the execution; instructions of the
form ei correspond to a state transition e at replica Ri . We abuse notation by writing op instead of do(op, _), by specifying
inserts of whole strings instead of element by element, and by specifying positions relative to prior insertions rather than
with integers. Fig. 5(a) depicts αw for w = 10.

Only replica R1 participates in the encoding execution αw . We start by inserting the string [0]0 (i.e., the root). Because
R is a push-based protocol, R1 has a message m1 pending following these insertions. We then proceed with a series of
151

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Fig. 5. Examples of the encoding and decoding procedures from Theorem 9 applied to w = 10. Fig. 5(a) shows the execution αw constructed by the
encoding procedure, whose output is σw , the state of R1 at the end of αw . Fig. 5(b) shows the first step of decoding w from σw . The decoding procedure
performs the state transitions of the events at R1 that are outside of the dashed rectangle and of the events at R2; these transitions are valid because they
occur in the depicted execution, in which the events inside the dashed rectangle lead R1 to state σw . The relative order of x and ∗ read at R1 therefore
recovers bit w1 = 1. Fig. 5(c) shows the second step of decoding w: Recovering w1 = 1 allows the decoding procedure to perform the state transitions by
R1 in αw that depend on w1.

steps, for i = 1, . . . , d. Each step i begins with R1 in state σi having a message mi pending. R1 first broadcasts mi . We then
insert the string [i]i immediately to the left or to the right of [i−1]i−1, depending on whether the i-th bit of w is set.
Because R is a push-based protocol, R1 has a message pending following these insertions, and we proceed to step i + 1.
When we are done, we broadcast the current pending message and insert the element ∗ between [d and]d , and broadcast
the message md+2 that is pending following this insertion. For example, if w = 10, the state of the list at R1 at this point is
[0]0 [2 ∗]2 [1]1. We then delete all the [i and]i elements, for i = 0, . . . , d, and if D is odd, we insert and delete an additional
element, so that the number of deletions in αw is exactly D . Because R is a push-based protocol, R1 has a message pending
following these deletions, which we broadcast to empty R1’s send buffer. Finally, we read the list at R1, observing that it is
∗. This follows because for any abstract execution A = (H, vis) that the encoding execution αw complies with, all ins and del
events are visible to the read, due to Condition (1) of Definition 4. The read’s response must thus be ∗, since by assumption
one of such executions A is consistent with the weak list specification.

The output of the encoding procedure is σw , the state of R1 at the end of the encoding execution αw . It is easy to check
that αw is well-formed; furthermore, it satisfies causal atomic broadcast by construction.

Decoding w from σw . We reconstruct w one bit at a time by “replaying” the execution αw . To replay iteration i of αw , we
rely on a procedure Recover() that recovers wi from σw and m1, . . . , mi . (We describe Recover() in the next paragraph;
152

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
for now, assume it is an oracle.) Knowing wi , in turn, determines the next event of R1 in αw , and hence provides us with
mi+1. The decoding process thus only uses messages from R1 that it reconstructs with the bits of w already known. Fig. 4(b)
shows the pseudocode which, as it executes, decodes w . We start with R1 in its initial state and reconstruct m1, which does
not depend on w . We then proceed in steps, for i = 1, . . . , d. In step i we know m1, . . . , mi , and we recover bit wi from σw
and m1, . . . , mi . Having recovered wi , we replay the insertion that R1 performs at step i of the encoding and reconstruct
mi+1.

Recovering wi from σw and m1, . . . , mi . The Recover() procedure determines wi by performing state transitions on fresh
copies of R1 and R2; the transitions that an execution of Recover() performs have no effect on the state of the replicas in
the “replayed” execution constructed by the decoding process, or on other Recover() executions. Fig. 4(c) shows these state
transitions, and Figs. 5(b)–5(c) illustrate the overall decoding of w = 10 (the use of the replica R3 is explained below). We
start off with R2 in its initial state and R1 in state σw . We deliver the messages m1, . . . , mi to both replicas in the same
order. We then read at R2 and receive response vi

w ; we will show that [i−1]i−1 ∈ vi
w . Next, R2 inserts element x between

[i−1 and]i−1 and broadcasts a message mx , which we deliver to both replicas. Finally, we read at R1 and observe the list in
state yi

w . We will show that yi
w contains only x and ∗, and if x precedes ∗ then wi = 1; otherwise, wi = 0.

Validity of Recover(σw , m1, . . . , mi) state transitions. Assuming that m1, . . . , mi are the first i messages sent by R1 in αw , we
show that the state transitions performed by an execution of Recover(σw , m1, . . . , mi) in Fig. 4(c) occur in an extension β i

w
of αw of the form:

β i
w = αw receive2(m1) receive1(m1) . . . receive2(mi) receive1(mi)

do2(read2, vi
w)do2(ins2(x,ki

w), _) send2(mx)

receive2(mx) receive1(mx)do1(read1, yi
w),

where ki
w is the position at which R2 inserts x into the list. In the following, we prove that the execution β i

w is well-formed
(Claim 10), that it satisfies causal atomic broadcast (Claim 11), that [i−1]i−1 ∈ vi

w (Claim 12), and that yi
w = x ∗ or yi

w = ∗ x
(Claim 13). To this end, we exploit the fact that σw is R1’s state at the end of αw , which allows Recover() to perform the
same state transitions at R1 that occur in β i

w , without having access to the entire execution αw that leads R1 to state σw .

Claim 10. Execution β i
w is well-formed.

Proof. By assumption, Recover() is passed the first i messages sent by R1 in αw . The claim thus follows from the following:
(1) αw is well-formed; (2) at the end of αw , R1 is in state σw ; (3) because R2 does not participate in αw , the state of R2
at the end of αw is its initial state; (4) a replica always accepts any sent message (by definition); and (5) R is push-based,
and so R2 has a message pending following its ins operation. �
Claim 11. Execution β i

w satisfies causal atomic broadcast.

