
A Programming Language Perspective on
Transactional Memory Consistency

Hagit Attiya
Technion

Alexey Gotsman
IMDEA Software Institute

Sandeep Hans
Technion

Noam Rinetzky
Tel-Aviv University

ABSTRACT
Transactional memory (TM) has been hailed as a paradigm for sim-
plifying concurrent programming. While several consistency con-
ditions have been suggested for TM, they fall short of formaliz-
ing the intuitive semantics of atomic blocks, the interface through
which a TM is used in a programming language.

To close this gap, we formalize the intuitive expectations of a
programmer as observational refinement between TM implementa-
tions: a concrete TM observationally refines an abstract one if ev-
ery user-observable behavior of a program using the former can be
reproduced if the program uses the latter. This allows the program-
mer to reason about the behavior of a program using the intuitive
semantics formalized by the abstract TM; the observational refine-
ment relation implies that the conclusions will carry over to the case
when the program uses the concrete TM. We show that, for a par-
ticular programming language and notions of observable behavior,
a variant of the well-known consistency condition of opacity is suf-
ficient for observational refinement, and its restriction to complete
histories is furthermore necessary.

Our results suggest a new approach to evaluating and compar-
ing TM consistency conditions. They can also reduce the effort of
proving that a TM implements its programming language interface
correctly, by only requiring its developer to show that it satisfies the
corresponding consistency condition.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming;
D.2.4 [Software Engineering]: Software/Program Verification

Keywords
Transactional memory; atomic blocks; observational refinement

1. INTRODUCTION
Transactional memory (TM) eases the task of writing concur-

rent applications by letting the programmer designate certain code
blocks as atomic. TM allows designing a program and reason-
ing about its correctness as if each atomic block executed as a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

node := new(StackNode);
node.val := val;
result := abort;
while (result == abort) do {

result := atomic {
node.next = Top.read();
Top = node;

}
}

Figure 1: Example of transactional memory usage

transaction—in one step and without interleaving with others. As
an example, Figure 1 shows how atomic blocks yield simple code
for pushing an element onto a stack represented as a singly-linked
list: in this case it is possible to read the top-of-the-stack pointer,
point the new element to it, and change the top-of-the-stack pointer,
all at once. Many TM implementations have been proposed [9], us-
ing a myriad of design approaches that, for efficiency, may execute
transactions concurrently, yet aim to provide the programmer with
an illusion that they are executed atomically. This illusion is not al-
ways perfect—for example, as evident from Figure 1, transactions
can abort due to conflicts with concurrently running ones and need
to be restarted.

How can we be sure that a TM indeed implements atomic blocks
correctly? So far, researchers have tried to achieve this through
a consistency condition that restricts the possible TM executions.
Several such conditions have been proposed, including opacity [7,
8], virtual world consistency [15], TMS [4,17] and DU-opacity [2].
Opacity is the best-known of them; roughly speaking, it requires
that for any sequence of interactions between the program and the
TM, dubbed a history, there exist another history where:

(i) the interactions of every separate thread are the same as in the
original history;

(ii) the order of non-overlapping transactions present in the origi-
nal history is preserved; and

(iii) each transaction executes atomically.
Unfortunately, this definition is given from the TM’s point of

view, as a restriction on the set of histories it can produce, and is
not connected to the semantics of a programming language. The
situation for other TM consistency conditions is the same and, in
fact, it is not clear which of them provide the programmer with
behaviors that correspond to the intuitive notion of atomic blocks,
and which of them puts the minimal restrictions on TM implemen-
tations needed to achieve this.

In this paper, we aim to bridge this gap by formalizing the
intuitive expectations of a programmer as observational refine-
ment [12, 13] between TM implementations. Consider two TM
implementations—a concrete one, such as an efficient TM, and an

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

abstract one, such as a TM executing every atomic block atomi-
cally. Informally, the concrete TM observationally refines the ab-
stract one if every behavior a user can observe of a program P
linked with the concrete TM can also be observed when P is linked
with the abstract TM instead. This allows the programmer to reason
about the behavior of P using the intuitive semantics formalized by
the abstract TM; the observational refinement relation implies that
the conclusions will carry over to the case when P uses the con-
crete TM.

We show that one TM implementation observationally refines
another if they are in an opacity relation. The relation requires that
every history of the concrete TM have a matching history of the
abstract TM satisfying the conditions (i) and (ii) above. By instan-
tiating it with an abstract TM implementation that executes transac-
tions atomically, we obtain the existing notion of opacity. However,
our definition also allows comparing two TM implementations that
execute transactions concurrently, such as a more and a less op-
timized one. Furthemore, we show that observational refinement
between two TM implementations implies the opacity relation be-
tween thir restriction to complete histories, i.e., ones in which every
transaction either commits or aborts.

We note that the formalization of observational refinement, and
thus our results, depend on the particular choices of programming
language and the notion of observations. In this first treatment of
this topic, we consider a basic programming language and partic-
ular forms of observations. The features of the language are as
follows:
• Threads can access shared global variables outside transactions,

but not inside them. However, thread-local variables (such as
node in Figure 1) can be accessed in both cases.
• An aborted transaction is not restarted automatically and modi-

fications to thread-local variables that it may have performed are
not rolled back.
• A program cannot explicitly ask the TM to abort a transaction.
• Nesting of atomic blocks is not allowed.
As observable behaviors of a program, our result allows one to take
either the set of its reachable states or the set of all sequences of
actions performed by its finite computations. This allows a pro-
grammer to reason about safety, but not about liveness properties.

It is likely that for other programming languages or notions of
observations, other consistency criteria will be necessary or suffi-
cient for observational refinement, resulting in different trade-offs
between the efficiency of TM implementations and the flexibility
of their programming interfaces (see Section 8 for discussion). We
hope that the link between TM consistency conditions and pro-
gramming language abstractions we establish in this paper will en-
able TM implementors and language designers to make informed
decisions about such trade-offs. Our approach can also reduce the
effort of proving that a TM implements its programming interface
correctly, by only requiring its developer to show that it satisfies the
corresponding consistency condition.

2. PROGRAMMING LANGUAGE
We develop our results for a simple concurrent programming

language with programs consisting of a fixed, but arbitrary, num-
ber m of threads, identified by ThreadID = {1, . . . ,m}. Ev-
ery thread t ∈ ThreadID has a private set of local variables
LVart = {x, y, . . .}, and all threads share access to a set of global
variables GVar = {g, . . .}. For simplicity, we assume that all
variables are of type integer. Let Var = GVar]

⊎m
t=1 LVart be

the set of all program variables (where] denotes disjoint union).
In addition to variables, threads can access software or hardware

transactional memory, which from now on we refer to as the trans-
actional system. The system manages a fixed collection of trans-
actional objects Obj = {o, . . .}, each having a set of methods
Method = {f, . . .} that threads can call. For simplicity, we as-
sume that each method takes one integer parameter and returns an
integer value, and that all objects have the same set of methods.

The syntax of the language is as follows:

C ::= c | C;C | if (b) then C else C |
while (b) do C | x := atomic {C} | x := o.f(e)

P ::= C1 ‖ . . . ‖ Cm

where b and e denote Boolean and integer expressions over local
variables, left unspecified. A program P is a parallel composition
of sequential commandsC1, . . . , Cm, which can include primitive
commands c from a set Pcomm, sequential compositions, condi-
tionals, loops, atomic blocks and object method invocations.

Primitive commands are meant to execute atomically. We do not
fix their set Pcomm, but assume that it at least includes assign-
ments to local and global variables: e.g., g := x. We partition
the set Pcomm into 2m classes: Pcomm =

⊎m
t=1(LPcommt]

GPcommt). The intention is that commands from LPcommt

can access only the local variables of thread t (LVart); com-
mands from GPcommt can additionally access global variables
(LVart] GVar). We formalize these restriction in Section 4. We
forbid a thread t from accessing local variables of other threads.
Thus, the thread cannot mention such variables in the conditions
of if and while commands and can only use primitive commands
from LPcommt] GPcommt.

An atomic block x := atomic {C} executes the command C as
a transaction, which the transactional system can decide to com-
mit or abort. The system’s decision is returned in the local vari-
able x, which gets assigned distinguished values committed or
aborted. We forbid nested atomic blocks and, hence, nested trans-
actions. Inside an atomic block (and only there), the program can
invoke methods on transactional objects, as in x := o.f(e). Here
the expression e gives the value of the method parameter, and x
gets assigned the return value after the method terminates. The
transactional system may decide to abort a transaction initiated by
x := atomic {C} not only upon reaching the end of the atomic

block, but also during the execution of a method on a transactional
object. Once this happens, the execution of C terminates. We do
not allow programs in our language to abort a transaction explicitly.
A typical pattern of using the transactional system is to execute a
transaction repeatedly until it commits, as shown in Figure 1.

