
Distributed Computing
https://doi.org/10.1007/s00446-024-00466-4

Liveness and latency of Byzantine state-machine replication

Manuel Bravo1 · Gregory Chockler2 · Alexey Gotsman3

Received: 16 March 2023 / Accepted: 17 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Byzantine state-machine replication (SMR) ensures the consistency of replicated state in the presence ofmalicious replicas and
lies at the heart of themodern blockchain technology. Byzantine SMRprotocols often guarantee safety under all circumstances
and liveness only under synchrony. However, guaranteeing liveness even under this assumption is nontrivial. So far we have
lacked systematic ways of incorporating liveness mechanisms into Byzantine SMR protocols, which often led to subtle
bugs. To close this gap, we introduce a modular framework to facilitate the design of provably live and efficient Byzantine
SMR protocols. Our framework relies on a view abstraction generated by a special SMR synchronizer primitive to drive the
agreement on command ordering. We present a simple formal specification of an SMR synchronizer and its bounded-space
implementation under partial synchrony. We also apply our specification to prove liveness and analyze the latency of three
Byzantine SMR protocols via a uniform methodology. In particular, one of these results yields what we believe is the first
rigorous liveness proof for the algorithmic core of the seminal PBFT protocol.

1 Introduction

Byzantine state-machine replication (SMR) [54] ensures the
consistency of replicated state even when some of the repli-
cas aremalicious. It lies at the heart of themodern blockchain
technology and is closely related to the classical Byzantine
consensus problem. Unfortunately, no deterministic protocol
can guarantee both safety and liveness of Byzantine SMR
when the network is asynchronous [34]. A common way to
circumvent this impossibilitywhilemaintaining determinism
is to guarantee safety under all circumstances and liveness
only when the network is synchronous. This is formalized
by the partial synchrony model [25, 33], which stipulates
that after some unknownGlobal Stabilization Time (GST) the
system becomes synchronous, with message delays bounded
by an unknown constant δ and process clocks tracking real
time. Before GST, however, messages can be lost or arbitrar-
ily delayed, and clocks at different processes can drift apart
without bound.

Historically, researchers have paidmore attention to safety
of Byzantine SMR protocols than their liveness. For exam-

B Alexey Gotsman
dev@null.com

1 Informal Systems, Madrid, Spain

2 University of Surrey, Guildford, UK

3 IMDEA Software Institute, Madrid, Spain

ple, while the seminal PBFT protocol came with a detailed
safety proof [22, §A], the nontrivial mechanisms ensuring
its liveness were only given a brief informal justification [24,
§4.5.1], which did not cover their most critical properties.
However, ensuring liveness under partial synchrony is far
from trivial, as illustrated by the many liveness bugs found
in existing protocols [2, 6, 10, 21, 43]. In particular, classical
failure detectors and leader oracles [25, 35] are of little help:
while they have been widely used under benign failures [39,
40, 49], their implementations under Byzantine failures are
either impractical [45] or detect only restricted failure types
[31, 41, 48]. As an alternative, a textbook by Cachin et al.
[19] proposed a leader oracle-like abstraction that accepts
hints from the application to identify potentially faulty pro-
cesses. However, as we explain in §9, their specification of
the abstraction is impossible to implement, and in fact, the
consensus algorithm constructed using it in [19] also suffers
from a liveness bug.

Recent work on ensuring liveness has departed from fail-
ure detectors and instead revisited the approachof the original
DLS paper [33]. This exploits the common structure of
Byzantine consensus and SMR protocols under partial syn-
chrony: such protocols usually divide their execution into
views, each with a designated leader process that coordinates
the protocol execution. If the leader is faulty, the processes
switch to another viewwith a different leader. To ensure live-
ness, an SMRprotocol needs to spend sufficient time in views

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-024-00466-4&domain=pdf

M. Bravo et al.

that are entered by all correct processes and where the leader
correctly follows the protocol. The challenge of achieving
such view synchronization is that, before GST, clocks can
diverge and messages that could be used to synchronize pro-
cesses can get lost or delayed; even after GST, Byzantine
processes may try to disrupt attempts to bring everybody into
the same view.View synchronizers [14, 16, 50, 51, 59] encap-
sulate mechanisms for dealing with this challenge, allowing
them to be reused across protocols.

View synchronizers have been mostly explored in the
context of (single-shot) Byzantine consensus. In this case
a synchronizer can just switch processes through an infinite
series of views, so that eventually there is a view with a
correct leader that is long enough to reach a decision [16,
51]. However, using such a synchronizer for SMR results
in suboptimal solutions. For example, one approach is to
use the classical SMR construction where each command is
decided using a separate black-box consensus instance [54],
implemented using a view synchronizer.However, thiswould
force the processes in every instance to iterate over the same
sequence of potentially bad views until the one with a cor-
rect leader and sufficiently long duration could be reached.
Another approach is to use one view of a consensus synchro-
nizer to agree on one command [59]. However, in this case
a decision on each command is delayed until the consensus
synchronizer generates a new view, thus increasing latency.
We discuss the drawbacks of these approaches in more detail
in §9.

To minimize the overheads of view synchronization,
instead of automatically switching processes through views
based on a fixed schedule, implementations such as PBFT
allow processes to stay in the same view for as long as they
are happywith its performance. The processes can then reuse
a single view to decide multiple commands, usually with the
same leader. To be useful for such SMRprotocols, a synchro-
nizer needs to allow the processes to control when they want
to switch views via a special advance call. We call such
a primitive an SMR synchronizer, to distinguish it from the
less flexible consensus synchronizer introduced above. This
kind of synchronizers was first introduced in [50, 51], but
only used as an intermediate module to implement a consen-
sus synchronizer. This line of work did not investigate the
usability of SMR synchronizers as a generic building block
for Byzantine SMR protocols.

In this paper we show that SMR synchronizers can be
directly exploited to construct efficient and provably live
SMR protocols and develop a general blueprint that enables
such constructions. In more detail:

– We propose a formal specification of an SMR synchro-
nizer (§3), which is simpler and more general than prior
proposals [50, 51]. It is also strictly stronger than the con-
sensus synchronizer of [16], which can be obtained from

the SMR synchronizer at no extra cost. Informally, our
specification guarantees that (a) the system will move to
a new view if enough correct processes call advance,
and (b) all correct processes will enter the new view, pro-
vided that for long enough, no correct process that enters
this view asks to leave it. These properties enable correct
processes to iterate through views in search of a well-
behaved leader, and to synchronize in a view they are
happy with.

– We give an SMR synchronizer implementation and prove
that it satisfies our specification (§3.1). Unlike prior
implementations [51], ours tolerates message loss before
GST while using only bounded space; in practice, this
feature is essential to defend against denial-of-service
attacks [22]. We also provide a precise latency analysis
of our synchronizer, quantifying how quickly all correct
processes enter the next view after enough of them call
advance.

– We demonstrate the usability of our synchronizer spec-
ification by applying it to construct and prove the
correctness of several SMR protocols. First, we prove
the liveness of a variant of PBFT using an SMR synchro-
nizer (§4–6): to the best of our knowledge, this is the
first rigorous proof of liveness for PBFT’s algorithmic
core. The proof establishes a strong liveness guarantee
that implies censorship-resistance: every command sub-
mitted by a correct process will be executed. The use of
the synchronizer specification in the proof allows us to
abstract from view synchronization mechanics and focus
on protocol-specific reasoning. This reasoning is done
using a reusable methodology based on showing that the
use of timers in the SMR protocol and the synchronizer
together establish properties similar to those of failure
detectors. The methodology also handles the realistic
ways in which protocols such as PBFT adapt their time-
outs to the unknown message delay δ. We demonstrate
the generality of our methodology by also applying it to
a version of PBFT with periodic leader changes [28, 57,
58] and a HotStuff-like protocol [59] (§8).

– We exploit the latency bounds for our synchronizer to
establish both bad-case and good-case bounds for vari-
ants of PBFT implemented on top of it (§7). Our bad-case
bound assumes that the protocol starts before GST; it
shows that after GST all correct processes synchronize in
the sameviewwithin a bounded time. This time is propor-
tional to a conservatively chosen constant Δ that bounds
post-GST message delays in all executions [42, 52]. Our
good-case bound quantifies decision latency when the
protocol starts after GST and matches the lower bound of
[3].

123

Liveness and latency of Byzantine state-machine replication

2 Systemmodel

We consider a system of n = 3 f + 1 processes. At most f
of these can be Byzantine (aka faulty), i.e., can behave arbi-
trarily. The rest of the processes are correct and we denote
their set by C. We call a set Q of 2 f + 1 processes a quo-
rum and write quorum(Q) in this case. We assume standard
cryptographic primitives: processes can communicate via
authenticated point-to-point links, sign messages using dig-
ital signatures, and use a collision-resistant hash function
hash(). We denote by 〈m〉i a message m signed by process
pi .

We consider a partial synchrony model [25, 33]: for each
execution of the protocol, there exist a time GST and a dura-
tion δ such that after GST message delays between correct
processes are bounded by δ. Before GST messages can get
arbitrarily delayed or lost: this models the period when the
network is unstable. As in [25], we assume that the values
of GST and δ are unknown to the protocol. This reflects the
requirements of practical systems, whose designers cannot
accurately predict when network problems leading to asyn-
chrony will stop and what the latency will be during the
following synchronousperiod.Wealso assume that processes
are equipped with hardware clocks that can drift unbound-
edly from real time before GST, but can accurately measure
time thereafter.

3 SMR synchronizer specification and
implementation

We consider a synchronizer interface defined in [50, 51],
which here we call an SMR synchronizer. Let View =
{1, 2, . . .} be the set of views, ranged over by v; we use 0
to denote an invalid initial view. The synchronizer produces
notifications new_view(v) at a process, telling it to enter
viewv. To trigger suchviewchanges, the synchronizer allows
a process to call a function advance(), which signals that
the process wishes to advance to a higher view. We assume
that a correct process does not call advance twice without
an intervening new_view notification.

Our first contribution is the SMR synchronizer specifica-
tion in Fig. 1, which is simpler and more general than prior
proposals [50, 51] (see §9 for a discussion). The specifica-
tion relies on the following notation. Given a view v entered
by a correct process pi , we denote by Ei (v) the time when
this happens; we let Efirst(v) and Elast(v) denote respectively
the earliest and the latest time when some correct process
enters v. Similarly, we denote by Ai (v) the time when a cor-
rect process pi calls advance while in v, and let Afirst(v)

and Alast(v) denote respectively the earliest and the latest
time when this happens. Given a partial function f , we write
f (x)↓ if f (x) is defined, and f (x)↑ if f (x) is undefined.

Thus, Efirst(v)↓means that some correct process enters view
v, and Efirst(v)↑ that no correct process enters this view.

The Monotonicity property in Fig. 1 ensures that views
can only increase at a given process. Validity ensures that a
process may only enter a view v + 1 if some correct process
has called advance in v. This prevents faulty processes
from disrupting the system by forcing view changes. As the
following propositions shows, Validity implies that views
are never skipped: no correct process can enter a view unless
every preceding view has also been entered by some correct
process. An important consequence of this property is that a
common pattern in SMR protocols where leaders are rotated
round-robin through views is guaranteed to find a correct
leader. We use this fact in our proof of PBFT liveness (§6).

Proposition 1 (No skipped views)

∀v, v′. 0 < v < v′ ∧ Efirst(v
′)↓ 	⇒

Efirst(v)↓ ∧ Efirst(v) < Efirst(v
′).

Proof Fix v′ ≥ 2 and assume that a correct process enters v′,
so that Efirst(v

′)↓. We prove by induction on k that

∀k = 0..(v′ − 1).

Efirst(v
′ − k)↓ ∧ Efirst(v

′ − k) ≤ Efirst(v
′).

The base case of k = 0 is trivial. For the inductive step,
assume that the required holds for some k. Then by Validity
there exists a time t < Efirst(v

′ − k) at which some correct
process p j attempts to advance from v′ − k − 1. But then
p j ’s view at t is v′ − k − 1. Hence, p j enters v′ − k − 1
before t , so that

Efirst(v
′ − k − 1) < t < Efirst(v

′ − k) ≤ Efirst(v
′),

as required.
�
Bounded Entry ensures that, if some process enters view

v, then all correct processes will do so within at most d time
units of each other (our synchronizer satisfies this property
for d = 2δ). This only holds if within d no process attempts
to advance to a higher view, as thismaymake some processes
skip v and enter a higher view directly. Bounded Entry also
holds only starting from some view V , since a synchronizer
may not be able to guarantee it for views entered before GST.
When proving liveness of SMR protocols using the synchro-
nizer, Bounded Entry helps us reason about the length of the
interval during which all correct processes overlap in a given
view v ≥ V . On the one hand, Bounded Entry guarantees
that all processes enter v within at most d time units of each
other; this can be used to ensure that the overlapping interval
does not start too late. On the other hand, by Validity and
Proposition 1, no correct process can enter a view > v until

123

M. Bravo et al.

1. Monotonicity. A process enters increasing views:

∀i, v, v′. Ei(v)↓ ∧ Ei(v′)↓ =⇒
(v < v′ ⇐⇒ Ei(v) < Ei(v′))

2. Validity. A process only enters a view v + 1 if some cor-

rect process has attempted to advance from v:

∀i, v. Ei(v + 1)↓ =⇒
Afirst(v)↓ ∧ Afirst(v) < Ei(v + 1)

3. Bounded Entry. For some V and d, if a process enters

a view v ≥ V and no process attempts to advance to a

higher view within time d, then all correct processes will
enter v within d:

∃V, d.∀v ≥ V. Efirst(v)↓ ∧
¬(Afirst(v) < Efirst(v) + d) =⇒
(∀pi ∈ C. Ei(v)↓) ∧ Elast(v) ≤ Efirst(v) + d

4. Startup. Some correct process will enter view 1 if f + 1
processes call advance:

(∃P ⊆ C. |P | = f + 1 ∧ (∀pi ∈ P.Ai(0)↓)) =⇒
Efirst(1)↓

5. Progress. If a correct process enters a view v and, for

some set P of f + 1 correct processes, any process in P
that enters v eventually calls advance, then some correct

process will enter view v + 1:

∀v. Efirst(v)↓ ∧ (∃P ⊆ C. |P | = f + 1∧
(∀pi ∈ P.Ei(v)↓ =⇒ Ai(v)↓)) =⇒ Efirst(v + 1)↓

Fig. 1 SMR synchronizer specification

some correct process calls advance in v; this can be used
to ensure that the interval does not end too soon.

The properties we have introduced so far ensure that all
correct processes can synchronize in every view≥ V entered
by some correct process. But they do not give any guarantees
as to whether a correct process will be able to advance from a
view< V or one with a faulty leader. The next two properties
close this gap by establishing precise conditions under which
a view change is guaranteed to occur.

Startup ensures that some correct process enters view 1
if f + 1 processes call advance. Given a view v entered
by a correct process, Progress determines conditions under
which some correct process will enter the next view v + 1.
This will happen if for some set P of f +1 correct processes,
any process in P entering v eventually calls advance. Note
that even a singleadvance call at a correct processmay lead
to a view switch (reflecting the fact that in implementations
faulty processes may help this correct process). Startup and
Progress ensure that the synchronizer must switch if at least

1 when the process starts or timer expires
2 advance();

3 upon new view(v)
4 stop timer(timer);
5 start timer(timer, τ);

Fig. 2 A simple client of the SMR synchronizer

f + 1 correct processes ask for this. We now illustrate a
typical pattern of their use, which we later apply to PBFT
(§6). To this end, we consider a simple client in Fig. 2, where
in each view a process sets a timer for a fixed duration τ

and calls advance when the timer expires. Using Startup
and Progress we prove that this client keeps switching views
forever as follows.

Proposition 2 In any execution of the client in Fig.2:
∀v. ∃v′. v′ > v ∧ Efirst(v

′)↓.
Proof Since all correct processes initially call advance,
by Startup some correct process eventually enters view 1.
Assume now that the proposition is false, so that there is
a maximal view v entered by any correct process. Let P
be any set of f + 1 correct processes and consider an
arbitrary process pi ∈ P that enters v. When this hap-
pens, pi sets the timer for the duration τ . The process
then either calls advance when timer expires, or enters
a new view v′ before this. In the latter case v′ > v by
Monotonicity, which is impossible. Hence, pi eventually
calls advance while in v. Since pi was chosen arbitrar-
ily, ∀pi ∈ P. Ei (v)↓ 	⇒ Ai (v)↓. Then by Progress we get
Efirst(v + 1)↓: a contradiction.
�

As we illustrate in §6, the synchronizer properties work
in tandem to ensure the liveness of an SMR protocol. Infor-
mally, Startup andProgress allow the processes to iterate over
views in search for one with a well-behaved leader; Bounded
Entry enables all correct processes to promptly enter that
view; and Validity ensures that all correct processes can stay
in it indefinitely despite any disruption by faulty processes.

A different type of a view synchronizer than the one
we just presented has been used for Byzantine consensus
[16, 51]—here we call it a consensus synchronizer (§1).
Like an SMR synchronizer, a consensus synchronizer pro-
duces notifications telling a process to enter a new view v;
we denote these by new_consensus_view(v) to dis-
tinguish them from new_view notifications of an SMR
synchronizer. Unlike an SMR synchronizer, a consensus syn-
chronizer lacks an advance call. Instead of letting the
client protocol initiate view changes, this synchronizer keeps
invoking new_consensus_view at processes at increas-
ing intervals so that eventually the there is a view long enough
for the consensus protocol running on top to decide. In §A

123

Liveness and latency of Byzantine state-machine replication

1 function advance()
2 send WISH(max(view + 1, view+)) to all;
3 advanced ← TRUE;

4 periodically � every ρ time units

5 if advanced then
6 send WISH(max(view + 1, view+)) to all;
7 else if view+ > 0 then
8 send WISH(view+) to all;

9 when received WISH(v) from pj
10 prev v, prev v+ ← view, view+;

11 if v > max views[j] then max views[j] ← v;
12 view ← max{v | ∃k.max views[k] = v ∧

|{j | max views[j] ≥ v}| ≥ 2f + 1};
13 view+ ← max{v | ∃k.max views[k] = v ∧

|{j | max views[j] ≥ v}| ≥ f + 1};
14 if view+ = view ∧ view > prev v then
15 trigger new view(view);
16 advanced ← FALSE;

17 if view+ > prev v+ then
18 send WISH(view+) to all

Fig. 3 A bounded-space SMR synchronizer. Counters are initially 0

we show that we can use an SMR synchronizer to implement
a consensus synchronizer without extra overhead, thereby
demonstrating the generality of the former abstraction.

