
Tight Bounds on Channel Reliability via
GeneralizedQuorum Systems

Alejandro Naser-Pastoriza

IMDEA Software Institute

Universidad Politécnica de Madrid

Madrid, Spain

Gregory Chockler

University of Surrey

Guildford, United Kingdom

Alexey Gotsman

IMDEA Software Institute

Madrid, Spain

Fedor Ryabinin

IMDEA Software Institute

Universidad Politécnica de Madrid

Madrid, Spain

Abstract
Communication channel failures are a major concern for the de-

velopers of modern fault-tolerant systems. However, while tight

bounds for process failures are well-established, extending them to

include channel failures has remained an open problem. We intro-

duce generalized quorum systems – a framework that characterizes

the necessary and sufficient conditions for implementing atomic

registers, atomic snapshots, lattice agreement and consensus under

arbitrary patterns of process-channel failures. Generalized quorum

systems relax the connectivity constraints of classical quorum sys-

tems: instead of requiring bidirectional reachability for every pair

of write and read quorums, they only require some write quorum

to be unidirectionally reachable from some read quorum. This weak

connectivity makes implementing registers particularly challeng-

ing, because it precludes the traditional request/response pattern

of quorum access, making classical solutions like ABD inapplicable.

To address this, we introduce novel logical clocks that allow write

and read quorums to reliably track state updates without relying

on bidirectional connectivity.

CCS Concepts
• Theory of computation→ Distributed algorithms.

Keywords
Distributed algorithms, lower bounds, atomic registers, atomic snap-

shots, lattice agreement, consensus

ACM Reference Format:
Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor

Ryabinin. 2025. Tight Bounds on Channel Reliability via Generalized Quo-

rum Systems. In ACM Symposium on Principles of Distributed Computing
(PODC ’25), June 16–20, 2025, Huatulco, Mexico. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3732772.3733529

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’25, Huatulco, Mexico
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1885-4/25/06

https://doi.org/10.1145/3732772.3733529

1 Introduction
Tolerating communication channel failures is one of the toughest

challenges facing the developers of modern distributed systems. In

fact, according to a recent study [8], a majority of failures attributed

to network partitions led to catastrophic effects whose resolution

often required redesigning core system mechanisms. What makes

channel failures even harder to deal with is that they need to be tol-

erated in conjunction with ordinary process failures. The resulting

vast space of faulty behaviors makes the analysis of computability

questions under these failure conditions particularly challenging.

It is therefore not surprising that, with a few exceptions, prior

work has studied process and channel failures in isolation from each

other. In particular, it is well-known that tolerating up to 𝑘 process

crashes in a fully connected network of 𝑛 processes is possible for

a range of problems (e.g., registers and consensus) if and only if

𝑛 ≥ 2𝑘 + 1 [9, 19]. Subsequent work [27, 31] generalized this result

to the case when the set of possible faulty behaviors is specified as

a fail-prone system – a collection of failure patterns, each defining

a set of processes that can crash in a single execution [33]. In this

case, the registers and consensus are implementable under a given

fail-prone system if there exists a read-write quorum system (QS) in
which: any read and write quorums intersect (Consistency); and
some read and write quorums of correct processes are available in

every execution (Availability). In this paper we extend these results

to failure patterns that may include arbitrary combinations of both

process and channel failures – namely, process crashes and channel

disconnections.

Example 1. Consider a set of processes P = {𝑎, 𝑏, 𝑐, 𝑑}. In Fig-

ure 1 we depict a fail-prone system F , consisting of failure patterns
𝑓𝑖 , 𝑖 = 1..4 (ignore the sets 𝑅𝑖 and𝑊𝑖 for now). Under failure pattern

𝑓1, processes 𝑎, 𝑏, 𝑐 are correct, while 𝑑 may crash. Channels (𝑐, 𝑎),
(𝑎, 𝑏), (𝑏, 𝑎) are correct, while all others may disconnect.

A plausible conjecture for a tight bound on connectivity under

this kind of a fail-prone systemwould require the existence of a read-

write quorum system QS
+
that preserves Consistency but modifies

Availability to require that the processes within the available read

or write quorum are strongly connected by correct channels. This

ensures that some process can communicate with both a read and

a write quorum (e.g., one in their intersection), directly enabling

the execution of algorithms like ABD [9] and Paxos [30]. In fact,

QS
+
was shown to be sufficient for consensus [4, 17, 18, 23], and

https://doi.org/10.1145/3732772.3733529
https://doi.org/10.1145/3732772.3733529

PODC ’25, June 16–20, 2025, Huatulco, Mexico Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor Ryabinin

more recently, for registers and consensus under a more aggressive

message loss model [36]. The latter work also proved the existence

of QS
+
to be necessary in the special case of 𝑛 = 2𝑘 + 1.

These results, however, leave a noticeable gap. While the exis-

tence of QS
+
is optimal for 𝑛 = 2𝑘 + 1, it is unknown whether it

is necessary for arbitrary fail-prone systems, such as those with

𝑘 < ⌊𝑛−1
2
⌋, or those not based on failure thresholds at all [33, 34].

Surprisingly, we answer this question in the negative. We show that

atomic registers, atomic snapshots, (single-shot) lattice agreement

and (partially synchronous) consensus can be implemented even

when none of the available read quorums is strongly connected by

correct channels. Instead, we only require enough connectivity for

some strongly connected write quorum to be unidirectionally reach-

able from some read quorum – a condition that we formalize via a

novel generalized quorum system (GQS, §3). We prove that, given a

fail-prone system F comprising an arbitrary set of process-channel

failure patterns, the above problems are implementable under F if

and only if F admits a GQS.

Example 2. Consider the fail-prone system F = {𝑓𝑖 | 𝑖 = 1..4} in
Figure 1. The families of read quorums R = {𝑅𝑖 | 𝑖 = 1..4} and write
quorumsW = {𝑊𝑖 | 𝑖 = 1..4} form a generalized quorum system:

each write quorum𝑊𝑖 is strongly connected and is reachable from

the read quorum 𝑅𝑖 through channels correct under the failure

pattern 𝑓𝑖 . None of the read quorums 𝑅𝑖 is strongly connected, thus

relaxing the connectivity requirements of QS
+
.

Our results also show that any solution to the above-mentioned

problems can guarantee termination only within the write quorums

of some GQS (e.g., processes 𝑎 and 𝑏 under the failure pattern 𝑓1
from Figure 1). Such a restricted termination guarantee is expected

in our setting, because channel failures may isolate some correct

processes, making it impossible to ensure termination at all of

them. Accordingly, to prove our upper bounds, we first present an

implementation of atomic registers on top of a GQS that ensures

wait-freedom within its write quorums (§5). Since atomic snapshots

can be constructed from atomic registers [2], and lattice agreement

from snapshots [11], the upper bounds for snapshots and lattice

agreement follow. To prove the lower bounds, we go in the reverse

direction: we first prove the bound for lattice agreement (§6); then

the above-mentioned constructions imply the bounds for snapshots

and registers.

Implementing registers on top of a GQS presents a unique chal-

lenge. To complete a register operation invoked at a process, this

process needs to communicate with both a read and a write quorum

– a typical pattern in algorithms like ABD. However, the limited

connectivity within read quorums means that the process cannot

query a read quorum by simply sending messages to its members

and awaiting responses.

Example 3. Assume that a register operation is invoked at pro-

cess 𝑎 under failure pattern 𝑓1 from Figure 1. In this case all channels

coming into process 𝑐 ∈ 𝑅1 may have disconnected. This makes

it impossible for 𝑎 to request information from this member of

the read quorum by sending a message to it. Of course, 𝑐 could

periodically push information to 𝑎 through the correct channel

(𝑐, 𝑎), without waiting for explicit requests. But because the net-

work is asynchronous, it is challenging for 𝑎 to determine whether

(f1)
b

c d

W1a

R1

(f3)

ba

W3c d

R3

(f2)

d a

W2b c

R2

(f4)

cb

W4d a

R4

Figure 1: A fail-prone system F = {𝑓𝑖 | 𝑖 = 1..4} and a gener-
alized quorum system (F ,R,W), for R = {𝑅𝑖 | 𝑖 = 1..4} and
W = {𝑊𝑖 | 𝑖 = 1..4}. Solid circles denote correct processes;
gray circles, processes that may crash; solid arrows, reliable
channels; missing arrows, channels that may disconnect.

the information it receives from 𝑐 is up to date, i.e., captures all

updates preceding the current operation invocation at 𝑎 – a critical

requirement for ensuring linearizability.

We address this challenge using novel logical clocks that pro-

cesses use to tag the information they push downstream. These

clocks are cooperatively maintained by processes when updating a

write quorum or querying a read quorum. We encapsulate the cor-

responding protocol into reusable quorum access functions, which
are then used to construct an ABD-like algorithm for registers.

Finally, we also show that the existence of a GQS is a tight bound

on the connectivity required for implementing consensus under par-

tial synchrony (§7). Interestingly, implementing consensus under

arbitrary process and channel failures is simpler than implementing

registers, because a process can exploit the eventual timeliness of

the network to determine if the information it receives is up to date.

2 System Model and Preliminary Definitions
System model. We consider an asynchronous system with a set

P of 𝑛 processes that may fail by crashing. A process is correct if
it never crashes, and faulty otherwise. Processes communicate by

exchanging messages through a set of unidirectional channels C:
for every pair of processes 𝑝, 𝑞 ∈ P there is a channel (𝑝, 𝑞) ∈ C
that allows 𝑝 to send messages to 𝑞. Channels can be correct or
faulty. A correct channel is reliable: it delivers all messages sent

by a correct process. A faulty channel fails by disconnection: from

some point on it drops all messages sent through it.

