Liveness and Latency of

Byzantine State-Machine Replication
Manuel Bravo

Informal Systems, Madrid, Spain

Gregory Chockler
University of Surrey, UK

Alexey Gotsman
IMDEA Software Institute, Madrid, Spain

—— Abstract

Byzantine state-machine replication (SMR) ensures the consistency of replicated state in the presence
of malicious replicas and lies at the heart of the modern blockchain technology. Byzantine SMR
protocols often guarantee safety under all circumstances and liveness only under synchrony. However,
guaranteeing liveness even under this assumption is nontrivial. So far we have lacked systematic
ways of incorporating liveness mechanisms into Byzantine SMR protocols, which often led to subtle
bugs. To close this gap, we introduce a modular framework to facilitate the design of provably live
and efficient Byzantine SMR protocols. Our framework relies on a view abstraction generated by a
special SMR synchronizer primitive to drive the agreement on command ordering. We present a
simple formal specification of an SMR synchronizer and its bounded-space implementation under
partial synchrony. We also apply our specification to prove liveness and analyze the latency of three
Byzantine SMR protocols via a uniform methodology. In particular, one of these results yields what
we believe is the first rigorous liveness proof for the algorithmic core of the seminal PBFT protocol.

2012 ACM Subject Classification Theory of computation — Distributed computing models
Keywords and phrases Replication, blockchain, partial synchrony, liveness

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.12

Related Version Extended Version: https://arxiv.org/abs/2202.06679 [17]

Funding This work was partially supported by an ERC Starting Grant RACCOON and by a research
grant from Nomadic Labs and the Tezos Foundation.

Acknowledgements We thank the following people for comments that helped improve the paper:
Lacramioara Agtefinoaei, Hagit Attiya, Alysson Besani, Armando Castaneda, Peter Davies, Dan

O’Keeffe, Idit Keidar, Giuliano Losa, Alejandro Naser, and Eugen Zailinescu.

1 Introduction

Byzantine state-machine replication (SMR) [52] ensures the consistency of replicated state
even when some of the replicas are malicious. It lies at the heart of the modern blockchain
technology and is closely related to the classical Byzantine consensus problem. Unfortunately,
no deterministic protocol can guarantee both safety and liveness of Byzantine SMR when
the network is asynchronous [33]. A common way to circumvent this while maintaining
determinism is to guarantee safety under all circumstances and liveness only under synchrony.
This is formalized by the partial synchrony model [26,32], which stipulates that after some
unknown Global Stabilization Time (GST) the system becomes synchronous, with message
delays bounded by an unknown constant § and process clocks tracking real time. Before GST
messages can be lost or delayed, and clocks at different processes can drift apart.

© Manuel Bravo, Gregory Chockler, and Alexey Gotsman;

licensed under Creative Commons License CC-BY 4.0
36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 12; pp. 12:1-12:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.12
https://arxiv.org/abs/2202.06679
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2

Liveness and Latency of Byzantine State-Machine Replication

Historically, researchers have paid more attention to safety of Byzantine SMR protocols
than their liveness. For example, while the seminal PBFT protocol came with a detailed
safety proof [23, §A], the nontrivial mechanisms ensuring its liveness were only given a
brief informal justification [25, §4.5.1], which did not cover their most critical properties.
However, ensuring liveness under partial synchrony is far from trivial, as illustrated by
the many liveness bugs found in existing protocols [2,4,8,12,22]. In particular, classical
failure detectors and leader oracles [26,34] are of little help: while they have been widely
used under benign failures [38,39,47], their implementations under Byzantine failures are
either impractical [43] or detect only restricted failure types [30,40,46]. As an alternative, a
textbook by Cachin et al. [20] proposed a leader oracle-like abstraction that accepts hints
from the application to identify potentially faulty processes. However, as we explain in §8
and [17, §F], their specification of the abstraction is impossible to implement, and in fact,
the consensus algorithm constructed using it in [20] also suffers from a liveness bug.

Recent work on ensuring liveness has departed from failure detectors and instead revisited
the approach of the original DLS paper [32]. This exploits the common structure of Byzantine
consensus and SMR protocols under partial synchrony: such protocols usually divide their
execution into views, each with a designated leader process that coordinates the protocol
execution. If the leader is faulty, the processes switch to another view with a different
leader. To ensure liveness, an SMR, protocol needs to spend sufficient time in views that are
entered by all correct processes and where the leader correctly follows the protocol. The
challenge of achieving such view synchronization is that, before GST, clocks can diverge and
messages that could be used to synchronize processes can get lost or delayed; even after GST,
Byzantine processes may try to disrupt attempts to bring everybody into the same view.
View synchronizers [16,48,49,57] encapsulate mechanisms for dealing with this challenge,
allowing them to be reused across protocols.

View synchronizers have been mostly explored in the context of (single-shot) Byzantine
consensus. In this case a synchronizer can just switch processes through an infinite series of
views, so that eventually there is a view with a correct leader that is long enough to reach a
decision [16,49]. However, using such a synchronizer for SMR results in suboptimal solutions.
For example, one approach is to use the classical SMR construction where each command
is decided using a separate black-box consensus instance [52], implemented using a view
synchronizer. However, this would force the processes in every instance to iterate over the
same sequence of potentially bad views until the one with a correct leader and sufficiently
long duration could be reached. As we discuss in §8, other approaches for implementing
SMR based on this type of synchronizers also suffer from drawbacks.

To minimize the overheads of view synchronization, instead of automatically switching
processes through views based on a fixed schedule, implementations such as PBFT allow
processes to stay in the same view for as long as they are happy with its performance. The
processes can then reuse a single view to decide multiple commands, usually with the same
leader. To be useful for such SMR. protocols, a synchronizer needs to allow the processes
to control when they want to switch views via a special advance call. We call such a
primitive an SMR synchronizer, to distinguish it from the less flexible consensus synchronizer
introduced above. This kind of synchronizers was first introduced in [48,49], but only used
as an intermediate module to implement a consensus synchronizer.

In this paper we show that SMR synchronizers can be directly exploited to construct
efficient and provably live SMR protocols and develop a general blueprint that enables such
constructions. In more detail:

M. Bravo, G. Chockler, and A. Gotsman

We propose a formal specification of an SMR synchronizer (§3), which is simpler and
more general than prior proposals [48,49]. Tt is also strictly stronger than the consensus
synchronizer of [16], which can be obtained from the SMR synchronizer at no extra cost.
Informally, our specification guarantees that (a) the system will move to a new view if
enough correct processes call advance, and (b) all correct processes will enter the new
view, provided that for long enough, no correct process that enters this view asks to
leave it. These properties enable correct processes to iterate through views in search of a
well-behaved leader, and to synchronize in a view they are happy with.

We give an SMR synchronizer implementation and prove that it satisfies our specification
(§3.1). Unlike prior implementations [49], ours tolerates message loss before GST while
using only bounded space; in practice, this feature is essential to defend against denial-of-
service attacks. We also provide a precise latency analysis of our synchronizer, quantifying
how quickly all correct processes enter the next view after enough of them call advance.
We demonstrate the usability of our synchronizer specification by applying it to construct
and prove the correctness of several SMR protocols. First, we prove the liveness of a
variant of PBFT using an SMR synchronizer (§4-5): to the best of our knowledge, this is
the first rigorous proof of liveness for PBFT’s algorithmic core. The proof establishes a
strong liveness guarantee that implies censorship-resistance: every command submitted by
a correct process will be executed. The use of the synchronizer specification in the proof
allows us to abstract from view synchronization mechanics and focus on protocol-specific
reasoning. This reasoning is done using a reusable methodology based on showing that
the use of timers in the SMR protocol and the synchronizer together establish properties
similar to those of failure detectors. The methodology also handles the realistic ways in
which protocols such as PBFT adapt their timeouts to the unknown message delay 6. We
demonstrate the generality of our methodology by also applying it to a version of PBFT
with periodic leader changes [28,55,56] and a HotStuff-like protocol [57] (§7).

