
Interprocedural Shape Analysis with
Separated Heap Abstractions

Alexey Gotsman1, Josh Berdine2, and Byron Cook2

1 University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk
2 Microsoft Research Cambridge
{jjb, bycook}@microsoft.com

Abstract. We describe an interprocedural shape analysis that makes
use of spatial locality (i.e. the fact that most procedures modify only a
small subset of the heap) in its representation of abstract states. Instead
of tracking reachability information directly and aliasing information in-
directly, our representation tracks reachability indirectly and aliasing
directly. Computing the effect of procedure calls and returns on an ab-
stract state is easy because the representation exhibits spatial locality
mirroring the locality that is present in the concrete semantics. The ben-
efits of this approach include improved speed, support for programs that
deallocate memory, the handling of bounded numbers of heap cutpoints,
and support for cyclic and shared data structures.

1 Introduction

Interprocedural shape analysis engines infer and prove properties about the
shapes of dynamically-allocated linked data structures constructed by imperative
programs with (possibly recursive) procedures. We present a local interprocedu-
ral shape analysis tool, called Summate, that is efficient and more accurate than
previously reported results. The tool’s advantage comes from the representation
used for abstract program states, which consists of circumscribed portions of a
program’s heap. The shape of an abstracted portion of heap is determined solely
by the representation of only that portion of heap. Representing heap portions
independently is accomplished by building the shape of the heap into the no-
tion of abstraction, using formulæ in separation logic. That is, abstracted heaps
have known shape and are specified using inductive predicates that make pos-
itive statements (saying what the shape is, rather than what it is not) of each
circumscribed portion of the abstracted heap.

The benefit of our representation for interprocedural analysis is that, when
a procedure is called, the portion of the heap that it will not access can easily
be separated from the rest, and easily recombined with the modified heap upon
procedure return. Furthermore, spatial locality of code (i.e. the fact that each
program statement accesses only a very limited portion of the concrete state)
matches the spatial locality in the representation, dramatically reducing the
amount of reasoning that must be performed when summarizing how procedure

K. Yi (Ed.): SAS 2006, LNCS 4134, pp. 240–260, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Interprocedural Shape Analysis with Separated Heap Abstractions 241

calls and returns change the symbolic representation of a program’s state. This is
because each instruction can only affect one of the separated heap portions—the
transfer functions are parametric with respect to the untouched heap portions.

Our approach provides support for cyclic and shared data structures, proce-
dures that deallocate memory, and a bounded number of heap cutpoints1 [13]—
all of which appear commonly in programs. For this reason our analysis is more
accurate and applicable: it can be directly applied to, and give precise results
for, a larger set of programs than previously reported tools.

Note that our approach also has a limitation: it is specialized to a limited set
of data-structures such as linked lists, doubly-linked lists and trees. Our analysis
is fortified with inductive axioms from [3]. These axioms accelerate the analysis.
However: in order to support new data structures we would need to do additional
manual work up-front before fortifying the analysis further. We return to this
point in Sect. 6.

2 Fundamentals

Summate implements a fixed-point computation over an abstract domain built
from assertions expressed in separation logic. In essence, the analysis performed
by Summate can be viewed as a method of constructing proofs in standard
separation logic (in fact, our proof of the analysis’ soundness is based on this
observation). In this section we describe Summate’s fundamental operations as
proof rules in separation logic. Later, in Sect. 3, we go into more specific detail.

2.1 Abstract Representation of States

Summate’s states denote sets of store-heap pairs, and are represented as formulæ
of separation logic’s assertion language, which include:

F, E ::= nil | x | x′ expressions
Q, P ::= emp | E �→F | P ∗ Q | true | E=F | P ∧ Q | P ∨ Q | · · · assertions

Expressions are independent of the heap, while assertions are not. Primed vari-
ables are implicitly existentially quantified. The formal semantics of assertions
is standard, e.g. as in [12], but informally:

– emp describes states where the heap is empty, with no allocated locations;
– E �→F describes states where the heap contains a single allocated location

E, with contents F ;
– P ∗Q describes states where the heap is the union of two disjoint heaps (with

no locations in common), one satisfying P and the other satisfying Q;
– true describes all states;

1 Roughly speaking: a cutpoint is a location in the portion of the heap that the pro-
cedure may access distinct from all the actual parameters of the procedure, that the
rest of the state knows about in some way, either as the contents of a heap location
or value of a variable.

242 A. Gotsman, J. Berdine, and B. Cook

– E=F describes states where the store gives E and F equal values;
– P ∧ Q describes states which satisfy both P and Q; and
– P ∨ Q describes states which satisfy either P or Q.

Possibly infinite sets of concrete states are finitely represented using induc-
tive predicate assertions. For example, using the predicate ls(x, y) defined as
x�=y ∧ (x�→y ∨ ∃x′. x�→x′ ∗ ls(x′, y)) the symbolic heap ls(x, nil) represents all of
the states in which x�=nil and the heap has the shape of a linked list starting
from location x and ending with nil. There are unboundedly many such states,
as the length of the list is unconstrained. Similarly, representations built from
formulæ such as tree(x) or dlist(p, f, n, b) [12] constitute abstractions of unbound-
edly many concrete states, shaped like trees or doubly-linked lists. In each case,
the abstracted heaps have known shape, specified declaratively by an induc-
tive predicate. The abstraction comes from not tracking the precise number of
inductive unfoldings from the base case.

2.2 Local Reasoning for Procedures

Interprocedural analyses commonly compute so-called procedure summaries that
approximate the semantics of a procedure by associating representations of
the program state at procedure entry to corresponding result states at pro-
cedure exit. We represent such computed summaries as a sequence Γ of triples
{P} f(�x) {Q} in separation logic.2 In separation logic, a triple {P} C {Q} is
valid if executing command C from any state satisfying assertion P does not
violate memory safety and, if execution terminates, results in a state satisfying
assertion Q. Lying behind this is a semantics of commands which results in a
memory fault when accessing dangling pointers or other memory locations not
guaranteed to be allocated. So validity of {P} C {Q} ensures that P describes
all the memory (except that which gets freshly allocated) that may be accessed
during the execution of C, that is, the footprint of C.

The technical foundation of our approach to local interprocedural analysis is
the Frame rule [10]:

Frame

{P} C {Q}
{P ∗ R} C {Q ∗ R}

C does not modify variables in R

If P ensures C’s footprint is allocated, then according to Frame, executing C
in the presence of additional memory R results in the same behavior, and C
does not touch the extra memory. Since we represent concrete states with for-
mulæ, Frame expresses how commands exhibit spatial locality in the abstract
representation.

Our aim is to define an analysis which exploits this locality by using Frame

in the case where C is a recursive procedure call f(�x) in order to send only part
2 In this way, each triple in Γ corresponds to an entry in the table computed by

tabulation algorithms such as [11], where the set of exit states there is expressed
using logical disjunction in the Q’s.