Fail-prone systems. To state our results, we need a way of speci-

fying which processes and channels can fail during an execution.

Following our previous work [36], we do this by generalizing the

classical notion of a fail-prone system [33] to include channel fail-

ures. A failure pattern is a pair (𝑃,𝐶) ∈ 2P × 2C that defines which

processes and channels are allowed to fail in a single execution. We

assume that 𝐶 contains only channels between correct processes,

as channels incident to faulty processes are considered faulty by

default: (𝑝, 𝑞) ∈ 𝐶 =⇒ {𝑝, 𝑞} ∩ 𝑃 = ∅. Given a failure pattern

𝑓 = (𝑃,𝐶), an execution𝜎 of the system is 𝑓 -compliant if at most the

processes in 𝑃 and at most the channels in 𝐶 fail in 𝜎 . A fail-prone
system F is a set of failure patterns (see Figure 1).

Tight Bounds on Channel Reliability via GeneralizedQuorum Systems PODC ’25, June 16–20, 2025, Huatulco, Mexico

Example 4. The standard failure model where any minority of

processes may fail and channels between correct processes are

reliable is captured by the fail-prone system F𝑀 = {(𝑄, ∅) | 𝑄 ⊆
P ∧ |𝑄 | ≤ ⌊𝑛−1

2
⌋}.

Safety. We consider algorithms that implement the following

objects in the model just introduced: multi-writer multi-reader

(MWMR) atomic registers, single-writer multi-reader (SWMR)

atomic snapshots, (single-shot) lattice agreement [2] and consensus.

These objects provide operations that can be invoked by clients –

e.g., reads and writes in the case of registers. Their safety properties

are standard. We introduce them for some of the objects as needed

and defer the rest to [37, §A].

Liveness. Defining liveness properties under our failure model is

subtle, because channel failures may isolate some correct processes,

making it impossible to ensure termination at all of them. To deal

with this, we adapt the classical notions of obstruction-freedom

and wait-freedom by parameterizing them based on the failures

allowed and the subsets of correct processes where termination

is required. We use the weaker obstruction-freedom in our lower

bounds and the stronger wait-freedom in our upper bounds.

For a failure pattern 𝑓 = (𝑃,𝐶) and a set of processes𝑇 ⊆ P \ 𝑃 ,
we say that an algorithm A is (𝑓 ,𝑇)-wait-free if, for every process

𝑝 ∈ 𝑇 , operation op, and 𝑓 -compliant fair
1
execution 𝜎 of A, if

op is invoked by 𝑝 in 𝜎 , then op eventually returns. For example,

we may require an algorithm to be (𝑓1,𝑇1)-wait-free for the failure
pattern 𝑓1 in Figure 1 and 𝑇1 = {𝑎, 𝑏}. This means that operations

invoked at 𝑎 and 𝑏 must return despite the failures of process 𝑑 and

channels (𝑎, 𝑐), (𝑏, 𝑐) and (𝑐, 𝑏).
An operation op eventually executes solo in an execution 𝜎 if

there exists a suffix 𝜎′ of 𝜎 such that all operations concurrent with

op in 𝜎′ are invoked by faulty processes. We say that an algorithm

A is (𝑓 ,𝑇)-obstruction-free if, for every process 𝑝 ∈ 𝑇 , operation
op, and 𝑓 -compliant fair execution 𝜎 of A, if op is invoked by 𝑝

and eventually executes solo in 𝜎 , then op eventually returns. This

notion of obstruction-freedom aligns with its well-known shared

memory counterparts [10, 21, 25].

We lift the notions of obstruction-freedom and wait-freedom

to a fail-prone system F and a termination mapping 𝜏 : F → 2
P

– a function mapping each failure pattern 𝑓 ∈ F to a subset of

correct processes whose operations are required to terminate. We

say that an algorithm A is (F , 𝜏)-wait-free if, for every 𝑓 ∈ F ,
A satisfies (𝑓 , 𝜏 (𝑓))-wait-freedom. We define (F , 𝜏)-obstruction-
freedom similarly.

Example 5. The standard guarantee of wait-freedom under a

minority of process failures corresponds to (F𝑀 , 𝜏𝑀)-wait-freedom,

where F𝑀 is defined in Example 4 and 𝜏𝑀 selects the set of all

correct processes: ∀𝑓 = (𝑄, ∅) ∈ F𝑀 . 𝜏𝑀 (𝑓) = P \𝑄 .

3 Generalized Quorum Systems
Fault-tolerant distributed algorithms commonly ensure the con-

sistency of replicated state using quorums, i.e., intersecting sets

of processes. It is common to separate quorums into two classes –

read and write quorums – so that the intersection is required only

1
Recall that an execution 𝜎 is fair if every process that is correct in 𝜎 takes an infinite

number of steps in 𝜎 .

between a pair of quorums from different classes. For example, in a

variant of the ABD register implementation values are stored at a

write quorum and fetched from a read quorum [9, 31]. The intersec-

tion between read and write quorums ensures that a read operation

observes the latest completed write. Similarly, in the Paxos consen-

sus algorithm decision proposals are stored at a phase-2 quorum

(analogous to a write quorum) and information about previously

accepted proposals is gathered from a phase-1 quorum (analogous

to a read quorum) [27, 30]. The intersection between phase-1 and

phase-2 quorums ensures the uniqueness of decisions. The classical

definition of a quorum system considers only process failures, not

channel failures [33, 34]. In our framework, we can express this

definition as follows.

Definition 1. Consider a fail-prone system F that disallows
channel failures between correct processes: ∀(𝑃,𝐶) ∈ F . 𝐶 = ∅. A
quorum system is a triple (F ,R,W), where R ⊆ 2

P is a family
of read quorums,W ⊆ 2

P is a family of write quorums, and the
following conditions hold:
• Consistency. For all 𝑅 ∈ R and𝑊 ∈ W, 𝑅 ∩𝑊 ≠ ∅.
• Availability. For all 𝑓 ∈ F , there exist 𝑅 ∈ R and𝑊 ∈ W
such that all processes in 𝑅 ∪𝑊 are correct according to 𝑓 .

Example 6. Consider a system with 𝑛 processes, where at most

𝑘 ≤ ⌊𝑛−1
2
⌋ processes can fail. The following triple (F ,R,W) is a

quorum system [27]:

• The fail-prone system is such that at most 𝑘 processes can

fail, and channels between correct processes do not fail:

F = {(𝑃, ∅) | 𝑃 ⊆ P ∧ |𝑃 | ≤ 𝑘}.
• Read quorums are of size at least 𝑛 − 𝑘 :
R = {𝑅 | 𝑅 ⊆ P ∧ |𝑅 | ≥ 𝑛 − 𝑘}.
• Write quorums are of size at least 𝑘 + 1:
W = {𝑊 |𝑊 ⊆ P ∧ |𝑊 | ≥ 𝑘 + 1}.

The above quorum system illustrates the usefulness of distin-

guishing between read and write quorums: this allows trading off

smaller write quorums for larger read quorums. In the special case

where 𝑘 = ⌊𝑛−1
2
⌋ we get R = W, so that both read and write

quorums are majorities of processes.

The existence of a classical quorum system is sufficient to im-

plement atomic registers, atomic snapshots, lattice agreement and

consensus in a model without channel failures. We now generalize

the notion of a quorum system to accommodate such failures. A

straightforward generalization would preserve Consistency, but
modifyAvailability to require that the processes within the available
read or write quorum are strongly connected by correct channels.

This ensures that some process can communicate with both a read

and a write quorum (e.g., one in their intersection), directly enabling

the execution of algorithms like ABD. Surprisingly, we find that

this strong connectivity requirement is unnecessarily restrictive:

the above-listed problems can be solved even when read quorums

are not strongly connected. To define the corresponding notion of

a quorum system, we use the following concepts:

• Network graph: let G = (P, C) be the directed graph with all

processes as vertices and all channels as edges.

• Residual graph: for a failure pattern 𝑓 = (𝑃,𝐶), let G \ 𝑓 be

the subgraph of G obtained by removing all processes in 𝑃 ,

their incident channels, and all channels in 𝐶 .

PODC ’25, June 16–20, 2025, Huatulco, Mexico Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor Ryabinin

• 𝑓 -availability: a set 𝑄 ⊆ P is 𝑓 -available if it contains only

processes correct according to 𝑓 and it is strongly connected

inG\ 𝑓 . This implies that all processes in𝑄 can communicate

with each other via channels correct according to 𝑓 .

• 𝑓 -reachability: a set𝑊 ⊆ P is 𝑓 -reachable from a set 𝑅 ⊆ P
if both𝑊 and 𝑅 contain only processes correct according to

𝑓 , and every member of𝑊 can be reached by every member

of 𝑅 via a directed path in G \ 𝑓 .

Example 7. In Figure 1, for each 𝑖 = 1..4,𝑊𝑖 is 𝑓𝑖 -available, and

𝑊𝑖 is 𝑓𝑖 -reachable from 𝑅𝑖 .

Definition 2. A generalized quorum system is a triple
(F ,R,W), where F is a fail-prone system, R ⊆ 2

P is a family
of read quorums,W ⊆ 2

P is a family of write quorums, and the
following conditions hold:
• Consistency. For every 𝑅 ∈ R and𝑊 ∈ W, 𝑅 ∩𝑊 ≠ ∅.
• Availability. For all 𝑓 ∈ F , there exist𝑊 ∈ W and 𝑅 ∈ R
such that𝑊 is 𝑓 -available, and𝑊 is 𝑓 -reachable from 𝑅.