We exploit the latency bounds for our synchronizer to establish both bad-case and
good-case bounds for variants of PBFT implemented on top of it (§6). Our bad-case
bound assumes that the protocol starts before GST; it shows that after GST all correct
processes synchronize in the same view within a bounded time. This time is proportional
to a conservatively chosen constant A that bounds post-GST message delays in all
executions [41,50]. Our good-case bound quantifies decision latency when the protocol
starts after GST and matches the lower bound of [5].

2 System Model

We consider a system of n = 3f + 1 processes. At most f of these can be Byzantine (aka
faulty), i.e., can behave arbitrarily. The rest of the processes are correct and we denote their
set by C. We call a set @ of 2f + 1 processes a quorum and write quorum(Q). We assume
standard cryptographic primitives [20, §2.3]: processes can communicate via authenticated
point-to-point links, sign messages using digital signatures, and use a collision-resistant hash
function hash(). We denote by (m); a message m signed by process p;.

We consider a partial synchrony model [26,32]: for each execution of the protocol, there
exist a time GST and a duration § such that after GST message delays between correct
processes are bounded by §; before GST messages can get arbitrarily delayed or lost. As
in [26], we assume that the values of GST and § are unknown to the protocol. This reflects the
requirements of practical systems, whose designers cannot accurately predict when network
problems leading to asynchrony will stop and what the latency will be during the following
synchronous period. We also assume that processes have hardware clocks that can drift
unboundedly from real time before GST, but do not drift thereafter.

12:3

DISC 2022

12:4

Liveness and Latency of Byzantine State-Machine Replication

1. Monotonicity. A process enters increasing views:
Vi,v,v". Ei(v)L A E;(v')] = (v < <= E;(v) < E;(v"))

2. Validity. A process only enters v + 1 if some correct process has attempted to advance from v:
Vi,v. Bi(v+ 1)l = Agirst(v)] A Afirst(v) < E;(v+ 1)

3. Bounded Entry. For some V and d, if a process enters a view v > V and no process attempts
to advance to a higher view within time d, then all correct processes will enter v within d:

IV, d.Vo>V. Efirse (V)] A 7 (Afirst (V) < Egirst (V) +d) = (Vps € C.E;(v)]) A Elast(v) < Egirst (v) +d
4. Startup. Some correct process will enter view 1 if f 4+ 1 processes call advance:
BPCC.IPl=f+1A (Vp; € P.A;(0)])) = Enawst(1))

5. Progress. If a correct process enters a view v and, for some set P of f + 1 correct processes, any
process in P that enters v eventually calls advance, then some correct process will enter v + 1:

Yv. Egest (V)4 A (3P CC.|P| = f+ 1A (Vp; € P. Ei(v)l = Ai(v)])) = Egrst(v+1)4

Figure 1 SMR synchronizer specification.

3 SMR Synchronizer Specification and Implementation

We consider a synchronizer interface defined in [48,49], which here we call an SMR syn-
chronizer. Let View = {1,2,...} be the set of views, ranged over by v; we use 0 to denote
an invalid initial view. The synchronizer produces notifications new_view(v) at a process,
telling it to enter view v. To trigger these, the synchronizer allows a process to call a function
advance(), which signals that the process wishes to advance to a higher view. We assume that
a correct process does not call advance twice without an intervening new_view notification.

Our first contribution is the SMR synchronizer specification in Figure 1, which is simpler
and more general than prior proposals [48,49] (see §8 for a discussion). The specification
relies on the following notation. Given a view v entered by a correct process p;, we denote
by E;(v) the time when this happens; we let Egst(v) and Ej,s(v) denote respectively the
earliest and the latest time when some correct process enters v. We denote by A;(v) the
time when a correct process p; calls advance while in v, and let Agst(v) and Ajagt(v) denote
respectively the earliest and the latest time when this happens. Given a partial function f,
we write f(x)] if f(x) is defined, and f(x)1 if f(x) is undefined.

The Monotonicity property in Figure 1 ensures that views can only increase at a given
process. Validity ensures that a process may only enter a view v + 1 if some correct process
has called advance in v. This prevents faulty processes from disrupting the system by forcing
view changes. As a corollary of Validity we can prove that, if a view v’ is entered by some
correct process, then so are all the views v preceding v'.

» Proposition 1. Vu,v".0 < v < v’ A Egiyst (V)] = Efirst (V)4 A Efirst (v) < Efgist (V7).

Proof. Fix v' > 2 and assume that a correct process enters v’, so that Eg.s(v')]. We prove
by induction on k that Yk = 0..(v) — 1). Egyst (v — k)} A Eirst (v — k) < Egipst(v'). The base
case of kK = 0 is trivial. For the inductive step, assume that the required holds for some
k. Then by Validity there exists a time ¢t < Ef.s(v" — k) at which some correct process p;
attempts to advance from v’ — k — 1. But then p;’s view at ¢ is v' — k — 1. Hence, p; enters
v' — k — 1 before t, so that Egs (v — k — 1) <t < Expst (v — k) < Egipst (v'), as required. <

Bounded Entry ensures that, if some process enters view v, then all correct processes will
do so within at most d time units of each other (d = 26 for our implementation). This only
holds if within d no process attempts to advance to a higher view, as this may make some
processes skip v and enter a higher view directly. Bounded Entry also holds only starting
from some view V), since we may not be able to guarantee it for views entered before GST.

M. Bravo, G. Chockler, and A. Gotsman

=

when the process starts or timer expires
L advance();

[

3 upon new_view(v)
stop_timer(timer);
start_timer(timer, 7);

LB

Figure 2 A simple client of the SMR synchronizer.

Startup ensures that some correct process enters view 1 if f + 1 processes call advance.

Given a view v entered by a correct process, Progress determines conditions under which
some correct process will enter the next view v + 1. This will happen if for some set P of
f +1 correct processes, any process in P entering v eventually calls advance. Note that even
a single advance call at a correct process may lead to a view switch (reflecting the fact that
in implementations faulty processes may help this correct process). Startup and Progress
ensure that the synchronizer must switch if at least f 4 1 correct processes ask for this. We
now illustrate a typical pattern of their use, which we later apply to PBFT (§5). To this
end, we consider a simple client in Figure 2, where in each view a process sets a timer for a
fixed duration 7 and calls advance when the timer expires. Using Startup and Progress we
prove that this client keeps switching views forever as follows.

» Proposition 2. In any execution of the client in Figure 2: Yv. 30" . v" > v A Egpst (V')

Proof. Since all correct processes initially call advance, by Startup some correct process
eventually enters view 1. Assume now that the proposition is false, so that there is a
maximal view v entered by any correct process. Let P be any set of f 4 1 correct processes
and consider an arbitrary process p; € P that enters v. When this happens, p; sets the
timer for the duration 7. The process then either calls advance when timer expires, or
enters a new view v’ before this. In the latter case v > v by Monotonicity, which is
impossible. Hence, p; eventually calls advance while in v. Since p; was chosen arbitrarily,
Vp; € P. E;(v)] = A;(v)}. Then by Progress we get Fr.st(v + 1)): a contradiction. <

Similarly to Figure 2, we can use an SMR synchronizer satisfying the properties in
Figure 1 to implement a consensus synchronizer [16,49] without extra overhead. This lacks
an advance call and provides only the new_view notification, which it keeps invoking at
increasing intervals so that eventually the there is a view long enough for the consensus
protocol running on top to decide. We obtain a consensus synchronizer if in Figure 2
we propagate the new_view notification to the consensus protocol and set the timer to an
unboundedly increasing function of views instead of a constant 7. In [17, §A] we show that
the resulting consensus synchronizer satisfies the specification proposed in [16].

3.1 A Bounded-Space SMR Synchronizer

We now present a bounded-space algorithm that implements the specification in Figure 1
under partial synchrony for d = 2§. Our implementation reuses algorithmic techniques from a
consensus synchronizer of Bravo et al. [16]. However, it supports a more general abstraction,
and thus requires a more intricate correctness proof and latency analysis (§3.2).

