
Local Reasoning for Storable Locks and Threads

Alexey Gotsman∗ Josh Berdine† Byron Cook†

Noam Rinetzky‡ Mooly Sagiv‡†

∗University of Cambridge †Microsoft Research
‡Tel-Aviv University

April, revised September
Technical Report
MSR-TR-2007-39

We present a resource oriented program logic that is able to reason about
concurrent heap-manipulating programs with unbounded numbers of dy-
namically-allocated locks and threads. The logic is inspired by concurrent
separation logic, but handles these more realistic concurrency primitives.
We demonstrate that the proposed logic allows local reasoning about
programs for which there exists a notion of dynamic ownership of heap
parts by locks and threads.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

We are interested in modular reasoning, both manual and automatic, about con-
current heap-manipulating programs. Striking progress in this realm has recently
been made by O’Hearn [11], who proposed concurrent separation logic as a basis
for reasoning about such programs. Concurrent separation logic is a Hoare logic
with two novel features: the assertion language of the logic contains the ∗ con-
nective that splits the program state into disjoint parts, and the proof system
has two important rules:

{P} C {Q}
{P ∗R} C {Q ∗R} Frame

{P1} C1 {Q1} {P2} C2 {Q2}
{P1 ∗ P2} C1 ‖ C2 {Q1 ∗Q2}

Par

According to the Frame rule, if P includes the part of the program state that C
accesses, then executing C in the presence of additional program state R results
in the same behavior, and C does not touch the extra state. The Par rule says
that if two processes access disjoint parts of the program state, they can safely
execute in parallel and the final state is given by the ∗-conjunction of the post-
conditions of the processes. Therefore, to reason about a command (or a process)
in a program, it is sufficient to consider only the part of the program state that
the command actually accesses, a feature that greatly simplifies program proofs
and is referred to as the principle of local reasoning [10].

In the Par rule it is intended that the processes access a finite set of shared
resources using conditional critical regions to synchronize access. Process inter-
action is mediated in the logic by assigning to every resource an assertion – its
resource invariant – that describes the part of the heap owned by the resource
and must be respected by every process. For any given process, resource invari-
ants restrict how other processes can interfere with it, and hence, the process
can be reasoned about in isolation. In this way the logic allows local reasoning
about programs consistent with what O’Hearn terms the Ownership Hypothesis
(“A code fragment can access only those portions of state that it owns.”) [11],
i.e., programs that admit a notion of ownership of heap parts by processes and
resources. At the same time, the ownership relation is not required to be static,
i.e., it permits ownership transfer of heap cells between areas owned by different
processes and resources. The resource-oriented flavor of the logic makes it possi-
ble to use it as a basis for thread-modular program analysis [7]: certain classes of
resource invariants can automatically be inferred by an abstract interpretation
that analyzes each process separately in contrast to a straightforward analysis
that just enumerates all execution interleavings.

However, concurrent separation logic [11], its derivatives [1, 14, 4], and a cor-
responding program analysis [7] all suffer from a common limitation: they assume
a bounded number of non-aliased and pre-allocated locks (resources) and threads
(processes) and, hence, cannot be used to reason about concurrency primitives
present in modern languages and libraries (e.g., POSIX threads) that use un-
bounded numbers of storable locks and threads. Here “storable” means that locks
can be dynamically allocated and destroyed in the heap; threads can be dynami-

1

cally created and can terminate themselves, and moreover, thread identifiers can
be stored and subsequently used to wait for termination of the identified thread.

Reasoning about storable locks is especially difficult. The issue here is not
that of expressiveness, but of modularity: storable locks can be handled by build-
ing a global invariant describing the shared memory as a whole, with all locks
allocated in it. However, in this case the locality of reasoning is lost, which
kicks back in global invariants containing lots of auxiliary state, proofs being
extremely complex and program analyses for discovery of global invariants be-
ing infeasible. Recent efforts towards making proofs in this style of reasoning
modular [5, 17] use rely-guarantee reasoning to simplify the description of the
global invariant and its possible changes (see Section 9 for a detailed comparison
of such techniques with our work).

What we want is a logic that preserves concurrent separation logic’s local
reasoning, even for programs that manipulate storable locks and threads. To
this end, in this paper we propose a logic (Section 3), based upon separation
logic, that treats storable locks along with the data structures they protect as
resources, assigning invariants to them and managing their dynamic creation and
destruction. The challenges of designing such a logic were (quite emotionally)
summarized by Bornat et al. in [1]:

...the idea of semaphores in the heap makes theoreticians wince. The
semaphore has to be available to a shared resource bundle:1 that means
a bundle will contain a bundle which contains resource, a notion which
makes everybody’s eyes water. None of it seems impossible, but it’s a
significant problem, and solving it will be a small triumph.

Less emotionally, stored locks are analogous to stored procedures in that, unless
one is very careful, they can raise a form of Russell’s paradox, circularity arising
from what Landin called knots in the store. Stored locks can do this by refer-
ring to themselves through their resource invariants, and here we address this
foundational difficulty by cutting the knots in the store with an indirection.

Our approach to reasoning about storable locks is to represent a lock in
the assertion language by a handle whose denotation cuts knots in the store.
A handle certifies that a lock allocated at a certain address exists and gives a
thread owning the handle a permission to (try to) acquire the lock. By using the
mechanism of permissions [1] the handle can be split among several threads that
can then compete for the lock. Furthermore, a handle carries some information
about the part of the program state protected by the lock (its resource invari-
ant), which lets us mediate the interaction among threads, just as in the original
concurrent separation logic. Handles for locks can be stored inside resource in-
variants, thereby permitting reasoning about the situation described in the quote
above. In this way we extend the ability of concurrent separation logic to reason
locally about programs that are consistent with the Ownership Hypothesis to
the setting with storable locks and threads. As we show in Section 4, the class of

1 Here the term “resource bundle” is used to name what we, following O’Hearn’s
original paper, call “resource invariant”.

2

such programs contains programs with coarse-grained synchronization and some,
but not all, programs with fine-grained synchronization, including examples that
were posed as challenges in the literature.

We prove the logic sound with respect to an interleaving operational seman-
tics (Section 7). It happens that even formulating the soundness statement is
non-trivial as we have to take into account resource invariants for locks not
mentioned directly in the local states of threads.

The technical issues involved in reasoning about storable locks and storable
threads are similar. To make the presentation more approachable, we first present
a logic for programs consisting of one top-level parallel composition of several
threads. In Section 8 we extend the logic to handle dynamic thread creation.

2 Technical Background

In this section we review some technical concepts of (sequential) separation logic
that we reuse in ours. We consider a version of separation logic that is a Hoare
logic for a heap-manipulating programming language with the following syntax:

V ::= l, x, y, . . . variables
E, F ::= nil | V | E + F | . . . expressions
G ::= E = F | E 6= F branch guards
C ::= V = E | V = [E] | [E] = F | V = new | delete E primitive commands
S ::= C | S; S | if G then S else S fi | while G do S od commands

Here square brackets denote pointer dereferencing; the meaning of the rest of
the language is standard.

Formulae in the assertion language of separation logic denote program states
represented by stack-heap pairs and have the following syntax:

Φ ::= false | Φ ⇒ Φ | ∃X.Φ | Φ ∗ Φ | Φ −−∗ Φ | emps | emph

| E = F | π = µ | Ownπ(x) | E 7→F

We can define usual connectives not mentioned in the syntax definition using
the provided ones. Note that we treat variables as resources [14] to avoid side
conditions in proof rules, i.e., we treat the stack in the same way as the heap,
Thus, the assertion E 7→F denotes the set of stack-heap pairs such that the heap
consists of one cell allocated at the address E and storing the value F , and the
stack contains all variables mentioned in E and F . The assertion Own1(x) (the
general form Ownπ(x) is explained later) restricts the stack to contain only the
variable x and leaves the heap unconstrained. We can separate assertions about
variable ownership Own1(x) with ∗ in the same way as assertions E 7→F about
ownership of heap cells. emps describes the empty stack and emph the empty
heap. We distinguish integer program variables x, y, . . . (which may appear in
programs) and logical variables X, Y, . . . (which do not appear in programs, only
in formulae). In the assertion language definition E and F range over expressions,
which are the same as in the programming language, but can contain logical
variables. We write E 7→ for ∃X.E 7→X where X does not occur free in E.

3

The assertion language includes fractional permissions [1] for variables, which
are necessary for getting a complete (in the sense of [14]) proof system when vari-
ables are treated as resources. For clarity of presentation we omit the treatment
of permissions for heap cells. Permissions are denoted with permission expres-
sions (ranged over by π and µ), which are expressions evaluating to numbers
from (0, 1]. A permission shows “how much” of a variable is owned by the as-
sertion. For example, variable x represented by Own1(x) can be split into two
permissions Own1/2(x), each of which permits reading the variable, but not writ-
ing to it. Two permissions Own1/2(x) can later be recombined to obtain the full
permission Own1(x), which allows both reading from and writing to x. We make
the convention that binds most loosely, use π1x1, . . . , πkxk P to denote
Ownπ1(x1) ∗ . . . ∗ Ownπk

(xk) ∧ P and abbreviate 1x to x.
The proof rules (see Appendix A) are the same as in [15, 14] modulo treating

variables as resources in heap-manipulating commands. In the rules and the
following, O ranges over assertions of the form π1x1, . . . , πkxk. We also allow O
to be empty, in which case we interpret O P as emps ∧ P .

3 Logic

We now consider a concurrent programming language based on the sequential
one presented in Section 2:

C ::= . . . | init(E) | finalize(E) | acquire(E) | release(E) primitive commands
P ::= S ‖ . . . ‖ S programs

We assume that each program consists of one parallel composition of several
threads. Synchronization is performed using locks, which are dynamically created
and destroyed in the heap. init(E) converts a location allocated at the address
E to a lock. After the completion of init(E) the thread that executed it holds
the lock. acquire(E) and release(E) try to acquire, respectively, release the
lock allocated at the address E. finalize(E) converts the lock into an ordinary
heap cell containing an unspecified value provided that the lock at the address
E is held by the thread that is executing the command.

As in concurrent separation logic [11], with each lock we associate a resource
invariant – a formula that describes the part of the heap protected by the lock.
(This association is considered to be part of the proof, rather than of the pro-
gram.) To deal with unbounded numbers of locks we assume that each lock has a
sort that determines its invariant. Formally, we assume a fixed set L of function
symbols with positive arities representing lock sorts, and with each A ∈ L of ar-
ity k we associate a formula IA(L, ~X) containing k free logical variables specified
as parameters – the resource invariant for the sort A. The meaning of the first
parameter is fixed as the address at which the lock is allocated. Other parame-
ters can have arbitrary meaning. In Sections 5 and 7 we give certain restrictions
that resource invariant formulae must satisfy for the logic to be sound.