Informally speaking, Availability guarantees that an operational

write quorum can unidirectionally receive information from an

operational read quorum under any failure scenario defined by F .
A classical quorum system is a special case of a generalized quo-

rum system. Indeed, if F disallows channel failures between correct

processes, then every correct write quorum can be trivially reached

from every read quorum, and Definition 2 becomes equivalent to

Definition 1.

Example 8. Consider the fail-prone system F = {𝑓𝑖 | 𝑖 = 1..4}
in Figure 1 and letW = {𝑊𝑖 | 𝑖 = 1..4} and R = {𝑅𝑖 | 𝑖 = 1..4}.
Then the triple (F ,R,W) is a generalized quorum system. Indeed:

• Consistency. For each 𝑖, 𝑗 = 1..4, 𝑅𝑖 ∩𝑊𝑗 ≠ ∅.
• Availability. For each 𝑖 = 1..4,𝑊𝑖 is 𝑓𝑖 -available, and𝑊𝑖 is

𝑓𝑖 -reachable from 𝑅𝑖 .

Note that the above (F ,R,W) is a valid generalized quorum

system even though the processes in each read quorum are not

strongly connected via correct channels: some pair of processes

are only connected unidirectionally. This relaxation allows read

quorums to be formed under a broader range of failure scenarios.

In contrast, processes within each write quorum validating Avail-
ability must be strongly connected via correct channels. In fact,

for a given failure pattern 𝑓 we can show that different write quo-

rums validating Availability with respect to 𝑓 must also be strongly

connected via correct channels.

Proposition 1. Let (F ,R,W) be a generalized quorum system.
For each 𝑓 ∈ F , the following set of processes is strongly connected in
G \ 𝑓 :

𝑈 =
⋃
{𝑊 |𝑊 ∈ W ∧ (𝑊 is 𝑓 -available) ∧

∃𝑅 ∈ R . (𝑊 is 𝑓 -reachable from 𝑅)}.

Proof. Fix 𝑓 ∈ F and let 𝑝1, 𝑝2 ∈ 𝑈 . Then there exist𝑊1,𝑊2 ∈
W such that

• (𝑝1 ∈𝑊1) ∧ (𝑊1 is 𝑓 -available) ∧
∃𝑅1 ∈ R . (𝑊1 is 𝑓 -reachable from 𝑅1); and
• (𝑝2 ∈𝑊2) ∧ (𝑊2 is 𝑓 -available) ∧
∃𝑅2 ∈ R . (𝑊2 is 𝑓 -reachable from 𝑅2).

Because any read and write quorums intersect,𝑊1 ∩ 𝑅2 ≠ ∅. Fix
𝑞 ∈𝑊1 ∩ 𝑅2. Since𝑊1 is 𝑓 -available, there exists a path via correct

channels from 𝑝1 to 𝑞. And since𝑊2 is 𝑓 -reachable from 𝑅2, there

exists a path via correct channels from 𝑞 to 𝑝2. Thus, 𝑝2 is reachable

from 𝑝1 via correct channels. We can analogously show that 𝑝1 is

reachable from 𝑝2 via correct channels, as required. □

For 𝑓 ∈ F we denote the strongly connected component of G\ 𝑓
containing𝑈 by𝑈𝑓 : this component includes all write quorums that

validate Availability with respect to 𝑓 . The Availability property of

the generalized quorum system ensures that𝑈𝑓 ≠ ∅.

4 Main Results
We now state our main results for asynchrony, proved in §5-6: the

existence of a generalized quorum system is a tight bound on the

process and channel failures that can be tolerated by any imple-

mentation of MWMR atomic registers, SWMR atomic snapshots,

and lattice agreement (we handle partially synchronous consen-

sus in §7). The following theorem establishes that the existence

of a generalized quorum system is sufficient to implement each of

the three objects. For each 𝑓 ∈ F , these implementations provide

wait-freedom within the strongly connected component𝑈𝑓 .

Theorem 1. Let (F ,R,W) be a generalized quorum system and
𝜏 : F → 2

P be the termination mapping such that for each 𝑓 ∈ F ,
𝜏 (𝑓) = 𝑈𝑓 . Then there exists an (F , 𝜏)-wait-free implementation for
each of the following objects: MWMR atomic registers, SWMR atomic
snapshots, and lattice agreement.

The next theorem establishes a matching lower bound, showing

that the existence of a generalized quorum system is necessary to

implement any of the three objects. This assumes a weak termina-

tion guarantee that only requires obstruction-freedom to hold at

some non-empty set of processes for each failure pattern.

Theorem 2. Let F be a fail-prone system and 𝜏 : F → 2
P

be a termination mapping such that for each 𝑓 ∈ F , 𝜏 (𝑓) ≠ ∅.
Assume that there exists an (F , 𝜏)-obstruction-free implementation
of any of the following objects: MWMR atomic registers, SWMR atomic
snapshots, or lattice agreement. Then there exist R andW such that
(F ,R,W) is a generalized quorum system. Moreover, for each 𝑓 ∈ F ,
we have 𝜏 (𝑓) ⊆ 𝑈𝑓 .

The theorem also shows 𝑈𝑓 is the largest set of processes for

which termination can be guaranteed under the failure pattern 𝑓 .

Furthermore, the two theorems imply that if termination can be

guaranteed for at least one process, then it can also be guaranteed

for all processes in𝑈𝑓 .

Example 9. Consider the generalized quorum system (F ,R,W)
from Figure 1. Then 𝑈𝑓1 = {𝑎, 𝑏}, 𝑈𝑓2 = {𝑏, 𝑐}, 𝑈𝑓3 = {𝑐, 𝑑} and
𝑈𝑓4 = {𝑑, 𝑎}. Consider 𝜏 such that 𝜏 (𝑓𝑖) = 𝑈𝑓𝑖 , 𝑖 = 1..4. By Theo-

rem 1, there exists an (F , 𝜏)-wait-free implementation for any of

the three objects considered. Suppose now that we change 𝑓1 to

𝑓 ′
1
that additionally fails the channel (𝑎, 𝑏). Let F ′ = {𝑓 ′

1
, 𝑓2, 𝑓3, 𝑓4}.

It is easy to check that there do not exist R′ andW′ that would
form a generalized quorum system (F ′,R′,W′). Thus, Theorem 2

implies that there is no implementation of any of the three ob-

jects that would provide obstruction-freedom (and, by extension,

wait-freedom) anywhere under F ′.

Tight Bounds on Channel Reliability via GeneralizedQuorum Systems PODC ’25, June 16–20, 2025, Huatulco, Mexico

To prove the upper bound (Theorem 1), we construct an (F , 𝜏)-
wait-free implementation of MWMR atomic registers (§5). Since

SWMR atomic snapshots can be constructed from the registers [2],

and lattice agreement can in turn be constructed from snap-

shots [11], we naturally get the upper bounds for the latter two

problems.We consider the weakest variant of lattice agreement [11],

which is single-shot and therefore cannot be used for implement-

ing multi-shot objects, such as registers. Thus, to prove the lower

bound (Theorem 2), we first establish it for lattice agreement (§6);

then the above-mentioned constructions imply the lower bound

for snapshots and registers.

5 Upper Bound for Atomic Registers
Fix a generalized quorum system (F ,R,W) and a termination

mapping 𝜏 : F → 2
P
such that 𝜏 (𝑓) = 𝑈𝑓 for each 𝑓 ∈ F . Without

loss of generality, we assume that the connectivity relation of the

graph G \ 𝑓 is transitive for each 𝑓 ∈ F : if not, transitivity can be

easily simulated by having all processes forward every received

message. To implement atomic registers using the quorum system,

we need to come up with a way for a process to contact a read and

a write quorum, as required by algorithms such as ABD [9]. This is

challenging in our setting because processes within a read quorum

may not be strongly connected by correct channels.

Example 10. Consider the generalized quorum system in Fig-

ure 1 and the failure pattern 𝑓1. The available read and write quo-

rums are 𝑅1 = {𝑎, 𝑐} and𝑊1 = {𝑎, 𝑏}. Since Theorem 1 requires

𝜏 (𝑓1) = 𝑈𝑓1 , a register implementation validating it has to ensure

wait-freedom within𝑊1. However, all channels coming into 𝑐 may

have failed. This makes it impossible for a member of𝑊1, such as

𝑎, to request information from some of the members of 𝑅1, such as

𝑐 , by sending them an explicit message to this end.

Quorum access functions. We encapsulate the mechanics neces-

sary to deal with this challenge using the following quorum access
functions, which allow a process to obtain up-to-date information

from a quorum. We assume that the top-level protocol, such as a

register implementation, maintains a state from a set S at each

process. Then the interface of the access functions is as follows:

• quorum_get() ∈ 2
S
: returns the states of all members of

some read quorum; and

• quorum_set(𝑢): applies the update function 𝑢 : S → S to

the states of all members of some write quorum.

We require that these functions satisfy the following properties:

• Validity. For any state 𝑠 returned by quorum_get(), there
exists a subset of previous invocations {quorum_set(𝑢𝑖) |
𝑖 = 1..𝑘} such that 𝑠 is the result of applying the update

functions in {𝑢𝑖 | 𝑖 = 1..𝑘} to the initial state in some order.

• Real-time ordering. If quorum_set(𝑢) terminates, then its

effect is visible to any later quorum_get(), i.e., the set re-

turned by quorum_get() includes at least one state to which
𝑢 has been applied.

• Liveness. The functions are (F , 𝜏)-wait-free, i.e., they termi-

nate at every member of 𝜏 (𝑓) for any 𝑓 ∈ F .
As we show in the following, quorum access functions are suffi-

cient to program an ABD-like algorithm for atomic registers.