Proof. Immediate from inspection of the message delivery order in β i
w . �

Claim 12. [i−1]i−1 ∈ vi
w .

Proof. For j = 1, . . . , d + 1, let e j, f j ∈ αw be the do events in which R1 inserts [j−1 and] j−1 into the list. Let r ∈ β i
w be

the do event at which R2 reads vi
w . Because R is a correct push-based protocol and β i

w satisfies causal atomic broadcast,
by Definition 13, β i

w complies with some abstract execution A = (H, vis) ∈ Aweak such that e j
vis−→ r and f j

vis−→ r if and only
if j ≤ i, and no del operation is visible to r. This holds because in β i

w , R2 receives only the messages m1, . . . , mi before r,
and each m j is the first message sent by R1 after e j and f j . It thus follows from the definition of the weak list specification
(Definition 8) that vi

w = . . . [i−1]i−1 �
Claim 13. yi

w = x ∗ or yi
w = ∗ x.

Proof. Let f ∈ β i
w be the do event at which R2 inserts x into the list, and r ∈ β i

w be the do event at which R1 reads
yi

w . Because R is a correct push-based protocol, β i
w compiles with some abstract execution A = (H, vis) ∈ Aweak such that

f
vis−→ r. Now, let e ∈ β i

w be the do event at which R1 inserts ∗ into the list. Then e vis−→ r by definition of an abstract
execution (Definition 4). Because all other elements inserted in β i

w are deleted by R1 before r, but x and ∗ are not deleted
in β i

w , the claim follows. �
Correctness of recovering wi . Having shown that the state transitions performed by Recover() yield the lists yi

w = x ∗ or
yi

w = ∗ x, it remains to show that we correctly recover wi from yi
w : (yi

w = x ∗) ⇐⇒ (wi = 1).
153

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
In principle, the weak list specification allows R1’s read to order x and ∗ arbitrarily, since [i−1 and]i−1 are deleted from
the list by the time the read occurs. We show, however, that R1 cannot do this, because it cannot rule out the possibility
that another replica has already observed [i−1 x]i−1 and ∗ together, and therefore their order is fixed. Consider the following
extension of β i

w , in which R3 receives the messages generated after each insertion and then reads the list (it is easy to see
that this execution satisfies causal atomic broadcast):

γ i
w = β i

w receive3(m1) . . . receive3(mi) receive3(mx)

receive3(mi+1) . . . receive3(md+2)do3(read3, zi
w).

We show that the list zi
w contains ∗ after x if and only wi = 1. Informally, this follows because every element inserted from

iteration i onwards in the encoding procedure (and hence in γ i
w), including ∗, goes after]i−1 if and only if wi = 1, and no

del events are visible to R3, so its read response must order x before]i−1 before ∗.
Formally, consider the following events in γ i

w : w∗ , the ins of ∗ by R1; wx , the ins of x by R2; and rz , the read by
R3, whose response is zi

w . Because R is a correct push-based protocol and γ i
w satisfies causal broadcast, by Definition 13,

γ i
w complies with some abstract execution A = (H, vis) ∈ Aweak such that for any e, e′ ∈ H , e′ vis−→ e if and only if e′ hb−→ e.

Therefore, no del event is visible to w∗ , wx or rz . Let lo be a list order that A is consistent with (Definition 8). We proceed
to show that (x, ∗) ∈ lo if and only if wi = 1. Observe that if wi = 1, every element inserted from iteration i onwards of
the encoding process is inserted after]i−1, and if wi = 0, every element inserted from iteration i onwards is inserted before
[i−1. Therefore, the response of w∗ establishes that (]i−1, ∗) ∈ lo if and only if wi = 1. The response of wx establishes that
([i−1, x) ∈ lo and (x,]i−1) ∈ lo. It follows that (x, ∗) ∈ lo if and only if wi = 1, since [i−1, x,]i−1, ∗ ∈ zi

w and lo is total and
transitive on {a | a ∈ rval(rz) = zi

w}.
We conclude by noting that yi

w = x ∗ or yi
w = ∗ x (Claim 13); recall that yi

w is the response to the read at R1 performed
by Recover(). Since (x, ∗) ∈ lo if and only if wi = 1, then yi

w = x ∗ if and only if wi = 1. �
6.1. Extension to a client/server model

In a client/server model, replicas communicate only with a central server and not directly with each other. (The motivation
is to maintain state on the server instead of on the replicas, and so the server usually does more than merely relay messages
between replicas [20].) To model such protocols in our framework, which assumes a broadcast transport, we require replicas
to process only messages to/from the server:

Definition 14. A protocol R = {R1, . . . , Rn, S} is a client/server protocol if for every replica Ri = (Q i, M, �i, σ i
0, E, �i), and

σ ∈ �i , if �i(σ , receive(m))
= σ , then m was sent by S . We call S the server and R1, . . . , Rn the clients.

In practice, users do not interact directly with the server, and so we consider only executions in which do events do not
occur at the server.

Assuming causal atomic broadcast, a broadcast protocol can simulate a client/server protocol using state machine repli-
cation [16].

Proposition 14. Let R = {R1, . . . , Rn, S} be a client/server protocol. Then there exists a protocol R′ = {
R ′

1, . . . , R ′
n

}
that simulates

R in the following sense: (1) for any execution α′ of R′ that satisfies causal atomic broadcast, there exists an execution α of R such
that α|do

Ri
= α′|do

R ′
i

for i = 1..n; (2) the set of internal states of each R ′
i is Q i × Q S , where Q i and Q S are the respective sets of internal

states of Ri and S; and (3) until R ′
i receives a message, its state is

(
_,qS

0

)
, where (qS

0 , ⊥) is the initial state of S.