3.1 A bounded-space SMR synchronizer

In Fig. 3 we present a bounded-space algorithm that imple-
ments the specification in Fig. 1 under partial synchrony for
d = 2δ. Our implementation reuses algorithmic techniques
from a consensus synchronizer we previously proposed [16]
while supporting a more general abstraction. It thus inherits
the key feature of the previous protocol: despite tolerating
message loss before GST, the synchronizer only requires
bounded space.

When a process calls advance (line 1), the synchro-
nizer does not immediately move to the next view v′, but
disseminates a WISH(v′) message announcing its intention.
A process enters a new view once it accumulates a suffi-
cient number of WISH messages supporting this. To achieve
bounded space complexity, a process only keeps track of the
highest WISH received from each peer. This information is
stored in an array max_views : {1, . . . , n} → View ∪ {0},
whose j th entry tracks the maximal view received in a WISH
message from process p j (initially 0, updated in line 11). The
content of max_views is then used to determine the views

the process should enter. Since the process does not store
each WISH it receives, we cannot require it to enter a new
view upon receiving a set of matching WISHes for this exact
view (as done, e.g., in Bracha broadcast [13, 50]): some of
these WISHes may have been overwritten by higher ones
in the max_views array. Instead, our implementation main-
tains two variables view and view+, which respectively hold
the (2 f + 1)st highest and the (f + 1)st highest views in
max_views (lines 12–13). These variables never decrease
and always satisfy view ≤ view+.

The process enters the view stored in the view variable
when this variable increases (line 14; we explain the extra
condition later). The process thus enters a view v only if
it receives a quorum of WISHes for views ≥ v. At least
one of these WISHes must come from a correct process,
which helps satisfy Validity. Note that a process may be
forced to switch views even if it did not call advance. This
helps lagging processes to catch up, but poses another chal-
lenge. Byzantine processes may equivocate, sending WISH
messages to some processes but not others. In particular,
they may send WISHes for views ≥ v to some correct pro-
cess, helping it to form a quorum of WISHes sufficient for
entering v. But they may withhold the same WISHes from
another correct process, so that it fails to form a quorum for
entering v, as necessary, e.g., for Bounded Entry. To deal
with this, when a process receives a WISH that makes its
view+ increase, the process sends WISH(view+) (line 18).
The WISH(view+) message replaces those that may have
been omitted by Byzantine processes and helps other correct
processes to quickly form the quorums of WISHes neces-
sary to satisfy Bounded Entry. The mechanism of relaying
WISH(view+) also helps validate Progress: after GST, f + 1
calls toadvancebycorrect processesmake theother correct
processes also send WISHes, which helps correct processes
accumulate a quorum of WISHes necessary to enter a new
view.

The guard view+ = view in line 14 ensures that a process
does not enter a “stale” view such that another correct process
already wishes to enter a higher one. Similarly, when the
process calls advance, it sends a WISH for the maximum
of view + 1 and view+ (line 2). Thus, if view = view+, so
that the values of the two variables have not changed since
the process entered the current view, then the process sends
a WISH for the next view (view + 1). Otherwise, view <

view+, and the process sends a WISH for the higher view
view+.

Finally, to deal with message loss before GST, a process
retransmits the highest WISH it sent every ρ time units,
according to its local clock (line 4). Depending on whether
the process has called advance in the current view (tracked
by the advanced flag), the WISH is computed as in lines 18
or 2.

123

M. Bravo et al.

Space requirements Keeping track of only the maximal
WISHes received in max_views allows our synchronizer to
run in bounded space: it requires only O(n) variables for
storing views, despite tolerating message loss before GST.
Furthermore, Proposition 1 ensures that views entered by
correct processes throughout an execution do not skip val-
ues. Thus, although the individual view values stored by the
synchronizer are unbounded, Proposition 1 limits the power
of the adversary to exhaust their allocated space (similarly to
[9]).

In practice, bounded space requirements of our protocol
are essential to defend against denial-of-service attacks [22]:
they prevent the attacker from crashing a process by flooding
it with messages that cause it to run out of memory.

This stands in contrast to a naive synchronizer design that
follows the approach of Bracha broadcast [13, 50]: enter a
view v′ upon receiving 2 f +1 WISH(v′)messages, and echo
WISH(v′) upon receiving f + 1 copies thereof. In this case
a process would have to track all newly proposed views for
which< 2 f +1WISHes have been received. Sincemessages
sent before GST can be lost or delayed, this would require
unbounded space.

Correctness The following theorem (proved in §B) states
the correctness of our synchronizer.

Theorem 1 Consider an execution with an eventual message
delay δ. In this execution, the algorithm in Fig.3 satisfies the
properties in Fig.1 for d = 2δ and

V = max{v | (Efirst(v)↓ ∧ Efirst(v) < GST + ρ) ∨
v = 0} + 1,

if Afirst(0) < GST, and V = 1, otherwise.

The theorem also gives witnesses for V and d in Bounded
Entry, which is useful for analyzing the latency of SMR pro-
tocols using our synchronizer (§7). In particular,V is the next
view after the highest one entered by a correct process at or
before GST + ρ (or 1 if no view was entered).

4 PBFT using an SMR synchronizer

We now demonstrate how an SMR synchronizer can be used
to implement Byzantine SMR. More formally, we imple-
ment Byzantine atomic broadcast [19], from which SMR
can be implemented in the standard way [54]. This abstrac-
tion allows processes to broadcast values, and we assume an
application-specific predicate to indicate whether a value is
valid [20] (e.g., a block in a blockchain is invalid if it lacks
correct signatures authorizing its transactions). We assume

that all values broadcast by correct processes in a single exe-
cution are valid andunique.ThenByzantine atomicbroadcast
is defined by the following properties:

– Integrity Every process delivers a value at most once.
– External ValidityA correct process delivers only values
satisfying valid().

– Ordering If a correct process p delivers x1 before x2,
then another correct process q cannot deliver x2 before
x1.

– Liveness If a correct process broadcasts or delivers x ,
then eventually all correct processes will deliver x .

Note that Liveness implies censorship-resistance: the ser-
vice cannot selectively omit values submitted by correct
processes.

4.1 The PBFT-light protocol

We show how to implement Byzantine atomic broadcast
via an SMR synchronizer using the example of a PBFT-
light protocol (Figs. 4 and 5), which faithfully captures the
algorithmic core of the Practical Byzantine Fault Toler-
ance protocol (PBFT) [23]. Whereas PBFT integrated view
synchronization functionality with the core SMR protocol,
PBFT-light delegates this functionality to an SMR synchro-
nizer, and in §6 we rigorously prove its liveness when using
any synchronizer satisfying our specification.

We base PBFT-light on the PBFT protocol with signa-
tures and, for simplicity, omit the mechanisms for managing
checkpoints and watermarks (hence the word “light”); these
can be easily added without affecting liveness. The protocol
works in a succession of views produced by the synchronizer.
A process stores its current view in a variable curr_view.
Each view v has a fixed leader leader(v) = p((v−1) mod n)+1

that is responsible for totally ordering values submitted for
broadcast; the other processes are followers, which vote on
proposals made by the leader. Processes store the sequence
of values proposed by the leader in a log array; at the leader,
a next counter points to the first free slot in the array. The
protocol ensures that all values in the log array are unique.
Processes monitor the leader’s behavior and ask the syn-
chronizer to advance to another view if they suspect that
the leader is faulty. A status variable records whether the
process is operating as normal in the current view (normal)
or is changing the view.

4.2 Normal protocol operation

A process broadcasts a valid value x using a broadcast
function (line 9). This keeps sending the value to all pro-
cesses in a BROADCAST message until the process delivers
the value. The periodic retransmission ensures that the value

123

Liveness and latency of Byzantine state-machine replication

1 function start()
2 if curr view = 0 then advance();

3 when a timer expires
4 stop all timers();
5 advance();
6 status ← ADVANCED;

7 dur delivery ← dur delivery + τ ;
8 dur recovery ← dur recovery + τ ;

9 function broadcast(x)
10 pre: valid(x);
11 send 〈BROADCAST(x)〉i to all periodically

until x is delivered
12 when received BROADCAST(x)
13 pre: valid(x) ∧ status = NORMAL ∧

(timer delivery[x] not active) ∧
(∀k. k ≤ last delivered =⇒ commit log[k] �=x);

14 start timer(timer delivery[x], dur delivery);
15 send 〈FORWARD(x)〉i to leader(curr view);
16 when received FORWARD(x)
17 pre: valid(x) ∧ status = NORMAL ∧

pi = leader(curr view) ∧ ∀k. log[k] �= x;

18 send 〈PREPREPARE(curr view, next, x)〉i to all;
19 next ← next+ 1;

20 when received 〈PREPREPARE(v, k, x)〉j
21 pre: pj = leader(v) ∧ curr view = v ∧

status = NORMAL ∧ phase[k] = START ∧
valid(x) ∧ (∀k′. log[k′] �= x)

22 (log, phase)[k] ← (x, PREPREPARED);
23 send 〈PREPARE(v, k, hash(x))〉i to all;
24 when received {〈PREPARE(v, k, h)〉j | pj ∈ Q} = C

for a quorum Q
25 pre: curr view = v ∧

phase[k] = PREPREPARED ∧
status = NORMAL ∧ hash(log[k]) = h;

26 (prep log, prep view, cert, phase)[k] ←
(log[k], curr view, C, PREPARED);

27 send 〈COMMIT(v, k, h)〉i to all;

28 when received {〈COMMIT(v, k, h)〉j | pj ∈ Q} = C
for a quorum Q

29 pre: curr view = v ∧ phase[k] = PREPARED ∧
status = NORMAL ∧ hash(prep log[k]) = h;

30 (commit log, phase)[k] ← (log[k], COMMITTED);
31 broadcast 〈DECISION(commit log[k], k, C);

32 when received DECISION(x, k, C)
33 pre: commit log[k] �= ⊥ ∧

∃v. committed(C, v, k, hash(x));
34 commit log[k] ← x;

35 when commit log[last delivered+ 1] �= ⊥
36 last delivered ← last delivered+ 1;
37 if commit log[last delivered] �= nop then
38 deliver(commit log[last delivered])

39 stop timer(
timer delivery[commit log[last delivered]]);

40 if last delivered = init log length ∧
status = NORMAL then

41 stop timer(timer recovery);

42 upon new view(v)
43 stop all timers();
44 curr view ← v;
45 status ← INITIALIZING;

46 send 〈NEW LEADER(curr view, prep view,
prep log, cert)〉i to leader(curr view);

47 start timer(timer recovery, dur recovery);

48 when received {〈NEW LEADER(v, prep view j ,
prep logj , certj)〉j | pj ∈ Q} = M

for a quorum Q
49 pre: pi = leader(v) ∧ curr view = v ∧

status = INITIALIZING ∧
∀m ∈ M.ValidNewLeader(m);

50 forall k do
51 if ∃pj′ ∈ Q. prep view j′ [k] �= 0 ∧

∀pj ∈ Q. prep view j [k] ≤ prep view j′ [k]
then log ′[k] ← prep logj′ [k];

52 next ← max{k | log ′[k] �= ⊥};
53 forall k = 1..(next − 1) do
54 if log ′[k] = ⊥ ∨ ∃k′. k′ �= k ∧

log ′[k′] = log ′[k] ∧ ∃pj′ ∈ Q.∀pj ∈ Q.

prep view j′ [k′]> prep view j [k] then
55 log ′[k] ← nop

56 send 〈NEW STATE(v, log ′, M)〉i to all;

57 when received 〈NEW STATE(v, log ′, M)〉j=m
58 pre: status = INITIALIZING ∧

curr view = v ∧ ValidNewState(m);
59 log ← log ′;
60 forall {k | log[k] �= ⊥} do
61 phase[k] ← PREPREPARED;

62 send 〈PREPARE(v, k, hash(log[k]))〉i to all;
63 status ← NORMAL;

64 init log length ← max{k | log[k] �= ⊥};
65 if init log length ≤ last delivered then
66 stop timer(timer recovery);

Fig. 4 The PBFT-light protocol at a process pi . Auxiliary predicates are defined in Fig. 5

123

M. Bravo et al.

prepared(C, v, k, h) ⇐⇒ ∃Q. quorum(Q) ∧ C = {〈PREPARE(v, k, h)〉j | pj ∈ Q}
committed(C, v, k, h) ⇐⇒ ∃Q. quorum(Q) ∧ C = {〈COMMIT(v, k, h)〉j | pj ∈ Q}
ValidNewLeader(〈NEW LEADER(v, prep view , prep log , cert)〉) ⇐⇒

∀k. (prep view [k] > 0 =⇒ prep view [k] < v ∧ prepared(cert [k], prep view [k], k, prep log [k]))

ValidNewState(〈NEW STATE(v, log ′, M)〉i) ⇐⇒ pi = leader(v) ∧ ∃Q, prep view , prep log , cert .
quorum(Q) ∧ M = {〈NEW LEADER(v, prep view j , logj , certj)〉j | pj ∈ Q} ∧
(∀m ∈ C.ValidNewLeader(m)) ∧ (log ′ is computed from M as per lines 50-55)

Fig. 5 Auxiliary predicates for PBFT-light

will reach the processes despite message loss before GST.
When a process receives a BROADCAST message with a
new value (line 12), it forwards the value to the leader in
a FORWARD message. This ensures that the value reaches
the leader even when broadcast by a faulty process, which
may withhold the BROADCAST message from the leader.
(We explain the timer set in line 14 later.) When the leader
receives a new value x in a FORWARD message (line 16), it
sends a PREPREPARE message to all processes (including
itself) that includes x and its position in the log, generated
from thenext counter. Processes vote on the leader’s proposal
in two phases, each with an all-to-all message exchange. A
process keeps track of the status of values going through the
vote in an array phase, whose entries initially store start.

When a process receives a proposal x for a position k
from the leader of its view v (line 20), it first checks that
phase[k] = start, so that it has not yet accepted a proposal
for the position k in the current view. It also checks that the
value is valid and distinct from all values it knows about.
The process then stores x in log[k] and advances phase[k]
to preprepared. Since a faulty leader may send different
proposals for the same position to different processes, the
process next communicates with others to check that they
received the same proposal. To this end, it disseminates a
PREPARE message with the position and the hash of the
value x it received. The process handles x further once it
gathers a setC ofPREPAREmessages from a quorummatch-
ing the value (line 24), which we call a prepared certificate
and check using the prepared predicate in Fig. 5. In this case
the process stores the value in prep_log[k], the certificate in
cert[k], and the view inwhich itwas formed inprep_view[k].
At this point we say that the process prepared the proposal,
as recorded by setting its phase to prepared. As we now
show, processes cannot prepare different values at the same
position and view, given that each correct process can send
only one corresponding PREPAREmessage. Formally, let us
write wf(C) (for well-formed) if the set of correctly signed
messages C were generated in the execution of the protocol.

Proposition 3

∀k, v,C,C ′, x, x ′.prepared(C, v, k,hash(x)) ∧

prepared(C ′, v, k,hash(x ′)) ∧
wf(C) ∧ wf(C ′) 	⇒ x = x ′.

Proof By contradiction, suppose that x �= x ′. Because a
prepared certificate consists of at least 2 f + 1 PREPARE
messages and there are 3 f + 1 processes in total, there must
be a correct process that sent two PREPARE messages with
different hashes for the same position and view. But this is
impossible due to the check on the check on phase in line 21.

�
Since the synchronizer transitions processes through

increasing views (Monotonicity in Fig. 1), we also get:

Proposition 4 The variables curr_view and prep_view[k]
(for any k) at a correct process never decrease andwe always
have prep_view[k] ≤ curr_view.

Having prepared a value, the process participates in
another message exchange: it disseminates a COMMIT mes-
sage with its hash. Once the process gathers a quorum of
matching COMMITmessages (line 28), it stores the value in a
commit_log array and advances itsphase tocommitted:we
say that the value is now committed. The protocol ensures that
correct processes cannot commit different values at the same
position, even in different views.We call a quorum of match-
ingCOMMITmessages a commit certificate and check it using
the committed predicate in Fig. 5. A process delivers com-
mitted values in the commit_log order, with last_delivered
tracking the last delivered position.

To satisfy the Liveness property of atomic broadcast, sim-
ilarly to [10], PBFT-light allows a process to find out about
committed values from other processes directly. When a pro-
cess commits a value (line 28), it disseminates a DECISION
message with the value, its position k in the log and the com-
mit certificate (line 31). A process receiving a DECISION
with a valid certificate saves the value in commit_log[k],
which allows it to be delivered (line 35). The DECISION
messages are disseminated via reliable broadcast ensuring
that, if one correct process delivers the value, then so do
all others. To implement this, each process could periodi-
cally resend the DECISION messages it has (omitted from

123

Liveness and latency of Byzantine state-machine replication

the pseudocode). A more practical implementation would
only resend information that other processes are missing. As
proved in [33], such periodic resends are unavoidable in the
presence of message loss.

4.3 View initialization

When the synchronizer tells a process to move to a new view
v (line 42), the process sets curr_view to v, which ensures
that it will no longer accept messages from prior views. It
also sets status to initializing, which means that the pro-
cess is not yet ready to order values in the new view. It then
sends a NEW_LEADER message to the leader of v with the
information about the values it has prepared so far and their
certificates1.

The new leader waits until it receives a quorum of well-
formedNEW_LEADERmessages, as checkedby the predicate
ValidNewLeader (line 48). Based on these, the leader com-
putes the initial log of the new view, stored in log′. Similarly
to Paxos [47], for each index k the leader puts at the kth
position in log′ the value prepared in the highest view
(line 50). The resulting array may contain empty or dupli-
cate entries. To resolve this, the leader writes nop into empty
entries and those entries for which there is a duplicate pre-
pared in a higher view (line 53). The latter is safe because
one can show that no value could have been committed
in such entries in prior views. Finally, the leader sends a
NEW_STATE message to all processes, containing the ini-
tial log and the NEW_LEADER messages from which it was
computed (line 58).

Aprocess receiving theNEW_STATEmessagefirst checks
its correctness by redoing the leader’s computation, as spec-
ified by the ValidNewState predicate (line 57). If the check
passes, the process overwrites its log with the new one
and sets status to normal. It also sends PREPARE mes-
sages for all log entries, to commit them in the new view.
A more practical implementation would include a check-
pointing mechanism, so that a process restarts committing
previous log entries only from the last stable checkpoint [23];
this mechanism can be easily added to PBFT-light.

