Thread-Modular Shape Analysis

Josh Berdine

Microsoft Research
jjb@microsoft.com

Alexey Gotsman

University of Cambridge
Alexey.Gotsman@cl.cam.ac.uk

Abstract

We present the first shape analysis for multithreaded progjthat
avoids the explicit enumeration of execution-interlegginOur ap-
proach is to automatically infer a resource invariant aiséed with
each lock that describes the part of the heap protected Hpdke
This allows us to use a sequential shape analysis on eacdthre
We show that resource invariants of a certain class can bacha
terized as least fixed points and computed via repeatedcagiplis
of shape analysis only on each individual thread. Basedisrath
proach, we have implemented a thread-modular shape antipsi
and applied it to concurrent heap-manipulating code fromd&ivs
device drivers.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.L¢gics and Meanings
of Program$: Specifying and Verifying and Reasoning about Pro-
grams

General Terms Languages, Theory, Verification

Keywords Abstract interpretation,
shape analysis, static analysis

concurrent programming,

1. Introduction

The analysis of multithreaded programs is complicated énctim-
text of heap-manipulation, in particular, in the presenteleep
heap updatewhich occurs when linked data structures are altered
after traversing some a priori unbounded distance. Fl@efisitive
analysis for such programs is too imprecise. Hence, to dige,
sound, accurate, and automatic analyses for these prodraves
implemented flow-sensitive analyses that rely on enunregdtie
interleavings of executions of threads in the program [Z8jis
leads to state-space explosion and unscalability.

Our goal in this paper is to create a shape analysis for pmgra
with deep heap update that is scalable, sound, and accWetgo
so by constructing a shape analysis that avoids enumeriatielg
leavings. Our approach is to infer@source invarian{20, 19] as-
sociated with each lock that describes the part of the heztpgied
by the lock and has to be preserved by every thread. E.g.oanes
invariant for a lock can state that the lock protects a cyatiably-
linked list with a sentinel node pointed to by the variahéad For

* A part of this work was done while visiting Microsoft Resdar€Cam-
bridge, UK.

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI'07 June 11-13, 2007, San Diego, California, USA.
Copyright© 2007 ACM 978-1-59593-633-2/07/0006. . . $5.00

Byron Cook

Microsoft Research
bycook@microsoft.com

Mooly Sagiv*
Tel-Aviv University
msagiv@post.tau.ac.il

any given thread, the resource invariant restricts howrdtireads
can interfere with it. If resource invariants are known, lgniag a

multithreaded program does not require enumerating gdeigs
and can be done using a sequential shape analysis. Thengjeite
to infer the resource invariants.

A resource invariant describes two orthogonal kinds of rinfo
mation: it simultaneously carves out the part of the heapepted
by the lock and defines the possible shapes that this partaan h
during program execution. Hence, informally, resourceiiants
for heap-manipulating programs are not least fixed pointanyf
first-order equation. We show that, if we specify the bordérhe
part of the heap protected by a lock (i.e., the former kinchédr-
mation), then we can characterize the shape of the part the.
latter kind of information) as a least fixed point. This fixeoint
can be computed by repeatedly performing shape analysiaain e
individual thread, but not on the whole program, i.e., perfiog
the analysishread-modularly The analysis is able to establish that
the program being analyzed is memory-safe (i.e., it doesl -
erence heap cells that are not allocated), does not leak nyeamal
does not have data races (including races on heap cells).

We specify the borders of the part of the heap protected by a
lock with two sets of program variables—the setesftry points
and the set okxit points The part of the heap protected by the
lock is defined as everything that is reachable from entrptsaip
to exit points. Therefore in the subheap carved out by a resou
invariant, exit points are pointers that lead to parts of gtabal
heap owned by others. Fortunately, for systems code (eegicel
drivers), we find that automatic tools [22, 25, 5] suffice fdferring
the entry points In more complex cases the entry and exit points
can be given by the user as annotations (or may be other asalys
for them could be found).

