
Analysing Snapshot Isolation

Andrea Cerone
IMDEA Software Institute

Alexey Gotsman
IMDEA Software Institute

ABSTRACT
Snapshot isolation (SI) is a widely used consistency model for
transaction processing, implemented by most major databases and
some of transactional memory systems. Unfortunately, its classi-
cal definition is given in a low-level operational way, by an ide-
alised concurrency-control algorithm, and this complicates reason-
ing about the behaviour of applications running under SI. We give
an alternative specification to SI that characterises it in terms of
transactional dependency graphs of Adya et al., generalising serial-
ization graphs. Unlike previous work, our characterisation does not
require adding additional information to dependency graphs about
start and commit points of transactions. We then exploit our speci-
fication to obtain two kinds of static analyses. The first one checks
when a set of transactions running under SI can be chopped into
smaller pieces without introducing new behaviours, to improve per-
formance. The other analysis checks whether a set of transactions
running under a weakening of SI behaves the same as when it run-
ning under SI.

Keywords
Snapshot isolation; transaction chopping; robustness

1. INTRODUCTION
Transactions simplify concurrent programming by enabling

computations on shared data that are isolated from other concur-
rent computations and resilient to failures. They are commonly pro-
vided by databases [7] and, more recently, by transactional memory
systems [22]. Ideally, programmers would like to get strong guar-
antees about the isolation of transactional computations, formalised
by the notion of serializability [7]: the results of concurrently ex-
ecuting a set transactions could be obtained if these transactions
executed atomically in some order. Unfortunately, ensuring serial-
izability carries a significant performance penalty. For this reason,
transactional systems often provide weaker guarantees about trans-
action processing, formalised by weak consistency models. Snap-
shot isolation (SI) [6] is one of the most popular such models, im-
plemented by major centralised databases (e.g., MS SQL Sever, Or-
acle), distributed databases [14, 27, 29] and transactional memory
systems [1, 8, 15, 25].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODC’16, July 25 - 28, 2016, Chicago, IL, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3964-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2933057.2933096

Informally, SI is defined by a multi-version concurrency control
algorithm as follows. A transaction T reads values of shared ob-
jects from a snapshot taken at its start. The transaction commits
only if it passes a write-conflict detection check: since T started,
no other committed transaction has written to any object that T
also wrote to. If the check fails, T aborts. Once T commits, its
changes become visible to all transactions that take a snapshot af-
terwards. This concurrency-control algorithm allows unserializable
behaviours, called anomalies. One of them, write skew, is graph-
ically illustrated in Figure 2(d). Each of the transactions T1 and
T2 checks that the combined balance of two accounts exceeds 100
and, if so, withdraws 100 from one of them. Under SI, both transac-
tions may pass the checks and make the withdrawals from different
accounts, resulting in the combined balance going negative. This
outcome cannot occur under serializability. Given such anomalies,
reasoning about the behaviour of applications executing under SI is
far from trivial. This task is further complicated by the fact that the
specification of SI is given in a low-level operational way, by a con-
currency control algorithm. To facilitate reasoning about applica-
tions using SI and establishing useful results about this consistency
model, we need a more declarative specification that abstracts from
implementation-level details as much as possible.

An approach that yields such consistency model specifications
was proposed by Adya et al. [2, 3]. In this approach, an execu-
tion of a set of transactions is described by three kinds of depen-
dencies between pairs of transactions T1 and T2: read dependen-
cies record when T1 reads the value of an object written by T2;
write dependencies record when T1 overwrites the value of an ob-
ject written by T2; finally, anti-dependencies are derived from read
and write dependencies in a certain way (§3). A set of transactions
and dependencies between them form a dependency graph, gener-
alising classical serialization graphs [7]. Then the set of executions
allowed by a given consistency model is defined by those depen-
dency graphs that lack certain cycles; in particular, serializable ex-
ecutions are characterised by acyclic dependency graphs. This way
of specifying consistency models has been shown to be particu-
larly appropriate for designing static analyses [12, 19, 23, 30, 38],
run-time monitoring [9, 37] and proving concurrency-control algo-
rithms correct [16, 24, 36]. In particular, specifications in terms
of dependency graphs facilitate exploring possible program execu-
tions in a static analysis, because the analysis can determine which
dependencies can possibly exist at run time by looking for pairs of
read or write accesses to the same object in the code of different
transactions. In contrast, it is hard to predict statically more low-
level information about transaction execution, such as the order in
which transactions commit.

Specifications in terms of dependency graphs have been pro-
posed for ANSI isolation levels such as serializability, Read Com-
mitted and Repeatable Read [2], as well as more recent proposals of
consistency models [5, 36]. But surprisingly, there is no such spec-

ification of SI. This is not for the want of trying: Adya did propose
a definition of SI that refers to dependency graphs [2]. However, to
capture the subtle semantics of SI, this definition extends the graphs
by a relation describing low-level information about transaction ex-
ecution, which negates their benefits.

In this paper we propose the first characterisation of SI solely in
terms of dependency graphs (§4) and apply it to develop new static
analyses (§5 and §6). Namely, we show that SI allows exactly the
executions represented by dependency graphs that contain only cy-
cles with at least two adjacent anti-dependency edges. The proof of
this fact is highly non-trivial and represents a key technical contri-
bution of this paper. It requires showing that, given a dependency
graph satisfying the above acyclicity condition, we can construct
certain relations describing how the transactions can be processed
by the SI concurrency control, e.g., the order in which transactions
commit. Constructing these relations from transactional dependen-
cies is challenging, and the main insight of our proof is given by a
procedure for this construction, based on solving certain kinds of
inequalities over relations.

To illustrate the benefits of our dependency graph characterisa-
tion of SI, we exploit it to develop two kinds of static analyses.
First, we propose a new static analysis for the classical problem of
transaction chopping [4, 30, 35]—checking when transactions in
an application can be chopped into smaller pieces without intro-
ducing new behaviours (§5). When applied to long-running trans-
actions executing under SI, chopping can improve performance,
because the longer an SI transaction runs, the higher the chances
are that it will abort due to a write conflict. There are analy-
ses for transaction chopping under serializability [30] and parallel
SI [12], a recently-proposed weaker version of SI for large-scale
databases [32]. However, there has been no such analysis under SI,
despite the widespread use of this consistency model.

Our dependency graph characterisation of SI is instrumental in
deriving the static analysis for transaction chopping, and not only
due to the feasibility of determining possible dependencies stati-
cally. In more detail, chopping transforms transactions in a pro-
gram into sessions [14, 33] (aka chains [38]) of smaller transac-
tions, which ensure that the transactions will be executed in the
order given, but provide no isolation guarantees. A chopping is
correct if each SI execution of the resulting program can be spliced
into an SI execution that has the same operations as the original
one, but where all operations from each session are executed inside
a single transaction. Showing the existence of the spliced execu-
tion is challenging on SI because it is non-trivial to pick the order
in which its transactions should commit. Our characterisation of
SI in terms of transactional dependencies avoids this complication,
because unlike low-level aspects of an execution, these dependen-
cies do not change significantly during splicing, and this makes it
easy to construct the spliced execution.

