
Linearizability with Ownership Transfer

Alexey Gotsman and Hongseok Yang

1 IMDEA Software Institute
2 University of Oxford

Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms. Unfortunately, it assumes a complete isolation
between a library and its client, with interactions limited to passing values of
a given data type. This is inappropriate for common programming languages,
where libraries and their clients can communicate via the heap, transferring the
ownership of data structures, and can even run in a shared address space with-
out any memory protection. In this paper, we present the first definition of lin-
earizability that lifts this limitation and establish an Abstraction Theorem: while
proving a property of a client of a concurrent library, we can soundly replace the
library by its abstract implementation related to the original one by our generali-
sation of linearizability. We also prove that linearizability with ownership transfer
can be derived from the classical one if the library does not access some of data
structures transferred to it by the client.

1 Introduction

The architecture of concurrent software usually exhibits some forms of modularity. For
example, concurrent algorithms are encapsulated in libraries and complex algorithms
are often constructed using libraries of simpler ones. This lets developers benefit from
ready-made libraries of concurrency patterns and high-performance concurrent data
structures, such as java.util.concurrent for Java and Threading Building Blocks for
C++. To simplify reasoning about concurrent software, we need to exploit the available
modularity. In particular, in reasoning about a client of a concurrent library, we would
like to abstract from the details of a particular library implementation. This requires an
appropriate notion of library correctness.

Correctness of concurrent libraries is commonly formalised by linearizability [12],
which fixes a certain correspondence between the library and its specification. The latter
is usually just another library, but implemented atomically using an abstract data type.
A good notion of linearizability should validate an Abstraction Theorem [9]: it is sound
to replace a library with its specification in reasoning about its client.

The classical linearizability assumes a complete isolation between a library and its
client, with interactions limited to passing values of a given data type as parameters
or return values of library methods. This notion is not appropriate for low-level heap-
manipulating languages, such as C/C++. There the library and the client run in a shared
address space; thus, to prove the whole program correct, we need to verify that one
of them does not corrupt the data structures used by the other. Type systems [5] and
program logics [13] usually establish this using the concept of ownership of data struc-
tures by a program component. When verifying realistic programs, this ownership of
data structures cannot be assigned statically; rather, it should be transferred between

the client and the library at calls to and returns from the latter. The times when own-
ership is transferred are not determined operationally, but set by the proof method: as
O’Hearn famously put it, “ownership is in the eye of the asserter” [13]. However, own-
ership transfer reflects actual interactions between program components via the heap,
e.g., alternating accesses to a shared area of memory. Such interactions also exist in
high-level languages providing basic memory protection, such as Java.

For an example of ownership transfer between concurrent libraries and their clients
consider a memory allocator accessible concurrently to multiple threads. We can think
of the allocator as owning the blocks of memory on its free-list; in particular, it can
store free-list pointers in them. Having allocated a block, a thread gets its exclusive
ownership, which allows accessing it without interference from the other threads. When
the thread frees the block, its ownership is returned to the allocator.

As another example, consider any container with concurrent access, such as a con-
current set from java.util.concurrent or Threading Building Blocks. A typical use of
such a container is to store pointers to a certain type of data structures. However, when
verifying a client of the container, we usually think of the latter as holding the owner-
ship of the data structures whose addresses it stores [13]. Thus, when a thread inserts a
pointer to a data structure into a container, its ownership is transferred from the thread
to the container. When another thread removes a pointer from the container, it acquires
the ownership of the data structure the pointer identifies. If the first thread tries to ac-
cess a data structure after a pointer to it has been inserted into the container, this may
result in a race condition. Unlike a memory allocator, the container code usually does
not access the contents of the data structures its elements identify, but merely ferries
their ownership between different threads. For this reason, correctness proofs for such
containers [1,6,17] have so far established their classical linearizability, without taking
ownership transfer into account.

We would like to use the notion of linearizability and, in particular, an Abstrac-
tion Theorem to reason about above libraries and their clients in isolation, taking into
account only the memory that they own. When clients use the libraries to implement
the ownership transfer paradigm, the correctness of the latter cannot be defined only in
terms of passing pointers between the library and the client; we must also show that they
perform ownership transfer correctly. So far, there has been no notion of linearizabil-
ity that would allow this. In the case of concurrent containers, we cannot use classical
linearizability established for them to validate an Abstraction Theorem that would be
applicable to clients performing ownership transfer. This paper fills in these gaps.

Contributions. In this paper, we generalise linearizability to a setting where a library
and its client execute in a shared address space, and boundaries between their data
structures can change via ownership transfers (Section 3). Linearizability is usually de-
fined in terms of histories, which are sequences of calls to and returns from a library in
a given program execution, recording parameters and return values passed. To handle
ownership transfer, histories also have to include descriptions of memory areas trans-
ferred. However, in this case, some histories cannot be generated by any pair of a client
and a library. For example, a client that transfers an area of memory upon a call to a
library not communicating with anyone else cannot then transfer the same area again
before getting it back from the library upon a method return.

We propose a notion of balancedness that characterises those histories that treat
ownership transfer correctly. We then define a linearizability relation between balanced

histories, matching histories of an implementation and a specification of a library (Sec-
tion 3). We show that the proposed linearizability relation on histories is correct in the
sense that it validates a Rearrangement Lemma (Lemma 13, Section 4): if a history H ′

linearizes another historyH , and it can be produced by some execution of a library, then
so can the history H . The need to consider ownership transfer makes the proof of the
lemma highly non-trivial. This is because changing the history from H ′ to H requires
moving calls and returns to different points in the computation. In the setting without
ownership transfer, these actions are thread-local and can be moved easily; however,
once they involve ownership transfer, they become global and the justification of their
moves becomes subtle, in particular, relying on the fact that the histories involved are
balanced (see the discussion in Section 4).