We extend the assertion language of separation logic with two extra forms:
Φ ::= . . . | πA(E, ~F) | LockedA(E, ~F). An expression of the form A(E, ~F), where

4

(O E 7→) ⇒ ~F = ~F

{O E 7→ } initA, ~F (E) {O A(E, ~F) ∗ LockedA(E, ~F)}
Init

{O A(E, ~F) ∗ LockedA(E, ~F)} finalize(E) {O E 7→ }
Finalize

{(O πA(L, ~X)) ∧ L=E} acquire(E) {(O πA(L, ~X) ∗ LockedA(L, ~X)) ∗ IA(L, ~X)}
Acquire

{((O LockedA(L, ~X)) ∗ IA(L, ~X)) ∧ L=E} release(E) {O emph}
Release

Fig. 1. Proof rules for lock-manipulating commands

A ∈ L, is a handle for the lock of the sort A allocated at the address E. It can be
viewed as an existential permission for the lock: a thread having A(E, ~F) knows
that the heap cell at the address E is allocated and is a lock, and can try to
acquire it. A(E, ~F) does not give permissions for reading from or writing to the
cell at the address E. Moreover, it does not ensure that the part of the heap
protected by the lock satisfies the resource invariant until the thread successfully
acquires the lock. We allow using A(E, ~F) with fractional permissions [1] writing
πA(E, ~F). The intuition behind the permissions is that a handle for a lock with
the full permission 1 can be split among several threads, thereby allowing them
to compete for the lock. A thread having a permission for the handle less than 1
can acquire the lock; a thread having the full permission can in addition finalize
the lock. We abbreviate 1A(E, ~F) to A(E, ~F). Assertions in the code of threads
can also use a special form LockedA(E, ~F) to represent the fact that the lock at
the address E is held by the thread in the surrounding code of the assertion.
LockedA(E, ~F) also ensures that the cell at the address E is allocated and is a
lock of the sort A with parameters ~F .

Our logic includes the proof rules of sequential separation logic and four new
rules for lock-manipulating commands shown in Figure 1. We do not provide
a rule for parallel composition as our programs consist of only one top-level
parallel composition, and in Section 8 we instead treat dynamic thread creation.
We write ` {P} C {Q} to denote that the triple {P} C {Q} is provable in our
logic.

Initializing a lock (Init) converts a cell in the heap at the address E to
a lock. Upon completion of init(E) the thread that executed it gets both the
ownership (with the full permission) of the handle A(E, ~F) for the lock and the
knowledge that it holds the lock, represented by LockedA(E, ~F). Note that for
the precondition O E 7→ to be consistent O must contain variables mentioned
in E. In this and other rules we use O to supply the permissions for variables
necessary for executing the command. For initA,~F (E) commands to be safe
the stack must contain variables mentioned in E and ~F , hence, the premiss
(O E 7→) ⇒ ~F = ~F additionally requires that variables be contained in O
(see [14]). An implicit side condition in the Init rule is that in all branches of a

5

proof of a program, the sort A of the lock and the values of parameters ~F have to
be chosen consistently for each init command (as otherwise the conjunction rule
of Hoare logic becomes unsound). This is formally enforced by annotating each
init command with the sort of the lock that is being created and its parameters
(defined by arbitrary expressions ~F over program variables). In general, the
lock sort can also be computed as a function of program variables. To simplify
notation we assume the sort of the lock is fixed for each init command in the
program. We note that although we use the sort of the lock and its parameters
for conceptually different purposes (see the examples in Section 4), technically
they are merely pieces of auxiliary state associated with the handle for the lock
that carry some information about the resource invariant of the lock. Therefore,
the annotations of lock sorts and parameters at init commands can be viewed
as just assignments to auxiliary cells in memory.

Finalizing a lock results in it being converted into an ordinary cell. To finalize
a lock (Finalize) a thread has to have the full permission for the handle A(E, ~F)
associated with the lock. Additionally, the lock has to be held by the thread,
i.e., LockedA(E, ~F) has to be in its local state.

A thread can acquire a lock if it has a permission for the handle of the lock.
Acquiring a lock (Acquire) results in the resource invariant of the lock (with
appropriately instantiated parameters) being ∗-conjoined to the local state of the
thread. The thread also obtains the corresponding Locked fact, which guarantees
that it holds the lock. A thread acquiring the same lock twice deadlocks, which
is enforced by LockedA(E, ~F)∗LockedA(E, ~F) being inconsistent (see Section 5).
Conversely, a thread can release a lock (Release) only if it holds the lock, i.e.,
the corresponding Locked fact is present in the local state of the thread. Upon
releasing the lock the thread gives up both this knowledge and the ownership of
the resource invariant associated with the lock. The fact that resource invariants
can claim ownership of program variables complicates the rules Acquire and
Release. E.g., in the postcondition of Acquire we cannot put IA(L, ~X) inside
the expression after as it may claim ownership of variables not mentioned in
O. This requires us to use a logical variable L in places where the expression E
would have been expected.

4 Examples of Reasoning

We first show (in Example 1 below) that straightforward application of rules
for lock-manipulating commands allows us to handle programs in which locks
protect parts of the heap without other locks allocated in them. We then present
two more involved examples of using the logic, which demonstrate how extend-
ing the logic with storable locks has enabled reasoning more locally than was
previously possible in some interesting cases (Examples 2 and 3).

Instead of the minimalistic language presented in Section 3, in our examples
we use a language with some additional C-like syntax (in particular, C structures)
that can easily be desugared to the language of Section 3. For an address x of
a structure, we use x.F in the assertion language as syntactic sugar for x + d,

6

struct RECORD {
LOCK Lock;
int Data;

};

main() {
RECORD *x;
{x emph}
x = new RECORD;
{x x7→ ∗ x.Data 7→ }
initR(x);
{x x.Data 7→ ∗ R(x) ∗
LockedR(x)}

x->Data = 0;
{x x.Data 7→0 ∗ R(x) ∗
LockedR(x)}

release(x);
{x R(x)}
// ...
{x R(x)}
acquire(x);
{x x.Data 7→ ∗ R(x) ∗
LockedR(x)}

x->Data++;
{x x.Data 7→ ∗ R(x) ∗
LockedR(x)}

release(x);
{x R(x)}
// ...
{x R(x)}
acquire(x);
{x x.Data 7→ ∗ R(x) ∗
LockedR(x)}

finalize(x);
{x x7→ ∗ x.Data 7→ }
delete x;
{x emph}

}

IR(L)
∆
= emps ∧ L.Data7→

Fig. 2. A very simple example of reasoning in the logic

where d is the offset of the field F in the structure. We assume that each field
in a structure takes one memory cell. We also use an obvious generalization of
new and delete that allocate and deallocate several memory cells at once.

Example 1: A simple situation. Figure 2 shows a proof outline for a program
with a common pattern: a lock-field in a structure protecting another field in the
same structure. We use a lock sort R with invariant IR(L). The proof outline
shows how the “life cycle” of a lock is handled in our proof system: creating a
cell, converting it to a lock, acquiring and releasing the lock, converting it to an
ordinary cell, and disposing the cell. For simplicity we consider a program with
only one thread.

Example 2: “Last one disposes”. This example was posed as a challenge for local
reasoning in [1]. The program in Figure 3 represents a piece of multicasting code:
a single packet p (of type PACKET) with Data inside the packet is distributed
to M threads at once. For efficiency reasons instead of copying the packet, it is
shared among threads. A Count of access permissions protected by Lock is used
to determine when everybody has finished and the packet can be disposed. The
program consists of a top level parallel composition of M calls to the procedure
thread. Here M is a constant assumed to be greater than 0. For completeness,
we also provide the procedure initialize that can be used to initialize the packet
and thereby establish the precondition of the program.

To prove the program correct the resource invariant for the lock at the address
p has to contain a partial permission for the handle of the same lock. This is
formally represented by a lock sort P with the resource invariant IP (L,M).
Initially the resource invariant contains no permissions of this kind and the
handle P (p, M) for the lock is split among M threads (hence, the precondition
of each thread is (1/M)p (1/M)P (p, M)). Each thread uses the handle to
acquire the lock and process the packet. When a thread finishes processing and
releases the lock, it transfers the permission for the handle it owned to the
resource invariant of the lock. The last thread to process the packet can then

7

struct PACKET { LOCK Lock;
int Count;
DATA Data; };

PACKET *p;

thread() {
{(1/M)p (1/M)P (p, M)}
acquire(p);
{(1/M)p ∃X.0 ≤ X < M ∧ p.Count7→X ∗ p.Data 7→ ∗ ((X + 1)/M)P (p, M) ∗ LockedP (p, M)}
// ...Process data...
p->Count++;
{(1/M)p ∃X.1 ≤ X ≤ M ∧ p.Count7→X ∗ p.Data 7→ ∗ (X/M)P (p, M) ∗ LockedP (p, M)}
if (p->Count == M) {
{(1/M)p p.Count7→M ∗ p.Data 7→ ∗ P (p, M) ∗ LockedP (p, M)}
// ...Finalize data...
finalize(p);
{(1/M)p p.Count7→M ∗ p.Data 7→ ∗ p7→ }
delete(p);

} else {
{(1/M)p ∃X.1 ≤ X < M ∧ p.Count7→X ∗ p.Data 7→ ∗ (X/M)P (p, M) ∗ LockedP (p, M)}
release(p);

}
{(1/M)p emph}

}

initialize() {
{p emph}
p = new PACKET;
{p p7→ ∗ p.Count7→ ∗ p.Data 7→ }
p->Count = 0;
{p p7→ ∗ p.Count7→0 ∗ p.Data 7→ }
init(p);
// ...Initialize data...
{p p.Count7→0 ∗ p.Data 7→ ∗ P (p, M) ∗ LockedP (p, M)}
release(p);
{p P (p, M)}

}

Fig. 3. Proof outline for the “Last one disposes” program

get the full permission for the lock by combining the permission in the invariant
with its own one and can therefore dispose the packet.

Example 3: Lock coupling list. We next consider a fine-grained implementation of
a singly-linked list with concurrent access, whose nodes store integer keys. The
program (Figures 4 and 5) consists of M operations add and remove running
in parallel. The operations add and remove an element with the given key to
or from the list. Traversing the list uses lock coupling: the lock on one node is
not released until the next node is locked. The list is sorted and the first and
last nodes in it are sentinel nodes that have values −∞, respectively, +∞. It is
initialized by the code in procedure initialize. We only provide a proof outline for
the procedure locate (Figure 4), which is invoked by other procedures to traverse
the list. We use lock sorts H (for the head node) and N (for all other nodes) with
the invariants IH(L) and IN (L, V). In this example the resource invariant for
the lock protecting a node in the list holds a handle for the lock protecting the
next node in the list. The full permission for N(X, V ′) in the invariants above
essentially means that the only way a thread can lock a node is by first locking
its predecessor: here the invariant enforces a particular locking policy.