When a process calls advance (line 1), the synchronizer does not immediately move to the
next view v’, but disseminates a WISH(v’) message announcing its intention. A process enters
a new view once it accumulates a sufficient number of WISH messages supporting this. A
naive synchronizer design could follow Bracha broadcast [15]: enter a view v/ upon receiving

12:5

DISC 2022

12:6 Liveness and Latency of Byzantine State-Machine Replication

1 function advance() 9 when received WISH(v) from p;
2 send WISH(max(view + 1,view™)) 10 prev_v, prev_vT < view, view ™ ;
to all; 11 if v > max_views[j] then max_views[j] < v;
3 advanced < TRUE; 12 view <« max{v | 3k. max_views[k] = v A
B [{j | max_views[j] > v}| > 2f + 1};
4 periodically > every p time units 13 view" < max{v | k. max_views[k] = v A
if advanced then [{j | max_views[j] > v}| > f+1};
send WISH(max(view + 1, view™)) 14 if view™ = view A view > prev_v then
to all; 15 trigger new_view(view);
7 else if view" > 0 then 16 L advanced < FALSE;
L send WISH(view™) to all; . if view" > prev_ vt then
B 18 L send WISH(view™) to all

Figure 3 A bounded-space SMR synchronizer. All counters are initially 0.

2f + 1 WISH(v') messages, and echo WISH(v') upon receiving f + 1 copies thereof; the latter
is needed to combat equivocation by Byzantine processes. However, in this case the process
would have to track all newly proposed views for which < 2f 4+ 1 WISHes have been received.
Since messages sent before GST can be lost or delayed, this would require unbounded space.
To reduce the space complexity, in our algorithm a process only remembers the highest
view received from each process, kept in an array max_views (line 11). Variables view and
view ™" respectively hold the (2f + 1)st highest and the (f + 1)st highest views in max_views
(lines 12-13). These variables never decrease and always satisfy view < view™.

The process enters the view stored in view when this variable increases (line 15). A process
thus enters v only if it receives 2f + 1 WISHes for views > v, and a process may be forced to
switch views even if it did not call advance; the latter helps lagging processes to catch up.

T increases when the process receives f + 1 WISHes for views > view ™', and
+

The variable view
thus some correct process wishes to enter a new view > view™. In this case we echo view
(line 18), to help other processes switch views and satisfy Bounded Entry and Progress.

The guard view™ = view in line 14 ensures that a process does not enter a “stale” view
such that another correct process already wishes to enter a higher one. Similarly, when
the process calls advance, it sends a WISH for the maximum of view + 1 and view™ (line 2).
T, so that the values of the two variables have not changed since the
process entered the current view, then the process sends a WISH for the next view (view + 1).
Otherwise, view < view™', and the process sends a WISH for the higher view view'. Finally,
to deal with message loss before GST, a process retransmits the highest WISH it sent every p
time units, according to its local clock (line 4). Depending on whether the process has called
advance in the current view (tracked by advanced), the WISH is computed as in lines 18 or 2.

Our SMR synchronizer requires only O(n) variables for storing views. Proposition 1 also
ensures that views entered by correct processes do not skip values, which limits the power of
the adversary to exhaust their allocated space (similarly to [11]).

Thus, if view = view

3.2 SMR Synchronizer Correctness and Latency Bounds

The following theorem (proved in [17, §B]) states the correctness of our synchronizer as
well as and its performance properties. In §6 we apply the latter to bound the latency of
Byzantine SMR protocols. Given a view v that was entered by a correct process p;, we let
T;(v) denote the time at which p; either attempts to advance from v or enters a view > v;
we let Tast(v) denote the latest time when a correct process does so. We assume that every
correct process eventually attempts to advance from view 0 unless it enters a view > 0, i.e.,

Vp; € C.T; (O)l,

M. Bravo, G. Chockler, and A. Gotsman

» Theorem 3. Consider an execution with an eventual message delay §. The algorithm
in Figure 8 satisfies the properties in Figure 1 for d = 26 and V = max{v | (Fast(v)d A
Efirst(v) < GST + p) Vo =0} + 1 4f Agrst(0) < GST, and V = 1, otherwise. Furthermore:

A. Y. Egrst (V)4 A Afirst(0) < GST = Ejast (v) < max(Egest(v), GST + p) + 24.
max (Tast (v), GST + p) + 0, if Agirst(0) < GST;

B. Yv. Egpst(V+ 1)) = Flast(v +1) <
firs W st) {Tlast (v) + 0, otherwise.

The theorem gives a witness for V in Bounded Entry: it is the next view after the highest
one entered by a correct process at or before GST+p (or 1 if no view was entered). Property A
bounds the latest time any correct process can enter a view that has been previously entered
by a correct process. It is similar to Bounded Entry, but also handles views < V. Property B
refines Progress: while the latter guarantees that the synchronizer will enter v + 1 if enough
processes ask for this, the former bounds the time by which this will happen.

4 PBFT Using an SMR Synchronizer

We now demonstrate how an SMR synchronizer can be used to implement Byzantine SMR.
More formally, we implement Byzantine atomic broadcast [20], from which SMR can be
implemented in the standard way [52]. This allows processes to broadcast values, and we
assume an application-specific predicate to indicate whether a value is valid [21] (e.g., a
block in a blockchain is invalid if it lacks correct signatures). We assume that all values
broadcast by correct processes in a single execution are valid and unique. Then Byzantine
atomic broadcast is defined by the following properties:

Integrity. Every process delivers a value at most once.

External Validity. A correct process delivers only values satisfying valid().

Ordering. If a correct process p delivers x; before x5, then another correct process g

cannot deliver zo before x;.

Liveness. If a correct process broadcasts or delivers x, then eventually all correct

processes will deliver x. (Note that this implies censorship-resistance: the service cannot

selectively omit values submitted by correct processes.)

The PBFT-light protocol. We implement Byzantine atomic broadcast in a PBFT-light
protocol (Figures 4-6), which faithfully captures the algorithmic core of the seminal Practical
Byzantine Fault Tolerance protocol (PBFT) [24]. Whereas PBFT integrated view synchro-
nization functionality with the core SMR protocol, PBFT-light delegates this to an SMR,
synchronizer, and in §5 we rigorously prove its liveness when using any synchronizer satisfying
our specification. When using the synchronizer in Figure 3, the protocol also incurs only
bounded space overhead (see [17, §C.4] for details).

We base PBFT-light on the PBFT protocol with signatures and, for simplicity, omit
the mechanisms for managing checkpoints and watermarks; these can be easily added
without affecting liveness. The protocol works in a succession of views produced by the
synchronizer. A process stores its current view in curr_view. Each view v has a fixed leader
leader(v) = P((v—1) mod n)+1 that is responsible for totally ordering values submitted for
broadcast; the other processes are followers, which vote on proposals made by the leader.
Processes store the sequence of (unique) values proposed by the leader in a log array; at the
leader, a next counter points to the first free slot in the array. Processes monitor the leader’s
behavior and ask the synchronizer to advance to another view if they suspect that the leader
is faulty. A status variable records whether the process is operating as normal in the current
view (NORMAL) or is changing the view.