Proof. For i = 1 . . .n, replica R ′
i ∈ R′ maintains two state machines, of Ri and of S . R ′

i broadcasts exactly the messages
broadcast by the replica Ri it is simulating. We use the fact that messages are delivered to all replicas in R′ in the same
order to simulate the server S using state machine replication.

Fig. 6 shows the state machine of replica R ′
i ∈ R′ . Upon a do event, R ′

i performs the corresponding transition on Ri ’s
state machine and broadcasts any message m′ that Ri would send to S . Upon receiving a message m, R ′

i delivers m to the
two state machines it maintains. (However, because m corresponds to a message sent by some R j , the Ri state machine
ignores it, by Definition 14.) If, as a result of receiving m, S broadcasts a message m∗ , then R ′

i (locally) delivers m∗ to Ri ’s
state machine and broadcasts any message m′ that Ri sends as a result of receiving m∗ .

In any execution α′ of R′ that satisfies causal atomic broadcast, all messages are delivered to all replicas in the same
order. Therefore, each replica R ′

i performs the same state transitions at S , and (locally) delivers the same messages from S
to its Ri state machine. The claim follows. �
Client/server lower bound. Since the executions constructed in the proof of Theorem 9 satisfy causal atomic broadcast, they
can also be viewed as executions of a protocol simulating a push-based client/server protocol (Proposition 14). We therefore
obtain
154

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
State Event e New state

((r, s),m) do(op, v) ((r′, s),m′), where
(r′,m′) = �i((r,m), e)

((r, s),m) send(m) ((r′, s),⊥), where
(r′,⊥) = �i((r,m), e)

((r, s),m) receive(m) ((r′, s′),m′), where if
�S ((s,⊥), e) = (s∗,⊥), then
s′ = s∗ and (r′,m′) = (r,m) =
�i((r,m), receive(m)); and if
�S ((s,⊥), e) = (s∗,m∗), then
(s′,⊥) = �S ((s∗,m∗), send(m∗)),
(r′,m′) = �i((r̂,m̂), receive(m∗)),
where (r̂,m̂) = (r,m) =
�i((r,m), receive(m))

Fig. 6. State machine of replica R ′
i ∈ R′ simulating replica Ri = (Q i , M, �i, σ i

0, E, �i) ∈ R. The initial internal state is (qi
0, qS

0), where qi
0 and qS

0 are the
initial internal states of Ri and of S , respectively.

Corollary 15. Let R be a push-based client/server protocol with n ≥ 3 replicas that satisfies the weak list specification. Then the
worst-case metadata overhead of R on the clients over executions with D deletions is �(D).

Proof. Let R be a push-based client/server protocol that satisfies the weak list specification. Let R′ be the protocol simu-
lating R from Proposition 14. Take D ≥ 4. By Theorem 9, there exists an execution αD of R′ with D deletions such that: (1)
the metadata overhead of some state σ of some replica R ′ ∈ R′ is �(D); (2) αD satisfies causal atomic broadcast; and (3)
R ′ does not receive any message before σ . Because R′ simulates R, we have that σ = ((qR , qS), _), where qR and qS are,
respectively, internal states of the replica R ∈ R that R ′ is simulating and of the server. Moreover, it follows from Propo-
sition 14 that qS is the initial internal state of the server. Therefore, |(qR , qS)| = O (|qR | + |qS |) = O (|qR |), because |qS | is
a constant. By definition of R′ , do(read, w) is enabled in σ if and only if it is enabled in qR —that is, the user-observable
content at R ′ and R is the same. It follows that the metadata overhead at R is �(D). �
7. Protocols with invisible reads in the presence of disconnections

Our metadata overhead lower bound proof applies to push-based protocols. However, being push-based is a low-level
property, which partially specifies implementation details of the protocol. In this section, we show that under a weaker
network model (discussed below), for a common class of protocols being push-based follows from guaranteeing the higher-
level property of eventual visibility. Hence, our lower bound also applies to protocols satisfying the latter property.

We consider protocols with invisible reads, in which a read operation does not modify the state of the replica. We
forbid both changing the replica’s internal state and returning a response different from the response of the preceding user
operation, unless a message was received in the meantime.

Definition 15. A protocol R has invisible reads if for every replica R = (Q , M, �, σ0, E, �), if do(read, v) is enabled in state
σ , then �(σ , do(read, v)) = σ , and further, if σ = �(σ ′, do(op, v ′)) for some op ∈ Op, then v = v ′ .

Instead of a sufficiently connected network (Definition 1), we consider a network which guarantees the delivery of
messages only to replicas that are active, as per the following definition; all other replicas are disconnected.

Definition 16. Let α be a well-formed execution of a protocol R. We say that replica R ∈ R is active in α if R performs do
events infinitely often in α.

Definition 17 (Network model with disconnections). The network is sufficiently connected in a well-formed execution α of a
protocol R if the following conditions hold for every replica R ∈ R: (1) Eventual transmission: if R has a message pending
infinitely often in α, then R also sends a message infinitely often in α; and (2) Eventual delivery: if R sends a message m,
then every active replica R ′
= R eventually receives m.

We adjust our definition of liveness (Definition 10) to the new network model.

Definition 18. A protocol R satisfying the weak list specification guarantees eventual visibility under the network model with
disconnections if every execution α of R in which the network is sufficiently connected and that satisfies causal broadcast
complies with some abstract execution A ∈ Aweak that satisfies eventual visibility.

In the remainder of this section, we prove the following result.
155

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Theorem 16. Let R be a protocol with n ≥ 2 replicas that has invisible reads, satisfies the weak list specification, and guarantees
eventual visibility under the network model with disconnections. Then R is a push-based protocol.