8

locate(int e) {
NODE *prev, *curr;
{O −∞ < e ∧ (1/M)H(head)}
prev = head;
{O −∞ < e ∧ prev = head ∧ (1/M)H(head)}
acquire(prev);
{O ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗ LockedH(prev) ∗
∃X.prev.Val7→−∞ ∗ prev.Next7→X ∗N(X, V ′)}

curr = prev->Next;
{O ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗ LockedH(prev) ∗
prev.Val7→−∞ ∗ prev.Next7→curr ∗N(curr, V ′)}

acquire(curr);
{O ∃V ′.−∞ < e ∧ −∞ < V ′ ∧ (1/M)H(head) ∗N(curr, V ′) ∗ LockedH(prev) ∗
LockedN (curr, V ′) ∗ prev.Val7→−∞ ∗ prev.Next7→curr ∗ curr.Val7→V ′∗
((curr.Next7→nil ∧ V ′ = +∞) ∨ (∃X, V ′′.curr.Next7→X ∗N(X, V ′′) ∧ V ′ < V ′′))}

while (curr->Val < e) {
{O ∃V, V ′.V ′ < e ∧ (1/M)H(head) ∗N(curr, V ′) ∗ LockedN (curr, V ′) ∗
(LockedH(prev) ∧ V = −∞∨ LockedN (prev, V)) ∗ prev.Val7→V ∗ prev.Next7→curr ∗
∃X, V ′′.curr.Val7→V ′ ∗ curr.Next7→X ∗N(X, V ′′) ∧ V < V ′ < V ′′}

release(prev);
{O ∃X, V ′, V ′′.V ′ < e ∧ V ′ < V ′′ ∧ (1/M)H(head) ∗ LockedN (curr, V ′)∗
curr.Val7→V ′ ∗ curr.Next7→X ∗N(X, V ′′)}

prev = curr;
curr = curr->Next;
{O ∃V, V ′.V < e ∧ V < V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V)∗
prev.Val7→V ∗ prev.Next7→curr ∗N(curr, V ′)}

acquire(curr);
{O ∃V, V ′.V < e ∧ V < V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V) ∗
LockedN (curr, V ′) ∗N(curr, V ′) ∗ prev.Val7→V ∗ prev.Next7→curr ∗ curr.Val7→V ′ ∗
((V ′ = +∞∧ curr.Next7→nil) ∨ ∃X, V ′′.curr.Next7→X ∗N(X, V ′′) ∧ V ′ < V ′′)}

}
{O ∃V, V ′.V < e ≤ V ′ ∧ (1/M)H(head) ∗ LockedN (prev, V) ∗ LockedN (curr, V ′) ∗N(curr, V ′) ∗
prev.Val7→V ∗ prev.Next7→curr ∗ curr.Val7→V ′ ∗ ((V ′ = +∞∧ curr.Next7→nil) ∨
∃X, V ′′.curr.Next7→X ∗N(X, V ′′) ∧ V ′ < V ′′)}

return (prev, curr);
}

IH(L)
∆
= emps ∧ ∃X, V ′.L.Val 7→−∞ ∗ L.Next 7→X ∗N(X, V ′) ∧ −∞ < V ′

IN (L, V)
∆
= emps ∧ ((L.Val 7→V ∗ L.Next 7→nil ∧ V = +∞) ∨

(∃X, V ′.L.Val 7→V ∗ L.Next 7→X ∗N(X, V ′) ∧ V < V ′))

Fig. 4. Proof outline for a part of the lock coupling list program. Here O is e, prev,
curr, (1/M)head.

9

struct NODE { LOCK Lock;
int Val;
NODE *Next; }

NODE *head;

initialize() {
NODE *last;
last = new NODE;
last->Val = INFINITY;
last->Next = NULL;
initN,+∞(last);
release(last);
head = new NODE;
head->Val = -INFINITY;
head->Next = last;
initH(head);
release(head);

}

add(int e) {
NODE *n1, *n2, *n3, *result;
(n1, n3) = locate(e);
if (n3->Val != e) {

n2 = new NODE;
n2->Val = e;
n2->Next = n3;
initN,e(n2);
release(n2);
n1->Next = n2;
result = true;

} else {
result = false;

}
release(n1);
release(n3);
return result;

}

remove(int e) {
NODE *n1, *n2, *n3;
NODE *result;
(n1, n2) = locate(e);
if (n2->Val == e) {

n3 = n2->Next;
n1->Next = n3;
finalize(n2);
delete n2;
result = true;

} else {
release(n2);
result = false;

}
release(n1);
return result;

}

Fig. 5. Lock coupling list program. The procedure locate is shown in Figure 4.

nil = 0 Values = {. . . ,−1, 0, 1, . . .}
Perms = (0, 1] Vars = {x, y, . . .}
Stacks = Vars ⇀fin (Values× Perms) Locs = {1, 2, . . .}
LockPerms = [0, 1] ThreadIDs = {1, 2, . . .}
LockVals = {U, 0} ∪ ThreadIDs States = Stacks×Heaps
Heaps = Locs ⇀fin (Cell(Values) ∪ Lock(L × LockVals× LockPerms)

r Lock(L × {U} × {0}))

Fig. 6. Model of the assertion language

We were able to present modular proofs for the programs above because in
each case we could associate with every lock a part of the heap such that a thread
accessed the part only when it held the lock, that is, the lock owned the part of
the heap. We note that we would not be able to give modular proofs to programs
that do not obey this policy, for instance, to optimistic list [16] – another fine-
grained implementation of the list from Example 3 in which the procedure locate
first traverses the list without taking any locks and then validates the result by
locking two candidate nodes and re-traversing the list to check that they are still
present and adjacent in the list.

5 Model of the Assertion Language

As usual, assertion language formulae denote sets of pairs of a stack and a heap,
both represented by finite partial functions. They are interpreted over the domain
in Figure 6. However, in contrast to the standard domain used in separation logic,
here cells in the heap can be of two types: ordinary cells (Cell) and locks (Lock).
A lock has a sort, a value, and is associated with a permission from [0, 1]. To
simplify notation, here and in the further semantic development we assume that
lock sorts have no parameters other than the address of the lock. Our results can
straightforwardly be adjusted to the general case (parameters can be treated in

10

(s, h, i) |=k E 7→F ⇔ JEK(s,i)↓ ∧ JF K(s,i)↓ ∧ h = [JEK(s,i) : Cell(JF K(s,i))]
(s, h, i) |=k Ownπ(x) ⇔ ∃u.JπK(s,i)↓ ∧ s = [x : (u, JπK(s,i))] ∧ 0 < JπK(s,i) ≤ 1
(s, h, i) |=k πA(E) ⇔

JEK(s,i)↓ ∧ JπK(s,i)↓ ∧ h = [JEK(s,i) : Lock(A, U, JπK(s,i))] ∧ 0 < JπK(s,i) ≤ 1
(s, h, i) |=k LockedA(E) ⇔ JEK(s,i)↓ ∧ h = [JEK(s,i) : Lock(A, k, 0)]
(s, h, i) |=k emps ⇔ s = []
(s, h, i) |=k emph ⇔ h = []
(s, h, i) |=k E = F ⇔ JEK(s,i)↓ ∧ JF K(s,i)↓ ∧ JEK(s,i) = JF K(s,i)

(s, h, i) |=k π = µ ⇔ JπK(s,i)↓ ∧ JµK(s,i)↓ ∧ JπK(s,i) = JµK(s,i)

(s, h, i) |=k P ⇒ Q ⇔ ((s, h, i) |=k P) ⇒ ((s, h, i) |=k Q)
(s, h, i) |=k false ⇔ false
(s, h, i) |=k P ∗Q ⇔

∃s1, h1, s2, h2.s = s1 ∗ s2 ∧ h = h1 ∗ h2 ∧ (s1, h1, i) |=k P ∧ (s2, h2, i) |=k Q
(s, h, i) |=k P −−∗ Q ⇔

∀s′, h′.s] s′ ∧ h] h′ ∧ ((s′, h′, i) |=k P) ⇒ ((s ∗ s′, h ∗ h′, i) |=k Q)
(s, h, i) |=k ∃X.P ⇔ ∃u.(s, h, i[X : u]) |=k P

Fig. 7. Satisfaction relation for the assertion language formulae: (s, h, i) |=k Φ

the same way as lock sorts). The permission 0 is used to represent the existential
permission for a lock that is carried by LockedA(E, ~F). Locks are interpreted as
follows: 0 represents the fact that the lock is not held by any thread (i.e., is free),
values from ThreadIDs represent the identifier of the thread that holds the lock,
and U means that the status of the lock is unknown. U is not encountered in the
states obtained in the operational semantics we define in Section 6, but is used
for interpreting formulae representing parts of complete states. The semantics of
formulae and commands never encounter locks of form Lock(A,U, 0) for any A,
and so the definition of Heaps removes them in order to make the ∗ operation
on states cancellative [4].

Note how Heaps in the domain of Figure 6 is not defined recursively, but in-
stead uses an indirection through L, whose elements are associated with resource
invariants, and hence indirectly to Heaps. It is this indirection that deals with
the foundational circularity issue raised by locks which may refer to themselves.

In this paper we use the following notation for partial functions: f(x)↓ means
that the function f is defined on x, f(x)↑ that the function f is undefined on x,
and [] denotes a nowhere-defined function. Furthermore, we denote with f [x : y]
(defined only if f(x)↑) the function that has the same value as f everywhere,
except for x, where it has the value y. We abbreviate [][x : y] to [x : y].

We now define ∗ on states in our domain, which interprets the ∗-connective in
the logic. We first define the ∗ operation on values of locks in the following way:
U ∗ U = U, k ∗ U = U ∗ k = k, and k ∗ j is undefined for k, j ∈ {0} ∪ ThreadIDs.
Note that k∗k is undefined as it arises in the cases when a thread tries to acquire
a lock twice (recall that we specify that a thread deadlocks in this case).

For s1, s2 ∈ Stacks let

s1] s2 ⇔ ∀x.s1(x)↓∧s2(x)↓⇒ (∃v, π1, π2.s1(x) = (v, π1)∧s2 = (v, π2)∧π1+π2 ≤ 1) .

11

If s1] s2, then

s1 ∗ s2 = {(x, (v, π)) | (s1(x) = (v, π) ∧ s2(x)↑) ∨ (s2(x) = (v, π) ∧ s1(x)↑) ∨
(s1(x) = (v, π1) ∧ s2(x) = (v, π2) ∧ π = π1 + π2)} ,

otherwise s1 ∗ s2 is undefined. For h1, h2 ∈ Heaps let

h1] h2 ⇔ ∀u.h1(u)↓ ∧ h2(u)↓ ⇒ ((∃v.h1(u) = h2(u) = Cell(v)) ∨ (∃A, v1, v2, π1, π2.

h1(u) = Lock(A, v1, π1) ∧ h2(u) = Lock(A, v2, π2) ∧ v1 ∗ v2↓ ∧ π1 + π2 ≤ 1)) .

If h1] h2, then

h1 ∗ h2 = {(u, Cell(v)) |h1(u) = Cell(v) ∨ h2(u) = Cell(v)} ∪
{(u, Lock(A, v, π)) | (h1(u) = Lock(A, v, π) ∧ h2(u)↑) ∨ (h2(u) = Lock(A, v, π) ∧ h1(u)↑)
∨ (h1(u) = Lock(A, v1, π1) ∧ h2(u) = Lock(A, v2, π2) ∧ π = π1 + π2 ∧ v = v1 ∗ v2)} ,

otherwise h1 ∗ h2 is undefined. We lift ∗ to states and sets of states pointwise.
The satisfaction relation for the assertion language formulae is defined in

Figure 7. A formula is interpreted with respect to a thread identifier k ∈ {0} ∪
ThreadIDs, a stack s, a heap h, and an interpretation i mapping logical variables
to Values. Note that in this case it is convenient for us to consider 0 as a dummy
thread identifier. We assume a function JEK(s,i) that evaluates an expression with
respect to the stack s and the interpretation i. We consider only interpretations
that define the value of every logical variable used. We omit i when s suffices
to evaluate the expression. We let JP Kk

i denote the set of states in which the
formula P is valid with respect to the thread identifier k and the interpretation
i and let Ik(A, u) = JIA(L) ∗ LockedA(L)Kk

[L:u].
We say that a predicate p ⊆ States is precise [11] if for any state σ, there

exists at most one substate σ0 (i.e., σ = σ0 ∗ σ1 for some σ1) satisfying p. We
say that a predicate p is intuitionistic [9] if it is closed under stack and heap
extension: if p is true of a state σ1, then for any state σ2, such that σ1 ∗ σ2 is
defined, p is also true of σ1 ∗ σ2. We say that a predicate p has an empty lockset
if the value of any lock in every state satisfying p is U. A formula is precise,
intuitionistic, or has an empty lockset if its denotation with respect to any thread
identifier and interpretation of logical variables is precise, intuitionistic, or has
an empty lockset. We require that formulae representing resource invariants be
precise and have an empty lockset, i.e., that for each u and k the predicate
JIA(L)Kk

[L:u] be precise and have an empty lockset. The former requirement is
inherited from concurrent separation logic, where it is required for soundness of
the conjunction rule. The latter requirement is necessary for soundness of our
logic and stems from the fact that in our semantics we do not allow a thread that
did not acquire a lock to release it (in agreement with the semantics of mutexes
in the POSIX threads library). If we were to allow this (i.e., if we treated locks
as binary semaphores rather than mutexes), then this requirement would not be
necessary. It is easy to check that the invariants for lock sorts R, P , H, and N
from Section 4 satisfy these constraints.