12:7

DISC 2022

12:8

Liveness and Latency of Byzantine State-Machine Replication

1 function start() 20 when received (PREPREPARE(v, k,x));
2 L if curr_view = 0 then advance(); 21 pre: p; = leader(v) A curr_view = v A
. . status = NORMAL A phase[k] = START A

3 when a tlmer‘ expires valid(z) A (V&' log[K] #)

4 | stop_all_timers(); 22 (log, phase)[k] < (z, PREPREPARED);

5 | advance(); 23 send (PREPARE(v, k, hash(x))); to all;

6 | status <— ADVANCED;

7 | dur_delivery < dur_delivery + T; 24 when received {(PREPARE(v,k,h)); |p; € Q} =C
8 dur_recovery < dur_recovery + T; for a quorum (@

. 25 pre: curr_view = v A phase[k] = PREPREPARED A

o function b_roadcast(ac) status = NORMAL A hash(log[k]) = h;
10 pre: valid(x); 26 (prep_log, prep_view, cert, phase)[k] <

11 send (BROADCAST(z)); to all

o AT . (log[k], curr_view, C, PREPARED);
periodically until = is delivered

27 send (COMMIT(v, k, h)); to all;
12 when received BROADCAST(x) B
13 | pre: valid(z) A status = NORMAL A

(timer_delivery[z] not active) A

28 when received {(COMMIT(v,k,h)); |p; € Q} =C
for a quorum (@

(Vk. k < last_delivered —> 29 pre: curr_view = v A phase[k] = PREPARED A
: status = NORMAL A hash(prep_log[k]) = h;
commit_log[k] # x);)
. . . 30 (commit_log, phase)[k] < (log[k], COMMITTED);
14 | start_timer(timer_delivery[z], >
} 31 broadcast (DECISION(commit_log[k], k, C);
dur_delivery); L
15 | send (FORWARD(z)): to 32 when commit_log[last_delivered + 1] # L
leader(curr_view); 33 last_delivered < last_delivered + 1;
16 when received FORWARD(z) 34 if C(;mln?|t_|og[|ast_.(:e|||ver|edl ;z 1|1_op t:en
17 | pre: valid(z) A status = NORMAL A 35 L eliver(commit_log(last_delivered])
p; = leader(curr_view) A 36 stop_timer(
Vk. loglk] # x; timer_delivery[commit_log|last_delivered]]);
18 send (PREPREPARE (curr_view, 37 if last_delivered = init_log_length A
next, z)); to all; status = NORMAL then
19 next < next + 1; 38 L stop_timer(timer_recovery);

39 when received DECISION(z, k, C)

40 pre: commit_log[k] # L A

Fv. committed(C, v, k, hash(z));
41 commit_log[k] + x;

Figure 4 Normal operation of PBFT-light at a process p;.

Normal protocol operation. A process broadcasts a valid value x using a broadcast
function (line 9). This keeps sending the value to all processes in a BROADCAST message until
the process delivers the value, to tolerate message loss before GST. When a process receives
a BROADCAST message with a new value (line 12), it forwards the value to the leader in a
FORWARD message. This ensures that the value reaches the leader even when broadcast by a
faulty process, which may withhold the BROADCAST message from the leader. (We explain
the timer set in line 14 later.) When the leader receives a new value z in a FORWARD message
(line 16), it sends a PREPREPARE message to all processes (including itself) that includes =
and its position in the log, generated from the next counter. Processes vote on the leader’s
proposal in two phases. Each process keeps track of the status of values going through the
vote in an array phase, whose entries initially store START.

When a process receives a proposal x for a position k from the leader of its view v (line 20),
it first checks that phase[k] = START, so that it has not yet accepted a proposal for the
position k in the current view. It also checks that the value is valid and distinct from all values
it knows about. The process then stores z in log[k] and advances phase[k] to PREPREPARED.
Since a faulty leader may send different proposals for the same position to different processes,
the process next communicates with others to check that they received the same proposal.

M. Bravo, G. Chockler, and A. Gotsman

To this end, it disseminates a PREPARE message with the position and the hash of the value x
it received. The process handles = further once it gathers a set C' of PREPARE messages from
a quorum matching the value (line 24), which we call a prepared certificate and check using
the prepared predicate in Figure 6. In this case the process stores the value in prep_log[k],
the certificate in cert[k], and the view in which it was formed in prep_view[k]. At this point

we say that the process prepared the proposal, as recorded by setting its phase to PREPARED.

It is easy to show that processes cannot prepare different values at the same position and
view, since each correct process can send only one corresponding PREPARE message.

Having prepared a value, the process disseminates a COMMIT message with its hash. Once
the process gathers a quorum of matching COMMIT messages (line 28), it stores the value in a
commit_log array and advances its phase to COMMITTED: the value is now committed. The
protocol ensures that correct processes cannot commit different values at the same position,
even in different views. We call a quorum of matching COMMIT messages a commit certificate
and check it using the committed predicate in Figure 6. A process delivers committed values
in the commit_log order, with last_delivered tracking the position last delivered position.

To satisfy the Liveness property of atomic broadcast, similarly to [12], PBFT-light allows
a process to find out about committed values from other processes directly. When a process
commits a value (line 28), it disseminates a DECISION message with the value, its position
k in the log and the commit certificate (line 31). A process receiving a DECISION with a
valid certificate saves the value in commit_log[k], which allows it to be delivered (line 32).
The DECISION messages are disseminated via reliable broadcast ensuring that, if one correct
process delivers the value, then so do all others. To implement this, each process could
periodically resend the DECISION messages it has (omitted from the pseudocode). A more
practical implementation would only resend information that other processes are missing.
As proved in [32], such periodic resends are unavoidable in the presence of message loss.

View initialization. When the synchronizer tells a process to move to a new view v (line 42),
the process sets curr_view to v, which ensures that it will no longer accept messages from
prior views. It also sets status to INITIALIZING, which means that the process is not yet ready
to order values in the new view. It then sends a NEW_LEADER message to the leader of v with
the information about the values it has prepared so far and their certificates®.

The new leader waits until it receives a quorum of well-formed NEW_LEADER messages,
as checked by the predicate ValidNewLeader (line 48). Based on these, the leader computes
the initial log of the new view, stored in log’. Similarly to Paxos [45], for each index k the
leader puts at the kth position in log’ the value prepared in the highest view (line 50). The
resulting array may contain empty or duplicate entries. To resolve this, the leader writes nop
into empty entries and those entries for which there is a duplicate prepared in a higher view
(line 53). The latter is safe because one can show that no value could have been committed
in such entries in prior views. Finally, the leader sends a NEW_STATE message to all processes,
containing the initial log and the NEW_LEADER messages from which it was computed (line 56).

A process receiving a NEW_STATE first checks its correctness by redoing the leader’s
computation (ValidNewState, line 57). If the check passes, the process overwrites its log
with the new one and sets status to NORMAL. It also sends PREPARE messages for all log
entries, to commit them in the new view. A more practical implementation would include a
checkpointing mechanism, so that a process restarts committing previous log entries only
from the last stable checkpoint [24]; this mechanism can be easily added to PBFT-light.

! In PBFT this information is sent in VIEW-CHANGE messages, which also play a role similar to WISH
messages in our synchronizer (Figure 3). In PBFT-light we opted to eschew VIEW-CHANGE messages to
maintain a clear separation between view synchronization internals and the SMR protocol.

12:9

DISC 2022

12:10

Liveness and Latency of Byzantine State-Machine Replication

42 upon new_view(v) 53 forall k = 1..(next — 1) do
43 | stop_all_timers(); 54 if log'[k] = LV 3K . K #kA
44 | curr_view < v; log'[k'] = log'[k] A 3p;» € Q.Vp; € Q.
45 | status < INITIALIZING; prep_view;, [k'] > prep_view; [k] then
46 send (NEW_LEADER(curr_view, prep_view, 55 L log'[k] < nop

prep_log, cert)); to leader(curr_view);

/ .
a7 start_timer(timer_recovery, dur_recovery); 56 | send (NEW_STATE(v,log’, M)); to all;

. ’
48 when received {(NEW_LEADER(v, prep_uview;, 57 when received (NEW_STATE(v, log’, M)); =m

prep_log;, cert;)); | pj € Q} = M 58 pre: status = INITIALIZING A
for a quorum Q curr_view = v A ValidNewState(m);
49 pre: p; = leader(v) A curr_view = v A 59 log < log’;
status = INITIALIZING A 60 forall {k | log[k] # L} do
Vm € M. ValidNewLeader(m); 61 phase[k] < PREPREPARED;
s0 | forall k do 62 send (PREPARE(v, k, hash(log[k]))):
51 if Ip;r € Q. prep_view; [k] # 0 A to all;
Vp; € Q. prep_view;[k] < prep_view;/[k] | 63 status <~ NORMAL;
then log'[k] < prep_log;/[k]; 64 init_log_length <— max{k | log[k] # L};
52 next < max{k | log'[k] # L}; 65 if init_log_length < last_delivered then
66 L stop_timer(timer_recovery);

