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Abstract
Recent advances in secure hardware technologies, such as Intel SGX or ARM TrustZone, offer an
opportunity to substantially reduce the costs of Byzantine fault-tolerance by placing the program
code and state within a secure enclave known as a Trusted Execution Environment (TEE). However,
the protection offered by a TEE only applies during program execution. Once power is switched off,
the non-volatile portion of the program state becomes vulnerable to rollback attacks wherein it is
undetectably reverted to an older version. In this paper we consider the problem of implementing
reliable read/write registers out of failure-prone replicas subject to state rollbacks. To this end, we
introduce a new unified model that captures multiple failure types that can affect a TEE-based
system and establish tight bounds on the fault-tolerance of register constructions in this model.
We consider both the static case, where failure thresholds hold throughout the entire execution,
and the dynamic case, where any number of replicas can roll back, provided these failures do not
occur too often. Our dynamic register emulation algorithm, TEE-Rex, provides the first correct
implementation of a distributed state recovery procedure that requires neither durable storage nor
specialized hardware, such as trusted monotonic counters.
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1 Introduction

Tolerating Byzantine failures plays a major role in designing modern reliable distributed
systems, and in particular blockchains. Unfortunately, tolerating Byzantine failures is
expensive in terms of message complexity [15], latency [2, 43], and the number of replicas
required [16, 32, 39]. Recent advances in secure hardware technologies, such as Intel SGX
or ARM TrustZone, offer an opportunity to substantially reduce these costs by placing the
program’s code and a portion of its state in a secure enclave known as a Trusted Execution
Environments (TEE). Applications can furthermore detect any runtime alterations to the
state stored outside the enclave using integrity metadata stored inside it. These mechanisms
together can then be used to convert Byzantine failures to simple crash or omission failures,
which are less expensive to tolerate [7, 31,41,42].

However, a TEE is a not a panacea, because the protection it offers only applies during
program execution. Once power is switched off, the non-volatile portion of the program state
becomes vulnerable to tampering by an attacker. To address this, hardware manufacturers

© Sadegh Keshavarzi, Gregory Chockler, and Alexey Gotsman;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Distributed Computing (DISC 2025).
Editor: Dariusz R. Kowalski; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2025.18
https://arxiv.org/abs/2505.18648
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 TEE is not a Healer: Rollback-Resistant Reliable Storage

provide a sealing mechanism [12] that allows programs to encrypt a portion of their state
using a device-specific key before storing it in non-volatile storage. When the machine restarts,
the TEE can check whether the sealed state was indeed written by it in the past. However,
it cannot determine whether this state is the most recent version. This limitation makes
TEE-based systems vulnerable to rollback attacks where the sealed state is undetectably
replaced with an older version [8, 13,35,40,42].

In this paper we study theoretical foundations for building reliable distributed systems
in the presence of rollbacks. We start by introducing crash-restart-rollback (CRR), a new
unified failure model that formalizes rollbacks alongside other types of failures that can occur
in a TEE-based system. In this model, processes can use local non-volatile storage to persist
their states and are assumed to behave correctly while they are executing. A CRR-faulty
process can permanently crash, crash and restart infinitely often, or crash and restart with
the content of its non-volatile storage being undetectably reverted to an older version.

We then study the problem of implementing reliable read/write registers in an asyn-
chronous message-passing system where the register’s state is stored at a collection of n CRR
failure-prone replicas accessed by arbitrarily many crash-prone clients. We consider two
sub-classes of the above CRR failure model for replicas – static and dynamic. Static failure
models assume the existence of a priori fixed thresholds restricting the number of replicas
that can experience failures of various types in every execution; this is similar to the classical
crash or Byzantine failure models. The dynamic failure models generalize the static ones by
permitting any number of replicas to roll back in exchange for requiring that these failures
do not occur too often.

Static failure models. For the static failure models, we give a fine-grained characterization
of failure resilience, time complexity, and non-volatile storage requirements of a register
implementation in terms of several thresholds: k on the total number of any CRR failures;
r ≤ k on the number of rollback failures; and b ≤ n on the number of correct replicas that
can crash at least once, but eventually stay up. Our main result establishes the following:
a wait-free atomic multi-writer/multi-reader (MWMR) register can be implemented in the
static model if and only if n ≥ 2k + min(b, r) + 1. Our algorithm matching this bound has
the latency of 4 message delays for both writes and reads, which is the same as for crash
fault-tolerant register implementations [11,33] and is thus optimal. This stands in a sharp
contrast with the Byzantine-resilient register constructions, where write and read latencies
of 4 and 8 message delays are inherent even for implementing a single-writer/multi-reader
(SWMR) wait-free atomic register [14].

Our lower bound implies that, when r ≤ b, rollback failures are no different from Byzantine
failures in terms of failure resilience: the number of replicas n ≥ 2k + r + 1 required in
this case is the same as that needed to implement Byzantine-resilient registers when at
most r out of k faulty replicas can behave arbitrarily [18]. On the other hand, the two
models are separated when b < r: in this case, a register can be implemented in CRR with
2k+ b+ 1 replicas, which is strictly fewer than 2k+ r+ 1 required by Byzantine fault-tolerant
implementations.

We also establish a lower bound on non-volatile storage consumption: when 2k + r + 1 ≤
n < 2k + b+ 1, at least 2k + r + 1 replicas must store their states persistently on their local
non-volatile storage. Since this storage is not protected by TEEs, in practice applications
must rely on expensive mechanisms to monitor its integrity at runtime, e.g., using TEE-
protected integrity metadata, such as Merkle trees. Our results show that for some resilience
levels these overheads are unavoidable.
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Dynamic failure models. For the dynamic failure models, we first show that no implemen-
tation of a single-writer/single-reader (SWSR) safe register can use fewer than d + c + 1
replicas, where d bounds the number of replicas that either crash permanently or never
stop crashing and recovering, and c ≥ d bounds the number of replicas that crash at least
once. While it is well-known that no register implementation can exist without a majority of
replicas being eventually up (n ≥ 2d+ 1), our result further refines this lower bound for the
case when c > d.

For a matching upper bound, we propose an algorithm, called TEE-Rex, that implements
an MWMR atomic register using n ≥ d+ c+ 1 replicas. The algorithm is always safe and is
wait-free in executions where: n − d replicas eventually stop crashing; and either replicas
do not crash too often or n− c replicas never crash at all. Unlike in the static model, these
conditions place no restrictions on the number of replicas that can roll back. The algorithm
is parameterized by d, but is unaware of c. It achieves the optimal time complexity of 4
message delays for both writes and reads in failure-free executions.