12

x = E, (s[x : (u, 1)], h) k (s[x : (JEKs[x:(u,1)], 1)], h)
x = [E], (s[x : (u, 1)], h[e : Cell(v)]) k (s[x : (v, 1)], h[e : Cell(v)]), e = JEKs[x:(u,1)]

[E] = F, (s, h[JEKs : Cell(u)]) k (s, h[JEKs : Cell(JF Ks)])
x = new, (s[x : (u, 1)], h) k (s[x : (v, 1)], h[v : Cell(w)]), if h(v)↑
delete E, (s, h[JEKs : Cell(u)]) k (s, h)
assume(G), (s, h) k (s, h), if JGKs = true
assume(G), (s, h) 6 k if JGKs = false
initA(E), (s, h[JEKs : Cell(u)]) k (s, h[JEKs : Lock(A, k, 1)])
finalize(E), (s, h[JEKs : Lock(A, k, 1)]) k (s, h[JEKs : Cell(u)])
acquire(E), (s, h[JEKs : Lock(A, 0, π)]) k (s, h[JEKs : Lock(A, k, π)])
acquire(E), (s, h[JEKs : Lock(A, j, π)]) 6 k if j > 0
release(E), (s, h[JEKs : Lock(A, k, π)]) k (s, h[JEKs : Lock(A, 0, π)])
C, (s, h) k >, otherwise

Fig. 8. Transition relation for atomic commands. 6 k is used to denote that the com-
mand does not fault, but gets stuck. > indicates that the command faults.

6 Interleaving Operational Semantics

Consider a program S consisting of a parallel composition of n threads. We
abstract away from the particular syntax of the programming language and rep-
resent each thread by its control-flow graph (CFG). A CFG over a set C of atomic
commands is defined as a tuple (N,F, start, end), where N is the set of program
points, F ⊆ N × C × N the control-flow relation, start and end distinguished
start and end program points. We note that a command in our language can
be translated to a CFG. Conditional expressions in if and while commands
are translated using the assume(G) statement that acts as a filter on the state
space of programs – G is assumed to be true after assume(G) is executed. We
let the set of atomic commands consist of primitive commands and the assume
command. Let (Nk, Fk, startk, endk) be the CFG of thread with identifier k and
let N =

⋃n
k=1 Nk and F =

⋃n
k=1 Fk. First, for each thread k = 1..n and atomic

command C we define a transition relation k shown in Figure 8.
The interleaving operational semantics of the program S is defined by a

transition relation →S that transforms pairs of program counters (represented
by mappings from thread identifiers to program points) pc ∈ {1, . . . , n} → N and
states σ ∈ States ∪ {>}. The relation →S is defined as the least one satisfying:

(v, C, v′) ∈ F k ∈ {1, . . . , n} C, (s, h) k σ

pc[k : v], (s, h) →S pc[k : v′], σ
.

We denote with →∗
S the reflexive and transitive closure of →S . Let us denote

with pc0 the initial program counter [1 : start1] . . . [n : startn] and with pcf the
final one [1 : end1] . . . [n : endn]. We say that the program S is safe when run from
an initial state σ0 if it is not the case that for some pc we have pc0, σ0 →∗

S pc,>.

13

{x, y x7→ ∗ y 7→ }
initA,y(x);
initB,x(y);
{x, y A(x, y)∗LockedA(x, y)∗B(y, x)∗LockedB(y, x)}
release(x);
{x, y A(x, y) ∗ LockedB(y, x)}
release(y);
{x, y emph}

IA(X, Y)
∆
= emps ∧B(Y, X) and IB(X, Y)

∆
= emps ∧A(Y, X)

Fig. 9. A pathological situation

7 Soundness

As it stands now, the logic allows some unpleasant situations to happen: in
certain cases the proof system may not be able to detect a memory leak. Figure 9
shows an example of this kind. We assume defined lock sorts A and B with
invariants IA(X, Y) and IB(X, Y). In this case the knowledge that the locks at
the addresses x and y exist is lost by the proof system: the invariant for the lock
x holds the full permission for the handle of the lock y and vice versa, hence,
local states of the threads are then left without any permissions for the locks
whatsoever.

Situations such as the one described above make the formulation of the sound-
ness statement for our logic non-trivial. We first formulate a soundness statement
(Theorem 1) showing that every final state of a program (according to the op-
erational semantics of Section 6) can be obtained as the ∗-conjunction of the
postconditions of threads and the resource invariants for the free locks allocated
in the state. Note that here a statement about a state uses the information about
the free locks allocated in the same state. We then put restrictions on resource
invariants that rule out situations similar to the one shown in Figure 9 and for-
mulate a soundness statement (Theorem 4) in which the set of free locks in a
final state is computed solely from the postconditions of threads.

For a state σ let Free(σ), respectively, Unknown(σ) be the set of pairs from
L×Locs consisting of sorts and addresses of locks allocated in the state that have
value 0, respectively, U. We denote with ~ iterated separating conjunction [15]:
~k

j=1 Pj = (emps ∧ emph) ∗P1 ∗ · · · ∗Pk. The soundness of the logic with respect
to the interleaving operational semantics from Section 6 is established by:

Theorem 1 Let S be the program C1 ‖ . . . ‖ Cn and suppose ` {Pk} Ck {Qk}
for k = 1..n. Then for any interpretation i and state σ0 such that σ0 ∈(
~n

k=1 JPkKk
i

)
∗

(
~(A,u)∈Free(σ0) I0(A, u)

)
the program S is safe when run from

σ0 and if pc0, σ0 →∗
S pcf , σ, then σ ∈

(
~n

k=1 JQkKk
i

)
∗

(
~(A,u)∈Free(σ) I0(A, u)

)
.

The proof is given in Appendix B . We do not follow Brookes’s original proof of
soundness of concurrent separation logic [3]. Instead, we prove soundness with
the aid of an intermediate thread-local semantics defined by fixed-point equations
that can be viewed as the scheme of a thread-modular program analysis in the

14

style of [7]. This method of proving soundness should facilitate designing program
analyses based on our logic. The idea of our proof, however, is close to that of
Brookes’s and consists of establishing what is called the Separation Property
in [11] and is formalized as the Parallel Decomposition Lemma in [3]:At any
time, the state of the program can be partitioned into that owned by each thread
and each free lock. As a direct consequence of the Separation Property, we can
also show that provability of a program in our proof system ensures the absence
of data races (see Appendix B.3 for details).

We now proceed to formulate a soundness statement in which the component
~(A,u)∈Free(σ) I0(A, u) from Theorem 1 representing the resource invariants for
free locks in the final state is obtained directly from the thread postconditions
Qk. To this end, we introduce an auxiliary notion of closure. Intuitively, closing a
state amounts to ∗-conjoining it to the invariants of all free locks whose handles
are reachable via resource invariants from the handles present in the state.

Definition 2 (Closure) For p ⊆ States let c(p) ⊆ States be the least predicate
such that p∪ {σ1 ∗ σ2 | σ1 ∈ c(p)∧ σ2 ∈ ~(A,u)∈Unknown(σ1) I0(A, u)} ⊆ c(p). The
closure 〈p〉 of p is the set of states from c(p) that do not contain locks with the
value U.

In general, the closure is not guaranteed to add invariants for all the free
locks allocated in the state. For example, the closure of the postcondition of the
program in Figure 9 still has an empty heap while in the final states obtained
by executing the operational semantics there are locks allocated at addresses x
and y. The problem is that there may exist a “self-contained” set of free locks
(containing the locks at the addresses x and y in our example) such that the
corresponding resource invariants hold full permissions for all the locks from the
set. Local states of threads are then left without any permissions for the locks in
the set, and hence, closure is not able to reach to their invariants. The following
condition on resource invariants ensures that this does not happen.

Definition 3 (Admissibility of resource invariants) Resource invariants
for a set of lock sorts L are admissible if there do not exist non-empty set
L ⊆ L × Locs and state σ ∈ ~(A,u)∈L I0(A, u) such that for all (A, u) ∈ L
the permission associated with the lock at the address u in σ is 1.

Definitions 2 and 3 generalize to the case when resource invariants have more
than one parameter in the obvious way. Revisiting Example 3 of Section 4, we
can check that any state satisfying the closure of JO (1/M)H(head)Kk for
any thread identifier k represents an acyclic sorted list starting at head. It is
easy to check that resource invariants for the set of lock sorts {R,P, H, N} from
Section 4 are admissible whereas those for {A,B} from this section are not. The
admissibility of N is due to the fact that IN implies sortedness of lists built out
of resource invariants for N , hence, the invariants cannot form a cycle.

We say that a state is complete if permissions associated with all the locks
allocated in it are equal to 1. Note that according to the semantics in Section 6,
if σ0 is complete and pc0, σ0 →∗

S pc, σ, then σ is also complete. We can now
formulate and prove the desired soundness statement.

15

Theorem 4 Let S be the program C1 ‖ . . . ‖ Cn and suppose ` {Pk} Ck {Qk}
for k = 1..n. Suppose further that either at least one of Qk is intuitionistic or
resource invariants for lock sorts used in the proofs are admissible. Then for any
interpretation i and complete state σ0 such that σ0 ∈

〈
~n

k=1 JPkKk
i

〉
the program

S is safe when run from σ0 and if pc0, σ0 →∗
S pcf , σ, then σ ∈

〈
~n

k=1 JQkKk
i

〉
.

Proof. Consider an interpretation i and a complete state σ0 ∈
〈
~n

k=1 JPkKk
i

〉
.

Therefore σ0 ∈
(
~n

k=1 JPkKk
i

)
∗

(
~(A,u)∈Free(σ0) I0(A, u)

)
from the definition of

closure. Then by Theorem 1 the program S is safe when run from σ0 and if
pc0, σ0 →∗

S pcf , σ, then σ ∈
(
~n

k=1 JQkKk
i

)
∗

(
~(A,u)∈Free(σ) I0(A, u)

)
. Hence, by

the definition of closure, we have σ ∈ σ1 ∗ σ2 where σ1 ∈
〈
~n

k=1 JQkKk
i

〉
and

σ2 ∈ ~(A,u)∈L I0(A, u) for some L ⊆ Free(σ). If one of Qk is intuitionistic, then
from this it directly follows that σ ∈

〈
~n

k=1 JQkKk
i

〉
.

Suppose now that L 6= ∅ and the resource invariants for lock sorts mentioned
in L are admissible. Consider any (A, u) ∈ L. The state σ is complete, therefore,
the permission associated with the lock at the address u in σ is 1. Besides, since
L ⊆ Free(σ), the value associated with u in σ is 0. Hence, if the permission
associated with u in σ2 were less than 1, then u would have to be allocated
in σ1 with a non-zero permission and the value U, which would contradict the
definition of closure (a state in a closure cannot contain locks with the value
U). So, for any (A, u) ∈ L the permission associated with u in σ1 is 1, which
contradicts the admissibility of resource invariants for lock sorts used in the
proof of the program. Therefore, L = ∅ and, hence, σ ∈

〈
~n

k=1 JQkKk
i

〉
. ut

Note that for garbage-collected languages we can use the intuitionistic version
of the logic [9] (i.e., one in which every assertion is intuitionistic) and, hence, do
not have to check admissibility. Also, admissibility does not have to be checked if
we are not interested in detecting memory leaks, as then Theorem 1 can be used.