Figure 5 View-initialization protocol of PBFT-light at a process p;.

prepared(C, v, k, h) <= 3Q.quorum(Q) A C' = {(PREPARE(v, k, h)); | p; € Q}
committed(C, v, k, h) <= 3Q.quorum(Q) A C = {(COMMIT(v, k, h)); | p; € Q}
ValidNewLeader((NEW_LEADER (v, prep_view, prep_log, cert))) <>

VEk. (prep_view[k] > 0 = prep_view[k] < v A prepared(cert[k], prep_view[k], k, prep_log[k]))
ValidNewState((NEW_STATE(v, log’, M));) <= p; = leader(v) A 3Q, prep_view, prep_log, cert.

quorum(Q) A M = {(NEW_LEADER(v, prep_view;, log;, cert;)); | pj € Q} A

(Vm € C.ValidNewLeader(m)) A (log’ is computed from M as per lines 50-55)

Figure 6 Auxiliary predicates for PBFT-light.

Triggering view changes. We now describe when a process calls advance, which is key to
ensure liveness (§5). This happens either on start-up (line 2) or when the process suspects
that the current leader is faulty. To this end, the process monitors the leader’s behavior
using timers; if one of these expires, the process calls advance and sets status to ADVANCED
(line 3). First, the process checks that each value it receives is delivered promptly: e.g.,
to guard against a faulty leader censoring certain values. For a value x this is done using
timer_delivery[z], set for a duration dur_delivery when the process receives BROADCAST(z)
(lines 14). The timer is stopped when the process delivers x (line 36). A process also checks
that the leader initializes a view quickly enough: e.g., to guard against the leader crashing
during the initialization. Thus, when a process enters a view it starts timer_recovery for a
duration dur_recovery (line 47). The process stops the timer when it delivers all values in the
initial log (lines 38 and 66). The above checks may make a process suspect a correct leader
if the timeouts are initially set too small with respect to the message delay ¢, unknown to
the process. To deal with this, a process increases dur_delivery and dur_recovery each time a
timer expires, which signals that the current view is not operating normally (lines 7-8).

M. Bravo, G. Chockler, and A. Gotsman

5 Proving the Liveness of PBFT

Assume that PBFT-light is used with a synchronizer satisfying the specification in Figure 1;

to simplify the following latency analysis we let d = 24, as for the synchronizer in Figure 3.

We now prove that the protocol satisfies the Liveness property of Byzantine atomic broadcast;
we defer the proof of the other properties to [17, §C.1]. To the best of our knowledge, this is
the first rigorous proof of liveness for the algorithmic core of PBFT: as we elaborate in §8,
the liveness mechanisms of PBFT came only with a brief informal justification, which did
not cover their most critical properties [25, §4.5.1]. Our proof is simplified by the use of the

synchronizer specification, which allows us to abstract from view synchronization mechanics.

We prove the liveness of PBFT-light by showing that the protocol establishes properties
reminiscent of those of failure detectors [26]. First, similarly to their completeness property,
we prove that every correct process eventually attempts to advance from a bad view in which
no progress is possible (e.g., because the leader is faulty).

» Lemma 4. Assume that a correct process p; receives BROADCAST(x) for a valid value x
while in a view v. If p; never delivers x and never enters a view higher than v, then it
eventually calls advance in v.

The lemma holds because in PBFT-light each process monitors the leader’s behavior
using timers, and we defer its easy proof to [17, §C.2]. Our next lemma is similar to the
eventual accuracy property of failure detectors. It stipulates that if the timeout values are
high enough, then eventually any correct process that enters a good view (with a correct
leader) will never attempt to advance from it. Let dur_recovery,(v) and dur_delivery,(v)
denote respectively the value of dur_recovery and dur_delivery at a correct process p; while
in view v.

» Lemma 5. Consider a view v >V such that Egys(v) > GST and leader(v) is correct. If
dur_recovery,;(v) > 60 and dur_delivery,;(v) > 4§ at each correct process p; that enters v, then
no correct process calls advance in v.

Before proving the lemma, we informally explain the rationale for the bounds on timeouts
in it, using the example of dur_recovery. The timer timer_recovery is started at a process
p; when this process enters a view v (line 47), and is stopped when the process delivers
all values inherited from previous views (lines 38 or 66). The two events are separated
by 4 communication steps of PBFT-light, exchanging messages of the types NEW_LEADER,
NEW_STATE, PREPARE and COMMIT (Figure 7). However, 40 would be too small a value
for dur_recovery. This is because the leader of v sends its NEW_STATE message only after
receiving a quorum of NEW_LEADER messages, and different processes may enter v and send
their NEW_LEADER messages at different times (e.g., p; and p; in Figure 7). Hence, dur_recovery
must additionally accommodate the maximum discrepancy in the entry times, which is d = 2§
by the Bounded Entry property. Then to ensure that p; stops the timer before it expires, we
require dur_recovery,(v) > 6. As the above reasoning illustrates, Lemma 5 is more subtle
than Lemma 4: while the latter is ensured just by the checks in the SMR protocol, the former
relies on the Bounded Entry property of the synchronizer.

Another subtlety about Lemma 5 is that the § used in its premise is a priori unknown.
Hence, to apply the lemma in the liveness proof of PBFT-light, we have to argue that, if
correct processes keep changing views due to lack of progress, then all of them will eventually
increase their timeouts high enough to satisfy the bounds in Lemma 5. This is nontrivial due
to the fact that, as in the original PBFT [23, §2.3.5], in our protocol the processes update
their timeouts independently, and may thus disagree on their durations. For example, the

12:11

DISC 2022

12:12

Liveness and Latency of Byzantine State-Machine Replication

Di p; leader(v)

Efirg(v)
start

NEW_LEaD, I
timer_recovery - ER(V)
28

Eg(v) . J

g,

stop
timer recovery

W \
Lz,)
ADER ()) ‘
NEW_STATE(V) 5 %
S
TB@E\ L 5
e ‘
PREPARE 1:» Fy
! <
COMMIT 1 Fy

Figure 7 An illustration of the proof of Lemma 5.

first correct process p; to detect a problem with the current view v will increase its timeouts
and call advance (line 3). The synchronizer may then trigger new_view notifications at
other correct processes before they detect the problem as well, so that their timeouts will
stay unchanged (line 42). One may think that this allows executions in which only some
correct processes keep increasing their timeouts until they are high enough, whereas others
are forever stuck with timeouts that are too low, invalidating the premise of Lemma 5. The
following lemma rules out such scenarios and also trivially implies Lemma 5. It establishes
that, in a sufficiently high view v with a correct leader, if the timeouts at a correct process
p; that enters v are high enough, then this process cannot be the first one to initiate a
view change. Hence, for the protocol to enter another view, some other process with lower
timeouts must call advance and thus increase their durations (line 3).

» Lemma 6. Let v >V be such that Egpst(v) > GST and leader(v) is correct, and consider
a correct process p; that enters v. If dur_recovery,(v) > 65 and dur_delivery,(v) > 46 then p;
is mot the first correct process to call advance in v.

Proof. Since Efg,st(v) > GST, messages sent by correct processes after Egst(v) get delivered
to all correct processes within § and process clocks track real time. By contradiction, assume
that p; is the first correct process to call advance in v. This happens because a timer expires
at p;. Here we only consider the case when it is timer_recovery, and handle timer_delivery
in [17, §C.2]. A process starts timer_recovery when it enters the view v (line 47), and hence,
at Egst(v) at the earliest (Figure 7). Because p; is the first correct process to call advance
in v and dur_recovery,(v) > 64, no correct process calls advance in v until after Fg,«(v) 4+ 66.
Then by Bounded Entry all correct processes enter v by Fgyst(v) + 26. Also, by Validity no
correct process can enter v + 1 until after Egs(v) 4 65, and by Proposition 1 the same holds
for any view > v. Thus, all correct processes stay in v at least until Ffs;(v) + 64.