We forbid accessing global variables inside atomic blocks; thus,
a thread t can use primitive commands from GPcommt only out-
side them. A transaction can use local variables of the current
thread; if the transaction is aborted, these variables are not rolled
back to their initial values, and the values written to them by the
transaction can thus be observed by the following non-transactional
code. We note that, whereas transactional objects are managed by
the transactional system, global variables are not. Thus, threads can
communicate via the transactional system inside atomic blocks,
and directly via global variables outside them. We also note that
the transactional system is not part of a program, but is a library
used by it. Hence, the state of the transactional system is separate
from the variables in Var to which the program has access.

A correct transactional system implementation has to ensure
that the program behaves as though atomic blocks indeed execute
atomically, i.e., without interleaving with actions of other threads,
and that operations invoked on transactional objects in aborted
transactions have no effect. This does not require the implemen-
tation to execute atomic blocks like this internally; it only has to

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

provide the illusion of their atomicity to the rest of the program. In
the rest of the paper, we prove that a variant of a well-known cri-
terion of transactional system correctness, opacity, is sufficient and
necessary to validate this illusion for our programming language.

3. THE OPACITY RELATION

Histories
In this section we formalize the notion of opacity in our setting, and
along the way, show how to make it more flexible. To this end, we
introduce the notion of a history, which records all the interactions
a program in the language of Section 2 has with the transactional
system in one of its executions. A history, ranged over by H and
S, is a finite1 sequence of interface actions, defined as follows.

DEFINITION 1. An interface action ψ is an expression of one of
the following forms:

Request actions Response actions
(t, txbegin) (t,OK)
(t, txcommit) (t, committed) | (t, aborted)
(t, call o.f(n)) (t, ret(n′) o.f) | (t, aborted)

where t ∈ ThreadID, o ∈ Obj, f ∈ Method and n, n′ ∈ Z.

Interface actions denote the control flow crossing the boundary
between the program and the transactional system: request actions
correspond to the control being transferred from the program to
the transactional system, and response actions correspond to the
control being transferred the other way around. A (t, txbegin) ac-
tion denotes a thread t requesting the transactional system to start
executing a transaction; this action is generated upon entering an
atomic block. An OK action is the only possible response by the
transactional system. A txcommit action is issued when a trans-
action tries to commit upon exiting an atomic block. The trans-
actional system responds with a committed or aborted action, de-
pending on the result. Actions call and ret denote a call to and a re-
turn from an invocation of a method on a transactional object; they
are annotated with the parameter or the return value. As we noted
in Section 2, the transactional system may also decide to abort a
transaction while executing a method on a transactional object. In
such cases, the corresponding call action is followed by an aborted
action instead of a ret one.

We use the following notation: ε is the empty history; H(i) is
the i-th element of a history H; H|t is the projection of H onto
actions of thread t; H|¬t is the projection of H onto actions of
threads other than t; H|o is the projection of H onto call and ret
actions on object o; |H| is the length of H; H�i is the prefix of H
containing i actions;H1H2 is the concatenation ofH1 andH2. We
denote by _ an expression that is irrelevant and implicitly existen-
tially quantified.

The interactions of programs in the language of Section 2 with
the transactional system are not arbitrary; they are recorded by his-
tories that satisfy certain well-formedness properties, summarized
in the following definition.

DEFINITION 2. A history H is well-formed if
• request and response actions are properly matched: for every

thread t, H|t consists of alternating request and corresponding
response actions, starting from a request action;

1We do not consider infinite computations in this paper; see Sec-
tion 8 for a discussion.

• actions denoting beginning and end of transactions are prop-
erly matched: for every thread t, in the projection of H|t to
txbegin, committed and aborted actions, txbegin alternates
with committed or aborted, starting from txbegin; and
• call and ret actions occur only inside transactions: for every

thread t, ifH|t = H1 ψH2 for a call or ret actionψ, thenH1 =
H ′1 ψ

′H ′′1 for some txbegin action ψ′, and historiesH ′1 andH ′′1
such that H ′′1 does not contain txbegin, txcommit, committed
or aborted actions.

Program executions that run utill completion are described by
complete histories, in which every transaction either aborts or com-
mits. This class of histories is of a particular importance to us be-
cause our necessity result holds only for this class.

DEFINITION 3. A well-formed history H is complete if all trans-
actions in it have completed: if H = H1 (t, txbegin)H2, then H2

contains a (t, committed) or (t, aborted) action.

We specify the behavior of a transactional system implementa-
tion by the set of possible interactions it can have with its clients—
its history set H, which is a prefix-closed set of well-formed his-
tories. For our purposes, this specifies the behaviour of a transac-
tional system completely; thus, in the following, we often conflate
the notion of a transactional system and its history set.

We denote the complete subset of a history setH by

H|complete = {H | H ∈ H ∧ (H is complete)}.

The definition of the opacity relation
We define the notion of opacity in a slightly more flexible way than
the original one [7, 8], inspired by the approach taken when defin-
ing the correctness of concurrent libraries via linearizability [14].
Namely, we define the correctness of a transactional system im-
plementation by relating its history set to that of an abstract im-
plementation, whose behavior it has to simulate; in this context,
we call the original implementation concrete. The abstract imple-
mentation is typically one in which atomic blocks actually execute
atomically and methods called by aborted transactions have no ef-
fect. As we show below, we can obtain the original definition of
opacity by instantiating ours with such an abstract implementation;
however, our definition can also be used to compare two arbitrary
implementations. To disambiguate, in the following we refer to our
notion as the opacity relation, instead of just opacity.

According to the following definition, a concrete transactional
system HC is in the opacity relation with an abstract transactional
system HA, if every history H from HC can be matched by a his-
tory S from HA that “looks similar” to H from the perspective of
the program. The similarity is formalized by a relation H v S,
which requires S to be a permutation of H preserving the order
of actions within a thread and that of non-overlapping transactions
(whether committed or aborted). Here the duration of a transaction
is defined by the interval from its txbegin action to the correspond-
ing committed or aborted action (or to the end of the history if
there is none).

DEFINITION 4. A well-formed historyH is in the opacity relation
with a well-formed history S, denotedH v S, if there is a bijection
θ : {1, . . . , |H|} → {1, . . . , |S|} such that ∀i.H(i) = S(θ(i))
and

∀i, j. i < j ∧ ((∃t.H(i) = (t, _) ∧H(j) = (t, _)) ∨
(H(i) ∈ {(_, committed), (_, aborted)} ∧
H(j) = (_, txbegin)))

=⇒ θ(i) < θ(j).

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

A transactional system HC is in the opacity relation with a trans-
actional systemHA, denotedHC v HA, if

∀H ∈ HC . ∃S ∈ HA. H v S.

In the following, for i < j we say that the actions H(i) and
H(j) are in the per-thread order in H when they are by the same
thread and in the real-time order when H(i) = (_, committed) or
H(i) = (_, aborted) and H(j) = (_, txbegin). Thus, H v S
requires that the per-thread and real-time orders between actions in
H be preserved in S. We now make some comments concerning
the choices taken in this definition.
• As we show in Section 7, preserving the real-time order in Defi-

nition 4 is necessary to validate observational refinement due to
the fact that, in our programming language, threads can access
global variables outside transactions and, hence, can notice the
order of non-overlapping transactions.
• Definition 4 treats committed and aborted transactions uni-

formly. This is a characteristic feature of opacity: it ensures
that the results returned by methods of transactional objects in-
side aborted transactions are as consistent as those returned in-
side committed transactions (we return to this point in Sections 7
and 8).
• The abstract history S in Definition 4 is not required to be se-

quential, i.e., it may have overlapping executions of transac-
tions. This allows the definition to compare behaviors of two
realistic transactional system implementations that actually exe-
cute transactions concurrently. We also allow H to contain un-
completed transactions (without a final committed or aborted
action) arising, e.g., because the corresponding thread has been
preempted. In this case, we require the same behavior to be re-
produced in the matching history S, which is possible because
the latter does not have to be sequential [6].

