A Generic Logic for Proving Linearizability

Artem Khyzha'!, Alexey Gotsman', and Matthew Parkinson?

! IMDEA Software Institute
2 Microsoft Research Cambridge

Abstract. Linearizability is a commonly accepted notion of correctness for li-
braries of concurrent algorithms, and recent years have seen a number of pro-
posals of program logics for proving it. Although these logics differ in technical
details, they embody similar reasoning principles. To explicate these principles,
we propose a logic for proving linearizability that is generic: it can be instantiated
with different means of compositional reasoning about concurrency, such as sepa-
ration logic or rely-guarantee. To this end, we generalise the Views framework for
reasoning about concurrency to handle relations between programs, required for
proving linearizability. We present sample instantiations of our generic logic and
show that it is powerful enough to handle concurrent algorithms with challenging
features, such as helping.

1 Introduction

To manage the complexity of constructing concurrent software, programmers package
often-used functionality into libraries of concurrent algorithms. These encapsulate data
structures, such as queues and lists, and provide clients with a set of methods that can
be called concurrently to operate on these (e.g., java.util.concurrent). To maximise per-
formance, concurrent libraries may use sophisticated non-blocking techniques, allow-
ing multiple threads to operate on the data structure with minimum synchronisation.
Despite this, each library method is usually expected to behave as though it executes
atomically. This requirement is formalised by the standard notion of correctness for
concurrent libraries, linearizability [14], which establishes a form of a simulation be-
tween the original concrete library and another abstract library, where each method is
implemented atomically.

A common approach to proving linearizability is to find a linearization point for
every method of the concrete library at which it can be thought of taking effect. 3 Given
an execution of a concrete library, the matching execution of the abstract library, re-
quired to show the simulation, is constructed by executing the atomic abstract method
at the linearization point of the concrete method. A difficulty in this approach is that
linearization points are often not determined by a statically chosen point in the method
code. For example, in concurrent algorithms with helping [13], a method may execute
an operation originally requested by another method, called in a different thread; then
the linearization point of the latter method is determined by an action of the former.

Recent years have seen a number of program logics for proving linearizability
(see [6] for a survey). To avoid reasoning about the high number of possible interleav-
ings between concurrently executing threads, these logics often use thread-modular

3 Some algorithms cannot be reasoned about using linearization points, which we discuss in §7.

reasoning. They establish protocols that threads should follow when operating on the
shared data structure and reason separately about every thread, assuming that the rest
follow the protocols. The logics for proving linearizability, such as [26, 18], usually bor-
row thread-modular reasoning rules from logics originally designed for proving non-
relational properties of concurrent programs, such as rely-guarantee [15], separation
logic [21] or combinations thereof [26,7]. Although this leads the logics to differ in
technical details, they use similar methods for reasoning about linearizability, usually
based on linearization points. Despite this similarity, designing a logic for proving lin-
earizability that uses a particular thread-modular reasoning method currently requires
finding the proof rules and proving their soundness afresh.

To consolidate this design space of linearization-point-based reasoning, we propose
a logic for linearizability that is generic, i.e., can be instantiated with different means
of thread-modular reasoning about concurrency, such as separation logic [21] or rely-
guarantee [15]. To this end, we build on the recently-proposed Views framework [3],
which unifies thread-modular logics for concurrency, such as the above-mentioned
ones. Our contribution is to generalise the framework to reason about relations between
programs, required for proving linearizability. In more detail, assertions in our logic
are interpreted over a monoid of relational views, which describe relationships between
the states of the concrete and the abstract libraries and the protocol that threads should
follow in operating on these. The operation of the monoid, similar to the separating
conjunction in separation logic [21], combines the assertions in different threads while
ensuring that they agree on the protocols of access to the state. The choice of a particu-
lar relational view monoid thus determines the thread-modular reasoning method used
by our logic.

To reason about linearization points, relational views additionally describe a set of
special fokens (as in [26, 18, 2]), each denoting a one-time permission to execute a given
atomic command on the state of the abstract library. The place where this permission is
used in the proof of a concrete library method determines its linearization point, with the
abstract command recorded by the token giving its specification. Crucially, reasoning
about the tokens is subject to the protocols established by the underlying thread-modular
reasoning method; in particular, their ownership can be transferred between different
threads, which allows us to deal with helping.

We prove the soundness of our generic logic under certain conditions on its instan-
tiations (Definition 2, §3). These conditions represent our key technical contribution, as
they capture the essential requirements for soundly combining a given thread-modular
method for reasoning about concurrency with the linearization-point method for rea-
soning about linearizability.

To illustrate the use of our logic, we present its example instantiations where thread-
modular reasoning is done using disjoint concurrent separation logic [20] and a combi-
nation of separation logic and rely-guarantee [26]. We then apply the latter instantiation
to prove the correctness of a sample concurrent algorithm with helping. We expect that
our results will make it possible to systematically design logics using the plethora of
other methods for thread-modular reasoning that have been shown to be expressible in
the Views framework [20, 4, 1].

—— C Com x PCom x Com

C1 =% O
CL;Cy 50 Cy C*LC’;C’* a -5 skip
ie{1,2}
CL+Cy % ¢ skip ; C -4 ' C* -4 skip

— C (Com x State) x (ThreadlD x PCom) x (Com X State)
o €[a],(0) C—C’

t,a

(C,a) —— {(C",d")

Fig. 1. The operational semantics of sequential commands

2 Methods Syntax and Sequential Semantics

We consider concurrent programs that consist of two components, which we call /i-
braries and clients. Libraries provide clients with a set of methods, and clients call
them concurrently. We distinguish concrete and abstract libraries, as the latter serve as
specification for the former due to its methods being executed atomically.