The other kind of static analyses that we consider checks whether
an application is robust [19, 31] against weakening consistency: it
behaves the same regardless of whether it uses a database providing
a weak consistency model or a database proving a stronger model
(§6). When this is the case, the application programmer can reap
the performance benefits of using the weaker model, yet can reason
about the correctness of the application assuming the stronger one.
We first show that our SI characterisation allows easily deriving a
variant of an existing analysis that checks whether an application
executing under SI behaves the same as when executing under se-
rializability [19] (robustness against SI, §6.1). We then propose
a new static analysis that checks whether an application executing
under the recently-proposed parallel SI [32] behaves the same as
when executing under the stronger classical SI (robustness against

parallel SI towards SI, §6.2). To derive this static analysis, we for-
mulate a dependency graph characterisation of parallel SI, which
can be given more easily than for classical SI. Again, our charac-
terisations of consistency models in terms of dependency graphs
greatly facilitate deriving the above robustness analyses, since the
characterisations allow us to easily map between executions on dif-
ferent models.

Due to space constraints, we defer some of the proofs to [11,
§A].

2. SNAPSHOT ISOLATION
We start by formally defining snapshot isolation (SI), as well as

serializability. Rather than using the classical definition of SI by a
concurrency-control algorithm (§1), it is technically convenient for
us to build on a more declarative specification that we previously
proposed and proved equivalent to the standard one [10]. Even
though this specification is stated in terms of lower-level relations
than transactional dependencies, it avoids referring explicitly to
times at which a transaction takes a snapshot in the SI concurrency-
control algorithm. We first introduce mathematical structures that
represent transaction execution in the specification.

We consider a transactional system managing a set of integer-
valued objects Obj = {x, y, . . .}. Transactions read and write the
objects, and in our representation of executions, we denote each
invocation of such an operation by an event from a set Event =
{e, f, . . .}. A function op : Event → Op for Op = {read(x, n),
write(x, n) | x ∈ Obj, n ∈ Z} determines the operation a given
event denotes: reading a value n from an object x or writing n to x.
We call a binary relation a strict partial order if it is transitive and
irreflexive. We call it a total order if it additionally relates any pair
of distinct elements one way or another. We represent an execution
of a single transaction by the following structure, recording a set of
operations and the order in which they were invoked.

DEFINITION 1. A transaction T, S, . . . is a pair (E, po),
where E ⊆ Event is a finite, non-empty set of events and the pro-
gram order po ⊆ E × E is a total order.

For simplicity, all transactions in this paper are assumed to be
committed: our specifications do not constrain values read inside
aborted or ongoing transactions; this limitation could be lifted fol-
lowing [2, 17, 21]. We denote components of transactions and sim-
ilar structures as in ET and poT .

To allow transaction chopping (§5), we assume that the transac-
tional system allows its clients to group several transactions into
a session [33], which establishes an ordering on the transactions.
Thus, instead of classical SI and serializability, we actually de-
fine their strong session variants [13, 14]. We represent the client-
visible results of an execution of a set of sessions by a history.

DEFINITION 2. A history is a pair H = (T , SO), where T
is a finite set of transactions with disjoint sets of events and the
session order SO ⊆ T × T is a union of total orders defined on
disjoint subsets of T , which correspond to transactions in different
sessions.

For simplicity, we elide the treatment of infinite computations,
and thus histories are always finite. A consistency model, such as
SI or serializability, is specified by a set of histories. To define this
set, we extend histories with two relations, declaratively describing
how the transactional system processes transactions.

DEFINITION 3. An abstract execution (or just an execution) is
a tuple X = (T , SO,VIS,CO), where (T , SO) is a history and
the visibility and commit orders VIS,CO ⊆ T × T are such that
VIS ⊆ CO and CO is total.

∀(E, po) ∈ T . ∀e ∈ E.∀x, n. op(e) = read(x, n) ∧ {f | op(f) = _(x, _) ∧ f
po−→ e} 6= ∅ =⇒ SO ⊆ VIS (SESSION)

op(maxpo{f | op(f) = _(x, _) ∧ f
po−→ e}) = _(x, n) (INT) CO ; VIS ⊆ VIS (PREFIX)

∀T ∈ T . ∀x, n. T ` read(x, n) =⇒ maxCO(VIS
−1(T) ∩WriteTxx) ` write(x, n) (EXT) CO = VIS (TOTALVIS)

∀T, S ∈ T . ∀x. (T, S ∈WriteTxx ∧ T 6= S) =⇒ (T
VIS−−→ S ∨ S

VIS−−→ T) (NOCONFLICT)

Figure 1: Axioms constraining an abstract execution (T , SO,VIS,CO).

(a) Session guarantees. (d) Write skew. Initially acct1 = acct2 = 60.

T1

T2

SO,VIS,CO

write(x, 1)

read(x, 1)

if (acct1 + acct2 > 100)

acct1 := acct1 - 100

if (acct1 + acct2 > 100)

acct2 := acct2 - 100

T1

T2

RW RW

read(acct1, 60) read(acct2, 60) write(acct1,−40)

read(acct1, 60) read(acct2, 60) write(acct2,−40)

(b) Lost update. (c) Long fork.

CO

VIS

VIS

RW, WW RW

WR

acct := acct + 50

acct := acct + 25

T1

T2

T3

read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 25)

read(acct, 25)

T1

T2

T3

T4

VIS

VIS

WR

WR

RW

RW

write(x, 1) read(x, 1) read(y, 0)

write(y, 1) read(x, 0) read(y, 1)

Figure 2: Abstract executions illustrating SI and serializability. Boxes represent transactions, and arrows inside boxes represent
the program order. We omit irrelevant CO edges. We also omit a special transaction that writes initial versions of all objects and
precedes all the other transactions in VIS and CO. The bold edges are explained in §3.

We write T
VIS−−→ S and (T, S) ∈ VIS interchangeably, and sim-

ilarly for other relations. For H = (T , SO) we shorten (T ,SO,
VIS,CO) to (H,VIS,CO). In terms of the SI concurrency-control

algorithm sketched in §1, T VIS−−→ S means that the writes done by
the transaction T are included into the snapshot taken by the trans-
action S; T CO−−→ S means that T commits earlier than S. The con-
straint VIS ⊆ CO ensures that the snapshot taken by a transaction
may only include previously committed transactions. SI or serializ-
ability allow those histories that can be extended to an abstract exe-
cution satisfying certain consistency axioms from Figure 1, which
specify the corresponding guarantees about transaction processing.

DEFINITION 4. The sets of executions and histories allowed by
(strong session) SI and serializability are:

ExecSI = {X | X |= INT ∧ EXT ∧ SESSION ∧
PREFIX ∧ NOCONFLICT};

ExecSER = {X | X |= INT ∧ EXT ∧ SESSION ∧ TOTALVIS};
HistSI = {H | ∃VIS,CO. (H,VIS,CO) ∈ ExecSI};

HistSER = {H | ∃VIS,CO. (H,VIS,CO) ∈ ExecSER}.

We now explain the axioms in Figure 1, as well as anomalies that
SI allows or disallows; the latter are summarised in Figure 2. We

use the following notation. For a set A and a total order R ⊆ A×A,
we let maxR(A) be the element a ∈ A such that ∀b ∈ A. a =
b ∨ (b, a) ∈ R; if A = ∅, then maxR(A) is undefined. In the
following, the use of maxR(A) in an expression implicitly assumes
that it is defined. We define minR(A) similarly. For a relation R ⊆
A× A and an element a ∈ A, we let R−1(a) = {b | (b, a) ∈ R}.
We define the sequential composition of relations R1 and R2 as

R1 ; R2 = {(a, b) | ∃c. (a, c) ∈ R1 ∧ (c, b) ∈ R2}.

We write _ for a value that is irrelevant and implicitly existentially
quantified.