Comparison with the original opacity definition
We now show how the original notion of opacity [7, 8] can be ob-
tained from ours by instantiating Definition 4 with an abstract trans-
actional systemHatomic in which atomic blocks execute atomically
and methods called by aborted transactions have no effect. We first
introduce the ingredients needed to define this system. We start by
defining a special class of non-interleaved histories.

DEFINITION 5. A well-formed history H is non-interleaved if
actions by any two transactions do not overlap: if H =
H1 (t, txbegin)H2 (t

′, txbegin)H3, where H2 does not contain
txbegin actions, then either H2 contains a (t, committed) or a
(t, aborted) action, or there are no actions by thread t in H3.

Note that a non-interleaved history does not have to be com-
plete. In fact, the history setHatomic we are about to define contains
only non-interleaved histories, but some of them are incomplete.
This is because a concrete transactional system may produce histo-
ries with incomplete transactions, and our opacity relation requires
these transactions to stay incomplete in the matching history of the
abstract system. To check whether an incomplete history should be
included into Hatomic, we first complete it with the aid of the op-
eration defined below, which aborts every transaction that has not
tried to commit yet and commits or aborts every transaction that
has tried to commit (as witnessed by a txcommit action), but has
not yet got a response.

DEFINITION 6. A history H is a completing history for an inter-
face action ψ, if the following holds:
• if ψ = (t, call o.f(n)), then H = (t, aborted);

• if ψ = (t, txbegin), then
H = (t,OK) (t, txcommit) (t, aborted);
• if ψ ∈ {(t, ret(n) o.f), (t,OK)}, then
H = (t, txcommit) (t, aborted);
• if ψ = (t, txcommit), then
H = (t, committed) or H = (t, aborted);
• otherwise, H = ε.

DEFINITION 7. A history Hc is a non-interleaved completion of
a non-interleaved history H , if Hc is a non-interleaved complete
history that can be constructed from H by adding a completing
history for the last action of every thread right after this action. We
denote the set of non-interleaved completions ofH by nicomp(H).

To define Hatomic, we also need to know the intended semantics
of operations on transactional objects. We describe the semantics
for an object o ∈ Obj by fixing all sequences of actions on o that are
considered correct when executed by a sequential program. More
precisely, a sequential specification of an object o is a set of histo-
ries [[o]] such that:
• [[o]] is prefix-closed;
• each H ∈ [[o]] consists of alternating call and ret actions on o,

starting from a call action, where every ret is by the same thread
as the preceding call; and
• [[o]] is insensitive to thread identifiers: for any H ∈ [[o]], chang-

ing the thread identifier in call-ret pair of adjacent actions in H
yields a history in [[o]].

For example, [[o]] for a register object o would consist of histories
where each read method invocation returns the value written by the
latest preceding write method invocation (or the default value if
there is none).

Using sequential specifications for all objects, we now define
when a complete and non-interleaved history H respects the object
semantics. Let H(i) be a call or ret action on an object o. We
say that H(i) is legal in H if H ′|o ∈ [[o]], where H ′ is the history
obtained from H by projecting H�i on all actions by committed
transactions and the transaction containing H(i). A complete and
non-interleaved history H is legal if all call and ret actions in H
are legal. We now let Hatomic to be the set of all non-interleaved
histories that can be completed to a legal history:

Hatomic = {H | H is non-interleaved ∧ ∃ legalHc ∈ nicomp(H)}.

Thus, we can say that a transactional system HC establishes
the illusion of atomicity for transactions if HC v Hatomic. Note
that, since we require the history set of a transactional system to
be prefix-closed, this criterion checks every prefix of any history
produced by HC , just like opacity as formulated in [8]. However,
in other aspects this definition is of a different form than opacity,
which we can formulate in our setting as follows.

DEFINITION 8. A history Hc is a suffix completion of a history
H , if it is a complete history, H is a prefix of Hc, and Hc can be
constructed from H by appending to it a completing history for the
last action of every thread. We denote the set of suffix-completions
of H by scomp(H).

DEFINITION 9. A transactional systemHC is opaque if for every
history H ∈ HC , there exists a history Hc ∈ scomp(H) and a
complete, non-interleaved and legal history Sc such thatHc v Sc.

The main difference is that Definition 9 first completes a history
fromHC and then finds its match according to the opacity relation;

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

our criterion HC v Hatomic first finds the match and then com-
pletes the matching history. For technical reasons, Definition 9 also
uses a slightly different completion, putting completing histories at
the end to avoid creating new real-time orderings.

Fortunately, completion and matching commute, and thus the
two formulations of opacity are equivalent.

PROPOSITION 10. A transactional system HC is opaque if and
only ifHC v Hatomic.

We prove the proposition in Appendix A. The formulation HC v
Hatomic is more convenient for us, since the statement of observa-
tional refinement we give in Section 5 below requires us to leave the
histories of the concrete transactional system intact. Stating trans-
actional system consistency in this way also avoids the need to bake
in completions (Definition 7) into the definition of the opacity rela-
tion (Definition 4): the treatment of incomplete transactions can be
deferred to the choice of the abstract transactional system.

4. PROGRAMMING LANGUAGE SEMAN-
TICS

Our goal is to establish a connection between conditions on
transactional system implementations, such as the opacity relation
from Section 3, and the behavior of programs that use these sys-
tems, such as those in the language of Section 2. To this end, in
this section we define the semantics of our programming language,
i.e., what kinds of computations can result when a program exe-
cutes with a particular transactional system.

A program computation is captured by a trace τ , which is a finite
sequence of actions, each describing a single computation step.

DEFINITION 11. An actionϕ is an expression of one of the follow-
ing forms: ϕ ::= ψ | (t, c), where t ∈ ThreadID and c ∈ Pcomm.
We denote that set of all actions by Action.

In addition to interface actions, we have actions of the form
(t, c), which denote the execution of a primitive command by
thread t. To denote the evaluation of conditions in if and while

statements, we assume that the sets LPcommt contain special prim-
itive commands assume(b), where b is a Boolean expression over
local variables of thread t, defining the condition. We state their
semantics formally below; informally, assume(b) does nothing if b
holds in the current program state, and stops the computation oth-
erwise. Thus, it allows the computation to proceed only if b holds.
The assume commands are only used in defining the semantics of
the programming language; hence, we forbid threads from using
them directly.

We denote by history(τ) the history obtained by projecting a
trace τ to interface actions. We use various operations on histories
defined in Section 3 for traces as well. As is the case for histories,
programs in the language of Section 2 do not generate arbitrary
traces, but only those satisfying certain conditions summarized in
the following definition.

DEFINITION 12. A trace τ is well-formed if
• the history history(τ) is well-formed;
• thread t does not access local variables of other threads: if τ =
τ1 (t, c) τ2, then c ∈ LPcommt] GPcommt; and
• commands in τ do not access global variables inside a transac-

tion: if τ = τ1 (t, c) τ2 for c ∈ GPcommt, then it is not the
case that τ1 = τ ′1 (t, txbegin) τ ′′1 , where τ ′′1 does not contain
committed or aborted actions.

We denote the set of well-formed traces by WTrace.

We use two additional operations on traces. For a trace τ , we
define trans(τ) and nontrans(τ) as the subsequence of actions in
τ executed inside transactions (including txbegin, committed and
aborted actions), respectively, outside them (excluding txbegin,
committed and aborted actions). Formally, we include an action
ϕ = (t, _) such that τ |t = τ1 ϕ τ2 into trans(τ) if:
• ϕ is a txbegin, committed or aborted action; or
• τ1 = τ ′1 (t, txbegin) τ ′′1 , where τ ′′1 does not contain committed

or aborted actions.
All other actions form nontrans(τ). Actions in τ that are in
trans(τ) are transactional and all others are non-transactional.