4.4 Triggering view changes

We now describe when a process calls advance, which is
key to ensure liveness (§6). This happens either on start-
up (line 2) or when the process suspects that the current
leader is faulty. To this end, the process monitors the leader’s

1 In PBFT this information is sent in VIEW-CHANGEmessages, which
also play a role similar toWISHmessages in our synchronizer (Fig. 3). In
PBFT-light we opted to eschew VIEW-CHANGE messages to maintain
a clear separation between view synchronization internals and the SMR
protocol.

behavior using timers; if one of these expires, the process
calls advance and sets status to advanced (line 3). First,
the process checks that each value it receives is delivered
promptly: e.g., to guard against a faulty leader not mak-
ing any proposals or censoring certain values. For a value
x this is done using timer_delivery[x], set for a duration
dur_delivery when the process receives BROADCAST(x)
(lines 14). The timer is stopped when the process delivers
x (line 39). A process also checks that the leader initializes a
view quickly enough: e.g., to guard against the leader crash-
ing during the initialization. Thus, when a process enters a
view it starts timer_recovery for a duration dur_recovery
(line 47). The process stops the timer when it delivers all
values in the initial log (lines 41 and 66). The above checks
may make a process suspect a correct leader if the time-
outs are initially set too small with respect to the message
delay δ, unknown to the process. To deal with this, a process
increases dur_delivery and dur_recovery each time a timer
expires, which signals that the current view is not operating
normally (lines 7-8). This way of adapting timeouts is used
in the original PBFT [22, §2.3.5].

4.5 Space requirements

Since the synchronizer is not guaranteed to switch processes
between views all at the same time, a process in a view v

may receive a message from a higher view v′ > v, which
needs to be stored in case the process finally switches to v′.
If implemented naively, this would require a process to store
unboundedly many messages. Instead, we allow a process to
store, for each log position, message type and sender, only
the message of this type received from this sender that has
the highest view. Recall that our synchronizer from §3.1 uses
only bounded space. Together with the above optimization,
this reduces the amount of space required by the SMR proto-
col. The original PBFT further prevents Byzantine processes
from exhausting the space of log positions [23], which allows
bounding the overall space required by the protocol. How-
ever, for simplicity we omit watermarks from PBFT-light.

5 Safety of PBFT-light

We now prove the safety of the variant of PBFT we just pre-
sented. In PBFT-light, committing a value requires preparing
it, which implies

Proposition 5

∀k, v,C, h. committed(C, v, k, h) ∧ wf(C) 	⇒
∃C ′.prepared(C ′, v, k, h) ∧ wf(C ′).

123

M. Bravo et al.

Furthermore, the validity checks in the protocol ensure
that any prepared value is valid:

Proposition 6

∀k, v,C, x .prepared(C, v, k,hash(x)) ∧ wf(C) 	⇒
valid(x).

The above two propositions imply

Corollary 1 PBFT-light satisfies External Validity.

We first prove the following auxiliary result, which states
that logs sent in NEW_STATEmessages never have duplicate
entries apart from nops.

Lemma 1 If m = 〈NEW_STATE(v′, log′, M)〉leader(v′) is a
sent message such that ValidNewState(m), then

∀k, k′. log′[k] = log′[k′] /∈ {⊥,nop} 	⇒ k = k′.

Proof We prove the statement of the lemma by induction on
v′. Assume this holds for all v′ < v∗; we now prove it for
v′ = v∗. Let a set M be defined as

{〈NEW_LEADER(v′, prep_view j , log j , cert j)〉 j | p j ∈ Q}

for some quorum Q. By contradiction, assume that for some
k, k′ and x we have k �= k′ and

log′[k] = log′[k′] = x /∈ {⊥,nop}.

Since ValidNewState(m), log′ is computed from M as per
lines 50-55. Then due to the loop at line 53, for some i, i ′ ∈
Q we have logi [k] = logi ′ [k′] = x and prep_viewi [k] =
prep_viewi ′ [k′] = v for some v such that 0 < v < v′.
Hence, for some C and C ′ we have

prepared(C, v, k, hash(x)) ∧ prepared(C ′, v, k′,hash(x)) ∧
wf(C) ∧ wf(C ′).

Because a prepared certificate consists of at least 2 f + 1
PREPARE messages and there are 3 f + 1 processes in
total, there must be a correct process that sent messages
PREPARE(v, k,hash(x)) and PREPARE(v, k′,hash(x)).
But this is impossible because by the induction hypothesis,
the process starts the view v with a log without duplica-
tions (except nops), and does not add duplicate entries due
to the check at line 21. This contradiction demonstrates the
required.
�

The above lemma implies that a value different from nop
cannot be prepared at different positions in the same view.

Corollary 2

∀x, v, k, k′,C,C ′.prepared(C, v, k,hash(x)) ∧
prepared(C ′, v, k′,hash(x)) ∧
wf(C) ∧ wf(C ′) ∧ x �= nop 	⇒ k = k′.

Proof Assume the contrary. Because a prepared certifi-
cate consists of at least 2 f + 1 PREPARE messages and
there are 3 f + 1 processes in total, there must be a correct
process that sent messages PREPARE(v, k,hash(x)) and
PREPARE(v, k′,hash(x)). But this is impossible because
by Lemma 1, the process starts the view v with a log with-
out duplications (except nops), and does not add duplicate
entries due to the check at line 21. This contradiction demon-
strates the required.
�

The Ordering and Integrity properties of PBFT-light fol-
low from the next lemma, which assumes that a committed
certificate was assembled for a value x at a position k in a
given view v. The lemma ensures that in this case: (i) only x
can be prepared at the position k in any view higher than v;
and (ii) x cannot be prepared at a position different from k
in any view higher than v, unless x is a dummy nop value.

Lemma 2 Fix k, v, v′, C and x, and assume

committed(C, v, k,hash(x)) ∧ wf(C) ∧ v′ > v.

Then:

– ∀C ′, x ′.prepared(C ′, v′, k,hash(x ′))∧wf(C ′) 	⇒ x =
x ′.

– ∀C ′, k′. x �= nop ∧ prepared(C ′, v′, k′,hash(x)) ∧
wf(C ′) 	⇒ k = k′.

Proof We prove the statement of the lemma by induction on
v′. Assume this holds for all v′ < v∗; we now prove it for
v′ = v∗. Thus, we have

∀C ′′, k′′, v′′. v < v′′ < v′ ∧ x �= nop ∧
prepared(C ′′, v′′, k′′,hash(x)) ∧ wf(C ′′) 	⇒ k = k′′.

(1)

The induction hypothesis also implies

∀C ′′, x ′′, v′′. v < v′′ < v′ ∧
prepared(C ′′, v′′, k,hash(x ′′)) ∧ wf(C ′′) 	⇒ x = x ′′.

Furthermore, by Propositions 3 and 5 we have

∀C ′′, x ′′.prepared(C ′′, v, k,hash(x ′′)) ∧ wf(C ′′) 	⇒
x = x ′′,

123

Liveness and latency of Byzantine state-machine replication

so that overall we get

∀C ′′, x ′′, v′′. v ≤ v′′ < v′ ∧
prepared(C ′′, v′′, k,hash(x ′′)) ∧ wf(C ′′) 	⇒ x = x ′′.

(2)

Assume now that prepared(C ′, v′, k,hash(x ′)) and wf
(C ′). Then a correct process that sent the corresponding
PREPARE message must have received a message m =
NEW_STATE(v′, log′, M) from the leader of v′ satisfying
ValidNewState(m). Let a set M be defined as

{〈NEW_LEADER(v′, prep_view j , log j , cert j)〉 j | p j ∈ Q}

for some quorum Q. Since ValidNewState(m), we have
∀m′ ∈ M .ValidNewLeader(m′), so that

∀p j ∈ Q. prep_view j < v′ ∧ (prep_view j �= 0 	⇒
prepared(cert j , prep_view j , k,hash(log j [k])) ∧
wf(cert j)).

From this and (2) we get that

∀p j ∈ Q. prep_view j ≥ v 	⇒ log j [k] = x . (3)

Since committed(C, v, k,hash(x)), a quorum Q′ of pro-
cesses sent COMMIT(v, k,hash(x)). The quorums Q and
Q′ have to intersect in some correct process pi , which has
thus sent both COMMIT(v, k,hash(x)) and NEW_LEADER
(v′, prep_viewi , logi , certi). Sincev<v′, this process pi must
have sent the COMMIT message before the NEW_LEADER
message. Before sending COMMIT(v, k,hash(x)) the pro-
cess set prep_view[k] to v (line 26). Then by Proposition 4
process pi must have had prep_view[k] ≥ v when it sent
the NEW_LEADER message. Hence, prep_viewi [k] ≥ v > 0
and max{prep_view j ′ [k] | p j ′ ∈ Q} ≥ v. Then from (3)
we get

∀p j ∈ Q. prep_view j [k] = max{prep_view j ′ [k] | p j ′ ∈ Q}
	⇒ log j [k] = x . (4)

Assume now that x �= nop, but log′[k] = nop due to
line 55. Then

∃k′. k′ �= k ∧ log′[k′] = x ∧
∃p j ∈ Q.∀p j ′ ∈ Q. prep_view j [k′] > prep_view j ′ [k]

and

v′ > prep_view j [k′] > prep_viewi [k] ≥ v.

Since ValidNewState(m), for some C ′′ we have prepared
(C ′′, prep_view j [k′], k′,hash(x)) and wf(C ′′). Then by (1)
we have k = k′, which yields a contradiction. This together
with (4) and ValidNewState(m) implies log′[k] = x , as
required.

Assume now x �= nop, prepared(C ′, v′, k′,hash(x))
and wf(C ′). Then a correct process that sent the corre-
sponding PREPARE message must have received a message
m = NEW_STATE(v′, log′, M) from the leader of v′ satisfy-
ing ValidNewState(m). As before, we can show log′[k] = x .
By Lemma 1, the process starts the view v′ with a log with-
out duplications (except nops), and does not add duplicate
entries due to the check at line 21. Hence, we must have
k′ = k, as required.
�
Corollary 3 PBFT-light satisfies Ordering.

Proof By contradiction, assume that Ordering is violated.
Then for some k, two correct processes execute the handler in
line 35 for last_delivered = k−1 so that commit_log[k] =
x at one process and commit_log[k] = x ′ at the other, where
x �= x ′. Then

committed(C, v, k,hash(x)) ∧
committed(C ′, v′, k,hash(x ′))

for some well-formed C and C ′. By Proposition 5 we have

prepared(C0, v, k,hash(x)) ∧
prepared(C ′

0, v
′, k,hash(x ′))

for some well-formed C0 and C ′
0. Without loss of generality

assume v ≤ v′. If v = v′, then x = x ′ by Proposition 3. If
v < v′, then x = x ′ by Lemma 2. In either case we get a
contradiction.
�
Corollary 4 PBFT-light satisfies Integrity.

Proof By contradiction, assume that Integrity is violated.
Then for some k, k′ such that k �= k′and x �= nop, a correct
process executes the handler in line 35 first in a view v for
last_delivered = k−1 and commit_log[k] = x and then in a
viewv′ for last_delivered = k′−1and commit_log[k′] = x .
We must have

committed(C, v, k,hash(x)) ∧
committed(C ′, v′, k′,hash(x ′))

for some well-formed C and C ′. By Proposition 5 we have

prepared(C0, v, k,hash(x)) ∧
prepared(C ′

0, v
′, k′,hash(x ′))

123

M. Bravo et al.

for some well-formed C0 and C ′
0. Without loss of general-

ity assume v ≤ v′. If v = v′, then we get a contradiction
by Corollary 2. If v < v′, then we get a contradiction by
Lemma 2.
�

6 Liveness of PBFT-light

Assume that PBFT-light is used with a synchronizer satis-
fying the specification in Fig. 1; to simplify the following
latency analysis we let d = 2δ, as for the synchronizer in
Fig. 3. We now prove that PBFT-light satisfies the Liveness
property of Byzantine atomic broadcast; together with the
safety proof in §5, this establishes the correctness of the pro-
tocol. To the best of our knowledge, this is the first rigorous
proof of liveness for the algorithmic core of PBFT: as we
elaborate in §9, the liveness mechanisms of PBFT came only
with a brief informal justification, which did not cover their
most critical properties [24, §4.5.1]. Our proof is simplified
by the use of the synchronizer specification, which allows us
to abstract from view synchronization mechanics and focus
on protocol-specific reasoning.

We prove the liveness of PBFT-light by showing that the
protocol establishes properties reminiscent of those of failure
detectors [25]. First, similarly to their completeness prop-
erty, we prove that every correct process eventually attempts
to advance from a bad view in which no progress is possi-
ble (e.g., because the leader is faulty). Intuitively, this holds
because in PBFT-light each process monitors the leader’s
behavior using timers.

Lemma 3 Assume that a correct process pi receives
BROADCAST(x) for a valid value x while in a view v. If
pi never delivers x and never enters a view higher than v,
then it eventually calls advance in v.

Proof We know that at some point pi enters view v, and at
this moment it starts timer_recovery. If the timer expires,
then pi calls advance in v, as required. Assume that
timer_recovery does not expire at pi . Then pi stops the
timer at lines 4, 41, 66 or 43. The latter is impossible, as
this would imply that pi enters a higher view. If pi stops
the timer at line 4, then it calls advance in v, as required.
Assume now that pi stops the timer at lines 41 or 66. This
implies that pi sets status = normal at some point while
in v. If pi sets status = advanced while in v, then it calls
advance in v, as required. Thus, it remains to consider the
case when pi sets status = normal at some point while in
v and does not change it while in this view. Since pi receives
BROADCAST(x) for a valid value x while in a view v, the
handler at line 12 is executed at some point. At this point pi
starts timer_delivery[x]. If the timer expires, then pi calls
advance in v, as required. Otherwise pi stops the timer at
lines 4, 39 or 43. The last two are impossible, as this would

imply that pi enters a higher view or that x is delivered. In
the remaining case pi calls advance in v, as required.
�

Note that even though the above lemma ensures that cor-
rect processeswill eventually try to advance from a viewwith
a faulty leader, the SMR protocol by itself does not ensure
that the processes will actually enter a new view with a dif-
ferent leader. Achieving this is the job of the synchronizer,
and in the following proof of PBFT-light we show that this
happens using the Progress property in Fig. 1 together with
Lemma 3.

Our next lemma is similar to the eventual accuracy prop-
erty of failure detectors. It stipulates that if the timeout values
are high enough, then eventually any correct process that
enters a good view (with a correct leader) will never attempt
to advance from it. The Validity property of the synchronizer
then ensures that no correct process will leave the good view.
Let dur_recoveryi (v) and dur_deliveryi (v) denote respec-
tively the value ofdur_recovery anddur_delivery at a correct
process pi while in view v.

Lemma 4 Consider a view v ≥ V such that Efirst(v) ≥ GST
and leader(v) is correct. If dur_recoveryi (v) > 6δ and
dur_deliveryi (v) > 4δ at each correct process pi that enters
v, then no correct process calls advance in v.

Before proving the lemma, we informally explain the
rationale for the bounds on timeouts in it, using the example
of dur_recovery. The timer timer_recovery is started at a
process pi when this process enters a view v (line 47), and is
stopped when the process delivers all values inherited from
previous views (lines 41 or 66). The two events are separated
by 4 communication steps of PBFT-light, exchanging mes-
sages of the types NEW_LEADER, NEW_STATE, PREPARE
and COMMIT (Fig. 6). However, 4δ would be too small a
value for dur_recovery. This is because the leader of v sends
its NEW_STATE message only after receiving a quorum of
NEW_LEADER messages, and different processes may enter
v and send their NEW_LEADER messages at different times
(e.g., pi and p j in Fig. 6). Hence, dur_recovery must addi-
tionally accommodate themaximumdiscrepancy in the entry
times, which is d = 2δ by the Bounded Entry property. Then
to ensure that pi stops the timer before it expires, we require
dur_recoveryi (v) > 6δ. As the above reasoning illustrates,
Lemma 4 is more subtle than Lemma 3: while the latter is
ensured just by the checks in the SMR protocol, the former
relies on the Bounded Entry property of the synchronizer.

Another subtlety about Lemma 4 is that the δ used in its
premise is a priori unknown. Hence, to apply the lemma in
the liveness proof of PBFT-light, we have to argue that, if cor-
rect processes keep changing views due to lack of progress,
then all of them will eventually increase their timeouts high
enough to satisfy the bounds in Lemma 4. This is nontrivial
due to the fact that, as in the original PBFT [22, §2.3.5], in our

123

Liveness and latency of Byzantine state-machine replication

Fig. 6 An illustration of the bound on dur_recovery in Lemma 4

protocol the processes update their timeouts independently,
and may thus disagree on their durations. For example, the
first correct process pi to detect a problem with the current
view v will increase its timeouts and call advance (line 3).
The synchronizer may then trigger new_view notifications
at other correct processes before they detect the problem as
well, so that their timeouts will stay unchanged (line 42).2

Onemay think that this allows executions inwhich only some
correct processes keep increasing their timeouts until they
are high enough, whereas others are forever stuck with time-
outs that are too low, invalidating the premise of Lemma 4.
The following lemma rules out such scenarios and also triv-
ially implies Lemma 4. It establishes that, in a sufficiently
high view v with a correct leader, if the timeouts at a correct
process pi that enters v are high enough, then this process
cannot be the first one to initiate a view change. Hence, for
the protocol to enter another view, some other process with
lower timeouts must call advance and thus increase their
durations (line 3).

Lemma 5 Let v ≥ V be such that Efirst(v) ≥ GST and
leader(v) is correct, and consider a correct process pi that
enters v. If dur_recoveryi (v) > 6δ and dur_deliveryi (v) >

4δ then pi is not the first correct process to call advance
in v.

Proof Since Efirst(v) ≥ GST, messages sent by correct pro-
cesses after Efirst(v) get delivered to all correct processes

2 Recall that even a single advance call at a correct process may
lead to a view switch (§3). For example, with the synchronizer in Fig. 3
this may happen as follows. The advance call at a process generates
WISH(v + 1) (line 2) and the Byzantine processes produce another f
copies of the same message. Correct processes receiving the resulting
f +1 copies of themessage relay it via line 8,which yields 2 f +1 copies
in total. The synchronizer then triggers new_view(v+1) notifications
at correct processes that receive all these copies (line 15), causing them
to enter v + 1 without increasing their timeouts.