Interprocedural Shape Analysis with Separated Heap Abstractions 243

of the heap P at the call site to the procedure, while holding the rest of the
heap R aside, to be added to the heap Q that results from executing f . This is
formalized in the following proof rule for local recursive procedure calls:

LocalProcCall

S � Pσ ∗ R Qσ ∗ R � T

Γ , {P} f(�x) {Q} 	 {S} f(�xσ) {T }

This rule is not primitive, but derivable (see Appendix A) from Frame and
Hoare logic rules. Here � means semantic consequence and σ is an injective
substitution map from variables, including the formals, to variables, including
the actuals. σ adapts the hypothesis (i.e. the procedure summary), which is
expressed not in terms of the actual, but formal, parameters (and possibly other
variables, as discussed below), to a specification expressed in terms of the actual
parameters. The rule LocalProcCall says that to compute the post-heap of a
call to procedure f starting from pre-heap S:

1. split S into two disjoint (∗-conjoined) heaps Pσ (a local heap) and R (a
frame);

2. express the pre-heap Pσ in terms of the formal parameters, yielding P , which
is applicable to the summary of the procedure f ;

3. compute the post-heap Q of the procedure call on P ;
4. express Q in terms of the actual parameters, yielding Qσ;
5. ∗-conjoin Qσ with the frame axiom R, yielding the post-heap T .

Note that the choice of splitting Pσ ∗ R of S is not important for soundness:
any splitting is sound, but if too small a heap Pσ is chosen, a false memory fault
will be discovered, and no post-heap Q will exist. Here (as in [15]) we choose to
split the heap so that we send the procedure all of the heap reachable from the
actual parameters.

2.3 Cutpoints

For the procedure call rules above, note that the free variables of the pre-
and post-conditions of the procedure summaries in Γ need not contain only
the formal parameters. For instance, {x�→y ∗ y �→nil} f(x) {x�→y} is a per-
fectly reasonable procedure summary, whose pre- and post-conditions happen
to contain a variable y which does not occur in the command f(x). Such vari-
ables, commonly referred to as ghost variables, can be instantiated to whatever
value is appropriate at a particular call site using Hoare logic’s substitution
rule (Subst, see Appendix A), which carries over to our LocalProcCall-based
analysis.

For an instance of where this arises in programs, consider the code in Fig. 1,
which represents a sequence of operations on a stack s implemented as a linked-
list. Imagine that we are trying to summarize the effect that foo can have on the
stack passed to it. Notice that, while the stack s is reachable from foo, both i1
and i2 will contain pointers into s but are not reachable from foo. Pointers such

244 A. Gotsman, J. Berdine, and B. Cook

Node *s, *i1, *i2;
int x, y, z;
/* ... */
s = push(s, x);
i1 = iterator(s);
s = push(s, y);
i2 = iterator(s);
s = push(s, z);
foo(s);
i2 = next(i2);
assert(i1 == i2);

Fig. 1. Simple example code fragment with cutpoints

as i1 and i2 are known as cutpoints. It is difficult to make a scalable analysis
that will be accurate enough to prove that the assert cannot fail.

Without special consideration, cutpoints can be treated just as any other
ghost variable. Since we use the standard store-based semantics, and a sepa-
rated abstract representation, there are no problems splitting heaps in ways
that create pointers that dangle across the split. Hence, if we were not wor-
ried about computability and finiteness considerations, the presence of cutpoints
would be irrelevant: simply ignoring them and treating them just like any other
ghost variable is sound and maximally precise. As a result, our representation
enables our analysis to accurately and efficiently handle cutpoints: they cost
no more than any other variable which appears in procedure summary pre- or
post-conditions.

However, there is a problem in that just ignoring cutpoints potentially leads
to unboundedly many of them, which breaks finiteness of the abstract domain.
A solution is to abstract cutpoints beyond some bounded number by breaking
the connection between them and the pointers to them, that is, by forgetting
the destinations of pointers to cutpoints. In this manner, our analysis treats
bounded numbers of cutpoints, and is parametric in the bound.

Hoare logic’s rule of semantic consequence provides a mechanism for per-
forming this abstraction. A cutpoint c in heap splitting P ′ ∗ R can simply be
existentially quantified, since P ′ � ∃c. P ′ is a particular semantic consequence,
thereby breaking the connection between pointers in R to c. Quantifying cut-
points is productive since quantified variables do not contribute to the size of
the abstract domain, in contrast with unquantified variables. So, if a splitting
S � P ′∗R contains cutpoints �c, then we can abstract them using the derived rule:

LocalProcCallCut

S � P ′ ∗ R ∃�c. P ′ � Pσ Qσ ∗ R � T

Γ , {P} f(�x) {Q} 	 {S} f(�xσ) {T }

The operational reading of this rule is like that of LocalProcCall except that
after splitting the pre-state into P ′ ∗ R, the variables denoting cutpoints in P ′

should be existentially quantified.

Interprocedural Shape Analysis with Separated Heap Abstractions 245

3 Implementation of the Analysis

We consider a simple programming language of while loops and recursive pro-
cedures extended with the usual four heap operations for loading from, storing
to, allocating, and deallocating heap locations. Note, that although the analysis
presented in this section operates on the abstract domain of separation logic
formulæ including inductive predicates for lists only, the interprocedural anal-
ysis technique can be extended to include inductive predicates for other data
structures such as trees and doubly-linked lists.

The syntax of the language is defined as follows:

G ::= E=F | ¬(E=F) branch guards
S ::= skip | x:= E | x:= new() | assume(G) safe commands

A(E) ::= dispose(E) | x:= [E] | [E]:=F dangerous commands
T ::= S | A(E) | f(�x) atomic commands
C ::= T | if (G) {C} else {C} | while (G) {C} commands
D ::= f(�x) {local �y in C} procedure declarations
M ::= letrec D, . . . , D in main(�x) programs

Here variables x, y, . . . range over some infinite set Var; existentially quantified
variables x′, y′, . . . range over some disjoint infinite set Var′; and, for each pro-
gram, procedure names f range over some fixed finite set. We also assume given
a set of variables Ghost ⊂ Var used for ghost variables in the analysis to replace
cutpoints during the processing of procedure calls. Quantified variables cannot
appear in programs, but are included since expressions also appear in formulæ
(Sect. 2.1). For convenience of later definitions, commands S are syntactically
distinguished from commands A(E). The difference between the two is that for
a command S, execution is always safe, while execution of a command A(E)
may be unsafe, due to accessing heap location E.

Complications due to reference parameters are orthogonal to our concerns of
interprocedurality, so we only consider procedures with value parameters. Ad-
ditionally, for simplicity of presentation, we treat only programs without global
variables or functions returning values (standard treatments such as [8, 5] can be
adopted). As a result, for f(�x) {local �y in C} we require that the list of local
variables �y contain all the free variables fv(C) of C except the formals �x. Finally,
we assume programs have been syntactically preprocessed to ensure �x ∩ �y = ∅
for each procedure declaration, and actual parameters are distinct variables.