8 Dynamic Thread Creation

We now extend the programming language with dynamically created threads:

T ::= f, f1, f2, . . . procedure names
C ::= . . . | V = fork(T) | join(E) primitive commands
P ::= let T = S, . . . , T = S in S programs

We represent the code of threads by parameterless procedures (passing parame-
ters to threads at the time of their creation is orthogonal to our concerns here
and can be handled in a way similar to the one used for handling procedure calls
when variables are treated as resources [14]; see Appendix C.4 for details). A
program consists of several procedure declarations along with the code of the
main thread. We consider only well-formed programs in which all declared pro-
cedure names are distinct and all procedures used are declared. x = fork(f)
creates a new thread executing the code of the procedure f and stores the cor-
responding thread identifier into the variable x. join(E) waits until the thread

16

with the identifier E finishes executing. In our semantics we allow at most one
thread to wait for the termination of a given thread.

We add two new forms to our assertion language: Φ ::= . . . | tidf (E) | empt.
A formula tidf (E), which we call a thread handle, represents the knowledge that
the thread with the identifier E exists and executes the code of the procedure
f , and gives its owner a permission to join the thread. empt denotes that the
assertion does not contain any permissions of this kind. Note that a thread is
deallocated (only) when it is joined.

Judgements are now of the form Γ ` {P} C {Q} where Γ is a context
consisting of a set of procedure specifications, each of the form {P} f {Q}.
We consider only contexts in which there is at most one specification for each
procedure. As procedures are parameterless, we restrict our attention here to
contexts in which pre- and postconditions do not contain free logical variables.
We add Γ ` to all the triples in the rules from Figure 1 as well as in the
standard rules of separation logicfrom Appendix A. In addition, we ∧-conjoin
empt to every pre- and postcondition in the axioms for primitive commands
(except for the postcondition of Acquire and the precondition of Release: in
the postcondition of Acquire and the precondition of Release we ∧-conjoin
empt right after LockedA(L, ~X)). To reason about fork and join we introduce
two new axioms:

Γ, {P} f {Q} ` {(x emph ∧ empt) ∗ P} x = fork(f) {x emph ∧ tidf (x)} Fork

Γ, {P} f {Q} ` {O emph ∧ tidf (E)} join(E) {(O emph ∧ empt) ∗Q} Join

That is, upon creating a new thread executing the code of procedure f , the
thread that executed fork obtains the thread handle tidf (x) for the newly-
created thread and gives up ownership of the precondition of f . Joining a thread
with the identifier E requires the joining thread to own the handle tidf (E). When
join succeeds, the thread exchanges the handle for the postcondition of f .

The model of the assertion language has to be adapted to account for thread
handles. A state of the program is now represented by a triple of a stack, a
heap, and a thread pool, the latter represented by a finite partial function from
thread identifiers to procedure names. Now a lock can be free, held by the main
thread, held by a thread, or its status may be unknown. Assertions are then
interpreted with respect to a thread identifier, a stack, a heap, a thread pool, and
an interpretation of logical variables. We define the ∗ operation on thread pools
as disjoint union of the partial functions representing them, and the semantics of
P ∗Q and P −−∗ Q are then straightforwardly adjusted so as to partition thread
pools. In addition, we add clauses for the new forms in our assertion language
such that tidf (E) describes singleton thread pools and empt describes the empty
thread pool. The satisfaction relation for all other formulae just ignores the
thread pool. The notion of precision of formulae does not change.

In this section, we omit the detailed development of semantics and soundness
for the extended logic, which can be found in Appendix C . Instead, we just
state the conditions under which the logic is sound. A proof of the program

17

let f1 = C1, . . . , fn = Cn in C is given by triples Γ ` {P1} C1 {Q1}, . . . , Γ `
{Pn} Cn {Qn}, Γ ` {P} C {Q}, where Γ = {P1} f1 {Q1}, . . . , {Pn} fn {Qn}.
For the proof to be sound, Pk must be precise, and Pk and Qk must have empty
locksets, for all k = 1..n. We note that the operational semantics of Section 6 can
be adjusted to our setting and a soundness statement similar to Theorem 1 can
then be formulated. The proof of soundness is then done in the same style as that
of Theorem 1. The notions of closure and admissibility can also be generalized
to the new setting and a theorem similar to Theorem 4 can be proved.

9 Conclusions and Related Work

We have presented a logic that allows reasoning about concurrent heap-
manipulating programs with realistic concurrency primitives including un-
bounded numbers of locks dynamically allocated and destroyed in the heap and
threads dynamically created and terminating themselves. We have demonstrated
that the logic makes it possible to reason locally about programs with a notion
of dynamic ownership of heap parts by locks and threads. We believe that in
the future this aspect of the logic will produce some additional pay-offs. First,
the resource-oriented flavor of the logic should make it easy to design program
analyses on the basis of it following the lines of [7]. In fact, the fixed-point
equations defining the thread-local semantics used in the proof of soundness of
our logic (Appendix B) can be seen as a scheme of a thread-modular program
analysis in the style of [7]. Second, lock handles in our logic’s assertion language
are somewhat reminiscent of abstract predicates used for modular reasoning in
separation logic about object-oriented programs [13]. This is not a coincidence
as object-oriented programs use information hiding extensively in their locking
mechanisms, and hence, often satisfy the Ownership Hypothesis. For this rea-
son, we believe that our logic, combined with the techniques from [13], should
be convenient for reasoning about concurrent object-oriented programs. Note,
however, that lock handles and abstract predicates are different, in particular,
we cannot see a way in which the former can be encoded in terms of the latter.

Two papers [5, 17] have recently suggested combinations of separation logic
and rely-guarantee reasoning that, among other things, can be used to reason
about storable locks. For example, in [17] locks are not treated natively in the
logic, but are represented as cells in memory storing the identifier of the thread
that holds the lock; rely-guarantee is then used to simplify reasoning about the
global shared heap with locks allocated in it. The logic allows modular reasoning
about complex fine-grained concurrency algorithms (e.g., about the optimistic
list mentioned in Section 4), but loses locality of reasoning for programs that
allocate and deallocate many simple data structures protected by locks, which
results in awkward proofs. In other words, as the original concurrent separation
logic, the logics in [5, 17] are designed for reasoning about the concurrent control
of bounded numbers of data structures whereas our logic is designed to reason
about the concurrent control of unboundedly many data structures that are
dynamically created and destroyed. Ideally, one wants to have a combination

18

of both: a logic in which on the higher-level the reasoning is performed in a
resource-oriented fashion and on the lower-level rely-guarantee is applied to deal
with complex cases. Achieving this is another direction of our future research.

Feng and Shao [6] presented a rely-guarantee logic for reasoning about con-
current assembly code with dynamic thread creation. They do not have analogs
of our rules for ownership transfer at fork and join commands. On a higher level,
our logic for storable threads relates to theirs in the same way as separation logic
relates to rely-guarantee reasoning: the former is good at describing ownership
transfer, the latter at describing interference. As in the case of storable locks,
investigating possible combinations of the two approaches would be fruitful.

Acknowledgments. We would like to thank Richard Bornat, Cristiano Calcagno,
Peter O’Hearn, and Matthew Parkinson for comments and discussions that
helped to improve the paper.

References

1. R. Bornat, C. Calcagno, P. W. O’Hearn, and M. Parkinson. Permission accounting
in separation logic. In POPL, 2005.

2. S. D. Brookes. Variables as resource for shared-memory programs: Semantics and
soundness. In MFPS, 2006.

3. S. D. Brookes. A semantics of concurrent separation logic. Theoretical Computer
Science, 375(1-3):227–270, 2007. Preliminary version appeared in CONCUR, 2004.

4. C. Calcagno, P. O’Hearn, and H. Yang. Local action and abstract separation logic.
In LICS, 2007.

5. X. Feng, R. Ferreira, and Z. Shao. On the relationship between concurrent sepa-
ration logic and assume-guarantee reasoning. In ESOP, 2007.

6. X. Feng and Z. Shao. Modular verification of concurrent assembly code with
dynamic thread creation and termination. In ICFP, 2005.

7. A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape analysis.
In PLDI, 2007.

8. J. Hayman and G. Winskel. Independence and concurrent separation logic. In
LICS, 2006.

9. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for mutable data
structures. In POPL, 2001.

10. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that alter
data structures. In CSL, 2001.

11. P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer
Science, 375(1-3):271–307, 2007. Preliminary version appeared in CONCUR, 2004.

12. P. W. O’Hearn, H. Yang, and J. C. Reynolds. Separation and information hiding.
In POPL, 2004.

13. M. Parkinson and G. Bierman. Separation logic and abstraction. In POPL, 2005.
14. M. Parkinson, R. Bornat, and C. Calcagno. Variables as resource in Hoare logics.

In LICS, 2006.
15. J. Reynolds. Separation logic: A logic for shared mutable data structures. In LICS,

2002.
16. V. Vafeiadis, M. Herlihy, T. Hoare, and M. Shapiro. Proving correctness of highly-

concurrent linearisable objects. In PPoPP, 2006.
17. V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and separation

logic. In CONCUR, 2007.

19

A Proof Rules of Separation Logic

{x,O X = E ∧ emph} x = E {x,O x = X ∧ emph}
Assn

(O E 7→) ⇒ F = F

{O E 7→ } [E] = F {O E 7→F}
Mutate

{x,O X = E ∧X 7→Y } x = [E] {x,O x = Y ∧X 7→Y }
Lookup

{x emph} x = new {x x7→ }
New

{O E 7→ } delete E {O emph}
Delete

{P1} C {Q1} {P2} C {Q2}
{P1 ∧ P2} C {Q1 ∧Q2}

Conj
{P1} C {Q1} {P2} C {Q2}
{P1 ∨ P2} C {Q1 ∨Q2}

Disj

{P} C {Q}
{∃X.P} C {∃X.Q}

Exists
P1 ⇒ P2 {P2} C {Q2} Q2 ⇒ Q1

{P1} C {Q1}
Conseq

{P} C {Q}
{P ∗R} C {Q ∗R}

Frame
{P} C1 {Q} {Q} C2 {R}

{P} C1;C2 {R}
Seq

P ⇒ B = B {P ∧B} C1 {Q} {P ∧ ¬B} C2 {Q}
{P} if B then C1 else C2 fi {Q}

Cond

P ⇒ B = B {P ∧B} C {P}
{P} while B do C od {P ∧ ¬B}

While

B Proof of Soundness

So far most of the proofs of soundness of concurrent separation logic with re-
spect to an independently stated semantics [3, 4, 8, 2] have followed Brookes’s
original proof [3] based on trace semantics. Here we take a different approach.
To prove the soundness of our logic, we first define a thread-local forward predi-
cate transformer semantics and define the notion of validity of Hoare triples for
commands with respect to this semantics (recall that commands in our termi-
nology do not contain parallel composition). We prove the soundness of all the
proof rules with respect to the thread-local semantics (Section B.1). We then
prove that the thread-local semantics is in some sense adequate with respect

20

to the interleaving operational semantics (Lemma 11), which lets us justify the
soundness of our logic (Section B.2). In addition, using the semantics we prove
that the provability of a program in our logic implies that the program is data
race free (Section B.3).