Fig. 7 An illustration of the bound on dur_delivery in Lemma 4

within δ and process clocks track real time. By contradiction,
assume that pi is the first correct process to call advance
in v. This happens because a timer expires at pi , and we now
make a case split on which timer it is.

Assume first that timer_recovery expires at pi . A process
starts timer_recovery when it enters the view v (line 47),
and hence, at Efirst(v) at the earliest (Fig. 6). Because pi
is the first correct process to call advance in v and
dur_recoveryi (v) > 6δ, no correct process calls advance
in v until after Efirst(v) + 6δ. Then by Bounded Entry all
correct processes enter v by Efirst(v) + 2δ. Also, by Validity
no correct process can enter v + 1 until after Efirst(v) + 6δ,
and by Proposition 1 the same holds for any view > v. Thus,
all correct processes stay in v at least until Efirst(v)+6δ. This
implies that no correct process will send a message with a
view > v before Efirst(v) + 6δ. Therefore, in the messages
exchanges we describe below correct processes will not dis-
card any messages with view v before this time (see §4.5).

When a correct process enters v, it sends a NEW_LEADER
message to the leader of v, which happens by Efirst(v) +
2δ. When the leader receives such messages from a quo-
rum of processes, it broadcasts a NEW_STATE message.
Thus, by Efirst(v) + 4δ all correct processes receive this
message and set status = normal. If at that point
init_log_length ≤ last_delivered at pi , then the pro-
cess stops timer_recovery (line 66), which contradicts
our assumption. Hence, init_log_length > last_delivered.
When a correct process receives NEW_STATE, it sends
PREPARE messages for all positions ≤ init_log_length
(line 62). It then takes the correct processes at most 2δ to
exchange the sequence of PREPARE and COMMITmessages
that commits the values at all positions ≤ init_log_length.
Thus, by Efirst(v) + 6δ the process pi commits and deliv-
ers all these positions, stopping timer_recovery (line 41): a
contradiction.

123

M. Bravo et al.

It remains to consider the case when, for some value
x , timer_delivery[x] expires at pi in v. The process starts
timer_delivery[x] when it receives BROADCAST(x) and
it has not yet delivered x (line 14). Let t be the time
when this happens; then t ≥ Efirst(v) (Fig. 7). Because
pi is the first correct process to call advance in v and
dur_deliveryi (v) > 4δ, no correct process calls advance
in v until after t + 4δ. Then by Bounded Entry all correct
processes enter v by Efirst(v)+ 2δ. Furthermore, by Validity
no correct process can enter v + 1 until after t + 4δ, and by
Proposition 1 the same holds for any view > v. Thus, all
correct processes stay in v at least until t + 4δ.

The process pi has status = normal at t , so that
by this time pi has handled the NEW_STATE message
from the leader of v. Thus, all correct processes receive
NEW_STATE by t + δ. Since t ≥ Efirst(v) and all correct
processes enter v by Efirst(v) + 2δ, all correct processes
handle NEW_STATE by t + 2δ. When a process han-
dles NEW_STATE(v, _, _), it sends PREPARE messages
for all positions ≤ init_log_length. Therefore, by t + 2δ
all correct processes send PREPARE for all positions ≤
init_log_length.

When pi starts timer_delivery[x], it sends FORWARD(x)
to leader(v), which receives the message no later than
t + δ. Consider first the case when leader(v) has x in
its log at position k ≤ init_log_length when it receives
FORWARD(x). Then all correct processes send PREPARE
for all positions ≤ k by t + 2δ. Assume now that, when the
leader receives FORWARD(x), either x /∈ log or for some
k > init_log_lengthwe have log[k] = x . In the former case
the leader sends PREPREPARE(v, k, x) to all processes. In
the latter case, due to lines 52 and 19, the leader has already
sent PREPREPARE(v, k, x) to all processes. Thus, in either
case the leader sends PREPREPARE(v, k, x) no later than
t + δ. Hence, due to lines 52 and 19, the leader sends a
PREPREPARE for all positions from init_log_length+1 up
to k no later than t+δ, and all correct processes receive these
messages no later than t+2δ.Wehave established that all cor-
rect processes have handled NEW_STATE(v, _, _) by t +2δ.
Then all correct processes handle the PREPREPARE mes-
sages for positions from init_log_length+1 up to k by t+2δ,
i.e., they send a PREPARE for each of these positions. Fur-
thermore, we have established that all correct processes send
a PREPARE message for each position ≤ init_log_length
by t + 2δ. Therefore, all correct processes send PREPARE
for each position ≤ k by t + 2δ. It then takes them at most
2δ to exchange the corresponding sequence of PREPARE
and COMMITmessages. Hence, all correct processes receive
COMMIT for all positions ≤ k by t + 4δ.

Assume that when pi receives all these COMMIT mes-
sages, it has last_delivered < k. Then pi delivers x by
t + 4δ. Since pi ’s timer_delivery[x] has not expired by
then, the process stops the timer, which contradicts our

assumption. Therefore, when pi receives all the COMMIT
messages for positions ≤ k, it has last_delivered ≥ k,
so that pi has already delivered a value x ′ at this posi-
tion. Then pi must have formed a certificate C ′ such that
committed(C ′, v′, k,hash(x ′)). By Proposition 5, for some
well-formed certificate C ′′ we have prepared(C ′′, v′, k,
hash(x ′)). Since all correct processes stay in v until t + 4δ,
we must have v′ ≤ v. If v = v′, then by Proposition 3 we get
x = x ′. If v′ < v, then by Lemma 2we get x = x ′. Hence, pi
delivers x . By line 12, pi does not start timer_delivery[x] if
x has already been delivered. Since pi started the timer at t , it
has to deliver x at some point after t and no later than t + 4δ.
Since pi ’s timer_delivery[x] has not expired by then, the
process stops the timer, which contradicts our assumption.
�
Theorem 2 PBFT-light satisfies the Liveness property of
Byzantine atomic broadcast.

Proof Consider a valid value x broadcast by a correct pro-
cess. We first prove that x is eventually delivered by some
correct process. By contradiction, assume that x is never
delivered by a correct process. We now prove that in this
case PBFT-light must keep switching views forever. We do
this analogously to the proof of Proposition 2 in §3: we
use Lemma 3 to show that correct processes keep calling
advance, and the Progress property of the synchronizer to
show that some of themwill keep switching views as a result.

Claim 1 Every view is entered by some correct process.

Proof Since all correct processes call start (line 1), by
Startup a correct process eventually enters some view. We
now show that correct processes keep entering new views
forever (analogously to the proof of Proposition 2 in §3).
Assume that this is false, so that there exists a maximal
view v entered by any correct process. Let P be any set
of f + 1 correct processes and consider an arbitrary pro-
cess pi ∈ P that enters v. The process that broadcast x is
correct, and thus keeps broadcasting x until the value is deliv-
ered (line 11). Since x is never delivered, pi is guaranteed to
receive x while in v. Then by Lemma 3, pi eventually calls
advance while in v. Since pi was picked arbitrarily, we
have ∀pi ∈ P. Ei (v)↓ 	⇒ Ai (v)↓. Then by Progress we
get Efirst(v + 1)↓, which yields a contradiction. Thus, cor-
rect processes keep entering views forever. The claim then
follows from Proposition 1, ensuring that, if a view is entered
by a correct process, then so are all preceding views.
�

Let view v1 be the first view such that v1 ≥ V and
Efirst(v1) ≥ GST; such a view exists by Claim 1. The
next claim is needed to show that all correct processes will
increase their timeouts high enough to satisfy the bounds in
Lemma 4 (as per our previous discussion).

Claim 2 Every correct process calls the timer expiration han-
dler (line 3) infinitely often.

123

Liveness and latency of Byzantine state-machine replication

Proof Assume the contrary and letCfin andCinf be the sets of
correct processes that call the timer expirationhandler finitely
and infinitely often, respectively. Then Cfin �= ∅, and by
Claim 1 and Validity, Cinf �= ∅. The values of dur_delivery
and dur_recovery increase unboundedly at processes from
Cinf , and do not change after some view v2 at processes from
Cfin. ByClaim 1 and since leaders rotate round-robin, there is
a view v3 ≥ max{v2, v1} with a correct leader such that any
process pi ∈ Cinf that enters v3 has dur_deliveryi (v3) > 4δ
and dur_recoveryi (v3) > 6δ. By Claim 1 and Validity, at
least one correct process calls advance in v3; let pl be the
first process to do so. Since v3 ≥ v2, this process cannot be
in Cfin because none of these processes increase their timers
in v3. Then pl ∈ Cinf , contradicting Lemma 5.
�

By Claims 1 and 2, there exists a view v4 ≥ v1 with
a correct leader such that some correct process enters v4,
and for any correct process pi that enters v4 we have
dur_deliveryi (v4) > 4δ and dur_recoveryi (v4) > 6δ. By
Lemma 4, no correct process calls advance in v4. Then, by
Validity, no correct process enters v4 + 1, which contradicts
Claim 1. This contradiction shows that x must be delivered
by a correct process. Then, since the protocol reliably broad-
casts committed values (line 31), all correct processes will
also eventually deliver x . From here the Liveness property
follows.
�

7 Latency analysis

Assume that PBFT-light is used with our SMR synchro-
nizer in Fig. 3. We now quantify its latency, yielding the first
detailed latency analysis for a PBFT-like protocol. To this
end, we first show some latency bounds for our synchro-
nizer. These are stated by the theorem below (proved in §C),
which relies on the following notation. Given a view v that
was entered by a correct process pi , we let Ti (v) denote the
time at which pi either attempts to advance from v or enters
a view > v; we let Tlast(v) denote the latest time when a cor-
rect process does so. We assume that every correct process
eventually attempts to advance from view 0 unless it enters
a view > 0, i.e., ∀pi ∈ C. Ti (0)↓.

Theorem 3 Consider an execution with an eventual message
delay δ. In this execution, the algorithm in Fig.3 satisfies the
following:

A. ∀v. Efirst(v)↓ ∧ Afirst(0) < GST 	⇒ Elast(v) ≤
max(Efirst(v),GST + ρ) + 2δ.

B. ∀v. Efirst(v + 1)↓ 	⇒ Elast(v + 1) ≤{
max(Tlast(v),GST + ρ) + δ, if Afirst(0) < GST;
Tlast(v) + δ, otherwise.

Property A in the theorem bounds the latest time any cor-
rect process can enter a view that has been previously entered
by a correct process. It is similar to Bounded Entry, but also
handles views < V . Property B refines Progress: while the
latter guarantees that the synchronizer will enter v + 1 if
enough processes ask for this, the former bounds the time by
which this will happen.

To quantify the latency of PBFT-light using the above
theorem, we assume the existence of a known upper bound
Δ on the maximum value of δ in any execution [42, 52],
so that we always have δ < Δ. In practice, Δ provides
a conservative estimate of the message delay during syn-
chronous periods, which may be much higher than the
maximal delay δ in a particular execution. We modify the
protocol in Figure 4 so that in lines 7-8 it does not increase
dur_recovery and dur_delivery above 6Δ and 4Δ, respec-
tively. This corresponds to the bounds in Lemma 4 and
preserves the protocol liveness. Finally, we assume that peri-
odic handlers (line 4 in Figure 3 and line 11 in Figure 4)
are executed every ρ time units, and that the latency of
reliable broadcast in line 31 under synchrony is ≤ δ + ρ

(this corresponds to an implementation that just periodically
retransmits DECISION messages).

We quantify the latency of PBFT-light in both bad and
good cases. For the bad case we assume that the protocol
starts during the asynchronous period. Given a value x broad-
cast beforeGST, we quantify howquickly afterGST all correct
processes deliver x . For simplicity, we assume that timeouts
are high enough at GST and that leader(V) is correct.

Theorem 4 Assume that before GST all correct processes
start executing the protocol and one of them broadcasts
x. Let V be defined as in Theorem 1 and assume that
leader(V) is correct and at GST each correct process has
dur_recovery > 6δ and dur_delivery > 4δ. Then all cor-
rect processes deliver x by

GST + ρ + max{ρ + δ, 6Δ} + 4Δ + max{ρ, δ} + 7δ.

Although the latency bound looks complex, its main
message is simple: PBFT-light recovers after a period of
asynchrony in bounded time. This time is dominated by mul-
tiples of Δ; without the assumption that leader(V) is correct
it would also be multiplied by f due to going over up to f
views with faulty leaders.

We give the proof of Theorem 4 in §7.1 below. Here
we informally highlight how its proof exploits the latency
guarantees of our synchronizer (Theorem 1). The bound in
Theorem 4 has to account for an unfavorable scenario where
the last view V − 1 of the asynchronous period is not opera-
tional (e.g., not all correct processes enter it). In this case, to
deliver x the protocol first needs to bring all correct processes
into the same view V . To bound the time required for that,

123

M. Bravo et al.

we first use Property A to determine the latest time when a
correct process can enter V − 1: GST+ ρ + 2δ. We then add
the time such a process may spend in V − 1 before it detects
that x is taking too long to get delivered and call advance:
max{ρ + δ, 6Δ} + 4Δ, where 6Δ and 4Δ come from the
maximal timeout values. The first clause of Property B then
shows that all correct processes will enter V within an addi-
tional δ, i.e.,

Elast(V) ≤ GST + ρ + max{ρ + δ, 6Δ} + 4Δ + 3δ.

Finally, we add the time for x to be delivered in V . It takes
max{ρ + δ, 2δ} for the leader of V to get x and switch its
status to normal, and another 3δ to have it delivered, for the
total of max{ρ + δ, 2δ} + 3δ = max{ρ, δ} + 4δ.

We now consider the case when the protocol starts dur-
ing the synchronous period, i.e., after GST. The following
theorem quantifies how quickly all correct processes enter
the first functional view, which in this case is view 1. If
leader(1) is correct, it also quantifies how quickly a broad-
cast value x is delivered by all correct processes. The bound
takes into account the following optimization: in view 1 the
processes do not need to exchange NEW_LEADERmessages.
Then, after the systems starts up, the protocol delivers val-
ues within 4δ, which matches an existing lower bound of 3δ
for the delivery time starting from the leader [3]. The proof
of the theorem (given in §7.1) exploits the second clause of
Property B.

Theorem 5 Assume that all correct processes start the proto-
col after GST with dur_recovery > 5δ and dur_delivery >

4δ. Then the V defined in Theorem 1 is equal to 1 and
Elast(1) ≤ Tlast(0) + δ. Furthermore, if a correct process
broadcasts x at t ≥ GST and leader(1) is correct, then all
correct processes deliver x by max{t, Tlast(0) + δ} + 4δ.

7.1 Proof of the latency bounds for PBFT-light

We start with a simple lemma, whose proof we omit. The
lemmagives an upper bound on the time it takes for all correct
processes to deliver a value once this has been delivered by
a correct process.

Lemma 6 If a correct process delivers a value x at t , then all
correct processes deliver x by max{t + δ,GST + ρ + δ}.

The next lemma generalizes Lemma 3. It shows that if
a process broadcast a value but it does not deliver it for a
sufficiently long period of time, then the process will call
advance or move to a higher view. Furthermore, the lemma
also bounds the time the process takes to do so.

Lemma 7 Assume that a correct process pi that enters v

receives BROADCAST(x) at t ≥ Ei (v) for a valid value x.

Assume that pi does not deliver x until aftermax{t, Ei (v)+
dur_recoveryi (v)} + dur_deliveryi (v). Then Ti (v)↓ and

Ti (v) ≤ max{t, Ei (v) + dur_recoveryi (v)}
+ dur_deliveryi (v).

Proof We know that at some point pi enters view v, and at
this moment it starts timer_recovery. If the timer expires,
then pi calls advance in v by Ei (v) + dur_recoveryi (v),
as required. Assume that timer_recovery does not expire
at pi . Then pi stops the timer at lines 4, 41, 66 or 43. If
pi stops the timer at line 4, then it calls advance in v

by Ei (v) + dur_recoveryi (v), as required. If pi stops the
timer at line 43, then it enters a higher view by Ei (v) +
dur_recoveryi (v), as required. Assume now that pi stops
the timer at lines 41 or 66. This implies that pi sets status =
normal by Ei (v) + dur_recoveryi (v) while in v. If pi
calls advance or enters a higher view by max{t, Ei (v) +
dur_recoveryi (v)}, we get the required. Assume that this
is not the case. Then pi sets status = normal and
receives x by max{t, Ei (v) + dur_recoveryi (v)}. Since pi
has not delivered x by max{t, Ei (v) + dur_recoveryi (v)},
by this point pi starts timer_delivery[x]. If the timer
expires, then pi calls advance in v by max{t, Ei (v) +
dur_recoveryi (v)} + dur_deliveryi (v), as required. Other-
wise pi stops the timer at lines 4, 39 or 43. If pi stops the timer
at line 43, then it enters a higher view by max{t, Ei (v) +
dur_recoveryi (v)} + dur_deliveryi (v), as required. If pi
stops the timer at line 39, then it delivers x bymax{t, Ei (v)+
dur_recoveryi (v)} + dur_deliveryi (v), which is impossi-
ble. In the remaining case pi calls advance in v by
max{t, Ei (v) + dur_recoveryi (v)} + dur_deliveryi (v), as
required.
�

The next lemma bounds the latency of entering V given
that all correct processes starts executing the protocol before
GST and V = 1 in Theorem 3.

Lemma 8 Assume that all correct processes start execut-
ing PBFT-light before GST. If V = 1 in Theorem 3, then
Efirst(V)↓ and Elast(V) ≤ GST + ρ + δ.

Proof By Theorem 3, if V = 1, then GV(GST) = 0. Since
all correct processes start executing the protocol before GST,
then all correct processes attempt to advance from view 0
and Tlast(0) < GST. By Startup, Efirst(V)↓. Applying the first
clause of Property B, we get Elast(V) ≤ max{Tlast(0),GST+
ρ + δ}. Since Tlast(0) < GST, then Elast(V) ≤ GST+ ρ + δ,
as required.
�

Finally, assuming that a value x is broadcast before any
correct process enters a view v, we derive a bound on the
time it takes for all correct processes to deliver x . The bound
is given as a function of the latest time when some correct
process enters v.