The most interesting ingredient of TEE-Rex is a novel distributed recovery protocol that
enables crashed replicas to rebuild their state and become fully operational upon restart. As
we explain in §4.1, implementing recovery correctly is nontrivial: a naive approach of simply
querying a read quorum and adopting the state of the most up-to-date replica is fundamentally
unsafe [36]. In fact, as we discovered in this work, some of the prior recoverable register
implementations suffer from nontrivial safety bugs [13, 17] (§5). Others do not guarantee
liveness [35, 42], or require trusted hardware-based primitives such as persistent monotonic
counters [25, 36]. In contrast, our TEE-Rex algorithm provides what we believe is the first
self-contained and rollback-resilient construction of a read/write register under dynamic
failure models.

2 System Model

We consider an asynchronous message-passing system consisting of a collection of failure-prone
processes P = {p1, p2, . . .} implementing a high-level object abstraction. The set of processes
is partitioned into a set R = {p1, . . . , pn} of n > 1 replicas, and a set {pn+1, pn+2, . . .}
of possibly infinitely many clients. Similarly to the classical faulty shared memory model
of [3, 24], the replicas are responsible for storing the object state, and the clients interact
with the replicas to handle the requests supported by the implemented object type. To study
tradeoffs between failure resilience and non-volatile storage consumption, we assume that
s ≥ 0 replicas have access to non-volatile storage.

Formally, an object implementation is a composition of client and replica automata.
An execution of an implementation is a sequence of states interleaved with atomic send
and receive actions starting from an initial state. The action atomicity ensures that all
non-volatile storage modifications performed as part of the received message handling are
failure atomic [9], i.e., their effects are either persisted in their entirety or not at all.

Failure models. A failure model is a predicate over executions. An execution α is valid
under a failure model F (or simply F-valid) if F(α) holds. For failure models F and F ′,
F � F ′ iff ∀α.F(α) =⇒ F ′(α).

Client failures. Clients can experience permanent crash failures, but otherwise do not
deviate from their prescribed protocols. A client is correct in an execution if it never crashes,
and is faulty, otherwise.

DISC 2025
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Replica failures. Our baseline failure model for replicas, to which we refer as crash-restart-
rollback (CRR), formalizes the types of failures that can occur in a TEE-based system (see §1).
Under CRR, a replica can experience a crash that interrupts its execution either permanently
or temporarily. In the former case, the replica stops taking steps; in the latter case, it restarts,
by executing a specified on restart block and then continues its execution from the state
reached thereupon. For simplicity, we assume that when a replica is restarted, the restart
and its immediately preceding crash occur simultaneously as a single atomic event. We
refer to the restarted replicas that have completed their on restart blocks as active. Upon
restart, a replica with non-volatile storage may additionally experience a rollback failure,
which causes the content of its non-volatile storage to revert to a version older than it had
before the latest crash.

A replica is up in an interval [t, t′] if it does not crash without restart before t, and does
not crash (either with or without restart) at all times in [t, t′]; a replica is up after t, if it is
up in [t,∞); a replica pi is eventually up if there exists t such that pi is up after t. Replicas
in CRR fall into four disjoint classes:

a replica is perfect if it never crashes;
a replica is benign if it crashes and restarts at least once, but is eventually up, and
furthermore, it never rolls back;
a replica is crash-faulty if it crashes without restarting or crashes and restarts infinitely
often, and furthermore, it never rolls back; and
a replica is rollback-faulty if it rolls back at least once.

Perfect and benign replicas are together called correct; crash-faulty and rollback-faulty
replicas are together called faulty.

Note that CRR generalizes the classical crash-recovery failure model [22] by extending its
set of faulty behaviors with rollback failures. It is also strictly weaker than the Byzantine
failure model since faulty replicas are required to follow their prescribed protocols. The
relationship of our model to other prior failure models is further discussed in §5.

Channel reliability assumptions. We assume that every pair of processes pi and pj are
connected via point-to-point authenticated links such that if both pi and pj are up after some
t, then every message sent by pi to pj after t is eventually delivered by pj . Note that this
assumption is strictly weaker than the standard notion of a reliable channel. Specifically, it
does not require reliability for messages sent by a correct process to another correct process
before both processes stop crashing.

Specifications. We use standard safety and liveness notions to specify correctness condi-
tions for register implementations: atomicity [28] (linearizability [21]), safeness [28], wait-
freedom [19], and obstruction-freedom [20]. We consider both single-writer/single-reader
(SWSR) and multiple-writer/multiple-reader (MWMR) register implementations.

Fault-tolerant implementations. An object implementation is safe under a failure model
F (or simply F-safe) if it satisfies safety in all F-valid executions. We define F-liveness
similarly. An implementation is F-tolerant if it is both safe and live under F .

We study the implementability of registers under failure models where, in every execution,
arbitrarily many clients can crash and replicas are subject to a restricted variant of the
baseline CRR model above. Specifically, in §3 we consider static failure models CRR(k, r, b)
for replicas where the number of faulty, rollback-faulty, and benign replicas in every execution
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n ≥ 2k + r + 1

n < 2k + r + 1

n < 2k + b + 1 n ≥ 2k + b + 1
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Figure 1 Resilience (k, r, b) and non-volatile storage usage (s) of the upper bound. Each square
corresponds to the chunk of the problem space where the conjunction of the conditions on the axes
holds.

is bounded by k ≤ n, r ≤ k, and b ≤ n, respectively. Note that ∀k, r, b.CRR(k, r, b) � CRR.
In §4 we consider more flexible dynamic failure models.

3 Register Implementations in Static Failure Models

In this section we give a full characterization of the costs of implementing a register under
static failure models in terms of its failure resilience, time complexity, and non-volatile storage
requirements. For resilience, the following theorem establishes a tight bound on the total
number of replicas n as a function of thresholds on the number of replicas of different types.

I Theorem 1. Assume that all replicas have access to non-volatile storage. Then for all
k, r, b, there exists a CRR(k, r, b)-tolerant implementation of a wait-free atomic MWMR
register if and only if n ≥ 2k + min(b, r) + 1.