From this and Theorem 8, it follows that the metadata overhead bound holds under the conditions of Theorem 16.

Corollary 17. Let R be a protocol with n ≥ 3 replicas that has invisible reads, satisfies the weak list specification, and guarantees
eventual visibility under the network model with disconnections. Then the worst-case metadata overhead of R over executions with D
deletions is �(D).

To prove Theorem 16, let R be a protocol with n ≥ 2 replicas that has invisible reads, satisfies the weak list specification,
and guarantees eventual visibility under the network model with disconnections. The following Lemmas 20 and 21 respec-
tively establish Conditions 1, 2 and 3 of Definition 13, thereby proving that R is push-based. We start by stating some basic
properties we rely on in our proofs.

Proposition 18 ([5, Proposition 1]). Let α be a well-formed execution of R, and let e be an event in α. Consider β , the subsequence of
α consisting of e and all events e′ such that e′ hb−→ e. Then β is a well-formed execution of R, and for any replica R, β|R is a prefix of
α|R .

Proposition 19. Let α be an execution of R, and let f be a do(op, v) event such that a ∈ v. Then there exists an event e =
do(ins(a, _), _) ∈ α such that e hb−→ f .

Proof. The existence of some e = do(ins(a, _), _) ∈ α is immediate: if no such e exists, any abstract execution that α com-
plies with would not be in the weak list specification, which contradicts R satisfying the weak list specification. It remains
to show that e hb−→ f . Suppose that this is false. We show that R does not satisfy the weak list specification, which is a con-

tradiction, as follows. Let α′ be the subsequence of α consisting of f and all events e′ such that e′ hb−→ f . By Proposition 18,
α′ is a well-formed execution. However, because inserted elements are unique, there is no insert of a in α′ . Yet a ∈ v , where
f = do(op, v) ∈ α′ , and so any abstract execution that α′ complies with cannot be in the weak list specification. Then R
does not satisfy the weak list specification, and the claim follows. �
Lemma 20. Let α be an execution of R that satisfies causal broadcast, and let e ∈ α. If one of the following holds, then repl(e) has a
message pending after e: (1) op(e) = ins(a, _), or (2) op(e) = del(a) and there does not exist d hb−→ e with op(d) = del(a).

Proof. Suppose that the claim is false. Then there exists e ∈ α such that (1) op(e) = ins(a, _), or (2) op(e) = del(a) and there
does not exist d hb−→ e with op(d) = del(a), and R = repl(e) does not have a message pending after e. Let σ be the state of
R after e (in which R does not have a message pending). Let α1 be the subsequence of α consisting of e and all events e′

such that e′ hb−→ e. By Proposition 18, α1 is a well-formed execution, and α1|R is a prefix of α|R . Thus, R ’s state at the end
of α1 is also σ .

Consider some replica R ′
= R . Let β = α1 α2 be an execution of R that satisfies causal broadcast, obtained by appending
receive events at R ′ to α1 in some order that respects hb−→, so that in β , R ′ receives every message sent by another replica
in α1. Observe that because α satisfies causal broadcast, so does α1, and so any message sent in α1 is received by R before
e. Thus, R does not receive messages in α2 and so its state at the end of β remains σ . Thus, R does not have a message
pending at the end of β .

Consider the infinite execution of R, β∞ = β s r1 r2 . . . , where the ri events are reads at R ′ , and, if R ′ has a message m
pending after β , s is a send of m at R ′; if R ′ does not have a message pending after β , s = ε. Because only R ′ performs
infinitely many do events in β∞ , the network in β∞ is sufficiently connected. Let A = (H, vis) be an abstract execution
satisfying eventual visibility that β∞ complies with. Then there exists some r j such that e vis−→ r j . We now consider the two
possible cases for e:

(1) op(e) = ins(a, _). Since R ’s state remains unchanged after e, it does not have a message pending and thus does not send
a message after e. Therefore, ¬(e hb−→ r j). Then by Proposition 19, a /∈ rval(r j). It follows from the weak list specification that

there exists a del(a) event, d ∈ H , such that d vis−→ r j . Then d ∈ α1, since the suffix of β∞ after α1 contains only message
transmissions, receipts, and read events. It follows from our assumption that users delete only elements that appear in the
response of a preceding operation on the same replica that a ∈ rval(e′) for some e′ hb−→ d. Thus, e′ ∈ α1. By Proposition 19,
e hb−→ e′ . But this is a contradiction, since e′ ∈ α1 implies e′ hb−→ e.

(2) op(e) = del(a) and there does not exist d hb−→ e with op(d) = del(a). It follows from our assumption that users delete only
elements that appear in the response of a preceding operation on the same replica that a ∈ rval(f) for some f

vis−→ e.
156

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Therefore, there exists an event g = ins(a, _) ∈ H such that g
vis−→ e, and so g

vis−→ e vis−→ r j . It follows from the weak list
specification that a /∈ rval(ri) for every i ≥ j. Observe, however, that the execution β ′∞ obtained by removing e from β∞
is a well-formed execution of R, because in β∞ there are no events at R after e. Now, let A′ = (H ′, vis′) be an abstract
execution satisfying eventual visibility that β ′∞ complies with. By eventual visibility, g is visible to all but finitely many

events. Therefore, there exists some ri , i ≥ j such that g
vis′−→ ri . Since a /∈ rval(ri), but g

vis′−→ ri , it follows from the weak list

specification that there exists a del(a) event, d ∈ H , such that g
vis′−→ d vis′−→ ri . Thus, d ∈ α1 and so d hb−→ e, which contradicts

our assumption about e. �
Lemma 21. Let α be an execution of R that satisfies causal broadcast. Then there exists an abstract execution A = (H, vis) ∈ Aweak

that α complies with, such that for all e′, e ∈ H, e′ vis−→ e if and only if e′ hb−→ e.