123

Liveness and latency of Byzantine state-machine replication

Lemma 9 Consider a view v ≥ V such that Efirst(v) ≥ GST
and leader(v) is correct. Assume that a correct process p j

broadcast a value x before Efirst(v). If dur_recoveryi (v) >

6δ anddur_deliveryi (v) > 4δ at each correct process pi that
enters v, then all correct processes deliver x by Elast(v) +
max{ρ, δ} + 4δ.

Proof By Lemma 4, no correct process calls advance in
v. Therefore, by Validity, no correct process enters v + 1,
and by Proposition 1 the same holds for any view > v. By
Bounded Entry, all correct processes enter v. Assume that
p j delivers x by Elast(v) + ρ. Then by Lemma 6 all correct
processes deliver x by max{Elast(v) + ρ + δ,GST+ ρ + δ}.
Since Efirst(v) ≥ GST, we get Elast(v)+ρ+δ ≥ GST+ρ+δ.
Thus, all correct processes deliver x by Elast(v) + ρ + δ, as
required.

Consider now the case when p j does not deliver x by
Elast(v)+ρ. Then p j retransmits x between GST and GST+
ρ ≤ Elast(v) + ρ, so that leader(v) receives x by Elast(v) +
ρ + δ. When a process enters v, it sends NEW_LEADER to
leader(v). The leader receives 2 f + 1 of these messages
by Elast(v) + δ and sends a NEW_STATE message to all
processes. A process handles NEW_STATE by Elast(v) +
2δ and sets its status to normal. Since no process calls
advance in v, every correct process has status = normal
after handling NEW_STATE onwards. We have established
that leader(v) receives x by Elast(v)+ρ+δ. Then leader(v)

sets status = normal and receives x by t ≤ Elast(v) +
max{ρ, δ} + δ. Assume that leader(v) has delivered x by
Elast(v)+max{ρ, δ}+δ. ThenbyLemma6all correct process
deliver x by max{Elast(v) +max{ρ, δ} + 2δ,GST+ ρ + δ}.
Since Efirst(v) ≥ GST, we get Elast(v) + max{ρ, δ} + 2δ ≥
GST + ρ + δ. Thus, in this case all correct processes deliver
x by Elast(v) + max{ρ, δ} + 2δ, as required.

Assume now that leader(v) has not delivered x by t . Con-
sider first then case when leader(v) already has x in its log
at t because x was prepared in a previous view. Then all cor-
rect processes send PREPARE(v, k,hash(x)) for a position
k by Elast(v) + 2δ. Consider now the case when leader(v)

either has x in its log at t because it was already proposed in
v; or leader(v) does not have it. In this case, it follows that
leader(v) sends PREPREPARE(v, k, x) to all correct pro-
cesses by t , which all correct processes receive by t + δ.
When a correct process receives PREPREPARE(v, k, x), it
sends PREPARE(v, k,hash(x)). Thus, all correct process
send PREPARE(v, k,hash(x)) by t+δ. Since t ≤ Elast(v)+
max{ρ, δ}+δ. Then, in both cases, all correct processes send
PREPARE(v, k,hash(x)) by Elast(v) + max{ρ, δ} + 2δ. It
then takes the correct processes at most 2δ to exchange the
sequence of PREPARE and COMMIT messages that commit
x . Therefore, all correct processes commit x by Elast(v) +
max{ρ, δ} + 4δ. Let pi be a correct process. Because
leader(v) is correct, we can show that last_delivered ≥ k−1

at pi by Elast(v) + max{ρ, δ} + 4δ. If last_delivered =
k − 1, then pi delivers x by Elast(v) + max{ρ, δ} + 4δ. If
last_delivered > k − 1 at pi by Elast(v) + max{ρ, δ} + 4δ,
then we can show that pi has already delivered x before.
Since pi was picked arbitrarily, we can conclude that all cor-
rect processes deliver x by Elast(v) + max{ρ, δ} + 4δ, as
required.
�
Proof of Theorem 4 Let p j be the correct process that broad-
cast x , and letV be defined as in Theorem 1. Assume first that
V > 1.We have Afirst(0) < GST and Efirst(V−1) < GST+ρ.
Then by Property A,

Elast(V − 1) ≤ GST + ρ + 2δ. (5)

If at least one correct process pi delivers x by GST+ ρ +
2δ + max{ρ + δ, 6Δ} + 4Δ, then by Lemma 6, all correct
processes deliver x byGST+ρ+3δ+max{ρ+δ, 6Δ}+4Δ,
as required. Assume now that no correct process pi delivers
x byGST+ρ+2δ+max{ρ+δ, 6Δ}+4Δ. In particular, this
implies that p j has not delivered x by GST+2ρ +2δ, so that
it retransmits x between GST + ρ + 2δ and GST + 2ρ + 2δ.
Consider a correct process pi that enters V − 1 and let ti
be the time when this process receives the BROADCAST(x)
retransmission from p j ; then

ti ≤ GST + 2ρ + 3δ (6)

and by (5),

ti > GST + ρ + 2δ ≥ Ei (V − 1). (7)

We now obtain:

max{ti , Ei (V − 1) + dur_recoveryi (V − 1)} +
dur_deliveryi (V − 1)

≤ max{ti , Ei (V − 1) + 6Δ} + 4Δ

since dur_recoveryi (V − 1) ≤ 6Δ

and dur_deliveryi (V − 1) ≤ 4Δ

≤ max{GST + 2ρ + 3δ, Ei (V − 1) + 6Δ} + 4Δ

by (6)

≤ max{GST + 2ρ + 3δ,GST + ρ + 2δ + 6Δ} + 4Δ

by (5)

= GST + ρ + 2δ + max{ρ + δ, 6Δ} + 4Δ

Then, since we assume that no correct process delivers x by
GST+ρ + 2δ +max{ρ + δ, 6Δ}+ 4Δ, by (7) and Lemma 7
we get Ti (V − 1)↓. Thus, pi either calls advance in V − 1
or enters a higher view. If at least one correct process enters
a view higher than V , then by Proposition 1, Efirst(V)↓. If
all correct processes that enter V − 1 call advance, then

123

M. Bravo et al.

by Progress we get Efirst(V)↓ as well. By Lemma 7, we also
have

Ti (V − 1) ≤ max{ti , Ei (V − 1) + dur_recoveryi (V − 1)}
+ dur_deliveryi (V − 1)

≤ GST + ρ + 2δ + max{ρ + δ, 6Δ} + 4Δ

for any correct process pi that enters V − 1. Applying the
first clause of Property B, we get

Elast(V) ≤ max{Tlast(V − 1),GST + ρ} + δ

≤ GST + ρ + 3δ + max{ρ + δ, 6Δ} + 4Δ. (8)

Thus, if V > 1, then either all correct processes deliver x
byGST+ρ+2δ+max{ρ+δ, 6Δ}+4Δ, or Efirst(V)↓ and (8)
holds. Furthermore, if V = 1, then by Lemma 8, Efirst(V)↓
and Elast(V) ≤ GST + ρ + δ. We have thus established that
either all correct processes deliver x by GST + ρ + 2δ +
max{ρ + δ, 6Δ} + 4Δ, or Efirst(V)↓ and (8) holds. In the
latter case, by Lemma 9, all correct processes deliver x by
Elast(V) + max{ρ, δ} + 4δ, and by (8),

Elast(V) + max{ρ, δ} + 4δ

≤ GST + ρ + max{ρ + δ, 6Δ} + 4Δ + max{ρ, δ} + 7δ,

as required.
�
The following lemma shows, considering the special case

of v = V = 1, that when the protocol starts during the
synchronous period and timers a long enough at each correct
process, then no process calls advance in view 1.

Lemma 10 Assume that V = 1 in Theorem 3, Efirst(1) ≥
GST and leader(1) is correct. If dur_recoveryi (1) > 5δ and
dur_deliveryi (1) > 4δ at each correct process pi that enters
view 1, then no correct process calls advance in view 1.

We omit the proof of this lemma. It is virtually identical to
that of Lemma 4, considering the special case of v = V = 1
and the optimization by which in view 1 the processes do not
exchange NEW_LEADER messages.

The next lemma gives the core argument for the proof of
Theorem 5. It uses Lemma 10 to show that, under the same
conditions, if a correct process broadcast a value, then all
correct processes will deliver it. The lemma also bounds the
time it take for all correct processes to do so.

Lemma 11 Assume thatV = 1 in Theorem3, Efirst(1) ≥ GST
and leader(1) is correct. Assume that a correct process p j

broadcast a value x at t ≥ GST. If dur_recoveryi (1) >

5δ and dur_deliveryi (1) > 4δ at each correct process
pi that enters 1, then all correct processes deliver x by
max{t, Elast(1)} + 4δ.

Proof By Lemma 10, no correct process calls advance in
1. Therefore, by Validity, no correct process enters 2, and by
Proposition 1 the same holds for any view > 1. By Bounded
Entry, all correct processes enter 1.

When leader(1) enters view 1, it sends a NEW_STATE
message to all processes. A process handles NEW_STATE
by Elast(1) + δ and sets its status to normal. The
leader(1) receives x by t + δ. The leader will send
PREPREPARE(1, k, x) when it has received x and has
status = normal, i.e., by max{t, Elast(1)} + δ. All correct
processes receivePREPREPARE(1, k, x)bymax{t, Elast(1)}
+ 2δ. It then takes the correct processes at most 2δ to
exchange the sequence of PREPARE and COMMITmessages
that commit x . Therefore, all correct processes commit x by
max{t, Elast(1)} + 4δ. Let pi be a correct process. Because
leader(1) is correct, we can show that last_delivered ≥
k − 1 at pi by max{t, Elast(1)} + 4δ. If last_delivered =
k − 1, then pi delivers x by max{t, Elast(1)} + 4δ. In case
last_delivered > k − 1 at pi by max{t, Elast(1)} + 4δ, we
can show that pi has already deliver x before. Since pi was
picked arbitrarily, we can conclude that all correct processes
deliver x by max{t, Elast(1)} + 4δ, as required.
�

Proof of Theorem 5 When a correct process starts the pro-
tocol, it calls advance from view 0 unless it has already
entered a higher view. If all correct processes call advance
from view 0 when they start the protocol, then by Startup
we get Efirst(1)↓. If at least one correct process does not
call advance from view 0 because it has already entered
a higher view, then by Proposition 1 we also get Efirst(1)↓.
Since all correct processes start the protocol after GST, we
have Afirst(0) > GST. Thus, applying the second clause of
Property B, we get Elast(1) ≤ Tlast(0) + δ. Furthermore, by
Theorem 3 we get V = 1. Hence, Elast(V) ≤ Tlast(0) + δ,
as required. By Lemma 11, all correct processes deliver x
by max{t, Elast(V)} + 4δ ≤ max{t, Tlast(0) + δ} + 4δ, as
required.
�

8 Additional case studies

To demonstrate the generality of the SMR synchronizer
abstraction, we have also used it to ensure the liveness of
two other protocols. First, we handle a variant of PBFT that
periodically forces a leader change, as is common in mod-
ern Byzantine SMR [28, 57, 58]. In this protocol a process
calls advance not only when it suspects the current leader
to be faulty, but also when it delivers B values proposed by
this leader (for a fixed B). For this variant of PBFT we have
also established latency bounds when using the synchronizer
in Fig. 3. Second, we have applied the SMR synchronizer
abstraction to a variant of the above protocol that follows
the approach of HotStuff [59]. The resulting protocol adds

123

Liveness and latency of Byzantine state-machine replication

an extra communication step to the normal path of PBFT
in exchange for reducing the communication complexity of
leader change. We defer the details about these two proto-
cols to [15, Appendices D-E]. Their liveness proofs follow
the methodology we proposed for PBFT-light, establishing
analogs of Lemmas 3–5.

9 Related work and discussion

9.1 Failure detectors

Failure detectors and leader oracles [25, 35] have been
widely used for implementing consensus and SMR under
benign failures [39, 40, 49], but their implementations under
Byzantine failures are either impractical [45] or detect only
restricted failure types [31, 41, 48].

9.2 Other liveness abstractions

As an alternative to failure detection, the abstractions pro-
posed in §5.6.2 of the textbook [19] and [11, 56] rely on
client hints (similar to our advance primitive) to indicate
potential leader failures.

The Byzantine Epoch-Change (BEC) abstraction of [19,
§5.6.4] divides computation into a series of epochs (simi-
lar to our views) each of which is associated with a unique
leader. The processes running a consensus algorithm on top
of BEC may “complain” about the lack of progress by the
current leader via a special call. Unfortunately, a key prop-
erty of BEC, Eventual Leadership, is too strong: similarly to
leader oracles, it requires all correct processes to eventually
enter the same epoch with a correct leader. If the number
of correct processes in some non-empty set C complaining
about a faulty leader of some epoch is ≤ f , and the remain-
ing≥ f +1 correct processes in a setC ′ observe the leader to
behave correctly, the total number of complaints will not be
sufficient to force the correct processes to leave this epoch.
This results in a liveness bug in the BEC-based Byzantine
consensus protocol of [19, §5.6.4]: the processes in C may
never be able to reach a decision if the faulty leader chooses
to only communicate with the processes in C ′ in every phase
of the consensus protocol.3 Although this bug can be easily
fixed by reliably broadcasting decisions (as we do in PBFT-
light, see §4), the Eventual Leadership property will remain
broken, since correct processes will be allowed to remain
forever in an epoch with a faulty leader.

Although our advance is similar to “complain”, we use
it to implement aweaker abstraction of anSMRsynchronizer.
We then obtain properties similar to accuracy and complete-
ness of failure detectors by carefully combining SMR-level

3 The bug was acknowledged by the textbook authors [18].

timers with uses of advance (Lemmas 3–4). Also, while
[19] does not specify constraints on the use of “complain”
(see [15, §A] for details), we give a complete characterization
of advance and show its sufficiency for solving SMR.

BFT-SMaRt [11, 56] built on the ideas of [19] to pro-
pose an abstraction of validated and provable consensus
(VP-Consensus), which allows its clients to control leader
changes via a special VP-Timeout call. Although the over-
all BFT-SMaRt protocol appears to be correct, the proposed
VP-Consensus abstraction is underspecified. In particular, its
termination relies on the assumption that the clients leave
enough time in-between consecutive VP-Timeout calls to
allow a correct leader to complete the consensus protocol.
This in turn requires knowledge about the time necessary for
such a decision, which is implementation-dependent.

A more detailed discussion of the above abstractions and
their properties can be found in [15, §A].

9.3 Emulating synchrony

Alternative abstractions avoid dependency on the specifics of
a failuremodel by simulating synchrony [12, 26, 36, 44]. The
first such abstraction is due to Awerbuch [8] who proposed a
family of synchronizer algorithms emulating a round-based
synchronous system of top of an asynchronous network with
reliable communication and processes. The first such emu-
lation in a failure-prone partially synchronous system was
introduced in the DLS paper [33]. It relied on an expensive
clock synchronization protocol, which interleaved its mes-
sages with every step of a high-level consensus algorithm
implemented on top of it. Later work proposed more prac-
tical solutions, which reduce the synchronization frequency
by relying on either timers [32] or synchronized hardware
clocks [1, 5, 37] (the latter can be obtained using one of the
existing fault-tolerant clock synchronization algorithms [30,
55]). However, the DLS model emulates communication-
closed rounds, i.e., eventually, a process in a round r receives
all messages sent by correct processes in r . This property
rules out optimistically responsive [53, 59] protocols such
as PBFT, which can make progress as soon as they receive
messages from any quorum.

9.4 Consensus synchronizers

To address the shortcoming of DLS rounds, recent work pro-
posed a more flexible abstraction (“consensus synchronizer”
in §A) that switches processes through an infinite series of
views [14, 16, 27, 51, 59]. In contrast to rounds, each view
may subsume multiple communication steps, and its dura-
tion can either be fixed in advance [51] or grow dynamically
[16, 59]. Although consensus synchronizers can be used for
efficient single-shot Byzantine consensus [16], using them
for SMR results in suboptimal implementations. A classical

123

M. Bravo et al.

approach is to decideon eachSMRcommandusing a separate
black-box consensus instance [54]. However, implementing
the latter using a consensus synchronizer would force the
processes in every instance to iterate over the same sequence
of potentially bad views until the one with a correct leader
and sufficiently long duration could be reached.

An alternative approach was proposed in HotStuff [59].
This SMR protocol is driven by a pacemaker, which keeps
generating views similarly to a consensus synchronizer.
Within each view HotStuff runs a voting protocol that com-
mits a block of client commands in a growing hash chain.
Although the voting protocol is optimistically responsive,
committing the next block is delayed until the pacemaker
generates a new view, which increases latency. The cost the
pacemaker may incur to generate a view is also paid for every
single block.

Recently, Civit et al. [27] proposed RareSync, a consensus
synchronizer designed as a building block for a communi-
cation efficient partially synchronous Byzantine consensus
protocol. To reduce communication complexity, in RareSync
processes only exchangemessages to synchronize every (f +
1)st view, and rely entirely on their local clocks to synchro-
nize the remaining views. Since implementing this approach
requires the view synchronization schedule to be controlled
by the synchronizer, it cannot be used for implementing an
SMR synchronizer where processes can explicitly request
a view change via advance. Also, in contrast to our syn-
chronizer, the complexity guarantees of RareSync critically
depend on the assumption that every message sent at time t
is delivered within max{GST, t} + δ. This assumption is not
a part of the original partial synchrony models [33] and is
unrealistic to require in practice.

9.5 SMR synchronizers

In contrast to the above approaches, SMR synchronizers
allow the application to initiate view changes on demand via
an advance call. As we show, this affords SMR protocols
the flexibility to judiciously manage their view synchroniza-
tion schedule: in particular, it prevents the timeouts from
growing unnecessarily (§8) and avoids the overheads of fur-
ther view synchronizations once a stable view is reached
(Lemma 4, §6).

Thefirst synchronizerwith anew_view/advance inter-
face, which here we call an SMR synchronizer, was proposed
byNaor et al. [50, 51]. They used it as an intermediatemodule
in a communication-efficient implementation of a consensus
synchronizer. The latter is sufficient to ensure the liveness
of HotStuff [59] via either of the two straightforward SMR
constructions we described above. The specification of the
new_view/advance module of Naor et al. was only used
as a stepping stone in the proof of their consensus synchro-
nizer, and as a result, is more low-level and complex than our

SMR synchronizer specification. Naor et al. did not investi-
gate the usability of the SMR synchronizer abstraction as a
generic building block applicable to a range of Byzantine
SMR protocols—a gap we fill in this paper. Finally, they
only handled a simplified version of partial synchrony where
messages are never lost and δ is known a priori, whereas
our SMR synchronizer implementation handles partial syn-
chrony in its full generality. This implementation builds on a
consensus synchronizer we previously proposed [16]. How-
ever, its correctness proof and performance analysis aremore
intricate, since the timing of the view switches is not fixed a
priori, but driven by external advance inputs.