Syntax. Concrete methods are implemented as sequential commands having the syntax:
CeComu=a|C;C|C+C|C*|skip, where e PCom

The grammar includes primitive commands « from a set PCom, sequential composition
C ; C, non-deterministic choice C' + C' and a finite iteration C'* (we are interested only
in terminating executions) and a termination marker skip. We use + and (-)* instead
of conditionals and while loops for theoretical simplicity: as we show at the end of
this section, given appropriate primitive commands the conditionals and loops can be
encoded. We also assume a set APCom of abstract primitive commands, ranged over
by A, with which we represent methods of an abstract library.

Semantics. We assume a set State of concrete states of the memory, ranged over by o,
and abstract states AState, ranged over by Y. The memory is shared among N threads
with thread identifiers ThreadlD = {1,2,..., N}, ranged over by .

We assume that semantics of each primitive command « is given by a non-
deterministic state transformer [a], : State — P(State), where t € ThreadID. For
a state o, the set of states [], (o) is the set of possible resulting states for « executed
atomically in a state o and a thread ¢. State transformers may have different seman-
tics depending on a thread identifier, which we use to introduce thread-local memory
cells later in the technical development. Analogously, we assume semantics of abstract
primitive commands with state transformers [A], : AState — P(AState), all of which
update abstract states atomically. We also assume a primitive command id € PCom
with the interpretation [id], (o) £ {c}, and its abstract counterpart id € APCom.

The sets of primitive commands PCom and APCom as well as corresponding state
transformers are parameters of our framework. In Figure 1 we give rules of operational
semantics of sequential commands, which are parametrised by semantics of primi-
tive commands. That is, we define a transition relation —» C (Com X State) x

t,a

(ThreadID x PCom) x (Com x State), so that (C, o) — (C’, ¢’} indicates a tran-

sition from C' to C’ updating the state from o to ¢’ with a primitive command « in a
thread ¢. The rules of the operational semantics are standard.

Let us show how to define traditional control flow primitives, such as an if-statement
and a while-loop, in our programming language. Assuming a language for arithmetic
expressions, ranged over by F, and a function [E]_ that evaluates expressions in a
given state o, we define a primitive command assume(F) that acts as a filter on states,
choosing only those where E evaluates to non-zero values.

[assume(E)],(0) £ if [E], # 0 then {o} else (.

Using assume(F) and the C-style negation ! E in expressions, a conditional and a while-
loop can be implemented as the following commands:

if E then () else Cy = (assume(E);C1) + (assume(!E); Cs)
while £ do C 2 (assume(F);C)*;assume(!E)

3 The generic logic

In this section, we present our framework for designing program logics for lineariz-
ability proofs. Given a concrete method and a corresponding abstract method, we aim
to demonstrate that the former has a linearization point either within its code or in the
code of another thread. The idea behind such proofs is to establish simulation between
concrete and abstract methods using linearization points to determine when the abstract
method has to make a transition to match a given execution of the concrete method. To
facilitate such simulation-based proofs, we design our relational logic so that formulas
in it denote relations between concrete states, abstract states and special fokens.
Tokens are our tool for reasoning about linearization points. At the beginning of its
execution in a thread ¢, each concrete method m is given a token todo(A,,,) of the corre-
sponding abstract primitive command A,,,. The token represents a one-time permission
for the method to take effect, i.e. to perform a primitive command A,, on an abstract
machine. When the permission is used, a token todo(A,,) in a thread ¢ is irreversibly
replaced with done(A,,,). Thus, by requiring that a method start its execution in a thread
t with a token todo(A,,,) and ends with done(A,,,), we ensure that it has in its code a
linearization point. The tokens of all threads are described by A € Tokens:

Tokens = ThreadlD — ({todo(A) | A € APCom} U {done(A) | A € APCom})

Reasoning about states and tokens in the framework is done with the help of rela-
tional views. We assume a set Views, ranged over by p, ¢ and r, as well as a reification
function | | : Views — P(State x AState x Tokens) that interprets views as ternary
relations on concrete states, abstract states and indexed sets of tokens.

Definition 1 A relational view monoid is a commutative monoid (Views, x, u), where
Views is an underlying set of relational views, * is a monoid operation and u is a unit.

The monoid structure of relational views allows treating them as restrictions on
the environment of threads. Intuitively, each thread uses views to declare a protocol
that other threads should follow while operating with concrete states, abstract states

and tokens. Similarly to the separating conjunction from separation logic, the monoid
operation * (view composition) applied to a pair of views combines protocols of access
to the state and ensures that they do not contradict each other.

Disjoint Concurrent Separation logic. To give an example of a view monoid, we
demonstrate the structure inspired by Disjoint Concurrent Separation logic (DCSL). A
distinctive feature of DCSL is that its assertions enforce a protocol, according to which
threads operate on disjoint pieces of memory. We assume a set of values Val, of which
a subset Loc C Val represents heap addresses. By letting State = AState = (Loc —4,
Val)U{4 } we represent a state as either a finite partial function from locations to values
or an exceptional faulting state /7, which denotes the result of an invalid memory access.
We define an operation e on states, which results in 4 if either of the operands is 4, or
the union of partial functions if their domains are disjoint. Finally, we assume that the
set PCom consists of standard heap-manipulating commands with usual semantics [21,
3]

We consider the view monoid (P((State \ {4}) x (AState \ {4}) X
Tokens), *si, ([],[],[])): the unit is a triple of nowhere defined functions [|, and the
view composition defined as follows:

prsLp ={(cec’ , NeX AWA)|(0,X,A)epA(c/, X, A)ep}.