To lift the linearizability relation on histories to libraries and establish the Abstrac-
tion Theorem, we define a novel compositional semantics for a language with libraries
that defines the denotation of a library or a client considered separately in an environ-
ment that communicates with the component correctly via ownership transfers (Sec-
tion 6). To define such a semantics for a library, we generalise the folklore notion of its
most general client to allow ownership transfers, which gives us a way to generate all
possible library histories and lift the notion of linearizabiliy to libraries. We prove that
our compositional semantics is sound and adequate with respect to the standard non-
compositional semantics (Lemmas 16 and 17). This, together with the Rearrangement
Lemma, allows us to establish the Abstraction Theorem (Theorem 19, Section 7).

To avoid having to prove the new notion of linearizability from scratch for libraries
that do not access some of the data structures transferred to them, such as concurrent
containers, we propose a frame rule for linearizability (Theorem 22, Section 8). It en-
sures the linearizability of such libraries with respect to a specification with ownership
transfer given their linearizability with respect to a specification without one.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing ver-
ification methods (Section 7). We have also developed a logic, based on separation
logic [14], for establishing our linearizability. Due to space constraints, the details of
the logic are outside the scope of this paper. For the same reason, proofs of most theo-
rems are given in [10, Appendix B].

2 Footprints of States
Our results hold for a class of models of program states called separation algebras [4],
which allow expressing the dynamic memory partitioning between libraries and clients.

Definition 1. A separation algebra is a set Σ, together with a partial commutative,
associative and cancellative operation ∗ on Σ and a unit element ε ∈ Σ. Here unity,
commutativity and associativity hold for the equality that means both sides are defined
and equal, or both are undefined. The property of cancellativity says that for each θ ∈
Σ, the function θ ∗ · : Σ ⇀ Σ is injective.

We think of elements of a separation algebra Σ as portions of program states and the
∗ operation as combining such portions. The partial states allow us to describe parts
of the program state belonging to a library or the client. When the ∗-combination of
two states is defined, we call them compatible. We sometimes use a pointwise lifting
∗ : 2Σ × 2Σ → 2Σ of ∗ to sets of states.

Elements of separation algebras are often defined using partial functions. We use the
following notation: g(x)↓ means that the function g is defined on x, dom(g) denotes
the set of arguments on which g is defined, and g[x : y] denotes the function that has
the same value as g everywhere, except for x, where it has the value y. We also write
for an expression whose value is irrelevant and implicitly existentially quantified.

Below is an example separation algebra RAM:

Loc = {1, 2, . . .}; Val = Z; RAM = Loc⇀fin Val.

A (partial) state in this model consists of a finite partial function from allocated memory
locations to the values they store. The ∗ operation on RAM is defined as the disjoint
function union], with the everywhere-undefined function [] as its unit. Thus, the ∗
operation combines disjoint pieces of memory.

We define a partial operation \ : Σ ×Σ ⇀ Σ, called state subtraction, as follows:
θ2 \ θ1 is a state in Σ such that θ2 = (θ2 \ θ1) ∗ θ1; if such a state does not exist, θ2 \ θ1
is undefined. When reasoning about ownership transfer between a library and a client,
we use the ∗ operation to express a state change for the component that is receiving the
ownership of memory, and the \ operation, for the one that is giving it up.

Our definition of linearizability uses a novel formalisation of a footprint of a state,
which, informally, describes the amount of memory or permissions the state includes.

Definition 2. A footprint of a state θ in a separation algebra Σ is the set of states
δ(θ) = {θ′ | ∀θ′′. (θ′ ∗ θ′′)↓ ⇔ (θ ∗ θ′′)↓}.

The function δ computes the equivalence class of states with the same footprint as θ. In
the case of RAM, we have δ(θ) = {θ′ | dom(θ) = dom(θ′)} for every θ ∈ RAM. Thus,
states with the same footprint contain the same memory cells.

Let F(Σ) = {δ(θ) | θ ∈ Σ} be the set of footprints in a separation algebra Σ. We
now lift the ∗ and \ operations onΣ toF(Σ). First, we define the operation ◦ : F(Σ)×
F(Σ)⇀ F(Σ) for adding footprints. Consider l1, l2 ∈ F(Σ) and θ1, θ2 ∈ Σ such that
l1 = δ(θ1) and l2 = δ(θ2). If θ1 ∗ θ2 is defined, we let l1 ◦ l2 = δ(θ1 ∗ θ2); otherwise
l1 ◦ l2 is undefined. Choosing θ1 and θ2 differently does not lead to a different result
[10, Appendix B]. For RAM, ◦ is just a pointwise lifting of ∗. To define a subtraction
operation on footprints, we use the following condition.

Definition 3. The ∗ operation of a separation algebra Σ is cancellative on footprints
when for all θ1, θ2, θ′1, θ

′
2 ∈ Σ, if θ1 ∗ θ2 and θ′1 ∗ θ′2 are defined, then

(δ(θ1 ∗ θ2) = δ(θ′1 ∗ θ′2) ∧ δ(θ1) = δ(θ′1))⇒ δ(θ2) = δ(θ′2).

For example, the ∗ operation on RAM satisfies this condition.
When ∗ of Σ is cancellative on footprints, we can define an operation \ : F(Σ) ×

F(Σ) ⇀ F(Σ) of footprint subtraction as follows. Consider l1, l2 ∈ F(Σ). If for
some θ1, θ2, θ ∈ Σ, we have l1 = δ(θ1), l2 = δ(θ2) and θ2 = θ1 ∗ θ, then we let
l2 \ l1 = δ(θ). When such θ1, θ2, θ do not exist, l2 \ l1 is undefined. Again, we can
show that this definition is well-formed [10, Appendix B]. We say that a footprint l1 is
smaller than l2, written l1 � l2, when l2 \ l1 is defined. In the rest of the paper, we fix
a separation algebra Σ with the ∗ operation cancellative on footprints.

3 Linearizability with Ownership Transfer
In the following, we consider descriptions of computations of a library providing sev-
eral methods to a multithreaded client. We fix the set ThreadID of thread identifiers and
the set Method of method names. A good definition of linearizability has to allow re-
placing a concrete library implementation with its abstract version while keeping client
behaviours reproducible. For this, it should require that the two libraries have similar
client-observable behaviours. Such behaviours are recorded using histories, which we
now define in our setting.