When a correct process enters v, it sends a NEW_LEADER message to the leader of v, which
happens by Ffst(v) +26. When the leader receives such messages from a quorum of processes,
it broadcasts a NEW_STATE message. Thus, by Efg.st(v) + 49 all correct processes receive this
message and set status = NORMAL. If at that point init_log_length < last_delivered at p;,
then the process stops timer_recovery (line 66), which contradicts our assumption. Hence,
init_log_length > last_delivered. When a correct process receives NEW_STATE, it sends PREPARE
messages for all positions < init_log_length (line 62). It then takes the correct processes at
most 20 to exchange the sequence of PREPARE and COMMIT messages that commits the values
at all positions < init_log_length. Thus, by Fgst(v) + 60 the process p; commits and delivers
all these positions, stopping timer_recovery (line 38): a contradiction. |

M. Bravo, G. Chockler, and A. Gotsman

» Theorem 7. PBFT-light satisfies the Liveness property of Byzantine atomic broadcast.

Proof. Consider a valid value x broadcast by a correct process. We first prove that x is
eventually delivered by some correct process. Assume the contrary. We show:

> Claim 1. Every view is entered by some correct process.

Proof. Since all correct processes call start (line 1), by Startup a correct process eventually
enters some view. We now show that correct processes keep entering new views forever
(analogously to the proof of Proposition 2 in §3). Assume that this is false, so that there
exists a maximal view v entered by any correct process. Let P be any set of f + 1 correct
processes and consider an arbitrary process p; € P that enters v. The process that broadcast
x is correct, and thus keeps broadcasting = until the value is delivered (line 11). Since x is
never delivered, p; is guaranteed to receive x while in v. Then by Lemma 4, p; eventually
calls advance while in v. Since p; was picked arbitrarily, we have Vp; € P. E;(v)| = A;(v){.
Then by Progress we get Frst (v + 1)), which yields a contradiction. Thus, correct processes
keep entering views forever. The claim then follows from Proposition 1. <

Let view vy be the first view such that v1 >V and Fg(v1) > GST; such a view exists
by Claim 1. The next claim is needed to show that all correct processes will increase their
timeouts high enough to satisfy the bounds in Lemma 5.

> Claim 2. Every correct process calls the timer expiration handler (line 3) infinitely often.

Proof. Assume the contrary and let Cq, and Ciys be the sets of correct processes that call
the timer expiration handler finitely and infinitely often, respectively. Then Cg, # 0, and
by Claim 1 and Validity, Ciys # 0. The values of dur_delivery and dur_recovery increase
unboundedly at processes from Cj,¢, and do not change after some view vy at processes from
Chn. By Claim 1 and since leaders rotate round-robin, there is a view vz > max{vg, v1 } with
a correct leader such that any process p; € Ciys that enters vs has dur_delivery,(v3) > 46 and
dur_recovery;(v3) > 60. By Claim 1 and Validity, at least one correct process calls advance
in wvs; let p; be the first process to do so. Since v3 > vg, p; cannot be in Cfg, because none of
these processes increase their timers in v3. Then p; € Ci,¢, contradicting Lemma 6. <

By Claims 1 and 2, there exists a view v4 > v with a correct leader such that some correct
process enters vy, and for any correct process p; that enters vy we have dur_delivery,(vy) > 46
and dur_recovery,(v4) > 65. By Lemma 5, no correct process calls advance in vy. Then, by
Validity, no correct process enters vy + 1, which contradicts Claim 1. This contradiction
shows that x must be delivered by a correct process. Then, since the protocol reliably
broadcasts committed values (line 31), all correct processes will also eventually deliver . <

6 Latency Bounds for PBFT

Assume that PBFT-light is used with our SMR synchronizer in Figure 3. We now quantify its
latency using the bounds for the synchronizer in Theorem 3, yielding the first detailed latency

analysis for a PBFT-like protocol. Due to space constraints we defer proofs to [17, §C.3].

To state our bounds, we assume the existence of a known upper bound A on the maximum
value of § in any execution [41,50], so that we always have § < A. In practice, A provides
a conservative estimate of the message delay during synchronous periods, which may be
much higher than the maximal delay § in a particular execution. We modify the protocol in
Figure 4 so that in lines 7-8 it does not increase dur_recovery and dur_delivery above 6A and
4A, respectively. This corresponds to the bounds in Lemma 5 and preserves the protocol

12:13

DISC 2022

12:14

Liveness and Latency of Byzantine State-Machine Replication

liveness. Finally, we assume that periodic handlers (line 4 in Figure 3 and line 11 in Figure 4)
are executed every p time units, and that the latency of reliable broadcast in line 31 under
synchrony is < d+ p (this corresponds to an implementation that just periodically retransmits
DECISION messages).

We quantify the latency of PBFT-light in both bad and good cases. For the bad case we
assume that the protocol starts during the asynchronous period. Given a value z broadcast
before GST, we quantify how quickly after GST all correct processes deliver x. For simplicity,
we assume that timeouts are high enough at GST and that leader()) is correct.

» Theorem 8. Assume that before GST all correct processes start executing the protocol and
one of them broadcasts x. Let V be defined as in Theorem 3 and assume that leader(V) is
correct and at GST each correct process has dur_recovery > 66 and dur_delivery > 46. Then
all correct processes deliver x by GST + p + max{p + J,6A} +4A + max{p,d} + 7¢.

Although the latency bound looks complex, its main message is simple: PBFT-light
recovers after a period of asynchrony in bounded time. This time is dominated by multiples
of A; without the assumption that leader(V) is correct it would also be multiplied by f due
to going over up to f views with faulty leaders. In [17, §C.3] we show the bound using the
latency guarantees of our synchronizer (Properties A and B in Theorem 3).

We now consider the case when the protocol starts during the synchronous period, i.e.,
after GST. The following theorem quantifies how quickly all correct processes enter the first
functional view, which in this case is view 1. If leader(1) is correct, it also quantifies how
quickly a broadcast value x is delivered by all correct processes. The bound takes into account
the following optimization: in view 1 the processes do not need to exchange NEW_LEADER
messages. Then, after the systems starts up, the protocol delivers values within 49, which
matches an existing lower bound of 30 for the delivery time starting from the leader [5].

» Theorem 9. Assume that all correct processes start the protocol after GST with
dur_recovery > 50 and dur_delivery > 4. Then the V defined in Theorem 3 is equal to
1 and Epast (1) < Tiast(0) + 6. Furthermore, if a correct process broadcasts x at t > GST and
leader(1) is correct, then all correct processes deliver x by max{t, Tiast(0) + 0} + 46.

7 Additional Case Studies

To demonstrate the generality of SMR synchronizers, we have also used it to ensure the
liveness of two other protocols. First, we handle a variant of PBFT that periodically forces a
leader change, as is common in modern Byzantine SMR [28,55,56]. In this protocol a process
calls advance not only when it suspects the current leader to be faulty, but also when it
delivers B values proposed by this leader (for a fixed B). Second, we have applied the SMR
synchronizer to a variant of the above protocol that follows the approach of HotStuff [57].
The resulting protocol adds an extra communication step to the normal path of PBFT
in exchange for reducing the communication complexity of leader change. Due to space
constraints, we defer the details about these two protocols to [17, §D] and [17, §E]. Their
liveness proofs follow the methodology we proposed for PBFT-light, establishing analogs of
Lemmas 4-6.