When r = 0, the bound in the theorem specializes to n ≥ 2k + 1, the same as for crash
fault-tolerant register implementations. When r ≤ b, the bound specializes to n ≥ 2k+ r+ 1.
This matches the known generalization [18] of the n ≥ 3k + 1 Byzantine implementability
bound for registers [14,34] to the case when at most r out of k faulty replicas can behave
arbitrarily and the rest can crash but not deviate from the prescribed protocol. On the
other hand, if b < r, then the theorem shows that we can implement a CRR(k, r, b)-tolerant
wait-free atomic register with n = 2k+ b+ 1 < 2k+ r+ 1 replicas – strictly fewer than in the
Byzantine case. We next refine Theorem 1 to additionally give a tight bound on the number
of replicas that must be equipped with non-volatile storage.

I Theorem 2. Let s be the number of replicas with non-volatile storage. Then for all k, r,
b, there exists a CRR(k, r, b)-tolerant implementation of a wait-free atomic MWMR register
if and only if

(2k + r + 1 ≤ n < 2k + b+ 1 ∧ s ≥ 2k + r + 1) ∨ (n ≥ 2k + b+ 1).

Note that the constraint on n in Theorem 2 implies that in Theorem 1; we illustrate
the constraint in Figure 1. The above theorem shows that, when n ≥ 2k + b + 1, atomic
registers can be implemented without any stable storage at all. In practice, avoiding non-
volatile storage offers substantial performance gains when the register state fits within the
TEE-protected RAM, as it avoids the overheads of monitoring storage integrity at runtime.

Finally, the result in Theorem 2 can be strengthened along several dimensions:

DISC 2025
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The time complexity of the upper bound we present in §3.1 is always 4 message delays
for both writes and reads. This matches the time complexity of crash fault-tolerant
implementations, which is optimal. This property stands in a sharp contrast with
Byzantine-resilient register constructions, where write and read latencies of 4 and 8
message delays, respectively, are inherent even for single-writer/multi-reader (SWMR)
wait-free atomic registers [14].
The lower bound in Theorem 2 is established for obstruction-free safe implementations of
SWSR registers.
When either of b or r is unknown, a tight bound is obtained from Theorem 2 by letting
b , n or r , k.
If the number of replicas is less than the resilience bound (n < 2k + min(b, r) + 1), the
upper bound does not sacrifice safety, but only liveness (the top-left box in Figure 1).
In §4 we leverage this property to develop a register construction under dynamic failure
models that do not require all failure thresholds to hold for the entire execution.

Our findings collectively demonstrate that, while existing Byzantine fault-tolerant register
constructions [1,14,18,34] can be used for implementing CRR(k, r, b)-tolerant atomic registers,
they are not well-suited for this purpose due to their sub-optimal failure resilience and latency.
We next present an algorithm that gives a witness for our upper bound; we defer the proofs
of the other results to [26, §A].

3.1 Upper Bound
An algorithm A that shows our upper bound for CRR(k, r, b) is presented in Figure 2. It is
based on the MWMR variant of ABD [5,11,33], where read and write quorums are sets of
replicas of size qr and qw, respectively. The algorithm uses the truth value of the predicate
P (n, k, r, b) = (2k+ r+ 1 ≤ n < 2k+ b+ 1) to determine the values of qr and qw (line 2), the
restart handler logic (lines 6–7), and whether non-volatile storage should be used to store
the replica’s state (line 5). In the following we refer to the variant of A executed if P holds
as algorithm A1, and as algorithm A2 otherwise. The former corresponds to the bottom-left
box in Figure 1, while the latter corresponds to the remaining portions of the figure.

Replica states. Each replica stores a copy of the register state in a state variable (line 3),
which is a tuple consisting of the register value state.val and timestamp state.ts. Timestamps
are pairs of a counter and the client identifier, ordered lexicographically: (cnt1, j1) ≤ (cnt2, j2)
iff cnt1 < cnt2 ∨ (cnt1 = cnt2 ∧ j1 ≤ j2). Each replica also maintains a Boolean flag stale: if
this flag is true, the replica is not allowed to respond to read requests.

Quorum-access functions. The clients use auxiliary functions read_quorum (lines 14–19)
and write_quorum (lines 29–34) to respectively query and update various components of
replica states at a quorum. For read_quorum, the req argument specifies the state elements to
query: e.g., TSVal corresponds to (state.ts, state.val). For write_quorum, req specifies which
state elements to modify and their new values: e.g., TSVal(ts, v) to set (state.ts, state.val) to
(ts, v).

The read_quorum (respectively, write_quorum) function starts by generating a glob-
ally unique request identifier id (lines 15 and 30); in practice this can be implemented
using cryptographic nonces. The function then broadcasts a READ(id, req) (respectively,
WRITE(id, req)) message to all replicas, and awaits READ_ACK (respectively, WRITE_ACK) mes-
sages from qr (respectively, qw) replicas. Since channels may fail to deliver messages sent
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Predicates and constants:
1 P (n, k, r, b) , 2k + r + 1 ≤ n < 2k + b + 1
2 (qw, qr) , (n− k, n− k) if P (n, k, r, b); and (n− k, k + 1) otherwise

State:
3 state, initially ((0, 0), v0), with selectors ts and val
4 stale ∈ {true, false}, initially false
5 state, stale: non-volatile if P (n, k, r, b) ∧ (i ≤ 2k + r + 1)

6 on restart
7 if ¬P (n, k, r, b) then stale← true

8 function write(v)
9 S ← read_quorum(TS)

10 cnt ← max{cnt′ | (cnt′, _) ∈ S}
11 ts ← (cnt + 1, i)
12 write_quorum(TSVal(ts, v))
13 return ack

14 function write_quorum(req)
15 id ← get_unique_id()
16 do
17 send WRITE(id, req) to R
18 periodically until received

{WRITE_ACK(id, j) | pj ∈ Q}
for some Q such that |Q| ≥ qw

19 return

20 when received WRITE(id, TSVal(ts, v)) from pj

21 if ts > state.ts then
22 (state.ts, state.val)← (ts, v)
23 send WRITE_ACK(id, i) to pj

24 function read()
25 S ← read_quorum(TSVal)
26 let (ts, v) be such that

(ts, v) ∈ S ∧
ts = max{ts′ | (ts′, _) ∈ S}

27 write_quorum(TSVal(ts, v))
28 return v

29 function read_quorum(req)
30 id ← get_unique_id()
31 do
32 send READ(id, req) to R
33 periodically until received

{READ_ACK(id, xj , j) | pj ∈ Q}
for some Q such that |Q| ≥ qr

34 return {xj | pj ∈ Q}

35 when received READ(id, req) from pj

36 pre: stale = false
37 r ← case req do
38 TS: state.ts
39 TSVal: (state.ts, state.val)
40 send READ_ACK(id, r , i) to pj

Figure 2 Pseudocode for algorithm A at process pi ∈ P.

before their respective destinations stop crashing (§2), to ensure liveness, both read_quorum
and write_quorum continue retransmitting requests until receiving the desired quorums of
responses. The read_quorum function then returns the set of payloads received in READ_ACK
messages from a read quorum of replicas.