The informal meaning of commands is as follows:

– skip accesses no heap, and has no effect;
– x:= E does not access the heap, and results in a state where x has the value

of E (using the overwritten value of x);
– allocation x:= new() requires no heap and returns an uninitialized location

that is distinct from all other allocated locations (though may be pointed to
by a previously dangling pointer);

246 A. Gotsman, J. Berdine, and B. Cook

– dispose takes a single location and deallocates it, possibly creating dangling
pointers in the process;

– x:= [E] accesses heap location E and results in a state where the heap is
unmodified and x has value equal to the contents of E;

– [E]:= F accesses location E and changes its contents to F ;
– assume(G) acts as a filter on the state space of programs—G must be true

after assume is executed;
– and the meaning of the control-flow commands is standard.

We will argue correctness of the analysis by generating proofs in separation
logic out of its results, rather than directly in terms of the concrete semantics of
the programming language. Therefore we do not present the concrete semantics
in any detail here, it is entirely standard and appears elsewhere (such as [12]).
Instead, the separation logic axioms for commands [12] together with the rules
from the previous section specify the meaning of the programming language
in enough detail for our present purpose. We use the following rule (which is
derived from standard rules for recursive procedure declarations [8] and variable
declarations, see Appendix A) to define the semantics of procedure declarations:

RecProcDeclLocals

Γ , {P} f(�x) {Q} 	 {P} C {T } ∃�y. T � Q Γ , {P} f(�x) {Q} 	 {R} C′ {S}
Γ 	 {R} letrec f(�x) {local �y in C} in C′ {S}

where �x ∩ �y = ∅, �y ∩ fv(P) = ∅, fv(P) is the set of all free variables of P . The
side condition �y ∩ fv(P) = ∅ is needed so that variables in P do not clash with
local variables of f . Existential quantification of the local variables ensures that
they are not visible to a caller after the call returns.

3.1 Symbolic Heaps

Summate’s analysis represents sets of concrete program states with sets of sym-
bolic heaps Q of form Π ∧ Σ, where Π and Σ are given by:

Π ::= true | Π ∧ Π | E=E Σ ::= emp | Σ ∗ Σ | E �→E | ls(E, E) | junk

Symbolic heap formulæ consist of two parts: a Boolean formula Π built from
= and ∧ which is insensitive to the heap; and a heap formula Σ which expresses
heap shape. The meaning of these formulæ is as in Sect. 2.1, with the addition
that junk describes at least one allocated location. Recall also that ls(E, F)
describes non-empty acyclic singly-linked lists. Cyclic lists can be expressed using
multiple predicates: e.g. ls(x, y′) ∗ ls(y′, x). Note that x�→x is a cycle of length
one, while ls(x, x) is inconsistent.

Formulæ are considered up to symmetry of =, permutations across ∧ and
∗ (e.g. Π ∧ B0 ∧ B1 and Π ∧ B1 ∧ B0 are equated), unit laws for true and
emp, idempotency of − ∗ junk (e.g. junk ∗ junk and junk are equated), adding or
removing consequences of equalities present in the pure part, and interchanging
equal (due to the equalities in the pure part) variables in the spatial part. So,
x = y ∧y = z ∧ ls(v, x) and x = y ∧y = z ∧x = z ∧ ls(v, y) are considered equal.
We denote the set of symbolic heaps with SH.

Interprocedural Shape Analysis with Separated Heap Abstractions 247

3.2 Intraprocedural Analysis

As a part of its interprocedural analysis, Summate must also implement an
intraprocedural analysis. For this Summate implements the analysis from [6, 4].
This analysis is defined in Appendix B. A complete exposition is found in [6].

The intraprocedural analysis defines a set of canonical symbolic heaps CSH ⊂
SH on which the analysis operates, a canonicalization function can: SH → CSH,
which returns a canonical symbolic heap abstracting a given symbolic heap, and a
decision procedure for consistency of canonical symbolic heaps. Note that canon-
ical symbolic heaps are written in the same language as symbolic heaps, i.e. they
can have existential quantifiers. A key property of the abstract domain proved
in [6] is that although the number of symbolic heaps over a finite number of un-
quantified variables is infinite, the domain of consistent and canonical symbolic
heaps over a finite number of unquantified variables is finite. Hence, due to the
presence of canonicalization in the analysis, fixed-point computations over the
abstract domain converge in a finite number of steps.

For each atomic command C the intraprocedural analysis defines a transfer
function AC : SH → (2CSH ∪ {�}) that, given an initial symbolic heap, returns
either � (meaning that a possible memory error has been encountered) or a set
of consistent canonical symbolic heaps representing the effect of the command
on the initial symbolic heap. If the former case is encountered, our analysis
terminates and reports a possible bug.

While performing fixed-point computations both our intraprocedural and in-
terprocedural analyses use subset inclusion as a domain ordering between sets
of symbolic heaps. Other, less coarse, approximations of entailment between
symbolic heaps (e.g. [3, 2]) would be possible (but note that convergence of
fixed-point computation is a question if the entailment prover is not transitive).

3.3 Analyzing Procedure Calls and Returns

In this section we give a detailed explanation of how Summate treats procedure
calls and returns. This treatment follows the operational reading of the rules
LocalProcCall and RecProcDeclLocals.

According to the proof rule LocalProcCall, to process procedure call f(�xθ)
we have to determine which part of the symbolic heap at the call-site to send
to the procedure. As noted in Sect. 2.2, we send to the procedure the part of
the heap reachable from the actual parameters in the formula representing the
symbolic heap. Formally, let Σ be the spatial part of a consistent symbolic heap
and U be a set of expressions. Let V be the minimal set of expressions such that:

U ∪ {F | ∃E, Σ1. E ∈ V and Σ = H(E, F) ∗ Σ1} ⊆ V

Here H(E, F) stands for either E �→F or ls(E, F). We denote the part of Σ
reachable from U with Reach(Σ, U) and define it as the ∗-conjunction of the
following set of formulæ:

{Σ1 | ∃E, F, Σ2. E ∈ V and Σ = Σ1 ∗ Σ2 and Σ1 = H(E, F)}

248 A. Gotsman, J. Berdine, and B. Cook

Let Unreach(Σ, U) be the formula consisting of all ∗-conjuncts from Σ that are
not in Reach(Σ, U).