Proof. It is immediate that there exists an abstract execution A = (H, vis) that α complies with such that for all e′, e ∈ H ,
e′ vis−→ e if and only if e′ hb−→ e. To show that A ∈Aweak , we must show that it satisfies all conditions in Definition 8. We show
that A satisfies Conditions b and c in Definition 7, as well as Condition 2 in Definition 8, by observing that these conditions
depend only on the operations and their responses, and not on the visibility relation. Formally, because R satisfies the weak
list specification, there exists an abstract execution A′ = (H ′, vis′) ∈ Aweak that α complies with. By definition of the weak
specification, there exists a list order relation lo that satisfies Conditions b and c in Definition 7, as well as Condition 2
in Definition 8 for A′ . Observe that these conditions only relate lo and the responses of the operations in H ′; in particular,
they do not depend on vis′ . But because α complies with both A and A′ , for every replica R , H |R = H ′|R . It thus follows
that lo satisfies these conditions for A as well.

It remains to show that A satisfies Condition a. Abusing notation, we denote by elems(e) the set of elements in the
response of a do event e. We thus need to show that for every do event e ∈ α, elems(e) = L(e, vis), where

L(e, vis) = {a | (do(ins(a, _), _) ≤vis e) ∧ ¬(do(del(a), _) ≤vis e)}.
Let e be a do event in α, let R = repl(e), and let σ be the state of R when the e transition occurs. Let α′ be the subsequence
of α consisting of e and all events e′ such that e′ hb−→ e. By Proposition 18, α′ is a well-formed execution of R.

Consider now the infinite execution of R, α∞ = α′ s r1 r2 . . . , where the ri events are reads at R , and, if R has a message
m pending after e, s is a send of m at R; if R does not have a message pending after e, s = ε. The network in α∞ is
sufficiently connected, because (1) only R performs infinitely many do events in α∞ , and (2) any message sent by some
replica R ′
= R in α′ is received by R in α′ , since α satisfying causal broadcast implies that α′ also does. Let A′ = (H ′, vis′) ∈
Aweak be an abstract execution satisfying eventual visibility that α∞ complies with. Then there exists some r j such that for

every e′ ∈ α′ , e′ vis′−→ r j . Then elems(r j) = L(r j, vis′), by definition of the weak list specification.
Because R has invisible reads and the send in s′ , if it exists, does not change R ’s internal state, elems(r j) = elems(e).

This implies that elems(e) = L(e, vis), because for every e′ ∈ α′ , e′ vis′−→ r j ⇐⇒ e′ ≤hb e ⇐⇒ e′ ≤vis e. �
8. Related work

Previous attempts at specifying the behavior of replicated list objects [30,18] have been informal and imprecise: they
typically required the execution of an operation at a remote replica to preserve the effect of the operation at its original
replica, but they have not formally defined the notions of the effect and its preservation.

Burckhardt et al. [6] have previously proposed a framework for specifying replicated data types (on which we base our
list specifications) and proved lower bounds on the metadata overhead of several data types. In contrast to us, they handle
much simpler data types than a list. Thus, our specifications have to extend theirs with an additional relation, defining the
order of elements in the list. Similarly, their proof strategy (and its extension in [5]) for establishing lower bounds would
not be applicable to lists; obtaining a lower bound in this case requires a more delicate decoding argument, recovering
information incrementally.

A mechanized proof of the eventual consistency property in RGA was presented in [13], following the initial publication
of our work. There are other protocols implementing a highly available replicated list than the RGA protocol we considered.
Treedoc [23] and Logoot [39] are other implementations of the strong list specification using the approach of replicated data
types [28]. As in RGA, the state of a replica can be viewed as a tree, where a deterministic traversal defines the order of the
list. The replication protocol represents the position of a node in the tree as a sequence of edge labels on the path from the
root of the tree (in RGA, it is a position relative to an existing node). Like RGA, these protocols have the worst-case metadata
overhead linear in the number of deletions. In particular, Logoot [39] can exhibit metadata overhead linear in the number of
deletions despite not using tombstones for deletions. Instead, Logoot assigns elements with unique identifiers, and the size
of these identifiers (which are metadata) can grow linearly with the number of deletions. WOOT [22] is a graph-based list
implementation: its main component is a representation of a partial list order, i.e., ordering restrictions inferred at the time
user performs operations. The total list order is computed as a view of the graph based on a non-declarative specification
of intended ordering.
157

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Another class of protocols is based on operational transformations (OT) [12], which apply certain transformation functions
to pairs of concurrent updates. Applying the transformation function may allow to commute two operations, a property
called TP1, or three operations, a property called TP2. Though the idea of OT is simple, OT-based protocols are subtle and
significant effort was done to gain a better understanding why some OT-based protocols work in centralized client/server
situations [34,40]. Client/server OT protocols, such as Jupiter [20], allow the list state to converge if the transformation
functions satisfy the TP1 property. Following the initial publication of our work, our formalism was used to show that
Jupiter satisfies our weak list specification [38].

In peer-to-peer systems, OT protocols are more complicated. The dOPT protocol [12] does not work in all cases [25,29].
Indeed, it is impossible to design OT-based protocols for some peer-to-peer systems [24]. In peer-to-peer OT protocols, TP1
and TP2 are needed to ensure that the list state converges [25], regardless of the order in which the operations are received.
Several OT protocols do not satisfy TP1 and TP2 and do not converge [15].