For PBFT with periodic leader rotation we have also established latency bounds when
using the synchronizer in Figure 3 (see [17, §D]). The most interesting one (Theorem 56)
demonstrates the benefit of PBFT’s mechanism for adapting timeouts to an unknown J:
recall that in PBFT a process only increases its timeouts when a timer expires, which means
that the current view does not operate normally (§4). We show that, since the protocol does

M. Bravo, G. Chockler, and A. Gotsman

not increase its timeouts in good views (with correct leaders and under synchrony), it pays
a minimal latency penalty to recover the first time it encounters a bad leader — the initial
value of dur_recovery. This contrasts with the simplistic way of adapting the timeouts to an
unknown § by increasing them in every view: in this case, as the protocol keeps changing
views, the timeouts would eventually increase up to the maximum (determined by A), and
the protocol would have to wait that much to recover from a faulty leader.

8 Related Work and Discussion

Failure detectors. Failure detectors and leader oracles [26,34] have been widely used for
implementing consensus and SMR under benign failures [38,39,47], but their implementations
under Byzantine failures are either impractical [43] or detect only restricted failure types [30,40,
46]. Another approach was proposed in a textbook by Cachin et al. [20]. This relies on a leader-
based Byzantine Epoch-Change (BEC) abstraction, which accepts “complain” hints from the
application suggesting that the trust in the current leader should be revoked. However, like
the classical leader oracles, BEC requires all correct processes to eventually trust the same
correct leader, which is impossible to achieve in Byzantine settings. In fact, the BEC-based
Byzantine consensus algorithm in §5.6.4 of [20] suffers from a liveness bug, which we describe
in [17, §F]. The bug has been confirmed with one of the textbook’s authors [19].

Although our advance is similar to “complain”, we use it to implement a weaker abstrac-
tion of an SMR synchronizer. We then obtain properties similar to accuracy and completeness
of failure detectors by carefully combining SMR-level timers with uses of advance (Lem-
mas 4-5). Also, while [20] does not specify constraints on the use of “complain” (see [17, §F]),
we give a complete characterization of advance and show its sufficiency for solving SMR.

BFT-SMaRt [13,54] built on the ideas of [20] to propose an abstraction of validated and
provable (VP) consensus, which allows its clients to control leader changes. Although the
overall BFT-SMaRt protocol appears to be correct, its liveness proof sketch suffers from
issues with rigor similar to those of [20]. In particular, the conditions on how to change the
leader in VP-Consensus to ensure its liveness were underspecified (again, see [17, §F]).

Emulating synchrony. Alternative abstractions avoid dependency on the specifics of a
failure model by simulating synchrony [14,27,35,42]. The first such abstraction is due
to Awerbuch [10] who proposed a family of synchronizer algorithms emulating a round-
based synchronous system of top of an asynchronous network with reliable communication
and processes. The first such emulation in a failure-prone partially synchronous system
was introduced in the DLS paper [32]. It relied on an expensive clock synchronization
protocol, which interleaved its messages with every step of a high-level consensus algorithm
implemented on top of it. Later work proposed more practical solutions, which reduce
the synchronization frequency by relying on either timers [31] or synchronized hardware
clocks [3,7,36] (the latter can be obtained using one of the existing fault-tolerant clock
synchronization algorithms [29,53]). However, the DLS model emulates communication-closed
rounds, i.e., eventually, a process in a round r receives all messages sent by correct processes
in r. This property rules out optimistically responsive [51,57] protocols such as PBFT, which
can make progress as soon as they receive messages from any quorum.

Consensus synchronizers. To address the shortcoming of DLS rounds, recent work proposed
a more flexible abstraction (“consensus synchronizer” in §3) that switches processes through
an infinite series of views [16,49,57]. In contrast to rounds, each view may subsume multiple

12:15

DISC 2022

12:16

Liveness and Latency of Byzantine State-Machine Replication

communication steps. Although consensus synchronizers can be used for efficient single-shot
Byzantine consensus [16], using them for SMR results in suboptimal implementations. A
classical approach is to decide on each SMR command using a separate black-box consensus
instance [52]. However, implementing the latter using a consensus synchronizer would force
the processes in every instance to iterate over the same sequence of potentially bad views
until the one with a correct leader and sufficiently long duration could be reached.

An alternative approach was proposed in HotStuff [57]. This SMR protocol is driven by
a pacemaker, which keeps generating views similarly to a consensus synchronizer. Within
each view HotStuff runs a voting protocol that commits a block of client commands in a
growing hash chain. Although the voting protocol is optimistically responsive, committing
the next block is delayed until the pacemaker generates a new view, which increases latency.
The cost the pacemaker may incur to generate a view is also paid for every single block.

SMR synchronizers. In contrast to the above approaches, SMR synchronizers allow the
application to initiate view changes on demand via an advance call. As we show, this affords
SMR protocols the flexibility to judiciously manage their view synchronization schedule: in
particular, it prevents the timeouts from growing unnecessarily (§7) and avoids the overheads
of further view synchronizations once a stable view is reached (Lemma 5, §5).

The first synchronizer with a new_view/advance interface, which here we call an SMR
synchronizer, was proposed by Naor et al. [48,49]. They used it as an intermediate module in
a communication-efficient implementation of a consensus synchronizer. The latter is sufficient
to ensure the liveness of HotStuff [57] via either of the two straightforward SMR constructions
we described above. The specification of the new_view/advance module of Naor et al. was
only used as a stepping stone in the proof of their consensus synchronizer, and as a result, is
more low-level and complex than our SMR, synchronizer specification. Naor et al. did not
investigate the usability of the SMR, synchronizer abstraction as a generic building block
applicable to a wide range of Byzantine SMR, protocols — a gap we fill in this paper. Finally,
they only handled a simplified version of partial synchrony where messages are never lost and
0 is known a priori, whereas our SMR, synchronizer implementation handles partial synchrony
in its full generality. This implementation builds on the consensus synchronizer of Bravo et
al. [16]. However, its correctness proof and performance analysis are more intricate, since
the timing of the view switches is not fixed a priori, but driven by external advance inputs.

Agtefinoaei et al. [6] proposed another framework for implementing Byzantine SMR
protocols, based on DLS rounds. This uses a simple synchronizer that does not exchange
any messages: it recovers from a period of asynchrony by progressively increasing round
durations until they are long enough for all correct processes to overlap in the same round.
This way of view synchronization rules out optimistically responsive SMR protocols and does
not bound the time to reach a decision after GST, as we do.

SMR liveness proofs. PBFT [23-25] is a seminal protocol whose design choices have been
widely adopted [37,44,55,56]. To the best of our knowledge, our proof in §5 is the first one
to formally establish its liveness. An informal argument given in [25, §4.5.1] mainly justifies
liveness assuming all correct processes enter a view with a correct leader and stay in that
view for sufficiently long. It does not rigorously justify why such a view will be eventually
reached, and in particular, how this is ensured by the interplay between SMR-level timeout
management and view synchronization (§5). Liveness mechanisms were also omitted from
the formal specification of PBFT by an I/O-automaton [23,25].

M. Bravo, G. Chockler, and A. Gotsman

Bravo et al. [16] have applied consensus synchronizers to several consensus protocols,
including a single-shot version of PBFT. These protocols and their proofs and are much
more straightforward than the full SMR protocols we consider here. In particular, since a
consensus synchronizer keeps switching processes between views regardless of whether their
leaders are correct, the proof of the single-shot PBFT in [16] does not need to establish
analogs of completeness and accuracy (Lemmas 4 and 5) or deal with the fact that processes
may disagree on timeout durations (Lemma 6).

Byzantine SMR protocols often integrate view synchronization into the core protocol,
enabling white-box optimizations [1,9,18,24]. Our work does not rule out this approach, but
allows making it more systematic: we can first develop efficient mechanisms for view syn-
chronization independently from SMR protocols, and do white-box optimizations afterwards.

—— References

1 DiemBFT v4: State machine replication in the Diem blockchain. URL: https://developers.
diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain
/2021-08-17 . pdf.

2 Incorrect by construction-CBC Casper isn’t live. URL: https://derekhsorensen.com/docs/
CBC_Casper_Flaw.pdf.

3 Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. Synchronous
Byzantine agreement with expected O(1) rounds, expected O(n?) communication, and optimal
resilience. In Conference on Financial Cryptography and Data Security (FC), 2019.