Definition 4. An interface action ψ is an expression of the form (t, call m(θ)) or
(t, retm(θ)), where t ∈ ThreadID, m ∈ Method and θ ∈ Σ.

An interface action records a call to or a return from a library method m by thread
t. The component θ in (t, call m(θ)) specifies the part of the state transferred upon the
call from the client to the library; θ in (t, retm(θ)) is transferred in the other direction.
For example, in the algebra RAM (Section 2), the annotation θ = [42 : 0] implies the
transfer of the cell at the address 42 storing 0.

Definition 5. A history H is a finite sequence of interface actions such that for every
thread t, its projection H|t to actions by t is a sequence of alternating call and return
actions over matching methods that starts from a call action.

In the following, we use the standard notation for sequences: ε is the empty se-
quence, α(i) is the i-th element of a sequence α, and |α| is the length of α.

Not all histories make intuitive sense with respect to the ownership transfer reading
of interface actions. For example, let Σ = RAM and consider the history

(1, callm1([10 : 0])) (2, callm2([10 : 0]))(2, retm2([])) (1, retm1([])).

The history is meant to describe all the interactions between the library and the client.
According to the history, the cell at the address 10 was first owned by the client, and
then transferred to the library by thread 1. However, before this state was transferred
back to the client, it was again transferred from the client to the library, this time by
thread 2. This is not consistent with the intuition of ownership transfer, as executing the
second action requires the cell to be owned both by the library and by the client, which
is impossible in RAM.

As we show in this paper, histories that do not respect the notion of ownership, such
as the one above, cannot be generated by any program, and should not be taken into
account when defining linearizability. We use the notion of footprints of states from
Section 2 to characterise formally the set of histories that respect ownership.

A finite history H induces a partial function JHK] : F(Σ) ⇀ F(Σ), which tracks
how a computation with the history H changes the footprint of the library state:

JεK]l = l; JHψK]l = JHK]l ◦ δ(θ), if ψ = (, call (θ)) ∧ (JHK]l ◦ δ(θ))↓;
JHψK]l = JHK]l \ δ(θ), if ψ = (, ret (θ)) ∧ (JHK]l \ δ(θ))↓;
JHψK]l = undefined, otherwise.

Definition 6. A history H is balanced from l ∈ F(Σ) if JHK](l) is defined.

Let BHistory = {(l,H) | H is balanced from l} be the set of balanced histories and
their initial footprints.

Definition 7. Linearizability is a binary relation v on BHistory defined as follows:
(l,H) v (l′, H ′) holds iff (i) l′ � l; (ii) H|t = H ′|t for all t ∈ ThreadID; and (iii)
there exists a bijection π : {1, . . . , |H|} → {1, . . . , |H ′|} such that for all i and j,

H(i) = H ′(π(i)) ∧ ((i < j ∧H(i) = (, ret) ∧H(j) = (, call))⇒ π(i) < π(j)).

A history H ′ linearizes a history H when it is a permutation of the latter preserving
the order of actions within threads and non-overlapping method invocations. We addi-
tionally require that the initial footprint of H ′ be smaller than that of H , which is a
standard requirement in data refinement [8]. It does not pose problems in practice, as
the abstract library generating H ′ usually represents some of the data structures of the
concrete library as abstract data types, which do not use the heap.

Definition 7 treats parts of memory whose ownership is passed between the library
and the client in the same way as parameters and return values in the classical defini-
tion [12]: they are required to be the same in the two histories. In fact, the setting of
the classical definition can be modelled in ours if we pass parameters and return values
via the heap. The novelty of our definition lies in restricting the histories considered to
balanced ones. This restriction is required for our notion of linearizability to be correct
in the sense of the Rearrangement Lemma established in the next section.

4 Rearrangement Lemma
Intuitively, the Rearrangement Lemma says that, if H v H ′, then every execution trace
of a library producing H ′ can be transformed into another trace of the same library that
differs from the original one only in interface actions and produces H , instead of H ′.
This property is the key component for establishing the correctness of linearizability on
libraries, formulated by the Abstraction Theorem in Section 7.

Primitive commands. We first define a set of primitive commands that clients and
libraries can execute to change the memory atomically. Consider the set 2Σ ∪ {>} of
subsets of Σ with a special element > used to denote an error state, resulting, e.g.,
from dereferencing an invalid pointer. We assume a collection of primitive commands
PComm and an interpretation of every c ∈ PComm as a transformer f tc : Σ → (2Σ ∪
{>}), which maps pre-states to states obtained when thread t ∈ ThreadID executes c
from a pre-state. The fact that our transformers are parameterised by t allows atomic
accesses to areas of memory indexed by thread identifiers. This idealisation simplifies
the setting in that it lets us do without special thread-local or method-local storage for
passing method parameters and return values. For our results to hold, we need to place
some standard restrictions on the transformers f tc (see [10, Appendix A]).

Traces. We record information about a program execution, including internal actions
by components, using traces.

Definition 8. An action ϕ is either an interface action or an expression of the form
(t, c), where t ∈ ThreadID and c ∈ PComm. We denote the set of all actions by Act.

Definition 9. A trace τ is a finite sequence of actions such that its projection history(τ)
to interface actions is a history. A trace η is a client trace, if

∀i, j, t, c. i < j ∧ η(i) = (t, call)∧ η(j) = (t, c)⇒ ∃k. i < k < j ∧ η(k) = (t, ret).

A trace ξ is a library trace, if

∀i, t, c. ξ(i)= (t, c)⇒ ∃j. j < i ∧ ξ(j)= (t, call) ∧ ¬∃k. i< k < j ∧ ξ(k)= (t, ret).

In other words, a thread in a client trace cannot execute actions inside a library method,
and in a library trace, outside it. We denote the set of all traces by Trace. In the follow-
ing, η denotes client traces, ξ, library traces, and τ , arbitrary ones.