In this monoid, the composition enforces a protocol of exclusive ownership of parts of
the heap: a pair of views can be composed only if they do not simultaneously describe
the content of the same heap cell or a token. Since tokens are exclusively owned in
DCSL, they cannot be accessed by other threads, which makes it impossible to express
a helping mechanism with the DCSL views. In §5, we present another instance of our
framework and reason about helping in it.

Reasoning about linearization points. We now introduce action judgements, which
formalise linearization-points-based approach to proving linearizability within our

framework.
[p*r]

Let us assume that « is executed in a concrete state 0 withan o ——— %
abstract state X' and a set of tokens A satisfying a precondition !
p. According to the action judgement « I~ {p}{q}, for every [o] I TA]
update ¢’ € [a], (o) of the concrete state, the abstract state may e Lg*r) EV ,

be changed to £’ € [A],,(X) in order to satisfy the postcondi-
tion ¢, provided that there is a token todo(A) in a thread #'. When the abstract state
X is changed and the token todo(A) of a thread ¢’ is used, the concrete state update
corresponds to a linearization point, or to a regular transition otherwise.

Definition 2 The action judgement o I {p}{q} holds, iff the following is true:
Vr.o,0' X, A (0,2, A) € |[pxr] Ao’ € [a],(0) =
IX AP (X, A X AV A (o, X AN € g,
where LP* is the transitive closure of the following relation:
LP(X, A, 2", A") £ 3t A. X € [A], (Z)AA(t) = todo(A)AA" = A[t' : done(A)],

and f|x : a] denotes the function such that f[x : a](z) = a and for any y # =,

flz = al(y) = f(y).

[P« Ql; = [Pl; = [<l; [P = Ql;, =[Pl = [<];
[Pv Q]]i = [[P]]i v [[Q]]i [EX~PHi = \/nEVaI[[P]]i[X:n]

Fig. 2. Satisfaction relation for the assertion language Assn

Note that depending on pre- and postconditions p and ¢, « I {p}{gq} may encode
a regular transition, a conditional or a standard linearization point. It is easy to see
that the latter is the case only when in all sets of tokens A from |p| some thread ¢’
has a todo-token, and in all A’ from |g| it has a done-token. Additionally, the action
judgement may represent a conditional linearization point of another thread, as the LP
relation allows using tokens of other threads.

Action judgements have a closure property that is important for thread-modular rea-
soning: when « IF; {p}{q} holds, so does « Iy {pxr}{g*r} for every view r. That is,
execution of o and a corresponding linearization point preserves every view r that p can
be composed with. Consequently, when in every thread action judgements hold of prim-
itive commands and thread’s views, all threads together mutually agree on each other’s
protocols of the access to the shared memory encoded in their views. This enables rea-
soning about every thread in isolation with the assumption that its environment follows
its protocol. Thus, the action judgements formalise the requirements that instances of
our framework need to satisfy in order to be sound. In this regard action judgements
are inspired by semantic judgements of the Views Framework [3]. Our technical contri-
bution is in formulating the essential requirements for thread-modular reasoning about
linearizability of concurrent libraries with the linearization-point method and in extend-
ing the semantic judgement with them.

We let a repartitioning implication of views p and ¢, written p = ¢, denote
Vr.|p*r] C |g*r]. A repartitioning implication p = ¢ ensures that states satisfying
p also satisfy ¢ and additionally requires this property to preserve any view r.

Program logic. We are now in a position to present our generic logic for linearizabil-
ity proofs via the linearization-point method. Assuming a view monoid and reification
function as parameters, we define a minimal language Assn for assertions P and Q
denoting sets of views:

P,Q€eAssn=p|PxQ|PVQ|P=Q|3X.P]|...

The grammar includes view assertions p, a syntax VAssn of which is a parameter of
the framework. Formulas of Assn may contain the standard connectives from separa-
tion logic, the repartitioning implication and the existential quantification over logical
variables X, ranging over a set LVar.

Let us assume an interpretation of logical variables i € Int = LVar — Val that
maps logical variables from LVar to values from a finite set Val. In Figure 2, we define
a function [-]. : Assn X Int — Views that we use to interpret assertions. Interpretation
of assertions is parametrised by [-]. : VAssn x Int — Views. In order to interpret
disjunction, we introduce a corresponding operation on views and require the following
properties from it:

lpVal=lp]Ulq] (pVag)xr=(px7)V(g*r))

Vi. oIk {[PD; HICL: Y APy G {P} P} C2 {Q)

PR PY a {0} (SFQ) ~ [P} C1 ; Cz {Q}
F {P} C {Q} Fo {Pi} C {Qi} Fi{P2} C {Q2}
(FRAME) - s Ry c {0y P19 e {PLV P2} C {Q1 Vv 05}
H{P} C{Q} F{P} Ci {Q} H{P}C2{Q}
(Ex) L GX.PI C {(3X.0} (CHOICE) SO0 (O
(ITER) m P} C {P} (CONSEQ) PP=P R{PrC{Q} Q2=

F {P} C* {P} HA{P'} C {Q'}

Fig. 3. Proof rules

The judgements of the program logic take the form -, {P} C' {Q}. In Figure 3,
we present the proof rules, which are mostly standard. Among them, the PRIM rule
is noteworthy, since it encorporates the simulation-based approach to reasoning about
linearization points introduced by action judgements. The FRAME rule applies the idea
of local reasoning from separation logic [21] to views. The CONSEQ enables weak-
ening a precondition or a postcondition in a proof judgement and uses repartitioning
implications to ensure the thread-modularity of the weakened proof judgement.