A state of a program records the values of all its variables: s ∈
State = Var → Z. The semantics of a program P = C1 ‖
· · · ‖ Cm is given by the set of traces [[P]](s,H) ∈ P(WTrace)
it produces when run with a transactional systemH from an initial
state s. We define this set in two stages. First, we define the set
[[P]](s) ∈ P(WTrace) that a program produces when run from
s with the behaviors of the transactional system unrestricted. We
then compute the set of traces produced by P when run with a given
transactional system H by selecting those traces that interact with
the transactional system in a way consistent withH:

[[P]](s,H) = {τ | τ ∈ [[P]](s) ∧ history(τ) ∈ H}. (1)

The set [[P]](s) is itself computed in two stages2. First, we
compute a trace set A(P) ∈ P(WTrace) that resolves all issues
regarding sequential control flow and interleaving. Intuitively, if
one thinks of each sequential command Ct in P as a control-flow
graph, then A(P) contains all possible interleavings of paths in
the control-flow graph of all the commands Ct starting from their
source nodes. The set A(P) is a superset of all the traces that can
actually be executed: e.g., if a thread executes the command

x := 1; if (x = 1) y := 1 else y := 2 (2)

where x is a local variable, then A(P) will contain a trace where
y := 2 is executed instead of y := 1. To filter out such nonsensi-
cal traces, we evaluate every trace to determine whether its control
flow is consistent with the expected behavior of its actions. This is
formalized by a function eval : State×WTrace→ P(State) that,
given an initial state and a trace, produces the set of states resulting
from executing the actions in the trace, or an empty set if the trace
is infeasible. Then we let

[[P]](s) = {τ | τ ∈ A(P) ∧ eval(s, τ) 6= ∅}. (3)

The rest of this section defines the trace set A(P) and the eval-
uation function eval formally. The definitions follow the intuitive
semantics of our programming language and can be skipped on first
reading (they are only used in the proofs of Lemmas 18 and 20 in
Section 6 and in the detailed proof of Theorem 24 in Appendix B).

Trace set A(P)

The function A(·) in Figure 2 maps commands and programs to
the set of their possible traces. A(C)t gives the set of traces
produced by a command C when it is executed by thread t. To
define A(P), we first compute the set of all the interleavings of
traces produced by the threads constituting P . Formally, τ ∈
interleave(τ1, . . . , τm) if and only if every action in τ is performed
by some thread t ∈ {1, . . . ,m}, and τ |t = τt for every thread
t ∈ {1, . . . ,m}. We then let A(P) be the set of all prefixes of the
resulting traces, as denoted by the prefix operator. We take prefix
2Here we define the set [[P]](s) in a denotational style; a definition
using structural operational semantics would also be appropriate.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

A(c)t = {(t, c)}
A(C1;C2)t = {τ1 τ2 | τ1 ∈ A(C1)t ∧ τ2 ∈ A(C2)t}

A(if (b) then C1 else C2)t = {(t, assume(b)) τ1 | τ1 ∈ A(C1)t} ∪ {(t, assume(¬b)) τ2 | τ2 ∈ A(C2)t}
A(while (b) do C)t = {((t, assume(b)) (A(C)t))∗ (t, assume(¬b))}

A(x := o.f(e))t = {(t, assume(e = n)) (t, call o.f(n)) (t, ret(n′) o.f) (t, x := n′) | n, n′ ∈ Z} ∪
{(t, assume(e = n)) (t, call o.f(n)) (t, aborted) | n ∈ Z}

A(x := atomic {C})t = {(t, txbegin) (t,OK) τ (t, aborted) (t, x := aborted) | τ (t, aborted) ∈ A(C)t} ∪
{(t, txbegin) (t,OK) τ (t, txcommit) (t, committed) (t, x := committed) | τ ∈ A(C)t ∧ τ 6= _ (t, aborted)} ∪
{(t, txbegin) (t,OK) τ (t, txcommit) (t, aborted) (t, x := aborted) | τ ∈ A(C)t ∧ τ 6= _ (t, aborted)}

A(C1 ‖ . . . ‖ Cm) = prefix(
⋃
{interleave(τ1, . . . , τm) | ∀t. 1 ≤ t ≤ m =⇒ τt ∈ A(Ct)t})

Figure 2: The function A(·) mapping commands and programs to the set of all their possible traces

closure here to account for incomplete program computations as
well as those in which the scheduler preempts a thread forever.
A(c)t returns a singleton set with the action corresponding to

the primitive command c (recall that primitive commands execute
atomically). A(C1;C2)t concatenates all possible traces corre-
sponding to C1 with those corresponding to C2. The set of traces
for a conditional considers cases where either branch is taken. We
record the decision using an assume action; at the evaluation stage,
this allows us to ensure that this decision is consistent with the pro-
gram state. The trace set for a loop is defined using the Kleene
closure operator ∗ to produce all possible unfoldings of the loop
body. Again, we record branching decisions using assume actions.

The trace set of a method invocation x := f(e) includes both
traces where the method executes successfully and where the cur-
rent transaction is aborted. The former set is constructed by non-
deterministically choosing two integers n and n′ to describe the
parameter n and the return value n′ for the method call. To ensure
that e indeed evaluates to n, we insert assume(e = n) before the
call action, and to ensure that x gets the return value n′, we add
the assignment x := n′ after the ret action. Note that some of the
choices here might not be feasible: the chosen n might not be the
value of the parameter expression e when the method is invoked, or
the method might never return n′ when called with n. Such infeasi-
ble choices are filtered out at the following stages of the semantics
definition: the former at the evaluation stage (3) by the semantics
of assume, and the latter in (1) by selecting the traces from [[P]](s)
that interact with the transactional system correctly.

The trace set of x := atomic {C} contains traces in which C is
aborted in the middle of its execution (at an object operation) and
those in whichC executes until completion and then the transaction
commits or aborts. From the restrictions on programs introduced
in Section 2, we immediately get:

PROPOSITION 13. For any program P , the set A(P) contains
only well-formed traces.

Semantics of primitive commands
To define evaluation, we assume a semantics of every command
c ∈ Pcomm, given by a function [[c]] that defines how the program
state is transformed by executing c. As we noted in Section 2, dif-
ferent classes of primitive commands are supposed to access only
certain subsets of variables. To ensure that this is indeed the case,
we define [[c]] as a function of only those variables that c is allowed
to access. Namely, the semantics of c ∈ LPcommt is given by

[[c]] : (LVart → Z)→ P(LVart → Z),

and the semantics of c ∈ GPcommt, by

[[c]] : ((LVart] GVar)→ Z)→ P((LVart] GVar)→ Z).

For a valuation q of variables that c is allowed to access, [[c]](q)
yields the set of their valuations that can be obtained by executing
c from a state with variable values q. Note that this allows c to be
non-deterministic. For example, an assignment command x := g
has the following semantics:

[[x := g]](q) = q[x 7→ q(g)],

where q[x 7→ q(g)] is the function that has the same value as q
everywhere, except for x, where it has the value q(g). We define
the semantics of assume commands following the informal expla-
nation given at the beginning of this section: for example,

[[assume(x = n)]](q) =

{
{q}, if q(x) = n;

∅, otherwise.
(4)

Thus, when the condition in assume does not hold of q, the com-
mand stops the computation by not producing any output states.

We lift functions [[c]] to full states by keeping the variables
that c is not allowed to access unmodified. For example, if c ∈
GPcommt, then for all u ∈ Var we let

[[c]](s)(u) =

{
[[c]](s|LVart]GVar)(u), if u ∈ LVart] GVar;

s(u), otherwise.

where s|LVart]GVar is the restriction of s to variables in LVart]
GVar.

Trace evaluation
Using the semantics of primitive commands, we first define the
evaluation of a single action on a given state:

eval : State× Action→ P(State)

eval(s, (t, c)) = [[c]](s);

eval(s, ϕ) = {s} for all other actions ϕ.

Note that this does not change the state s as a result of interface
actions, since their return values are assigned to local variables by
separate actions introduced when generating A(P). We then lift
eval to traces as follows:

eval : State×WTrace→ P(State)

eval(s, ε) = {s};
eval(s, τϕ) = {s′′ | ∃s′. s′ ∈ eval(s, τ) ∧ s′′ ∈ eval(s′, ϕ)}.

This allows us to define [[P]](s) as the set of those traces fromA(P)
that can be evaluated from s without getting stuck, as formalized

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

by (3). Note that this definition enables the semantics of assume
defined by (4) to filter out traces that make branching decisions
inconsistent with the program state. For example, consider the pro-
gram (2). The set A(P) includes traces where both branches are
explored. However, due to the semantics of the assume actions
added to the traces according to Figure 2, only the trace executing
y := 1 will result in a non-empty set of final states after the evalu-
ation and, therefore, only this trace will be included into [[P]](s).

5. OBSERVATIONAL REFINEMENT
Informally, a concrete transactional system HC observationally

refines an abstract transactional system HA, if replacing HC by
HA in a program leaves all its original user-observable behaviors
reproducible. The formal definition depends on which aspects of
program behavior we consider observable. One possibility is to
allow the user to observe the values of all variables during the pro-
gram execution. The corresponding notion of observational refine-
ment is stated as follows.