In this section, we are concerned with library traces only. For a library trace ξ, we
define a function JξKlib : 2Σ → (2Σ ∪{>}) that evaluates ξ, computing the state of the
memory after executing the sequence of actions given by the trace. We first define the
evaluation of a single action ϕ by JϕKlib : Σ → (2Σ ∪ {>}):

J(t, c)Klibθ = f tc(θ); J(t, call m(θ0))Klibθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅;
J(t, ret m(θ0))Klibθ = if (θ \ θ0)↓ then {θ \ θ0} else >.

The evaluation of call and return actions follows their ownership transfer reading ex-
plained in Section 3: upon a call to a library, the latter gets the ownership of the specified
piece of state; upon a return, the library gives it up. In the former case, only transfers
of states compatible with the current library state are allowed. In the latter case, the
computation faults when the required piece of state is not available, which ensures that
the library respects the contract with its client.

Let us lift JϕKlib to 2Σ pointwise: for p ∈ 2Σ we let JϕKlibp =
⋃
{JϕKlibθ | θ ∈ p},

if ∀θ ∈ p. JϕKlibθ 6= >; otherwise, JϕKlibp = >. We then define the evaluation JξKlib :
2Σ → (2Σ ∪ {>}) of a library trace ξ as follows:

JεKlibp = p; JξϕKlibp = if (JξKlibp 6= >) then JϕKlib(JξKlibp) else >.

In the following, we write JξKlibθ for JξKlib({θ}). Using trace evaluation, we can
define when a particular trace can be safely executed.

Definition 10. A library trace ξ is executable from θ when JξKlibθ 6∈ {∅,>}.
Proposition 11. If ξ is a library trace executable from θ, then history(ξ) is balanced
from δ(θ).

Definition 12. Library traces ξ and ξ′ are equivalent, written ξ ∼ ξ′, if ξ|t = ξ′|t for
all t ∈ ThreadID, and the projections of ξ and ξ′ to non-interface actions are identical.

Lemma 13 (Rearrangement). Assume (δ(θ), H) v (δ(θ′), H ′). If a trace ξ′ is exe-
cutable from θ′ and history(ξ′) = H ′, then there exists a trace ξ executable from θ′

such that history(ξ) = H and ξ ∼ ξ′.

The proof transforms ξ′ into ξ by repeatedly swapping adjacent actions according to
a certain strategy to make the history of the trace equal to H . The most subtle place
in the proof is swapping (t1, ret m1(θ1)) and (t2, call m2(θ2)), where t1 6= t2. The
justification of this transformation relies on the fact that the target historyH is balanced.
Consider the case when θ1 = θ2 = θ. Then the two actions correspond to the library
first transferring θ to the client and then getting it back. It is impossible for the client
to transfer θ to the library earlier, unless it already owned θ before the return in the
original trace (this may happen when θ describes only partial permissions for a piece
of memory, and thus, its instances can be owned by the client and the library at the

same time). Fortunately, using the fact that H is balanced, we can prove that the latter
is indeed the case, and hence, the actions commute.

So far we have used the notion of linearizability on histories, without taking into
account library implementations that generate them. In the rest of the paper, we lift
this notion to libraries, written in a particular programming language, and prove an
Abstraction Theorem, which guarantees that a library can be replaced by another library
linearizing it when we reason about its client program.

5 Programming Language
We consider a simple concurrent programming language:

C ::= c |m |C;C |C +C |C∗ L ::= {m=C; . . . ; m=C} S ::= letL inC ‖ . . . ‖C

A program consists of a library L implementing methods m ∈ Method and its client
C1 ‖ . . . ‖Cn, given by a parallel composition of threads. The commands include prim-
itive commands c ∈ PComm, method calls m ∈ Method, sequential composition
C;C ′, nondeterministic choice C + C ′ and iteration C∗. We use + and ∗ instead of
conditionals and while loops for theoretical simplicity: the latter can be defined in the
language as syntactic sugar. Methods do not take arguments and do not return values:
these can be passed via special locations on the heap associated with the identifier of
the thread calling the method. We assume that every method called in the program is
defined by the library, and that there are no nested method calls.

An open program is one without a library (denoted C) or a client (denoted L):

C ::= let [−] in C ‖ . . . ‖ C L ::= let L in [−] P ::= S | C | L

In C, we allow the client to call methods that are not defined in the program (but belong
to the missing library). We call S a complete program. Open programs represent a
library or a client considered in isolation. The novelty of the kind of open programs
we consider here is that we allow them to communicate with their environment via
ownership transfers. We now define a way to specify a contract this communication
follows.

A predicate is a set of states from Σ, and a parameterised predicate is a map-
ping from thread identifiers to predicates. We use the same symbols p, q, r for ordinary
and parameterised predicates. When p is a parameterised predicate, we write pt for the
predicate obtained by applying p to a thread t. Both kinds of predicates can be described
syntactically, e.g., using separation logic assertions ([14] and [10, Appendix C]).

We describe possible ownership transfers between components with the aid of
method specifications Γ , which are sets of Hoare triples {p}m {q}, at most one for
each method. Here p and q are parameterised predicates such that pt describes pieces of
state transferred when thread t calls the methodm, and qt, those transferred at its return.
Note that the pre- and postconditions in method specifications only identify the areas of
memory transferred; in other words, they describe the “type” of the returned data struc-
ture, but not its “value”. As usual for concurrent algorithms, a complete specification of
a library is given by its abstract implementation (Section 7).

For example, as we discussed in Section 1, clients of a memory allocator transfer the
ownership of memory cells at calls to and returns from it. In particular, the specifications
of the allocator methods look approximately as follows:

{emp}alloc{(r=0∧ emp)∨ (r 6=0∧Block(r))} {Block(blk)}free(blk){emp}

Here r denotes the return value of alloc; blk, the actual parameter of free; emp, the
empty heap ε; and Block(r), a block of memory at address r managed by the allocator.

To define the semantics of ownership transfers unambiguously, we require pre- and
postconditions to be precise.