The INT and EXT axioms in Figure 1 ensure that a transaction
reads from a snapshot of object states and its own writes. The in-
ternal consistency axiom INT ensures that a read event e on an
object x returns the same value as the last write to or a read from
x preceding e in the same transaction. If a read is not preceded in
the same transaction by an operation on the same object, then its
value is determined in terms of writes by other transactions using
the external consistency axiom EXT. For T = (E, po), we let
T ` write(x, n) if T writes to x and the last value written is n:

op(maxpo{e | op(e) = write(x, _)}) = write(x, n).

We let T ` read(x, n) if T reads from x before writing to it and n
is the value returned by the first such read:

op(minpo{e | op(e) = _(x, _)}) = read(x, n).

We also let WriteTxx = {T | T ` write(x, _)}. Then EXT en-
sures that, if a transaction T reads an object x before writing to it,
then the value read is determined by the transactions that are in-
cluded into T ’s snapshot according to VIS and that wrote to x; T
reads the value written by the transaction from this set that commit-
ted last according to CO. For simplicity, we consider only execu-
tions where the above set is always non-empty; this can be ensured
by introducing a special transaction that writes initial values of all
objects. The executions in Figures 2(a) and 2(b) satisfy EXT.

Our specification determines the snapshot that a transaction
reads from based on an arbitrary visibility relation and does not
require the snapshot to be “latest”; this is similar to so-called gen-
eralised SI [18]. However, following strong session SI [13, 14], the
SESSION axiom requires the snapshot to include the effects of all
preceding transactions in the same session. For example, in the ex-
ecution in Figure 2(a), the session order between T1 and T2 induces
a visibility edge according to SESSION.

The PREFIX axiom ensures that, if the snapshot taken by a trans-
action T includes a (committed) transaction S, then this snapshot
also includes all transactions that committed before S. Note that
PREFIX and the property VIS ⊆ CO in Definition 4 imply that VIS
is transitive. PREFIX disallows the long fork anomaly shown in
Figure 2(c), which is allowed by some weakening of SI (such as
parallel SI [32]). There transactions T1 and T2 concurrently write
to objects x and y. Transaction T3 sees the write by T1, but not the
write by T2; conversely, transaction T4 sees the write by T2, but
not the write by T1. Thus, from the perspectives of T3 and T4, the
writes of T1 and T2 happen in different orders. PREFIX disallows
any execution with the history in Figure 2(c), because in such an
execution T1 and T2 have to be related by CO one way or another;
but then by PREFIX, either T4 has to observe the write to x or T3

has to observe the write to y.
The axioms explained so far do not prevent the lost update

anomaly, illustrated by the execution in Figure 2(b). This execu-
tion could arise from the code in the figure that uses transactions
T1 and T2 to make deposits into an account. The two transactions
read the initial balance of the account and concurrently modify it,
resulting in one deposit getting lost. This anomaly is disallowed by
the NOCONFLICT axiom: if two distinct transactions write to the
same object, then one of them has to be aware of the other. This
axiom rules out any execution with the history in Figure 2(b): it
forces T1 and T2 to be ordered by VIS, so that they cannot both
read 0 from acct. In the SI concurrency control this is ensured by
the write-conflict detection check (§1).

The set HistSI (Definition 4) defined using the consistency ax-
ioms explained so far is exactly the one produced by the SI
concurrency-control algorithm [10]. The axioms allow the exe-
cution in Figure 2(d) with the characteristic SI anomaly of write
skew (§1), disallowed by serializability. We formalise the latter by
the axiom TOTALVIS, which requires visibility to totally order all
transactions. Then the axioms INT and EXT ensure that the trans-
actions are processed according to the usual sequential semantics.
We thus have HistSER ⊂ HistSI.

3. DEPENDENCY GRAPHS
From an abstract execution we can extract several kinds of de-

pendencies between its transactions, which are used in consistency
model specifications in the style of Adya et al. [2, 3].

DEFINITION 5. Let X = (H,VIS,CO) be an execution. For
x ∈ Obj, we define the following relations on TH:

• read dependency: T
WRX (x)−−−−−→ S ⇐⇒

S ` read(x, _) ∧ T = maxCO(VIS
−1(S) ∩WriteTxx);

• write dependency: T
WWX (x)−−−−−→ S ⇐⇒

T
CO−−→ S ∧ T, S ∈WriteTxx;

• anti-dependency: T
RWX (x)−−−−−→ S ⇐⇒

T 6= S ∧ ∃T ′. T ′ WRX (x)−−−−−→ T ∧ T ′
WWX (x)−−−−−→ S.

Informally, T
WRX (x)−−−−−→ S means that S reads T ’s write to x (cf.

the EXT axiom in Figure 1); T
WWX (x)−−−−−→ S means that S over-

writes T ’s write to x; T
RWX (x)−−−−−→ S means that S overwrites the

write to x read by T . For example, the dependencies of the ex-
ecutions in Figures 2(b), 2(d) and 2(c) are shown there with bold
arrows (keep in mind that the pictures omit a special initialisation
transaction). We often abuse notation and use the symbol WRX to
also denote the relation

⋃
x∈Obj WRX (x) ⊆ TH × TH, and simi-

larly for WWX and RWX .
A key goal of this paper is to characterise SI solely in terms of

dependencies: we want to determine whether SI allows a given
history by looking for appropriate dependencies between its trans-
actions rather than visibility and commit orders, as in Definition 4.
To this end, we extend histories to dependency graphs (aka direct
serialization graphs) [2], which include relations representing the
dependencies.

DEFINITION 6. A dependency graph is a tuple G = (T , SO,
WR,WW,RW), where (T , SO) is a history and

• WR : Obj→ 2T ×T is such that:

– ∀T, S ∈ T . ∀x. T WR(x)−−−−→ S =⇒
∃n. T 6= S ∧ T ` write(x, n) ∧ S ` read(x, n);

– ∀S ∈ T . ∀x. S ` read(x, _) =⇒ ∃T. T WR(x)−−−−→ S;

– ∀T, T ′, S ∈ T . ∀x. (T WR(x)−−−−→ S ∧ T ′
WR(x)−−−−→ S) =⇒

T = T ′.

• WW : Obj→ 2T ×T is such that for every x ∈ Obj, WW(x) is
a total order on the set WriteTxx;

• RW : Obj→ 2T ×T is derived from WR and WW as in Defini-
tion 5.

PROPOSITION 7. For any X ∈ ExecSI, graph(X) = (TX ,
SOX ,WRX ,WWX ,RWX) is a dependency graph.

Note that the constraints on WR in Definition 6 ensure that
it uniquely determines the values read by transactions. For
H = (T , SO) we write (H,WR,WW,RW) for (T , SO,WR,
WW,RW).

We write T |= INT if a set of transactions T satisfies the internal
consistency axiom INT in Figure 1. (Strong session) serializability
can be characterised by the set of acyclic dependency graphs with
internally consistent transactions [2].

THEOREM 8. Let

GraphSER = {G | (TG |= INT) ∧
((SOG ∪WRG ∪WWG ∪ RWG) is acyclic)}.

Then

HistSER = {H | ∃WR,WW,RW.

(H,WR,WW,RW) ∈ GraphSER}.

For example, the histories in Figures 2(b), 2(d) and 2(c) are not
serializable, and they cannot be extended to acyclic dependency
graphs; in particular, the graphs shown in the figures with bold
edges satisfy the conditions of Definition 6, but contain cycles. We
now set out to find a characterisation of the above form for SI.

