
Proving Linearizability Using Partial Orders

Artem Khyzha1, Mike Dodds2, Alexey Gotsman1, and Matthew Parkinson3

1 IMDEA Software Institute, Madrid, Spain
2 University of York, UK

3 Microsoft Research Cambridge, UK

Abstract. Linearizability is the commonly accepted notion of correctness for
concurrent data structures. It requires that any execution of the data structure
is justified by a linearization — a linear order on operations satisfying the data
structure’s sequential specification. Proving linearizability is often challenging
because an operation’s position in the linearization order may depend on future
operations. This makes it very difficult to incrementally construct the lineariza-
tion in a proof.
We propose a new proof method that can handle data structures with such future-
dependent linearizations. Our key idea is to incrementally construct not a single
linear order of operations, but a partial order that describes multiple linearizations
satisfying the sequential specification. This allows decisions about the ordering
of operations to be delayed, mirroring the behaviour of data structure implemen-
tations. We formalise our method as a program logic based on rely-guarantee rea-
soning, and demonstrate its effectiveness by verifying several challenging data
structures: the Herlihy-Wing queue, the TS queue and the Optimistic set.

1 Introduction

Linearizability is a commonly accepted notion of correctness of concurrent data struc-
tures. It matters for programmers using such data structures because it implies contex-
tual refinement: any behaviour of a program using a concurrent data structure can be
reproduced if the program uses its sequential implementation where all operations are
executed atomically [4]. This allows the programmer to soundly reason about the be-
haviour of the program assuming a simple sequential specification of the data structure.

Enq(1)

Enq(2)

Enq(3)

Deq(): x

Time

t1

t2

t3

A B
Fig. 1. Example execution.

Linearizability requires that for any exe-
cution of operations on the data structure
there exists a linear order of these opera-
tions, called a linearization, such that: (i)
the linearization respects the order of non-
overlapping operations (the real-time or-
der); and (ii) the behaviour of operations
in the linearization matches the sequential
specification of the data structure. To illustrate this, consider an execution in Figure 1,
where three threads are accessing a queue. Linearizability determines which values x
the dequeue operation is allowed to return by considering the possible linearizations
of this execution. Given (i), we know that in any linearization the enqueues must be
ordered before the dequeue, and Enq(1) must be ordered before Enq(3). Given (ii), a

linearization must satisfy the sequential specification of a queue, so the dequeue must
return the oldest enqueued value. Hence, the execution in Figure 1 has three possible lin-
earizations: [Enq(1); Enq(2); Enq(3); Deq():1], [Enq(1); Enq(3); Enq(2); Deq():1] and
[Enq(2); Enq(1); Enq(3); Deq():2]. This means that the dequeue is allowed to return 1
or 2, but not 3.

For a large class of algorithms, linearizability can be proved by incrementally con-
structing a linearization as the program executes. Effectively, one shows that the pro-
gram execution and its linearization stay in correspondence under each program step
(this is formally known as a forward simulation). The point in the execution of an op-
eration at which it is appended to the linearization is called its linearization point. This
must occur somewhere between the start and end of the operation, to ensure that the
linearization preserves the real-time order. For example, when applying the lineariza-
tion point method to the execution in Figure 1, by point (A) we must have decided if
Enq(1) occurs before or after Enq(2) in the linearization. Thus, by this point, we know
which of the three possible linearizations matches the execution. This method of es-
tablishing linearizability is very popular, to the extent that most papers proposing new
concurrent data structures include a placement of linearization points. However, there
are algorithms that cannot be proved linerizable using the linearization point method.

In this paper we consider several examples of such algorithms, including the time-
stamped (TS) queue [7, 2]—a recent high-performance data structure with an extremely
subtle correctness argument. Its key idea is for enqueues to attach timestamps to val-
ues, and for these to determine the order in which values are dequeued. As illustrated
by the above analysis of Figure 1, linearizability allows concurrent operations, such as
Enq(1) and Enq(2), to take effect in any order. The TS queue exploits this by allow-
ing values from concurrent enqueues to receive incomparable timestamps; only pairs
of timestamps for non-overlapping enqueue operations must be ordered. Hence, a de-
queue can potentially have a choice of the “earliest” enqueue to take values from. This
allows concurrent dequeues to go after different values, thus reducing contention and
improving performance.

The linearization point method simply does not apply to the TS queue. In the execu-
tion in Figure 1, values 1 and 2 could receive incomparable timestamps. Thus, at point
(A) we do not know which of them will be dequeued first and, hence, in which order
their enqueues should go in the linearization: this is only determined by the behaviour
of dequeues later in the execution. Similar challenges exist for other queue algorithms
such as the baskets queue [12], LCR queue [16] and Herlihy-Wing queue [11]. In all of
these algorithms, when an enqueue operation returns, the precise linearization of ear-
lier enqueue operations is not necessarily known. Similar challenges arise in the time-
stamped stack [2] algorithm. We conjecture that our proof technique can be applied to
prove the time-stamped stack linearizable, and we are currently working on a proof.

In this paper, we propose a new proof method that can handle algorithms where
incremental construction of linearizations is not possible. We formalise it as a pro-
gram logic, based on Rely-Guarantee [13], and apply it to give simple proofs to the
TS queue [2], the Herlihy-Wing queue [11] and the Optimistic Set [17]. The key idea
of our method is to incrementally construct not a single linearization of an algorithm
execution, but an abstract history—a partially ordered history of operations such that

it contains the real-time order of the original execution and all its linearizations sat-
isfy the sequential specification. By embracing partiality, we enable decisions about
order to be delayed, mirroring the behaviour of the algorithms. At the same time,
we maintain the simple inductive style of the standard linearization-point method:
the proof of linearizability of an algorithm establishes a simulation between its exe-
cution and a growing abstract history. By analogy with linearization points, we call
the points in the execution where the abstract history is extended commitment points.

(a)

(b)

(c)

Deq(): 2

Enq(3)

Enq(2)

Enq(1)

Deq():?

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Fig. 2. Abstract histories con-
structed for prefixes of the
execution in Figure 1: (a) is at
point (A); (b) is at the start of the
dequeue operation; and (c) is at
point (B). We omit the transitive
consequences of the edges shown.

The extension can be done in several ways: (1) com-
mitting to perform an operation; (2) committing to
an order between previously unordered operatons;
(3) completing an operation.

Consider again the TS queue execution in Fig-
ure 1. By point (A) we construct the abstract history
in Figure 2(a). The edge in the figure is mandated by
the real-time order in the original execution; Enq(1)
and Enq(2) are left unordered, and so are Enq(2) and
Enq(3). At the start of the execution of the dequeue,
we update the history to the one in Figure 2(b). A
dashed ellipse represents an operation that is not yet
completed, but we have committed to performing it
(case 1 above). When the dequeue successfully re-
moves a value, e.g., 2, we update the history to the
one in Figure 2(c). To this end, we complete the de-
queue by recording its result (case 3). We also com-
mit to an order between the Enq(1) and Enq(2) op-
erations (case 2). This is needed to ensure that all
linearizations of the resulting history satisfy the se-
quential queue specification, which requires a de-
queue to remove the oldest value in the queue.

We demonstrate the simplicity of our method by giving proofs to challenging algo-
rithms that match the intuition for why they work. Our method is also similar in spirit
to the standard linearization point method. Thus, even though in this paper we formu-
late the method as a program logic, we believe that algorithm designers can also benefit
from it in informal reasoning, using abstract histories and commitment points instead
of single linearizations and linearization points.

2 Linearizability, Abstract Histories and Commitment Points

Preliminaries. We consider a data structure that can be accessed concurrently via oper-
ations op ∈ Op in several threads, identified by t ∈ ThreadID. Each operation takes one
argument and returns one value, both from a set Val; we use a special value ⊥ ∈ Val
to model operations that take no argument or return no value. Linearizability relates
the observable behaviour of an implementation of such a concurrent data structure to
its sequential specification [11]. We formalise both of these by sets of histories, which
are partially ordered sets of events, recording operations invoked on the data structure.

Formally, an event is of the form e = [i : (t, op, a, r)]. It includes a unique identifier
i ∈ EventID and records an operation op ∈ Op called by a thread t ∈ ThreadID with
an argument a ∈ Val, which returns a value r ∈ Val]{todo}. We use the special return
value todo for events describing operations that have not yet terminated, and call such
events uncompleted. We denote the set of all events by Event. Given a set E ⊆ Event,
we write E(i) = (t, op, a, r) if [i : (t, op, a, r)] ∈ E and let bEc consist of all com-
pleted events from E. We let id(E) denote the set of all identifiers of events from E.
Given an event identifier i, we also use E(i).tid, E(i).op, E(i).arg and E(i).rval to
refer to the corresponding components of the tuple E(i).