Semantics of proof judgements. We give semantics to judgements of the program
logic by lifting the requirements of action judgements to sequential commands.

Definition 3 (Safety Judgement) We define safe; as the greatest relation such that the
Jollowing holds whenever safe;(p, C, q) does:

— if C # skip, thenVC', 0. C =5 C" = /. alFy {p}{p'} Asafe,(p',C", q),
— if C = skip, then p = q.

Lemmad4 V¢, P,C, Q. -, {P} C {Q} = Vi.safe,([P];,C,[<Ql;).

We can understand the safety judgement safe;([P];, C, [Q];) as an obligation to
create a sequence of views [P]; = pi,p2,...,pnt1 = [Q]; for each finite trace
a1, Qa,. .., a, of C tojustify each transition with action judgements «; Ik {p1 }{p2},

.y ap Ik {pn H{pn+1}. Thus, when safe,([P];, C, [Q];) holds, it ensures that every
step of the machine correctly preserves a correspondence between a concrete and ab-
stract execution. Intuitively, the safety judgement lifts the simulation between concrete
and abstract primitive commands established with action judgements to the implemen-
tation and specification of a method.

In Lemma 4, we establish that the proof judgements of the logic imply the safety
judgements. As a part of the proof, we show that each of the proof rules of the logic
holds of safety judgements. Due to space constraints, this and other proofs are given in
the extended version of the paper [17].

4 Soundness

In this section, we formulate linearizability for libraries. We also formulate the sound-
ness theorem, in which we state proof obligations that are necessary to conclude lin-
earizability.

Libraries. We assume a set of method names Method, ranged over by m, and consider
a concrete library ¢ : Method — ((Val x Val) — Com) that maps method names
to commands from Com, which are parametrised by a pair of values from Val. For a
given method name m € dom(¥¢) and values a,v € Val, a command £(m, a,v) is an
implementation of m, which accepts a as a method argument and either returns v or
does not terminate. Such an unusual way of specifying method’s arguments and return
values significantly simplifies further development, since it does not require modelling
a call stack.

Along with the library ¢ we consider its specification in the form of an abstract li-
brary £ € Method — ((ValxVal) — APCom) implementing a set of methods dom (L)
atomically as abstract primitive commands {£(m, a,v) | m € dom(L)} parametrised
by an argument @ and a return value v. Given a method m € Method, we assume that a
parametrised abstract primitive command £(m) is intended as a specification for £(m).

Linearizability. The linearizability assumes a complete isolation between a library and
its client, with interactions limited to passing values of a given data type as parame-
ters or return values of library methods. Consequently, we are not interested in internal
steps recorded in library computations, but only in the interactions of the library with
its client. We record such interactions using histories, which are traces including only
events call m(a) and ret m(v) that indicate an invocation of a method m with a param-
eter a and returning from m with a return value v, or formally:

hu=c¢e| (t,callm(a))::h| (¢ ret m(v)) :: h.

Given a library ¢, we generate all finite histories of ¢ by considering N threads re-
peatedly invoking library methods in any order and with any possible arguments. The
execution of methods is described by semantics of commands from § 2.

We define a thread pool T : ThreadlD — (idle W (Com x Val)) to characterise
progress of methods execution in each thread. The case of 7(¢) = idle corresponds to
no method running in a thread ¢t. When 7(¢) = (C, v), to finish some method returning
v it remains to execute C'.

Definition 5 We let H[{, 0] = U, Hnlll, (At.idle), o] denote the set of all possi-
ble histories of a library { that start from a state o, where for a given thread pool T,
Hn[[l, T, 0] is defined as a set of histories such that Ho[[{, T, 0] = {e} and:

Halll, 7, 0] 2 {((t,call m(a)) :: h) | a € Val Am € dom(£) A 7(t) = idle A
Ju.h € Hp_1[l, 7]t : (€(m,a,v),v)],0]}

t,a

U{h|3t,a,CC o v.7(t) = (C,v) AN(C,o0) — (C’", 0" A
heHpall,7[t: (C',v)],o']}

U {((t,ret m(v)) :: h) | m € dom(€) A 7(t) = (skip,v) A
h € Hp_1[t,7[t : idle], o]}

Thus, we construct the set of all finite histories inductively with all threads initially
idling. At each step of generation, in any idling thread ¢ any method m € dom(¢) may
be called with any argument a and an expected return value v, which leads to adding
a command #(m, a,v) to the thread pool of a thread ¢. Also, any thread ¢, in which

t, , .
7(t) = (C,v), may do a transition (C, o) ., (C’, o' changing a command in the

thread pool and the concrete state. Finally, any thread that has finished execution of a
method’s command (7(¢) = (skip,v)) may become idle by letting 7(¢) = idle.

We define H,[L, T, 2] analogously and let the set of all histories of an abstract
library £ starting from the initial state X be H[L, 2] = U, Hn[£, (At.idle), Z].

Definition 6 For libraries ¢ and L such that dom(¢) = dom(L), we say that L lin-
earizes { in the states o and X, written ({,0) C (L, X)), if H[¢, o] C H[L, X].

That is, an abstract library £ linearizes ¢ in the states o and Y, if every history of ¢ can
be reproduced by L. The definition is different from the standard one [14]: we use the
result obtained by Gotsman and Yang [10] stating that the plain subset inclusion on the
sets of histories produced by concrete and abstract libraries is equivalent to the original
definition of linearizability.