The approach described above has two major benefits. First, the proof of
soundness done according to it is very simple in comparison with the prior ones,
both conceptually and technically. Second, the fixed-point equations defining the
thread-local semantics in Section B.1 can be viewed as the scheme of a thread-
modular program analysis in the style of [7] and the over-approximation lemma
in Section B.2 as the statement of its soundness. Hence, our semantics dictates
the design of an automatic program analysis based on the logic (implementing
such an analysis is a subject of our current work).

B.1 Thread-local semantics

Let the domain D be the topped powerset of states defined in Figure 6 with the
order v (the subset inclusion with > being the topmost element), join t and
meet u operators. It is sometimes convenient to use an alternate representation
in terms of the isomorphic domain P(States ∪ {>}). The isomorphism between
P(States ∪ {>}) and D associates any subset of States ∪ {>} that contains >
with > in D, and any other subset with the corresponding element of D. We lift
∗ to operate on D letting p ∗ > = > ∗ p = > for all p. We let Free(>) = ∅.

We now define a thread-local forward predicate transformer Postk(C) : D →
D for every thread k and command C. We first define Postk for atomic com-
mands C other than acquire and release using the transition relation k from
Figure 8:

Postk(C, (s, h)) = {q | C, (s, h) k q}.

We now let

Postk(acquire(E), (s, h)) = {(s, h) ∗ r | r ∈ Ik(A, JEKs)},

if JEKs↓ and h(JEKs) = Lock(A, v, π), otherwise Postk(acquire(E), (s, h)) = >.
For a state q and a precise predicate p let

rest(q, p) =

{
q1, if q = q1 ∗ q2 and q2 ∈ p;
>, otherwise.

rest is well-defined because p is precise. We then let

Postk(release(E), (s, h)) = {rest((s, h), Ik(A, JEKs))},

if JEKs↓ and h(JEKs) = Lock(A, v, π), otherwise Postk(release(E), (s, h)) = >.
We lift Post to D pointwise and let Postk(C,>) = > for all atomic C.

Note that predicate transformers mimic the proof rules for commands: in
particular, upon acquiring a lock the thread gets the ownership of the resource
invariant associated with the lock; upon releasing a lock the thread gives up the

21

ownership of the invariant. (Recall that Ik(A, u) includes the interpretation of
the Locked fact associated with the lock at the address u.) In the latter case the
requirement that Ik(A, u) be precise for each k and u ensures the determinacy
of splitting the state upon releasing a lock. The annotations of lock sorts and
parameters at init commands ensure that the predicate transformer for each
init command in a program is defined uniquely.

In order to define Postk(C, p) for a composite command C we first translate
it to a CFG (N,F, start, end) assuming, without loss of generality, that there are
no edges in F leading to start or going out of end. We then condiser a functional
Fk(C, p) : (N → D) → (N → D) defined in the following way: Fk(C, p)(g) = g′

where g′(start) = p and for every node v2 ∈ N such that v2 6= start, g′(v2) =⊔
(v1,C,v2)∈F Postk(C, g(v1)). That is, to compute the set of reachable states at

any node (except for the initial one) we consider all the edges in the CFG that can
be taken by C that lead to this node and take the join of predicate transformers
for the commands at these edges with respect to the states at source nodes. It is
easy to see that Postk(C) for atomic commands are monotone, hence, by Tarski’s
fixed-point theorem the functional has least (under the pointwise extension of
v) fixed point lfp(Fk(C, p)). Let Postk(C, p) = (lfp(Fk(C, p)))(end). We can now
define the notion of validity �k of Hoare triples with respect to the thread-local
semantics for thread k.

Definition 5 For a command C �k {P} C {Q} ⇔ ∀i.Postk(C, JP Kk
i) v JQKk

i .

We say that an inference rule is sound with respect to the thread-local se-
mantics if for all k ∈ ThreadIDs whenever all of its premisses are semantically
valid (as defined by the relation �k above), the conclusion is also semantically
valid. We now proceed to prove that all our proof rules are sound with respect
to the thread-local semantics.

Lemma 6 Rules Assn, Mutate, Lookup, New, Delete, Exists, Conseq,
Seq, Cond, and While are sound with respect to the thread-local semantics.

Proof. An adaptation of proofs from [9, 14] to our setting. ut

Lemma 7 Rules Init, Finalize, Acquire, and Release are sound with re-
spect to the thread-local semantics.

Proof. Follows easily from the definition of Postk for these commands. ut

Lemma 8 For all k ∈ ThreadIDs, p, q ∈ D and commands C

1. Postk(C, p u q) v Postk(C, p) u Postk(C, q).
2. Postk(C, p t q) v Postk(C, p) t Postk(C, q).
3. Postk(C, p ∗ q) v Postk(C, p) ∗ q.

Proof. In the case of u the required follows from the monotonicity of Postk(C).
For the other two cases the inclusions are first established for atomic commands
using the definition of Postk. The case of composite commands is then discharged
via Park induction. ut

22

Corollary 9 Rules Conj, Disj, and Frame are sound with respect to the
thread-local semantics.

Lemma 10 (Soundness with respect to the thread-local semantics) If
` {P} C {Q}, then for all k ∈ ThreadIDs �k {P} C {Q}.

Proof. Induction on the derivation of {P} C {Q} using Lemmas 6 and 7 and
Corollary 9. ut

B.2 The proof

We first show that the thread-local semantics in some sense over-approximates
the interleaving operational semantics of Section 6. This is formally stated in
the following lemma.

Lemma 11 (Over-approximation Lemma) Let the program S be C1 ‖
. . . ‖ Cn, q0 ∈ States and p1, . . . , pn ∈ D be such that

{q0} v
(

n
~

k=1
pk

)
∗

(
~

(A,u)∈Free(q0)
I0(A, u)

)
, (1)

and gk = lfp(Fk(Ck, pk)) for k = 1..n. Then whenever pc0, q0 →∗
S pc, q, it is the

case that

{q} v
(

n
~

k=1
gk(pc(k))

)
∗

(
~

(A,u)∈Free(q)
I0(A, u)

)
. (2)

Before proving the lemma we introduce an auxiliary notion of transfer func-
tions. For a state (s, h) and an atomic command C the transfer function fk

C(s, h)
computes all the states to which (s, h) can be transformed when C is executed
by thread k: fk

C(s, h) = {q | C, (s, h) k q}. We let fk
C(>) = > and lift fk

C to D
pointwise. Note that fk

C are monotone and for commands other than acquire
and release fk

C(q) = Postk(C, q). A fundamental property of the semantics of
Section 6 is that the transfer functions built according to it are local in the
following sense.

Lemma 12 (Locality Lemma) For all p, q ∈ D and atomic commands C
fk

C(p ∗ q) v fk
C(p) ∗ q.

Proof of Lemma 11. We prove the statement of the theorem by induction on the
length m of the derivation of q. For m = 0 (2) is equivalent to (1). Suppose now
that pc0, q0 →∗

S pc[j : v], q, (2) is fulfilled, and pc[j : v], q →S pc[j : v′], q′. Then
(v, C, v′) ∈ F , C, q j q′, and, hence, {q′} v f j

C(q). We then have to show that

f j
C({q}) v

(
n
~

k=1
gk(pc(k))

)
∗

(
~

(A,u)∈Free(q)
I0(A, u)

)
. (3)

There are three cases corresponding to the type of the command C.

23

1. C is not acquire or release. Let q1 = gj(v), q2 = gj(v′), and

r =

 ~
1≤k≤m,

k 6=j

gk(pc(k))

 ∗
(
~

(A,u)∈L
I0(A, u)

)
, (4)

where L = Free(q). Then {q} v q1 ∗ r. We have to prove that f j
C(q) v q2 ∗ r.

For this it is sufficient to prove that f j
C(q1 ∗ r) v q2 ∗ r. From the definition

of the functional Fj(Cj , pj) we get f j
C(q1) = Postj(C, q1) v q2. From this and

Lemma 12 we get f j
C(q1 ∗ r) v f j

C(q1) ∗ r v q2 ∗ r.
2. C is acquire(E). We can assume that {q} v {q1} ∗ I0(A, u) ∗ r, where

{q1} v gj(v), q1 = (s, h[u : Lock(A,U, π)]), JEKs = u, (A, u) ∈ Free(q), and
r is defined by (4) with L = Free(q)\{(A, u)}; otherwise either the right-hand
side of (3) is > or its left-hand side is ∅. Let q2 = gj(v′). We have to show that
f j

C(q) v q2 ∗r. For this it is sufficient to show that f j
C({q1}∗I0(A, u)∗r) v q2 ∗r.

From the definitions of the functional Fj(Cj , pj) and Postj for acquire we get

{q1} ∗ Ij(A, u) v q2. (5)

Hence,

f j
C({q1} ∗ I0(A, u) ∗ r) v f j

C({q1} ∗ I0(A, u)) ∗ r Lemma 12
= {q1} ∗ Ij(A, u) ∗ r IA(L) has an empty lockset
v q2 ∗ r by (5)

3. C is release(E). We can assume that {q} v q1 ∗ r, where {q1} v gj(v),
q1 = (s, h[u : Lock(A, j, π)]), JEKs = u, (A, u) 6∈ Free(q), and r is defined by (4)
with L = Free(q); otherwise the right-hand side of (3) is >. We have to prove
that f j

C(q) v q2 ∗I0(A, u) ∗ r. For this it is sufficient to show that f j
C({q1} ∗ r) v

q2 ∗ I0(A, u) ∗ r. From the definitions of the functional Fj(Cj , pj) and Postj for
release we get {rest(q1, Ij(A, u))} v q2. Then using the definition of rest we
obtain

{q1} v {rest(q1, Ij(A, u))} ∗ Ij(A, u) v q2 ∗ Ij(A, u). (6)

Hence,

f j
C({q1} ∗ r) v f j

C(q1) ∗ r Lemma 12

v f j
C(q2 ∗ Ij(A, u)) ∗ r by (6)

= q2 ∗ I0(A, u) ∗ r IA(L) has an empty lockset

So, in all cases (3) is fulfilled, which implies the statement of the theorem. ut

We are now in a position to prove the main soundness theorem.

24

Proof of Theorem 1. Consider an interpretation i and a state q0 such that
q0 ∈

(
~n

k=1 JPkKk
i

)
∗

(
~(A,u)∈Free(q0) I0(A, u)

)
. Let pk = JPkKk

i in Lemma 11,
then (1) is fulfilled. By Lemma 10, �k {Pk} Ck {Qk} for k = 1..n, hence,
by Definition 5, Postk(Ck, JPkKk

i) v JQkKk
i @ >. In particular, for any pc

and q such that pc0, q0 →∗
S pc, q , from (2) it then follows that {q} @ >,

i.e., S is safe when run from q0. Now letting pc = pcf and using (2) we get
q ∈

(
~n

k=1 JQkKk
i

)
∗

(
~(A,u)∈Free(q) I0(A, u)

)
. ut

B.3 Data race freedom

We show that the provability of a program in our logic implies that the program
is data race free. We assume that the program is represented by a CFG and use
the notation defined in Section 6 and Lemma 11.

For a state (s, h) let accesses(C, s, h), respectively, writes(C, s, h) be the set of
variables and locations that the atomic command C may access (i.e., read, write,
or dispose), respectively, write to or dispose, when run from the state (s, h).

Definition 13 (Interfering commands) Atomic commands C ′ and C ′′ in-
terfere with each other when executed from the state (s, h), denoted with
C ′ ./(s,h) C ′′, if accesses(C ′, s, h) ∩ writes(C ′′, s, h) 6= ∅ or writes(C ′, s, h) ∩
accesses(C ′′, s, h) 6= ∅.

Given this formulation of interference, the usual notion of data races is for-
mulated as follows.