Definition 1. A history4 is a pairH = (E,R), whereE ⊆ Event is a finite set of events
with distinct identifiers and R ⊆ id(E)× id(E) is a strict partial order (i.e., transitive
and irreflexive), called the real-time order. We require that for each t ∈ ThreadID:

– events in t are totally ordered by R:
∀i, j ∈ id(E). i 6= j ∧ E(i).tid = E(j).tid = t =⇒ (i

R−→ j ∨ j R−→ i);
– only maximal events in R can be uncompleted:
∀i∈ id(E).∀t∈ThreadID. E(i).rval = todo =⇒ ¬∃j ∈ id(E). i

R−→ j;
– R is an interval order:
∀i1, i2, i3, i4. i1

R−→ i2 ∧ i3
R−→ i4 =⇒ i1

R−→ i4 ∨ i2
R−→ i3.

We let History be the set of all histories. A history (E,R) is sequential, written
seq(E,R), if id(E) = bEc and R is total on E.

Informally, i R−→ j means that the operation recorded by E(i) completed before
the one recorded by E(j) started. The real-time order in histories produced by concur-
rent data structure implementations may be partial, since in this case the execution of
operations may overlap in time; in contrast, specifications are defined using sequential
histories, where the real-time order is total.

Linearizability. Assume we are given a set of histories that can be produced by a given
data structure implementation (we introduce a programming language for implementa-
tions and formally define the set of histories an implementation produces in §5). Lin-
earizability requires all of these histories to be matched by a similar history of the data
structure specification (its linearization) that, in particular, preserves the real-time order
between events in the following sense: the real-time order of a history H = (E,R) is
preserved in a history H ′ = (E′, R′), written H v H ′, if E = E′ and R ⊆ R′.

The full definition of linearizability is slightly more complicated due to the need
to handle uncompleted events: since operations they denote have not terminated, we
do not know whether they have made a change to the data structure or not. To ac-
count for this, the definition makes all events in the implementation history complete
by discarding some uncompleted events and completing the remaining ones with an
arbitrary return value. Formally, an event e = [i : (t, op, a, r)] can be completed to an

4 For technical convenience, our notion of a history is different from the one in the classical
linearizability definition [11], which uses separate events to denote the start and the end of an
operation. We require that R be an interval order, we ensure that our notion is consistent with
an interpretation of events as segments of time during which the corresponding operations are
executed, with R ordering i1 before i2 if i1 finishes before i2 starts [5].

event e′ = [i′ : (t′, op′, a′, r′)], written e E e′, if i = i′, t = t′, op = op′, a = a′

and either r = r′ 6= todo or r′ = todo. A history H = (E,R) can be completed
to a history H ′ = (E′, R′), written H E H ′, if id(E′) ⊆ id(E), bEc ⊆ bE′c,
R ∩ (id(E′)× id(E′)) = R′ and ∀i ∈ id(E′). [i :E(i)]E [i :E′(i)].

Definition 2. A set of histories H1 (defining the data structure implementation) is lin-
earized by a set of sequential historiesH2 (defining its specification), writtenH1 v H2,
if ∀H1 ∈ H1.∃H2 ∈ H2.∃H ′1. H1 EH ′1 ∧H ′1 v H2.

Let Hqueue be the set of sequential histories defining the behaviour of a queue with
Op = {Enq,Deq}. Due to space constraints, we provide its formal definition in the
extended version of this paper [14], but for example, [Enq(2); Enq(1); Enq(3); Deq():2]
∈ Hqueue and [Enq(1); Enq(2); Enq(3); Deq():2] 6∈ Hqueue.

Proof method. In general, a history of a data structure (H1 in Definition 2) may have
multiple linearizations (H2) satisfying a given specification H. In our proof method,
we use this observation and construct a partially ordered history, an abstract history, all
linearizations of which belong toH.

Definition 3. A history H is an abstract history of a specification given by the set of
sequential histories H if {H ′ | bHc v H ′ ∧ seq(H ′)} ⊆ H, where b(E,R)c =
(bEc , R ∩ (id(bEc)× id(bEc))). We denote this by abs(H,H).

We define the construction of an abstract history H = (E,R) by instrumenting the
data structure operations with auxiliary code that updates the history at certain commit-
ment points during operation execution. There are three kinds of commitment points:
1. When an operation op with an argument a starts executing in a thread t, we extend
E by a fresh event [i : (t, op, a, todo)], which we order in R after all events in bEc.

2. At any time, we can add more edges to R.
3. By the time an operation finishes, we have to assign its return value to its event in E.

Note that, unlike Definition 2, Definition 3 uses a particular way of completing an
abstract history H , which just discards all uncompleted events using b−c. This does
not limit generality because, when constructing an abstract history, we can complete
an event (item 3) right after the corresponding operation makes a change to the data
structure, without waiting for the operation to finish.

In §6 we formalise our proof method as a program logic and show that it indeed
establishes linearizability. Before this, we demonstrate informally how the obligations
of our proof method are discharged on an example.

3 Running Example: the Time-Stamped Queue

We use the TS queue [7] as our running example. Values in the queue are stored in
per-thread single-producer (SP) multi-consumer pools, and we begin by describing this
auxiliary data structure.

SP pools. SP pools have well-known linearizable implementations [7], so we simplify
our presentation by using abstract pools with the atomic operations given in Figure 3.
This does not limit generality: since linerarizability implies contextual refinement (§1),

PoolID insert(ThreadID t, Val v) {

p := new PoolID();

pools(t) := pools(t) · (p, v,>);
return p;

}

Val remove(ThreadID t, PoolID p) {

if (∃Σ,Σ′, v, τ.
pools(t) = Σ · (p, v, τ) ·Σ′) {

pools(t) := Σ ·Σ′;

return v;

} else return NULL;

}

(PoolID×TS) getOldest(ThreadID t) {

if (∃p, τ. pools(t) = (p, , τ) ·)
return (p, τ);

else

return (NULL, NULL);
}

setTimestamp(ThreadID t,

PoolID p, TS τ) {

if (∃Σ,Σ′, v.
pools(t) = Σ · (p, v,) ·Σ′)

pools(t) := Σ · (p, v, τ) ·Σ′;

}

Fig. 3. Operations on abstract SP pools pools : ThreadID→ Pool. All operations are atomic.

1 enqueue(Val v) {

2 atomic {

3 PoolID node := insert(myTid(), v);

4 Gts[myEid()] := >;
5 }

6 TS timestamp := newTimestamp();

7 atomic {

8 setTimestamp(myTid(), node,

timestamp);

9 Gts[myEid()] := timestamp;
10 E(myEid()).rval := ⊥;
11 }

12 return ⊥;
13 }

Fig. 4. The TS queue: enqueue. Shaded portions
are auxiliary code used in the proof.

properties proved using the abstract
pools will stay valid for their lineariz-
able implementations. In the figure and
in the following we denote irrelevant
expressions by .

The SP pool of a thread contains
a sequence of triples (p, v, τ), each
consisting of a unique identifier p ∈
PoolID, a value v ∈ Val enqueued into
the TS queue by the thread and the as-
sociated timestamp τ ∈ TS. The set of
timestamps TS is partially ordered by
<TS , with a distinguished timestamp
> that is greater than all others. We let
pool be the set of states of an abstract
SP pool. Initially all pools are empty.
The operations on SP pools are as follows:

– insert(t,v) appends a value v to the back of the pool of thread t and associates
it with the special timestamp >; it returns an identifier for the added element.

– setTimestamp(t,p,τ) sets to τ the timestamp of the element identified by p in
the pool of thread t.

– getOldest(t) returns the identifier and timestamp of the value from the front of
the pool of thread t, or (NULL,NULL) if the pool is empty.

– remove(t,p) tries to remove a value identified by p from the pool of thread t.
Note this can fail if some other thread removes the value first.

Separating insert from setTimestamp and getOldest from remove in the SP pool
interface reduces the atomicity granularity, and permits more efficient implementations.

Core TS queue algorithm. Figures 4 and 5 give the code for our version of the TS
queue. Shaded portions are auxiliary code needed in the linearizability proof to update
the abstract history at commitment points; it can be ignored for now. In the overall

14 Val dequeue() {

15 Val ret := NULL;

16 EventID CAND;

17 do {

18 TS start ts := newTimestamp();

19 PoolID pid, cand pid := NULL;

20 TS ts, cand ts := >;
21 ThreadID cand tid;

22 for each k in 1..NThreads do {

23 atomic {

24 (pid, ts) := getOldest(k);

25 R := (R ∪ {(e, myEid()) | e ∈ id(bEc) ∩ inQ(pools, E,Gts)
26 ∧ ¬(start ts <TS Gts(e))})+;
26 }

27 if (pid 6= NULL && ts <TS cand ts && ¬(start ts <TS ts)) {

28 (cand pid, cand ts, cand tid) := (pid, ts, k);

31 CAND := enqOf(E, Gts, cand tid, cand ts);

32 }

33 }

34 if (cand pid 6= NULL)

35 atomic {

36 ret := remove(cand tid, cand pid);

37 if (ret 6= NULL) {

38 E(myEid()).rval := ret;

39 R := (R ∪ {(CAND, e) | e ∈ inQ(pools, E,Gts)}
40 ∪ {(myEid(), d) | E(d).op = Deq ∧ d ∈ id(E \ bEc)})+;
41 }

43 }

44 } while (ret = NULL);

45 return ret;

46 }

Fig. 5. The TS queue: dequeue. Shaded portions are auxiliary code used in the proof.