4 Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-
Philippe Martin. Revisiting fast practical Byzantine fault tolerance. arXiv, abs/1712.01367,
2017. arXiv:1712.01367.

5 Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-case latency of Byzantine
broadcast: a complete categorization. In Symposium on Principles of Distributed Computing
(PODC), 2021.

6 Lacramioara Astefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci-Piergiovanni, and Eugen Zalinescu. Tenderbake — A solution to dynamic repeated
consensus for blockchains. In Symposium on Foundations and Applications of Blockchain
(FAB), 2021.

7 Dan Alistarh, Seth Gilbert, Rachid Guerraoui, and Corentin Travers. Generating fast indulgent
algorithms. In International Conference on Distributed Computing and Networking (ICDCN),
2011.

8 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Correctness of Tendermint-core blockchains. In Conference on Principles of
Distributed Systems (OPODIS), 2018.

9 Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara Tucci-
Piergiovanni. Dissecting Tendermint. In Conference on Networked Systems (NETYS), 2019.

10 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804-823, 1985.

11 Rida A. Bazzi and Yin Ding. Non-skipping timestamps for Byzantine data storage systems.
In Symposium on Distributed Computing (DISC), 2004.

12 Christian Berger, Hans P. Reiser, and Alysson Bessani. Making reads in BFT state machine
replication fast, linearizable, and live. In Symposium on Reliable Distributed Systems (SRDS),
2021.

13 Alysson Neves Bessani, Jodo Sousa, and Eduardo Adilio Pelinson Alchieri. State machine
replication for the masses with BFT-SMART. In Conference on Dependable Systems and
Networks (DSN), 2014.

14 Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, and
André Schiper. Tolerating corrupted communication. In Symposium on Principles of Distributed
Computing (PODC), 2007.

12:17

DISC 2022

https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
https://derekhsorensen.com/docs/CBC_Casper_Flaw.pdf
http://arxiv.org/abs/1712.01367

12:18

Liveness and Latency of Byzantine State-Machine Replication

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Gabriel Bracha. Asynchronous Byzantine agreement protocols. Inf. Comput., 75(2):130-143,
1987.

Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making Byzantine consensus live. In
Symposium on Distributed Computing (DISC), 2020.

Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Liveness and latency of Byzantine
state-machine replication (extended version). arXiv, abs/2202.06679, 2022. arXiv:2202.06679.
Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. arXiv,
abs/1807.04938, 2018. arXiv:1807.04938.

Christian Cachin. Personal communication, 2022.

Christian Cachin, Rachid Guerraoui, and Luis E. T. Rodrigues. Introduction to Reliable and
Secure Distributed Programming (2 ed.). Springer, 2011.

Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient
asynchronous broadcast protocols. In International Cryptology Conference (CRYPTO), 2001.
Christian Cachin and Marko Vukolié. Blockchain consensus protocols in the wild (keynote
talk). In Symposium on Distributed Computing (DISC), 2017.

Miguel Castro. Practical Byzantine Fault Tolerance. PhD thesis, Massachusetts Institute of
Technology, 2001.

Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In Symposium on
Operating Systems Design and Implementation (OSDI), 1999.

Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems, 20(4):398-461, 2002.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225-267, 1996.

Bernadette Charron-Bost and André Schiper. The Heard-Of model: computing in distributed
systems with benign faults. Distributed Comput., 22(1):49-71, 2009.

Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults. In Symposium on Networked
Systems Design and Implementation (NSDI), 2009.

Danny Dolev, Joseph Y. Halpern, Barbara Simons, and Ray Strong. Dynamic fault-tolerant
clock synchronization. J. ACM, 42(1):143-185, 1995.

Assia Doudou, Benoit Garbinato, and Rachid Guerraoui. Abstractions for devising Byzantine-
resilient state machine replication. In Symposium on Reliable Distributed Systems (SRDS),
2000.

Cezara Dragoi, Josef Widder, and Damien Zufferey. Programming at the edge of synchrony.
Proc. ACM Program. Lang., 4(OOPSLA), 2020.

Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288-323, 1988.

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus
with one faulty process. J. ACM, 32(2):374-382, 1985.

Felix C. Freiling, Rachid Guerraoui, and Petr Kuznetsov. The failure detector abstraction.
ACM Comput. Surv., 43(2):9:1-9:40, 2011.

Eli Gafni. Round-by-round fault detectors: Unifying synchrony and asynchrony. In Symposium
on Principles of Distributed Computing (PODC), 1998.

Seth Gilbert, Rachid Guerraoui, and Dariusz R. Kowalski. On the message complexity of
indulgent consensus. In Symposium on Distributed Computing (DISC), 2007.

Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K.
Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. SBFT: A scalable and
decentralized trust infrastructure. In Conference on Dependable Systems and Networks (DSN),
2019.

Rachid Guerraoui. Indulgent algorithms (preliminary version). In Symposium on Principles
of Distributed Computing (PODC), 2000.

http://arxiv.org/abs/2202.06679
http://arxiv.org/abs/1807.04938

M

39

40

41

42

43

44

45
46

47

48

49

50

51

52

53

54

55

56

57

. Bravo, G. Chockler, and A. Gotsman

Rachid Guerraoui and Michel Raynal. The information structure of indulgent consensus. IEEFE
Transactions on Computers, 53(4):453-466, 2004.

Andreas Haeberlen and Petr Kuznetsov. The fault detection problem. In Conference on
Principles of Distributed Systems (OPODIS), 2009.

Amir Herzberg and Shay Kutten. Fast isolation of arbitrary forwarding faults. In Symposium
on Principles of Distributed Computing (PODC), 1989.

Idit Keidar and Alexander Shraer. Timeliness, failure-detectors, and consensus performance.

In Symposium on Principles of Distributed Computing (PODC), 2006.

Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Byzantine fault detectors
for solving consensus. The Computer Journal, 46(1):16-35, 2003.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. Zyzzyva:
Speculative Byzantine fault tolerance. ACM Trans. Comput. Syst., 27(4):7:1-7:39, 2010.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.
Dahlia Malkhi and Michael Reiter. Unreliable intrusion detection in distributed computations.

In Workshop on Computer Security Foundations (CSFW), 1997.

Achour Mostéfaoui and Michel Raynal. Solving consensus using Chandra-Toueg’s unreliable
failure detectors: A general quorum-based approach. In Symposium on Distributed Computing
(DISC), 1999.

Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth: Byzantine
view synchronization. In Cryptoeconomics Systems Conference (CES), 2020.

Oded Naor and Idit Keidar. Expected linear round synchronization: The missing link for
linear Byzantine SMR. In Symposium on Distributed Computing (DISC), 2020.

Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.

In Symposium on Distributed Computing (DISC), 2017.

Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confirmation.

In Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT),
2018.

Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299-319, 1990.

Barbara Simons, Jennifer Welch, and Nancy Lynch. An overview of clock synchronization. In
Fault-Tolerant Distributed Computing, 1986.

Jodo Sousa. Byzantine State Machine Replication for the Masses. PhD thesis, University of
Lisbon, 2017.

Chrysoula Stathakopoulou, Tudor David, and Marko Vukolié. Mir-BFT: High-throughput
BFT for blockchains. arXiv, abs/1906.05552, 2019. arXiv:1906.05552.

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. Spin
one’s wheels? Byzantine fault tolerance with a spinning primary. In Symposium on Reliable
Distributed Systems (SRDS), 20009.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In Symposium on Principles of Distributed
Computing (PODC), 2019.

12:19

DISC 2022

http://arxiv.org/abs/1906.05552

	1 Introduction
	2 System Model
	3 SMR Synchronizer Specification and Implementation
	3.1 A Bounded-Space SMR Synchronizer
	3.2 SMR Synchronizer Correctness and Latency Bounds

	4 PBFT Using an SMR Synchronizer
	5 Proving the Liveness of PBFT
	6 Latency Bounds for PBFT
	7 Additional Case Studies
	8 Related Work and Discussion