DEFINITION 14. A transactional system HC observationally re-
fines a transactional systemHA with respect to states, denoted by
HC �state HA, if

∀P.∀s. ∀τ ∈ [[P]](s,HC).∃τ ′ ∈ [[P]](s,HA).

eval(s, τ) = eval(s, τ ′).

Note that, since the semantics of a program P includes traces cor-
responding to its incomplete computations (see the use of prefix-
closure in Figure 2), we allow observing intermediate program
states as well as final ones. Definition 14 implies that, if a program
using the abstract transactional system HA satisfies a correctness
property stated in terms of such states, then it will still satisfy the
property if it uses the concrete systemHC instead.

In some situations, we may also be interested in observing sep-
arate program actions and the order between them, rather than the
set of all reachable program states. In particular, this is desirable
for checking the validity of linear-time temporal properties over
program traces. We formulate the corresponding notion of obser-
vational refinement as follows.

DEFINITION 15. Well-formed traces τ and τ ′ are observationally
equivalent, written τ ∼ τ ′, if

(∀t ∈ ThreadID. τ |t = τ ′|t) ∧ (nontrans(τ) = nontrans(τ ′)).

A transactional systemHC observationally refines a transactional
systemHA with respect to traces, denoted byHC �trace HA, if

∀P.∀s.∀τ ∈ [[P]](s,HC). ∃τ ′ ∈ [[P]](s,HA). τ ∼ τ ′.

Traces related by ∼ are thus considered indistinguishable to the
user, and, hence, the user can observe which equivalence class
over ∼ the trace executed by the program belongs to.

We are now in a position to state our main result.

THEOREM 16.

HC v HA =⇒ HC �trace HA =⇒
HC �state HA =⇒ HC |complete v HA|complete.

Thus, for our programming language, the opacity relation implies
observational refinement with respect to traces or states, and either
of these implies that the complete subsets of the transactional sys-
tems are in the opacity relation.

The first and the second implications from Theorem 16 are
proved in Section 6, and the third one, in Section 7.

6. SUFFICIENCY OF THE OPACITY RE-
LATION

Our goal in this section is to show that the opacity relation im-
plies observational refinement with respect to traces. The next
lemma (proved below) is key in establishing this: it shows that a
trace τH with a history H can be transformed into an equivalent
trace τS with a history S that is in the opacity relation with H .

LEMMA 17 (REARRANGEMENT). For any well-formed histo-
ries H and S:

H v S =⇒ (∀well-formed τH . history(τH) = H =⇒
∃well-formed τS . history(τS) = S ∧ τH ∼ τS).

We also rely on the following lemma, which straightforwardly
implies that observational refinement with respect to traces implies
that with respect to states. The proof of the lemma (given below)
relies on the restrictions on accesses to variables in Definition 12.

LEMMA 18. For all well-formed traces τH and τS ,

τH ∼ τS ∧ eval(s, τH) 6= ∅ =⇒ ∀s. eval(s, τH) = eval(s, τS).

COROLLARY 19. HC �trace HA =⇒ HC �state HA.

Lemma 18 also allows us to conclude that the trace τS resulting
from the transformation in Lemma 17 can be produced by a pro-
gram P if so can the original trace τH .

LEMMA 20. If τH ∈ [[P]](s) and τH ∼ τS , then τS ∈ [[P]](s).

PROOF. Let P = C1 ‖ . . . ‖ Cm. Consider s, τH and τS such that
τH ∈ [[P]](s) and τH ∼ τS . Then for some τ ′ we have τH τ ′ ∈
A(P) and eval(s, τH) 6= ∅. This implies (τH τ ′)|t ∈ A(Ct)t for
any thread t. Since τH ∼ τS , we have that, τS |t = τH |t. Then
(τS τ

′)|t ∈ A(Ct)t and by the definition of A(P) in Figure 2 we
get τS ∈ A(P). Furthermore, by Lemma 18, eval(s, τS) 6= ∅, so
that τS ∈ [[P]](s).

THEOREM 21. HC v HA =⇒ HC �trace HA.

PROOF. Assume HC v HA and consider a program P , a state
s and a trace τH ∈ [[P]](s,HC). Let history(τH) = H; then
τH ∈ [[P]](s) and H ∈ HC . Since HC v HA, there exists a
history S ∈ HA such that H v S. Since H and S are well-
formed, Lemma 17 implies that there is a well-formed trace τS such
that τH ∼ τS and history(τS) = S. Then by Lemma 20 we have
τS ∈ [[P]](s). Since S ∈ HA, this implies τS ∈ [[P]](s,HA).

Proof of Lemma 17 (Rearrangement)
Consider H , S and τH such that H v S and history(τH) = H .
Note that |H| = |S|. To obtain the desired trace τS , we inductively
construct a sequence of well-formed traces τ i, i = 0..|S| with
well-formed histories Hi = history(τ i) such that

Hi�i = S�i ; Hi v S; τH ∼ τ i. (5)

We then let τS = τ |S|, so that τH ∼ τ |S| and

history(τ |S|) = H |S| = H |S|�|S|= S�|S|= S,

as required. Note that the conditionHi v S in (5) is not used to es-
tablish the required properties of τS ; we add it so that the induction
goes through.

We start the construction of the sequence of traces τ i with τ0 =
τH , so that H0 = H and all the requirements in (5) hold trivially.
Assume a trace τ i satisfying (5) was constructed; we get τ i+1 from
τ i by applying the following lemma. Since ∼ is transitive, the
conclusion of the lemma implies the desired properties of τ i+1.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

τ i

S

τ1 τ3 ψ τ4

S1 ψ S2

τ2

(a) Trace τ i and history S

τ i+1

S

τ1 ψτ3|t τ3|¬t τ4

S1 ψ S2

(b) Case of ψ 6= (t, txbegin)

τ i+1

S

τ1 nontrans(τ3) ψ trans(τ3) τ4

S1 ψ S2

(c) Case of ψ = (t, txbegin)

Figure 3: An illustration of the transformations performed in the proof of Lemma 22

LEMMA 22. Assume well-formed histories Hi and S and a well-
formed trace τ i such that

history(τ i) = Hi; Hi�i = S�i ; Hi v S.

Then there exist some well-formed historyHi+1 and a well-formed
trace τ i+1 such that

history(τ i+1) = Hi+1; Hi+1�i+1 = S�i+1 ;

Hi+1 v S; τ i ∼ τ i+1.

PROOF. Let S = S1 ψ S2, where |S1| = i. By assumption,
history(τ i)�i = Hi�i = S�i = S1. Thus, for some traces τ1 and
τ2, we have τ i = τ1 τ2, where τ1 is the minimal prefix of τ i such
that history(τ1) = S1. We also have Hi v S, and, hence, there
exists a bijection θ : {1, . . . , |Hi|} → {1, . . . , |S|} satisfying the
conditions of Definition 4. Since θ preserves the per-thread order
of actions and history(τ1) = S1, we can assume that θ maps ac-
tions in history(τ1) to the corresponding actions in S1. Hence, for
some traces τ3 and τ4, we have

history(ψ) = ψ, τ2 = τ3 ψ τ4, τ i = τ1 τ2 = τ1 τ3 ψ τ4,

and θ maps the ψ in history(τ i) to ψ in S, i.e., θ(|history(τ1 τ3)|+
1) = |S1|+ 1; see Figure 3(a).

Let ψ = (t, _). We note that, since θ preserves the per-thread
order of actions and history(τ1) = S1, we have history(τ3|t) = ε.
We proceed by case analysis on the kind of ψ.

Case I: ψ 6= (t, txbegin). Let τ i+1 = τ1 (τ3|t)ψ (τ3|¬t) τ4
and Hi+1 = history(τ i+1); see Figure 3(b). Intuitively, τ i+1 is
obtained from τ i = τ1 τ3 ψ τ4 by moving all the actions in τ3 per-
formed by thread t, together with ψ, to the position right after τ1.

Since history(τ3|t) = ε, history(τ1) = S1 and |S1| = i, we get:

Hi+1�i+1 = (history(τ1 (τ3|t)ψ (τ3|¬t) τ4))�i+1

= S1 ψ = S�i+1 ,

as required. We also have:

τ i+1|t = (τ1 (τ3|t)ψ (τ3|¬t) τ4)|t
= (τ1|t) (τ3|t)ψ (τ4|t)
= (τ1 τ3 ψ τ4)|t
= τ i|t;

τ i+1|¬t = (τ1 (τ3|t)ψ (τ3|¬t) τ4)|¬t
= (τ1|¬t) (τ3|¬t) (τ4|¬t)
= (τ1 τ3 ψ τ4)|¬t
= τ i|¬t.