TS queue, enqueuing means adding a value with a certain timestamp to the pool of
the current thread, while dequeuing means searching for the value with the minimal
timestamp across per-thread pools and removing it.

In more detail, the enqueue(v) operation first inserts the value v into the pool of the
current thread, defined by myTid (line 3). At this point the value v has the default, max-
imal timestamp>. The code then generates a new timestamp using newTimestamp and
sets the timestamp of the new value to it (lines 6-8). We describe an implementation of
newTimestamp later in this section. The key property that it ensures is that out of two
non-overlapping calls to this function, the latter returns a higher timestamp than the for-
mer; only concurrent calls may generate incomparable timestamps. Hence, timestamps
in each pool appear in the ascending order.

The dequeue operation first generates a timestamp start ts at line 18, which it
further uses to determine a consistent snapshot of the data structure. After generating
start ts, the operation iterates through per-thread pools, searching for a value with a
minimal timestamp (lines 22–33). The search starts from a random pool, to make dif-

ferent threads more likely to pick different elements for removal and thus reduce con-
tention. The pool identifier of the current candidate for removal is stored in cand pid,
its timestamp in cand ts and the thread that inserted it in cand tid. On each itera-
tion of the loop, the code fetches the earliest value enqueued by thread k (line 24) and
checks whether its timestamp is smaller than the current candidate’s cand ts (line 27).
If the timestamps are incomparable, the algorithm keeps the first one (either would be
legitimate). Additionally, the algorithm never chooses a value as a candidate if its times-
tamp is greater than start ts, because such values are not guaranteed to be read in a
consistent manner.

If a candidate has been chosen once the iteration has completed, the code tries to
remove it (line 35). This may fail if some other thread got there first, in which case the
operation restarts. Likewise, the algorithm restarts if no candidate was identified (the
full algorithm in [7] includes an emptiness check, which we omit for simplicity).

Timestamp generation. The TS queue requires that sequential calls to newTimestamp

generate ordered timestamps. This ensures that the two sequentially enqueued values
cannot be dequeued out of order. However, concurrent calls to newTimestamp may
generate incomparable timestamps. This is desirable because it increases flexibility in
choosing which value to dequeue, reducing contention.

37 int counter = 1;

38

39 TS newTimestamp() {

40 int ts = counter;

41 TS result;

42 if (CAS(counter, ts, ts+1))

43 result = (ts, ts);

44 else

45 result = (ts, counter-1);

46 return result;

47 }

Fig. 6. Timestamp generation algorithm.

There are a number of implementations of
newTimestamp satisfying the above require-
ments [2]. For concreteness, we consider the im-
plementation given in Figure 6. Here a times-
tamp is either > or a pair of integers (s, e),
representing a time interval. In every timestamp
(s, e), s ≤ e. Two timestamps are considered
ordered (s1, e1) <TS (s2, e2) if e1 < s2, i.e.,
if the time intervals do not overlap. Intervals are
generated with the help of a shared counter.
The algorithm reads the counter as the start of
the interval and attempts to atomically incre-
ment it with a CAS (lines 40-42), which is a well-known atomic compare-and-swap
operation. It atomically reads the counter and, if it still contains the previously read
value ts, updates it with the new timestamp ts+ 1 and returns true; otherwise, it does
nothing and returns false. If CAS succeeds, then the algorithm takes the interval start
and end values as equal (line 43). If not, some other thread(s) increased the counter.
The algorithm reads the counter again and subtracts 1 to give the end of the interval
(line 45). Thus, either the current call to newTimestamp increases the counter, or some
other thread does so. In either case, subsequent calls will generate timestamps greater
than the current one.

This timestamping algorithm allows concurrent enqueue operations in Figure 1 to
get incomparable timestamps. Then the dequeue may remove either 1 or 2 depending
on where it starts traversing the pools5 (line 22). As we explained in §1, this makes the
standard method of linearization point inapplicable for verifying the TS queue.

5 Recall that the randomness is required to reduce contention

4 The TS Queue: Informal Development

In this section we explain how the abstract history is updated at the commitment points
of the TS Queue and justify informally why these updates preserve the key property
of this history—that all its linearizations satisfy the sequential queue specification. We
present the details of the proof of the TS queue in §7.

Ghost state and auxiliary definitions. To aid in constructing the abstract history
(E,R), we instrument the code of the algorithm to maintain a piece of ghost state—a
partial function Gts : EventID ⇀ TS. Given the identifier i of an event E(i) denoting
an enqueue that has inserted its value into a pool, Gts(i) gives the timestamp currently
associated with the value. The statements in lines 4 and 9 in Figure 4 update Gts ac-
cordingly. These statements use a special command myEid() that returns the identifier
of the event associated with the current operation.

As explained in §3, the timestamps of values in each pool appear in strictly ascend-
ing order. As a consequence, all timestamps assigned by Gts to events of a given thread
t are distinct, which is formalised by the following property:

∀i, j. i 6= j ∧ E(i).tid = E(j).tid ∧ i, j ∈ dom(Gts) =⇒ Gts(i) 6= Gts(j)

Hence, for a given thread t and a timestamp τ , there is at most one enqueue event in E
that inserted a value with the timestamp τ in the pool of a thread t. In the following, we
denote the identifier of this event by enqOf(E,Gts, t, τ) and let the set of the identifiers
of such events for all values currently in the pools be inQ(pools, E,Gts):

inQ(pools, E,Gts) , {enqOf(E,Gts, t, τ) | ∃p. pools(t) = · (p, , τ) · }

Commitment points and history updates. We further instrument the code with state-
ments that update the abstract history at commitment points, which we now explain.
As a running example, we use the execution in Figure 7, extending that in Figure 1.
As we noted in §2, when an operations starts, we automatically add a new uncom-
pleted event to E to represent this operation and order it after all completed events

Enq(1)

Enq(2)

Enq(3)

Time

t1

t2

t3
A

Deq(): 2

Deq(): 1

B
Fig. 7. Example execution extending Figure 1.
Dotted lines indicate commitment points at
lines 35–43 of the dequeues.

in R. For example, before the start of
Enq(3) in the execution of Figure 7, the ab-
stract history contains two events Enq(1)
and Enq(2) and no edges in the real-time
order. At the start of Enq(3) the history
gets transformed to that in Figure 8(a). The
commitment point at line 8 in Figure 4
completes the enqueue by giving it a return
value ⊥, which results in the abstract his-
tory in Figure 8(b).

Upon a dequeue’s start, we similarly add an event representing it. Thus, by point
(A) in Figure 7, the abstract history is as shown in Figure 8(c). At every iteration k

of the loop, the dequeue performs a commitment point at lines 25–26, where we order
enqueue events of values currently present in the pool of a thread k before the current
dequeue event. Specifically, we add an edge (e, myEid()) for each identifier e of an

(c)

(d)

Deq(): 2

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

Enq(3)

Enq(2)

Enq(1)

Deq(): ?

(a)

(b)

Enq(3)

Enq(2)

Enq(1)

Enq(3)

Enq(2)

Enq(1)

Fig. 8. Changes to the abstract history of the execution in Figure 7.

enqueue event whose value is in the k’s pool and whose timestamp is not greater than
the dequeue’s own timestamp start ts. Such ordering ensures that in all linearizations
of the abstract history, the values that the current dequeue observes in the pool according
to the algorithm are also enqueued in the sequential queue prior to the dequeue. In
particular, this also ensures that in all linearizations, the dequeue returns a value that
has already been inserted.

The key commitment point in dequeue occurs in lines 35–43, where the abstract
history is updated if the dequeue successfully removes a value from a pool. The ghost
code at line 31 stores the event identifier for the enqueue that inserted this value in CAND.
At the commitment point we first complete the current dequeue event by assigning the
value removed from a pool as its return value. This ensures that the dequeue returns the
same value in the concrete execution and the abstract history. Finally, we order events
in the abstract history to ensure that all linearizations of the abstract history satisfy the
sequential queue specification. To this end, we add the following edges to R and then
transitively close it:
1. (CAND, e) for each identifier e of an enqueue event whose value is still in the pools.

This ensures that the dequeue removes the oldest value in the queue.
2. (myEid(), d) for each identifier d of an uncompleted dequeue event. This ensures

that dequeues occur in the same order as they remove values from the queue.
At the commitment point (A) in Figure 7 the abstract history gets transformed from the
one in Figure 8(c) to the one in Figure 8(d).