4. SI CHARACTERISATION
For a set T and a relation R ⊆ T × T let R? = R ∪ {(T, T) |

T ∈ T }. We show that (strong session) SI is characterised by de-
pendency graphs that contain only cycles with at least two adjacent
anti-dependency edges.

THEOREM 9. Let

GraphSI = {G | (TG |= INT) ∧
(((SOG ∪WRG ∪WWG) ; RWG?) is acyclic)}.

Then

HistSI= {H | ∃WR,WW,RW. (H,WR,WW,RW)∈GraphSI}.

According to the theorem, to determine whether a particular his-
tory is allowed by SI, we can look for dependencies that extend
it to a graph in GraphSI. As we demonstrate in §5 and §6, this
way of defining SI is particularly suitable for developing static
analyses for this consistency model. The history in Figure 2(d)
is allowed by SI, and indeed the dependency graph shown in the
figure contains only cycles with two adjacent anti-dependencies
(e.g., T1

RW−−→ T2
RW−−→ T1). In contrast, the histories in Fig-

ures 2(b) and 2(c) are not allowed by SI, and they cannot be ex-
tended to graphs where every cycle has at least two adjacent anti-
dependencies. In particular, the graphs shown in the figures con-
tains cycles without these: e.g., T1

WW−−→ T2
RW−−→ T1 in Figure 2(b)

and T1
WR−−→ T3

RW−−→ T2
WR−−→ T4

RW−−→ T1 in Figure 2(c).
To prove Theorem 9, we prove a slightly stronger result, show-

ing that we can establish a correspondence between executions in
ExecSI and graphs in GraphSI that preserves histories and depen-
dencies.

THEOREM 10.
(i) Soundness: ∀G ∈ GraphSI. ∃X ∈ ExecSI. graph(X) = G.

(ii) Completeness: ∀X ∈ ExecSI. graph(X) ∈ GraphSI.

As we explain in §7, the easier completeness direction of this
theorem actually follows from existing results [19]. Our main tech-
nical contribution is the more challenging proof of the soundness
direction, which is required for the static analyses that we propose
(§5 and §6). We present this proof first.

The main challenge is to construct a total commit order in the
desired execution X from the dependencies given by G while sat-
isfying the SI axioms (Definition 4). We do this incrementally; at
intermediate stages of the construction we get structures similar to
abstract executions, but where the commit order can be partial.

DEFINITION 11. A tuple P = (T , SO,VIS,CO) is a pre-
execution if it satisfies all the conditions of Definition 3, except
CO is a strict partial order that may not be total. We let PreExecSI
be the set of pre-executions satisfying the SI axioms (Figure 1):

PreExecSI = {P | P |= INT ∧ EXT ∧ SESSION ∧
PREFIX ∧ NOCONFLICT}.



SO ∪WR ∪WW ⊆ VIS

CO ; VIS ⊆ VIS

VIS ⊆ CO

CO ; CO ⊆ CO

VIS ; RW ⊆ CO

(S1)
(S2)
(S3)
(S4)
(S5)

Figure 3: Requirements on a pre-execution P =
(H,VIS,CO) constructed from a dependency graph
G = (H,WR,WW,RW).

Thus, an execution is a pre-execution whose commit order is total.
In the following, we apply the graph function of §3 also to pre-
executions; for P ∈ PreExecSI, graph(P) is indeed a dependency
graph.

We first obtain auxiliary results that, given a dependency graph
G = (T , SO,WR,WW,RW) ∈ GraphSI, allow us to construct
a pre-execution P = (T , SO,VIS,CO) ∈ PreExecSI such that
graph(P) = G. Later we show how to extend P to a desired exe-
cution X ∈ ExecSI. We start by restating the requirements on the
pre-executionP in a way more suitable for guiding its construction;
these are given by the system of inequalities in Figure 3. First, to
ensure graph(P) = G, by Definition 5 at the very least we must
have WR ∪WW ⊆ VIS. For P to satisfy the SESSION axiom we
must also have SO ⊆ VIS. These two observations motivate (S1).
This inequality also implies that P satisfies NOCONFLICT, since
according to Definition 5, WW is total over transactions that write
to a given object. Inequality (S2) is equivalent to PREFIX, and in-
equality (S3) states a relationship between VIS and CO inherited
by Definition 11 from Definition 3. Inequality (S4) requires CO to
be transitive; (S2) and (S3) ensure that so is VIS.

As we now explain, (S5) ensures the axiom EXT. Consider the
dependency graph G ∈ GraphSI in Figure 4, which we use as our
running example in this section and in §5. Its transactions could
arise from the programs, also shown in the figure, that make a
transfer between two accounts and query their balances or the sum
thereof. The transactions arising from lookup1 and lookup2 see
the initial state of the database, while the transactions arising from
lookupAll see its state in the middle of a transfer. The VIS and
CO relations shown by the solid arrows give a pre-execution satis-
fying inequalities (S1)-(S4) and, in fact, all the SI axioms. Suppose
we want to construct a pre-execution with a bigger CO by adding
an edge T

CO−−→ S′ (shown dotted). Since S′
VIS−−→ S, for the result-

ing pre-execution to satisfy PREFIX we also need to add an edge
T

VIS−−→ S. But then the pre-execution violates EXT: S sees the
write to acct2 by T , but reads the value from the initialisation
transaction (elided from Figure 4) that writes 0 to acct2 and pre-
cedes T in CO and WW; the latter fact is witnessed by the edge
S

RW−−→ T . On the other hand, adding an edge S′
CO−−→ T (shown

dashed), which belongs to VIS ; RW, does not violate EXT. This
example illustrates a general pattern. First, as the following lemma
shows, (S5) must hold in any SI execution.

LEMMA 12. ∀X ∈ ExecSI.VISX ; RWX ⊆ COX .

Conversely, the system of inequalities in Figure 3 can be used to
ensure that a pre-execution P = (T , SO,VIS,CO) satisfies EXT
and has other desired properties.

LEMMA 13. Let G = (T , SO,WR,WW,RW) be a depen-
dency graph such that T |= INT and VIS,CO ⊆ T × T be
acyclic relations satisfying the system of inequalities in Figure

T ′

T ′′

T S ′

SS ′′

CO RW

SO,VIS,CO

SO,VIS,CO

RW

CO

CO

VISRW

WR,VIS,CO

CO

CO

read(acct1, 100) write(acct1, 0)

read(acct1, 100)

read(acct2, 0) write(acct2, 100) read(acct1, 0)

read(acct2, 0)read(acct2, 0)

T ′, T : session transfer { tx { acct1 = acct1 - 100 }; tx { acct2 = acct2 + 100 } }
T ′′: session lookup1 { tx { return acct1 } }
S′′: session lookup2 { tx { return acct2 } }

S′, S: session lookupAll { tx { var1 = acct1 }; tx { var2 = acct2 }; return var1 + var2 }

Figure 4: An illustration of constructing an execution from a dependency graph (§4) and splicing an execution (§5). We omit an
initialisation transaction that sets acct1 = 100 and acct2 = 0.

3. Then P = (T , SO,VIS,CO) is a pre-execution such that
P ∈ PreExecSI and graph(P) = G.

The proof of Lemma 12 depends on the following characterisa-
tion of anti-dependencies in terms of visibility edges.

PROPOSITION 14.

∀X ∈ ExecSI. ∀T, S ∈ TX . S
RWX−−−→ T ⇐⇒ S 6= T ∧

∃x. S ` read(x, _) ∧ T ` write(x, _) ∧ ¬(T VISX−−−→ S).