Soundness w.r.t. linearizability. We now explain proof obligations that we need to
show for every method m of a concrete library ¢ to conclude its linearizability. Partic-
ularly, for every thread ¢, argument a, return value v, and a command ¢(m, a,v) we
require that there exist assertions P (¢, £L(m, a,v)) and Q(¢, L(m, a,v)), for which the
following Hoare-style specification holds:

Fo {P(t, L(m,a,v))} £(m,a,v) {Q(t, L(m,a,v))} 2)

In the specification of ¢(m, a,v), P(t, L(m,a,v)) and Q(t, L(m,a,v)) are assertions
parametrised by a thread ¢ and an abstract command £(m,a,v). We require that in
a thread ¢ of all states satisfying P (¢, £L(m,a,v)) and Q(t, L(m,a,v)) there be only
tokens todo(L(m, a,v)) and done(L(m, a,v)) respectively:

Vi t,0, 2, A, 1.
(0,2, 4) € [[P(t,L(m,a,v))]; x| = A(t) = todo(L(m,a,v))) 3)
A((o,2,4) € [[Q(t, L(m,a,v))]; xr] = A(t) = done(L(m, a,v)))

Together, (2) and (3) impose a requirement that a concrete and an abstract method return
the same return value v. We also require that the states satisfying the assertions only
differ by a token of a thread ¢:

Vi, t, A, A r, A (0, X, Alt : done(A)]) € [[Q(t,A)]; x 7] <~
(0,2, Alt - todo(A")]) € [[P(t,AN)];*r]. 4

Theorem 7 For given libraries £ and L together with states o and X, ({,0) C (L, X))
holds, if dom(¢) = dom(L) and (2), (3) and (4) hold for every method m, thread t and
values a and v.

5 The RGSep-based Logic

In this section, we demonstrate an instance of the generic proof system that is capa-
ble of handling algorithms with helping. This instance is based on RGSep [26], which
combines rely-guarantee reasoning [15] with separation logic [21].

The main idea of the logic is to partition the state into several thread-local parts
(which can only be accessed by corresponding threads) and the shared part (which

can be accessed by all threads). The partitioning is defined by proofs in the logic: an
assertion in the code of a thread restricts its local state and the shared state. In addition,
the partitioning is dynamic, meaning that resources, such as a part of a heap or a token,
can be moved from the local state of a thread into the shared state and vice versa. By
transferring a token to the shared state, a thread gives to its environment a permission
to change the abstract state. This allows us to reason about environment helping that
thread.

The RGSep-based view monoid. Similarly to DCSL, we assume that states represent
heaps, i.e. that State = AState = Loc —g, Val W {4}, and we denote all states but a
faulting one with Statey = AStatey = Loc —g, Val. We also assume a standard set
of heap-manipulating primitive commands with usual semantics.

We define views as triples consisting of three components: a predicate P and binary
relations R and G. A predicate P € P((Statey x AStatey x Tokens)?) is a set of
pairs ([, s) of local and shared parts of the state, where each part consists of concrete
state, abstract state and tokens. Guarantee G and rely R are relations from P ((State x
AState x Tokens)?), which summarise how individual primitive commands executed by
the method’s thread (in case of () and the environment (in case of R) may change the
shared state. Together guarantee and rely establish a protocol that views of the method
and its environment respectively must agree on each other’s transitions, which allows us
to reason about every thread separately without considering local state of other threads,
assuming that they follow the protocol. The agreement is expressed with the help of a
well-formedness condition on views of the RGSep-based monoid that their predicates
must be stable under rely, meaning that their predicates take into account whatever
changes their environment can make:

stable(P, R) = VI,s,s".(I,s) € PA(s,s) € R = (I,5') € P.

A predicate that is stable under rely cannot be invalidated by any state transition from
rely. Stable predicates with rely and guarantee relations form the view monoid with the
underlying set of views Viewsgrgsep = {(P, R, G) | stable(P,R)} U {L}, where L
denotes a special inconsistent view with the empty reification. The reification of other
views simply joins shared and local parts of the state:

L(P, R, G)J = {(O’l OCTS,EZ L] ES,AZ H’JAS) | ((O'Z,EI,AI), (JS7ES,AS)) S P}

Let an operation - be defined on states analogously to DCSL. Given predicates P
and P’, we let P * P’ be a predicate denoting the pairs of local and shared states in
which the local state can be divided into two substates such that one of them together
with the shared state satisfies P and the other together with the shared state satisfies P’:

P«P" £ {((o180], 505}, AWA), 5) | (01, 21, A1), 5) € PA((07, 57, A)), 5) € P'}

We now define the monoid operation *, which we use to compose views of different
threads. When composing views (P, R, G) and (P’, R', G’) of the parallel threads, we
require predicates of both to be immune to interference by all other threads and each
other. Otherwise, the result is inconsistent:

(P,R,G)*(P',R,G')2£if GC R NG C Rthen (P*P,RNR ,GUG")else L.