Hence, for any thread t′, we have τ i|t′ = τ i+1|t′ and Hi+1|t′ =
Hi|t′ = S|t′ . Any real-time order between two actions that ex-

ists in Hi+1, but not in Hi, also exists between the actions in S
corresponding to them according to θ. Thus, Hi+1 v S.

Since ψ 6= (t, txbegin) and history(τ3|t) = ε, all the actions
performed by t in the subtrace τ3 of τ i are transactional. Hence,

nontrans(τ i+1) = nontrans(τ1 (τ3|t)ψ (τ3|¬t) τ4)

= nontrans(τ1 τ3 ψ τ4)

= nontrans(τ i)

and therefore τ i ∼ τ i+1.

Case II: ψ = (t, txbegin). Note that the subtrace τ3 of τ i does
not contain any committed or aborted actions ψ′. Indeed, assume
otherwise. Since history(τ1) = S1, the action in S correspond-
ing to ψ′ according to θ would be in S2. This would mean that
the real-time order between ψ′ and ψ in Hi is not preserved in S,
contradicting our assumption that Hi v S. Thus, for any thread
t′ 6= t, τ3|t′ consists of some number of non-transactional actions
followed by some number of transactional ones, and τ3|t does not
contain any transactional actions. Motivated by these observations,
we let

τ i+1 = τ1 nontrans(τ3)ψ trans(τ3) τ4

and Hi+1 = history(τ i+1); see Figure 3(c).3 Intuitively, τ i+1 is
obtained from τ i = τ1 τ3 ψ τ4 by moving all transactional actions
in τ3 to the position right before τ4.

Since history(nontrans(τ3)) = ε, history(τ1) = S1 and |S1| =
i, we get:

Hi+1�i+1 = (history(τ1 nontrans(τ3)ψ trans(τ3) τ4)�i+1

= S1 ψ = S�i+1 ,

as required.
Since for every thread t′ 6= t, τ3|t′ consists of non-transactional

actions followed by transactional ones,

(nontrans(τ3)ψ trans(τ3))|t′ = (τ3 ψ)|t′ .

Since τ3|t does not contain any transactional actions, τ3 =
nontrans(τ3) and, hence,

(nontrans(τ3)ψ trans(τ3))|t = (τ3 ψ)|t.

Thus, for any t′′ we have

τ i+1|t′′ = (τ1 nontrans(τ3)ψ trans(τ3) τ4)|t′′
= (τ1 τ3 ψ τ4)|t′′ = τ i|t′′

3Here we are applying nontrans to a part τ3 of a well-formed trace
τ i. Note that, in the absence of txbegin actions in τ3, the defi-
nition of nontrans given in Section 4 considers all actions in τ3
non-transactional.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

and Hi+1|t′′ = Hi|t′′ = S|t′′ . Any real-time order between ac-
tions in Hi+1 also exists in Hi, and hence, Hi+1 v S. Finally,

nontrans(τ i+1) = nontrans(τ1 nontrans(τ3)ψ trans(τ3) τ4)

= nontrans(τ1 τ3 ψ τ4)

= nontrans(τ i),

so that τ i ∼ τ i+1.

Proof of Lemma 18
Consider s, τH and τS such that τH ∼ τS and eval(s, τH) 6= ∅. We
need to show that eval(s, τS) 6= ∅. The proof of this fact is similar
in its structure to that of Lemma 17. We inductively construct a
sequence of well-formed traces τ i, i = 0..|τS | such that

τ i�i = τS�i ; τ i ∼ τS ; eval(s, τ i) = eval(s, τH) 6= ∅. (6)

Then for i = |τS | we get τ i = τS , which implies the required.
To construct the sequence of traces τ i, we let τ0 = τH , so that

all the requirements in (6) hold trivially. Assume now that a trace
τ i satisfying (6) has been constructed. Let τS = τ1 ϕ τ2, where
|τ1| = i, and ϕ = (t, _). By assumption, τ i�i = τS�i and, since
τ i ∼ τS , we also have τ i|t = τS |t. Hence, for some traces τ ′2 and
τ ′′2 , we get

τ i = τ1 τ
′
2 ϕ τ

′′
2 ,

where τ ′2 does not contain any actions by thread t. Let

τ i+1 = τ1 ϕ τ
′
2 τ
′′
2 ;

then τ i+1�i+1 = τS�i+1. We now show that τ i+1 ∼ τ i and
eval(s, τ i+1) = eval(s, τ i), which implies the required.

First note that τ i|t′ = τ i+1|t′ for any thread t′ since τ ′2 does not
contain any actions by thread t. Next, consider the case when the
action ϕ in τ i is non-transactional. Since τ i|t = τS |t, so is the cor-
responding action ϕ in τS . Assume that some action ϕ′ = (t′, _)
in the subtrace τ ′2 of τ i is non-transactional as well, where t′ 6= t.
Let ϕ′ be the j-th action by thread t′ in τ i. Since τ i|t′ = τS |t′ , ϕ′
is also the j-th action by thread t′ in τS and is non-transactional in
this trace. But then ϕ′ has to be in the subtrace τ2 of τS and thus
follow ϕ, contradicting nontrans(τ i) = nontrans(τS). Hence,
if the action ϕ in τ i is non-transactional, then the subtrace τ ′2 of
τ i does not contain any non-transactional actions. This implies
nontrans(τ i+1) = nontrans(τ i) and thus τ i+1 ∼ τ i.

The restrictions on accesses to variables by commands from
LPcommt and GPcommt (stated in Section 2 and formalized in
Section 4) imply

PROPOSITION 23. Assume ϕ1 and ϕ2 are actions by different
threads and, if ϕ1 = (t1, c1) and ϕ2 = (t2, c2), then

(c1 ∈ LPcommt1 ∧ c2 ∈ LPcommt2] GPcommt2) ∨
(c1 ∈ LPcommt1] GPcommt1 ∧ c2 ∈ LPcommt2).

Then eval(s, ϕ1 ϕ2) = eval(s, ϕ2 ϕ1) for any state s.

Since τ i is well-formed, by Definition 12 for any action (t′, c) in
it we have that c ∈ LPcommt]GPcommt and, if c ∈ GPcommt,
then the action is non-transactional. Given this and the properties
of τ ′2 established above, by applying Proposition 23 repeatedly we
get that eval(s′, ϕ τ ′2) = eval(s′, τ ′2 ϕ) for any state s′. Hence,

eval(s, τ i+1) = eval(s, τ1 ϕ τ
′
2 τ
′′
2) =

eval(s, τ1 τ
′
2 ϕ τ

′′
2) = eval(s, τ i).

7. NECESSITY OF THE OPACITY RELA-
TION

In this section we prove that observational refinement with re-
spect to states implies the opacity relation restricted to the complete
subsets of the transactional systems. We only give a proof sketch
here and defer the full proof to Appendix B.

THEOREM 24. HC �state HA =⇒ HC |complete v HA|complete.

PROOF SKETCH. For every complete history H ∈ HC we con-
struct a program PH where every thread performs the sequence
of transactions specified by H , records the return values obtained
from methods of transactional objects, and monitors whether the
real-time order between actions includes that in H .

In more detail, given that the history H is well-formed, we con-
struct the code of every thread t as a sequence of atomic blocks,
corresponding to txbegin, committed and aborted actions in H|t,
which perform the sequence of method invocations determined by
call and ret actions in H|t. We record the return value for every
method invocation in a dedicated variable local to the correspond-
ing thread, which is never rewritten (this is possible because H is
finite). The return status of every transaction is also recorded in
a dedicated local variable. As a result, from the final state of an
execution of PH , we can reconstruct the interaction of each thread
with the transactional system. (We rely here on the fact that the
histories considered are complete; our notion of observation is not
strong enough to distinguish between, e.g., histories H ϕH ′ and
HH ′ where ϕ is a call action that does not return.)

To check whether an execution of PH complies with the real-
time order in H , we exploit the ability of threads to communicate
via global variables outside transactions. For each transaction inH ,
we introduce a global variable g, which is initially 0 and is set to 1
by the thread executing the transaction right after the transaction
completes, by a command following the corresponding atomic

block. Before starting a transaction, each thread checks whether
all transactions preceding this one in the real-time order in H have
finished by reading the corresponding g variables. The outcome is
recorded in a dedicated local variable.