Informally, if we had S
RWX−−−→ T and T

VISX−−−→ S, then S would
have to read a value of x at least as up-to-date as that written by T ,
contradicting the definition of RWX .

PROOF OF LEMMA 12. Consider X ∈ ExecSI and T, S′, S ∈
TX such that S′

VISX−−−→ S
RWX−−−→ T . If T = S′, then S′

VISX−−−→
S

RWX−−−→ S′, contradicting Proposition 14. If T
COX−−−→ S′ (see

Figure 4), then by PREFIX we get T
VISX−−−→ S, contradicting Propo-

sition 14. Then, since COX is total, we must have S′
COX−−−→ T .

PROOF OF LEMMA 13. We only prove that P |= EXT and
WRP = WR; discharging the other obligations is straightfor-
ward. Consider S ∈ T such that S ` read(x, n). Then

there exists a unique T ′ such that T ′
WR(x)−−−−→ S. Let T =

maxCO(VIS
−1(S) ∩WriteTxx). This is defined because: CO is

acyclic; by (S1) and (S3) we have WW ⊆ CO, so that CO is
total over WriteTxx; and by (S1) we have WR ⊆ VIS, so that
T ′ ∈ VIS−1(S) ∩WriteTxx. We now show that T = T ′, which
entails the required.

Assume the contrary: T 6= T ′. We have T, T ′ ∈ VIS−1(S) ∩
WriteTxx. Hence, T and T ′ are related by WW. Since WW ⊆
CO, they are related in the same way by the acyclic CO(x). Then

by the definition of T we must have T ′
CO(x)−−−−→ T and T ′

WW−−→ T .

From the latter and T ′
WR(x)−−−−→ S we get S RW−−→ T . But T VIS−−→ S,

so from (S5) we get T CO−−→ T . This contradicts the assumption that
CO is acyclic. Hence, we must have T = T ′.

According to Lemma 13, to construct a desired pre-execution
P = (T , SO,VIS,CO) ∈ PreExecSI from a dependency graph
G = (T , SO,WR,WW,RW), it is sufficient to find a solution to
the system of inequalities in Figure 3 in terms of acyclic relations

VIS and CO. This is not completely trivial because of the recursive
nature of the inequalities: according to them, adding more edges
into VIS forces adding more edges into CO and vice versa, increas-
ing the risk of tying a cycle. Our insight is to look for the solu-
tion that is smallest and, hence, least likely to contain cycles. The
following lemma gives a closed form for this solution. In antici-
pation of using the lemma when extending a pre-execution to an
execution, we state it in a generalised form that gives the smallest
solution where CO contains at least a given set of edges R. We
use + and ∗ to denote the transitive closure and the transitive and
reflexive closure of a given relation.

LEMMA 15. Let G = (T , SO,WR,WW,RW) be a depen-
dency graph. For any R ⊆ T × T , the relations

VIS = (((SO ∪WR ∪WW) ; RW?) ∪R)∗ ;

(SO ∪WR ∪WW);

CO = (((SO ∪WR ∪WW) ; RW?) ∪R)+
(1)

are a solution to the system of inequalities in Figure 3. They also
are the smallest solution to the system for which CO ⊇ R: for any
other solution (VIS′,CO′) with CO′ ⊇ R we have VIS ⊆ VIS′

and CO ⊆ CO′.

In particular, for R = ∅, Lemma 15 gives the smallest solution
(VIS0,CO0) to the system of inequalities in Figure 3.

If G ∈ GraphSI, then CO0 is acyclic, and by (S3), so is VIS0 (in
fact, Lemma 15 is our motivation for defining GraphSI the way we
did). Hence, by Lemma 13, P0 = (T , SO,VIS0,CO0) is a pre-
execution such that P0 ∈ PreExecSI and graph(P0) = G, which
is what we originally set out to construct. We now proceed to prove
Theorem 10(i) by extending the pre-execution P0 to an execution
X ∈ ExecSI.

PROOF OF THEOREM 10(I). Assume G = (T , SO,WR,
WW,RW) ∈ GraphSI. To construct X , we define a sequence
of pre-executions {Pi = (T ,SO,VISi,COi)}ni=0 for some n ≥ 0
and let X = Pn. The sequence is such that VISi ⊆ VISi+1 and
COi ⊂ COi+1 for i = 0..(n − 1); furthermore, COn is total, so
that Pn is an execution. That is, on every step of our construction
we add edges to the commit order until it becomes total. Each pair
(VISi,COi) gives an acyclic solution to the system in Figure 3.
Then by Lemma 13, Pi ∈ PreExecSI and graph(Pi) = G. In
particular, Pn ∈ ExecSI and graph(Pn) = G, as required.

We start the construction of the sequence by taking as P0 the
pre-execution that we constructed above. For example, for the de-
pendency graph in Figure 4, VIS0 and CO0 consist of the solid
edges in the figure and the dashed edge S′

CO−−→ T . If the re-
lation CO0 is not total, then we pick an arbitrary pair of trans-
actions (T1, S1) unrelated by CO0 and construct VIS1 and CO1

as the smallest solution to the system of inequalities in Figure 3
such that CO1 ⊇ {(T1, S1)}. By Lemma 15 this solution is given
by (1) for R = {(T1, S1)}. For example, in Figure 3 the transac-
tions T ′ and T ′′ are unrelated by the commit order. If we pick as
(T1, S1) the pair (T ′, T ′′) in Figure 4, then we get VIS1 = VIS0,
and CO1 = CO0 ∪ {(T ′, T ′′)}. In general, the construction con-
tinues in the same way: while COi is not total, we pick an arbitrary
pair of transactions (Ti, Si) unrelated by COi and force COi+1 to
include it. In our example, CO1 does not relate the transactions T ′′

and S′′. By picking as (T2, S2) the pair (T ′′, S′′), we construct
VIS2 and CO2 by letting R = {(T ′, T ′′), (T ′′, S′′)} in (1); this
corresponds to all the solid and dashed edges in Figure 4. Note that
CO2 also includes the edge (T ′, S′′). Since CO2 is total in this
example, the construction terminates: X = P2.

Formally, in addition to VISi and COi we construct sets
Ri = {(Tk, Sk) | k = 1..i}, i = 0..n that accumulate the edges
enforced in the commit order at every step. The relations VISi

and COi and the sets Ri are defined recursively as follows: we
let VISi and COi be defined by (1) for R = Ri; we let R0 = ∅
and Ri+1 = Ri ∪ {(Ti, Si)}, where (Ti, Si) is an arbitrary pair
of transactions unrelated by COi; such a pair must exist if COi

is not total. By Lemma 15, each (VISi,COi) is a solution to
the system of inequalities in Figure 3. It is easy to check that
COi+1 = (COi ∪ {(Ti, Si)})+, i = 0..(n − 1). Since CO0

is acyclic, by the choice of the edges (Ti, Si) it follows that
COi, i = 1..n are acyclic as well. Hence, the sequence {Pi}ni=0

constructed above satisfies the properties stated at the beginning of
the proof, as required.

PROOF OF THEOREM 10(II). Consider X = (T ,SO,
VIS,CO) ∈ ExecSI. As follows from Lemma 12, VIS and
CO give a solution to the system of inequalities of Figure 3 for
WR = WRX , WW = WWX , RW = RWX . We now apply
Lemma 15 for R = ∅; the minimality of the solution given by
Lemma 15 implies that ((SO ∪ WR ∪ WW) ; RW?)+ ⊆ CO.
Then ((SO ∪WR ∪WW) ; RW?)+ is acyclic because so is CO.
This establishes graph(X) ∈ GraphSI.