Aştefănoaei et al. [4] proposed another framework for
implementing Byzantine SMR protocols, based on DLS
rounds. This uses a simple synchronizer that does not
exchange any messages: it recovers from a period of asyn-
chrony by progressively increasing round durations until they
are long enough for all correct processes to overlap in the
same round. This way of view synchronization rules out opti-
mistically responsive SMR protocols and does not bound the
time to reach a decision after GST, as we do.

9.6 SMR liveness proofs

PBFT [22–24] is a seminal protocol whose design choices
have been widely adopted [38, 46, 57, 58]. To the best of
our knowledge, our proof in §6 is the first one to formally
establish its liveness. An informal argument given in [24,
§4.5.1] mainly justifies liveness assuming all correct pro-
cesses enter a view with a correct leader and stay in that
view for sufficiently long. It does not rigorously justify why
such a viewwill be eventually reached, and in particular, how
this is ensured by the interplay between SMR-level timeout
management and view synchronization (§6). Liveness mech-
anisms were also omitted from the formal specification of
PBFT by an I/O-automaton [22, 24]. PBFT and its follow-
ups, such as Zyzzyva [46] and SBFT [38], often included
mechanisms for view synchronizationwith a communication
structure similar to Bracha broadcast [13], which is also used
by our synchronizer. In contrast to these works, we separate
the synchronizer into a reusable abstraction and rigorously
prove its correctness, latency bounds and space requirements.

We have previously applied consensus synchronizers to
several consensus protocols, including a single-shot version
of PBFT [16]. These protocols and their proofs and are much
more straightforward than the full SMR protocols we con-
sider here. In particular, since a consensus synchronizer keeps
switching processes between views regardless of whether
their leaders are correct, the proof of the single-shot PBFT
in [16] does not need to establish analogs of completeness
and accuracy (Lemmas 3 and 4) or deal with the fact that
processes may disagree on timeout durations (Lemma 5).

123

Liveness and latency of Byzantine state-machine replication

Byzantine SMR protocols often integrate view synchro-
nization into the core protocol, enabling white-box opti-
mizations [7, 17, 23, 29]. Our work does not rule out this
approach, but allows making it more systematic: we can
first develop efficient mechanisms for view synchronization
independently from SMR protocols, and do white-box opti-
mizations afterwards, if needed.

Overall, our synchronizer specification and the analysis
of PBFT provide a blueprint for designing provably live and
efficient Byzantine SMR protocols.

Funding This research was partially supported by the European
Research Council (Starting Grant RACCOON), Nomadic Labs/Tezos
Foundation, the Spanish Ministry of Science and Innovation (projects
PRODIGY, DECO and BYZANTIUM), and the CHIST-ERA network
(project REDONDA).

Data Availability Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no conflicts of interest to declare
that are relevant to the content of this article.

A Constructing a consensus synchronizer
from an SMR synchronizer

We now show that we can use an SMR synchronizer pre-
sented in this paper to implement a consensus synchronizer
[16, 51] without extra overhead, thereby demonstrating the
generality of the former abstraction. We first recap the inter-
face and specification of a consensus synchronizer. This syn-
chronizer produces notifications new_consensus_view
(v) at at each correct process, telling it to enter view v. A pro-
cess can ensure that the consensus synchronizer has started
operating by calling a special start() function. We assume
that each correct process eventually calls start(), unless it
gets a new_consensus_view notification first.

For a consensus protocol to terminate, its processes need
to stay in the same view for long enough to complete the
message exchange leading to a decision. Since the message
delay δ after GST is unknown to the consensus protocol, we
need to increase the view duration until it is long enough
for the protocol to terminate. To this end, the synchronizer
is parameterized by a function defining this duration – F :
View ∪ {0} → Time, which is monotone, satisfies F(0) =
0, and increases unboundedly. The latter is formalized as
follows:

∀θ. ∃v.∀v′. v′ ≥ v 	⇒ F(v′) > θ. (9)

Figure 8 presents the specification of a consensus syn-
chronizer proposed in [16]. This relies on the following

I. ∀i, v, v′.Ei(v)↓ ∧ Ei(v′)↓ =⇒
(v < v′ ⇐⇒ Ei(v) < Ei(v′))

II. Efirst(V) ≥ GST
III. ∀i.∀v ≥ V. pi ∈ C =⇒ Ei(v)↓
IV. ∃d. ∀v ≥ V.Elast(v) ≤ Efirst(v) + d

V. ∀v ≥ V.Efirst(v + 1) > Efirst(v) + F (v)

Fig. 8 Consensus synchronizer specification [16], holding for some
V ∈ View

1 function start()
2 advance();

3 upon new view(v)
4 stop timer(timer view);
5 start timer(timer view, F (v));
6 trigger new consensus view(v);

7 when timer view expires
8 advance();

Fig. 9 A consensus synchronizer from an SMR synchronizer

notation, analogous to the one used for SMR synchroniz-
ers. Given a view v for which a correct process pi received
a new_consensus_view(v) notification, we denote by
Ei (v) the timewhen this happens;we letEfirst(v) andElast(v)

denote respectively the earliest and the latest timewhen some
correct process receives a new_consensus_view(v)

notification. Like an SMR synchronizer, a consensus syn-
chronizer must guarantee that views only increase at a given
process (Property I). A consensus synchronizer ensures view
synchronization only starting from some view V , entered
after GST (Property II). Starting from V , correct processes
do not skip any views (Property III), enter each view v ≥ V
within at most d of each other (Property IV) and stay there
until at least F(v) after the first process enters v (PropertyV).

Figure 9 shows how we can construct a consensus syn-
chronizer from an SMR synchronizer by generalizing the
simple client in Fig. 2. Upon a start() call, the consen-
sus synchronizer just tells the underlying SMR synchro-
nizer to advance (line 1). When the SMR synchronizer
produces a new_view(v) notification (line 3), the consen-
sus synchronizer immediately produces the corresponding
new_consensus_view(v) notification (thus, we always
have Ei (v) = Ei (v) and use the two interchangeably in the
proofs below). The synchronizer also sets a timer timer_view
for the duration F(v). When the timer expires (line 7),
the consensus synchronizer tells the SMR synchronizer to
advance. We now prove that this construction is correct.

Theorem 6 The consensus synchronizer in Fig.9 satisfies the
properties in Fig.8, provided the SMR synchronizer it uses
satisfies the properties in Fig.1.

123

M. Bravo et al.

First, analogously to Proposition 2 we can prove that the
consensus synchronizer keeps switching processes through
views forever.

Proposition 7 ∀v. ∃v′. v′ > v ∧ Efirst(v
′)↓.

The following lemma is used to prove PropertyV in Fig. 8.

Lemma 12 If a correct process enters a view v > 0 and
Efirst(v) ≥ GST, then for all v′ > v, no correct process
attempts to advance from v′ − 1 before Efirst(v) + F(v).

Proof Suppose by contradiction that there exists a time t ′ <

Efirst(v)+F(v) and a correct process pi such that pi attempts
to advance from v′−1 > v−1 at t ′. Since v′ ≥ v+1 > 1, at t ′
the process pi executes the handler at line 7 and the last view
it entered is v′ − 1. Since pi .timer_view is not enabled at t ′,
pi must have entered v′ −1 at least F(v) before t ′ according
to its local clock. Since v′ − 1 ≥ v, by Proposition 1, we
have Efirst(v

′ − 1) ≥ Efirst(v) ≥ GST. Therefore, given that
the clocks of all correct processes progress at the same rate
as real time after GST, we get

Efirst(v) ≤ Efirst(v
′ − 1) ≤ t ′ − F(v′ − 1).

Hence,

t ′ ≥ Efirst(v) + F(v′ − 1).

Since F is non-decreasing and v′ − 1 ≥ v, we have F(v′ −
1) ≥ F(v), so that

t ′ ≥ Efirst(v) + F(v),

which contradicts our assumption that t ′ < Efirst(v)+ F(v).
This contradiction shows the required.
�
Proof of Theorem 6 Property I follows fromMonotonicity of
the SMR synchronizer. Let d and V be the witnesses for the
existential from Bounded Entry and let V ′ be the minimal
view such that V ′ ≥ V , Efirst(V ′) ≥ GST and F(V ′) ≥ d.
Such a view exists by (9) and Proposition 7. Then Property II
holds for V = V ′. By Propositions 1 and 7, a correct process
enters every view v ≥ V ′. By Proposition 1, v ≥ V ′ implies

Efirst(v) ≥ Efirst(V ′) ≥ GST. (10)

Since F is a non-decreasing function, F(v) ≥ d. Thus, by
Lemma 12 and Bounded Entry, all correct processes enter v,
and Elast(v) ≤ Efirst(v) + d, which validates Properties III
and IV for V = V ′. To prove Property V, fix a view v ≥
V ′. Since a correct process enters view v + 1, by Validity,
there exist a time t < Efirst(v + 1) at which some correct
process attempts to advance from v. By (10), Efirst(v) ≥ GST.
Then by Lemma 12 we get t ≥ Efirst(v) + F(v), so that
Efirst(v + 1) > t ≥ Efirst(v) + F(v), as required.
�

B Proof of the synchronizer correctness
(Theorem 1)

The local view of a process pi at time t , denoted LVi (t),
is the latest view entered by pi at or before t , or 0 if pi
has not entered any views by then. We prove Validity using
the following lemma, which shows that a WISH(v + 1) can
only be sent by a correct process if some correct process has
already attempted to advance from the view v.

Lemma 13 For all t and v ≥ 0, if a correct process sends
WISH(v + 1) at t , then there exists a time t ′ ≤ t such that
some correct process attempts to advance from v at t ′.

Proof We first prove the following auxiliary proposition:

∀pi .∀v. pi is correct ∧ pi sends WISH(v + 1) at t 	⇒
∃t ′ ≤ t . ∃v′ ≥ v. ∃p j .

p j is correct ∧ p j attempts to advance from v′ at t ′. (11)

By contradiction, assume that a correct process pi sends
WISH(v + 1) at t , but for all t ′ ≤ t and all v′ ≥ v, no
correct process attempts to advance from v′ at t ′. Consider
the earliest time tk when some correct process pk sends a
WISH(vk) with vk ≥ v + 1, so that tk ≤ t .

Since pk sends WISH(vk) at tk , either vk = pk .view+(tk)
or pk .view(tk) = pk .view+(tk) = vk − 1, and in the latter
case pk executes either line 2 or line 6. If pk .view+(tk) =
vk ≥ v + 1, then pk .max_views(tk) includes f + 1 entries
≥ vk ≥ v +1, and therefore, there exists a correct process pl
that sent WISH(v′) with v′ ≥ v + 1 at tl < tk , contradicting
the assumption that tk is the earliest time when this can hap-
pen. Suppose that pk .view(tk) = pk .view+(tk) = vk −1 and
at tk , pk executes either line 2 or line 6. Then LVk(tk) = vk−1.
If pk executes line 2 at tk , then since LVk(tk) = vk − 1,
pk attempts to advance from vk − 1 ≥ v at tk ≤ t , con-
tradicting our assumption that no such attempt can occur.
Suppose now that pk executes the code in line 6 at tk .
If vk > 1, then since pk .view(tk) = pk .view+(tk) =
vk − 1, we know that Ek(vk − 1) is defined and satisfies
Ek(vk − 1) < tk . Let t ′k = Ek(vk − 1) if vk > 1, and t ′k = 0
otherwise. Then pk .view(t ′k) = pk .view+(t ′k) = vk − 1
and pk .advanced(t ′k) = false. Since pk .advanced(tk) =
true, there exists a time t ′′k such that t ′k < t ′′k ≤ tk and pk
callsadvance() at t ′′k . Since both pk .view and pk .view+ are
non-decreasing, and both are equal to vk − 1 at t ′′k as well as
tk , pk .view(t ′′k) = pk .view+(t ′′k) = vk − 1. Thus, LVk(t ′′k) =
vk − 1, which implies that at t ′′k < tk ≤ t , pk attempts to
advance from vk − 1 ≥ v, contradicting our assumption that
no such attempt can happen. Thus, (11) holds.

We now prove the lemma. Let t and v be such that some
correct process sends WISH(v + 1) at t . By (11), there exists
a correct process that attempts to advance from a view ≥ v

123

Liveness and latency of Byzantine state-machine replication

at or before t . Let t ′ be the earliest time when some cor-
rect process attempts to advance from a view ≥ v, and let
p j be this process and v′ ≥ v be the view from which p j

attempts to advance at t ′. Thus, at t ′, p j executes the code in
line 2 and LV j (t ′) = v′ ≥ v. Hence, there exists an earlier
time at which p j .view+ = p j .view = v′. Since p j .view+
is non-decreasing, p j .view+(t ′) ≥ v′. If p j .view+(t ′) > v′,
then given that v′ ≥ v, p j .view+(t ′) ≥ v + 1. Thus, there
exists a correct process pk and time t ′′ < t ′ such that pk sent
WISH(v′′) with v′′ ≥ v + 1 to p j at t ′′. By (11), there exists
a time ≤ t ′′ < t ′ at which some correct process attempts
to advance from a view ≥ v′′ − 1 ≥ v, which is impossi-
ble. Thus, p j .view+(t ′) = v′. Since LV j (t ′) = v′, we have
p j .view(t ′) = p j .view+(t ′) = v′ ≥ v. By the definitions
of view and view+, v′ is both the lowest view among the
highest 2 f + 1 views in p j .max_views(t ′), and the lowest
view among the highest f + 1 views in p j .max_views(t ′).
Hence, p j .max_views(t ′) includes f +1 entries equal to v′,
and therefore, there exists a correct process pk such that

p j .view(t ′) = p j .view+(t ′) =
p j .max_views[k](t ′) = v′ ≥ v − 1. (12)

Also, for all correct processes pl , p j .max_views[l](t ′) <

v + 1: otherwise, some correct process sent WISH(v′′) with
v′′ ≥ v + 1 at t ′′ < t ′, and therefore, by (11), some correct
process attempted to advance from a view ≥ v earlier than
t ′, which is impossible. Thus,

p j .view(t ′) = p j .view+(t ′)
= p j .max_views[k](t ′) < v + 1.

Together with (12), this implies

p j .view(t ′) = p j .view+(t ′) = v.

Hence, LV j (t ′) = v, and therefore, p j attempts to advance
from v at t ′. Thus, v′ = v and t ′ ≤ t , as required.
�
Lemma 14 Validity holds: ∀i, v. Ei (v + 1)↓ 	⇒ Afirst(v)

↓ ∧Afirst(v) < Ei (v + 1).

Proof Since pi enters a view v +1, we have pi .view(Ei (v +
1)) = pi .view+(Ei (v + 1)) = v + 1. By the definitions
of view and view+, v + 1 is both the lowest view among
the highest 2 f + 1 views in pi .max_views(Ei (v + 1)),
and the lowest view among the highest f + 1 views in
pi .max_views(Ei (v+1)). Hence, pi .max_views(Ei (v+1))
includes f + 1 entries equal to v + 1. Then there exists a
time t ′ < Ei (v + 1) at which some correct process sends
WISH(v + 1). Hence, by Lemma 13, there exists a time
t ≤ t ′ < Ei (v + 1) at which some correct process attempts
to advance from v.
�

In the following we use the next technical lemma, follow-
ing from Lemmas 13 and 14.

Lemma 15 For all times t and views v > 0, if a correct
process sends WISH(v) at t , then there exists a time t ′ ≤ t
such that some correct process attempts to advance from view
0 at t ′.

Proof Consider the earliest time tk ≤ t at which some correct
process pk sendsWISH(vk) for some view vk . By Lemma 13,
there exists a time t j ≤ tk at which some correct process
attempts to advance from vk − 1 ≥ 0, and therefore, sends
WISH(vk) at t j . Since tk is the earliest time when this could
happen, we have t j = tk . Also, if vk −1 > 0, then Ek(vk −1)
is defined, and hence, by Lemma 14, some correct process
attempts to advance from vk − 2 by sending WISH(vk − 1)
earlier than t j = tk , which cannot happen. Thus, vk = 1 and
at tk , pk attempts to advance from 0, as required.
�

Lemma 16 below establishes that the views sent in the
WISH messages by the same process can only increase. Its
proof relies on the next proposition, stating some simple
invariants that follow immediately from the structure of the
code.

Proposition 8 Let pi be a correct process. Then:

1. ∀v.∀t . pi sends WISH(v) at t 	⇒
v ∈ {pi .view+(t), pi .view+(t) + 1}.

2. ∀v.∀t . pi sends WISH(v) at t ∧ v = pi .view+(t) +
1 	⇒
pi .view+(t) = pi .view(t) ∧ pi .advanced(t) = true.

Lemma 16 For all views v, v′ > 0, if a correct process sends
WISH(v) before sending WISH(v′), then v ≤ v′.

Proof Let s and s′ such that s < s′ be the times at
which a correct process pi sends WISH(v) and WISH(v′)
messages, respectively. We show that v′ ≥ v. By Propo-
sition 8(1), v ∈ {pi .view+(s), pi .view+(s) + 1} and
v′ ∈ {pi .view+(s′), pi .view+(s′) + 1}. Hence, if v =
pi .view+(s) or v′ = pi .view+(s′) + 1, then we get v ≤
v′ from the fact that pi .view+ is non-decreasing. It thus
remains to consider the case when v = pi .view+(s) + 1
and v′ = pi .view+(s′). In this case by Proposition 8(2),
pi .view+(s) = pi .view(s) and pi .advanced(s) = true.
We nowconsider several cases depending on the line atwhich
WISH(v′) is sent.

– WISH(v′) is sent at lines 2or 6.Thenv′ = pi .view+(s′) =
max(pi .view(s′) + 1, pi .view+(s′)). Since pi .view is
non-decreasing, we get pi .view+(s′) ≥ pi .view(s′) +
1 > pi .view(s′) ≥ pi .view(s) = pi .view+(s). Hence,
pi .view+(s′) > pi .view+(s), and therefore, v′ =
pi .view+(s′) ≥ pi .view+(s) + 1 = v, as required.