Sun et al. carry an in-depth study of OT- and CRDT-based collaborative editing systems, comparing the underlying con-
cepts [33], complexity [32], and adoption in practice [31]. With respect to metadata overhead, they find that in the common
case, the use of tombstones in CRDT-based systems leads to higher overhead than in OT-based systems [32]. Their obser-
vations are complementary to our work, which studies the fundamental worst case behavior of the system. In particular,
although OT protocols do not use tombstones, they store a log of unacknowledged updates in each replica. Our proof (Sec-
tion 6) essentially shows that in some worst-case executions, the overhead of these buffered updates can be linear in the
number of deleted elements.

Our work considers the metadata overhead of collaborative editing systems. These systems have also been analyzed from
the perspective of other complexity metrics, such as the time complexity of local and remote operations [2,8,14]. In some
systems, however, the metadata overhead of the system influences the time complexity of its operations, e.g., when the time
complexity depends on the size of object identifiers, which are part of the metadata [3].

9. Conclusion

This paper provides a precise specification of the list replicated object, which models the core functionality of collabora-
tive text editing systems. We define a strong list—and show that it is implemented by the RGA protocol [26]—as well as a
weak list, which is implemented by the Jupiter protocol [20,38], underlying public collaboration systems [37].

We prove a lower bound of �(D), where D is the number of deletions, on the metadata overhead of push-based list
protocols, which model the implementation of all highly available list protocols that we are aware of. Our lower bound
applies to both weak and strong semantics. It is thus worth further investigating protocols for the client/server setting:
even though systems such as Jupiter [20] do not provide strong semantics, our results suggest that this may not offer a
complexity advantage.

We also show a simple list protocol whose metadata overhead is O (D lg k), where k is the number of operations. Closing
the gap between the upper and lower bound is left for future work.

Our work is a first step towards specifying and analyzing general collaborative editing systems, providing more features
than those captured by the list object. This includes systems for sharing structured documents, such as XML [19]. While our
lower bound would hold for more general systems, it is possible that the additional features induce additional complexity.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

We would like to thank Marc Shapiro and Pascal Urso for comments that helped improve the paper. Attiya and Morrison
were supported by the Israel Science Foundation (grant 1749/14) and by Yad Hanadiv Foundation. Gotsman was supported
by an ERC grant RACCOON. Yang was supported by an Institute for Information & communications Technology Promotion
(IITP) grant funded by the Korea government (MSIP, No. R0190-15-2011). Zawirski was supported by an EU project SyncFree.

Appendix A. Weak behavior in the Jupiter protocol

In this section, we give a concrete example of how the Jupiter protocol [20], which relies on OT, can produce the
execution shown in Fig. 1(b). Jupiter is a client/server protocol, in which the client replicas and the server are connected via
FIFO links. Each client operation is applied immediately locally and then sent to the server. The server totally orders received
client operations and propagates the updates to the rest of replicas. To make sure all clients converge to the same state,
Jupiter employs OT. Specifically, each participant (server or client) transforms incoming operations into “fixed up” operations
that are applicable to its state [20,38]. While fully explaining Jupiter’s transformations is beyond the scope of this paper, we
illustrate the idea in the following example, which shows how the execution of Fig. 1(b) can occur in Jupiter.
158

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
Initially, all clients and servers have an empty list. Client R2 puts x into the list and this operation is received by the
server, which propagates it to the other clients, R1 and R3:

R2.do(ins(x,0))

S.receive(R2, ε, ins(x,0))

R1.receive(S, ε, ins(x,0))

R3.receive(S, ε, ins(x,0))

A receive event at replica R consists of a tuple (X, σ , o), where X is the sending replica, σ is a list state, and o is an
operation. The state σ reflects the state of the list constructed from all updates that X has received from R at the time
of sending its message, and allows R to transform X ’s update appropriately. We show update messages as containing list
states for readability. In practice, messages contain an acknowledgment number indicating which of R ’s updates X has
received, and R buffers its sent messages until they are acknowledged, allowing it to reconstruct list states from received
acknowledgments.

Continuing the example, R2 now deletes x and sends an update to the server. An important detail is that, in contrast to
the idealized depiction in Fig. 1, Jupiter identifies deletions with the index of the character deleted, and not by the deleted
character.

R2.do(del(0))

S.receive(R2, x,del(0))

Above, we show R2’s update as reflecting an x state even though R2 did not receive an update from the server about
the insertion of x. The reason is that x was inserted into the list by R2, which the server is aware of.

Following the above events, the list state at the server is ε . Next, R1 inserts a to the left of x and R3 inserts b to the
right of x, and both send updates to the server:

R1.do(ins(a,0))

R3.do(ins(b,1))

Next, the server receives R1’s update before receiving R3’s update:

S.receive(R1, x, ins(a,0))

S.receive(R3, x, ins(b,1))

Upon receiving R1’s update, the server’s list state is updated to a. Crucially, when R3’s update is received, it is trans-
formed: since b was inserted at index when the list was x and x was since deleted, the server decrements the index of R3’s
ins operation, and applies the operation ins(b, 0) to its state. The result is that the server’s list state is now ba. The server
propagates the updates to the other replicas, which perform similar transformations, resulting in all replicas converging on
the list state ba.