Our approach can be rephrased as follows: we assume that the
borders between parts of the heap owned by different threads
protected by different locks argtablein the sense that they are
pointed to by fixed stack variables. These borders are natrest)
to be immovable, and we do not preclude ownership transfer of
heap cells between areas owned by different threads or.|dtlks
is, while the stack variables which mark the borders are fixed
their values are mutable. So heap cells can move betweeritse p
owned by different threads or protected by different locks.

Our contributions can be summarized as follows:

e \We propose a framework for constructing thread-modular pro
gram analyses, which is particularly suitable for shapd-ana
yses due to the locality exhibited by the semantics of heap-
manipulation (Section 3). Our framework is parametric ia th
sequential shape analysis domain and can be instantiated wi
different domains.

1 Moreover, the soundness of our analysis does not depenc qratticular
association of locks and entry points: the analysis can ke usth any
association.

Vo o= x,y,...

E == nll|V

I == HAI|E=E

¥ = X xX|emp|true| E—{prev E, next E}
| dI(E,E,E,E)

& = IVIIAY

Figure 2. A subset® of separation logic formulae

¢ We give a fixed-point characterization of a class of resoimce
variants for heap-manipulating programs that provides g wa
to compute them via a thread-modular fixed-point computatio
(Section 4). For programs that have resource invarianta fro
this class, the precision of our thread-modular analygiedds
only on the precision of the underlying (sequential) shay-a
ysis.

¢ Based on the framework and on the fixed-point characteoizati
we develop a thread-modular shape analysis (Section 5)mnd a
ply it to multithreaded heap-manipulating code from Window
device drivers (Section 6).

2. lllustrative example

The example program in a C-like language shown in Figure 1
represents a typical pattern occurring in systems codd) asc
Windows device drivers. In this case two concurrently ekegu
threads are accessing the same cyclic doubly-linked lstepted

node,F is the pointer in thg@revfield of the first node, and’s
is the pointer in theextfield of the last node.

e The meaning of propositional connectivegie and the existen-
tial quantifier is standard.

The analysis first uses a tool for analyzing correlations/ben
locks and program variables, such as [22, 25, 5], to deterthat
the variableh is protected by the lock The variablé: becomes an
entry pointassociated with the lodk the part of the heap protected
by the lock is reachable from the entry point. There are no exi
points associated with the lodkin this example. The analysis is
performed iteratively. On each iteration, we analyze theecof
each thread and discover new shapes the part of the heaptprbte
by each lock can have—new disjuncts in its resource invarian
On the next iteration each thread is re-analyzed taking évdyn
discovered disjuncts into account. This loop is performetil mo
new disjuncts in the resource invariant are discovered, uril
we reach a fixed point on the value of the resource invariaote N
that the particular order of the iteration is not importaot the
soundness of the analysis. In the example below we chosedbe o
that is convenient to illustrate how the analysis works.

Executing the analysis. As a first step, we run the underlying
sequential shape analysis on tmain function to determine the
initial approximationl, = h—{prev: h, next h} of the resource
invariant associated with the loék The initial states of the threads
in this case aremp.

First iteration. We run the underlying sequential shape analysis
on the code ofhreadlwith the treatment foacquire andrelease

by a lock£. The list is accessed via a sentinel head node pointed commands described below. The analysis performs a fixeut-poi

to by a variableh. In this examplethreadl adds nodes to the
head of the list andhread2removes nodes from the head of the
list. When applied to this code, the implementation of owalgsis
presented in Sections 5.2 and 6 establishes that the area loéap
protected by the lock—its resource invariant—has the sludze
cyclic doubly-linked list and that the program is memoryesge.,

it does not dereference heap cells that are not allocatedy dot
leak memory, and has no data races (including races on lediajp-c

computation to determine invariants of all the loopstlineadl
Suppose the analysis reaches line 14 with an abstractsstdfson
acquiring the lock the threadyjets ownershipf the part of the heap
protected by the lock. We mirror this in the analysissbgonjoining
the current approximatiod, of the resource invariant associated
with the lock/ to the current state yielding s * Ip. The analysis
of the code in lines 15-20 starting from this state then gives
the states; = s x h—{prev:n,nextn} * n—{prev: h, next h}