(State x AState x Tokens) x (State x AState x Tokens) X Int x Assn

(O’l,El,Al) (O’S,ES,A))'*E’—)F ifoz*H[E]] [[F]]iLEl:[], andAl H
(o1, 21, Ar), (0s, X5, As),1) E E F, iff o =[], X1 = [[E]; : [F]], and A; =[]
(o1, EZ,AZ), (os, s),1) |= [todo(A)], , iff oy =], and A; = [t : todo(A)]
((]
((

LS

),
o, A,)

UZ,EZ, l): 0—97287A9)71
2, A,)

E:
(
(
()
(:H and A; = [t : done(A)
(

[
[
[
[

IR
) = [done(A)], , iff oy =[], 2
UlaElaAl)a Os; 2isy Qs 71) ':- iff oy =] 2= H H? and
((UaEs,A), ([LILID:) Em
((1, X1, A1), (05, s, As), i) Emxn’, iff there exist o}, o], X[, X}, A}, A} such that

ci=oclea! =Sl e Xl A = Alw A,
((0272{7A2)7(037257A~§)7i) ': T and
((Ul”72l”aA2/)a (UsvzsaAS)ai)): 7T/

Fig. 4. Satisfaction relation for a fragment of the assertion language VAssn

That is, we let the composition of views be consistently defined when the state transi-
tions allowed in a guarantee of one thread are treated as environment transitions in the
other thread, i.e. G C R’ and G’ C R. The rely of the composition is R N R/, since the
predicate Px P’ is guaranteed to be stable only under environment transitions described
by both R and R’. The guarantee of the composition is G U G’, since other views need
to take into account all state transitions either from G or from G’.

The RGSep-based program logic. We define the view assertion language VAssn that is
a parameter of the proof system. Each view assertion p takes form of a triple (7, R, G),
and the syntax for 7 is:

E:=a|X|E+FE]|..., where X € LVar,a € Val
nu=E=FE|E—FE|E=E|[todo(A)], | [done(A)], |[7]| 77| -7]..

Formula 7 denotes a predicate of a view as defined by a satisfaction relation |= in
Figure 4. There £ — E and E = E denote a concrete and an abstract state describing
singleton heaps. A non-boxed formula 7 denotes the view with the local state satisfying
7 and shared state unrestricted; denotes the view with the empty local state and
the shared state satisfying 7; m * 7’ the composition of predicates corresponding to
and 7’. The semantics of the rest of connectives is standard. Additionally, for simplicity
of presentation of the syntax, we require that boxed assertions be not nested (as
opposed to preventing that in the definition).

The other components R and G of a view assertion are sets of rely/guarantee actions
A with the syntax: A ::= 7 ~» 7’. An action ™ ~» 7’ denotes a change of a part of
the shared state that satisfies 7 into one that satisfies 7, while leaving the rest of the
shared state unchanged. We associate with an action = ~~ 7’ all state transitions from
the following set:

[r ~ '] = {((o -o—g’,xs-zmsw;'»(o—;-ag’,zgoxg’,A;M’»|
3 (1,11 1) (06, B A1) = [T A 1 1) (0 20 AL,) = [

We give semantics to view assertions with the function [-]. that is defined as follows:

[[(W’Rvg)]]i = ({(l,S) ‘ (l?87i) ': W}’UAGR[[A]LUAEQ[[‘AH).

1 int L = 0, k = 0, arg[N], res[N]; \\ initially all res[i] # nil

3 L(inc,a,r):

+ {global x M(t) « [todo(L(inc, a,r))], }

s argmytid()] := a;

6 res[mytid()] nil;

7 {global * ‘ true * (taskiodo (£, a, 1) V taskgone (¢, a, 1)) ‘}

s while (res[mytid()] = nil):

9 if (CAS(&L, 0, mytid())):

10 {‘ &L+ t % ®jeThreadiD tinv(j) ‘ *‘ true * (taskiodo (t, @, 1) V taskdone (t, a, 7)) ‘ « kinv(_) }

1 for (i :=1; i < Nj; ++i):

12 {‘ &L t % ®jcThreadiD tinv(j) ‘* kinv(_) * LI(i,t,a,r) }
13 if (res[i] = nil):

IV, A, R.kinv(V) * LI(i, ¢, a,r) *
8 { ‘ &L — t % ® jcThreadiD tinv(j) ‘* ‘ true * taskodo (7, 4, R) ‘ }
15 k := k + arg[i];

IV,A,R.&k+—V + Ax &K=V x LI(i,t,a,7) *
8 { ‘ &L t % ® jcThreadiD tinv(y) ‘* ‘ true * taskodo (7, 4, R) ‘ }
17 res[i] := k;

IV, A, R.kinv(V + A) = LI(: + 1,¢,a,r) *
: { ‘ &L 5 t % ®jcThreadiD tinv(j) ‘* ‘ true * taskdone (7, A, R) ‘ }
19 {‘ &L+t * ®jcThreadiD tinv(4) ‘ *‘ true * taskgone (¢, a,) ‘* kinv(-) }
20 L =0;
a1 assume(res[mytid()] = 7);

n {global x M(t) x [done(L(inc,a,r))], }

Fig. 5. Proof outline for a flat combiner of a concurrent increment. Indentation is used for group-
ing commands.

6 Example

In this section, we demonstrate how to reason about algorithms with helping using
relational views. We choose a simple library ¢ implementing a concurrent increment
and prove its linearizability with the RGSep-based logic.

The concrete library £ has one method inc, which increments the value of a shared
counter k by the argument of the method. The specification of / is given by an abstract
library L. The abstract command, provided by £ as an implementation of inc, operates
with an abstract counter K as follows (assuming that X is initialised by zero):

1 L(inc,a,r): < __kabs := __kabs + a; assume(__kabs == r); >

That is, L(inc, a,r) atomically increments a counter and a command assume(K ==
r), which terminates only if the return value r chosen at the invocation equals to the
resulting value of K. This corresponds to how we specify methods’ return values in §4.