References

[1] Apache Wave, https://incubator.apache .org /wave/.
[2] M. Ahmed-Nacer, C.-L. Ignat, G. Oster, H.-G. Roh, P. Urso, Evaluating CRDTs for real-time document editing, in: Proceedings of the 11th ACM Symposium

on Document Engineering, DocEng 2011, 2011.
[3] L. André, S. Martin, G. Oster, C.-L. Ignat, Supporting adaptable granularity of changes for massive-scale collaborative editing, in: Proceedings of the 9th

IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2013, IEEE, 2013.
[4] H. Attiya, S. Burckhardt, A. Gotsman, A. Morrison, H. Yang, M. Zawirski, Specification and complexity of collaborative text editing, in: Proceedings of

the 2016 ACM Symposium on Principles of Distributed Computing, 2016, pp. 259–268.
[5] H. Attiya, F. Ellen, A. Morrison, Limitations of highly-available eventually-consistent data stores, IEEE Trans. Parallel Distrib. Syst. 28 (1) (2017) 141–155.
[6] S. Burckhardt, A. Gotsman, H. Yang, M. Zawirski, Replicated data types: specification, verification, optimality, in: POPL, 2014.
[7] C. Cachin, R. Guerraoui, L. Rodrigues, Introduction to Reliable and Secure Distributed Programming, 2nd edition, Springer Publishing Company, Incor-

porated, 2011.
[8] Q.-V. Dang, C.-L. Ignat, Performance of real-time collaborative editors at large scale: user perspective, in: 2016 IFIP Networking Conference (IFIP

Networking) and Workshops, 2016.
[9] J. Day-Richter, What’s different about the new Google Docs: conflict resolution, http://googledrive .blogspot .com /2010 /09 /whats -different -about -new-

google -docs _22 .html, 2010.
[10] J. Day-Richter, What’s different about the new Google Docs: making collaboration fast, http://googledrive .blogspot .com /2010 /09 /whats -different -about -

new-google -docs .html, 2010.
[11] X. Défago, A. Schiper, P. Urbán, Total order broadcast and multicast algorithms: taxonomy and survey, ACM Comput. Surv. 36 (4) (2004).
[12] C.A. Ellis, S.J. Gibbs, Concurrency control in groupware systems, in: SIGMOD, 1989.
[13] V.B. Gomes, M. Kleppmann, D.P. Mulligan, A.R. Beresford, Verifying strong eventual consistency in distributed systems, in: OOPSLA, 2017.
[14] C.-L. Ignat, G. Oster, O. Fox, V.L. Shalin, F. Charoy, How do user groups cope with delay in real-time collaborative note taking, in: Proceedings of the

14th European Conference on Computer Supported Cooperative Work, ECSCW 2015, 2015.
[15] A. Imine, M. Rusinowitch, G. Oster, P. Molli, Formal design and verification of operational transformation algorithms for copies convergence, Theor.

Comput. Sci. 351 (2) (2006).
159

https://incubator.apache.org/wave/
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibCD594D10C8C749A105F5FF5FCD81EFE6s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibCD594D10C8C749A105F5FF5FCD81EFE6s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib9B95811828D7607EAD7EDDAA7A2C1BC4s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib9B95811828D7607EAD7EDDAA7A2C1BC4s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibC3BE02F1CFEB98010BB8798F80F1D628s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibC3BE02F1CFEB98010BB8798F80F1D628s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib0BF63A4FAD1018C3639B8B8851B42EA8s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib82E62E8317A46137E3327A33FA813F30s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib08A164BBC97ACEB327010322C3DE4D15s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib08A164BBC97ACEB327010322C3DE4D15s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib61817BE61F10432BC2ED4FB056540B02s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib61817BE61F10432BC2ED4FB056540B02s1
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs_22.html
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs_22.html
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html
http://googledrive.blogspot.com/2010/09/whats-different-about-new-google-docs.html
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib0E10D4915DCB772523F027D951FB3EA3s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib7D65EEF29875830DA60D44998A0F0295s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibA517C101346BCD7F9DA73D4700B3BDFDs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib34039F58327BFCDABFF3EE2740201D0Fs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib34039F58327BFCDABFF3EE2740201D0Fs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib83CE0F61C9D316954B5494DCFE174830s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib83CE0F61C9D316954B5494DCFE174830s1

H. Attiya, S. Burckhardt, A. Gotsman et al. Theoretical Computer Science 855 (2021) 141–160
[16] L. Lamport. Time, Clocks, and the ordering of events in a distributed system, Commun. ACM 21 (7) (1978).
[17] B. Leuf, W. Cunningham, The Wiki Way: Quick Collaboration on the Web, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.
[18] D. Li, R. Li, Preserving operation effects relation in group editors, in: CSCW, 2004.
[19] S. Martin, P. Urso, S. Weiss, Scalable XML collaborative editing with undo, in: OTM, 2010.
[20] D.A. Nichols, P. Curtis, M. Dixon, J. Lamping, High-latency, low-bandwidth windowing in the Jupiter collaboration system, in: UIST, 1995.
[21] G. Oster, P. Molli, P. Urso, A. Imine, Tombstone transformation functions for ensuring consistency in collaborative editing systems, in: Proceedings

of the 2nd IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2006, IEEE, 2006,
pp. 1–10.

[22] G. Oster, P. Urso, P. Molli, A. Imine, Data consistency for P2P collaborative editing, in: CSCW, 2006.
[23] N. Preguiça, J.M. Marqués, M. Shapiro, M. Leţia, A commutative replicated data type for cooperative editing, in: ICDCS, 2009.
[24] A. Randolph, H. Boucheneb, A. Imine, Q. Alejandro, On consistency of operational transformation approach, in: INFINITY 2012-14th International

Workshop on Verification of Infinite-State Systems, 2012, pp. 1–15.
[25] M. Ressel, D. Nitsche-Ruhland, R. Gunzenhäuser, An integrating, transformation-oriented approach to concurrency control and undo in group editors,

in: CSCW, 1996.
[26] H.-G. Roh, M. Jeon, J.-S. Kim, J. Lee, Replicated abstract data types: building blocks for collaborative applications, J. Parallel Distrib. Comput. 71 (3)

(2011).
[27] B. Shao, D. Li, T. Lu, N. Gu, An operational transformation based synchronization protocol for web 2.0 applications, in: Proceedings of the ACM 2011