Definition 14. A predicate r ∈ 2Σ is precise [13] if for every state θ there exists at
most one substate θ1 satisfying r, i.e., such that θ1 ∈ r and θ = θ1 ∗ θ2 for some θ2.

Note that, since the ∗ operation is cancellative, when such a substate θ1 exists, the cor-
responding substate θ2 is unique and is denoted by θ \ r. Informally, a precise predicate
carves out a unique piece of the heap. A parameterised predicate r is precise if so is rt
for every t.

A specified open program is of the form Γ ` C or L : Γ . In the former, the
specification Γ describes all the methods without implementations that C may call. In
the latter, Γ provides specifications for the methods in the open program that can be
called by its external environment. In both cases, Γ specifies the type of another open
program that can fill in the hole in C or L. When we are not sure which form a program
has, we write Γ ` P : Γ ′, where Γ is empty if P does not have a client, Γ ′ is empty if
it does not have a library, and both of them are empty if the program is complete.

For open programs Γ ` C = let [−] in C1 ‖ . . . ‖ Cn and L : Γ = let L in [−], we
denote by C(L) the complete program let L in C1 ‖ . . . ‖ Cn.

6 Client-Local and Library-Local Semantics
We now give the semantics to complete and open programs. In the latter case, we define
component-local semantics that include all behaviours of an open program under any
environment satisfying the specification associated with it. In Section 7, we use these
to lift linearizability to libraries and formulate the Abstraction Theorem.

We define program semantics in two stages. First, given a program, we generate
the set of all its traces possible. This is done solely based on the structure of its state-
ments, without taking into account restrictions arising from the semantics of primitive
commands or ownership transfers. The next step filters out traces that are not consistent
with these restrictions using a trace evaluation process similar to that in Section 4.

Trace sets. Consider a program Γ ` P : Γ ′ and letM ⊆ Method be the set of methods
implemented by its library or called by its client. We define the trace set LΓ ` P :
Γ ′ M ∈ 2Trace of P in Figure 1. We first define the trace set LC MΓt S of a command
C, parameterised by the identifier t of the thread executing it, a method specification
Γ , and a mapping S ∈ M × ThreadID → 2Trace giving the trace set of the body of
every method that C can call when executed by a given thread. The trace set of a client
LC1 ‖ . . . ‖ Cn MΓS is obtained by interleaving traces of its threads.

The trace set LC(L)M of a complete program is that of its client computed with
respect to a mapping λm, t. LCm Mt() associating every method m with the trace set
of its body Cm. Since we prohibit nested method calls, LCm M does not depend on the
Γ and S parameters. Since the program is complete, we use a method specification Γε
with empty pre- and postconditions for computing LC1 ‖ . . . ‖Cn M. We prefix-close
the resulting trace set to take into account incomplete executions. A program Γ ` C
generates client traces LΓ ` C M, which do not include internal library actions. This is
enforced by associating an empty trace with every library method. Finally, a program
L : Γ ′ generates all possible library traces LL : Γ ′ M. This is achieved by running

LcMΓt S = {(t, c)}; LC1 +C2 MΓt S = LC1 MΓt S ∪ LC2 MΓt S; LC∗ MΓt S = ((LC MΓt)S)∗;
LmMΓt S = {(t, call m(θp)) τ (t, ret m(θq)) | τ ∈ S(m, t) ∧ θp ∈ pmt ∧ θq ∈ qmt };
LC1;C2 MΓt S = {τ1τ2 | τ1 ∈ LC1 MΓt S ∧ τ2 ∈ LC2 MΓt S};
LC1 ‖ . . . ‖ Cn MΓS =

⋃
{τ1 ‖ . . . ‖ τn | ∀t = 1..n. τt ∈ LCt MΓt S};

L let {m = Cm | m ∈M} in C1 ‖ . . . ‖Cn M = prefix(LC1 ‖ . . . ‖Cn MΓε(λm, t. LCm Mt()));

LΓ ` let [−] in C1 ‖ . . . ‖ Cn M = prefix(LC1 ‖ . . . ‖ Cn MΓ (λm, t. {ε}));
L let {m = Cm | m ∈M} in [−] : Γ M =

prefix
(⋃

k≥1LCmgc ‖ . . . (k times) . . . ‖ Cmgc MΓ (λm, t. LCm Mt())
)
.

Fig. 1. Trace sets of commands and programs. Here Γε =
{{
{ε}
}
m
{
{ε}
}
| m ∈M

}
, Γ =

{{pm}m {qm} | m ∈ M}, M = {m1, . . . ,mj}, Cmgc = (m1 + . . . +mj)
∗, and prefix(T)

is the prefix closure of T . Also, τ ∈ τ1 ‖ . . . ‖ τn if and only if every action in τ is done by a
thread t ∈ {1, . . . , n} and for all such t, we have τ |t = τt.

the library under its most general client, where every thread executes an infinite loop,
repeatedly invoking arbitrary library methods.

Evaluation. The set of traces generated using L ·M may include those not consistent with
the semantics of primitive commands or expected ownership transfers. We therefore
define the meaning of a program JΓ ` P : Γ ′K ∈ Σ → (2Trace ∪ {>}) by evaluating
every trace in LΓ ` P : Γ ′ M to determine whether it is executable.

First, consider a library L : Γ ′. In this case we use the evaluation function J·Klib
defined in Section 4. We let JL : Γ ′Kθ = >, if

∃ξ, t. (∃c. JξKlibθ 6= > ∧ ξ (t, c) ∈ LL : Γ ′ M ∧ f tc(θ) = >) ∨
(∃m, θq. JξKlibθ 6= > ∧ ξ (t, retm(θq)) ∈ LL : Γ ′ M

∧ ∀θ′q. ξ (t, retm(θ′q)) ∈ LL : Γ ′ M⇒ Jξ (t, retm(θ′q))Klibθ = >).