The analysis uses an underlying sequential shape analysisat line 21. Upon releasing the lodkthe thread has to give up

which is similar to the one presented in [9]. The abstra¢estand
resource invariants in the analysis denote sets of sta@g-pairs
and are represented by disjunctions of formulae in the $uifse
separation logic [23] defined in Figure 2. The informal megrof
the formulae is as follows:

the ownership of the part of the heap protected by the locks Th
means that the analysis has to partition the current beapto

two parts, one of which becomes the local heap of the thrémed (t
part of the heap that the thread owns) and the other is addad as
new disjunct to the resource invariant. We compute thetparing

in the following way: the part of the heap reachable from the

* emp describes states where the heap is empty, with no allocatedentry points associated with the loélbecomes a new disjunct in

locations.

e E—{prev E1,next E>} describes states where the heap con-
tains a single allocated locatidfi, with contents being a struc-
ture in which the fieldprevandnextare equal ta&; and E.
The values of the other fields in the structure are unspediffed
this formula.

e >; x Xy describes states where the heap is the union of two

disjoint heaps (with no locations in common), one satigfyin
¥; and the other satisfying..

e /5 = E, describes states where the stack gi¥asand F»
equal values.

o dli(En, E2, E3, E4) is defined as the least predicate such that
d||(E1, FEo, E3, E4) = 3$.(E1 = FE3sANFEy=FE4s A emp) V
(E1»—>{pre\ﬁ Ez, next m} * dII(:c, El, Eg, E4))

and represents all of the states in which the heap has the shap

of a (possibly empty) doubly-linked list, whet®, is the ad-
dress of the first node of the lisk, is the address of the last

the resource invariant and the rest of the heap becomes dhk lo
state of the thread. Intuitively, when a thread modifies o
to a heap cell so that it becomes reachable from the entrytoin
associated with a lock, the cell becomes protected by thedond
a part of its resource invariant. In this way, we discover & ne
disjunctl; = Jx.h—{prev: z,nextz} x x—{prev h,next h} in
the resource invariant and a new stateeachable right after line
21. Note that since the variableis not an entry point associated
with the lock?, we existentially quantify it in/;. We keep running
the fixed-point computation defined by the underlying setiakn
shape analysis starting from this state to discover theismwvaof
the loop in line 13 (as well as all other loops in the thread)e T
processing of lines 14 and 21 is the same as before, i.e.,avihas
same approximatiory of the resource invariant and get the same
disjunct;. We stop when the underlying shape analysis reaches a
fixed point. One new disjund; of the resource invariant has been
discovered.

We now analyze the code dfiread2 Whenever the analysis
reaches line 28 with an abstract statewe conjoin the current
approximation/; of the resource invariant to the stateyielding

1 struct ListEntry 10 threadk) { 24 thread2(){ 39 main() { _
2 11 intdatg 25 intdata 40 h=newListEntry,
3 ListEntry* next 12 ListEntry* n; 26 ListEntry* n; 41 h-next=h;
4 ListEntry* prey, 13 while (nondet)) { 27 while (nondet)) { 42 h-prev= h;
5 int data; e . 43 startThread&threadl);
6 }; 14 acquire(?); 28 acquire(£); 44 startThread&thread?);
7 15 n = new ListEntry, 29 n = h—next 45 }
8 Locks: 16 n—data= datg 30 if (n!=h){
9 ListEntry* h 17 n—next= h—next 31 n—prev—snext= n—next

18 n—prev= h; 32 n—next>prev= n—prey,

19 h—next=n; 33 data= n—datg

20 n—next-prev= n; 34 deleten;

21 releasé’); 35

- 36 releasé’);
22 e
23 } 37}
38 }

Figure 1. Example prograrmondet) represents non-deterministic choice.

q = I, and analyze the code in lines 29-35 starting from this state.
This gives us the statg = g+ h—{prev h, next h} atline 36. We
again take the part of the heap reachable fifoas a new disjunct

in the resource invariant and let the rest of the heap be aoeal |
state of the thread. In this case the new disjunct in the resou
invariant is the same as the starting dpeso, no new disjuncts in
the resource invariant are discovered.