1 state ∈ S // opaque state of the top-level protocol
2 seq← 0

3 function quorum_get():
4 seq← seq + 1
5 send GET_REQ(seq) to all
6 wait until received {GET_RESP(seq, 𝑠 𝑗) | 𝑝 𝑗 ∈ 𝑅}

from some 𝑅 ∈ R
7 return {𝑠 𝑗 | 𝑝 𝑗 ∈ 𝑅}
8 when received GET_REQ(𝑘) from 𝑝 𝑗
9 send GET_RESP(𝑘, state) to 𝑝 𝑗

10 function quorum_set(𝑢):
11 seq← seq + 1
12 send SET_REQ(seq, 𝑢) to all
13 wait until received {SET_RESP(seq) | 𝑝 𝑗 ∈𝑊 }

from some𝑊 ∈ W
14 when received SET_REQ(𝑘,𝑢) from 𝑝 𝑗
15 state← 𝑢 (state)
16 send SET_RESP(𝑘) to 𝑝 𝑗

Figure 2: Quorum access functions for a classical quorum
system: the protocol at a process 𝑝𝑖 .

Quorum access functions for classical quorum systems. To illus-

trate the concept of quorum access functions, in Figure 2 we provide

their implementation using a classical quorum system that disal-

lows channel failures (Definition 1). Each process stores the state

of the top-level protocol, such as a register implementation, in

a state variable. This state is managed by the implementation of

the quorum access functions, but its structure is opaque to this

implementation: it can only manipulate the state by applying up-

date functions passed by the callers. Each process also maintains a

monotonically increasing seq number (initially 0), which is used

to generate a unique identifier for each quorum access function

invocation at this process. This identifier is then added to every

message exchanged by the implementation, so that the process can

tell which messages correspond to which invocations.

Upon a call to quorum_get() at a process, it broadcasts a

GET_REQ message (line 5). Any process receiving this responds

with a GET_RESP message that carries its current state (line 9). The

quorum_get() invocation returns when it accumulates such re-

sponses from a read quorum (line 6). Upon a call to quorum_set(𝑢)
at a process, it broadcasts a SET_REQ message carrying the func-

tion 𝑢 (line 12). Any process receiving this applies 𝑢 to its current

state and responds with SET_RESP (line 16). The quorum_set() in-
vocation returns when it accumulates such responses from a write

quorum (line 13).

It is easy to see that the above implementation ensures the Valid-
ity and Real-time ordering properties, the latter because any read

and write quorums intersect. Finally, this implementation guaran-

tees wait-freedom at every correct process (Liveness): Availability
ensures that there exist a read quorum and a write quorum of cor-

rect processes; then the fact that the fail-prone system disallows

channel failures ensures that any process can communicate with

these quorums.

PODC ’25, June 16–20, 2025, Huatulco, Mexico Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor Ryabinin

Quorum access functions for generalized quorum systems. We

now show how we can implement the quorum access functions for

generalized quorum systems, despite the lack of strong connectivity

within read quorums. We use Example 10 for illustration. Recall

that in this example we need to ensure termination within 𝑊1

and, in particular, at 𝑎. An implementation of quorum_get() at 𝑎
needs to obtain state snapshots from every member of 𝑅1. However,

channel failures may make it impossible for 𝑎 to send a message

to 𝑐 ∈ 𝑅1 \𝑊1 to request this information. Of course, 𝑐 could

just periodically propagate its state to all processes it is connected

to, without them asking for it explicitly: by Availability,𝑊1 is 𝑓 -

reachable from 𝑅1, so that messages sent by 𝑐 will eventually reach

𝑎. But because the network is asynchronous, the process 𝑎 cannot
easily determine when the information it receives is up to date, i.e.,
when it captures the effects of all quorum_set() invocations that
completed before quorum_get() was called at 𝑎 – as necessary to

satisfy Real-time ordering.
To address this challenge, each process maintains a monotoni-

cally increasing logical clock, stored in the variable clock (initially

0; this clock is different from the usual logical clocks for track-

ing causality [22, 29]). We then modify the implementation of the

quorum access functions in Figure 2 as shown in Figure 3:

• Periodic state propagation (line 12): A process periodi-

cally advances its clock and propagates its current state and
clock in a GET_RESPmessage, without waiting for an explicit

request. The clock value in the message indicates the logical

time by which the process had this state.

• Clock updates during state changes (line 21): When

handling a SET_REQ(𝑘,𝑢) message, a process increments its

clock and sends it as part of the SET_RESP message. The

process thereby indicates the logical time by which it has

incorporated 𝑢 into its state.

• Delaying the completion of quorum_set (line 15): Upon
a quorum_set(𝑢) invocation, the process broadcasts 𝑢 in a

SET_REQ message and waits for SET_RESP messages from

every member of some write quorum𝑊set, as in the classi-

cal implementation. The process selects the highest clock

value among the responses received and stores it in a vari-

able 𝑐set. It then waits until some read quorum 𝑅set reports

having clock ≥ 𝑐set before completing the invocation. As we

show in the following, this wait serves to ensure that future

quorum_get() invocations will observe the update 𝑢.
• Clock cutoff for quorum_get (line 3): Upon a

quorum_get() invocation, the process first determines a

clock value 𝑐get, delimiting how up-to-date the states it

will return should be. To this end, the process broadcasts a

CLOCK_REQ message. Any process receiving this message

responds with a CLOCK_RESPmessage that carries its current

clock value. The process executing quorum_get() waits
until it receives such responses from all members of some

write quorum and picks the highest clock value among those

received – this is the desired clock cut-off 𝑐get. Finally, the

process waits until it receives GET_RESP(𝑠 𝑗 , 𝑐 𝑗) messages

with 𝑐 𝑗 ≥ 𝑐get from all members of some read quorum and

returns the collected states 𝑠 𝑗 to the caller.

1 state ∈ S // opaque state of the top-level protocol
2 seq, clock← 0, 0

3 function quorum_get():
4 seq← seq + 1
5 send CLOCK_REQ(seq) to all
6 wait until received {CLOCK_RESP(seq, 𝑐 𝑗) | 𝑝 𝑗 ∈𝑊get}

from some𝑊get ∈ W
7 𝑐get ← max{𝑐 𝑗 | 𝑝 𝑗 ∈𝑊get}
8 wait until received {GET_RESP(𝑠 𝑗 , 𝑐 𝑗) | 𝑝 𝑗 ∈ 𝑅get}

from some 𝑅get ∈ R where ∀𝑗 . 𝑐 𝑗 ≥ 𝑐get

9 return {𝑠 𝑗 | 𝑝 𝑗 ∈ 𝑅get}
10 when received CLOCK_REQ(𝑘) from 𝑝 𝑗
11 send CLOCK_RESP(𝑘, clock) to 𝑝 𝑗

12 periodically
13 clock← clock + 1
14 send GET_RESP(state, clock) to all
15 function quorum_set(𝑢):
16 seq← seq + 1
17 send SET_REQ(seq, 𝑢) to all
18 wait until received {SET_RESP(seq, 𝑐 𝑗) | 𝑝 𝑗 ∈𝑊set}

from some𝑊set ∈ W
19 𝑐set ← max{𝑐 𝑗 | 𝑝 𝑗 ∈𝑊set}
20 wait until received {GET_RESP(_, 𝑐 𝑗) | 𝑝 𝑗 ∈ 𝑅set}

from some 𝑅set ∈ R where ∀𝑗 . 𝑐 𝑗 ≥ 𝑐set

21 when received SET_REQ(𝑘,𝑢) from 𝑝 𝑗
22 state← 𝑢 (state)
23 clock← clock + 1
24 send SET_RESP(𝑘, clock) to 𝑝 𝑗

Figure 3: Quorum access functions for a generalized quorum
system: the protocol at a process 𝑝𝑖 .

Note that quorum_set and quorum_get operations work in tan-

dem: quorum_set delays its completion until clocks have advanced

sufficiently at a read quorum; this allows quorum_get to establish

a clock cutoff capturing all prior completed updates. Interestingly,

quorum_set uses read quorums for this purpose, while quorum_get
uses write quorums – an inversion of the traditional quorum roles.

It is easy to see that this implementation validates the Validity
property of the quorum access functions. We now prove that it

also validates Real-time ordering. First, consider 𝑐set computed by

a quorum_set(𝑢) invocation (lines 16-19). The following lemma

shows that querying the states of a read quorum with clocks ≥ 𝑐set
is sufficient to observe 𝑢.

Lemma 1. Assume that 𝑐set is computed by a quorum_set(𝑢) in-
vocation at a process 𝑝set (lines 16-19). Consider a set of messages
{GET_RESP(𝑠 𝑗 , 𝑐 𝑗) | 𝑝 𝑗 ∈ 𝑅} sent by all members of some read quo-
rum 𝑅, each with 𝑐 𝑗 ≥ 𝑐set. Then some 𝑠 𝑗 has incorporated 𝑢.

Proof. To compute the value of 𝑐set, the process 𝑝set waits for

SET_RESP(_, 𝑐′
𝑗
) messages from all members 𝑝 𝑗 of a write quo-

rum𝑊set. Since any read quorum intersects any write quorum,

there exists 𝑝𝑙 ∈ 𝑅 ∩𝑊set. Because 𝑝𝑙 ∈𝑊set, this process sends a

Tight Bounds on Channel Reliability via GeneralizedQuorum Systems PODC ’25, June 16–20, 2025, Huatulco, Mexico

SET_RESP(_, 𝑐′
𝑙
) message to 𝑝set during the quorum_set(𝑢) invoca-

tion. The process 𝑝set computes 𝑐set = max{𝑐′
𝑗
| 𝑝 𝑗 ∈𝑊set}, so that

𝑐set ≥ 𝑐′
𝑙
. Because 𝑝𝑙 ∈ 𝑅, this process also sends a GET_RESP(𝑠𝑙 , 𝑐𝑙)

message with 𝑐𝑙 ≥ 𝑐set ≥ 𝑐′
𝑙
. At this moment 𝑝𝑙 has clock = 𝑐𝑙 .