5 Programming Language

To formalise our proof method, we first introduce a programming language for data
structure implementations. This defines such implementations by functions D : Op →
Com mapping operations to commands from a set Com. The commands, ranged over
by C, are written in a simple while-language, which includes atomic commands α from
a set PCom (assignment, CAS, etc.) and standard control-flow constructs. To conserve
space, we describe the precise syntax in the extended version of this paper [14].

Let Loc ⊆ Val be the set of all memory locations. We let State = Loc→ Val be the
set of all states of the data structure implementation, ranged over by s. Recall from §2
that operations of a data structure can be called concurrently in multiple threads from
ThreadID. For every thread t, we use distinguished locations arg[t], res[t] ∈ Loc to

store an argument, respectively, the return value of an operation called in this thread.
We assume the semantics of each atomic command α ∈ PCom given by a non-

deterministic state transformers JαKt : State → P(State), t ∈ ThreadID. For a state
s, JαKt(s) is the set of states resulting from thread t executing α atomically in s. We
then lift this semantics to a sequential small-step operational semantics of arbitrary
commands from Com: 〈C, s〉 −→t 〈C ′, s′〉. Again, we omit the standard rules of the
semantics; see [14].

We now define the set of histories produced by a data structure implementation D,
which is required by the definition of linearizability (Definition 2, §2). Informally, these
are the histories produced by threads repeatedly invoking data structure operations in
any order and with any possible arguments (this can be thought of as running the data
structure implementation under its most general client [6]). We define this formally
using a concurrent small-step semantics of the data structure D that also constructs
corresponding histories:�D ⊆ (Cont×State×History)2, where Cont = ThreadID→
(Com] {idle}). Here a function c ∈ Cont characterises the progress of an operation
execution in each thread t: c(t) gives the continuation of the code of the operation
executing in thread t, or idle if no operation is executing. The relation�D defines how
a step of an operation in some thread transforms the data structure state and the history:

i /∈ id(E) a ∈ Val E′ = E[i : (t, op, a, todo)] R′ = R ∪ {(j, i) | j ∈ bEc}
〈c[t : idle], s, (E,R)〉�D 〈c[t :D(op)], s[arg[t] : a], (E′, R′)〉

〈C, s〉 −→t 〈C ′, s′〉
〈c[t :C], s, (E,R)〉�D 〈c[t :C ′], s′, (E,R)〉

i = last(t, (E,R)) E(i) = (t, op, a, todo) E′ = E[i : (t, op, a, s(res[t]))]
〈c[t : skip], s, (E,R)〉�D 〈c[t : idle], s, (E′, R)〉

First, an idle thread t may call any operation op ∈ Op with any argument a. This sets
the continuation of thread t to D(op), stores a into arg[t], adds a new event i to the his-
tory, ordered after all completed events. Second, a thread t executing an operation may
do a transition allowed by the sequential semantics of the operation’s implementation.
Finally, when a thread t finishes executing an operation, as denoted by a continuation
skip, the corresponding event is completed with the return value in res[t]. The identifier
last(t, (E,R)) of this event is determined as the last one in E by thread t according to
R: as per Definition 1, events by each thread are totally ordered in a history, ensuring
that last(t,H) is well-defined.

Now given an initial state s0 ∈ State, we define the set of histories of a data
structure D as H(D, s0) = {H | 〈(λt. idle), s0, (∅, ∅)〉 �∗D 〈 , , H〉}. We say that
a data structure (D, s0) is linearizable with respect to a set of sequential histories H if
H(D, s0) v H (Definition 2).

6 Logic

We now formalise our proof method as a Hoare logic based on rely-guarantee [13].
We make this choice to keep presentation simple; our method is general and can be
combined with more advanced methods for reasoning about concurrency [22, 1, 20].

∀`.G �t {JP K`} α {JQK`} ∧ stable(JP K`,R) ∧ stable(JQK`,R)
R,G `t {P} α {Q}

where for p, q ∈ P(Config):

stable(p,R) , ∀κ, κ′. κ ∈ p ∧ (κ, κ′) ∈ R =⇒ κ′ ∈ p

G �t {p} α {q} , ∀s, s′, H,G. (s,H,G) ∈ p ∧ s′ ∈ JαKt(s) =⇒
∃H ′, G′. (s′, H ′, G′) ∈ q ∧H ∗ H ′ ∧ ((s,H,G), (s′, H ′, G′)) ∈ G

and for (E,R), (E′, R′) ∈ History:

(E,R) (E′, R′) , (E = E′ ∧R ⊆ R′) ∨
(∃i, t, op, a, r. (∀j. j 6= i =⇒ E(j)=E′(j)) ∧

E(i)= (t, op, a, todo) ∧ E′(i)= (t, op, a, r))

Fig. 9. Proof rule for primitive commands.

Assertions P,Q ∈ Assn in our logic denote sets of configurations κ ∈ Config =
State × History × Ghost, relating the data structure state, the abstract history and the
ghost state from a set Ghost. The latter can be chosen separately for each proof; e.g., in
the proof of the TS queue in §4 we used Ghost = EventID→ TS. We do not prescribe a
particular syntax for assertions, but assume that it includes at least the first-order logic,
with a set LVars of special logical variables used in specifications and not in programs.
We assume a function J−K− : Assn × (LVars → Val) → P(Config) such that JP K`
gives the denotation of an assertion P with respect to an interpretation ` : LVars→ Val
of logical variables.

Rely-guarantee is a compositional verification method: it allows reasoning about the
code executing in each thread separately under some assumption on its environment,
specified by a rely. In exchange, the thread has to ensure that its behaviour conforms to
a guarantee. Accordingly, judgements of our logic take the formR,G `t {P} C {Q},
where C is a command executing in thread t, P and Q are Hoare pre- and post-
conditions from Assn, andR,G ⊆ Config2 are relations defining the rely and the guar-
antee. Informally, the judgement states thatC satisfies the Hoare specification {P} {Q}
and changes program configurations according to G, assuming that concurrent threads
change program configurations according toR.

Our logic includes the standard Hoare proof rules for reasoning about sequential
control-flow constructs, which we defer to [14] due to space constraints. We now ex-
plain the rule for atomic commands in Figure 9, which plays a crucial role in formalising
our proof method. The proof rule derives judgements of the formR,G `t {P} α {Q}.
The rule takes into account possible interference from concurrent threads by requiring
the denotations of P and Q to be stable under the rely R, meaning that they are pre-
served under transitions the latter allows. The rest of the requirements are expressed
by the judgement G �t {p} α {q}. This requires that for any configuration (s,H,G)
from the precondition denotation p and any data structure state s′ resulting from thread

t executing α in s, we can find a history H ′ and a ghost state G′ such that the new
configuration (s′, H ′, G′) belongs to the postcondition denotation q. This allows updat-
ing the history and the ghost state (almost) arbitrarily, since these are only part of the
proof and not of the actual data structure implementation; the shaded code in Figures 4
and 5 indicates how we perform these updates in the proof of the TS queue. Updates
to the history, performed when α is a commitment point, are constrained by a relation
 ⊆ History2, which only allows adding new edges to the real-time order or complet-
ing events with a return value. This corresponds to commitment points of kinds 2 and 3
from §2. Finally, as is usual in rely-guarantee, the judgement G �t {p} α {q} requires
that the change to the program configuration be allowed by the guarantee G.

Note that does not allow adding new events into histories (commitment point
of kind 1): this happens automatically when an operation is invoked. In the following,
we use a relation 99Kt ⊆ Config2 to constrain the change to the program configuration
upon an operation invocation in thread t:

〈s, (E,R), G〉 99Kt 〈s′, (E′, R′), G′〉 ⇐⇒ (∀l ∈ Loc. l 6= arg[t] =⇒ s(l) = s′(l))
∧ ∃i /∈ id(E). E′ = E] {[i : t, , , todo]}
∧R′ = (R ∪ {(j, i) | j ∈ bEc}) ∧G = G′

Thus, when an operation is invoked in thread t, arg[t] is overwritten by the operation
argument and an uncompleted event associated with thread t and a new identifier i is
added to the history; this event is ordered after all completed events, as required by our
proof method (§2).

The rule for primitive commands and the standard Hoare logic proof rules allow
deriving judgements about the implementations D(op) of every operation op in a data
structure D. The following theorem formalises the requirements on these judgements
sufficient to conclude the linearizability of D with respect to a given set of sequential
histories H. The theorem uses the following auxiliary assertions, describing the event
corresponding to the current operation op in a thread t at the start and end of its execu-
tion (last is defined in §5):

JstartedI(t, op)K` = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op, s(arg[t]), todo)
∧ ∃κ ∈ JIK`. 〈κ〉 99Kt 〈s, (E,R), G〉};

Jended(t, op)K` = {(s, (E,R), G) | E(last(t, (E,R))) = (t, op, , s(res[t]))}.

The assertion startedI(t, op) is parametrised by a global invariant I used in the proof.
With the help of it, startedI(t, op) requires that configurations in its denotation be
results of adding a new event into histories satisfying I.