123

M. Bravo et al.

– WISH(v′) is sent at line 8. Then pi .advanced(s′) =
false. Since pi .advanced(s) = true, there exists
a time s′′ such that s < s′′ < s′ and pi enters a
view at s′′. By the view entry condition pi .view(s′′) >

pi .prev_v(s′′). Since pi .view is non-decreasing, we
get pi .view+(s′) ≥ pi .view(s′) ≥ pi .view(s′′) >

pi .view(s) = pi .view+(s). Thus, pi .view+(s′) >

pi .view+(s) and therefore, v′ = pi .view+(s′) ≥
pi .view+(s) + 1 = v, as required.

– WISH(v′) is sent at line 18. Then pi .view+(s′) >

pi .prev_v+(s′) ≥ pi .view+(s), and therefore, v′ =
pi .view+(s′) ≥ pi .view+(s) + 1 = v, as required.

�

In order to cope with message loss before GST, every cor-
rect process retransmits the highestWISH it sent every ρ time
units, according to its local clock (lines 4-8). Eventually, one
of these retransmissions will occur after GST, and therefore,
there exists a time by which all correct processes are guar-
anteed to send their highest WISHes at least once after GST.
The earliest such time, GST, is defined as follows:

GST =
{
GST + ρ, if Afirst(0) < GST;
Afirst(0), otherwise.

From this definition it follows that

GST ≥ GST. (13)

The following lemma formalizes the key property of GST.

Lemma 17 For all correct processes pi , times t ≥ GST, and
views v, if pi sends WISH(v) at a time ≤ t , then there exists
a view v′ ≥ v and a time t ′ such that GST ≤ t ′ ≤ t and pi
sends WISH(v′) at t ′.

Proof Let s ≤ t be the time at which pi sends WISH(v).
We consider two cases. Suppose first that Afirst(0) ≥ GST.
By Lemma 15, s ≥ Afirst(0), and therefore, GST ≤ s ≤ t .
Thus, choosing t ′ = s and v′ = v validates the lemma.
Suppose next that Afirst(0) < GST. Then by the definition
of GST, t ≥ GST + ρ. If s ≥ GST, then GST ≤ s ≤ t , and
therefore, choosing t ′ = s and v′ = v validates the lemma.
Assume now that s < GST. Since after GST the pi ’s local
clock advances at the same rate as real time, there exists a
time s′ satisfying GST ≤ s′ ≤ t such that pi executes the
periodic retransmission code in lines 4-8 at s′. We now show
that

pi .advanced(s′) ∨ pi .view+(s′) > 0. (14)

Since pi already sent a WISH message at s < GST ≤ s′, by
the structure of the code,

pi .advanced(s) ∨ pi .view+(s) > 0.

If pi .view+(s) > 0, then since pi .view+ is non-decreasing,
pi .view+(s′) > 0, and therefore, (14) holds. Assume now
that pi .advanced(s). If pi .advanced(s′), then (14) holds
too.We therefore consider the case when¬pi .advanced(s′).
Then there exists a time s ≤ s′′ ≤ s′ at which pi
enters the view pi .view(s′′) > 0. Hence, pi .view+(s′) ≥
pi .view+(s′′) ≥ pi .view(s′′) > 0, validating (14).Thus, (14)
holds in all cases. Therefore, at s′ the process pi sends
WISH(v′) for some view v′. By Lemma 16, v′ ≥ v, and
above we established GST ≤ s′ ≤ t , as required.
�

The following lemma is used to prove Bounded Entry.

Lemma 18 Consider a view v > 0 and assume that v is
entered by a correct process. If Efirst(v) ≥ GST, and no cor-
rect process attempts to advance from v before Efirst(v)+2δ,
then all correct processes enter v and Elast(v) ≤ Efirst(v) +
2δ.

Proof If some correct process attempts to advance from a
view v′ > v before Efirst(v)+2δ, then by Proposition 1, some
correct processmust also enter the view v+1. By Lemma 14,
this implies that some correct process attempts to advance
from v before Efirst(v) + 2δ, contradicting the lemma’s
premise. Thus, no correct process attempts to advance from
any view v′ ≥ v before Efirst(v) + 2δ, and therefore, by
Lemma 13, no correct process can send WISH(v′) with
v′ > v earlier than Efirst(v) + 2δ. Once any such WISH(v′)
is sent, it will take a non-zero time until it is received by any
correct process. Thus, we have:

(*) no correct process receives WISH(v′) with v′ > v from
a correct process until after Efirst(v) + 2δ.

Let pi be a correct process that enters v at Efirst(v). By the
view entry condition, pi .view(Efirst(v)) = v, and therefore
pi .max_views(Efirst(v)) includes 2 f + 1 entries ≥ v. At
least f + 1 of these entries belong to correct processes, and
by (*), none of them can be > v. Hence, there exists a set C
of f + 1 correct processes, each of which sends WISH(v) to
all processes before Efirst(v).

Since Efirst(v) ≥ GST, by Lemma 17, every p j ∈ C also
sends WISH(v′)with v′ ≥ v at some time s j such thatGST ≤
s j ≤ Efirst(v). Then by (*) we have v′ = v. It follows that
each p j ∈ C is guaranteed to send WISH(v) to all correct
processes between GST and Efirst(v). Since all messages sent
by correct processes after GST are guaranteed to be received
by all correct processes within δ of their transmission, by

123

Liveness and latency of Byzantine state-machine replication

Efirst(v)+ δ all correct processes will receive WISH(v) from
at least f + 1 correct processes.

Consider an arbitrary correct process p j and let t j ≤
Efirst(v) + δ be the earliest time by which p j receives
WISH(v) from f +1 correct processes. By (*), no correct pro-
cess sends WISH(v′) with v′ > v before t j < Efirst(v) + 2δ.
Thus, p j .max_views(t j) includes at least f +1 entries equal
to v and at most f entries > v, so that p j .view+(t j) = v.
Then p j sends WISH(v) to all processes no later than t j ≤
Efirst(v) + δ. Since Efirst(v) ≥ GST, by Lemma 17, p j also
sendsWISH(v′)with v′ ≥ v in-betweenGST and Efirst(v)+δ.
By (*), v′ = v, and therefore, p j must have sent WISH(v)

to all processes sometime between GST and Efirst(v) + δ.
Hence, all correct processes are guaranteed to send WISH(v)

to all correct processes between GST and Efirst(v) + δ.
Consider an arbitrary correct process pk and let tk ≤

Efirst(v) + 2δ be the earliest time by which pk receives
WISH(v) from all correct processes. Then by (*), all entries
of correct processes in pk .max_views(tk) are equal to v.
Since there are at least 2 f + 1 correct processes: (i) at least
2 f + 1 entries in pk .max_views(tk) are equal to v, and
(ii) one of the f + 1 highest entries in pk .max_views(tk)
is equal to v. From (i), pk .view+(tk) ≥ pk .view(tk) ≥ v,
and from (ii), pk .view(tk) ≤ pk .view+(tk) ≤ v. Therefore,
pk .view(tk) = pk .view+(tk) = v, so that pk enters v no
later than tk ≤ Efirst(v) + 2δ. We have thus shown that by
Efirst(v) + 2δ, all correct processes enter v, as required.
�

Lemma 19 Bounded Entry holds for d = 2δ and the V
defined in Theorem 3. Namely, consider a view v ≥ V and
assume that v is entered by a correct process. If no correct
process attempts to advance from v before Efirst(v)+2δ, then
all correct processes enter v and Elast(v) ≤ Efirst(v) + 2δ.

Proof Consider the V defined in Theorem 3. It is easy to see
that

V = max{v | (Efirst(v)↓ ∧ Efirst(v) < GST) ∨ v = 0} + 1.

(15)

Then ∀v ≥ V. Efirst(v)↓ 	⇒ Efirst(v) ≥ GST. Bounded
Entry now follows from Lemma 18.
�

Lemma 20 Startup holds: suppose there exists a set P of
f + 1 correct processes such that ∀pi ∈ P. Ai (0)↓; then
eventually some correct process enters view 1.

Proof Assume by contradiction that there exists a set P of
f + 1 correct processes such that ∀pi ∈ P. Ai (0)↓, and no
correct process enters the view 1. By Proposition 1, the latter
implies

∀v′ > 0. Efirst(v
′)↑ . (16)

Then by Lemma 13 we have

∀t .∀v′ > 1.∀pi .¬(pi sends WISH(v′) at t ∧ pi is correct).

(17)

Let T1 = max(GST, Alast(0)). Since there exists a set P of
f +1 correct processes that attempt to advance from view 0,
each pi ∈ P sends WISH(vi) with vi > 0 before T1. Since
T1 ≥ GST, by Lemma 17, there exists a view v′

i ≥ 1 and a
time si such that GST ≤ si ≤ T1 and pi sends WISH(v′

i) at
si . By (17), v′

i = 1. Since the links are reliable after GST,
the WISH(1) sent by pi at si will be received by all correct
processes.

Thus, there exists a time T2 ≥ T1 ≥ GST by which all
correct processes have received WISH(1) from all processes
in P . Fix an arbitrary correct process p j . Since all process
in P are correct, all entries in p j .max_views(T2) associated
with the processes in P are equal to 1. Since |P| = f + 1,
p j .max_views(T2) includes at least f + 1 entries ≥ 1, and
therefore, p j .view+(T2) ≥ 1. Hence, p j sends WISH(v j)

with v j ≥ 1 no later than T2. Since T2 ≥ GST, by Lemma 17
there exists a view v′

j ≥ 1 and a time s j such that GST ≤
s j ≤ T2 and p j sendsWISH(v′

j) at s j . By (17), v
′
j = 1. Since

the links are reliable after GST, the WISH(1) sent by p j will
be received by all correct processes.

Thus, there exists a time T3 ≥ T2 ≥ GST by which all
correct processes have received WISH(1) from all correct
processes. Fix an arbitrary correct process pk . By (17), all
entries of correct processes in pk .max_views(T3) are equal
to 1. Since there are at least 2 f + 1 correct processes: (i) at
least 2 f +1 entries in pk .max_views(T3) are equal to 1, and
(ii) one of the f + 1 highest entries in pk .max_views(T2)
is equal to 1. From (i), pk .view+(T2) ≥ pk .view(T2) ≥ 1,
and from (ii), pk .view(T2) ≤ pk .view+(T2) ≤ 1. Hence,
pk .view(T2) = pk .view+(T2) = 1, and therefore, pk enters
view 1 by T2, contradicting (16).
�

Lemma 21 Progress holds: consider a view v > 0 that is
entered by a correct process, and suppose there exists a set
P of f + 1 correct processes such that

∀pi ∈ P. Ei (v)↓ 	⇒ Ai (v)↓; (18)

then eventually some correct process enters v + 1.

Proof Assume by contradiction that the required does not
hold. Then, there exists a view v > 0 such that some correct
process enters v, (18) holds, and no correct process enters
the view v + 1. By Proposition 1, the latter implies that

∀v′ > v. Efirst(v
′)↑ . (19)

123

M. Bravo et al.

Thus, by Lemma 13, we have

∀t .∀v′ > v + 1.∀pi .¬(pi sends WISH(v′) at t ∧
pi is correct). (20)

Let T1 = max(GST, Efirst(v)). Since some correct process
entered v by T1, there exists a set C consisting of f + 1
correct processes all of which sent WISH(v′) with v′ ≥ v

before T1. Consider pi ∈ C and let ti ≤ T1 be a time such
that at ti the process pi sends WISH(vi) with vi ≥ v. Since
T1 ≥ GST, by Lemma 17, there exists a view v′

i ≥ vi and a
time si such thatGST ≤ si ≤ T1 and pi sends WISH(v′

i) at si .
By (20), we have v′

i ∈ {v, v + 1}. Since the links are reliable
after GST, the WISH(v′

i) sent by pi at si will be received by
all correct processes.

Thus, there exists a time T2 ≥ T1 ≥ GST by which
all correct processes have received WISH(v′) with v′ ∈
{v, v + 1} from all processes in C . Consider an arbitrary
correct process p j . By (20), the entry of every process
in C in p j .max_views(T2) is equal to either v or v + 1.
Since |C | ≥ f + 1 and all processes in C are correct,
p j .max_views(T2) includes at least f +1 entries≥ v. Thus,
p j .view+(T2) ≥ v, and therefore, p j sends WISH(v j) with
v j ≥ v no later than at T2. By (20), v j ∈ {v, v + 1}. Since
T2 ≥ GST, by Lemma 17, there exists a view v′

j ≥ v and a
time s j such that GST ≤ s j ≤ t j and p j sends WISH(v′

j) at
s j . By (20), v′

j ∈ {v, v + 1}. Since the links are reliable after
GST, the WISH(v′

j) sent by p j at s j will be received by all
correct processes.

Thus, there exists a time T3 ≥ T2 ≥ GST by which all
correct processes have received WISH(v′) such that v′ ∈
{v, v + 1} from all correct processes. Consider an arbi-
trary correct process pk , and suppose that pk is a member
of the set P stipulated by the lemma’s premise. Then at
T3, all entries of correct processes in pk .max_views are
≥ v. By (20), each of these entries is equal to either v or
v + 1. Since at least 2 f + 1 processes are correct: (i) at
least 2 f + 1 entries in pk .max_views(T3) are ≥ v, and (ii)
one of the f + 1 highest entries in pk .max_views(T3) is
≤ v + 1. From (i), pk .view+(T3) ≥ pk .view(T3) ≥ v, and
from (ii), pk .view(T3) ≤ pk .view+(T3) ≤ v + 1. Hence,
pk .view(T3), pk .view+(T3) ∈ {v, v + 1}. Since no correct
process enters v + 1, pk .view(T3) and pk .view+(T3) cannot
be both simultaneously equal to v + 1. Thus, pk .view(T3) =
v, and either pk .view+(T3) = v or pk .view+(T3) = v + 1.
If pk .view+(T3) = v + 1, then pk has sent WISH(vk) with
vk = v + 1 when pk .view+ has first become equal to v + 1
sometime before T3. On the other hand, if pk .view(T3) =
pk .view+(T3) = v, then pk has entered v at some time
t ≤ T3. Since pk ∈ P , by (18), there exists a time t ′ ≥ t such
that pk attempts to advance from v at t ′, and therefore, sends
WISH(vk)withvk ≥ v+1at t ′. By (20),vk ≤ v+1, and there-

fore, vk = v+1. Thus, there exists a time tk ≥ T3 bywhich pk
sends WISH(v + 1) to all processes. Since tk ≥ T3 ≥ GST,
by Lemma 17, there exists a view v′

k ≥ v + 1 and a time
sk such that GST ≤ sk ≤ tk and pk sends WISH(v′

k) at sk .
By (20), v′

k = v + 1. Since the links are reliable after GST,
the WISH(v + 1) sent by pk will be received by all correct
processes.

Thus, there exists a time T4 ≥ T3 ≥ GST by which all cor-
rect processes have received WISH(v+1) from all processes
in P . Fix an arbitrary correct process pl . Since all process
in P are correct, by (20), all entries in pl .max_views(T4)
associated with the processes in P are equal to v + 1. Since
|P| = f +1, pl .max_views(T4) includes at least f +1 entries
equal to v + 1, and therefore, pl .view+(T4) ≥ v + 1. Hence,
pl sends WISH(vl) with vl ≥ v + 1 no later than T4. Since
T4 ≥ GST, by Lemma 17 there exists a view v′

l ≥ v + 1 and
a time sl such that GST ≤ sl ≤ T4 and pl sends WISH(v′

l) at
sl . By (20), v′

l = v +1. Since the links are reliable after GST,
the WISH(v + 1) sent by pl will be received by all correct
processes.

Thus, there exists a time T5 ≥ T4 ≥ GST by which all cor-
rect processes have received WISH(v + 1) from all correct
processes. Fix an arbitrary correct process pm . By (20), all
entries of correct processes in pm .max_views(T5) are equal
to v+1. Since there are at least 2 f +1 correct processes: (i) at
least 2 f +1 entries in pm .max_views(T5) are equal to v+1,
and (ii) one of the f +1 highest entries in pm .max_views(T5)
is equal to v +1. From (i), pm .view+(T5) ≥ pm .view(T5) ≥
v + 1, and from (ii), pm .view(T5) ≤ pl .view+(T5) ≤ v + 1.
Hence, pm .view(T5) = pm .view+(T5) = v + 1, and there-
fore, pm enters v + 1 by T5, contradicting (19).
�
Proof of Theorem 1 Monotonicity is satisfied trivially. Valid-
ity, Bounded Entry, Startup, and Progress are established by
Lemmas 14, 19, 20, and 21, respectively.
�

C Proof of the synchronizer performance
properties (Theorem 3)

The following lemma bounds the latency of entering v as a
function of the time by which all correct processes have sent
such WISHes.

Lemma 22 For all views v > 0 and times s, if all correct
processes pi send WISH(vi) with vi ≥ v no later than
at s, and some correct process enters v, then Elast(v) ≤
max(s,GST) + δ.

Proof Fix an arbitrary correct process pi that sendsWISH(vi)

with vi ≥ v to all processes at time ti ≤ s ≤ max(s,GST).
Since max(s,GST) ≥ GST, by Lemma 17 there exists a time
t ′i such that GST ≤ t ′i ≤ max(s,GST) and at t ′i , pi sends
WISH(v′

i) with v′
i ≥ vi ≥ v to all processes. Since t ′i ≥ GST,

123

Liveness and latency of Byzantine state-machine replication

all correct processes receive WISH(v′
i) from pi no later than

at t ′i + δ ≤ max(s,GST) + δ.
Consider an arbitrary correct process p j and let t j ≤

max(s,GST) + δ be the earliest time by which p j receives
WISH(v′

i) with with v′
i ≥ v from each correct processes

pi . Thus, at t j , the entries of all correct processes in
p j .max_views are occupied by views ≥ v. Since at least
2 f +1 entries in p j .max_views belong to correct processes,
the (2 f + 1)th highest entry is ≥ v. Thus, p j .view(t j) ≥ v.
Since p j .view is non-decreasing, there exists a time t ′j ≤ t j
at which p j .view first became ≥ v. If p j .view(t ′j) =
p j .view+(t ′j) = v, then p j enters v at t ′j . Otherwise,

either p j .view(t ′j) > v or p j .view+(t ′j) > v. Since both

p j .view and p j .view+ are non-decreasing, p j will never
enter v after t ′j . Thus, a correct process cannot enter v after

max(s,GST) + δ. Since by the lemma’s premise, some cor-
rect process does enter v, Elast(v) ≤ max(s,GST) + δ, as
needed.
�

The next lemma gives an upper bound on the duration of
time a correct process may spend in a view before sending a
WISH for a higher view.