Thus, the library has no semantics if a primitive command in one of its executions
faults, or the required piece of state is not available for transferring to the client at a
method return. Otherwise, JL : Γ ′Kθ = {ξ | ξ ∈ LL : Γ ′ M ∧ JξKlibθ 6∈ {∅,>}}. This
gives a library-local semantics to L, in the sense that it takes into account only the
part of the program state owned by the library and considers its behaviour under any
client respecting Γ ′. This generalises the standard notion of the most general client to
situations where the library performs ownership transfers. Lemma 16 below confirms
that the client defined by LL : Γ ′ M and J·Klib is indeed most general, as it reproduces
library behaviours under any possible clients.

To give a semantics to Γ ` C, we define an evaluation function JηKclient : 2Σ →
(2Σ ∪ {>}) for client traces η. To this end, we define the evaluation of a single action
ϕ by JϕKclient : Σ → (2Σ ∪ {>}) and then lift it to client traces as in Section 4:

J(t, c)Kclientθ = f tc(θ); J(t, call m(θ0))Kclientθ = if (θ \ θ0)↓ then {θ \ θ0} else >;
J(t, ret m(θ0))Kclientθ = if (θ ∗ θ0)↓ then {θ ∗ θ0} else ∅.

When a thread t calls a method m in Γ , it transfers the ownership of the specified piece
of state to the library being called. The evaluation faults if the state to be transferred
is not available, which ensures that the client respects the specifications of the library.

When the method returns, the client receives the ownership of the specified piece of
state, which has to be compatible with the state of the client. We let JΓ ` CKθ = >, if

∃η, t. (∃c. JηKclientθ 6= > ∧ η (t, c) ∈ LΓ ` C M ∧ f tc(θ) = >) ∨
(∃m, θp. JηKclientθ 6= > ∧ η (t, callm(θp)) ∈ LΓ ` C M

∧ ∀θ′p. η (t, callm(θ′p)) ∈ LΓ ` C M⇒ Jη (t, retm(θ′p))Kclientθ = >).

Otherwise, JΓ ` CKθ = {η | η ∈ LΓ ` C M ∧ JηKclientθ 6∈ {∅,>}}. This gives a client-
local semantics to C, in the sense that it takes into account only the part of the state
owned by the client and considers its behaviour when using any library respecting Γ .

Finally, for a complete program C(L), we let JC(L)Kθ = >, if ∃τ. τ ∈ LC(L)M ∧
JτKlibθ = >; otherwise, JC(L)Kθ = {τ | τ ∈ LC(L)M ∧ JτKlibθ 6= ∅} (note that using
J·Kclient here would yield the same result). For a set of initial states I ⊆ Σ, let

J(Γ ` P : Γ ′), IK = {(θ, τ) | θ ∈ I ∧ τ ∈ JΓ ` P : Γ ′Kθ}.

Definition 15. A program Γ ` P : Γ ′ is safe at θ, if JΓ ` P : Γ ′Kθ 6= >; P is safe for
I ⊆ Σ, if it is safe at θ for all θ ∈ I .

Commands fault when accessing memory cells that are not present in the state they are
run from. Thus, the safety of a program guarantees that it does not touch the part of
the heap belonging to its environment. Besides, calls to methods in Γ and returns from
methods in Γ ′ fault when the piece of state they have to transfer is not available. Thus,
the safety of the program also ensures that it respects the contract with its environment
given by Γ or Γ ′.

While decomposing the verification of a closed program into the verification of
its components, we rely on the above properties to ensure that we can indeed reason
about the components in isolation, without worrying about the interference from their
environment. In particular, our definition of linearizability on libraries considers only
safe libraries (Section 7).

Soundness and adequacy. The client-local and library-local semantics are sound and
adequate with respect to the global semantics of the complete program. These properties
are used in the proof of the Abstraction Theorem.

Let ground be a function on traces that replaces the state annotations θ of all inter-
face actions with ε. For a trace τ , we define its projection client(τ) to actions executed
by the client code: we include ϕ = (t,) with τ = τ ′ϕτ ′′ into the projection, if (i) ϕ is
an interface action; or (ii) ϕ is outside an invocation of a method, i.e., it is not the case
that τ |t = τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action. We also use
a similar projection lib(τ) to library actions.

The following lemma shows that a trace of C(L) generates two traces in the client-
local and library-local semantics with the same history. The lemma thus carries over
properties of the local semantics, such as safety, to the global one, and in this sense is
the statement of the soundness of the former with respect to the latter.

Lemma 16 (Soundness). Assume Γ ` C and L : Γ safe for I1 and I2, respectively.
Then so is C(L) for I1 ∗ I2 and

∀(θ, τ) ∈ JC(L), I1 ∗ I2K.∃(θ1, η) ∈ JC, I1K.∃(θ2, ξ) ∈ JL, I2K. θ = θ1 ∗ θ2 ∧
history(η) = history(ξ) ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

The following lemma states that any pair of client-local and library-local traces agreeing
on the history can be combined into a trace of C(L). It thus carries over properties of
the global semantics to the local ones, stating the adequacy of the latter.

Lemma 17 (Adequacy). If L : Γ and Γ ` C are safe for I1 and I2, respectively, then

∀(θ1, η) ∈ JC, I1K.∀(θ2, ξ) ∈ JL, I2K. ((θ1 ∗ θ2)↓ ∧ history(η) = history(ξ))⇒
∃τ. (θ1 ∗ θ2, τ) ∈ JC(L), I1 ∗ I2K ∧ client(τ) = ground(η) ∧ lib(τ) = ground(ξ).

7 Abstraction Theorem
We are now in a position to lift the notion of linearizability on histories to libraries and
prove the central technical result of this paper—the Abstraction Theorem. We define
linearizability between specified libraries L : Γ , together with their sets of initial states
I . First, using the library-local semantics, we define the set of histories of a library L
with the set of initial states I: history(L, I) = {(δ(θ0), history(τ)) | (θ0, τ) ∈ JL, IK}.
Definition 18. Consider L1 : Γ and L2 : Γ safe for I1 and I2, respectively. We say
that (L2, I2) linearizes (L1, I1), written (L1, I1) v (L2, I2), if

∀(l1, H1) ∈ history(L1, I1).∃(l2, H2) ∈ history(L2, I2). (l1, H1) v (l2, H2).