5. TRANSACTION CHOPPING UNDER SI
In this section, we exploit our characterisation of SI in terms

of dependency graphs to derive a static analysis that checks
when transactions in an application executing under SI can be
chopped [30] into sessions of smaller transactions without intro-
ducing new behaviours (the sessions are also called chains in this
context [38]). To this end, the analysis must check that any SI exe-
cution of the application with chopped transactions can be spliced
into an SI execution that has the same operations as the original
one, but where all operations from each session are executed inside
a single transaction. We first establish a dynamic chopping crite-
rion that checks whether a single SI execution, represented by a
dependency graph, is spliceable. From this we then derive a static
analysis that checks whether this is the case for all executions pro-
duced by a given chopped application.

For a historyH, let ≈H = SOH ∪ SO−1
H ∪ {(T, T) | T ∈ TH}

be the equivalence relation grouping transactions from the same
session. We let T H be the result of splicing all transactions in the

session to which T belongs inH into a single transaction: T H =
(E, po), where E = (

⋃
{ES | S ≈H T}) and

po = {(e, f) | (∃S. e, f ∈ES ∧ e
poS−−→ f ∧ S≈H T) ∨

(∃S, S′. e∈ES ∧ f ∈ES′ ∧ S
SOH−−−→S′ ∧ S′≈H T)}.

We let splice(H) be the history resulting from splicing all sessions

in a history H: splice(H) =
({

T H | T ∈ TH
}
, ∅
)

. A depen-
dency graph G ∈ GraphSI is spliceable if there exists a dependency
graph G′ ∈ GraphSI such that HG′ = splice(HG). For a depen-
dency graph G, we let ≈G = ≈HG and T G = T HG

.
For example, the graph G1 in Figure 4 is not spliceable, because

splice(HG1) 6∈ HistSI: informally, S G1
observes the write by

T G1
to acct1, but not its write to acct2. On the other hand,

let G2 be the graph obtained by removing the transactions S and
S′ from G1. Then G2 is spliceable, as witnessed by the graph
G2 ∈ GraphSI with HG2 = splice(HG2) and only the edges

T ′′ G2

RWG2−−−−→ T G2
and S′′ G2

RWG2−−−−→ T G2
.

Given a dependency graph G, we let the dynamic chopping
graph corresponding to G be the graph DCG(G) obtained by re-
moving WRG ,WWG and RWG edges between transactions re-
lated by ≈G , and by extending G with edges in the reverse of the
session order: SO−1

G . We refer to the latter edges as predeces-
sor edges, to those in SOG as successor edges, and to those in
(WRG ∪ WWG ∪ RWG) \ ≈G as conflict edges. A cycle in a
chopping graph DCG(G) is critical if: (i) it does not contain two
occurrences of the same vertex; (ii) it contains a fragment of three
consecutive edges of the form “conflict, predecessor, conflict”; and
(iii) any two anti-dependency edges (RWG \ ≈G) on the cycle are
separated by at least one read (WRG \ ≈G) or write (WWG \ ≈G)
dependency edge. Our dynamic chopping criterion is as follows.

THEOREM 16. For G ∈ GraphSI, if DCG(G) contains no crit-
ical cycles, then G is spliceable.

For example, the above graph G2 (Figure 4) contains no critical
cycles, and the graph G1 contains a critical cycle

T ′
WRG1−−−−→ S′

SOG1−−−→ S
RWG1−−−−→ T

SO−1
G1−−−→ T ′.

To prove Theorem 16, we exhibit a particular dependency
graph splice(G) such that splice(G) ∈ GraphSI and Hsplice(G) =
splice(HG). We define read dependencies WRsplice(G) by lifting
those in WRG to spliced transactions:

∀T, S ∈ TG . ∀x ∈ Obj. T G
WRsplice(G)(x)−−−−−−−−→ S G ⇐⇒

T G 6= S G ∧ T
≈G ;WRG(x) ;≈G−−−−−−−−−−−→ S. (2)

We define WWsplice(G) similarly and derive RWsplice(G) from
WRsplice(G) and WWsplice(G) as in Definition 5. As the following
lemma shows, RWsplice(G) defined in this way can be decomposed
into a form similar to (2).

LEMMA 17. Let G ∈ GraphSI be such that DCG(G) contains
no critical cycles. Then

∀T, S ∈ TG . ∀x ∈ Obj. T G
RWsplice(G)(x)−−−−−−−−→ S G =⇒

T G 6= S G ∧ T
≈G ; RWG(x) ;≈G−−−−−−−−−−−→ S.

To prove Theorem 16, we assume splice(G) 6∈ GraphSI and
use Theorem 9 to obtain a cycle in (WRsplice(G) ∪WWsplice(G)) ;

S

P

S

P

WR WRRW RW

acct1 = acct1 - 100 acct2 = acct2 + 100

var1 = acct1 var2 = acct2

transfer

lookupAll

Figure 5: The static chopping graph of the programs
{transfer, lookupAll} from Figure 4. Dashed boxes group
program pieces into sessions.

RWsplice(G)?. We then use (2) and Lemma 17 to decompose this
cycle into a critical cycle in DCG(G), yielding a contradiction.

We now derive a static analysis from Theorem 16. Assume a
set of programs P = {P1, P2, . . .}, each defining the code of ses-
sions resulting from chopping the code of a single transaction. We
leave the precise syntax of the programs unspecified, but assume
that each Pi consists of ki program pieces, defining the code of
the transactions in the sessions. We further assume that we are
given the sets Ri

j and W i
j of all objects that can respectively be

read and written by the j-th piece of Pi. For example, the program
transfer in Figure 4 consists of two pieces; the first one has the
read and write sets equal to {acct1} and the second, to {acct2}.
The program lookup1 consists of a single piece with the read set
{acct1} and the write set ∅.

Following Shasha et al. [30], we make certain assumptions about
the way clients execute programs. We assume that, if a transaction
initiated by a program piece aborts, it will be resubmitted repeat-
edly until it commits, and, if a piece is aborted due to system fail-
ure, it will be restarted. We also assume that the client does not
abort transactions explicitly.

A history H can be produced by the programs P , if there is a
one-to-one correspondence between every session in H and a pro-
gram Pi ∈ P whose read and write sets cover the sets of objects
read or written by the corresponding transactions in the session. For
example, the history in Figure 4 can be produced by the programs
in the figure. The chopping defined by the programs P is correct if
every dependency graph G ∈ GraphSI, whereHG can be produced
by P , is spliceable.

We check the correctness of P using its static chopping graph
SCG(P). It is a directed graph whose nodes are pairs of indices
identifying the pieces in P: {(i, j) | i = 1..|P|, j = 1..ki}. We
have an edge ((i1, j1), (i2, j2)) if and only if one of the follow-
ing holds: i1 = i2 and j1 < j2 (a successor edge); i1 = i2 and
j1 > j2 (a predecessor edge); i1 6= i2 and W i1

j1
∩Ri2

j2
6= ∅ (a read

dependency edge); i1 6= i2 and W i1
j1
∩W i2

j2
6= ∅ (a write depen-

dency edge); or i1 6= i2 and Ri1
j1
∩W i2

j2
6= ∅ (an anti-dependency

edge). The notion of a critical cycle introduced above for dynamic
graphs is also applicable to static ones. The edge set of a static
graph SCG(P) over-approximates the edge sets of dynamic graphs
DCG(G) corresponding to dependency graphs G produced by the
programs P . From this observation and Theorem 16 we easily get
our static analysis.