Consider a procedure call statement f(�xθ) with formal parameters �x and the
map from formal parameters to actual parameters θ and let Qcall = Π ∧ Σ be
the heap at the call site. To take the equalities in Π into account while computing
the part of Σ reachable from actual parameters we require that the variables in
Σ be chosen so that for each equivalence class generated by the equalities in Π
at most one variable from this equivalence class is present in Σ (with preference
given to unquantified variables over quantified ones, and to actual parameters
over other variables). We denote the part of the heap to be sent to the procedure
with local(Π ∧ Σ, �xθ) and define it as:

local(Π ∧ Σ, �xθ) = can
(
∃
(
fv(Π ∧ Σ)�fv(Reach(Σ, �xθ))

)
. Π ∧ Reach(Σ, �xθ)

)

The local heap is obtained by taking the part of the heap reachable in the formula
from the actual parameters, projecting it onto those variables appearing in the
representation of the reachable heap, and canonicalizing the result. The set of
cutpoints in the result is Cut = fv(local(Qcall, �xθ))��xθ. The frame in this case
is given by frame(Π ∧ Σ, �xθ) = Π ∧ Unreach(Σ, �xθ).

Having obtained a local heap we have to express it in terms of the formal
parameters. As follows from the proof rule RecProcDeclLocals, we also have
to rename cutpoints so as they do not clash with the local variables of the
procedure f . Hence, we rename them to variables in Ghost. Let ghost(V) be a
function that given the set of variables V returns a bijective partial function
from variables in Ghost to V and let η = ghost(Cut). Then the heap Qentry at
the entry point of the procedure f (expressed in terms of formal parameters and
ghost variables) is given by local(Qcall, �xθ)(θ ∪ η)−1.

Example 1. Suppose that before executing the procedure call foo(a) (with the
formal parameter x) we have a symbolic heap a=d ∧ ls(a, b) ∗ ls(b, nil) ∗ c �→b so
that the tail of the list pointed to by a is shared. Then the part of the heap
reachable from actual parameters (in this case just a) is ls(a, b) ∗ ls(b, nil) and
the local heap is can(a=d′ ∧ ls(a, b) ∗ ls(b, nil)) = ls(a, b) ∗ ls(b, nil). We remind
the reader that primed variables are implicitly existentially quantified. Here b is
a cutpoint, so we choose a variable X ∈ Ghost and rename b to X and a to x
obtaining ls(x, X) ∗ ls(X, nil) as a heap at the entry point of the procedure. ��

Note that for simplicity of presentation the analysis described above precisely
handles only the cutpoints that arise from stack sharing, i.e. in the situation
when a location in the local heap is equal to the value of a variable of the
caller and distinct from all the actual parameters. Such cutpoints are defined
by unquantified variables in the symbolic heap at the call-site. The other kind
of cutpoints result from heap sharing, i.e. in the situation when a location in
the local heap is equal to the contents of a location in the frame and distinct
from all the local variables of the caller. Such cutpoints are defined by quantified
variables in the symbolic heap at the call-site (e.g. x′ in the local heap ls(x, x′)

Interprocedural Shape Analysis with Separated Heap Abstractions 249

with frame ls(y, x′) where x is an actual parameter and y is a local variable of
the caller). This kind of cutpoints can be handled precisely in a similar fashion
(i.e. by replacing them with ghost variables in the local heap).

The way of processing procedure calls described above gives the most precise
treatment to cutpoints—no information is lost when the heap at the call site
has a cutpoint. However, in the case of recursive procedures the renaming of
cutpoints to ghost variables can result in the number of unquantified variables
in canonical symbolic heaps growing unboundedly. At the same time, as noted
in Sect. 3.1, the abstract domain of canonical symbolic heaps is finite only if
the number of unquantified variables is bounded. Hence, as it stands now, the
analysis may not terminate. To solve this problem we put a bound m on the
maximal number of cutpoints that can appear in a symbolic heap, i.e. on the
cardinality of the set Ghost. Our analysis is parametric in this bound. When-
ever during a call the number of cutpoints exceeds m, we existentially quantify
the new cutpoints introduced by this call (i.e. variables in Cut�Ghost) using
the proof rule LocalProcCallCut. This guarantees finiteness of the abstract
domain, and hence, termination of the analysis. The local heap in the case when
we abstract cutpoints is defined as:

local(Π ∧ Σ, �xθ) =
can(∃(Cut�Ghost ∪ fv(Π ∧ Σ)�fv(Reach(Σ, �xθ))). Π ∧ Reach(Σ, �xθ))

Example 2. Consider the previous example and suppose that m=0. Then the
local heap will be can(a=d′ ∧ ls(a, b′) ∗ ls(b′, nil)) = ls(a, nil). We existentially
quantified the cutpoint and this resulted in it being eliminated by the subsequent
canonicalization. The heap at the entry point of the procedure is ls(x, nil). In this
case we lost the information about c pointing to a node in the list. ��

We observe that the pathological cases where the number of cutpoints grows un-
boundedly while analyzing recursive procedures is rarely encountered in practice
(especially if some sort of dead variable analysis is used to eliminate unnecessary
unquantified variables). Even when the number of cutpoints in a symbolic heap
at the call-site exceeds m our analysis is still able to obtain some information
(though not the most precise).

According to RecProcDeclLocals, while processing procedure returns we
have to existentially quantify the local variables of the procedure in order to
obtain a summary (and canonicalize the result so that it is in our abstract
domain). To obtain a symbolic heap at the return-site of the caller we just
have to rename formal parameters to actual parameters and ghost variables to
cutpoints in the resulting heap, and ∗-conjoin it with the frame. The result is
guaranteed to be canonicalized.

3.4 Control-Flow Graphs

Before performing the interprocedural analysis we apply a standard translation
from the program to its control-flow graph (cfg). A cfg is defined by the set of

250 A. Gotsman, J. Berdine, and B. Cook

nodes N and the control-flow relation F ⊆ N ×L×N , where L is the set of edge
labels, L = T ∪ {return, quantify locals}, T is the set of atomic commands.

We translate each procedure f independently, distinguishing its entry node
entry(f) (the node from which the execution of the procedure starts) and exit
node exit(f) (the node from which the procedure returns).

As noted in Sect. 3.3 we have to existentially quantify all the local variables
before returning from a procedure. Therefore, as the last statement of each pro-
cedure we add a statement (labeled with quantify locals) with the transfer
function that existentially quantifies the local variables in the given heap and
canonicalizes the result. Let end(f) be the node of the cfg preceding this state-
ment, so that (end(f), quantify locals, exit(f)) ∈ F .

For each procedure call statement f(�xθ) (where �x are the formal parameters,
θ is the map from the formal parameters to the actual parameters) we introduce
two nodes—a call node and a return node—and add two edges to the cfg, one
connecting the call node to the entry node of the procedure f (labeled with
f(�xθ)), and the other connecting the exit node of the procedure f to the return
node (labeled with return). We connect the statement preceding f(�xθ) to the
call node and the return node to the statement succeeding f(�xθ).