Whenever a replica with stale = false receives a READ(id, req) message (line 35), it
responds with a READ_ACK message, carrying id and the current value of the state variable
associated with req. Whenever a replica receives a WRITE(id, req) message (line 20), it applies
the update encoded in req to its state and acknowledges this fact with a WRITE_ACK message.
In particular, if req = TSVal(ts, v) and state.ts < ts, then (state.ts, state.val) is set to (ts, v);
otherwise, the state is left unchanged.

Read and write protocols. To write a value v, a process pi first calls read_quorum to
retrieve a set of timestamps from a read quorum (line 9). It then selects the highest
timestamp counter cnt and calls write_quorum to store v with timestamp (cnt + 1, i) at
a write quorum. To read a value, a process pi first calls read_quorum to retrieve a set of
timestamp-value pairs from a read quorum (line 25). It then selects the pair (ts, v) with the
highest timestamp, calls write_quorum to store it at a write quorum, and returns v.

DISC 2025
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Algorithm A1. Algorithm A1 handles the case when the predicate P (n, k, r, b) holds, i.e.,
2k + r + 1 ≤ n < 2k + b + 1 (the bottom-left box in Figure 1 and the first disjunct in
Theorem 2). The algorithm uses read and write quorums of size qw = qr = n− k (line 2) and
keeps the state of 2k + r + 1 replicas in non-volatile storage (line 5), which is the minimum
required by the lower bound of Theorem 2. Its restart handler returns immediately (lines 6–7),
so the stale flag is always false at all replicas, which can thus respond to READ messages.

Since in every execution at least n − k > 0 replicas are eventually up, both write and
read quorums are always available, and, as a result, algorithm A1 is wait-free. We defer the
full proof of its linearizability to [26, §A] and only prove the following key property the proof
relies on:

I Property 3 (Real-Time Order). Let WQ be a completed call to write_quorum(TSVal(x, _)),
and RQ be a completed call to read_quorum(TS) or read_quorum(TSVal). If RQ is invoked
after the completion of WQ, then it returns a set containing a value ≥ x for state.ts.

Proof of Property 3 for A1. Since WQ returns, it has executed the TSVal(x, _) request at
qw = n− k replicas. Since RQ returns, it has retrieved the value of state.ts from a qr = k+ 1
replicas. The intersection of the two quorums has a cardinality ≥ (n−k)+(n−k)−n = n−2k.
Furthermore, the number of replicas in this intersection that store their states on non-volatile
storage is ≥ (n− 2k) + (2k + r+ 1)− n = r+ 1. Since at most r replicas experience rollback
failures, there exists at least one replica p in the intersection of the quorums used by WQ
and RQ that stores its state on non-volatile storage and never rolls back. Our protocol only
allows replicas to increase the value of state.ts during normal execution (line 22), so replica
p must have state.ts ≥ x after it responds to WQ. Since RQ starts after WQ completes, p
must respond to RQ after WQ completes. Thus, p must have state.ts ≥ x when it responds
to RQ, so RQ receives a response containing state.ts ≥ x. J

Algorithm A2. Algorithm A2 handles the case when the predicate P (n, k, r, b) does not
hold (the right and top-left boxes in Figure 1 and the second disjunct in Theorem 2). The
algorithm does not use non-volatile storage, and has write quorums of size qw = n− k and
read quorums of size qr = k + 1. Additionally, only replicas that have not crashed before
being queried can participate in read quorums. To ensure this, each replica sets its stale
flag to true before returning from the recovery procedure (line 7). Recall that a replica
contacted by read_quorum checks this flag and responds only if it is false (line 36).

When n ≥ 2k + b+ 1, in every execution at least n− k > 0 replicas are eventually up,
so some write quorum is eventually available. Also, at least n − (k + b) ≥ k + 1 replicas
never crash, so some read quorum is always available. Hence, in this case A2 is wait-free.
Furthermore, A2 is always safe, even when n < 2k + r + 1. Similarly to A1, the safety of A2
this follows from the Real-Time Order Property, proved below; the rest of the proof is given
in [26, §A].

Proof of Property 3 for A2. The intersection of any read and write quorums has a cardinal-
ity ≥ (n− k) + (k+ 1)− n ≥ 1. Hence there exists a replica p that both executes TSVal(x, _)
and responds to RQ. Since p is a member of a read quorum, it could not have crashed.
Since the value of state.ts is non-decreasing in the absence of crashes (line 22), p must have
state.ts ≥ x after it responds to WQ. Since RQ starts after WQ completes, p must respond
to RQ after WQ completes. Thus, p must have state.ts ≥ x when it responds to RQ, so RQ
receives a response containing state.ts ≥ x. J
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4 Register Implementations in Dynamic Failure Models

In this section we study the implementability of registers under failure models where any
number of replicas can experience CRR failures throughout an execution. By Theorem 1,
no register implementation can be simultaneously safe and live in all executions if n <

2k+ min(b, r) + 1. To circumvent this impossibility, we introduce a family of dynamic failure
models CRR-D, defined as follows.

We assume a constant ∆ such that, in any execution, every message sent by a process
pi to a process pj at time t is guaranteed to be received by pj by t + ∆, provided pi and
pj are up in [t, t+ ∆]. Note that this assumption does not make the model stronger than
asynchronous: since we do not assume a lower bound on message delays or processing times,
processes do not have a means to measure time passage and thus take advantage of the
existence of ∆ [6].

I Definition 4. Given d, c, and M , an execution α is CRR-D(d, c,M)-valid if there exists
U ⊆ R such that |U | ≥ n− d, all replicas in U are eventually up in α and either:
1. c > d and for any two crash events occurring at times t and t′ ≥ t, we have t′ − t > M∆;

or
2. no replica crashes in some set S ⊆ U such that |S| ≥ n− c.

Intuitively, the parameter d captures the upper bound on the number of replicas that are
not eventually up in α, and must be known to any register implementation. Conditions 1
and 2 further restrict failure scenarios: either failures must be separated by at least M
message delays, or at most c ≥ d replicas can crash in α. The former is similar to the churn-
limiting assumptions used to model process participation in dynamic and reconfigurable
systems [6]. The parameter M is implementation-specific and captures the minimum time
required for a replica to recover its state before the next crash occurs.