COROLLARY 18. The chopping defined by P is correct if
SCG(P) contains no critical cycles.

S

P

WR WRRW RW

acct1 = acct1 - 100 acct2 = acct2 + 100

return acct1 return acct2

transfer

lookup1 lookup2

Figure 6: The static chopping graph of the programs
{transfer, lookup1, lookup2} from Figure 4.

In Figure 5 we show the static chopping graph of the programs
{transfer, lookupAll}, which contains a critical cycle:

(var1 = acct1)
RW−−→ (acct1 = acct1− 100)

S−→
(acct2 = acct2+ 100)

WR−−→
(var2 = acct2)

P−→ (var1 = acct1).

In fact, since the dependency graph in Figure 4 is not splice-
able, the chopping defined by the above programs is incorrect.
In Figure 6 we show the static chopping graph of the programs
{transfer, lookup1, lookup2}. This graph contains no critical
cycles, and hence, the chopping defined by these programs is cor-
rect: they behave the same as when transfer is implemented by
a single transaction.

Our SI characterisation is instrumental in deriving the above
static analysis due to the ease of splicing a dependency graph
(cf. (2)). As we explain in [11, §B], splicing abstract executions
directly would be problematic.

In [11, §B], we also show that the conditions on chopping re-
quired by Corollary 18 are laxer than those of the analysis for seri-
alizability [30], but stricter than those for parallel SI [12]. In par-
ticular, this implies that the classical transaction chopping analysis
for serializability is also sound for SI. This result is non-trivial: the
correctness of a chopping requires that the set of histories produced
by the chopped program be included into the set of histories pro-
duced by the original program. Enlarging both sets when switching
from serializability to SI may not preserve the inclusion.

6. ROBUSTNESS CRITERIA FOR SI
We now consider another type of a static analysis that checks

whether an application is robust against weakening consistency:
executing it under a weak consistency model produces the same
client-observable behaviour as executing it under a stronger one.

6.1 Robustness against SI
We first show that our SI characterisation allows deriving a

variant of an existing analysis that checks whether an applica-
tion executing under SI behaves the same as when executing un-
der serializability [19]1 (robustness against SI). For this the anal-
ysis checks that the application code may produce no histories in
HistSI \ HistSER. Like for transaction chopping (§5), we first es-
tablish a dynamic robustness criterion that checks whether a sin-
gle execution, represented by a dependency graph, is in GraphSI \
GraphSER. This easily follows from Theorems 8 and 10.
1Our analysis does not take into account the notion of a vulnerable
dependency from [19].

THEOREM 19. For any G, we have G ∈ GraphSI \ GraphSER
if and only if TG |= INT, G contains a cycle, and all its cycles have
at least two adjacent anti-dependency edges.

Fekete et al. previously established a result corresponding to the
“only if” direction of the above theorem [19]. The “if” direction
strengthens their result by showing that the criterion in the theo-
rem is complete for checking whether a given dependency graph is
admitted by SI, but not serializability.

The dependency graph G3 of the write skew anomaly in Fig-

ure 2(d) contains a cycle: T1

RWG3−−−−→ T2

RWG3−−−−→ T1. Further-
more, it is easy to see that all its cycles have two adjacent anti-
dependencies, so that G3 ∈ GraphSI \ GraphSER. The depen-
dency graph G1 from Figure 4 does not contain any cycles, so that
G1 /∈ GraphSI \ GraphSER; in fact, G1 ∈ GraphSER. Finally,
the dependency graph G4 of the long fork anomaly in Figure 4 con-
tains a cycle, but without two adjacent anti-dependencies; hence,
G4 /∈ GraphSI \ GraphSER, and in fact, G4 6∈ GraphSI.

We can derive a static analysis from Theorem 19 similarly to
how it was done in §5. Namely, the analysis assumes that the code
of transactions in an application is defined by a set of programs P
with given read and write sets. Based on these sets, it constructs a
static dependency graph, over-approximating possible dependen-
cies that can exist in executions of the programs P . The analysis
then checks that the graph has no cycles with at least two adjacent
anti-dependency edges. By Theorem 19 this implies that the pro-
grams P produce no histories in HistSI \ HistSER, and hence, the
corresponding application is robust against SI. Note that the depen-
dency graphs characterisation of consistency models greatly facil-
itates deriving the above static analysis, since the characterisations
allow us to easily establish correspondences between executions on
different models with the same histories.

6.2 Robustness against parallel SI towards SI
We now use our SI characterisation to derive a static analysis that

checks whether an application executing under parallel SI [32] be-
haves the same as when executing under the classical SI (robustness
against parallel SI towards SI). To specify parallel SI in the frame-
work of §2, we drop the axiom PREFIX, while still requiring visibil-
ity to be transitive, a property that we refer to as TRANSVIS [10].

DEFINITION 20. The sets of executions and histories allowed
by parallel SI are:

ExecPSI = {X | X |= INT ∧ EXT ∧ SESSION ∧
TRANSVIS ∧ NOCONFLICT};

HistPSI = {H | ∃VIS,CO. (H,VIS,CO) ∈ ExecSI}.
Note that this specification essentially does not use the commit or-
der CO: according to NOCONFLICT, its edges used in EXT are
uniquely determined by VIS.

The axiom TRANSVIS ensures that transactions ordered by VIS
are observed by others in this order. However, it allows two trans-
actions unrelated by VIS to be observed in different orders; in par-
ticular, parallel SI allows the long fork anomaly of Figure 2(c),
disallowed by the axiom PREFIX in SI.

Following [12, extended version, Lemma 14], we can give a
characterisation of parallel SI in terms of dependency graphs.

THEOREM 21. Let

GraphPSI = {G | (TG |= INT) ∧
(((SOG ∪WRG ∪WWG)

+ ; RWG?) is irreflexive)}.
Then

HistPSI = {H | ∃WR,WW,RW.
(H,WR,WW,RW) ∈ GraphPSI}.

Thus, parallel SI is characterised by dependency graphs that con-
tain only cycles with at least two anti-dependency edges. For ex-
ample, consider the dependency graph G4 in Figure 2(c). It is easy
to see that all its cycles contain at least two anti-dependencies, and
therefore G4 ∈ GraphPSI. On the other hand, let G5 be the de-
pendency graph in Figure 2(b). The graph G5 contains a cycle with

exactly one anti-dependency (T1

WWG5−−−−→ T2

RWG5−−−−→ T1), and there-
fore G5 /∈ GraphPSI. As a corollary of Theorems 9 and 21, we
obtain a dynamic robustness criterion that checks whether a given
dependency graph is in GraphPSI \ GraphSI.

THEOREM 22. For any G, we have G ∈ GraphPSI \ GraphSI
if and only if TG |= INT, G contains at least one cycle with no
adjacent anti-dependency edges, and all its cycles have at least
two anti-dependency edges.

For example, we have already noted that in the dependency graph
G4 of the long fork anomaly all cycles have at least two anti-
dependencies. Furthermore, G4 also has a cycle with no adjacent

anti-dependencies: T1

WRG4−−−−→ T3

RWG4−−−−→ T2

WRG4−−−−→ T4

RWG4−−−−→ T1,
so that G4 ∈ GraphPSI\GraphSI. The dependency graph G3 of the
write skew anomaly in Figure 2(d) contains only cycles with at least
two adjacent anti-dependencies, so that G3 /∈ GraphPSI\GraphSI;
in fact, G3 ∈ GraphSI. The dependency graph G5 of the lost update
anomaly contains a cycle with exactly one anti-dependency, so that
G5 /∈ GraphPSI \ GraphSI; in fact, G5 6∈ GraphPSI.