Hence, if 𝑝𝑙 sends the GET_RESP(𝑠𝑙 , 𝑐𝑙) message before sending the

SET_RESP(_, 𝑐′
𝑙
) message, then due to the increment at line 23 and

the fact that process clocks never decrease, we must have 𝑐𝑙 < 𝑐′
𝑙
.

But this contradicts the fact 𝑐𝑙 ≥ 𝑐′
𝑙
that we established earlier.

Hence, 𝑝𝑙 must send the SET_RESP(_, 𝑐′
𝑙
) message before sending

the GET_RESP(𝑠𝑙 , 𝑐𝑙) message and, therefore, 𝑠𝑙 incorporates 𝑢. □

In the light of the above lemma, for quorum_get() to validate

Real-time ordering, it just needs to find a clock value that is ≥ 𝑐set
of any previously completed quorum_set(). As we show in the fol-

lowing proof, this is precisely what is achieved by the computation

of 𝑐get in quorum_get().

Theorem 3 (Real-time ordering). If a quorum_set(𝑢) operation
terminates, then its effect is visible to any subsequent quorum_get()
invocation.

Proof. Assume that quorum_set(𝑢) terminates at a process 𝑝set
before quorum_get() is invoked at a process 𝑝get. Since any read

quorum intersects any write quorum, there exists 𝑝𝑙 ∈ 𝑅set ∩𝑊get.

Since 𝑝𝑙 ∈ 𝑅set, before quorum_set(𝑢) terminated, 𝑝set received

GET_RESP(_, 𝑐′
𝑙
) from 𝑝𝑙 with 𝑐′

𝑙
≥ 𝑐set (line 20). Hence, by the

time quorum_set(𝑢) terminated, 𝑝𝑙 had clock ≥ 𝑐set. We also have

𝑝𝑙 ∈ 𝑊get, and thus 𝑝get received CLOCK_RESP(_, 𝑐𝑙) from 𝑝𝑙 at

line 6. Thismessagewas sent at line 11 after quorum_get() had been
invoked, and thus, after quorum_set(𝑢) had terminated. Above we

established that by the latter point 𝑝𝑙 had clock ≥ 𝑐set, and thus,

𝑐𝑙 ≥ 𝑐set. The process 𝑝get computed 𝑐get = max{𝑐 𝑗 | 𝑝 𝑗 ∈ 𝑊get}
at line 7, so that 𝑐get ≥ 𝑐𝑙 ≥ 𝑐set. Then each GET_RESP(𝑠 𝑗 , 𝑐 𝑗) that
𝑝get received from 𝑝 𝑗 ∈ 𝑅get at line 8 satisfies 𝑐 𝑗 ≥ 𝑐get ≥ 𝑐set. By

Lemma 1, some 𝑠 𝑗 has incorporated 𝑢, as required. □

Theorem 4 (Liveness). The protocol in Figure 3 is (F , 𝜏)-wait-free.

Proof. We prove the liveness of quorum_get(); the case of

quorum_set() is analogous. Fix a failure pattern 𝑓 ∈ F and a pro-

cess 𝑝 ∈ 𝜏 (𝑓) that executes quorum_get(). By Availability, there
exist𝑊 ∈ W and 𝑅 ∈ R such that𝑊 is 𝑓 -available, and𝑊 is 𝑓 -

reachable from 𝑅. By Proposition 1,𝑊 ⊆ 𝑈𝑓 . Then since 𝜏 (𝑓) = 𝑈𝑓

and 𝑝 ∈ 𝜏 (𝑓), 𝑝 is strongly connected to𝑊 via channels correct

under 𝑓 . Therefore, 𝑝 will be able to exchange the CLOCK_REQ and

CLOCK_RESP messages with every member of𝑊 , thus exiting the

wait at line 6. Recall that𝑊 is 𝑓 -reachable from 𝑅 and each pro-

cess periodically increments its clock value and propagates it in a

GET_RESP message (line 12). Hence, 𝑝 will receive GET_RESP mes-

sages from all members of 𝑅 with high enough clock values to exit

the wait at line 8 and return. □

Registers via quorum access functions. In Figure 4 we give an im-

plementation of an atomic register using the above quorum access

functions, which validates Theorem 1. The implementation follows

the structure of a multi-writer/multi-reader variant of ABD [9, 31]:

the main novelty of our protocol lies in the implementation of the

quorum access functions.

1 S = Value × Version // register state type

2 function write(𝑥):
3 𝑆 ← quorum_get()
4 (𝑘, _) ← max{𝑠 .ver | 𝑠 ∈ 𝑆}
5 𝑡 ← (𝑘 + 1, 𝑖)
6 𝑢 ← (𝜆𝑠. if 𝑡 > 𝑠 .ver then return (𝑥, 𝑡) else return 𝑠)
7 quorum_set(𝑢)
8 function read():
9 𝑆 ← quorum_get()

10 let 𝑠′ ∈ 𝑆 be such that ∀𝑠 ∈ 𝑆. 𝑠′ .ver ≥ 𝑠 .ver
11 𝑢 ← (𝜆𝑠. if 𝑠′ .ver > 𝑠 .ver then return 𝑠′ else return 𝑠)
12 quorum_set(𝑢)
13 return 𝑠′ .val

Figure 4: The atomic register protocol at a process 𝑝𝑖 .

Let Value be the domain of values the register stores. Like ABD,

our implementation tags values with versions fromVersion = N×N,
ordered lexicographically. A version is a pair of a monotonically

increasing number and a process identifier. Each register process

maintains a state consisting of a pair (val, ver), where val is the
most recent value written to the register at this process and ver is its
version. Hence, we instantiate S in Figure 3 to S = Value×Version,
with (0, 0) as the initial state. To execute awrite(𝑥) operation (line 2
in Figure 4), a process proceeds in two phases:

• Get phase. The process uses quorum_get() to collect the

states from some read quorum. Based on these, it computes

a unique version 𝑡 , higher than every received one.

• Set phase. The process next uses quorum_set() to store the
pair (𝑥, 𝑡) at some write quorum. To this end, it passes as an

argument a function 𝑢 that describes how each member of

the write quorum should update its state (expressed using

𝜆-notation, line 6). Given a state 𝑠 of a write-quorummember,

the function acts as follows: if the new version 𝑡 is higher

than the old version 𝑠 .ver, then the function returns a state

with the new value 𝑥 and version 𝑡 ; otherwise it returns

the unchanged state 𝑠 . Recall that the implementation of

quorum_set() uses the result of this function to replace the

states at the members of a write quorum.

To execute a read() operation (line 8), a process follows two

similar phases:

• Get phase. The process uses quorum_get() to collect the

states from all members of some read quorum. It then picks

the state 𝑠′ with the largest version among those received.

The value part 𝑠′ .val of this state will be returned as a re-

sponse to the read().
• Set phase. Before returning from read(), the process must

guarantee that the value read will be seen by any subsequent

operation. To this end, it writes the state 𝑠′ back using similar

steps to the Set phase for the write() operation.
Liveness of the quorum access functions trivially implies that

the protocol in Figure 4 is (F , 𝜏)-wait-free. The Real-time ordering
property can be used to show that the protocol is linearizable [26];

we defer the proof to [37, §B].

PODC ’25, June 16–20, 2025, Huatulco, Mexico Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor Ryabinin

Wf

Rf Rg

Wg

Figure 5: Illustration of the sets𝑊𝑘 and 𝑅𝑘 for 𝑘 ∈ {𝑓 , 𝑔}.

6 Lower Bound for Lattice Agreement
In this section we prove Theorem 2 for lattice agreement. Then

the existing constructions of lattice agreement from snapshots and

registers [2, 11] imply that the theorem holds also for the latter

objects. Recall that in the lattice agreement problem, each process

𝑝𝑖 may invoke an operation propose(𝑥𝑖) with its input value 𝑥𝑖 .

This invocation terminates with an output value 𝑦𝑖 . Both input and

output values are elements of a semi-lattice with a partial order ≤
and a join operation

⊔
. An algorithm that solves lattice agreement

must satisfy the following conditions for all 𝑖 and 𝑗 :

• Comparability. Either 𝑦𝑖 ≤ 𝑦 𝑗 or 𝑦 𝑗 ≤ 𝑦𝑖 .

• Downward validity. If process 𝑝𝑖 outputs 𝑦𝑖 , then 𝑥𝑖 ≤ 𝑦𝑖 .

• Upward validity. If process 𝑝𝑖 outputs 𝑦𝑖 , then 𝑦𝑖 ≤
⊔

𝑋 ,

where 𝑋 is the set of 𝑥 𝑗 for which propose(𝑥 𝑗) was invoked.
We rely on the following lemma, which establishes that processes

where obstruction-freedom holds must be strongly connected by

correct channels. We defer its proof to [37, §C].

Lemma 2. Let 𝑓 be a failure pattern and𝑇 ⊆ P. If some algorithm
A is an (𝑓 ,𝑇)-obstruction-free implementation of lattice agreement,
then 𝑇 is strongly connected in G \ 𝑓 .