We show that every static failure model CRR(k, r, b) from §3 is a special case of a dynamic
model CRR-D(k, k + b, _). Thus, any CRR-D(k, k + b, _)-tolerant register implementation is
also CRR(k, r, b)-tolerant.

I Proposition 5. ∀k, r, b,M.CRR(k, r, b) � CRR-D(k, k + b,M).

Proof. Consider any CRR(k, r, b)-valid execution α. Then in this execution up to k replicas
are faulty and up to b replicas are benign. Let U be the set of correct replicas, and S ⊆ U be
the set of perfect replicas. Then |U | ≥ n− k and |S| ≥ n− k − b. Furthermore, the replicas
in U are eventually up and those in S never crash, so the condition in case 2 of Definition 4
is satisfied. Thus, α is CRR-D(k, k + b,M)-valid, as needed. J

We prove the following upper bound in the dynamic failure model:

I Theorem 6. For all d, c, if n ≥ d+c+1 and M ≥ 12, then there exists an implementation
of an atomic wait-free MWMR register that is CRR-D(d, c,M)-live and always safe.

For the lower bound, we prove a stronger result that holds for CRR-D(d, c,M)-tolerant
implementations, and not just those that are CRR-D(d, c,M)-live and always safe:

I Theorem 7. For all d, c, M , if there exists a CRR-D(d, c,M)-tolerant implementation of
a safe obstruction-free SWSR register, then n ≥ d+ c+ 1.

The two theorems imply a tight resilience bound:

I Theorem 8. For all d, c, CRR-D(d, c,M)-live implementation of an atomic wait-free
MWMR register exists for some M if and only if n ≥ d+ c+ 1.
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The lower bound in Theorem 7 reveals an inherent trade-off: while by Proposition 5
any CRR-D(k, k + b, _)-tolerant register implementation is also CRR(k, r, b)-tolerant, any
such implementation requires n ≥ 2k + b+ 1, thus sacrificing the optimal resilience under
CRR(k, r, b) (cf. Theorem 2).

In the rest of this section we present an algorithm that validates Theorem 6, which we
call TEE-Rex; we defer the proofs of the other results to [26, §B]. The algorithm’s latency
in crash-free executions is 4 message delays for both reads and writes, which is optimal. Since
under CRR-D(d, c,M), any number of replicas can suffer rollbacks in some executions, the
algorithm does not rely on non-volatile storage. It also does not require the knowledge of c.

4.1 Crash-Consistency Basics
The pseudocode of TEE-Rex appears in Figure 3. It reuses the read and write procedures
of algorithm A (Figure 2, lines 8–28). The algorithm relies on read quorums of size qr = d+1,
and so-called crash-consistent write quorums of size qw = n− d, introduced in the following.
Given the mapping between static and dynamic models established by Proposition 5, these
quorum sizes mirror those in A2: k + 1 for read quorums and n− k for write quorums.

Since replicas lose their memory contents during a restart, TEE-Rex follows the approach
of A2: a replica relies on its stale flag to determine whether its current state can be used
to respond to READ requests. However, in contrast to A2, simply setting stale = true upon
restart so that any replica that has not crashed permanently is active will not be live. To see
why, fix arbitrary M and ∆, and consider an execution α where all replicas are eventually
up, every replica crashes and restarts at least once, and every two consecutive crashes are
separated by M∆. Clearly, α is CRR-D(0, n,M)-valid. However, A2 will not be live in α as it
eventually runs out of non-stale replicas to form read quorums. To deal with such scenarios,
a key ingredient of TEE-Rex is a novel recovery protocol executed by a replica upon restart
(lines 4–18). This protocol reconstructs the state of a restarted replica, and thus enables it
to clear its stale flag.

The protocol achieves this by synchronizing with other replicas. However, doing this
naively by simply querying a read quorum and adopting the state of the most up-to-date
replica would lead to a safety violation. For example, consider the algorithm A2 instantiated
with qr = d+ 1 and qw = n− d. Suppose we modify the on restart procedure at line 6 as
follows. After setting stale = true, a restarting replica would invoke read_quorum(TSVal)
to retrieve the register states from a read quorum of replicas, assign the one with the highest
timestamp to its own copy of state, set stale = false, and then return. The following scenario
demonstrates that this modification results in a linearizability violation.

I Example 9. Let n = 3, d = 1 and c = 1, so that n ≥ d+ c+ 1. Consider the execution of
the modified algorithm in Figure 4, which is valid under CRR-D(1, 1, _). First, a client p4
invokes write(v) (line 8 in Figure 2), which calls read_quorum(TS) to query timestamps at
a read quorum and then write_quorum(TSVal((1, 4), v)) to store the new register state at
a write quorum. In the latter call, p4 sends m = WRITE(TSVal((1, 4), v)) to all replicas and
waits until it gathers WRITE_ACK responses from a write quorum. Replica p3 gets m first,
sets state = ((1, 4), v), and responds with a WRITE_ACK. It then crashes, loses its state, and
reconstructs the state by contacting a read quorum {p1, p2} of size qr = d+ 1 = 2. Since m
has not yet reached either replica, p3 sets state back to its initial value ((0, 0), v0). Replica
p2 then receives m, sets state = ((1, 4), v), and replies to p4 with a WRITE_ACK. Process p4
now gathers WRITE_ACK responses from qw = n− d = 2 processes, which constitutes a write
quorum. Thus, write_quorum and write(v) at p4 terminate. Later, a client p5 calls read,
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Constants:
1 (qw, qr) , (n− d, d + 1)

State:
2 state, initially ((0, 0), v0, [0..0], [0..0]), with selectors ts, val, cv, and pre_cv
3 stale ∈ {true, false}, initially false

4 on restart
5 stale← true
6 S ← read_quorum(preCV(i))
7 next_inc ← max(S) + 1
8 write_quorum(preCV(i, next_inc))
9 state.cv[i]← next_inc

10 write_quorum(CV(i, state.cv[i]))
11 S ← read_quorum(State(state.cv[i]))
12 forall z = 1..n do
13 state.pre_cv[z]← max{state.pre_cv[z],

maxs∈S{s.pre_cv[z]}}
14 state.cv[z]← max{state.cv[z],

maxs∈S{s.cv[z]}}
15 let (ts, v) be such that ∃s ∈ S.