Thus, (L2, I2) linearizes (L1, I1) if every behaviour of the latter may be reproduced in
a linearized form by the former without requiring more memory.

Theorem 19 (Abstraction). If L1 : Γ , L2 : Γ , Γ ` C are safe for I1, I2, I , respec-
tively, and (L1, I1)v (L2, I2), then C(L1) and C(L2) are safe for I ∗ I1 and I ∗ I2,
respectively, and

∀(θ1, τ1) ∈ JC(L1), I ∗ I1K.∃(θ2, τ2) ∈ JC(L2), I ∗ I2K. client(τ1) = client(τ2).

Thus, when reasoning about a client C(L1) of a library L1, we can soundly replace L1

with a library L2 linearizing it: if a linear-time safety property over client actions holds
of C(L2), it will also hold of C(L1). In practice, we are usually interested in atomicity
abstraction, a special case of this transformation when methods in L2 are atomic. The
theorem is restricted to safety properties as, for simplicity, in this paper we consider
only finite histories and traces. Our results can be generalised to the infinite case as
in [9]. The requirement that C be safe in the theorem restricts its applicability to healthy
clients that do not access library internals.

To prove Theorem 19, we first lift Lemma 13 to traces in the library-local semantics.

Corollary 20. If (δ(θ), H) v (δ(θ′), H ′) and L is safe at θ′, then

∀ξ′ ∈ JLKθ′. history(ξ′) = H ′ ⇒ ∃ξ ∈ JLKθ′. history(ξ) = H.

Thus, if (L1, I1) v (L2, I2), then the set of histories of L1 is a subset of those of L2:
linearizability is a sound criterion for proving that one library simulates another.

Proof of Theorem 19. The safety of C(L1) and C(L2) follows from Lemma 16. Take
(θ, τ1) ∈ JC(L1), I ∗ I1K. We transform the trace τ1 of C(L1) into a trace τ2 of C(L2)
with the same client projection using the local semantics of L1, L2 and C. Namely,
we first apply Lemma 16 to generate a pair of a library-local initial state and a trace

(θ1l , ξ1) ∈ JL1, I1K and a client-local pair (θc, η) ∈ JC, IK, such that θ = θc ∗ θ1l ,
client(τ1) = ground(η) and history(η) = history(ξ1). Since (L1, I1) v (L2, I2),
for some (θ2l , ξ2) ∈ JL2, I2K, we have δ(θ2l) � δ(θ1l) and (δ(θ1l), history(ξ1)) v
(δ(θ2l), history(ξ2)). By Corollary 20, ξ2 can be transformed into a trace ξ′2 such that
(θ2l , ξ

′
2) ∈ JL2, I2K and history(ξ′2) = history(ξ1) = history(η). Since δ(θ2l) � δ(θ1l)

and (θc ∗ θ1l)↓, we have (θc ∗ θ2l)↓. We then use Lemma 17 to compose the library-local
trace ξ′2 with the client-local one η into a trace τ2 such that (θc∗θ2l , τ2) ∈ JC(L2), I∗I2K
and client(τ2) = ground(η) = client(τ1). ut

Establishing linearizability with ownership transfer and its applications. We have
developed a logic for proving linearizability in the sense of Definition 18, which gen-
eralises an existing proof system [16] based on separation logic [14] to the setting with
ownership transfer. The logic uses the usual method of proving linearizability based on
linearization points [1, 12, 16] and treats ownership transfers between a library and its
environment in the same way as transfers between procedures and their callers in sep-
aration logic. Due to space constraints, the details of the logic are beyond the scope of
this paper and are described in [10, Appendix D]. We mention the logic here to empha-
sise that our notion of linearizability can indeed be established effectively.

The Abstraction Theorem is not just a theoretical result: it enables compositional
reasoning about complex concurrent algorithms that are challenging for existing veri-
fication methods. For example, the theorem can be used to justify Vafeiadis’s compo-
sitional proof [16, Section 5.3] of the multiple-word compare-and-swap (MCAS) algo-
rithm implemented using an auxiliary operation called RDCSS [11] (the proof used an
abstraction of the kind enabled by Theorem 19 without justifying its correctness). If
the MCAS algorithm were verified together with RDCSS, its proof would be extremely
compicated. Fortunately, we can consider MCAS as a client of RDCSS, with the two
components performing ownership transfers between them. The Abstraction Theorem
then makes the proof tractable by allowing us to verify the linearizability of MCAS
assuming an atomic specification of the inner RDCSS algorithm.

8 Frame Rule for Linearizability
Libraries such as concurrent containers are used by clients to transfer the ownership of
data structures, but do not actually access their contents. We show that for such libraries,
the classical linearizability implies linearizability with ownership transfer.

Definition 21. A method specification Γ ′ = {{rm}m {sm} | m ∈ M} extends a
specification Γ = {{pm}m {qm} | m ∈M}, if ∀t. rmt ⊆ pmt ∗Σ ∧ smt ⊆ qmt ∗Σ.

For example, Γ might say that a method m receives a pointer x as a parameter:
{∃x. param[t] 7→ x}m {param[t] 7→ }, where t is the identifier of the thread call-
ing m. Then Γ ′ may mandate that the cell the pointer identifies be transferred to the
method: {∃x. param[t] 7→ x ∗ x 7→ }m {param[t] 7→ }. For a history H , let THUΓ
be the result of replacing every action ϕ in H by the action TϕUΓ defined as follows:

T(t, callm(θ))UΓ = (t, callm(θ \ pmt)); T(t, retm(θ))UΓ = (t, retm(θ \ qmt)).

THUΓ is undefined if so is the result of any of the \ operations above. The operation
selects the extra pieces of state not required by Γ .