Definition 14 (Data race) The program S has a data race when run from an
initial state q0 if for some pc and state (s, h) such that pc0, q0 →∗

S pc, (s, h),
there exist CFG edges (v1, C

′, v′1) ∈ Fj and (v2, C
′′, v′2) ∈ Fk (j 6= k) labeled with

atomic commands C ′ and C ′′ such that C ′, (s, h) 6 j >, C ′′, (s, h) 6 k >, and
C ′ ./(s,h) C ′′.

Theorem 15 (Data race freedom) Let S be the program C1 ‖ . . . ‖ Cn

and suppose that the triples {Pk} Ck {Qk} (k = 1..n) are provable in our logic.
Then the program S has no data races when run from initial states q0 such that
q0 ∈

(
~n

k=1 JPkKk
i

)
∗

(
~(A,u)∈Free(q0) I0(A, u)

)
for any interpretation i.

Proof. Suppose the contrary: there exist an interpretation i and an initial state
q0 such that q0 ∈

(
~n

k=1 JPkKk
i

)
∗

(
~(A,u)∈Free(q0) I0(A, u)

)
, a program counter

pc and a state (s, h) such that pc0, q0 →∗
S pc, (s, h), CFG edges (v1, C

′, v′1) ∈ Fj

and (v2, C
′′, v′2) ∈ Fk (j 6= k) labeled with atomic commands C ′ and C ′′ such

that C ′, (s, h) 6 j >, C ′′, (s, h) 6 k >, and C ′ ./(s,h) C ′′.
Let q1 = gj(vj), q2 = gk(vk), then by Lemma 11 for some r, (s, h) ∈ r∗q1∗q2.

Hence,
(s, h) = (s0, h0) ∗ (s1, h1) ∗ (s2, h2), (7)

where
(s0, h0) ∈ r, (s1, h1) ∈ q1, (s2, h2) ∈ q2. (8)

25

Since ` {Pj} Cj {Qj} and ` {Pk} Ck {Qk}, from Definition 5 it follows
that Postj(C ′, q1) @ > and Postk(C ′′, q2) @ >. From this and (8) we obtain
f j

C′(s1, h1) v f j
C′(q1) = Postj(C ′, q1) @ >. So, f j

C′(s1, h1) @ > and, analogously,
fk

C′′(s2, h2) @ >. Hence, C ′, (s1, h1) 6 j > and C ′′, (s2, h2) 6 k >. From this
and the fact that C ′ ./(s,h) C ′′ using the definition of ∗ and the transition
relation for atomic commands given in Section 6 we easily get that (s1, h1) ∗
(s2, h2) is undefined, which contradicts (7). The intuition behind this is that
from C ′, (s1, h1) 6 j > and C ′′, (s2, h2) 6 k > it follows that both (s1, h1) and
(s2, h2) should have the full permission for the same variable or location accessed
by C ′ and C ′′, which makes the state (s1, h1) ∗ (s2, h2) inconsistent. ut

C More on Dynamic Thread Creation

We first give some formal details on the model of the extended assertion language
introduced in Section 8. The model of the assertion language from Figure 6 is
changed to account for thread handles in the following way:

LockVals = {U,M, 0} ∪ ThreadIDs ThreadPools = ThreadIDs ⇀fin Procs
Procs = {f, f1, f2, . . .} States = Stacks×Heaps× ThreadPools

Lock values are interpreted as follows: 0 represents a free lock, an identifier from
ThreadIDs signifies that the lock is held by the thread with this identifier, M
means that the lock is held by the main thread, and U shows that the status of
the lock is unknown.

An assertion is interpreted with respect to a thread identifier k ∈ {M, 0} ∪
ThreadIDs, a stack s, a heap h, a thread pool t, and an interpretation of logical
variables i: (s, h, t, i) |=k Φ. The satisfaction relation for the new assertion forms
is as follows:

(s, h, t, i) |=k tidf (E) ⇔ JEK(s,i)↓ ∧ t = [JEK(s,i) : f]
(s, h, t, i) |=k empt ⇔ t = []

C.1 Operational semantics and soundness

Let S be the program let f1 = C1, . . . , fn = Cn in C. As before, we assume
that Ck, respectively, C are represented by CFGs (Nfk

, Ffk
, startfk

, endfk
), re-

spectively, (Nmain, Fmain, startmain, endmain), and let N =
⋃n

k=1 Nfk
∪ Nmain and

F =
⋃n

k=1 Ffk
∪ Fmain. Let proc(v) denote the name of the procedure to which

the program point v belongs (main for program points in the main thread).
The interleaving operational semantics of the program S is defined by a tran-

sition relation →S that transforms pairs of program counters pc ∈ (ThreadIDs∪
{M}) ⇀fin N and states (s, h, t) such that dom(t) ∪ {M} = dom(pc) and
∀k.t(k)↓ ⇒ proc(pc(k)) = t(k). The relation →S is defined as the least one
satisfying the rules in Figure 10. We denote with pc0 the initial program counter
[M : startmain]. The notion of program safety stays the same as before. We redefine
iterated separating conjunction as ~k

j=1 Pj = (emps∧emph∧empt)∗P1 ∗· · ·∗Pk.

26

C, (s, h) k (s′, h′)

C, (s, h, t) k (s′, h′, t)
,

C, (s, h) k >
C, (s, h, t) k >

(C is not fork or join)

(v, C, v′) ∈ F k ∈ ThreadIDs C, (s, h, t) k q

pc[k : v], (s, h, t) →S pc[k : v′], q
(C is not fork or join)

(v, x = fork(f), v′) ∈ F k, j ∈ ThreadIDs

pc[k : v], (s[x : (u, 1)], h, t) →S pc[k : v′][j : startf], (s[x : (j, 1)], h, t[j : f])

(v, x = fork(f), v′) ∈ F k ∈ ThreadIDs ¬∃u, s′.s = s′[x : (u, 1)]

pc[k : v], (s, h, t) →S pc[k : v′],>
(v, join(E), v′) ∈ F k ∈ ThreadIDs JEKs↓

pc[k : v][JEKs : endf], (s, h, t[JEKs : f]) →S pc[k : v′], (s, h, t)

(v, join(E), v′) ∈ F k ∈ ThreadIDs JEKs↑ ∨ (JEKs↓ ∧ t(JEKs)↑)
pc[k : v], (s, h, t) →S pc[k : v′],>

Fig. 10. Interleaving operational semantics in the case of dynamic thread creation.
Here we reuse the relation k defined in Figure 8 for k ∈ {M}∪ThreadIDs. Note that
a thread is not deallocated until it is joined.

Note that the denotation of a formula P that has an empty lockset and contains
no logical variables does not depend on the thread identifier and interpretation
of logical variables with respect to which the formula is interpreted. We write
denotations for such formulae simply as JP K.

The soundness of the extended logic is stated in the following theorem.

Theorem 16 Let S be the program let f1 = C1, . . . , fn = Cn in C and Γ =
{Pf1} f1 {Qf1}, . . . , {Pfn} fn {Qfn}, where for all k = 1..n Pfk

are precise
and Pfk

, Qfk
have an empty lockset. Suppose that

Γ ` {Pf1} C1 {Qf1}, . . . , Γ ` {Pfn} Cn {Qfn}, Γ ` {P} C {Q}.

Then for any interpretation i and state q0 = (s0, h0, []) such that q0 ∈
JP KM

i ∗
(
~(A,u)∈Free(q0) I0(A, u)

)
the program S is safe when run from q0 and

if pc0, q0 →∗
S pc, (s, h, t), where ∀k.pc(k)↓ ⇒ ∃f.pc(k) = endf , then (s, h, t) ∈

JQKM
i ∗

(
~{k | t(k)↓} JQt(k)K

)
∗

(
~(A,u)∈Free(s,h,t) I0(A, u)

)
.

It is interesting to note that the requirement that thread preconditions be
precise in the theorem is similar to the requirement imposed to ensure the sound-
ness of the hypothetical frame rule [12].

C.2 Proof of soundness

Here we adapt the proof of soundness given in Appendix B to the setting with
dynamic thread creation.

Let D be the domain of states as defined in Section 8. We define a thread-local
forward predicate transformer Postγk(C) : D → D for every thread k, command
C, and semantic procedure context γ consisting of triples of the form {p} f {q},

27

where p, q ⊆ States, p is precise, and p and q have an empty lockset. For com-
mands C other than fork or join we let Postγk(C) = Postk(C) as defined in
Section B.1. Let

Postγk(x = fork(f), (s, h, t)) = {(s′[x : (j, 1)], h′, t′[j : f]) | j ∈ ThreadIDs},

if {p} f {q} ∈ γ, rest((s, h, t), p) = (s′[x : (u, 1)], h′, t′), and Postγk(x =
fork(f), (s, h, t)) = > otherwise. Let

Postγk(join(E), (s, h, t)) = {(s, h, t′)} ∗ q,

if {p} f {q} ∈ γ, JEKs↓, and t = t′[JEKs : f], and Postγk(join(E), (s, h, t)) =
> otherwise. Here the requirement that preconditions in γ be precise ensures
the determinism of splitting the state at fork commands. Postγk for composite
commands is defined as before with the aid of a functional Fk(γ, C, p). The
definition of validity with respect to the thread-local semantics now has to take
into account procedure contexts. For a procedure context Γ we denote with
JΓ K its corresponding semantic procedure context consisting of specifications
{JP K} f {JQK}, where {P} f {Q} is in Γ .

Definition 17 For a command C

Γ �k {P} C {Q} ⇔ Post
JΓ K
k (C, JP Kk) v JQKk.

Lemma 18 If Γ ` {P} C {Q}, then for all k ∈ ThreadIDs Γ �k {P} C {Q}.

Proof. Lemmas 6 and 7 are still valid in the new setting. Besides, it is easy to
show that the definition of PostΓk implies the soundness of the rules Fork and
Join with respect to the thread-local semantics (for this the requirement that
thread pre- and postconditions have an empty lockset is essential). An analog
of Lemma 8 can be stated and proved in the same way as before. We can then
perform induction on the derivation of Γ ` {P} C {Q} using the new lemmas.

ut

The Over-approximation Lemma is now formulated as follows.

Lemma 19 Let S be the program let f1 = C1, . . . , fn = Cn in C equipped
with a precondition p ∈ D and a semantical procedure context γ =
{p1} f1 {q1}, . . . , {pn} fn {qn} such that Postγj (Ck, pk) v qk for all k = 1..n and
j ∈ ThreadIDs. Let gM(main) = lfp(FM(γ, C, p)) and gj(fk) = lfp(Fj(γ, Ck, pk))
for all k = 1..n and j ∈ ThreadIDs. Then for any state q0 = (s0, h0, []) such
that

{q0} v p ∗
(

~
(A,u)∈Free(q0)

I0(A, u)
)

(9)

whenever pc0, q0 →∗
S pc, q, it is the case that

{q} v
(

~
{k | pc(k)↓}

gk(proc(pc(k)), pc(k))
)
∗

(
~

(A,u)∈Free(q)
I0(A, u)

)
. (10)

28

Proof. We prove the statement of the theorem by induction on the length m
of the derivation of q. For m = 0 (10) is equivalent to (9). Suppose now that
pc0, q0 →∗

S pc[j : v], q →S pc′[j : v′], (v, C, v′) ∈ F , and

{q} v
(

~
{k | pc(k)↓}

gk(proc(pc(k)), pc(k))
)
∗gj(proc(v), v)∗

(
~

(A,u)∈Free(q)
I0(A, u)

)
.