(ts, v) = (s.ts, s.val)∧ ts = max{s.ts | s∈S}
16 if ts > state.ts then
17 (state.ts, state.val)← (ts, v)
18 stale← false

19 function write_quorum(req)
20 (id, Q, cv)← (get_unique_id(), ∅, [0..0])
21 do
22 do
23 foreach pz ∈ R \Q do
24 send WRITE(id, req, cv[z]) to pz

25 periodically until received
{WRITE_ACK(id, incj , cvj , j) | pj ∈K}
for some K such that |K ∪Q| ≥ qw

26 if req ∈ {TSVal(_, _)} then
27 S ← {cvj | pj ∈ Q ∪K}
28 else %req ∈ {CV(_, _), preCV(_, _)}
29 S ← read_quorum(CV)
30 forall z = 1..n do
31 cv[z]← max{cv′[z] | cv′ ∈ S}
32 Q← {pj ∈ Q ∪K | incj ≥ cv[j] ∨ i = j}
33 until |Q| ≥ qw

34 function read_quorum(req)
35 id ← get_unique_id()
36 do
37 send READ(id, req) to R
38 periodically until received

{READ_ACK(id, xj , j) | pj ∈ Q}
for some Q such that |Q| ≥ qr

39 return {xj | pj ∈ Q}

40 when received READ(id, req) from pj

41 pre: stale = false
42 if req = State(inc) then
43 state.cv[j]← max{state.cv[j], inc}
44 r ← case req do
45 TS: state.ts
46 TSVal: (state.ts, state.val)
47 preCV(j): state.pre_cv[j]
48 CV: state.cv
49 State(inc): state
50 send READ_ACK(id, r , i) to pj

51 when received WRITE(id, TSVal(ts, v), _)
from pj

52 pre: stale = false
53 if ts > state.ts then
54 (state.ts, state.val)← (ts, v)
55 send WRITE_ACK(id, state.cv[i], state.cv, i)

to pj

56 when received WRITE(id, req, inc) from pj

57 pre: req ∈ {CV(j, v), preCV(j, v)}
58 state.cv[i]← max{state.cv[i], inc}
59 if req = preCV(j, v) then
60 state.pre_cv[j]←

max{state.pre_cv[j], v}
61 else
62 state.cv[j]← max{state.cv[j], v}
63 send WRITE_ACK(id, state.cv[i],⊥, i) to pj

Figure 3 Pseudocode of TEE-Rex at process pi ∈ P.

which obtains responses from a read quorum {p1, p3}. Since neither replica is aware of p4’s
write, the read returns v0, violating linearizability.

To address the above problem, the set of responses collected by p4 from a write quorum
of replicas must be crash-consistent [36]. Let→ be a partial order on the set of replica events
such that e→ e′ if there exists a replica pi such that e precedes e′ at pi.
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Figure 4 An execution with incorrect recovery.

I Definition 10. A set E of [send WRITE_ACK] events is crash-consistent if for for each
event e ∈ E occurring at replica pi, if after this event pi crashes, restarts, and invokes
read_quorum(State), then the set E′ of [send READ_ACK] events triggered by the read satisfies
¬∃e′ ∈ E′. ∃e′′ ∈ E. e′ → e′′.

For example, consider Figure 4. Let E be the set of [send WRITE_ACK] events triggered
by the call to wq = write_quorum(TSVal((1, 4), v)) at p4 (orange dots), and let E′ be the set
of [send READ_ACK] events triggered by the call to read_quorum(State) during the recovery
at p3 (blue dots). Let e ∈ E be the event at p3 sending WRITE_ACK, e′ ∈ E′ the event at p2
sending READ_ACK, and e′′ ∈ E the event at p2 sending WRITE_ACK. Since e′ → e′′, the set E
is not crash-consistent.

4.2 Crash-Consistency with Incarnation Numbers and Crash Vectors
To implement crash-consistency, similarly to [25,36], each replica in TEE-Rex maintains
two pieces of metadata – an incarnation number and a crash vector. The former is an
integer, initialized to 0, and the latter tracks the highest known incarnation numbers of all
other replicas. The crash vector of replica pi is stored in state.cv, and for convenience, pi’s
own incarnation number is stored in state.cv[i]. This incarnation number is updated by the
recovery procedure at line 9. To explain the basic principles underlying crash-consistency
checks in TEE-Rex, we first assume that incarnation numbers written by each replica pi

into state.cv[i] monotonically increase:

I Property 11 (Incarnation Number Monotonicity). Assume that a replica pi sets state.cv[i]
to g at line 9 at time t. Then g > 0 and for all times t′ > t, if pi sets state.cv[i] to g′ at
line 9 at time t′, then g′ > g.

This property can be easily ensured assuming that each replica has a built-in monotonic
counter that is never rolled back, as done in previous work [36]. In §4.3 we show how to
ensure this property without such an assumption. The code needed for this is shown in blue
and should be ignored when reading this section.

write_quorum(TSVal) implementation. In TEE-Rex, a process receiving a WRITE message
piggybacks its incarnation number and a copy of its crash vector on the WRITE_ACK response
(line 55). These are used by the implementation of write_quorum(TSVal) to check whether
the set of WRITE_ACK responses it receives is crash-consistent.

This check is integrated within the loop executed by write_quorum (line 21). At each
iteration of this loop, a WRITE message is (periodically) broadcast to all replicas excluding
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those in the set Q, which accumulates the replicas whose responses have been already
validated as crash-consistent. Once acknowledgments are received from a set K of replicas
such that K ∪ Q is a write quorum (line 25), the function checks their crash-consistency.
The replicas that sent responses that are not crash-consistent are then purged from K ∪Q,
and the set of remaining replicas is reassigned to Q (line 32).

To identify which replicas pj in the set K ∪ Q sent crash-consistent responses, the
crash vectors received in the WRITE_ACK messages are combined into a vector cv by taking
their entry-wise maximum (line 31). Then the incarnation numbers incj in the WRITE_ACK
messages are compared against cv[j]. If incj < cv[j], then pj restarted while our invocation
of write_quorum was gathering WRITE_ACK responses from other replicas, which indicates
that pj ’s prior response is no longer crash-consistent. As a special case, a replica always
treats its own WRITE_ACK responses as crash consistent (the i = j disjunct at line 32). If after
excluding all replicas whose responses are not crash-consistent, Q contains a write quorum,
then write_quorum returns (line 33); otherwise, it proceeds to the next iteration of the loop.