In Figure 5, we show the pseudo-code of the implementation of a method inc ina C-
style language along with a proof outline. The method ¢(inc, a, r) takes one argument,

XibY Ay XY xY £Y

M(t) 2] true * (&arg[t] — _ * &reslt] o nil) \
taskiodo (¢, a, 1) = &arg[t] — a x &res|[t] — nil * [todo(L(inc, a,))], ;
taskdone (t, a, 1) £ &arg[t] — a x &res[t] — 7 x 7 # nil x [done(L(inc, a,7))], ;
kinv(V) &k—Vx&K=V

LI(i,t, a,r) 2 | true * ((t < i A taskdone(t, @, 7)) V

(t > i A (taskeodo(t, @, 1) V taskdone(t, @,7))))
tinv(4) £ &arg[i] — _* &resli] B _ V taskodo (4, -, -) V taskdone (4, -, -)
global £ ’ (&L — 0 x kinv(-) V &L 4 0) * ®jeThreadiD tinv(j) |,

=l

Fig. 6. Auxiliary predicates. ® jcThreadid tinv(j) denotes tinv(1) * tinv(2) * - % tinv(V)

increments a shared counter k by it and returns the increased value of the counter. Since
k is shared among threads, they follow a protocol regulating the access to the counter.
This protocol is based on flat combining [11], which is a synchronisation technique
enabling a parallel execution of sequential operations.

The protocol is the following. When a thread ¢ executes £(inc, a,), it first makes
the argument of the method visible to other threads by storing it in an array arg, and
lets res[t] = nil to signal to other threads its intention to execute an increment with
that argument. It then spins in the loop on line 8, trying to write its thread identifier
into a variable L with a compare-and-swap (CAS). Out of all threads spinning in the
loop, the one that succeeds in writing into L becomes a combiner: it performs the incre-
ments requested by all threads with arguments stored in arg and writes the results into
corresponding cells of the array res. The other threads keep spinning and periodically
checking the value of their cells in res until a non-nil value appears in it, meaning that
a combiner has performed the operation requested and marked it as finished. The pro-
tocol relies on the assumption that nil is a value that is never returned by the method.
Similarly to the specification of the increment method, the implementation in Figure 5
ends with a command assume(resmytid()] = r).

The proof outline features auxiliary assertions defined in Figure 6. In the assertions
we let _ denote a value or a logical variable whose name is irrelevant. We assume that
each program variable var has a unique location in the heap and denote it with &var.
Values a, r and ¢ are used in the formulas and the code as constants.

We prove the following specification for £(inc, a, r):

global x M (t)x e global x M (t)x
[todo(ﬁ(inc,a,r))}t} {(inc, a,) {[done(ﬁ(inc,a,r))]t}

In the specification, M (t) asserts the presence of arg[t] and res|t] in the shared state,
and global is an assertion describing the shared state of all the threads. Thus, the pre-
and postcondition of the specification differ only by the kind of token given to .

The main idea of the proof is in allowing a thread ¢ to share the ownership of its
token [todo(L(inc,a,r))], with the other threads. This enables two possibilities for .
Firstly, t may become a combiner. Then ¢ has a linearization point on line 17 (when the
loop index ¢ equals to ¢). In this case ¢ also helps other concurrent threads by performing
their linearization points on line 17 (when ¢ = t). The alternative possibility is that some

Rt, Gt b {

other thread becomes a combiner and does a linearization point of ¢. Thus, the method
has a non-fixed linearization point, as it may occur in the code of a different thread.
We further explain how the tokens are transferred. On line 6 the method performs
the assignment res [mytid()] := nil, signalling to other threads about a task this
thread is performing. At this step, the method transfers its token [todo(L(inc,a,r))],

to the shared state, as represented by the assertion ’ true * taskiodo (¢, a, 1) ‘ In order to

take into consideration other threads interfering with ¢ and possibly helping it, here and
further we stabilise the assertion by adding a disjunct taskdone(t, @, 7).

If a thread ¢ gets help from other threads, then taskgone (¢, @,) holds, which implies
that res[t] # nil and ¢ cannot enter the loop on line 8. Otherwise, if ¢ becomes a
combiner, it transfers kinv(_) from the shared state to the local state of ¢ to take over
the ownership of the counters k and K and thus ensure that the access to the counter
is governed by the mutual exclusion protocol. At each iteration 7 of the forall loop,
res[i] = nil implies that taskiodo (4, -,) holds, meaning that there is a token of a
thread ¢ in the shared state. Consequently, on line 17 a thread ¢ may use it to perform a
linearization point of <.

The actions defining the guarantee relation G, of a thread ¢’ are the following:
&arglt] — -« &res[t] 4 nil ~ &arglt] — a * &res[t] 4 nil;

&argt] — a * &res[t] 4 nil ~ taskiodo(t, a,7);

&L+ 0 x kinv(_) ~ &L — t;

&L — t # taskiodo (T, A, R) ~» &L — t * taskgone (T, 4, R)

&L — t ~» &L+ 0 kinv(_)

taskdone (t, a, 1) ~ &arglt] — a x &res[t] — r

Out of them, conditions 2 and 6 specify transfering the token of a thread ¢ to and from
the shared state, and condition 4 describes using the shared token of a thread 7'. The
rely relation of a thread ¢ is then defined as the union of all actions from guarantee
relations of other threads and an additional action for each thread ¢’ € ThreadID \ {¢}
allowing the client to prepare a thread ¢’ for a new method call by giving it a new token:
[done(L(inc, A, R))],, ~ [todo(L(inc, A", R"))],..

AN e e

7 Related Work

There has been a significant amount of research on methods for proving linearizability.
Due to space constraints, we do not attempt a comprehensive survey here (see [6]) and
only describe the most closely related work.