While translating the program to the cfg we translate while and if state-
ments in the standard way using assume statements. Note that although we
define our analysis using such a representation, the proof of its soundness relies
upon the fact that the resulting cfg is obtained from a well-structured program
since it uses Hoare logic’s proof rules for while and if.

3.5 Interprocedural Analysis

To perform the interprocedural analysis using the treatment of procedure calls
and returns in our analysis proposed in Sect. 3.3, we adapt the Reps-Horwitz-
Sagiv algorithm [11, 14] for using symbolic heaps as the abstract domain and
efficiently handling procedure summaries with multiple cutpoints.

The analysis tabulates a function ϕ: N → 2CSH×CSH. Intuitively, ϕ(n) repre-
sents the set of pairs (Q1, Q2) of symbolic heaps at the entry point of a function
containing the node n (Q1) and at the node n (Q2) such that there exists an
execution of a sequence of program statements between these two points trans-
forming Q1 to Q2.

The function computed by the analysis is the least function ϕ satisfying the
equations in Fig. 2 under the following order: ϕ1 � ϕ2 ⇔ ∀n. ϕ1(n) ⊆ ϕ2(n).

We assume that we are given a symbolic heap I representing the initial state
at the start of main expressed purely in terms of the formal parameters of main
(the equation for ϕ(entry(main))). In the equations for ϕ(nentry) and ϕ(nreturn)
the symbolic heap Qentry at the entry point of the procedure is obtained from
a heap Qcall at the call-site as it is described in Sect. 3.3. Note that in order to
effectively treat procedure summaries containing cutpoints (i.e. ghost variables),
the procedure is analyzed on this heap only if it has not been analyzed for another
heap equal to the current one up to a bijective renaming of ghost variables (this
equality can be decided in time polynomial in the length of the symbolic heaps).

Interprocedural Shape Analysis with Separated Heap Abstractions 251

ϕ(entry(main)) = ϕ(entry(main)) ∪ (I × I);

ϕ(nentry) = ϕ(nentry) ∪ {(Qentry, Qentry) | ∃ncall, Q0, Qcall, η.

(ncall, f(�xθ), nentry) ∈ F ∧ (Q0, Qcall) ∈ ϕ(ncall) ∧
η = ghost(fv(local(Qcall, �xθ))��xθ) ∧ Qentry = local(Qcall, �xθ)(θ ∪ η)−1 ∧

(¬∃Q′
entry, η′. (Q′

entry, Q′
entry) ∈ ϕ(nentry) ∧ Q′

entry(θ ∪ η′) = Qentry(θ ∪ η))}

for each nentry = entry(f) for some procedure f ;

ϕ(nreturn) = {(Q0, (Qexitσ) ∗ frame(Qcall, �xθ)) | ∃Qentry, η. (Q0, Qcall) ∈ ϕ(ncall) ∧
σ = θ ∪ η ∧ local(Qcall, �xθ) = Qentryσ ∧ (Qentry, Qexit) ∈ ϕ(nexit)}

for each pair of a call node ncall and a return node nreturn for a statement f(�xθ); here
nentry = entry(f), nexit = exit(f);

ϕ(n2) = {(Q0, Q2) | ∃n1, C, Q1. (n1, C, n2) ∈ F ∧ (Q0, Q1) ∈ ϕ(n1) ∧ Q2 ∈ AC(Q1)}

for all other nodes n2.

Fig. 2. The equations defining the analysis. For simplicity we show only the case when
cutpoints are not abstracted. All substitutions are injective.

Similarly, in the equation for ϕ(nreturn) we search for summaries with the initial
state equal to Qentry up to a bijective renaming of ghost variables.

Example 3. Consider the following program fragment:

append(x, y);
append(u, v);
append(x, z)

Here append(a, b) receives as parameters head nodes of two lists and de-
structively appends the second list to the end of the first one. Suppose the
initial state of the program consists of five disjoint lists ls(x, nil) ∗ ls(y, nil) ∗
ls(z, nil) ∗ ls(u, nil) ∗ ls(v, nil). The analysis will process each call to append in
turn. The local heap of the first call to append expressed in terms of formal pa-
rameters is ls(a, nil) ∗ ls(b, nil). As the analysis has no summaries for append,
it will go on analyzing append on the local heap and will discover a post-
heap ls(a, b) ∗ ls(b, nil). Hence, the heap at the return-site of the call will be
ls(x, y) ∗ ls(y, nil) ∗ ls(z, nil) ∗ ls(u, nil) ∗ ls(v, nil).

The local heap of the second call is again ls(a, nil) ∗ ls(b, nil). The analysis will
reuse the the summary discovered before and the heap at the return-site will be
ls(u, v) ∗ ls(v, nil) ∗ ls(x, y) ∗ ls(y, nil) ∗ ls(z, nil).

The local heap of the third call expressed in terms of actual parameters is
ls(x, y)∗ ls(y, nil)∗ ls(z, nil). Here we have a cutpoint y. We replace it with a ghost
variable Y , rename actuals to formals and obtain ls(a, Y)∗ ls(Y, nil)∗ ls(b, nil) as a
local heap. As there are no summaries for this local heap, the analysis will have
to analyze append once again discovering a post-heap ls(a, Y)∗ ls(Y, b)∗ ls(b, nil).
Hence, the heap at the return-site of the call will be ls(u, v) ∗ ls(v, nil) ∗ ls(x, y) ∗
ls(y, z) ∗ ls(z, nil). ��

252 A. Gotsman, J. Berdine, and B. Cook

4 Soundness

Following Lee, Yang, and Yi [9] we show the soundness of our analysis via trans-
lation to program proofs in separation logic; each run of the analysis determines
a collection of proofs.

Suppose the analysis has not encountered a possible memory error and ϕ is
the least function satisfying the equations in Fig. 2. Let ψn(Q) = {R | (Q, R) ∈
ϕ(n)}. Intuitively, for a node n ∈ N and a symbolic heap Q ∈ CSH, ψn(Q)
gives the set of symbolic heaps corresponding to the possible states at the node
n reachable from the state {Q} at the entry point to the procedure containing n.

Let s be a set of symbolic heaps. We define the separation logic formula
representing this set as a disjunction of the formulæ representing the heaps in s:
means(s) =

∨
{Q | Q ∈ s}. Note that means(∅) = false. Throughout this section

Γ denotes the set of specifications of all the procedures obtained as a result of
the analysis: Γ = {{Q} f(�x) {means(ψexit(f)(Q))} | ψentry(f)(Q) �= ∅}.

Theorem 1. Suppose the analysis succeeded, i.e. a possible memory error has
not been encountered. Let C be a command, n1 respectively n2 be the nodes of
the control-flow graph immediately preceding respectively following the command,
and n0 be the entry node of the procedure containing n1 and n2. Then for each
symbolic heap Q such that ψn0(Q) �= ∅, the following judgment holds in separa-
tion logic: Γ 	 {means(ψn1(Q))} C {means(ψn2(Q))}.