We have to prove that

{q′} v
(

~
{k | pc′(k)↓}

gk(proc(pc′(k)), pc′(k))
)
∗gj(proc(v′), v′)∗

(
~

(A,u)∈Free(q′)
I0(A, u)

)
.

(11)
We consider three cases corresponding to the type of the command C.

1. C is not fork or join. In this case the proof is the same as in Theorem 11
modulo different notation. The notion of transfer functions for commands other
than fork and join can be formulated in the same way as before and Lemma 12
still holds.

2. C is x = fork(fl). We can assume that q = r1∗r, where r1 ∈ gj(proc(v), v),
r ∈

(
~{k | pc(k)↓} gk(proc(pc(k)), pc(k))

)
∗

(
~(A,u)∈Free(q) I0(A, u)

)
, r1 = (s1[x :

(u, 1)], h1, t1), pc′ = pc[j′ : startfl
], q′ = (s1[x; (j′, 1)], h1, t1[j′ : fl]) ∗ r, and

Postγj (C, r1) v gj(proc(v′), v′); otherwise the right-hand side of (11) is >. We
then have to prove that {q′} v gj(proc(v′), v′) ∗ {r} ∗ pl. We can assume that
rest((s1[x : (j′, 1)], h1, t1), pl) = (s′[x : (u, 1)], h′, t′); otherwise as Postγj (C, r1) v
gj(proc(v′), v′), the right-hand side of (11) is >. Let r2 = (s′[x : (j′, 1)], h′, t′[j′ :
f]). Then Postγj (C, r1) v gj(proc(v′), v′) implies {r2} v gj(proc(v′), v′) and it is
therefore sufficient to prove that {q′} v {r2} ∗ {r} ∗ pl. It is easy to see that
rest((s1, h1, t1), pl) = (s′, h′, t′), hence, {(s1, h1, t1)} v {(s′, h′, t′)} ∗ pl. Then
{q′} = {(s1[x : (j′, 1)], h1, t1[j′ : fl])} ∗ {r} v {(s′[x : (j′, 1)], h′, t′[j′ : f])} ∗ pl ∗
{r} = {r2} ∗ {r} ∗ pl.

3. C is join(E). We can assume that q = r1 ∗ r ∗ r2, where r1 =
(s1, h1, t1[e : fl]), {r2} v ge(fl, endfl

), r ∈
(
~{k | pc(k)↓} gk(proc(pc(k)), pc(k))

)
∗(

~(A,u)∈Free(q) I0(A, u)
)
, pc = pc′[e : endfl

], e = JEKs1 , q′ = (s1, h1, t1) ∗ r ∗ r2;
otherwise either the left-hand side of (11) is ∅, or its right-hand side is >. We
have to prove that {q′} v gj(proc(v′), v′) ∗ {r}. Since Postγe (Cl, pl) v ql, by
Definition 17 we have that ge(fl, endfl

) v ql, hence, {r2} v ql. By the defini-
tion of Postγj for join(E) we then get {(s1, h1, t1)} ∗ ql v gj(proc(v′), v′), hence,
{q′} = {(s1, h1, t1) ∗ r2 ∗ r} v {(s1, h1, t1)} ∗ gl ∗ {r} v gj(proc(v′), v′) ∗ {r}.

So, in all cases (11) holds, which implies the statement of the theorem. ut

We are now in a position to prove the soundness theorem for the extended
logic.

Proof of Theorem 16. Consider an interpretation i and a state q0 = (s0, h0, [])
such that q0 ∈ JP KM

i ∗
(
~(A,u)∈Free(q0) I0(A, u)

)
. Let p = JP KM

i , pk = JP K, qk =
JQK, and γ = JΓ K in Lemma 19. By Lemma 18 for all j ∈ ThreadIDs Γ �j

{pk} Ck {qk} and Γ �M {p} C {q}, hence, by Definition 17, Postγj (Ck, pk) v qk

and PostγM(C, p) v q. We have that (9) is fulfilled, which allows us to establish

29

the safety of S. Suppose now that ∀k.pc(k)↓ ⇒ ∃f.pc(k) = endf and pc0, q0 →∗
S

pc, (s, h, t). From (10) we then get {(s, h, t)} v JQKM
i ∗

(
~{k | t(k)↓} JQt(k)K

)
∗(

~(A,u)∈Free(s,h,t) I0(A, u)
)
. ut

C.3 Closure and admissibility

The pathological example of Section 7 can be modeled using thread handles
and thread postconditions instead of lock handles and resource invariants: a
postcondition of a thread can hold a handle for another thread and vice versa
the main thread left without a handle for either of them. In this section we
formulate conditions sufficient to rule out pathological situations involving both
locks and threads and formulate a soundness statement that computes the set of
final states of a program solely from postconditions of threads, without looking
up the set of existing threads as done in Theorem 16.

For a state q let Threads(q) be the set of pairs from ThreadIDs × Procs
consisting of thread identifiers and procedure names of threads existing in the
state. We assume fixed a set of postconditions Qf indexed by procedure names.

Definition 20 (Closure for programs with dynamic thread creation)
For p ⊆ States let c(p) ⊆ States × P(ThreadIDs × Procs) be the least predicate
such that

{(q ∗ r, Threads(r)\Threads(q)) | (q, T) ∈ c(p) ∧ r ∈ ~
(k,f)∈T

JQf K} ∪

{(q ∗ r, T ∪ (Threads(r)\Threads(q))) | (q, T) ∈ c(p) ∧ r ∈ ~
(A,u)∈Unknown(q)

I0(A, u)} ∪

{(q, Threads(q)) | q ∈ p} ⊆ c(p).

The closure 〈p〉 of p is the set of states from {q | (q, ∅) ∈ c(p)} that do not
contain locks with the value U.

Definition 21 (Admissibility of resource invariants and postconditions)
Resource invariants for a set of lock sorts L and postconditions Qf for a set
of procedures F are admissible if there do not exist sets L ⊆ L × Locs and
T ⊆ ThreadIDs×F (such that L ∪ T 6= ∅) and a state

q ∈
(
~

(A,u)∈L
I0(A, u)

)
∗

(
~

(k,f)∈T
JQf K

)
such that for all (A, u) ∈ L the permission associated with the lock at the address
u in q is 1 and for all (k, f) ∈ T the thread with the identifier k exists in q and
is associated with the procedure f .

Theorem 22 Let S be the program let f1 = C1, . . . , fn = Cn in C and Γ =
{Pf1} f1 {Qf1}, . . . , {Pfn

} fn {Qfn
}, where for all k = 1..n Pfk

are precise
and Pfk

, Qfk
have an empty lockset. Suppose that

Γ ` {Pf1} C1 {Qf1}, . . . , Γ ` {Pfn
} Cn {Qfn

}, Γ ` {P} C {Q}.

30

Suppose further that either Q is intuitionistic or resource invariants for lock
sorts used in the proofs and postconditions Qfk

are admissible. Then for any
interpretation i and complete state q0 = (s0, h0, []) such that q0 ∈ 〈JP KM

i 〉 the
program S is safe when run from q0 and if pc0, q0 →∗

S pc, q, where ∀k.pc(k)↓ ⇒
∃f.pc(k) = endf , then q ∈ 〈JQKM

i 〉.

Proof. Analogous to that of Theorem 4. ut
Note that if the denotations of postconditions of all the threads of a program

and resource invariants used in its proof have an empty thread pool, then we
can use Definitions 2 and 3 instead of Definitions 20 and 21 in Theorem 22.

C.4 Parameter passing

We now consider the case when procedures representing the code of threads take
parameters that are instantiated when threads are created:

C ::= . . . | V = fork(T,E) | join(E) primitive commands
P ::= let T (V) = S, . . . , T (V) = S in S programs

To simplify notation we assume that each procedure has exactly one parameter.
fork(f,E) now creates a new thread executing the code of the procedure f with
the parameter E. Thread handles then have to carry information about the value
E of the parameter with which the thread was instantiated: tidf (F,E).

The design of proof rules that take into account parameter passing essentially
follows proof rules for procedures with parameters in the case when variables are
treated as resources [14]:

Γ ` {P (X) ∗ (O, x emph ∧ empt) ∧X = E} x = fork(f, E) {O, x emph ∧ tidf (x, X)}
Fork

Γ ` {O emph ∧ tidf (E, X)} join(E) {Q(X) ∗ (O emph ∧ empt)}
Join

where Γ = Γ ′, {P (X)} f(X) {Q(X)} and Γ ranges over procedure contexts
that now consist of specifications of the form {P (X)} f(X) {Q(X)}, where X
is the only free logical variable in P (X) and Q(X).

A proof of the program let f1(x) = C1, . . . , fn(x) = Cn in C is given by
triples

Γ ` {Pk(X)∗(w emph∧empt)∧w = X} Ck[w/x] {Qk(X)∗(w emph∧empt)}

(where w is globally fresh) for k = 1..n and Γ ` {P} C {Q}, where

Γ = {P1(X)} f1(X) {Q1(X)}, . . . , {Pn(X)} fn(X) {Qn(X)}.

The semantical development carried out in this section can be adjusted to ac-
commodate parameter passing. The same conditions required for soundness as
before apply.

We can now give an example of using the proof rules for dynamic thread
creation. The main thread of the program in Figure 11 allocates an array of n
objects of the type DATA and creates n threads to process the objects. It then
waits for the termination of all the threads and deallocates the array.

31

{emps ∧ empt ∧D 7→ } process(D) {emps ∧ empt ∧D 7→ }
process(DATA *d) {

{d empt ∧ d7→ }
// ...Process d...

{d empt ∧ d7→ }
}

main(unsigned n) {

DATA *x;

THREAD_ID *t;

int i;

THREAD_ID id;

{O emph ∧ empt}
x = new DATA[n];

t = new THREAD_ID[n];

{O (~n−1
K=0 (t + K 7→)) ∗ (~n−1

K=0 (x + K 7→)) ∧ empt}
for (i = 0; i < n; i++) {

{O (~i−1
K=0 (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

((~n−1
K=i (t + K 7→)) ∗ (~n−1

K=i (x + K 7→)) ∧ empt) ∧ i < n}
id = fork(process, x+i);

{O (~i−1
K=0 (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

((~n−1
K=i (t + K 7→)) ∗ (~n−1

K=i+1 (x + K 7→)) ∧ tidprocess(id, x + i))}
t[i] = id;

{O (~i
K=0 (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

((~n−1
K=i+1 (t + K 7→)) ∗ (~n−1

K=i+1 (x + K 7→)) ∧ empt)}
}

{O (~n−1
K=0 (∃T.t + K 7→T ∧ tidprocess(T, x + K)))}

for (i = 0; i < n; i++) {

{O (~n−1
K=i (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

((~i−1
K=0 (t + K 7→)) ∗ (~i−1

K=0 (x + K 7→)) ∧ empt) ∧ i < n}
id = t[i];

{O (~n−1
K=i+1 (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

(t+ i7→id∧ tidprocess(id, x+ i))∗ ((~i−1
K=0 (t + K 7→))∗ (~i−1

K=0 (x + K 7→))∧empt)}
join(id);

{O (~n−1
K=i+1 (∃T.t + K 7→T ∧ tidprocess(T, x + K))) ∗

((~i
K=0 (t + K 7→)) ∗ (~i

K=0 (x + K 7→)) ∧ empt)}
}

{O (~n−1
K=0 (t + K 7→)) ∗ (~n−1

K=0 (x + K 7→)) ∧ empt}
delete[n] x;

delete[n] t;

{O emph ∧ empt}
}

Fig. 11. Proof outline for a program with dynamic thread creation. Here O is n, x, t,
i, id.

32