The existing logics for linearizability that use linearization points differ in the
thread-modular reasoning method used and, hence, in the range of concurrent algo-
rithms that they can handle. Our goal in this paper was to propose a uniform basis for
designing such logics and to formalise the method they use for reasoning about lineariz-
ability in a way independent of the particular thread-modular reasoning method used.
We have only shown instantiations of our logic based on disjoint concurrent separation
logic [20] and RGSep [26]. However, we expect that our logic can also be instantiated
with more complex thread-modular reasoning methods, such as those based on concur-
rent abstract predicates [4] or islands and protocols [25].

Our notion of tokens is based on the idea of treating method specifications as re-
sources when proving atomicity, which has appeared in various guises in several log-
ics [26, 18,2]. Our contribution is to formalise this method of handling linearization
points independently from the underlying thread-modular reasoning method and to for-
mulate the conditions for soundly combining the two (Definition 2, §3).

We have presented a logic that unifies the various logics based on linearization
points with helping. However, much work still remains as this reasoning method cannot
handle all algorithms. Some logics have introduced speculative linearization points to
increase their applicability [25, 18]; our approach to helping is closely related to this,
and we hope could be extended to speculation. But there are still examples beyond this
form of reasoning: for instance there are no proofs of the Herlihy-Wing queue [14] using
linearization points (with helping and/or speculation). This algorithm can be shown lin-
earizable using forwards/backwards simulation [14] and more recently has been shown
to only require a backwards simulation [22]. But integrating this form of simulation
with the more intrincate notions of interference expressible in the Views framework
remains an open problem.

Another approach to proving linearizability is the aspect-oriented method. This
gives a series of properties of a queue [12] (or a stack [5]) implementation which im-
ply that the implementation is linearizable. This method been applied to algorithms
that cannot be handled with standard linearization-point-based methods. However, the
aspect-oriented approach requires a custom theorem per data structure, which limits its
applicability.

In this paper we concentrated on linearizability in its original form [14], which
considers only finite computations and, hence, specifies only safety properties of the
library. Linearizability has since been generalised to also specify liveness properties [9].
Another direction of future work is to generalise our logic to handle liveness, possibly
building on ideas from [19].

When a library is linearizable, one can use its atomic specification instead of the
actual implementation to reason about its clients [8]. Some logics achieve the same
effect without using linearizability, by expressing library specifications as judgements
in the logic rather than as the code of an abstract library [16, 24, 23]. It is an interesting
direction of future work to determine a precise relationship between this method of
specification and linearizability, and to propose a generic logic unifying the two.

8 Conclusion

We have presented a logic for proving the linearizability of concurrent libraries that
can be instantiated with different methods for thread-modular reasoning. To this end,
we have extended the Views framework [3] to reason about relations between programs.
Our main technical contribution in this regard was to propose the requirement for axiom
soundness (Definition 2, §3) that ensures a correct interaction between the treatment of
linearization points and the underlying thread-modular reasoning. We have shown that
our logic is powerful enough to handle concurrent algorithms with challenging features,
such as helping. More generally, our work marks the first step towards unifying the
logics for proving relational properties of concurrent programs.

References

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

R. Bornat, C. Calcagno, P. W. O’Hearn, and M. J. Parkinson. Permission accounting in
separation logic. In POPL, 2005.

. P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. TaDA: A logic for time and data

abstraction. In ECOOP, 2014.

. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. J. Parkinson, and H. Yang. Views: composi-

tional reasoning for concurrent programs. In POPL, 2013.

. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis. Concurrent

abstract predicates. In ECOOP, 2010.

. M. Dodds, A. Haas, and C. M. Kirsch. A scalable, correct time-stamped stack. In POPL,

New York, NY, USA, 2015.

. B. Dongol and J. Derrick. Verifying linearizability: A comparative survey. arXiv CoRR,

1410.6268, 2014.

. X. Feng. Local rely-guarantee reasoning. In POPL, 2009.
. L Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.

Theoretical Computer Science, 2010.

. A. Gotsman and H. Yang. Liveness-preserving atomicity abstraction. In ICALP, 2011.
10.
11.

A. Gotsman and H. Yang. Linearizability with ownership transfer. LMCS, 2013.

D. Hendler, 1. Incze, N. Shavit, and M. Tzafrir. Flat combining and the synchronization-
parallelism tradeoff. In SPAA, 2010.

T. A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-oriented linearizability proofs. In
CONCUR. 2013.

M. Herlihy and N. Shavit. The art of multiprocessor programming. 2008.

M. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM TOPLAS, 1990.

C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.

R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birkedal, and D. Dreyer. Iris:
Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL, 2015.

A. Khyzha, A. Gotsman, and M. Parkinson. A generic logic for proving linearizability (ex-
tended version). arXiv CoRR, 1609.01171, 2016.

H. Liang and X. Feng. Modular verification of linearizability with non-fixed linearization
points. In PLDI, 2013.

H. Liang, X. Feng, and Z. Shao. Compositional verification of termination-preserving re-
finement of concurrent programs. In LICS, 2014.

P. W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical Computer Science,
2007.

P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data
structures. In CSL, 2001.

G. Schellhorn, H. Wehrheim, and J. Derrick. How to prove algorithms linearisable. In CAV.
2012.

I. Sergey, A. Nanevski, and A. Banerjee. Specifying and verifying concurrent algorithms
with histories and subjectivity. In ESOP, 2015.

K. Svendsen and L. Birkedal. Impredicative concurrent abstract predicates. In ESOP, 2014.
A. J. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical relations for
fine-grained concurrency. In POPL, 2013.

V. Vafeiadis. Modular fine-grained concurrency verification. PhD Thesis. Technical Report
UCAM-CL-TR-726, University of Cambridge, 2008.