Proof of Theorem 2 for lattice agreement. Let A be an

(F , 𝜏)-obstruction-free implementation of lattice agreement. For

a failure pattern 𝑓 ∈ F , Lemma 2 implies that the set 𝜏 (𝑓) of
processes where obstruction-freedom holds must be transitively

connected via correct channels. Let then𝑊𝑓 be the strongly con-

nected component of G \ 𝑓 containing 𝜏 (𝑓) and 𝑅𝑓 be the set of

processes that can reach𝑊𝑓 in G \ 𝑓 , including𝑊𝑓 itself. Finally,

let R = {𝑅𝑓 | 𝑓 ∈ F } andW = {𝑊𝑓 | 𝑓 ∈ F }.
We show that (F ,R,W) is a generalized quorum system. As-

sume by contradiction that this is not the case. Note that for ev-

ery 𝑓 ∈ F we have that𝑊𝑓 is 𝑓 -available and𝑊𝑓 is 𝑓 -reachable

from 𝑅𝑓 . Thus, (F ,R,W) satisfies Availability. Since by assump-

tion (F ,R,W) is not a generalized quorum system, then it must

fail to satisfy Consistency. Hence, there exist 𝑓 , 𝑔 ∈ F such that

𝑊𝑓 ∩ 𝑅𝑔 = ∅. Refer to Figure 5 for a visual depiction.

Claim 1. For 𝑘 ∈ {𝑓 , 𝑔}, 𝑅𝑘 is unreachable from P \ 𝑅𝑘 in G \ 𝑘 .

Claim 2. For 𝑘 ∈ {𝑓 , 𝑔}, 𝑅𝑘 \𝑊𝑘 is unreachable from𝑊𝑘 in G \𝑘 .

Let L be a semi-lattice with partial order ≤ such that 𝑥1, 𝑥2 ∈
L, 𝑥1 ≰ 𝑥2 and 𝑥2 ≰ 𝑥1. Let 𝛼1 be a fair execution of A where

the processes and channels in 𝑓 fail at the beginning, a process

𝑝1 ∈ 𝜏 (𝑓) invokes propose(𝑥1), and no other operation is invoked

in 𝛼1. Because 𝑝1 ∈ 𝜏 (𝑓) and A is (𝑓 , 𝜏 (𝑓))-obstruction-free, the
propose(𝑥1) operation must eventually terminate with a return

value𝑦1. ByDownward validity, 𝑥1 ≤ 𝑦1. By Upward validity, since

no other propose() was invoked, 𝑦1 ≤ 𝑥1. Thus, 𝑦1 = 𝑥1. Let 𝛼2 be

the prefix of 𝛼1 ending with the response to propose(). By Claim 1,

𝑅𝑓 is unreachable from P\𝑅𝑓 , and thus, the actions by processes in
𝑅𝑓 do not depend on those by processes in P\𝑅𝑓 . Then 𝛼3 = 𝛼2 |𝑅𝑓

,

the projection of 𝛼2 to processes in 𝑅𝑓 , is an execution of A. By

Claim 2, 𝑅𝑓 \𝑊𝑓 is unreachable from𝑊𝑓 , and thus, the actions by

processes in 𝑅𝑓 \𝑊𝑓 do not depend on those by processes in𝑊𝑓 .

Then 𝛼 = 𝛼3 |𝑅𝑓 \𝑊𝑓
𝛼3 |𝑊𝑓

is an execution of A. Finally, 𝛼3 |𝑅𝑓 \𝑊𝑓

contains no propose invocations (only startup steps).

Let 𝛽1 be a fair execution of A that starts with all the ac-

tions from 𝛼3 |𝑅𝑓 \𝑊𝑓
, followed by the failure of all processes and

channels in 𝑔, followed by a propose(𝑥2) invocation by a process

𝑝2 ∈ 𝜏 (𝑔). Because 𝑝2 ∈ 𝜏 (𝑔) and A is (𝑔, 𝜏 (𝑔))-obstruction-free,
the propose(𝑥2) operation must eventually terminate with a return

value𝑦2. ByDownward validity, 𝑥2 ≤ 𝑦2. By Upward validity, since
no other propose() was invoked, 𝑦2 ≤ 𝑥2. Thus, 𝑦2 = 𝑥2. Let 𝛽2 be

the prefix of 𝛽1 ending with the response to propose() and let 𝛿 be

the suffix of 𝛽2 such that 𝛽2 = 𝛼3 |𝑅𝑓 \𝑊𝑓
𝛿 . By Claim 1, 𝑅𝑔 is unreach-

able from P\𝑅𝑔 , and thus, the actions in 𝛿 by processes in 𝑅𝑔 do not
depend on those by processes in P \ 𝑅𝑔 . Then, 𝛽 = 𝛼3 |𝑅𝑓 \𝑊𝑓

𝛿 |𝑅𝑔
is an execution of A.

Consider the execution 𝜎 = 𝛼3 |𝑅𝑓 \𝑊𝑓
𝛼3 |𝑊𝑓

𝛿 |𝑅𝑔 where no pro-

cess or channel fails. We have:

𝜎 |𝑅𝑓 \𝑅𝑔 = (𝛼3 |𝑅𝑓 \𝑊𝑓
𝛼3 |𝑊𝑓

𝛿 |𝑅𝑔) |𝑅𝑓 \𝑅𝑔 =

(𝛼3 |𝑅𝑓 \𝑊𝑓
𝛼3 |𝑊𝑓

) |𝑅𝑓 \𝑅𝑔 = 𝛼 |𝑅𝑓 \𝑅𝑔 .

Thus, 𝜎 is indistinguishable from 𝛼 to the processes in 𝑅𝑓 \𝑅𝑔 . Also,
because𝑊𝑓 ∩ 𝑅𝑔 = ∅, we have:

𝜎 |𝑅𝑔 = (𝛼3 |𝑅𝑓 \𝑊𝑓
𝛼3 |𝑊𝑓

𝛿 |𝑅𝑔) |𝑅𝑔 = (𝛼3 |𝑅𝑓 \𝑊𝑓
𝛿 |𝑅𝑔) |𝑅𝑔 = 𝛽 |𝑅𝑔 .

Thus, 𝜎 is indistinguishable from 𝛽 to the processes in 𝑅𝑔 . Finally,

𝜎 |P\(𝑅𝑓 ∪𝑅𝑔) = 𝜀. Thus, for every process, 𝜎 is indistinguishable to

this process from some execution ofA. Furthermore, each message

received by a process in 𝜎 has previously been sent by another

process. Therefore, 𝜎 is an execution of A. However, in this execu-

tion 𝑝1 decides 𝑥1, 𝑝2 decides 𝑥2, and 𝑥1, 𝑥2 are incomparable in L.
This contradicts the Comparability property of lattice agreement.

The contradiction derives from assuming that (F ,R,W) is not a
generalized quorum system, so the required follows. Finally, for

each 𝑓 ∈ F we have 𝜏 (𝑓) ⊆𝑊𝑓 ⊆ 𝑈𝑓 . □

7 Tight Bound for Consensus
We now move from the asynchronous model we have used so

far to the partially synchronous model [19]. We show that, in this

model, the existence of a generalized quorum system is also a tight

bound on the process and channel failures that can be tolerated

by any implementation of consensus. The partially synchronous

model assumes the existence of a global stabilization time (GST)
and a bound 𝛿 such that after GST, every message sent by a correct

process on a correct channel is received within 𝛿 time units of its

transmission. Messages sent before GST may experience arbitrary

delays. Additionally, the model assumes that processes have clocks

that may drift unboundedly before GST, but do not drift thereafter.

Both GST and 𝛿 are a priori unknown.

Let Value be an arbitrary domain of values. The consensus object

provides a single operation propose(𝑥), 𝑥 ∈ Value, which returns a

Tight Bounds on Channel Reliability via GeneralizedQuorum Systems PODC ’25, June 16–20, 2025, Huatulco, Mexico

value in Value. The object has to satisfy the standard safety proper-

ties: all terminating propose() invocations must return the same

value (Agreement); and propose() can only return a value passed

to some propose() invocation (Validity). The following theorems

are analogs of Theorems 1 and 2 for consensus.

Theorem 5. Let (F ,R,W) be a generalized quorum system and
𝜏 : F → 2

P be the termination mapping such that for each 𝑓 ∈ F ,
𝜏 (𝑓) = 𝑈𝑓 . Then there exists an (F , 𝜏)-wait-free implementation of
consensus.

Theorem 6. Let F be a fail-prone system and 𝜏 : F → 2
P be the

termination mapping such that for each 𝑓 ∈ F , 𝜏 (𝑓) ≠ ∅. If there
exists an (F , 𝜏)-obstruction-free implementation of consensus, then
there exist R andW such that (F ,R,W) is a generalized quorum
system. Moreover, for each 𝑓 ∈ F , we have 𝜏 (𝑓) ⊆ 𝑈𝑓 .

We first present a consensus protocol validating Theorem 5. To

this end, we fix a generalized quorum system (F ,R,W) and a

termination mapping 𝜏 : F → 2
P
such that 𝜏 (𝑓) = 𝑈𝑓 holds for

each 𝑓 ∈ F . As in §5, we assume without loss of generality that

the connectivity relation of the graph G \ 𝑓 is transitive for each

𝑓 ∈ F . Our protocol for consensus is shown in Figure 6.