Theorem 1. Given a data structure D, its initial state s0 ∈ State and a set of se-
quential histories H, we have (D, s0) linearizable with respect to H if there exists an
assertion I and relationsRt,Gt ⊆ Config2 for each t ∈ ThreadID such that:
1. ∃G0.∀`. (s0, (∅, ∅), G0) ∈ JIK`;
2. ∀t, `. stable(JIK`,Rt);
3. ∀H, `. (, H,) ∈ JIK` =⇒ abs(H,H);
4. ∀t, op. (Rt,Gt `t

{
I ∧ startedI(t, op)

}
D(op)

{
I ∧ ended(t, op)

}
);

5. ∀t, t′. t 6= t′ =⇒ Gt ∪ 99Kt ⊆ Rt′ .

Here I is the invariant used in the proof, which item 1 requires to hold of the initial
data structure state s0, the empty history and some some initial ghost state G0. Item 2
then ensures that the invariant holds at all times. Item 3 requires any history satisfying
the invariant to be an abstract history of the given specification H (Definition 3, §2).
Item 4 constraints the judgement about an operation op executed in a thread t: the oper-
ation is executed from a configuration satisfying the invariant and with a corresponding
event added to the history; by the end of the operation’s execution, we need to com-
plete the event with the return value matching the one produced by the code. Finally,
item 5 formalises a usual requirement in rely-guarantee reasoning: actions allowed by
the guarantee of a thread t have to be included into the rely of any other thread t′. We
also include the relation 99Kt, describing the automatic creation of a new event upon an
operation invocation in thread t.

7 The TS Queue: proof details

In this section, we present some of the details of the proof of the TS Queue. Due to
space constraints, we provide the rest of them in the extended version of the paper [14].

Invariant. We satisfy the obligation 4 from Theorem 1 by proving the invariant INV
defined in Figure 10. The invariant is an assertion consisting of four parts: INVLIN,
INVORD, INVALG and INVWF. Each of them denotes a set of configurations satisfying
the listed constraints for a given interpretation of logical variables `. The first part of
the invariant, INVLIN, ensures that every history satisfying the invariant is an abstract
history of the queue, which discharges the obligation 3 from Theorem 1. In addition
to that, INVLIN requires that a relation same data hold of a configuration (s,H,Gts)
and every linearization H ′. In this way, we ensure that the pools and the final state of
the sequential queue after H ′ contain values inserted by the same enqueue events (we
formalise same data in [14]). The second part, INVORD, asserts ordering properties
of events in the partial order that hold by construction. The third part, INVALG, is a
collection of properties relating the order on timestamps to the partial order in abstract
history. Finally, INVWF is a collection of well-formedness properties of the ghost state.

Loop invariant. We now present the key verification condition that arises in the
dequeue operation: demonstrating that the ordering enforced at the commitment points
at lines 25–26 and 35–43 does not invalidate acyclicity of the abstract history. To this
end, for the foreach loop (lines 22–33) we build a loop invariant based on distinguish-
ing certain values in the pools as seen by the dequeue operation. With the help of the
loop invariant we establish that acyclicity is preserved at the commitment points.

Recall from §3, that the foreach loop starts iterating from a random pool. In the
proof, we assume that the loop uses a thread-local variable A for storing a set of identi-
fiers of threads that have been iterated over in the loop. We also assume that at the end
of each iteration the set A is extended with the current loop index k.

Note also that for each thread k, the commitment point of a dequeue d at lines 25–
26 ensures that enqueue events of values the operation sees in k’s pool precede d in
the abstract history. Based on that, during the foreach loop we can we distinguish
enqueue events with values in the pools that a dequeue d has seen after looking into

(INVLIN) all linearizations of completed events of the abstract history satisfy the queue spec-
ification:

∀H ′. bHc v H ′ ∧ seq(H ′) =⇒ H ′ ∈ Hqueue ∧ same data(s,H,Gts, H
′)

(INVORD) properties of the partial order of the abstract history:
(i) completed dequeues precede uncompleted ones:

∀i ∈ id(bEc).∀j ∈ id(E \ bEc). E(i).op = E(j).op = Deq =⇒ i
R−→ j

(ii) enqueues of already dequeued values precede enqueues of values in the pools:

∀i ∈ id(bEc) \ inQ(s(pools), E,Gts).∀j ∈ inQ(s(pools), E,Gts). i
R−→ j

(INVALG) properties of the algorithm used to build the loop invariant:
(i) enqueues of values in the pools are ordered only if so are their timestamps:

∀i, j ∈ inQ(s(pools), E,Gts). i
R−→ j =⇒ Gts(i) <TS Gts(j)

(ii) values in each pool appear in the order of enqueues that inserted them:

∀t, τ1, τ2. pools(t) = · (, , τ1) · · (, , τ2) · =⇒

enqOf(E,Gts, t, τ1)
R−→ enqOf(E,Gts, t, τ2)

(iii) the timestamps of values are smaller than the global counter:

∀i, a, b.Gts(i) = (a, b) =⇒ b < s(counter)

(INVWF) properties of ghost state:
(i) Gts associates timestamps with enqueue events:

∀i. i ∈ dom(Gts) =⇒ E(i).op = Enq

(ii) each value in a pool has a matching event for the enqueue that inserted it:

∀t, v, τ. pools(t) = · (, v, τ) · =⇒ ∃i. E(i) = (t,Enq, v,) ∧Gts(i) = τ

(iii) all timestamps assigned by Gts to events of a given thread are distinct:

∀i, j. i 6= j ∧ E(i).tid = E(j).tid ∧ i, j ∈ dom(Gts) =⇒ Gts(i) 6= Gts(j)

(iv) Gts associates uncompleted enqueues events with the timestamp >:

∀i. E(i).op = Enq =⇒ (i 6∈ id(bEc) ⇐⇒ i /∈ dom(Gts) ∨Gts(i) = >)

Fig. 10. The invariant INV = INVLIN ∧ INVORD ∧ INVALG ∧ INVWF

pools of threads from A. We define the set of all such enqueue events as follows:

seen((s, (E,R), Gts), d) , {e | e ∈ id(bEc) ∩ inQ(s(pools), E,Gts)

∧ e R−→ d ∧ ¬(s(start ts) <TS Gts(e)) ∧ E(e).tid ∈ A}

A loop invariant LI is simply a disjunction of two auxiliary assertions, isCand and
noCand, which are defined in Figure 11 (given an interpretation of logical variables
`, each of assertions denotes a set of configurations satisfying the listed constraints).

(noCand): seen((s,H,Gts), myEid()) = ∅ ∧ s(cand pid) = NULL

(minTS(e)): ∀e′ ∈ seen((s,H,Gts), myEid()).¬(Gts(e
′) <TS Gts(e))

(isCand): ∃CAND. CAND = enqOf(E,Gts, s(cand tid), s(cand ts))
∧minTS(CAND) ∧ (CAND ∈ inQ(s(pools), E,Gts) =⇒

CAND ∈ seen((s,H,Gts), myEid())) ∧ s(cand pid) 6= NULL

Fig. 11. Auxiliary assertions for the loop invariant

The assertion noCand denotes a set of configurations κ = (s, (E,R), Gts), in which
the dequeue operation has not chosen a candidate for removal after having iterated
over the pools of threads from A. In this case, s(cand pid) = NULL, and the current
dequeue has not seen any enqueue event in the pools of threads from A.

The assertion isCand denotes a set of configurations κ = (s, (E,R), Gts), in which
an enqueue event CAND = enqOf(E,Gts, cand tid, cand ts) has been chosen as a
candidate for removal out of the enqueues seen in the pools of threads from A. As CAND
may be removed by a concurrent dequeue, isCand requires that CAND remain in the
set seen(κ, myEid()) as long as CAND’s value remains in the pools. Additionally, by
requiring minTS(CAND), isCand asserts that the timestamp of CAND is minimal among
other enqueues seen by myEid().

In the following lemma, we prove that the assertion isCand implies minimality of
CAND in the abstract history among enqueue events with values in the pools of threads
from A. The proof is based on the observation that enqueues of values seen in the pools
by a dequeue are never preceded by unseen enqueues.

Lemma 1. For every ` : LVars→ Val and configuration (s, (E,R), Gts) ∈ JisCandK`,
if CAND = enqOf(E,Gts, cand tid, cand ts) and CAND ∈ inQ(s(pools), E,Gts)
both hold, then the following is true:

∀e ∈ inQ(s(pools), E, Gts). E(e).tid ∈ A =⇒ ¬(e R−→ CAND)

Acyclicity. At the commitment points extending the order of the abstract history, we
need to show that the extended order is acyclic as required by Definition 1 of the abstract
history. To this end, we argue that the commitment points at lines 25–26 and lines 35–43
preserve acyclicity of the abstract history.

The commitment point at lines 25–26 orders certain completed enqueue events be-
fore the current uncompleted dequeue event myEid(). By Definition 1 of the abstract
history, the partial order on its events is transitive, and uncompleted events do not pre-
cede other events. Since myEid() does not precede any other event, ordering any com-
pleted enqueue event before myEid() cannot create a cycle in the abstract history.