Let s be a state with all variables set to distinguished initial val-
ues. From the above it follows that, given any trace τ ∈ [[PH]](s),
by observing the states in eval(s, τ), we can unambiguously deter-
mine whether the per-thread projections of history(τ) are equal to
those of H and whether the real-time order in history(τ) includes
that in H .

Now given H ∈ HC , we construct a trace τ ∈ [[PH]](s,HC)
such that history(τ) = H and eval(s, τ) = {s′}, where the
state s′ signals the above correspondence of the trace to H . By
Definition 14, there exists a trace τ ′ ∈ [[PH]](s,HA) such that
eval(s, τ ′) = {s′}. But then the per-thread projections of S =
history(τ ′) are equal to those of H and the real-time order in H is
preserved in S. By Definition 4, this implies H v S.

The proof highlights the features of our programming model that
lead to the necessity result. First, the ability to access global vari-
ables outside transactions allows us to monitor the real-time order.
Second, we use the ability of programs to observe values assigned
to local variables during the execution of a transaction, even if the
transaction aborts: PH records the return values of method invoca-
tions by aborted transactions in special local variables, which can
then be observed in final states. This necessitates treating aborted
transactions in the same way as committed ones in the consistency
definition.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

8. RELATED WORK AND DISCUSSION
Previous work has studied transactional memory consistency by:
• investigating the semantics of different programming languages

with atomic blocks and the feasibility of their efficient imple-
mentation [1, 10, 18]; or
• defining consistency conditions for TM [2,4,7,8,17] and proving

that particular TM implementations validate them [3, 8].
Thus, previous work has tended to address the issue from the per-
spective of either programming languages or TM implementations
and has not tried to relate these two levels in a formal manner. An
exception is the work by Harris et al. [11], which proved that a
specific TM implementation, Bartok-STM, validates a particular
semantics of atomic blocks in a programming language.

This paper tries to fill in the gap in existing studies by relating the
semantics of a programming language with atomic blocks to that of
a TM system implementing them. Our work is complementary to
previous proofs that certain TM systems satisfy opacity [3], as it
lifts such results to the language level. Our work is also more gen-
eral than that of Harris et al. [11], since our results allow establish-
ing observational refinement for any TM implementation satisfying
opacity. However, some of the above-mentioned papers [1, 18] in-
vestigated advanced language interfaces that we do not consider,
such as nested transactions and access to shared data both inside
and outside transactions.

This paper employs a well-known technique from the theory of
programming languages, observational refinement [12, 13], to ex-
plore the most appropriate way to specify TM consistency. Obser-
vational refinement has previously been used to characterize cor-
rectness criteria for libraries of concurrent data structures. Thus,
Filipovic et al. [5] proved that, in this setting sequential consis-
tency [16] is necessary and sufficient for observational refinement,
and so is linearizability [14] when client programs can interact via
shared global variables. Gotsman and Yang [6] adjusted lineariz-
ability to account for infinite computations and showed its suffi-
ciency for observational refinement in the case when the client can
observe the validity of liveness properties. Our work takes this
approach from the simpler setting of concurrent libraries to the
more elaborate setup of transactional memory. Since we allow the
abstract transactional system to have incomplete transactions, we
hope that in the future we can generalize our consistency condition
to specify liveness properties, along the lines of [6].

Opacity requires the TM behavior observed by aborted transac-
tions to be as consistent as that observed by committed ones. Other
proposed consistency conditions tried to relax this requirement. For
example, virtual world consistency (VWC) [15] requires the behav-
ior observed by an individual aborted transaction to be consistent
only with the committed transactions from which it reads and those
previously committed by the same thread. Our necessity result im-
plies that VWC does not imply observational refinement for our
programming language. However, this does not rule out the viabil-
ity of VWC and related notions as a consistency condition for TM.
VWC may well imply observational refinement for a programming
language in which aborted transactions do not affect the rest of the
computation (in particular, their modifications to local variables are
rolled back) and a weaker notion of observations. This paper estab-
lishes an approach for evaluating and comparing TM consistency
conditions, and in future work, we hope to apply it to VWC and
other conditions, such as TMS [4,17] and DU-opacity [2]. We also
intend to investigate the behaviour of incomplete histories with re-
spect to observational refinement, whose treatment by the opacity
relation causes our result to fall short of the strict equivalence be-
tween the relation and the observational refinement.

Acknowledgements
This work is supported by EU FP7 projects TRANSFORM
(238639) and ADVENT (308830). We thank Victor Luchangco,
Eran Yahav, Hongseok Yang and the reviewers for helpful com-
ments.

9. REFERENCES
[1] M. Abadi, A. Birrell, T. Harris, and M. Isard. Semantics of

transactional memory and automatic mutual exclusion. In
POPL, pages 63–74, 2008.

[2] H. Attiya, S. Hans, P. Kuznetsov, and S. Ravi. Safety of
deferred update in transactional memory. In ICDCS, 2013.
To appear.

[3] A. Bieniusa and P. Thiemann. Proving isolation properties
for software transactional memory. In ESOP, pages 38–56,
2011.

[4] S. Doherty, L. Groves, V. Luchangco, and M. Moir. Towards
formally specifying and verifying transactional memory.
Formal Aspects of Computing, pages 1–31, March 2012.

[5] I. Filipovic, P. W. O’Hearn, N. Rinetzky, and H. Yang.
Abstraction for concurrent objects. In ESOP, pages 252–266,
2009.

[6] A. Gotsman and H. Yang. Liveness-preserving atomicity
abstraction. In ICALP (2), pages 453–465, 2011.

[7] R. Guerraoui and M. Kapalka. On the correctness of
transactional memory. In PPOPP, pages 175–184, 2008.

[8] R. Guerraoui and M. Kapalka. Principles of Transactional
Memory. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool, 2011.

[9] T. Harris, J. Larus, and R. Rajwar. Transactional memory.
Synthesis Lectures on Computer Architecture. Morgan &
Claypool Publishers, 2010.

[10] T. Harris, S. Marlow, S. L. P. Jones, and M. Herlihy.
Composable memory transactions. In PPOPP, pages 48–60,
2005.

[11] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI, pages 14–25, 2006.

[12] J. He, C. Hoare, and J. Sanders. Data refinement refined. In
ESOP, pages 187–196, 1986.

[13] J. He, C. Hoare, and J. Sanders. Prespecification in data
refinement. Information Processing Letters, 25(2):71 – 76,
1987.

[14] M. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on
Programming Languages and Systems, 12(3):463–492, 1990.

[15] D. Imbs, J. R. G. de Mendívil, and M. Raynal. Brief
announcement: virtual world consistency: a new condition
for STM systems. In PODC, pages 280–281, 2009.

[16] L. Lamport. How to make a multiprocessor computer that
correctly executes multiprocess programs. IEEE
Transactions on Computers, 28(9):690–691, 1979.

[17] M. Lesani, V. Luchangco, and M. Moir. Putting opacity in its
place. In WTTM, 2012.

[18] K. F. Moore and D. Grossman. High-level small-step
operational semantics for transactions. In POPL, pages
51–62, 2008.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

APPENDIX
A. PROOF OF PROPOSITION 10

Only if. Assume thatHC is an opaque transactional system and
let H ∈ HC . By the definition of opacity, there is a complete
historyHc ∈ scomp(H) and a complete, non-interleaved and legal
history Sc such that Hc v Sc.

Let S be the history produced by removing all the actions in Sc

added while completing H to Hc. It is easy to see that S is non-
interleaved and that H|t = S|t for every thread t. Hence, the last
action of every thread t in H is the same as its last action in S.
Furthermore, the actions used to suffix-complete H to Hc can be
used to show that Sc is a non-interleaved completion of S. Hence,
Sc ∈ nicomp(S).

Since Sc is legal, we have S ∈ Hatomic. Furthermore, the real-
time order between actions in Hc is preserved in Sc, and hence,
the real-time order in H is preserved in S, so that H v S. The
history H ∈ HC was chosen arbitrarily. Thus, from S ∈ Hatomic

and H v S it follows thatHC v Hatomic.

If. Assume HC v Hatomic and let H ∈ HC . By the definition
of the opacity relation, there exists a history S ∈ Hatomic such that
H v S. Since S ∈ Hatomic, it is non-interleaved and there exists a
complete, non-interleaved and legal history Sc ∈ nicomp(S).

Since H v S, for every thread t we have H|t = S|t, and,
hence, the last action of every thread t in H is the same as its last
action in S. Therefore, the same actions used to create Sc as a non-
interleaved completion of S can be used to suffix-complete H to a
history Hc ∈ scomp(H).