Consensus vs registers under channel failures. Interestingly, solv-
ing consensus under process and channel failures is simpler than

implementing registers. The main challenge we had to deal with

when implementing registers was determining whether the infor-

mation received by a process is up to date (§5). This is particularly

difficult in the asynchronous model with unidirectional connec-

tivity, where processes cannot rely on bidirectional exchanges to

confirm the freshness of the information. In the partially synchro-

nous model, however, processes can exploit the eventual timeliness

of the network to determine freshness. Technically, this is done

using a view synchronizer [1, 35], explained next. Then the connec-

tivity stipulated by a generalized quorum system is sufficient to

implement (F , 𝜏)-wait-free consensus using an algorithm similar

to Paxos [30].

View synchronization. The consensus protocol works in a suc-

cession of views, each with a designated leader process leader(𝑣) =
𝑝 ((𝑣−1) mod 𝑛)+1. Thus, the role of the leader rotates round-robin
among the processes. The current view is tracked in a variable view.
The protocol synchronizes views among processes via growing

timeouts [1, 35]. Namely, each process spends the time 𝑣 · 𝐶 in

view 𝑣 , where 𝐶 is an arbitrary positive constant. To ensure this,

upon entering a view 𝑣 , the process sets a timer view_timer for
the duration 𝑣 · 𝐶 (line 29). When the timer expires, the process

increments its view (line 28). Hence, the time spent by a process

in each view grows monotonically as views increase. Even though

processes do not communicate to synchronize their views, this

simple mechanism ensures that all correct processes overlap for an

arbitrarily long time in all but finitely many views.

Proposition 2. Let 𝑑 be an arbitrary positive value. There exists a
viewV such that for every view 𝑣 ≥ V , all correct processes overlap
in 𝑣 for at least 𝑑 .

Protocol operation. A process stores its initial proposal inmy_val
(line 5), the last proposal it accepted in val and the view in which

1 view, aview← 0, 0

2 val,my_val←⊥,⊥
3 phase ∈ {enter, propose, accept, decide}
4 function propose(𝑥):
5 my_val← 𝑥

6 async wait until phase = decide

7 return val

8 when received {1B(view, 𝑣 𝑗 , 𝑥 𝑗) | 𝑝 𝑗 ∈ 𝑅} from some 𝑅 ∈ R
9 pre: phase = enter

10 if ∀𝑝 𝑗 ∈ 𝑅. 𝑥 𝑗 = ⊥ then
11 if my_val = ⊥ then return
12 send 2A(view,my_val) to all
13 else
14 let 𝑝 𝑗 ∈ 𝑅 be such that 𝑥 𝑗 ≠ ⊥ ∧

(∀𝑝𝑘 ∈ 𝑅. 𝑥𝑘 ≠ ⊥ =⇒ 𝑣𝑘 ≤ 𝑣 𝑗)
15 send 2A(view, 𝑥 𝑗) to all
16 phase← propose

17 when received 2A(view, 𝑥)
18 pre: phase ∈ {enter, propose}
19 val← 𝑥

20 aview← view
21 send 2B(view, 𝑥) to all
22 phase← accept

23 when received {2B(view, 𝑥) | 𝑝 𝑗 ∈𝑊 } from some𝑊 ∈ W
24 val← 𝑥

25 aview← view
26 phase← decide

27 on startup or when the timer view_timer expires
28 view← view + 1
29 start_timer(view_timer, view ·𝐶)
30 send 1B(view, aview, val) to leader(view)
31 phase← enter

Figure 6: The consensus protocol at a process 𝑝𝑖 .

this happened in aview. A variable phase tracks the progress of

the process through the different phases of the protocol. When

a process enters a view 𝑣 , it sends the information about its last

accepted value to leader(𝑣) in a 1B message (line 30). This message

is analogous to the 1B message of Paxos; there is no analog of a 1A
message, because leader election is controlled by the synchronizer.

A leader waits until it receives 1B messages from every member

of some read quorum corresponding to its view (line 8); messages

from lower views (considered out of date) are ignored. Based on

these messages, the leader computes its proposal similarly to Paxos.

If some process has previously accepted a value, the leader picks

the one accepted in the maximal view. If there is no such value and

propose() has already been invoked at the leader, the leader picks

its own value. Otherwise, it skips its turn.

A process waits until it receives a 2A message from the leader

of its view (line 17) and accepts the proposal by updating its val
and aview. It then notifies every process about this through a 2B

PODC ’25, June 16–20, 2025, Huatulco, Mexico Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor Ryabinin

message. Finally, when a process receives matching 2B messages

from every member of some write quorum (line 23), it knows that

a decision has been reached, and it sets phase = decide. If there

is an ongoing propose() invocation, this validates the condition at

line 6, and the process returns the decision to the caller.

Proof of Theorem 5. It is easy to see that the protocol satis-

fies Validity. The proof of Agreement is virtually identical to that

of Paxos, relying on the Consistency property of the generalized

quorum system. We now prove that the protocol is (F , 𝜏)-wait-free.
Fix a failure pattern 𝑓 ∈ F and a process 𝑝 ∈ 𝜏 (𝑓) that invokes

propose(𝑥) for some 𝑥 at a time 𝑡 ′. By Availability, there exist

𝑊 ∈ W and𝑅 ∈ R such that𝑊 is 𝑓 -available, and𝑊 is 𝑓 -reachable

from 𝑅. By Proposition 1,𝑊 ⊆ 𝑈𝑓 . Then since 𝑝 ∈ 𝜏 (𝑓) = 𝑈𝑓 , 𝑝

is strongly connected to all processes in𝑊 via channels correct

under 𝑓 . Thus, the following hold after GST: (i) 𝑅 can reach 𝑝

through timely channels; and (ii) 𝑝 can exchange messages with

every member of𝑊 via timely channels.

By Proposition 2 and since leaders rotate round-robin, there

exists a view 𝑣 led by 𝑝 such that all correct processes enter 𝑣 after

max(GST, 𝑡 ′) and overlap in this view for more than 3𝛿 . We now

show that this overlap is sufficient for 𝑝 to reach a decision. Let 𝑡

be the earliest time by which every correct process has entered 𝑣 .

Then no correct process leaves 𝑣 until after 𝑡 + 3𝛿 . When a process

enters 𝑣 , it sends a 1B message to 𝑝 (line 30). By (i), 𝑝 is guaranteed

to receive 1B messages for view 𝑣 from every member of 𝑅 by the

time 𝑡 + 𝛿 , thereby validating the guard at line 8. As a result, by this

time 𝑝 will send its proposal in a 2A message while still in 𝑣 . By (ii),
each process in𝑊 will receive this message no later than 𝑡 +2𝛿 , and
respond with a 2B message that will reach 𝑝 (line 17). Thus, by the

time 𝑡 + 3𝛿 , 𝑝 is guaranteed to collect 2B messages for view 𝑣 from

every member of𝑊 (line 23). After this 𝑝 sets phase = decide, thus

satisfying the guard at line 6 and deciding. □

Lower bound. We now argue that Theorem 6 holds. First, note

that the proof of the lower bound for lattice agreement (§6) re-

mains valid in the partially synchronous model: since the execution

𝜎 constructed in the proof is finite, it is also valid under partial

synchrony where all its actions occur before GST. Just like under
asynchrony, the lower bound for lattice agreement directly implies

the one for registers under partial synchrony [2, 11]. Finally, since

consensus can be used to implement a MWMR atomic register, the

lower bound for consensus follows from the bound for registers.

8 Related Work
Research on tolerating channel failures has primarily focused on

consensus solvability in synchronous systems, where an adver-

sary can disconnect channels in every round but cannot crash

processes [3, 14, 15, 40, 43–45]. The seminal paper by Dolev [16]

and subsequent work (see [42] for survey) explored this problem

in general networks as a function of the network topology, pro-

cess failure models, and synchrony constraints. However, this work

considers only consensus formulations requiring termination at all

correct processes, which in its turn requires them to be reliably con-

nected. In contrast, we consider more general liveness conditions

where termination is only required at specific subsets of correct

processes. Our results demonstrate that this relaxation leads to a

much richer characterization of connectivity, which notably does

not require all correct processes to be bidirectionally connected.

Early models, such as send omission [24] and generalized omis-
sion [41], extended crash failures by allowing processes to fail to

send or receive messages. These models were shown to be compu-

tationally equivalent to crash failures in both synchronous [38] and

asynchronous [13] systems. However, they are overly restrictive as

they classify any non-crashed process with unreliable connectivity

as faulty. In contrast, our approach allows correct processes to have

unreliable connectivity. Santoro and Widmayer introduced the mo-
bile omission failure model [43], which decouples message loss from

process failures. They demonstrated that solving consensus in a

synchronous round-based system without process failures requires

the communication graph to contain a strongly connected compo-

nent in every round [43, 44]. In contrast, our lower bounds show

that implementing consensus – or even a register – in a partially

synchronous system necessitates connectivity constraints that hold

throughout the entire execution.

Failure detectors and consensus have been shown to be imple-

mentable in the presence of network partitions [4, 17, 18, 23] pro-

vided amajority of correct processes are strongly connected and can

eventually communicate in a timely fashion. In contrast, we show

that much weaker connectivity constraints, captured via general-

ized quorum systems, are necessary and sufficient for implement-

ing both register and consensus. Aguilera et al. [6] and subsequent

work [5, 20, 28, 32] studied the implementation of Ω – the weak-

est for consensus [12] – under various weak models of synchrony,

link reliability, and connectivity. This work, however, mainly fo-

cused on identifying minimal timeliness requirements sufficient

for implementing Ω while assuming at least fair-lossy connectivity

between each pair of processes. Given that reliable channels can

be implemented on top of fair-lossy ones, our results imply that

these connectivity conditions are too strong. Furthermore, while

the weak connectivity conditions of system 𝑆 introduced in [6]

were shown to be sufficient for implementing Ω, they were later

proven insufficient for consensus [36].