We now consider the commitment point at lines 35–43 in the current dequeue
myEid(). Prior to the commitment point, the loop invariant LI has been established
in all threads, and the check cand pid 6= NULL at line 34 has ruled out the case when
noCand holds. Thus, the candidate for removal CAND has the properties described by
isCand. If CAND’s value has already been dequeued concurrently, the removal fails,
and the abstract history remains intact (and acyclic). When the removal succeeds, we
consider separately the two kind of edges added into the abstract history (E,R):

1. The case of (CAND, e) for each e ∈ inQ(pools, E,Gts). By Lemma 1, an edge
(e, CAND) is not in the partial order R of the abstract history. There is also no se-
quence of edges e R−→ ...

R−→ CAND, since R is transitive by Definition 1. Hence,
cycles do not arise from ordering CAND before e.

2. The case of (myEid(), d) for each identifier d of an uncompleted dequeue event.
By Definition 1 of the abstract history, uncompleted events do not precede other
events. Since d is uncompleted event, it does not precede myEid(). Hence, ordering
myEid() in front of all such dequeue events does not create cycles.

Rely and guarantee relations. We now explain how we generate rely and guarantee
relations for the proof. Instead of constructing the relations with the help of abstracted
intermediate assertions of a proof outline for the enqueue and dequeue operations, we
use the non-deterministic state transformers of primitive commands together with the
ghost code in Figure 4 and Figure 5. To this end, the semantics of state transformers
is extended to account for changes to abstract histories and ghost state. We found that
generating rely and guarantee relations in such non-standard way results in cleaner
stability proofs for the TS Queue, and makes them similar in style to checking non-
interference in the Owicki-Gries method [18].

Let us refer to atomic blocks with corresponding ghost code at line 3, line 8, line 25
and line 35 as atomic steps insert, setTS, scan(k) (k ∈ ThreadID) and remove

respectively, and let us also refer to the CAS operation at line 42 as genTS. For each
thread t and atomic step α̂, we assume a non-deterministic configuration transformer
Jα̂Kt : Config → P(Config) that updates state according to the semantics of a corre-
sponding primitive command, and history with ghost state as specified by ghost code.

Given an assertion P , an atomic step α̂ and a thread t, we associate them with the
following relation Gt,α̂,P ⊆ Config2:

Gt,α̂,P , {(κ, κ′) | ∃`. κ ∈ JP K` ∧ κ
′ ∈ Jα̂Kt(κ)}

Additionally, we assume a relation Gt,local, which describes arbitrary changes to certain
program variables and no changes to the abstract history and the ghost state. That is,
we say that pools and counter are shared program variables in the algorithm, and all
others are thread-local, in the sense that every thread has its own copy of them. We let
Gt,local denote every possible change to thread-local variables of a thread t only.

For each thread t, relations Gt andRt are defined as follows:

Pop , INV ∧ started(t, op)

Gt , (
⋃
t′∈ThreadID Gt,scan(t′),PDeq

) ∪ Gt,remove,PDeq

∪ Gt,insert,PEnq ∪ Gt,setTS,PEnq ∪ Gt,genTS,INV ∪ Gt,local,
Rt , ∪t′∈ThreadID\{t}(Gt′ ∪ 99Kt′)

As required by Theorem 1, the rely relation of a thread t accounts for addition of new
events in every other thread t′ by including 99K′t. Also, Rt takes into consideration
every atomic step by the other threads. Thus, the rely and guarantee relations satisfy
all the requirement 5 of the proof method from Theorem 1. It is easy to see that the
requirement 2 is also fulfilled: the global invariant INV is simply preserved by each
atomic step, so it is indeed stable under rely relations of each thread.

The key observation implying stability of the loop invariant in every thread t is
presented in the following lemma, which states that environment transitions in the rely
relation never extend the set of enqueues seen by a given dequeue.

Lemma 2. If a dequeue event DEQ generated its timestamp start ts, then:

∀κ, κ′. (κ, κ′) ∈ Rt =⇒ seen(κ′, DEQ) ⊆ seen(κ, DEQ)

8 The Optimistic Set: Informal Development

The algorithm. We now present another example, the Optimistic Set [17], which is a
variant of a classic algorithm by Heller et al. [8], rewritten to use atomic sections instead
of locks. However, this is a highly-concurrent algorithm: every atomic section accesses
a small bounded number of memory locations. In this section we only give an informal
explanation of the proof and commitment points; the details are provided in [14].

The set is implemented as a sorted singly-linked list. Each node in the list has three
fields: an integer val storing the key of the node, a pointer next to the subsequent node
in the list, and a boolean flag marked that is set true when the node gets removed. The
list also has sentinel nodes head and tail that store−∞ and +∞ as keys accordingly.
The set defines three operations: insert, remove and contains. Each of them uses
an internal operation locate to traverse the list. Given a value v, locate traverses the
list nodes and returns a pair of nodes (p, c), out of which c has a key greater or equal
to v, and p is the node preceding c.

The insert (remove) operation spins in a loop locating a place after which a new
node should be inserted (after which a candidate for removal should be) and attempting
to atomically modify the data structure. The attempt may fail if either p.next = c or
!p.marked do not hold: the former condition ensures that concurrent operations have
not removed or inserted new nodes immediately after p.next, and the latter checks that
p has not been removed from the set. When either check fails, the operation restarts.
Both conditions are necessary for preserving integrity of the data structure.

When the elements are removed from the set, their corresponding nodes have the
marked flag set and get unlinked from the list. However, the next field of the removed
node is not altered, so marked and unmarked nodes of the list form a tree such that each
node points towards the root, and only nodes reachable from the head of the list are
unmarked. In Figure 13, we have an example state of the data structure. The insert

and remove operations determine the position of a node p in the tree by checking the
flag p.marked. In remove, this check prevents removing the same node from the data
structure twice. In insert, checking !p.marked ensures that the new node n is not
inserted into a branch of removed nodes and is reachable from the head of the list.

In contrast to insert and remove, contains never modifies the shared state and
never restarts. This leads to a subtle interaction that may happen due to interference by
concurrent events: it may be correct for contains to return true even though the node
may have been removed by the time contains finds it in the list.

In Figure 13, we illustrate the subtleties with the help of a state of the set, which is a
result of executing the trace from Figure 14, assuming that values 1, 2 and 4 have been

1 struct Node {

2 Node *next;

3 Int val;

4 Bool marked;

5 }

6

7 Bool contains(v) {

8 p, c := locate(v);

9 return (c.val = v);

10 }

11

12 Bool insert(v) {

13 Node×Node p, c;

14 do {

15 p, c := locate(v);

16 atomic {

17 if (p.next = c

18 && !p.marked) {

18 commitinsert();

20 if (c.val 6= v) {

21 Node *n := new Node;

22 n->next := c;

23 n->val := v;

24 n->marked := false;
25 p.next := n;

26 return true;
27 } else

28 return false;
29 }

30 }

31 } while (true);
32 }

33 Node×Node locate(v) {

34 Node prev := head;

35 Node curr := prev.next;

36 while (curr.val < v) {

37 prev := curr;

38 atomic {

39 curr := curr.next;

40 if (E(myEid()).op = contains
41 && (curr.val ≥ v))

42 commitcontains();

45 }

46 }

47 return prev, curr;

48 }

49

50 Bool remove(v) {

51 Node×Node p, c;

52 do {

53 p, c := locate(v);

54 atomic {

55 if (p.next = c

56 && !p.marked) {

55 commitremove();

57 if (c.val = v) {

58 c.marked := true;
59 p.next := c.next;

60 return true;
61 } else

62 return false;
63 }

64 }

65 } while (true);
66 }

Fig. 12. The Optimistic Set. Shaded portions are auxiliary code used in the proof

initially inserted in sequence by performing “Ins(1)”, “Ins(2)” and “Ins(4)”. We con-
sider the following scenario. First, “Con(2)” and “Con(3)” start traversing through the
list and get preempted when they reach the node containing 1, which we denote by n1.
Then the operations are finished in the order depicted in Figure 14. Note that “Con(2)”
returns true even though the node containing 2 is removed from the data structure by
the time the contains operation locates it. This surprising behaviour occurs due to the
values 1 and 2 being on the same branch of marked nodes in the list, which makes it pos-
sible for “Con(2)” to resume traversing from n1 and find 2. On the other hand, “Con(3)”
cannot find 3 by traversing the nodes from n1: the contains operation will reach the
node n2 and return false, even though 3 has been concurrently inserted into the set by
this time. Such behaviour is correct, since it can be justified by a linearization [“Ins(1)”,
“Ins(2)”, “Ins(4)”, “Rem(1)”, “Con(2): true”, “Rem(2)”, “Con(3): false”, “Ins(3)”]. In-
tuitively, such linearization order is possible, because pairs of events (“Con(2): true”,

-∞

+∞

3
2

1
n1

n2

n3

4

Fig. 13. Example state of the optimistic set.
Shaded nodes have their “marked” field set.