Lemma 23 Let pk be a correct process that enters a view v.
Then pk sends WISH(vk) with vk ≥ v + 1 no later than at
Tlast(v).

Proof Suppose that pk enters a view v > 0 at time GST ≤
sk ≤ Elast(v). Then

pk .view(sk) = pk .view+(sk) = v.

By the definition of Tlast(v), there exists a time s′
k such that

sk ≤ s′
k ≤ Tlast(v),

and at s′
k , pk either attempts to advance fromv or enters a view

v′ > v. If pk attempts to advance from v at s′
k , then pk sends

WISH(vk) with vk = max(pk .view(s′
k) + 1, pk .view+(s′

k)).
Since both pk .view and pk .view+ are non-decreasing, we
have pk .view(s′

k) ≥ v and pk .view+(s′
k) ≥ v. Thus, vk ≥

v + 1, as required. On the other hand, if pk enters a view
v′ > v at s′

k , then v′ = pk .view(s′
k) > pk .view(sk) = v

and therefore, pk .view+(s′
k) ≥ pk .view(s′

k) ≥ v + 1.
Since pk .view+ is non-decreasing and pk .view+(sk) = v,
pk .view+ must have changed its value from v to v′′

k ≥ v + 1
at some time s′′

k such that sk < s′′
k ≤ s′

k . Thus, the condition
in line 17 holds at s′′

k , which means that pk sends WISH(vk)

with vk ≥ v + 1 at s′′
k . Thus, in all cases, pk sends WISH(vk)

with vk ≥ v + 1 no later than at Tlast(v), as required.
�
The next lemma bounds the time by which every correct

process either enters a view v > 0, or sends aWISHmessages
with a view > v.

Lemma 24 Consider a view v > 0 such that some cor-
rect process enters v. Then, for all times t, if t ≥
max(Efirst(v),GST), then Elast(v) ≤ t + 2δ and for all cor-
rect processes pk, if pk never enters v, then, by Elast(v), pk
sends WISH(vk) with vk ≥ v + 1 to all processes.

Proof Since v > 0, Efirst(v)↓, and t ≥ Efirst(v), there exists
a correct process pl such that pl entered v and El(v) ≤ t . By
the view entry condition, pl .view(El(v)) = v, and therefore
pl .max_views(El(v)) includes 2 f + 1 entries ≥ v. Since
f +1 of these entries belong to correct processes, there exists
a set C of f + 1 correct processes pi , each of which sent
WISH(vi) with vi ≥ v to all processes before El(v) ≤ t .
Since t ≥ GST, by Lemma 17, pi sends WISH(v′

i) with v′
i ≥

vi ≥ v sometime between GST and t . Since after GST every
message sent by a correct process is received by all correct
processes within δ of its transmission, the above implies that
by t + δ every correct process receives a WISH(v′

i) with
v′
i ≥ v from each process pi ∈ C .
Consider an arbitrary correct process p j and let t j ≤ t+δ

be the earliest time by which p j receives WISH(vi) with
vi ≥ v from each process pi ∈ C . Thus, for all processes
pi ∈ C , p j .max_views[i](t j) ≥ v. Since |C | = f + 1, the
(f + 1)th highest entry in p j .max_views[i](t j) is ≥ v, and
therefore, p j .view+(t j) ≥ v. Then each correct process p j

sends WISH(v j)with v j ≥ v to all correct processes no later
than t j ≤ t+δ. Since t+δ > t ≥ GST and, and some correct
process entered v, by Lemma 22,

Elast(v) ≤ t + 2δ. (21)

In addition, by Lemma 17, there exists a time t ′j such that
GST ≤ t ′j ≤ t + δ and p j sends WISH(v′

j) with v′
j ≥ v j ≥ v

at t ′j . Since a message sent by a correct process after GST is
received by all correct processes within δ of its transmission,
all correct processesmust have receivedWISH(v′

j)with v′
j ≥

v from each correct process p j in-between GST and t + 2δ.
Suppose that pk never enters v, and let tk be the earli-

est time ≥ GST by which pk receives WISH(v′
j) from each

correct process p j ; we have tk ≤ t + 2δ. Since v′
j ≥ v,

and there are 2 f + 1 correct processes, pk .max_views(tk)
includes at least 2 f + 1 entries ≥ v. Thus, pk .view(tk) ≥ v.
Since pk never enters v, we have either pk .view+(tk) ≥
pk .view(tk) ≥ v + 1 or pk .view(tk) = v ∧ pk .view+(tk) ≥
v + 1. Thus, pk .view+(tk) ≥ v + 1 and therefore, pk sends
WISH(vk) with vk ≥ v + 1 by tk ≤ t + 2δ, which combined
with (21) validates the lemma.
�

We are now ready to prove the SMR synchronizer perfor-
mance bounds.

Theorem 7 The SMR synchronizer in Fig.3 satisfies Prop-
erty A.

123

M. Bravo et al.

Proof Consider a view v such that Efirst(v)↓, and let t =
max(Efirst(v),GST). Since Afirst(0) < GST, by the definition
of GST, GST = GST+ρ. Thus, t = max(Efirst(v),GST+ρ).
By Lemma 24, Elast(v) ≤ t + 2δ = max(Efirst(v),GST +
ρ) + 2δ, as needed.
�
Theorem 8 The SMR synchronizer in Fig.3 satisfies Prop-
erty B.

Proof Consider a view v ≥ 0 such that Efirst(v + 1)↓. If
v = 0, then since we assume for all correct processes pi ,
Ti (0)↓, by Lemma 23, all correct processes send WISH(v′)
with v′ ≥ 0 to all processes no later than at Tlast(0).
Thus, by Lemma 22, Elast(1) ≤ max(Tlast(0),GST) + δ.
If Afirst(0) < GST, then GST = GST + ρ, and there-
fore, Elast(1) ≤ max(Tlast(0),GST + ρ) + δ. Otherwise,
GST = Afirst(0) ≤ Tlast(0), so that Elast(1) ≤ Tlast(0) + δ.
Thus, the theorem holds for v = 0.

Suppose that v > 0. Since some correct process enters
v + 1, by Proposition 1, some correct process enters view v

as well. Consider a correct process pk . If pk enters v, then by
Lemma24, Ek(v) ≤ max(Efirst(v),GST)+2δ, and therefore,
by Lemma 23, pk sends WISH(vk) with vk ≥ v + 1 no later
than at

Tlast(v) > max(Efirst(v),GST) + 2δ. (22)

On the other hand, if pk never enters v, then byLemma 24, pk
sendsWISH(vk)withvk ≥ v+1 than atmax(Efirst(v),GST)+
2δ. Thus, every correct process pk sends WISH(vk) with
vk ≥ v + 1 no later than

max(Tlast(v),max(Efirst(v),GST) + 2δ),

which by (22), implies that all correct processes send a WISH
message with a view ≥ v + 1 no later than Tlast(v). Thus, by
Lemma 22, we have

Elast(v + 1) ≤ max(Tlast(v),GST) + δ. (23)

If Afirst(0) < GST, then GST = GST+ ρ, and therefore, (23)
implies that Elast(v + 1) ≤ max(Tlast(v),GST + ρ) + δ,
as required. Otherwise, GST = Afirst(v) ≤ Tlast(v), which
by (23) implies that Elast(v + 1) ≤ Tlast(v) + δ, validating
the theorem.
�
Proof of Theorem 3 Follows from Theorems 7 and 8.
�

References

1. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.:
Synchronous Byzantine agreement with expected O(1) rounds,
expected O(n2) communication, and optimal resilience. In: Con-
ference on Financial Cryptography and Data Security (FC) (2019)

2. Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., Mar-
tin, J.-P.: Revisiting fast practical Byzantine fault tolerance (2017).
arXiv:1712.01367

3. Abraham, I., Nayak, K., Ren, L., Xiang, Z.: Good-case latency of
Byzantine broadcast: a complete categorization. In: Symposium on
Principles of Distributed Computing (PODC) (2021)

4. Aştefănoaei, L., Chambart, P., Del Pozzo, A., Rieutord, T., Tucci-
Piergiovanni, S., Zălinescu, E.: Tenderbake-a solution to dynamic
repeated consensus for blockchains. In: Symposium on Founda-
tions and Applications of Blockchain (FAB) (2021)

5. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: Generating fast
indulgent algorithms. In: International Conference on Distributed
Computing and Networking (ICDCN) (2011)

6. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru,M., Tucci-
Piergiovanni, S.: Correctness of Tendermint-core blockchains. In:
Conference onPrinciples ofDistributed Systems (OPODIS) (2018)

7. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru,M., Tucci-
Piergiovanni, S.: Dissecting tendermint. In: Conference on Net-
worked Systems (NETYS) (2019)

8. Awerbuch, Baruch: Complexity of network synchronization. J.
ACM 32(4), 804–823 (1985)

9. Bazzi, R.A., Ding, Y.: Non-skipping timestamps for Byzantine data
storage systems. In: Symposium onDistributedComputing (DISC)
(2004)

10. Berger, C., Reiser, H.P., Bessani, A.: Making reads in BFT state
machine replication fast, linearizable, and live. In: Symposium on
Reliable Distributed Systems (SRDS) (2021)

11. Bessani, A.N., Sousa, J., Adílio Pelinson, R.M., Alchieri, E.: State
machine replication for the masses with BFT-SMART. In: Confer-
ence on Dependable Systems and Networks (DSN) (2014)

12. Biely, M., Widder, J., Charron-Bost, B., Gaillard, A., Hutle, M.,
Schiper, A.: Tolerating corrupted communication. In: Symposium
on Principles of Distributed Computing (PODC) (2007)

13. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf.
Comput. 75(2), 130–143 (1987)

14. Bravo, M., Chockler, G., Gotsman, A.: Making Byzantine consen-
sus live. In: Symposium on Distributed Computing (DISC) (2020)

15. Bravo, M., Chockler, G., Gotsman, A.: Liveness and latency of
Byzantine state-machine replication (extended version) (2022).
arXiv:2202.06679. https://arxiv.org/abs/2202.06679

16. Bravo, M., Chockler, G., Gotsman, A.: Making Byzantine consen-
sus live. Distrib. Comput. 35(6), 503–532 (2022)

17. Buchman, E., Kwon, J., Milosevic, Z.: The latest gossip on BFT
consensus (2018). arXiv:1807.04938

18. Cachin, C.: Personal communication (2022)
19. Cachin, C., Guerraoui, R., Rodrigues, L.: Introduction to Reliable

and Secure Distributed Programming, 2nd edn. Springer, Berlin
(2011)

20. Cachin,C.,Kursawe,K., Petzold, F., Shoup,V.: Secure and efficient
asynchronous broadcast protocols. In: International Cryptology
Conference (CRYPTO) (2001)

21. Cachin, C., Vukolić, M.: Blockchain consensus protocols in the
wild (keynote talk). In: Symposium on Distributed Computing
(DISC) (2017)

22. Castro, M.: Practical Byzantine Fault Tolerance. PhD thesis, Mas-
sachusetts Institute of Technology (2001)

23. Castro,M., Liskov,B.: PracticalByzantine fault tolerance. In: Sym-
posium on Operating Systems Design and Implementation (OSDI)
(1999)

24. Castro, M., Liskov, B.: Practical Byzantine fault tolerance and
proactive recovery. ACM Trans. Comput. Syst. 20(4), 398–461
(2002)

25. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

123

http://arxiv.org/abs/1712.01367
http://arxiv.org/abs/2202.06679
https://arxiv.org/abs/2202.06679
http://arxiv.org/abs/1807.04938

Liveness and latency of Byzantine state-machine replication

26. Charron-Bost, B., Schiper, A.: The Heard-Of model: computing
in distributed systems with benign faults. Distrib. Comput. 22(1),
49–71 (2009)

27. Civit, P., Dzulfikar, M.A., Gilbert, S., Gramoli, V., Guerraoui, R.,
Komatovic, J., Vidigueira, M.: Byzantine consensus is θ(n2): the
Dolev-Reischuk bound is tight even in partial synchrony! In: Sym-
posium on Distributed Computing (DISC) (2022)

28. Clement, A.,Wong, E., Alvisi, L., Dahlin,M.,Marchetti, M.:Mak-
ing Byzantine fault tolerant systems tolerate Byzantine faults. In:
Symposium on Networked Systems Design and Implementation
(NSDI) (2009)

29. DiemBFT v4: state machine replication in the Diem blockchain.
https://developers.diem.com/papers/diem-consensus-state-
machine-replication-in-the-diem-blockchain/2021-08-17.pdf

30. Dolev, D., Halpern, J.Y., Simons, B., Strong, R.: Dynamic fault-
tolerant clock synchronization. J. ACM 42(1), 143–185 (1995)

31. Doudou, A., Garbinato, B., Guerraoui, R.: Abstractions for devis-
ing Byzantine-resilient state machine replication. In: Symposium
on Reliable Distributed Systems (SRDS) (2000)

32. Dragoi, C., Widder, J., Zufferey, D.: Programming at the edge of
synchrony. Proc. ACM Program. Lang. 4(OOPSLA), 1–30 (2020)

33. Dwork, C., Lynch, N.A., Stockmeyer, L.J.: Consensus in the pres-
ence of partial synchrony. J. ACM 35(2), 288–323 (1988)

34. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–382
(1985)

35. Freiling, F.C., Guerraoui, R., Kuznetsov, P.: The failure detector
abstraction. ACM Comput. Surv. 43(2), 9:1-9:40 (2011)

36. Gafni, E.: Round-by-round fault detectors: unifying synchrony and
asynchrony. In: Symposium on Principles of Distributed Comput-
ing (PODC) (1998)

37. Gilbert, S., Guerraoui, R., Kowalski, D.R.: On the message com-
plexity of indulgent consensus. In: Symposium on Distributed
Computing (DISC) (2007)

38. Golan-Gueta, G., Abraham, I., Grossman, S., Malkhi, D.,
Pinkas, B., Reiter, M.K., Seredinschi, Dragos-Adrian, Tamir, Orr,
Tomescu, Alin: SBFT: A scalable and decentralized trust infras-
tructure. In: Conference on Dependable Systems and Networks
(DSN) (2019)

39. Guerraoui, R.: Indulgent algorithms (preliminary version). In:
Symposium on Principles of Distributed Computing (PODC)
(2000)

40. Guerraoui, R., Raynal, M.: The information structure of indulgent
consensus. IEEE Trans. Comput. 53(4), 453–466 (2004)

41. Haeberlen, A., Kuznetsov, P.: The fault detection problem. In: Con-
ference on Principles of Distributed Systems (OPODIS) (2009)

42. Herzberg, A., Kutten, S.: Fast isolation of arbitrary forwarding
faults. In: Symposium on Principles of Distributed Computing
(PODC) (1989)

43. Incorrect by construction-CBC Casper isn’t live. https://
derekhsorensen.com/docs/CBC_Casper_Flaw.pdf

44. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus
performance. In: Symposium on Principles of Distributed Comput-
ing (PODC) (2006)

45. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault
detectors for solving consensus. Comput. J. 46(1), 16–35 (2003)

46. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva:
speculative byzantine fault tolerance. ACM Trans. Comput. Syst.
27(4), 7:1-7:39 (2010)

47. Lamport, L.: The part-time parliament. ACMTrans. Comput. Syst.
16(2), 133–169 (1998)

48. Malkhi, D., Reiter,M.: Unreliable intrusion detection in distributed
computations. In: Workshop on Computer Security Foundations
(CSFW) (1997)

49. Mostéfaoui, A., Raynal, M.: Solving consensus using Chandra-
Toueg’s unreliable failure detectors: A general quorum-based
approach. In: Symposium on Distributed Computing (DISC)
(1999)

50. Naor, O., Baudet, M., Malkhi, D., Spiegelman, A.: Cogsworth:
Byzantine view synchronization. In: Cryptoeconomics Systems
Conference (CES) (2020)

51. Naor, O., Keidar, I.: Expected linear round synchronization: the
missing link for linear Byzantine SMR. In: Symposium on Dis-
tributed Computing (DISC) (2020)

52. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the
permissionless model. In: Symposium on Distributed Computing
(DISC) (2017)

53. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant
confirmation. In: Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT) (2018)

54. Schneider, F.B.: Implementing fault-tolerant services using the
statemachine approach: a tutorial.ACMComput. Surv.22(4), 299–
319 (1990)

55. Simons, B., Welch, J., Lynch, N.: An overview of clock synchro-
nization. In: Fault-Tolerant Distributed Computing (1986)

56. Sousa, J.: Byzantine State Machine Replication for the Masses.
PhD thesis, University of Lisbon (2017)

57. Stathakopoulou, C., David, T., Vukolić, M.: Mir-BFT: high-
throughput BFT for blockchains (2019). arXiv:1906.05552

58. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Spin one’s
wheels? Byzantine fault tolerance with a spinning primary. In:
Symposium on Reliable Distributed Systems (SRDS) (2009)

59. Yin, M., Malkhi, D., Reiter, M.K., Golan-Gueta, G., Abraham,
I.: HotStuff: BFT consensus with linearity and responsiveness.
In: Symposium on Principles of Distributed Computing (PODC),
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
http://arxiv.org/abs/1906.05552

	Liveness and latency of Byzantine state-machine replication
	Abstract
	1 Introduction
	2 System model
	3 SMR synchronizer specification and implementation
	3.1 A bounded-space SMR synchronizer

	4 PBFT using an SMR synchronizer
	4.1 The PBFT-light protocol
	4.2 Normal protocol operation
	4.3 View initialization
	4.4 Triggering view changes
	4.5 Space requirements

	5 Safety of PBFT-light
	6 Liveness of PBFT-light
	7 Latency analysis
	7.1 Proof of the latency bounds for PBFT-light

	8 Additional case studies
	9 Related work and discussion
	9.1 Failure detectors
	9.2 Other liveness abstractions
	9.3 Emulating synchrony
	9.4 Consensus synchronizers
	9.5 SMR synchronizers
	9.6 SMR liveness proofs

	A Constructing a consensus synchronizer from an SMR synchronizer
	B Proof of the synchronizer correctness (Theorem 1)
	C Proof of the synchronizer performance properties (Theorem 3)
	References