In our previous work [36], we considered systems with process

crashes and channel disconnections for 𝑛 = 2𝑘 + 1, where any 𝑘

processes can fail. We proved that a majority of reliably connected

correct processes is necessary for implementing registers or con-

sensus. This work, however, does not address solvability under

arbitrary fail-prone systems, such as those with 𝑘 < ⌊𝑛−1
2
⌋ or those

not based on failure thresholds [33, 34].

Alquraan et al. [8] presented a study of system failures due to

faulty channels, which we already mentioned in §1. This work

highlights the practical importance of designing provably correct

systems that explicitly account for channel failures. Follow-up

work [7, 39] proposed practical systems for tolerating channel fail-

ures, but did not investigate optimal fault-tolerance assumptions.

Acknowledgments
This work was partially supported by the projects BYZANTIUM,

DECO and PRODIGY funded by MCIN/AEI, and REDONDA funded

by the CHIST-ERA network. We thank Petr Kuznetsov for helpful

comments and discussions.

Tight Bounds on Channel Reliability via GeneralizedQuorum Systems PODC ’25, June 16–20, 2025, Huatulco, Mexico

References
[1] Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieu-

tord, Sara Tucci-Piergiovanni, and Eugen Zălinescu. 2021. Tenderbake - A

Solution to Dynamic Repeated Consensus for Blockchains. In Symposium on
Foundations and Applications of Blockchain (FAB).

[2] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir

Shavit. 1993. Atomic snapshots of shared memory. J. ACM 40, 4 (1993), 873–890.

[3] Yehuda Afek and Eli Gafni. 2013. Asynchrony from Synchrony. In International
Conference on Distributed Computing and Networking (ICDCN).

[4] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. 1999. Using the heart-

beat failure detector for quiescent reliable communication and consensus in

partitionable networks. Theor. Comput. Sci. 220, 1 (1999), 3–30.
[5] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

2004. Communication-Efficient Leader Election and Consensus with Limited

Link Synchrony. In Symposium on Principles of Distributed Computing (PODC).
[6] Marcos K. Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg.

2008. On implementing Omega in systems with weak reliability and synchrony

assumptions. Distributed Comput. 21, 4 (2008), 285–314.
[7] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.

2020. Toward a Generic Fault Tolerance Technique for Partial Network Partition-

ing. In Symposium on Operating Systems Design and Implementation (OSDI).
[8] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta, and Samer Al-Kiswany.

2018. An Analysis of Network-Partitioning Failures in Cloud Systems. In Sympo-
sium on Operating Systems Design and Implementation (OSDI).

[9] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly

in Message-Passing Systems. J. ACM 42, 1 (1995), 124–142.

[10] Hagit Attiya, Ohad Ben-Baruch, and Danny Hendler. 2016. Lower Bound on the

Step Complexity of Anonymous Binary Consensus. In Symposium on Distributed
Computing (DISC).

[11] Hagit Attiya, Maurice Herlihy, and Ophir Rachman. 1995. Atomic snapshots

using lattice agreement. Distrib. Comput. 8, 3 (1995), 121–132.
[12] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. 1996. The weakest

failure detector for solving consensus. J. ACM 43, 4 (1996), 685–722.

[13] Brian Coan. 1988. ACompiler That Increases the Fault Tolerance of Asynchronous

Protocols. IEEE Trans. Comput. 37, 12 (1988), 1541–1553.
[14] Étienne Coulouma and Emmanuel Godard. 2013. A Characterization of Dy-

namic Networks Where Consensus Is Solvable. In Structural Information and
Communication Complexity (SIROCCO).

[15] Étienne Coulouma, Emmanuel Godard, and Joseph Peters. 2015. A characteriza-

tion of oblivious message adversaries for which Consensus is solvable. Theoretical
Computer Science 584 (2015), 80–90.

[16] Danny Dolev. 1982. The Byzantine Generals Strike Again. J. Algorithms 3, 1
(1982), 14–30.

[17] DannyDolev, Roy Friedman, Idit Keidar, and DahliaMalkhi. 1996. Failure detectors
in omission failure environments. Technical Report TR96-1608. Department of

Computer Science, Cornell University.

[18] Danny Dolev, Roy Friedman, Idit Keidar, and Dahlia Malkhi. 1997. Failure detec-

tors in omission failure environments (Brief Announcement). In Symposium on
Principles of Distributed Computing (PODC).

[19] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus in

the presence of partial synchrony. J. ACM 35, 2 (1988), 288–323.

[20] Antonio Fernández Anta and Michel Raynal. 2007. From an Intermittent Rotating

Star to a Leader. In Conference on Principles of Distributed Systems (OPODIS).
[21] Faith Fich, Maurice Herlihy, and Nir Shavit. 1998. On the Space Complexity of

Randomized Synchronization. J. ACM 45, 5 (1998), 843–862.

[22] Colin Fidge. 1988. Timestamps in message-passing systems that preserve the

partial ordering. In Australian Computer Science Conference (ASCS).
[23] Roy Friedman, Idit Keidar, Dahlia Malkhi, Ken Birman, and Danny Dolev. 1995.

Deciding in partitionable networks. Technical Report TR95-1554. Department of

Computer Science, Cornell University.

[24] Vassos Hadzilacos. 1983. Byzantine agreement under restricted type of failures
(not telling the truth is different from telling lies). Technical Report TR-18-63.

Department of Computer Science, Harvard University.

[25] Maurice Herlihy, Victor Luchangco, and Mark Moir. 2003. Obstruction-Free Syn-

chronization: Double-Ended Queues as an Example. In International Conference
on Distributed Computing Systems (ICDCS).

[26] Maurice Herlihy and Jeannette Wing. 1990. Linearizability: a correctness con-

dition for concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990),

463–492.

[27] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016. Flexible Paxos:

Quorum intersection revisited. In Conference on Principles of Distributed Systems
(OPODIS).

[28] Martin Hutle, Dahlia Malkhi, Ulrich Schmid, and Lidong Zhou. 2009. Chasing

the Weakest System Model for Implementing Ω and Consensus. IEEE Trans.
Dependable Secur. Comput. 6, 4 (2009), 269–281.

[29] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed

System. Commun. ACM 21, 7 (1978), 558–565.

[30] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(1998), 133–169.

[31] Nancy A. Lynch and Alexander A. Shvartsman. 2002. RAMBO: A Reconfigurable

Atomic Memory Service for Dynamic Networks. In Symposium on Distributed
Computing (DISC).

[32] Dahlia Malkhi, Florin Oprea, and Lidong Zhou. 2005. ΩMeets Paxos: Leader Elec-

tion and Stability Without Eventual Timely Links. In Symposium on Distributed
Computing (DISC).

[33] Dahlia Malkhi and Michael K. Reiter. 1998. Byzantine Quorum Systems. Dis-
tributed Comput. 11, 4 (1998), 203–213.

[34] Moni Naor and Avishai Wool. 1994. The load, capacity and availability of quorum

systems. In Symposium on Foundations of Computer Science (FOCS).
[35] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Cogsworth: Byzantine View Synchronization. In Cryptoeconomics Systems Con-
ference (CES).

[36] Alejandro Naser-Pastoriza, Gregory Chockler, and Alexey Gotsman. 2023. Fault-

tolerant computing with unreliable channels. In Conference on Principles of Dis-
tributed Systems (OPODIS).

[37] Alejandro Naser-Pastoriza, Gregory Chockler, Alexey Gotsman, and Fedor

Ryabinin. 2025. Tight Bounds on Channel Reliability via Generalized Quorum

Systems (Extended Version). arXiv:2505.02646 [cs.DC] https://arxiv.org/abs/

2505.02646

[38] Gil Neiger and Sam Toueg. 1990. Automatically Increasing the Fault-Tolerance

of Distributed Algorithms. J. Algorithms 11, 3 (1990), 374–419.
[39] Harald Ng, Seif Haridi, and Paris Carbone. 2023. Omni-Paxos: Breaking the

Barriers of Partial Connectivity. In European Conference on Computer Systems
(EuroSys).

[40] Thomas Nowak, Ulrich Schmid, and Kyrill Winkler. 2019. Topological Charac-

terization of Consensus under General Message Adversaries. In Symposium on
Principles of Distributed Computing (PODC).

[41] Kenneth J. Perry and Sam Toueg. 1986. Distributed agreement in the presence

of processor and communication faults. IEEE Trans. Software Eng. 12, 3 (1986),
477–482.

[42] Dimitris Sakavalas and Lewis Tseng. 2019. Network Topology and Fault-Tolerant
Consensus. Morgan & Claypool Publishers.

[43] Nicola Santoro and Peter Widmayer. 1989. Time is not a healer. In Symposium on
Theoretical Aspects of Computer Science (STACS).

[44] Nicola Santoro and Peter Widmayer. 1990. Distributed function evaluation in

the presence of transmission faults. In Symposium on Algorithms (SIGAL).
[45] Ulrich Schmid, Bettina Weiss, and Idit Keidar. 2009. Impossibility Results and

Lower Bounds for Consensus under Link Failures. SIAM J. Comput. 38, 5 (2009).

https://arxiv.org/abs/2505.02646
https://arxiv.org/abs/2505.02646
https://arxiv.org/abs/2505.02646

	Abstract
	1 Introduction
	2 System Model and Preliminary Definitions
	3 Generalized Quorum Systems
	4 Main Results
	5 Upper Bound for Atomic Registers
	6 Lower Bound for Lattice Agreement
	7 Tight Bound for Consensus
	8 Related Work
	Acknowledgments
	References