From Theorem 22 it follows that the desired static analysis can
check that the static dependency graph of an application contains
no cycles where there are at least two anti-dependency edges and
no two anti-dependency edges are adjacent.

7. RELATED WORK
Snapshot isolation was originally defined by an idealised algo-

rithm formulated in terms of implementation-level concepts [6].
Since then there have been proposals of more declarative SI speci-
fications [2, 10, 28], one of which [10] was our starting point (§2).
However, these specifications are stated in terms of relations which
make it challenging to obtain results such as transaction chopping
and robustness analyses.

Fekete et al. [19] proposed the analysis for robustness against
SI that we considered in §6.1. To this end, they have proved a fact
roughly equivalent to our completeness result (Theorem 10(ii)), but
they did not establish an analogue of our soundness result (Theo-
rem 10(i)). The latter more challenging result is the one that is
needed to obtain analyses for transaction chopping under SI and
for robustness against parallel SI towards SI: both require proving
that an execution with a particular dependency graph is in SI, rather
than the other way round. We also hope that our specification of SI
will be beneficial in other domains where dependency graphs have
been useful, such as run-time monitoring [9, 37] and proving the
correctness of concurrency-control algorithms [16, 36]. Finally,
we expect that the approach to constructing a total commit order
from transactional dependencies in the proof of our soundness the-
orem can be used to give dependency graph characterisations to
other consistency models whose formulation includes similar total
orders, such as prefix consistency [34].

The constraint on dependency graphs that we use to characterise
SI also arose in the work of Lin et al. [24], who used it to for-
mulate conditions under which a replicated database guarantees SI
provided every one of its replicas does so. In comparison to them,
we solve a more general problem of characterising SI regardless
of how it is implemented and handle a variant of SI that does not
require transactions to see the latest snapshot.

Transaction chopping has recently received a lot of attention.
In particular, researchers have demonstrated that transactions aris-
ing in web applications can be chopped in a way that drasti-
cally improves their performance when executed under serializabil-
ity [26, 36, 38]. There have also been proposals of consistency
models for transactional memory that weaken consistency guaran-
tees in a way similar to chopping [4, 20, 35]. Our chopping analysis
enables bringing these benefits to transactional systems providing
SI. We have previously proposed a chopping analysis for parallel
SI [12], which also relies on a dependency graph characterisation
of this consistency model (Theorem 21). But since parallel SI can
be formulated without using an analogue of SI’s commit order, its
dependency graph characterisation did not present the challenges
that we had to deal with when establishing our soundness theorem.

Acknowledgements. We thank Hongseok Yang, who participated
in early stages of this work. We also thank Hagit Attiya, Ricardo
Jiménez-Peris and Pierre Sutra for comments that helped improve
the paper. This work was supported by an EU project ADVENT.

References
[1] The Clojure language: Refs and transactions.

http://clojure.org/refs.
[2] A. Adya. Weak consistency: A generalized theory and

optimistic implementations for distributed transactions. PhD
thesis, MIT, 1999.

[3] A. Adya, B. Liskov, and P. E. O’Neil. Generalized isolation
level definitions. In ICDE, 2000.

[4] Y. Afek, H. Avni, and N. Shavit. Towards consistency
oblivious programming. In OPODIS, 2011.

[5] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Scalable atomic visibility with RAMP transactions.
In SIGMOD, 2014.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil. A critique of ANSI SQL isolation levels. In
SIGMOD, 1995.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[8] A. Bieniusa and T. Fuhrmann. Consistency in hindsight: A
fully decentralized STM algorithm. In IPDPS, 2010.

[9] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. ACM Trans. Database
Syst., 34(4), 2009.

[10] A. Cerone, G. Bernardi, and A. Gotsman. A framework for
transactional consistency models with atomic visibility. In
CONCUR. Dagstuhl, 2015.

[11] A. Cerone and A. Gotsman. Analysing snapshot isolation
(extended version). Available from
www.software.imdea.org/~gotsman, 2016.

[12] A. Cerone, A. Gotsman, and H. Yang. Transaction chopping
for parallel snapshot isolation. In DISC, 2015. Extended
version available from
www.software.imdea.org/~gotsman.

[13] K. Daudjee and K. Salem. Lazy database replication with
ordering guarantees. In ICDE, 2004.

[14] K. Daudjee and K. Salem. Lazy database replication with
snapshot isolation. In VLDB, 2006.

[15] R. J. Dias, J. M. Lourenço, and N. Preguiça. Efficient and
correct transactional memory programs combining snapshot
isolation and static analysis. In HotPar, 2011.

[16] N. Diegues and P. Romano. Time-warp: Lightweight abort
minimization in transactional memory. In PPoPP, 2014.

[17] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards
formally specifying and verifying transactional memory.
Formal Aspects of Computing, 25(5), 2013.

[18] S. Elnikety, W. Zwaenepoel, and F. Pedone. Database
replication using generalized snapshot isolation. In SRDS,
2005.

[19] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable. ACM
Trans. Database Syst., 30(2), 2005.

[20] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions.
In DISC, 2009.

[21] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPoPP, 2008.

[22] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In ISCA,
1993.

[23] S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan.
Automating the detection of snapshot isolation anomalies. In
VLDB, 2007.

[24] Y. Lin, B. Kemme, R. Jiménez-Peris, M. Patiño-Martínez,
and J. E. Armendáriz-Iñigo. Snapshot isolation and integrity
constraints in replicated databases. ACM Trans. Database
Syst., 34(2), 2009.

[25] H. Litz, D. Cheriton, A. Firoozshahian, O. Azizi, and J. P.
Stevenson. SI-TM: Reducing transactional memory abort
rates through snapshot isolation. In ASPLOS, 2014.

[26] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
more concurrency from distributed transactions. In OSDI,
2014.

[27] D. Peng and F. Dabek. Large-scale incremental processing
using distributed transactions and notifications. In OSDI,
2010.

[28] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguiça.
On the scalability of snapshot isolation. In Euro-Par, 2013.

[29] D. Serrano, M. Patiño-Martínez, R. Jiménez-Peris, and
B. Kemme. Boosting database replication scalability through
partial replication and 1-copy-snapshot-isolation. In PRDC,
2007.

[30] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez.
Transaction chopping: Algorithms and performance studies.
ACM Trans. Database Syst., 20(3), 1995.

[31] D. Shasha and M. Snir. Efficient and correct execution of
parallel programs that share memory. ACM Trans. Program.
Lang. Syst., 10(2), 1988.

[32] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional
storage for geo-replicated systems. In SOSP, 2011.

[33] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for
weakly consistent replicated data. In PDIS, 1994.

[34] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan,
M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In SOSP, 2013.

[35] L. Xiang and M. L. Scott. Software partitioning of hardware
transactions. In PPoPP, 2015.

[36] C. Xie, C. Su, C. Littley, L. Alvisi, M. Kapritsos, and
Y. Wang. High-performance ACID via modular concurrency
control. In SOSP, 2015.

[37] K. Zellag and B. Kemme. Consistency anomalies in
multi-tier architectures: Automatic detection and prevention.
The VLDB Journal, 23(1), 2014.

[38] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In SOSP, 2013.