Second iterationOn the previous iteration we found a new dis-
junct I; in the resource invariant associated with the I16cK his
means that whenever a thread acquires the fpékcan get own-
ership of a piece of heap with this new shape. To account fer th
in the analysis we now consider this possibility for atiquire(¢)
commands in the program and perform the analysis on threads
starting from the resulting new states.thteadlwe obtain a new
states = I; at line 15. The analysis of the code in lines 15-20 in
this case gives us the state = Jz.s x h—{prev: z, next n} *
n—{prev: h, next z } xx—{prev: n, next h}. atline 21. Again, the
part of the heap reachable fromforms a new disjunct in the re-
source invariant. To ensure convergence we abstract itdefo/-
ing: the abstraction procedure similar to the one preseint¢d]
abstracts the heap that has two cellendz connected in a doubly-
linked list to a general doubly-linked list giving us a newsdi
junct in the resource invarianf; = 3z, y.h—{prev: z, next y} *
dli(y, h, h,). A similar procedure fothread2again gives us the
stateg; at line 36. No new disjuncts in resource invariants are dis-
covered while analyzing this thread.

Third iteration. We propagate the newly discovered disjunct
I, of the resource invariant tacquire commands. The new
states * I, at line 15 gives rise to the statg dx,y.s *
h—{prev: z,next n}«n—{prev h, next y}«dll(y, n, h, z) atline
21. Partitioning it into the part reachable fromand the part
unreachable fronk and abstracting the latter gives us again the
resource invarianf, and the states. Propagating the new dis-
junct in the resource invariant to line 28 yields the stgte=
Jz,y.qx h—{prev: z,next y} «dll(y, h, h, z) at line 36. Partition-
ing this state again does not result in new disjuncts in theure
invariant being discovered.

No new disjuncts in resource invariants were discovered on
this iteration, hence, we have reached a fixed point. Theureso
invariant for the lock/ computed by the analysis 5 Vv I V Is.
Furthermore, the program is memory-safe. a

3. Thread-modular shape analyses

In this section we present a general framework for constrgct
thread-modular shape analyses based on the inferenceoofces
invariants associated with each lock that describe the qfettie
program state protected by the lock. Abstracting from parti

lar domains used in shape analyses we formulate it in general
lattice-theoretic terms. We use the framework first in Sec#é

to give a fixed-point characterization of resource invasgafor
heap-manipulating programs and then in Section 5 to imphme
a thread-modular shape analysis.

3.1 Preliminaries

We consider concurrent programs consisting of a boundedaum

of threads that use a bounded number of non-aliased locks for
synchronization. Each thread is represented by its cofibwl
graph (CFG). For any nodes andwv. in a CFG there are three
types of edges that can connect them:

e (v1,C,v2), whereC is an element of a fixed sétof sequential
commands;

e (v, acquire(?), v2) corresponding to acquiring the loék
e (v, releasd’), v2) corresponding to releasing the lo€k

Consider a program withn threadsp, .. ., P, in which P; is
represented by a CFG with the set of nodésand the set of edges
E;. LetL = {¢1,...,¢,} be the set of locks used in the program.
Let N = UL, Ni, E = U], Es, andstart; be the start node

of thread:. Without loss of generality we assume that there are no
edges in the CFG of the program leading to a start node. We call
atuple(vi,...,vn), Wwherev; € N; a location. We now define a
collecting interleaving semantics for the program.

In this paper by alomainD we understand a join-semilattice
(D,5, |],L, T) with a bottom elementL. We assume given a
domain D representing sets of states of the program and a set of
monotone concrete transfer functiofis : D — D representing
the semantics of sequential comman@se C. The function fc
maps pre-states to states obtained by executing the com@iand
from a pre-state.