Recovery implementation. The recovery procedure executed by replica pi starts by setting
its stale flag to true (line 5), thus preventing pi from replying to READ and WRITE(TSVal)
messages (lines 41 and 52). The replica then selects a new incarnation number (line 9), which
is required to satisfy Property 11, and stores it at a write quorum (line 10; we explain the
implementation of write_quorum(CV) later). The replica further invokes read_quorum(State)
to retrieve the states from a read quorum, including both register states and crash vectors
(line 11). Finally, the replica reconstructs its state by merging the crash vectors it received and
picking the register value with the highest timestamp, and clears the stale flag (lines 12–18).

The READ(State) messages sent by the read_quorum to retrieve the states (line 11) carry
the new incarnation number, and a replica receiving such a message incorporates the new
incarnation number into its crash vector (line 43). Thus, the new incarnation number is
written to a read quorum of replicas, which intersects any write quorum that may be used
by a concurrent invocation of write_quorum(TSVal). This ensures that this invocation only
accepts a crash-consistent set of responses (Definition 10) and rules out the execution in
Example 9, as we now explain.

I Example 12. Assume that in Figure 4, p3’s incarnation number before the crash is g1
and its new incarnation number after the recovery is g2 > g1. Then p3 will send g1 in its
WRITE_ACK response to p4 (line 55), and g2 in its READ(State(g2)) request to p2 (line 11).
When p2 responds to p3, it will record g2 in its crash-vector entry for p3 (line 43). Then p2
will piggyback this crash vector on its WRITE_ACK response to p4’s WRITE request (line 55).
This will cause p4 to discard p3’s WRITE_ACK response, since it carries a smaller incarnation
number (g1) than p3’s entry in the crash vector received from p2 (g2) (line 32).

Note that in the above example, replica p2 might crash and recover after responding to
p3 but before responding to p4. When recovering, p2 will reconstruct its crash vector to a
value no lower than what it was before the crash (line 14), thus giving a correct response to
p4. This is ensured by the fact that each recovering replica, such as p3, writes its incarnation
number crash-consistently to a write quorum (line 10), which intersects with a read quorum
that a replica such as p2 uses to reconstruct its state during recovery (line 11).

Thus, a replica pi writes its incarnation number in the restart handler in two places – first
crash-consistently to some write quorum (line 10), and then to the particular read quorum
used to reconstruct its state (line 11). These serve complementary purposes: the former
ensures that other replicas can reconstruct the incarnation number of pi when they restart;
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the latter ensures that other replicas can detect when the crash-consistency of their writes
can be compromised by a concurrent restart of pi.

write_quorum(CV) implementation. We now describe the write_quorum implementation
for incarnation numbers (line 10), which happens to be subtle. We could implement
write_quorum(CV) in the exact same way as write_quorum(TSVal), by using crash vec-
tors piggybacked on WRITE_ACK messages to check for crash-consistency of a write; this was
the approach taken in [36]. Unfortunately, the resulting algorithm would not be live cases
where liveness must be ensured to match the lower bound of Theorem 7.

I Example 13. Let n = 5, d = 1 and c = 3, so that n ≥ d+ c+ 1. Consider an execution
of the above version of the algorithm where p1 crashes permanently, p2 and p3 crash and
restart once at the beginning of the execution, and the remaining replicas never crash. This
execution is valid under CRR-D(1, 3, _) (case 2 in Definition 4). But p2 and p3 would not be
able to complete the recovery in it, because their calls to write_quorum(CV) would wait for
qw = n− d = 4 responses (line 25). However, only active replicas would respond to WRITE
messages (line 52), and there are only 2 such replicas.

To rule out such executions, in our algorithm a replica accepts a WRITE message for a
write to state.cv even if its stale flag is set (line 56). In this case the replica cannot piggyback
its crash vector on the WRITE_ACK response (as in line 55): the replica may have lost the
crash vector upon a restart and has not yet reconstructed it (line 14). Hence, the replica
puts a dummy value ⊥ in place of a crash vector (line 63). The write_quorum function then
checks crash-consistency for writes of incarnation numbers differently from register writes:
after it receives enough WRITE_ACK responses, it calls read_quorum(CV) to read the crash
vectors explicitly (line 29). Replicas only reply to READ requests sent by this function when
their stale flag is cleared (line 41), and thus they have valid crash vectors in their state.

In the absence of further crashes in Example 13, p2 and p3 can complete the recovery as
follows: they first collect WRITE_ACKs from qw = n− d = 4 replicas that are up (p2, p3, p4, p5)
and then read crash vectors from qr = d+ 1 = 2 replicas that are active (p4, p5). We can
show that TEE-Rex is correct assuming Incarnation Number Monotonicity.

I Theorem 14. If incarnation numbers assigned at line 9 satisfy Property 11, then the
algorithm in Figure 3 excluding the highlighted lines satisfies the conditions of Theorem 6.

We defer the proof of the theorem to [26, §B]. As in §3.1, we show the safety of the algorithm
by first establishing the Real-Time Property (Property 3). We next explain how to ensure
Incarnation Number Monotonicity.

4.3 Implementing Incarnation Numbers without Non-Volatile Storage
Since in the presence of rollbacks the replicas cannot rely on non-volatile storage to implement
monotonically growing incarnation numbers, TEE-Rex relies on a distributed mechanism
for this purpose, shown in blue in Figure 3. This mechanism extends the one used to store
incarnation numbers in state.cv (line 10) described in the previous section. Note that a replica
cannot restore its previous incarnation number by just reading it using read_quorum(CV): if
the replica crashed before completing the write_quorum(CV) at line 10, the read_quorum is
not guaranteed to restore its latest pre-crash incarnation number, thus violating Property 11.

To address this problem, we adopt a two-phase approach. In addition to cv, the state
of each replica includes a vector pre_cv. Before assigning its new incarnation number to
state.cv[i] (line 9), a replica pi first writes it to state.pre_cv[i] at a crash-consistent write
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quorum of replicas (line 8). Upon a restart, a replica pi restores its previous incarnation
number as a maximum of responses returned by read_quorum(preCV(i)) and computes the
new incarnation number by incrementing the result (lines 6–7). Then the intersection between
the quorums used by write_quorum(preCV) (line 8) and read_quorum(preCV) (line 6) helps
ensure Property 11.