EA CB

t1

t2

t3

Rem(1) Rem(2)

Con(2): true Ins(3)

Con(3): false

D
Fig. 14. Example execution of the set. “Ins”
and “Rem” denote successful insert and
remove operations accordingly, and “Con”
denotes contains operations. A–E corre-
spond to commitment points of operations.

(c) (f)

(a) (d)

Ins(1, 2, 4) Con(2) Rem(2)

Con(3)

Rem(1)

(b) (e)

Con(2) Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4)

Con(2): true Rem(2)

Con(3)

Rem(1)

Ins(1, 2, 4) Con(2): true Rem(2)

Con(3): false Ins(3)

Rem(1)

Ins(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Rem(2)

Con(3) Ins(3)

Rem(1)

Con(2): trueIns(1, 2, 4)

Fig. 15. Changes to the abstract history of the execution in Figure 14. Edges implied by transitiv-
ity are omitted.

“Rem(2)”) and (“Con(3): false”, “Ins(3)”) overlap in the execution.
Building a correct linearization order by identifying a linearization point of

contains is complex, since it depends on presence of concurrent insert and remove

operation as well as on current position in the traversal of the data structure. We demon-
strate a different approach to the proof of the Optimistic Set based on the following in-
sights. Firstly, we observe that only decisions about a relative order of operations with
the same argument need to be committed into the abstract history, since linearizabil-
ity w.r.t. the sequential specification of a set does not require enforcing any additional
order on concurrent operations with different arguments. Secondly, we postpone de-
cisions about ordering contains operations w.r.t. concurrent events till their return
values are determined. Thus, in the abstract history for Figure 14, “Con(2): true” and
“Rem(2)” remain unordered until the former encounters the node removed by the latter,
and the order between operations becomes clear. Intuitively, we construct a linear order

OrderInsRem() {

R := (R ∪ {(e, myEid()) | e ∈ id(bEc) ∧ E(e).arg = E(myEid()).arg})+;
R := (R ∪ {(myEid(), e) | e ∈ id(E \ bEc) ∧ E(e).arg = myEid().arg

∧ E(e).op 6= contains})+;
}

commitinsert() {

E(myEid()).rval := (c.val 6= v);
if (c.val 6= v)

Gnode[myEid()] := c;
OrderInsRem();

}

commitremove() {

E(myEid()).rval := (c.val = v);
if (c.val = v)

Gnode[myEid()] := c;
OrderInsRem();

}

Fig. 16. The auxiliary code executed at the commitment points of insert and remove

on completed events with the same argument, and let contains operations be inserted
in a certain place in that order rather than appended to it.

Preliminaries. We assume that a set NodeID is a set of pointers to nodes, and that the
state of the linked list is represented by a partial map NodeID ⇀ NodeID× Int×Bool.
To aid in constructing the abstract history (E,R), the code maintains a piece of ghost
state—a partial function Gnode : EventID ⇀ NodeID. Given the identifier i of an event
E(i) denoting an insert that has inserted its value into the set,Gnode(i) returns a node
identifier (a pointer) of that value in the data structure. Similarly, for a successful remove
event identifier i, Gnode(i) returns a node identifier that the corresponding operation
removed from the data structure.

Commitment points. The commitment points in the insert and remove operations
are denoted by ghost code in Figure 16. They are similar in structure and update the or-
der of events in the abstract history in the same way described by OrderInsRem. That
is, these commitment points maintain a linear order on completed events of operations
with the same argument: on the first line of OrderInsRem, the current insert/remove
event identified by myEid() gets ordered after each operation e with the same argu-
ment as myEid(). On the second line of OrderInsRem, uncompleted insert and
remove events with the same argument are ordered after myEid(). Note that uncom-
pleted contains events remain unordered w.r.t. myEid(), so that later on at the com-
mitment point of contains they could be ordered before the current insert or remove
operation (depending on whether they return false or true accordingly), if it is necessary.

At the commitment point, the remove operation assigns a return value to the corre-
sponding event. When the removal is successful, the commitment point associates the
removed node with the event by updating Gnode. Let us illustrate how commitremove
changes abstract histories on the example. For the execution in Figure 14, after starting
the operation “Rem(2)” we have the abstract history Figure 15(a), and then at point
(B) “Rem(2)” changes the history to Figure 15(b). The uncompleted event “Con(2)”
remains unordered w.r.t. “Rem(2)” until it determines its return value (true) later on in
the execution, at which point it gets ordered before “Rem(2)”.

At the commitment point, the insert operation assigns a return value to the event
based on the check c.val 6= v determining whether v is already in the set. In the exe-

commitcontains() {

E(myEid()).rval := (curr.val = v);

EventID obs:= if (curr.val = v)then insOf(E, curr)
else lastRemOf(E,R, v);

if (obs 6= ⊥)
R := (R ∪ {(obs, myEid())})+;

R := (R ∪ {(myEid(), i) | ¬(i R−→ myEid()) ∧ E(i).arg = E(myEid()).arg})+;
}

where for an abstract history (E,R), a node identifier n and a value v:

insOf(E,n) =

{
i, if Gnode(i) = n,E(i).op = insert and E(i).rval = true

undefined otherwise

lastRemOf(E,R, v) =


i, if E(i) = (, remove, v, true)

∧ (∀i′. E(i).op = remove ∧ E(i′).arg = v =⇒
i′

R−→ i)

⊥, if ¬∃i. E(i) = (, remove, v, true)

Fig. 17. The auxiliary code executed at the commitment point of contains

cution Figure 14, prior to the start of “Ins(3)” we have the abstract history Figure 15(c).
When the event starts, a new event is added into the history (commitment point of kind
1), which changes it to Figure 15(d). At point (D) in the execution, commitinsert takes
place, and the history is updated to Figure 15(e). Note that “Ins(3)” and “Con(3)” re-
main unordered until the latter determines its return value (false) and orders itself before
“Ins(3)” in the abstract history.

The commitment point at lines 40–42 of the contains operation occurs at the last
iteration of the sorted list traversal in the locate method. The last iteration takes place
when curr.val ≥ v holds. In Figure 17, we present the auxiliary code commitcontains
executed at line 42 in this case. Depending on whether a requested value is found or not,
the abstract history is updated differently, so we further explain the two cases separately.
In both cases, the contains operation determines which event in the history it should
immediately follow in all linearizations.
Case (i). If curr.val = v, the requested value v is found, so the current event myEid()
receives true as its return value. In this case, commitcontains adds two kinds of edges in
the abstract history.

– Firstly, (insOf(E, curr), myEid()) is added to ensure that myEid() occurs in all
linearizations of the abstract history after the insert event of the node curr.

– Secondly, (myEid(), i) is added for every other identifier i of an event that does not
precede myEid() and has an argument v. The requirement not to precede myEid()
is explained by the following. Even though at commitment points of insert and
remove operations we never order events w.r.t. contains events, there still may be
events preceding myEid() in real-time order. Consequently, it may be impossible to
order myEid() immediately after insOf(E, curr).

At point (C) in the example from Figure 14, commitcontains in “Con(2)” changes the

history from Figure 15(b) to Figure 15(c). To this end, “Con(2)” is completed with
a return value true and gets ordered after “Ins(2)” (this edge happened to be already
in the abstract history due to the real-time order), and also in front of events following
“Ins(2)”, but not preceding “Con(2)”. This does not include “Ins(4)” due to the real-time
ordering, but includes “Rem(2)”, so the latter is ordered after the contains event, and
all linearizations of the abstract history Figure 15(c) meet the sequential specification
in this example. In general case, we also need to show that successful remove events
do not occur between insOf(E, curr), myEid()) and myEid() in the resulting abstract
history, which we establish formally in [14]. Intuitively, when myEid() returns true, all
successful removes after insOf(E, curr) are concurrent with myEid(): if they preceded
myEid() in the real-time order, it would be impossible for the contains operation to
reach the removed node by starting from the head of the list in order return true.
Case (ii). Prior to executing commitcontains, at line 40 we check that curr.val ≥ v.
Thus, if curr.val = v does not hold in commitcontains, the requested value v is not
found in the sorted list, and false becomes the return value of the current event myEid().
In this case, commitcontains adds two kinds of edges in the abstract history.

– Firstly, (lastRemOf(E,R, v), myEid()) is added, when there are successful remove
events of value v (note that they are linearly ordered by construction of the abstract
history, so we can choose the last of them). This ensures that myEid() occurs after
a successful remove event in all linearizations of the abstract history.

– Secondly, (myEid(), i) is added for every other identifier i of an event that does not
precede myEid() and has an argument v, which is analogous to the case (i).

Intuitively, if v has never been removed from the set, myEid() needs to happen in the
beginning of the abstract history and does not need to be ordered after any event.