It is easy to see that Hc|t = Sc|t for every thread t. Note that
no txbegin actions are added to H to produce Hc and aborted or
committed actions are added to the end of the history. Hence, no
new real-time orders are introduced when suffix-completing H to
Hc. Since the real-time order in H is preserved in S and the real-
time order in S is preserved in Sc, we get that the real-time order
in Hc is preserved in Sc. Hence, Hc v Sc. The history H ∈ HC

was chosen arbitrarily. Thus, from Hc ∈ scomp(H) and Hc v Sc

it follows thatHC is opaque.

B. PROOF OF THEOREM 24
Consider a complete history H ∈ HC |complete. We construct

a program PH that records the interaction of every thread t with
the transactional system and monitors whether the real-time order
includes that in H .

Let us chose an integer value u 6= 1 which does not appear inH .
We use the following shorthands:
• We denote by m the number of threads that have an action

in H . For simplicity, we assume that the identifiers of these
threads are {1, . . . ,m}.
• We denote by kt the number of transactions started by thread
t in H , i.e., the number of (t, txbegin) actions in H .
• We partition H|t into kt subsequences: H|t = Ht

1 . . . H
t
kt ,

where Ht
i is comprised of the actions in the i-th transaction

of t. Specifically, Ht
i (1) = (t, txbegin).

• We let cti be the outcome of the i-th transaction of thread
t, i.e., cti = committed or cti = aborted. Specifically,
Ht

i (|Ht
i |) = (t, cti). c

t
i is well defined as H is complete.

• We denote by qti the number of call actions of thread t in its
i-th transaction, i.e., in Ht

i .
• We let (t, call oti,j .f

t
i,j(n

t
i,j)) be the j-th call action of thread

t in its i-th transaction.

• We let (t, ret(rti,j) o
t
i,j .f

t
i,j) be the j-th ret action of thread t

in its i-th transaction. rti,j is well defined as H is complete.
• We denote by lasttx(t, i, t′) the number of transactions of

thread t′ in H that either committed or aborted before
the i-th transaction of thread t started, i.e., the number of
(t′, committed) and (t′, aborted) actions preceding the i-th
(t, txbegin) action in H .

For every thread t = 1..m we construct a straight-line command

Ct
H = CP t

1;CP
t
2; . . . ;CP

t
kt ; e

t := 1 .

CP t
i is a sequence of commands constructed according to the i-th

transaction of t in H as follows:

CP t
i = zti,1 := g1lasttx(t,i,1); . . . ; z

t
i,m := gmlasttx(t,i,m)

wt
i := atomic { yti,1 := oti,1.f

t
i,1(n

t
i,1);

. . . ;

yti,qti
:= oti,qti

.f t
i,qti

(nt
i,qti

) };
gti := 1.

Here the g variables are global and all others are local. The g and
z variables are used to monitor the real-time order. The variable gti
is written only by thread t and is used to signal that the i-th trans-
action of thread t ended: gti is set to 1 only after t’s i-th transaction
either committed or aborted. The variable zti,t′ is local to thread
t. It is used to record if the lasttx(t, i, t′)-th transaction of thread
t′ signaled that it had ended before the i-th transaction of thread t
started. As lasttx(t, i, t′) might be 0, we add a dummy variable gt0
for every thread t. The variable wt

i records whether the i-th trans-
action of thread t committed or aborted. The variables yti,j record
the return value of the j-th object method invocation in the i-th
transaction of thread t. Variable et is local to thread t and is set
to 1 right before t reaches its final state.

Thus, the command Ct
H begins by reading the signals of the last

transaction of every thread that, according to H , should end before
the i-th transaction of thread t starts. It then performs an atomic

block in which it invokes the sequence of object method invoca-
tions induced by Ht

i . After the atomic block ends, CP t
i signals

the end of the transaction. The desired program PH is the parallel
composition of the straight-line commands of the different threads:

PH = C1
H ‖ . . . ‖ Cm

H .

We now construct a particular trace τ of PH . We build τ by first
constructing a trace τ t for every sequential command Ct

H and then
interleaving the traces τ1, . . . , τm in a particular way.

Consider the set of traces A(Ct
H)t of the sequential command

Ct
H , and let τ t ∈ A(Ct

H)t be the (only) trace such that H|t =
history(τ tc). The trace τ t exists, since by construction of Ct

H and
the definition of the trace set of a sequential command (Figure 2),
there is a trace in A(Ct

H)t for every possible parameter and return
value of object method invocations and atomic blocks in Ct

H ; in
particular, A(Ct

H)t contains a trace where the parameters and re-
turn values of object method invocations and the return values of
transactions are as in H|t.

We now partition every τ t into
∣∣H|t∣∣ + 1 subsequences that we

later interleave to create τ :

τ t = τ t1 . . . τ
t
|H|t|τ

t
|H|t|+1.

Formally, for every i = 1..
∣∣H|t∣∣ there is exactly one interface ac-

tion ϕt
i in τ ti and

τ ti =

{
_ϕt

i, if ϕt
i 6∈ {(t, committed), (t, aborted)};

_ϕt
i(t, _), otherwise.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

Note that this defines τ ti , i = 1..
∣∣H|t∣∣ uniquely; then τ t|H|t|+1

is also defined uniquely as containing the rest of the actions in
the trace. The fact that each subsequence τ ti , except possibly
the last one, includes exactly one interface action allows us in
the following to interleave the subsequences in the order induced
by H . The above definition also ensures that, if τ ti ends with
ϕt

i = (t, txbegin), then it contains all the actions that are used to
read the global signaling variables that precede ϕt

i in τ t. Further-
more, if τ ti contains a committed or aborted action, then it ends
with the interface action that signals the end of the corresponding
transaction.

The desired trace is constructed by interleaving the subsequences
of the traces τ1, . . . , τm according to the order induced by H , and
appending the suffixes of every trace in which the et variables are
set to 1. Formally,

τ = τ t1j1 . . . τ
t|H|
j|H|

τ1|H|1|+1 . . . τ
m
|H|m|+1

where H(i) = (ti, _) and ji =
∣∣H�i |ti

∣∣. Then history(τ) = H .
Since τ t ∈ A(Ct

H)t, we have τ ∈ A(PH). Let s be the state
where all the local variables are set to u and for all t, gti = 0 for
i 6= 0 and gt0 = 1. By the construction of τ we have eval(s, τ) =
{s′} for some state s′. Then, since history(τ) = H ∈ HC , we
have τ ∈ [[PH]](s,HC).

It is easy to check that s′(xti,j) = nt
i,j , s′(yti,j) = rti,j and

s′(wt
i) = cti . By the construction of τ , when the evaluation of τ

from s reaches the i-th transaction of thread t, all the transactions
that preceded that transaction in H have signaled that they ended.
Furthermore, the non-interface actions of thread t that read these
signals (i.e., the assignments to variables zti,t′) are evaluated right
before the i-th (t, txbegin) action; thus, we have s′(zti,t′) = 1.
Finally, every thread in τ assigned 1 to its e variable. Thus we have
that s′(et) = 1 for every t = 1..m.

Since τ ∈ [[PH]](s,HC) and HC �state HA, by Definition 14
there exists a trace τ ′ ∈ [[PH]](s,HA) such that eval(s, τ ′) = {s′}.
Then τ ′ ∈ A(PH) and S = history(τ ′) ∈ HA. Recall that the
values of xti,j , yti,j and wt

i,j for every t = 1..m, i = 1..kt and
j = 1..qti record the interaction of threads with the transactional
system. Since s′(et) = 1 for every t = 1..m, the code of each
thread executes in τ ′ until completion. As a result, S is complete,
which implies that H|t = S|t for any t.

We also have s′(zti,t′) = 1 for t = 1..m, t′ = 1..m. Hence, in
S, the lasttx(t, i, t′)-th transaction of thread t′ (i.e., the last trans-
action of t′ that terminated before the i-th transaction of thread t
begins in H) also terminated before the i-th transaction of thread
t. This suffices to show that S respects the real-time order in
H . As H ∈ HC |complete was chosen arbitrarily, we get that
HC |complete v HA|complete.

T
ec

hn
io

n
-

C
om

pu
te

r
Sc

ie
nc

e
D

ep
ar

tm
en

t -
 T

eh
ni

ca
l R

ep
or

t
C

S-
20

13
-0

4
-

20
13