The proof proceeds by induction on the structure of the command C. The cases
for all the commands except for procedure call are similar to the ones in [9]
and use the usual axioms and inference rules of separation logic [12]. The proof
in the case of procedure call relies upon the proof rule LocalProcCallCut.
Taking n1 = entry(f) and n2 = end(f) for each procedure f in the program in
Theorem 1 and using RecProcDeclLocals, we obtain:

Corollary 1. Let �D be the list of all procedure declarations in the program, �v
the list of the formal parameters of main. Then if the analysis succeeds,

	 {means(I)} letrec �D in main(�v) {means(ψend(main)(I))}.

Corollary 1 justifies that the success of our analysis implies that the program is
memory-safe and the computed post-condition is a valid one.

5 Experimental Results

In order to evaluate the performance of our analysis we have applied Summate

to the list processing programs proposed in the literature, including those in
[15] and [14]. The results are displayed in Table 1. The tests were performed on
a 2GHz Pentium 4 Linux PC with 512MB of memory. Each program consists
of a list-processing function and a client calling the function. We consider both
iterative and recursive versions of functions. For each function except create we
use three different clients. The first one corresponds to a cutpoint-free call. For

Interprocedural Shape Analysis with Separated Heap Abstractions 253

Table 1. Experimental results for iterative and recursive versions of simple list-
processing functions with three different clients. The meaning of the programs is
straightforward from their names (reverse via append reverses a list by appending
its head to its reversed tail, reverse8 reverses a list 8 times). Recursive reverse we
used is not suitable for reversing a panhandle list. Times are given in seconds. Sum-

mate did not require more than 600KB in any of these cases. reverse via append is a
recursive function; as in [15] its “iterative” version uses an iterative version of append.

Program
Iterative Recursive

1 2 3 1 2 3
create 0.004 — — 0.004 — —
deallocate 0.004 0.005 0.007 0.003 0.005 0.005
traverse 0.004 0.005 0.011 0.004 0.005 0.008
find 0.004 0.008 0.022 0.005 0.010 0.034
insert 0.007 0.019 0.082 0.006 0.014 0.057
remove (element is not in the list) 0.006 0.025 0.115 0.006 0.010 0.022
remove (element is in the list) 0.004 0.006 0.007 0.004 0.005 0.006
reverse (acyclic list) 0.006 0.015 0.066 0.004 0.007 0.015
reverse (panhandle list) 0.030 0.032 0.175 — — —
reverse via append 0.006 0.020 0.142 0.006 0.013 0.047
append 0.005 0.015 0.066 0.004 0.008 0.021
merge 0.150 0.036 0.884 0.009 0.051 1.138
splice 0.010 0.024 0.041 0.006 0.010 0.019
reverse8 0.011 0.072 0.540 0.008 0.024 0.090

reversing a panhandle list the second client calls the function so that the heap
at the call-site is ls(x, y) ∗ ls(y, z′) ∗ ls(z′, y) (one cutpoint), the third client—
ls(x, y) ∗ ls(y, z) ∗ ls(z, y) (two cutpoints). Here (and throughout this section) x,
y, and z are local variables of the client. For append, merge, and splice the
second client calls the function two times, hence, creating a cutpoint e.g. for
append:

xy = append(x, y);
xyz = append(xy, z)

The third client performs the call three times (thereby creating two cutpoints).
For all the other programs the second client calls functions on a list in the case
when a part of the list is shared (i.e. the heap at the call-site is ls(x, y)∗ ls(y, nil)∗
ls(z, y)). In this case one cutpoint is created in each call. The third client calls
functions on a list in the case when it has two pointers to the middle of the
list thereby modeling the situation shown in the example in Sect. 2.3 (i.e. the
heap at the call-site is ls(x, y) ∗ ls(y, z) ∗ ls(z, nil)). In this case two cutpoints are
created in each call (except for reverse8, which creates an additional cutpoint
because the program keeps track of the former head of the list, i.e. the tail of
the reversed list).

For each program we were able to prove memory safety, absence of memory
leaks, and the fact that the acyclicity of lists is preserved. In the cases when

254 A. Gotsman, J. Berdine, and B. Cook

Table 2. Experimental results for iterative and recursive versions of list sorting pro-
grams. mergesort and tailsort are recursive, insertionsort—iterative. As in [15]
their “iterative” respectively “recursive” versions are obtained by using these func-
tions with iterative respectively recursive versions of insert or merge.

Program
Iterative Recursive

Time (sec) Memory (KB) Time (sec) Memory (KB)
mergesort 6.159 2288 0.211 368
quicksort — — 0.300 608
insertionsort 0.058 368 0.042 368
tailsort 0.008 368 0.007 368

the caller had variables pointing to the middle of a list (i.e. we had calls with
cutpoints), we have proved that the elements pointed to by the variables are
still present in the resulting list in the order determined by the semantics of the
list processing function. Besides, for each particular program the post-condition
obtained as the result of the analysis could give some more information. For
instance, we were able to prove that after reverse or reverse via append the
head of the list moves to its tail, that the result of append, merge, splice still
contains the heads of both source lists, and that insert actually inserts the
element it is given into the list. remove was tested two times: in the case when
the element being removed is present in the list, and in the case when it is not.
In the former case the accurate treatment of cutpoints by our analysis allowed
for proving that this element is deleted from the list.

In all these experiments the bound on the number of cutpoints was set to 3.
A larger bound would not affect either precision or complexity of the analysis,
since 3 is the maximal number of cutpoints created at a time in the programs
considered. Setting the bound to a lower number makes the analysis less precise.

We also tested our implementation on list sorting programs. The results for
them are shown in Table 2. The client in the programs calls a sorting function on
a list once. For each of the programs we proved memory safety and preservation
of the list acyclicity. insertionsort and mergesort have calls with a cutpoint.
Accurate processing of this cutpoint by our analysis allowed us to prove that the
head of the source list is present in the sorted list.

We have not done a systematic benchmarking of Summate against the other
executable shape analysis tools in the same conditions. However, it is fair to say
that Summate is at least competitive with the previously reported tools with
respect to speed and memory, and clearly better with respect to accuracy:

– We observe a speed-up of up to 3 orders of magnitude in comparison with
the numbers reported in [15] and [14]. However: this difference could likely
be attributed to differences in machine configuration.

– Summate consumes less memory than previously reported local interproce-
dural shape analyses.

– Other than Summate, no local shape analysis tool accurately treats calls
with multiple cutpoints.

Interprocedural Shape Analysis with Separated Heap Abstractions 255

– We have reported experimental results for programs operating on shared and
cyclic data structures and programs that deallocate memory.

6 Conclusions

Summate implements an interprocedural shape analysis that makes use of spa-
tial locality. Summate’s abstraction simply tracks declarative representations
of independent heap portions. Consequently, computing the effect of procedure
calls and returns on an abstract state is easy.