There is, however, a subtlety. Recall that in our algorithm a replica has to reply to a
WRITE message for a write to state.cv even while it restarting (line 56), and the same should
hold for writes to state.pre_cv: this is necessary to avoid deadlocks like the one in Example 13.
When incarnation numbers are computed as described above, a restarting replica thus needs
to reply to a WRITE even before it computed its incarnation number at line 9. This poses a
dilemma: which incarnation number should the replica include into its WRITE_ACK message
(line 55) to allow other replicas to validate the crash-consistency of their writes to state.cv
and state.pre_cv? To address this challenge, when a replica pj executing write_quorum(CV)
or write_quorum(preCV) sends a WRITE message to another replica pi, it piggybacks the
maximum incarnation number of pi known to it on this message (line 24). A replica pi

receiving a WRITE request for state.pre_cv[i] or state.cv[i] then adopts this incarnation number
(line 58) and uses it in its WRITE_ACK reply.

In [26, §B] we prove that, even though the above mechanism may require processes to
temporarily adopt stale incarnation numbers, it does ensure Incarnation Number Monotonicity
(Property 11). Thus, given Theorem 14, the overall TEE-Rex algorithm is correct. Here we
illustrate the operation of the incarnation number implementation on an example.

I Example 15. Let n = 5, d = 1 and c = 3, so that n ≥ d+ c+ 1. Consider an execution
where p1 crashes permanently, p2 and p3 are eventually up, and the remaining replicas never
crash. This execution is valid under CRR-D(1, 3, _) (case 2 in Definition 4). At the beginning
of the execution, p2 and p3 crash, restart, and become active again, so that p4 and p5 have
state.cv[2] = state.cv[3] = 1. Suppose now that p2 and p3 crash and restart again.

To recover, each of p2 and p3 determines its previous incarnation number 1 (line 6) and
computes a new incarnation number 2, which it tries to store crash-consistently in state.pre_cv
at a write quorum (line 8). Since p2 does not have any information about the incarnation
number of p3, its first WRITE message to p3 carries 0 as the incarnation number (line 24),
which p3 includes into its WRITE_ACK reply. The read_quorum(CV) that p2 invokes after this
(line 29) fetches 1 for state.cv[3] from a read quorum {p4, p5}, so the WRITE_ACK from p3 is
discarded (line 32). The same happens at p2 with the WRITE_ACK it receives from p3.

Each of p2 and p3 then includes 1 into the next WRITE message it sends to the other replica
(line 24), which the latter adopts as its incarnation number and includes into its WRITE_ACK
reply (line 58). Once p2 receives the WRITE_ACK from p3, it calls read_quorum(CV) once
more (line 29) and validates the WRITE_ACK as crash-consistent, finishing the execution of
write_quorum(preCV(2, 2)). Replica p2 then sets state.cv[2] to its new incarnation number 2
(line 9) and completes the rest of the recovery, including write_quorum(CV(2, 2)).

Assume that now p3 receives the WRITE_ACK from p2 and calls read_quorum(CV) to
validate it (line 29). This read yields 2 for state.cv[2], so p3 discards the WRITE_ACK and
sends another WRITE to p2 with incarnation number 2 (line 24). Now p2 responds with a
WRITE_ACK carrying its incarnation number 2, which it also stores locally. When p3 receives
this WRITE_ACK, it performs another read_quorum(CV), validates the WRITE_ACK as crash-
consistent and completes write_quorum(preCV(3, 2)). It then sets state.cv[3] to its new
incarnation number 2 (line 9) and completes the rest of the recovery. In the end, both p2
and p3 successfully recover with a higher incarnation number, satisfying Property 11.
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5 Related Work

The classical crash-recovery failure model assumed that every process is equipped with
durable storage that cannot be rolled back [22]. This assumption was lifted by Aguilera et
al. [4], who analyzed consensus solvability as a function of the number of processes with
and without durable storage. The same model was also used by Guerraoui et al. [17] to
derive tight bounds for a reliable register construction. In these models the processes are
assumed to know whether they are equipped with durable storage, which they can trust
to be incorruptible. In contrast, in our CRR model a recovering process cannot trust its
non-volatile storage to be up-to-date, leading to different resilience bounds. Furthermore, in
the register implementation of Guerraoui et al. a restarted replica is considered up-to-date
once it accepts a single WRITE request. As we show in [26, §C], this leads to a safety violation.

Dinis et al. [13] proposed a rollback-recovery (RR) model to capture rollback attacks
in TEE-based systems. This model is weaker than CRR as it disallows permanent process
crashes. Furthermore, the register implementation of Dinis et al. uses ordinary quorums
for writes, without crash-consistency checks. As we show in [26, §D], this leads to a safety
violation similar to the one in Example 9. The implementation also does not guarantee
wait-freedom for reads. In contrast, our CRR framework captures the full spectrum of failures
in TEE-based systems and enables developing correct solutions for these environments.

The crash-recovery failure model where the processes do not have access to incorruptible
durable storage was assumed by Chandra et al. [10], Kończak et al. [27], and Liskov et al. [30]
in the context of their efforts to develop practical variants of Paxos [29] and viewstamped
replication [38]. The proposed solutions, however, did not use crash-consistent quorums for
storing their state, and as a result, were shown in [36] to violate safety.

Jehl et al. [25] proposed a versioning scheme similar to crash vectors that allows quickly
replacing a failed replica in Paxos. This technique was subsequently generalized to the notion
of crash-consistent quorums by Michael et al. [36], who also demonstrated how it can be used
to implement a recoverable atomic register. However, the safety of these versioning schemes
critically depends on the replicas’ ability to track their incarnations across restarts. In turn,
supporting this capability in TEE-based systems requires hardware-based persistent counters.
These counters are implemented using flash memory, resulting in poor write performance and
quick wear-out [35]. Furthermore, they are not universally supported by TEE manufacturers,
and have been recently deprecated by Intel SGX [23].

Although the technical report version [37] of the work by Michael et al. suggests that
such incarnation numbers can be supported by means of a distributed mechanism, it does
not provide a full implementation. In addition, while the recoverable register implementation
of [36,37] is always safe, its liveness under the static failure models requires n = 2c+ 1, which
is strictly worse than our bound of n ≥ d+ c+ 1.

Persistent monotonic hardware counters have been demonstrated in [40] to be a powerful
mechanism to guard against rollback attacks. In TEE-based systems they can be used
together with sealing (§1) to validate state freshness upon restart [12]. Unfortunately, these
solutions inherit the drawbacks of persistent counters we explained above.

ROTE [35] guards against rollbacks using a rollback-resistant distributed counter. Its
implementation relies on a two-round protocol where a new value of the counter is first
written to a write quorum, and then read back from the same write quorum to validate that
it was stored reliably. Although this solution is safe, it does not ensure liveness, as the same
write quorum cannot be guaranteed to be available two times in a row under failures and
asynchrony. Engraft [42] uses a similar protocol, so is subject to the same liveness issue.
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