Theorem 22 (Frame rule). Assume (i) for all i ∈ {1, 2}, Li : Γ and Li : Γ ′ are safe
for Ii and Ii ∗ I , respectively; (ii) (L1 : Γ, I1) v (L2 : Γ, I2); (iii) Γ ′ extends Γ ; and
(iv) for every (θ0, θ

′
0) ∈ I1 × I and ξ ∈ JL1 : Γ ′K(θ0 ∗ θ′0), the trace Thistory(ξ)UΓ is

executable from θ′0. Then (L1 : Γ ′, I1 ∗ I) v (L2 : Γ ′, I2 ∗ I).
The proof of the theorem relies on Corollary 20. The linearizability relation established
in the theorem enables the use of the Abstraction Theorem for clients performing owner-
ship transfer. The safety requirement on L1 and L2 with respect to Γ ′ is needed because
Γ ′ not only transfers extra memory to the library in its preconditions, but also takes it
back in its postconditions. The requirement (iv) ensures that the extra memory required
by postconditions in Γ ′ comes from the extra memory provided in its preconditions and
the extension of the initial state, not from the memory transferred according to Γ .

9 Related Work
In our previous work, we proved Abstraction Theorems for definitions of linearizability
supporting reasoning about liveness properties [9] and weak memory models [3]. These
definitions assumed that the library and its client operate in disjoint address spaces and,
hence, are guaranteed not to interfere with each other and cannot communicate via the
heap. Lifting this restriction is the goal of the present paper. Although we borrow the
basic proof structure of Theorem 19 from [3], including the split into Lemmas 13, 16
and 17, the formulations and proofs of the Abstraction Theorem and the lemmas here
have to deal with technical challenges posed by ownership transfer that did not arise
in previous work. First, their formulations rely on the novel forms of client-local and
library-local semantics, and in particular, the notion of the most general client (Sec-
tion 6), that allow a component to communicate with its environment via ownership
transfers. Proving Lemmas 16 and 17 then involves a delicate tracking of a splitting
between the parts of the state owned by the library and the client, and how ownership
transfers affect it. Second, the key result needed to establish the Abstraction Theorem
is the Rearrangement Lemma (Lemma 13). What makes the proof of this lemma dif-
ficult in our case is the need to deal with subtle interactions between concurrency and
ownership transfer that have not been considered in previous work. Namely, changing
the history of a sequential library specification for one of its concurrent implementation
in the lemma requires commuting ownership transfer actions; justifying the correctness
of these transformations is non-trivial and relies on the notion of history balancedness
that we propose.

Recently, there has been a lot of work on verifying linearizability of common al-
gorithms; representative papers include [1, 6, 16]. All of them proved classical lineariz-
ability, where libraries and their clients exchange values of a given data type and do not
perform ownership transfers. This includes even libraries such as concurrent containers
discussed in Section 1, that are actually used by client threads to transfer the ownership
of data structures. The frame rule for linearizability we propose (Theorem 22) justifies
that classical linearizability established for concurrent containers entails linearizabil-
ity with ownership transfer. This makes our Abstraction Theorem applicable, enabling
compositional reasoning about their clients.

Turon and Wand [15] have proposed a logic for establishing refinements between
concurrent modules, likely equivalent to linearizability. Their logic considers libraries
and clients residing in a shared address space, but not ownership transfer. It assumes
that the client does not access the internal library state; however, their paper does not

provide a way of checking this condition. As a consequence, Turon and Wand do not
propose an Abstraction Theorem strong enough to support separate reasoning about a
library and its client in realistic situations of the kind we consider.

Elmas et al. [6,7] have developed a system for verifying concurrent programs based
on repeated applications of atomicity abstraction. They do not use linearizability to
perform the abstraction. Instead, they check the commutativity of an action to be incor-
porated into an atomic block with all actions of other threads. In particular, to abstract
a library implementation in a program by its atomic specification, their method would
have to check the commutativity of every internal action of the library with all actions
executed by the client code of other threads. Thus, the method of Elmas et al. does not
allow decomposing the verification of a program into verifying libraries and their clients
separately. In contrast, our Abstraction Theorem ensures the atomicity of a library under
any healthy client.

Ways of establishing relationships between different sequential implementations of
the same library have been studied in data refinement, including cases of interactions
via ownership transfer [2, 8]. Our results can be viewed as generalising data refinement
to the concurrent setting.

Acknowledgements. We would like to thank Anindya Banerjee, Josh Berdine, Xinyu
Feng, Hongjin Liang, David Naumann, Peter O’Hearn, Matthew Parkinson, Noam
Rinetzky and Julles Villard for helpful comments. Yang was supported by EPSRC.

References
1. D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison under abstraction

for verifying linearizability. In CAV, 2007.
2. A. Banerjee and D. A. Naumann. Ownership confinement ensures representation indepen-

dence in object-oriented programs. JACM, 52(6), 2005.
3. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on

the TSO memory model. In ESOP, 2012.
4. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic. In LICS,

2007.
5. D. G. Clarke, J. Noble, and J. M. Potter. Simple ownership types for object containment. In

ECOOP, 2001.
6. T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. Simplifying linearizability proofs

with reduction and abstraction. In TACAS, 2010.
7. T. Elmas, S. Qadeer, and S. Tasiran. A calculus of atomic actions. In POPL, 2009.
8. I. Filipović, P. O’Hearn, N. Torp-Smith, and H. Yang. Blaiming the client: On data refinement

in the presence of pointers. FAC, 22(5), 2010.
9. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP, 2011.

10. Alexey Gotsman and Hongseok Yang. Linearizability with ownership transfer (extended
version). Available from www.software.imdea.org/~gotsman, 2012.

11. T. Harris, K. Fraser, and I. Pratt. A practical multi-word compare-and-swap operation. In
DISC, 2002.

12. M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
TOPLAS, 12(3), 1990.

13. P. O’Hearn. Resources, concurrency and local reasoning. TCS, 375(1-3), 2007.
14. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS, 2002.
15. A. Turon and M. Wand. A separation logic for refining concurrent objects. In POPL, 2011.
16. V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. University of

Cambridge, 2008.
17. V. Vafeiadis. Automatically proving linearizability. In CAV, 2010.