Summate is the most accurate interprocedural shape analysis, due to its sup-
port of memory disposal, cyclic and shared data structures, and its handling
of bounded numbers of cutpoints. To the best of our knowledge, no other tool
precisely and efficiently supports these features combined. Furthermore: our in-
terprocedural analysis can be formulated in terms of a handful of proof rules3

and (unlike in previous efforts [13]) the proof of its soundness follows from them
straightforwardly.

Related Work. Hackett & Rugina [7], describe an analysis where transfer func-
tion computations benefit from using a form of local reasoning similar to ours.
However, procedure summaries are represented in terms of global states and so
analysis of procedure calls does not benefit from locality.

Several papers have described TVLA-based interprocedural shape analy-
ses (i.e. [14, 13, 15]) where the procedure summaries operate on local heaps.
However: in this work the analysis must dynamically find a way to divide the
heap such that the overall shape is preserved. This is delicate with the TVLA

reachability-based representation, since the separation significantly alters the
represented reachability information. A consequence of this is that accurate
treatment of cutpoints is expensive (e.g. in [14] all cutpoints must be abstracted
away into a single cutpoint). Furthermore, the transfer function computation in
this context is non-local and still expensive, because the analysis must propa-
gate updates throughout the state. Summate’s separated representation ensures
that the difference between the states in the transfer function computation is
limited. This is, in part, because instead of storing reachability information in
a quickly queryable form, we only update information from which reachability
could be computed. This is possible since the precise structure of abstracted
heaps is known.

It is important to note the limitations of Summate’s abstraction. Summate

is much faster than tools such as TVLA [16], but in some ways can also be
less general. Computing a transfer function requires case analysis. Since our
representation specifies the precise structure of the abstracted heap, the case
analysis phase of the transfer function can rely on it, and so the number of
resulting possible cases is significantly lower. However, we use carefully hand-
crafted inductive predicates and axioms. These inductive predicates and axioms
only needed to be designed once [3], but a similar exercise must be done in order
to support additional data types.
3 This is similar in spirit to [1].

256 A. Gotsman, J. Berdine, and B. Cook

Acknowledgments. The authors benefited greatly from discussions of this
and related work with Dino Distefano, Peter O’Hearn, Tal Lev-Ami, Roman
Manevich, Hongseok Yang, and Greta Yorsh. The authors would also like to
thank Noam Rinetzky for providing the test programs used in [15] and the
anonymous reviewers for useful suggestions.

References

[1] T. Amtoft and A. Banerjee. Information flow analysis in logical form. In SAS,
volume 3148 of LNCS, pages 100–115, 2004.

[2] J. Berdine, C. Calcagno, and P. O’Hearn. Symbolic execution with separation
logic. In APLAS, volume 3780 of LNCS, pages 52–68, 2005.

[3] J. Berdine, C. Calcagno, and P. W. O’Hearn. A decidable fragment of separation
logic. In FSTTCS, volume 3328 of LNCS, 2004.

[4] J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination
proofs for programs with shape-shifting heaps. In CAV, 2006.

[5] S. A. Cook. Soundness and completeness of an axiomatic system for program
verification. SIAM J. on Computing, 7:70–90, 1978.

[6] D. Distefano, P. W. O’Hearn, and H. Yang. A local shape analysis based on
separation logic. In TACAS, volume 3920 of LNCS, pages 287–302, 2006.

[7] B. Hackett and R. Rugina. Region-based shape analysis with tracked locations.
In POPL, pages 310–323, 2005.

[8] C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Sympo-
sium on the Semantics of Algorithmic Languages, pages 102–116, 1971.

[9] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using
grammar-based shape analysis. In ESOP, volume 3444 of LNCS, pages 124–140,
2005.

[10] P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In CSL, volume 2142 of LNCS, pages 1–19, 2001.

[11] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, pages 49–61, 1995.

[12] J. Reynolds. Separation logic: A logic for shared mutable data structures. In
LICS, pages 55–74, 2002.

[13] N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, and R. Wilhelm. A semantics for
procedure local heaps and its abstractions. In POPL, pages 296–309, 2005.

[14] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural functional shape analysis
using local heaps. Tech. Rep. 26, Tel Aviv Univ., Nov. 2004.

[15] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedural shape analysis for cutpoint-
free programs. In SAS, volume 3672 of LNCS, pages 284–302, 2005.

[16] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM TOPLAS, 24(3):217–298, 2002.

A Proof Rules

The proof rules used by our interprocedural analysis can be derived from the
Frame rule and Hoare logic rules, which are listed in Fig. 3. The corresponding
derivations, which also involve some predicate calculus, are given in Fig. 4.

Interprocedural Shape Analysis with Separated Heap Abstractions 257

ProcCall

Γ , {P} f(�x) {Q} � {P} f(�x) {Q}

Subst

{P} C {Q}
{Pσ} Cσ {Qσ}

C modifies x implies

xσ ∈ Var�
⋃

y �=x fv(yσ)

Conseq

P � R {R} C {S} S � Q

{P} C {Q}

VarDecl

{P} C {Q}
{P} local �x in C {Q}

�x ∩ fv(P, Q) = ∅

RecProcDecl

Γ , {P} f(�x) {Q} � {P} C {Q} Γ , {P} f(�x) {Q} � {R} C′ {S}
Γ � {R} letrec f(�x) {C} in C′ {S}

Fig. 3. Standard rules of Hoare logic

RecProcDeclLocals

Γ ′ � {P} C {T} T � ∃�y. T
Conseq

Γ ′ � {P} C {∃�y. T}
VarDecl

Γ ′ � {P} local �y in C {∃�y. T} ∃�y. T � Q
Conseq

Γ ′ � {P} local �y in C {Q} Γ ′ � {R} C′ {S}

Γ � {R} letrec f(�x) {local �y in C} in C′ {S}

where Γ ′ = Γ , {P} f(�x) {Q} and the first rule applied is RecProcDecl;

LocalProcCall

S � Pσ ∗ R

ProcCall

Γ ′ � {P} f(�x) {Q}
Subst

Γ ′ � {Pσ} f(�xσ) {Qσ}
Frame

Γ ′ � {Pσ ∗ R} f(�xσ) {Qσ ∗ R} Qσ ∗ R � T
Conseq

Γ ′ � {S} f(�xσ) {T}

where Γ ′ = Γ , {P} f(�x) {Q};
LocalProcCallCut

S � P ′ ∗ R

P ′ � ∃�c. P ′ ∃�c. P ′ � Pσ

P ′ � Pσ

P ′ ∗ R � Pσ ∗ R

S � Pσ ∗ R Qσ ∗ R � T
LocalProcCall

Γ , {P} f(�x) {Q} � {S} f(�xσ) {T}

Fig. 4. Derivations of procedure call and declaration rules

258 A. Gotsman, J. Berdine, and B. Cook

B Intraprocedural Analysis

In this section we describe Summate’s intraprocedural analysis. This analysis is
essentially the same as that of [6, 4].