Conference on Computer Supported Cooperative Work, CSCW 2011, 2011.
[28] M. Shapiro, N. Preguiça, C. Baquero, M. Zawirski, Conflict-free replicated data types, in: SSS, 2011.
[29] C. Sun, C. Ellis, Operational transformation in real-time group editors: issues, algorithms, and achievements, in: CSCW, 1998.
[30] C. Sun, X. Jia, Y. Zhang, Y. Yang, D. Chen, Achieving convergence, causality preservation, and intention preservation in real-time cooperative editing

systems, ACM Trans. Comput.-Hum. Interact. 5 (1) (1998).
[31] C. Sun, D. Sun Agustina, W. Cai, Real differences between OT and CRDT in building co-editing systems and real world applications, CoRR, arXiv:

1905 .01517 [abs], 2019.
[32] C. Sun, D. Sun Agustina, W. Cai, Real differences between OT and CRDT in correctness and complexity for consistency maintenance in co-editors, CoRR,

arXiv:1905 .01302 [abs], 2019.
[33] C. Sun, D. Sun Agustina, W. Cai, Real differences between OT and CRDT under a general transformation framework for consistency maintenance in

co-editors, CoRR, arXiv:1905 .01518 [abs], 2019.
[34] D. Sun, C. Sun, Context-based operational transformation in distributed collaborative editing systems, IEEE Trans. Parallel Distrib. Syst. 20 (10) (2008)

1454–1470.
[35] D.B. Terry, M.M. Theimer, K. Petersen, A.J. Demers, M.J. Spreitzer, C.H. Hauser, Managing update conflicts in Bayou, a weakly connected replicated

storage system, in: SOSP, 1995.
[36] W. Vogels, Eventually consistent, Commun. ACM 52 (1) (2009).
[37] D. Wang, A. Mah, S. Lassen, Google wave operational transformation, https://wave -protocol .googlecode .com /hg /whitepapers /operational -transform /

operational -transform .html, 2010.
[38] H. Wei, Y. Huang, J. Lu, Specification and implementation of replicated list: the Jupiter protocol revisited, in: OPODIS, 2018.
[39] S. Weiss, P. Urso, P. Molli Logoot, A scalable optimistic replication algorithm for collaborative editing on P2P networks, in: ICDCS, 2009.
[40] Y. Xu, C. Sun, M. Li, Achieving convergence in operational transformation: conditions, mechanisms and systems, in: Proceedings of the 17th ACM

Conference on Computer Supported Cooperative Work & Social Computing, CSCW ’14, 2014, pp. 505–518.
160

http://refhub.elsevier.com/S0304-3975(20)30695-2/bibCFED115A0FB7D3417EE4E862254B5E84s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib61BB10C9F66E6440098A86BFB1A001DFs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib30FEAC087C02159E37E7B2CD860DF961s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib6A8071876FC7DC947E1FA958E136CE99s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib811D48B49B5C7955AA1BB2FD54993F33s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib08D112C00C46DEAC7B38DCE8D961C6D4s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib08D112C00C46DEAC7B38DCE8D961C6D4s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib08D112C00C46DEAC7B38DCE8D961C6D4s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib631D05DF776D73673EDEBB65BD229D10s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib821DE3A210FBDFFE830FB1FA6545E368s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib14714CF5D4AC32330FA1172C909BA693s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib14714CF5D4AC32330FA1172C909BA693s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibA90D67B538E9B35BFB4EA464703DC491s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibA90D67B538E9B35BFB4EA464703DC491s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib9A94944D08F0EC04214159C4A14E8882s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib9A94944D08F0EC04214159C4A14E8882s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib1418975AF9D563C43E96C0B4B681B61Fs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib1418975AF9D563C43E96C0B4B681B61Fs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibA33ABAA402735BAE8523A7BECF156655s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib3BA14A8D3E7099A78E27916C28B28C7Es1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibFA82819B1FAB39FA242C5EF70D7B4B02s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibFA82819B1FAB39FA242C5EF70D7B4B02s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib6A37662F282DD2DB19BF1E18959805C2s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib6A37662F282DD2DB19BF1E18959805C2s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib5A80E15E37AD9DDA2A7B3D7272525398s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib5A80E15E37AD9DDA2A7B3D7272525398s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib92822AEC8ACE320AD1C2D6A56DEA7220s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib92822AEC8ACE320AD1C2D6A56DEA7220s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib3976BC1C0584EC0E4E0ABBF8127711D5s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib3976BC1C0584EC0E4E0ABBF8127711D5s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib855B4007CCE9B45B84CA9EA9C575FCCAs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bib855B4007CCE9B45B84CA9EA9C575FCCAs1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibDB5FBBD753BE1B130F2777DBAA3FF262s1
https://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html
https://wave-protocol.googlecode.com/hg/whitepapers/operational-transform/operational-transform.html
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibBABD2925F9A5FE57586BD10374BDECC6s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibEA5E0A92F6FD9736D733322A12048A00s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibE7C3B77057E79B9B3A7914E12EB7D800s1
http://refhub.elsevier.com/S0304-3975(20)30695-2/bibE7C3B77057E79B9B3A7914E12EB7D800s1

	Specification and space complexity of collaborative text editing
	1 Introduction
	2 System model
	3 Collaborative text editing
	3.1 Preliminaries: replicated data types
	3.2 Specifying the list object
	3.3 Metadata overhead

	4 An implementation of the strong list specification
	4.1 Timestamped insertion trees
	4.2 The RGA protocol
	4.3 Correctness and complexity

	5 Push-based protocols
	6 Lower bounds on metadata overhead
	6.1 Extension to a client/server model

	7 Protocols with invisible reads in the presence of disconnections
	8 Related work
	9 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Weak behavior in the Jupiter protocol
	References