For example, at point (D) in the execution from Figure 14, commitcontains changes
the abstract history from Figure 15(e) to Figure 15(f). To this end, “Con(3)” is ordered
in front of all events with argument 3 (specifically, “Ins(3)”), since there are no suc-
cessful removes of 3 in the abstract history. Analogously to the case (i), in general to
ensure that all linearizations of the resulting abstract history meet the sequential spec-
ification, we need to show that there cannot be any successful insert events of v be-
tween lastRemOf(E,R, v) (or the beginning of the abstract history, if it is undefined)
and myEid(). We prove this formally in [14]. Intuitively, when myEid() returns false,
all successful insert events after lastRemOf(E,R, v) (or the beginning of the history)
are concurrent with myEid(): if they preceded myEid() in the real-time order, the in-
serted nodes would be possible to reach by starting from the head of the list, in which
case the contains operation could not possibly return false.

9 Related Work

There has been a great deal of work on proving algorithms linearizable; see [3] for a
broad survey. However, despite a large number of techniques, often supported by novel
mathematical theory, it remains the case that all but the simplest algorithms are difficult
to verify. Our aim is to verify the most complex kind of linearizable algorithms, those
where the linearization of a set of operations cannot be determined solely by examining
the prefix of the program execution consisting of these operations. Furthermore, we aim

to do this while maintaining a relatively simple proof argument.
Much work on proving linearizability is based on different kinds of simulation

proofs. Loosely speaking, in this approach the linearization of an execution is built
incrementally by considering either its prefixes or suffixes (respectively known as for-
ward and backward simulations). This supports inductive proofs of linearizability: the
proof involves showing that the execution and its linearization stay in correspondence
under forward or backward program steps. The linearization point method is an instance
of forward simulation: a syntactic point in the code of an operation is used to determine
when to add it to the linearization.

As we explained in §1, forward simulation alone is not sufficient in general to verify
linearizability. However, Schellhorn et al. [19] prove that backward simulation alone is
always sufficient.They also present a proof technique and use it to verify the Herlihy-
Wing queue [11]. However, backwards simulation proofs are difficult to understand
intuitively: programs execute forwards in time, and therefore it is much more natural to
reason this way.

The queue originally proposed by Herlihy and Wing in their paper on linearizabil-
ity [11] has proved very difficult to verify. Their proof sketch is based on reasoning
about the possible linearizations arising from a given queue configuration. Our method
could be seen as being midway between this approach and linearization points. We use
partiality in the abstract history to represent sets of possible linearizations, which helps
us simplify the proof by omitting irrelevant ordering (§2).

Another class of approach to proving linearizability is based on special-purpose
program logics. These can be seen as a kind of forward simulation: assertions in the
proof represent the connection between program execution and its linearization. To get
around the incompleteness of forward simulation, several authors have introduced aux-
iliary notions that support limited reasoning about future behaviour in the execution,
and thus allow the proof to decide the order of operations in the linearization [22, 15,
21]. However, these new constructs have subtle semantics, which results in proofs that
are difficult to understand intuitively.

Our approach is based on program logic, and therefore is a kind of forward simula-
tion. The difference between us and previous program logics is that we do not explicitly
construct a linear order on operations, but only a partial order. This removes the need
for special constructs for reasoning about future behaviour, but creates the obligation to
show that the partially ordered abstract history can always be linearized.

One related approach to ours is that of Hemed et al. [9], who generalise lineariz-
ability to data structures with concurrent specifications (such as barriers) and propose
a proof method for establishing it. To this end, they also consider histories where some
events are partially ordered—such events are meant to happen concurrently. However,
the goal of Hemed et al.’s work is different from ours: their abstract histories are never
linearized, to allow concurrent specifications; in contrast, we guarantee the existence
of a linearization consistent with a sequential specification. It is likely that the two ap-
proaches can be naturally combined.

Aspect proofs [10] are a non-simulation approach that is related to our work. An
aspect proof imposes a set of forbidden shapes on the real-time order on methods; if an
algorithm avoids these shapes, then it is necessarily linearizable. These shapes are spe-

cific to a particular data structure, and indeed the method as proposed in [10] is limited
to queues (extended to stacks in [2]). In contrast, our proof method is generic, not tied
to a particular kind of data structure. Furthermore, checking the absence of forbidden
shapes in the aspect method requires global reasoning about the whole program exe-
cution, whereas our approach supports inductive proofs. The original proof of the TS
stack used an extended version of the aspect approach [2]. However, without a way of
reasoning inductively about programs, the proof of correctness reduced to a large case-
split on possible executions. This made the proof involved and difficult. Our proof is
based on an inductive argument, which makes it easier.

Another class of algorithms that are challenging to verify are those that use help-
ing, where operations complete each others’ work. In such algorithms, an operation’s
position in the linearization order may be fixed by a helper method. Our approach can
also naturally reason about this pattern: the helper operation may modify the abstract
history to mark the event of the operation being helped as completed.

The Optimistic set was also proven linearizable by O’Hearn et al. in [17]. The
essence of the work is a collection of lemmas (including the Hindsight Lemma) proven
outside of the logic to justify conclusions about properties of the past of executions
based on the current state. Based on our case study of the Optimistic set algorithm,
we conjecture that at commitment points we make a constructive decision about ex-
tending abstract history where the hindsight proof would use the Hindsight Lemma to
non-constructively extend a linearization with the contains operation.

10 Conclusion and Future Work

The popular approach to proving linearizability is to construct a total linearization or-
der by appending new operations as the program executes. This approach is straightfor-
ward, but is limited in the range of algorithms it can handle. In this paper, we present
a new approach which lifts these limitations, while preserving the appealing incremen-
tal proof structure of traditional linearization points. As with linearization points, our
fundamental idea can be explained simply: at commitment points, operations impose
order between themselves and other operations, and all linearizations of the order must
satisfy the sequential specification. Nonetheless, our technique generalises to far more
subtle algorithms than traditional linearization points.

We have applied our approach to two algorithms known to present particular prob-
lems for linearization points. Although, we have not presented it here, our approach
scales naturally to helping, where an operation is completed by another thread. We can
support this, by letting any thread complete the operation in an abstract history. In fu-
ture work, we plan to apply our approach to the Time-Stamped stack [2], which poses
verification challenges similar to the TS queue; a flat-combining style algorithm, which
depends fundamentally on helping, as well as a range of other challenging algorithms.
In this paper we have concentrated on simplifying manual proofs. However, our ap-
proach also seems like a promising candidate for automation, as it requires no special
meta-theory, just reasoning about partial orders. We are hopeful that we can automate
such arguments using off-the-shelf solvers such as Z3, and we plan to experiment with
this in future.

References

1. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent
abstract predicates. In ECOOP, 2010.

2. M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-stamped stack. In POPL,
2015.

3. B. Dongol and J. Derrick. Verifying linearizability: A comparative survey. arXiv CoRR,
1410.6268, 2014.

4. I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theoretical Computer Science, 2010.

5. P. C. Fishburn. Intransitive indifference with unequal indifference intervals. Journal of
Mathematical Psychology, 7, 1970.

6. A. Gotsman and H. Yang. Linearizability with ownership transfer. In CONCUR, 2012.
7. A. Haas. Fast Concurrent Data Structures Through Timestamping. PhD thesis, University

of Salzburg, 2015.
8. S. Heller, M. Herlihy, V. Luchangco, M. Moir, W. N. Scherer, and N. Shavit. A lazy concur-

rent list-based set algorithm. In OPODIS, 2005.
9. N. Hemed, N. Rinetzky, and V. Vafeiadis. Modular verification of concurrency-aware lin-

earizability. In DISC, 2015.
10. T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs. In

CONCUR, 2013.
11. M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.

ACM TOPLAS, 1990.
12. M. Hoffman, O. Shalev, and N. Shavit. The baskets queue. In OPODIS. Springer, 2007.
13. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.
14. A. Khyzha, M. Dodds, A. Gotsman, and M. Parkinson. Proving linearizability using partial

orders (extended version). arXiv CoRR, 1701.05463, 2017.
15. H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization

points. In PLDI, 2013.
16. A. Morrison and Y. Afek. Fast concurrent queues for x86 processors. In PPoPP, 2013.
17. P. W. O’Hearn, N. Rinetzky, M. T. Vechev, E. Yahav, and G. Yorsh. Verifying linearizability

with hindsight. In PODC, 2010.
18. S. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs I. Acta

Informatica, 6, 1976.
19. G. Schellhorn, J. Derrick, and H. Wehrheim. A sound and complete proof technique for

linearizability of concurrent data structures. ACM TOCL, 15, 2014.
20. A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-style reasoning in a

logic for higher-order concurrency. In ICFP, 2013.
21. A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for

fine-grained concurrency. In POPL, 2013.
22. V. Vafeiadis. Modular fine-grained concurrency verification. PhD thesis, University of Cam-

bridge, UK, 2008. Technical Report UCAM-CL-TR-726.