Transfer functions are defined by this analysis in terms of the symbolic exe-
cution relation �, the rearrangement relation →E , and the abstraction relation
→∗. Each individual concrete state can be expressed exactly by a symbolic heap,
i.e. there is a subset of symbolic heaps which are simply different syntax for con-
crete states. In the usual concrete semantics, each command only accesses a
small portion of the state: its footprint. From this perspective, symbolic exe-
cution (�) expresses the usual concrete semantics of commands4 in terms of
symbolic heaps, where the footprint of the command is expressed as one of the
formulæ that is alternate syntax for a concrete state. The task of rearrangement
(→E) is then to transform an arbitrary symbolic heap, via case analysis, into
a set of symbolic heaps where the footprint of the next command is concrete.
Abstraction (→) then takes the symbolic heaps resulting from symbolic execu-
tion and maps them into a finite subdomain of symbolic heaps, ensuring that
fixed-point computations converge.

The definition of these relations asks several types of questions about symbolic
heaps: entailment of an equality (Q 	 E=F), or of a disequality (Q 	 E �=F),
inconsistency (Q 	 false), or testing if a location is guaranteed to be allocated
(Q 	 allocated(E)). We also sometimes ask the negations of these questions.
Decision procedures for these queries are defined in [6].

Symbolic Execution (�). The symbolic execution relation captures the effect of
executing an atomic command from a symbolic heap. That is, Q0

C� Q1 means
that Q1 over-approximates the concrete states that can result from executing C
on states satisfying Q0. The symbolic execution rules are reported in Fig. 5.

Rearrangement (→E). Symbolic execution does not operate on arbitrary pre-
states. For instance, Load requires that the source heap cell be explicitly known.
In order to put symbolic heaps into the form required for symbolic execution of a
command, we use the rearrangement relation →E , defined by the axioms shown
in Fig. 6. When rearrangement fails to reveal the required location E, it indicates
a potential memory safety violation and returns �.

Abstraction (→). Abstraction is accomplished by certain separation logic impli-
cations that rewrite a symbolic heap to a logically weaker one. The abstraction
relation on symbolic heaps Q0 → Q1 is defined by the axioms shown in Fig .7.

Note that the heap abstraction is defined solely in terms of the representation
of heaps, i.e., the dynamic information the analysis knows. The precision of this
abstraction immaterializes static information about the program text used by
shallow analyses, such as allocation-sites.

We call a symbolic heap Q canonical if it is maximally abstracted, i.e. Q �

and denote the set of all canonical symbolic heaps with CSH. A canonicalization
4 Except that the rule for dispose does not quite yield the strongest postcondition.

Interprocedural Shape Analysis with Separated Heap Abstractions 259

Q
skip� Q Skip

Q
x:=E� x=E[x′/x] ∧ Q[x′/x] Assign

Q
x:=new()� Q[x′/x] ∗ x
→y′

New

Q
assume(E=F)� Q ∧ E = F if Q � E �=F AssumeT

Q
assume(E �=F)� Q if Q � E = F and Q � false AssumeF

Q ∗ E
→F
dispose(E)� Q Dispose

Q ∗ E
→F
x:=[E]� x=F [x′/x] ∧ (Q ∗ E
→F)[x′/x] Load

Q ∗ E
→F
[E]:=G� Q ∗ E
→G Store

Fig. 5. Symbolic Execution (�). Here x′, y′ are globally fresh ([2] allows more local
freshness constraints).

Q ∗ F
→G →E Q ∗ E
→G if Q � E=F Switch

Q ∗ ls(F, G) →E Q ∗ E
→G if Q � E=F Unroll1

Q ∗ ls(F, G) →E Q ∗ E
→x′ ∗ ls(x′, G) if Q � E=F and x′ fresh Unroll>1

Q →E if Q � allocated(E) Crash

Fig. 6. Rearrangement (→E)

z′=E ∧ Q → Q[E/z′] Subst

Q ∗ H0(E, x′) ∗ H1(x′, F) → Q ∗ ls(E, nil) if Q � F=nil

AppendLsNil

Q ∗ H0(E, x′) ∗ H1(x′, F0) ∗ H2(F1, G) → Q ∗ ls(E, F0) ∗ H2(F1, G) if Q � F0=F1

AppendLsGuard

Q ∗ H(x′, E) → Q ∗ junk Junk

Q ∗ H0(x′, y′) ∗ H1(y′, x′) → Q ∗ junk JunkCycle

Fig. 7. Abstraction (→). Here H(E,F) stands for either E
→F or ls(E,F); and x′, y′

do not occur other than where explicitly indicated.

function is defined in [6]. This function, can, is based on a fixed sequence of
abstraction axiom applications, and transforms a symbolic heap to a canonical
symbolic heap abstracting it, i.e. Q →∗ can(Q) and can(Q) � .

Transfer Functions. The transfer function AC for an atomic command C trans-
forms a given symbolic heap to either � (indicating a possible crash) or a set of
consistent canonical symbolic heaps. Transfer functions are defined separately
for safe commands S and unsafe ones A(E) in the following way:

260 A. Gotsman, J. Berdine, and B. Cook

AS(Q0) = {can(Q1) | Q0
S� Q1}

AA(E)(Q0) =

{
�, if Q →E �

{can(Q2) | ∃Q1. Q0 →E Q1 ∧ Q1
A(E)� Q2}, otherwise

Example 4. Suppose we want to compute the value of the transfer function for
the command x = [x] on the symbolic heap ls(x, nil). The rearrangement phase
will transform the heap into two symbolic heaps x�→nil and x�→x′ ∗ ls(x′, nil)
thereby making the information that x is allocated in the heap explicit. The
symbolic execution phase will then symbolically simulate the effect of the com-
mand on the heaps producing x = nil and x = x′ ∧ x′′ �→x′ ∗ ls(x′, nil). Finally,
the abstraction phase will leave the first heap unchanged and will canonicalize
the second heap to junk ∗ ls(x, nil). Hence, the value of the transfer function is
{x = nil, junk ∗ ls(x, nil)}. ��

Finiteness. A key property of the abstract domain CSH proved in [6] is that the
domain of consistent and canonical symbolic heaps {Q | Q � false ∧ Q �} over
a finite number of unquantified variables is finite.

	Introduction
	Fundamentals
	Abstract Representation of States
	Local Reasoning for Procedures
	Cutpoints

	Implementation of the Analysis
	Symbolic Heaps
	Intraprocedural Analysis
	Analyzing Procedure Calls and Returns
	Control-Flow Graphs
	Interprocedural Analysis

	Soundness
	Experimental Results
	Conclusions
	Proof Rules
	Intraprocedural Analysis

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