Programs in our semantics denote mappings from locations
and sets of locks held by each thread to elements oi the do-
main D. Formally, programs denote elements of the donfaia=
(N1 X ... X Nyw) — ((P(£))™ — D) ordered by the point-
wise extension ofZ. We call an element froniP(L£))™ a lockset
and say that a locks€t, ..., L) is admissibleif the sets of

F(q) = ¢’ where

® ¢/(starty,...,starty,0,...,0) = pre;
m .
® ¢ (vi,...,vm,L1,...,Lm) = || L g (q(v1, ..., 0f
j=1 (U;?,c,uj)eE
fC(s(le"'vLm))v
; Li,...,Li\{t},...,Lm)
J S,L,...,L — S(’ R] (BRI El
9o Lt Bm) =4 1L UG L) Us(La,
J"

J?, ceyVm)y L1, .oy L), if (L1, ..., Lm) is admissible, where
if C'is a sequential command
if C'isacquire(¢;) and?; € Lj;
,Lj,..., L) if Cisreleasd?;) and¢; ¢ Lj;

otherwise.

Figure 3. The functionalF' defining the concrete collecting semantics for a multitdesbprogram

locks held by different threads are disjoint, i.e., for eadnd j
such thati # j it is the case thal.; N L; = (. Forq € D,
q(vi,...,vm, L1,..., Lm), denotes the set of reachable states of
the program at the locatiafy, . . . , v,) such that the lockset held
by threads i L1, ..., Lx»). The reason for having a lockset as an
argument of; is that locking does not have to be lexically scoped,
hence, reachable states at each location may have diffecksets.
We assume a givepre € D representing the initial states of

the program. The semantics of the program is defined using the

functional F : D — D that takes a functiop € D and maps it to

a functionq’ € D following the rules shown in Figure 3. Since the
transfer functiongc are monotone, by Tarski’s fixed point theorem
the functionalF" has least fixed poirlfp(F), which represents the
denotation of the program.

Consider the second equation in Figure 3. According to it, to
compute the state at any location (except for the initial) ome
consider all the edges in the CFG that can be taken by anyesing|
thread that lead to this location (hence, the semanticssschan
interleaving) and take the join of the application of thedtion ¢
for each of these edges (hence, the semantics is colledtirige
state at the source node. Note that here we use partial afppiic
of the functionq. The functiong defines the semantics of the

Values = {...,—-1,0,1,...}
Vars = {z,y,...}

Heaps = Locs —g,, Values
D = P(States)

Locs ={1,2,...}
Stacks = Vars —g, Values
States = (Stacks x Heaps) U{T}

Figure 4. Example of a separation domain

® x iS associative and commutative:
Yu,v,w € D. ux (vxw) = (ux*v)*w;
Yu,v € D.uxv =v*u;

e x has the unie: Vu € D. u * e = u;
® x is monotoneYui, uz,v € D. u1 C uz = w1 *v C ug *v.

We use a slight variation on the following instance of a sepa-
ration domain in the further sections to design a threadutaod
shape analysis.

Example. Figure 4 defines a separation domdnfor the con-
crete semantics of heap-manipulating programs [27]. A stBthe

statement at each edge of the CFG. For a sequential commandorogram is a stack-heap pair or a special error staté stack is

it applies the transfer function for this command. Postestaf
acquire(¢;) for a lockset in which the threa®; holds the lockl;
are the same as pre-states in which the thigadoes not hold the

a finite partial function from variables to values, a heap fmite
partial function from locations to values. The domain cetssbf
sets of states of the program. We identify all the sets oéstabn-

lock ¢;. Hence, acquiring a lock by a thread corresponds to adding taining T and denote such elements of the domain simply With

this lock to the lockset of the thread. For theguire(¢;) command

the functiong filters out the pre-states in which the thre8dholds

the lock?;. Hence, a thread locking the same lock twice deadlocks.
Post-states afleasd/;) for a lockset in which the threal; does

not hold the lock/; contain pre-states in which the thre&gd does

not hold the lockl; as well as pre-states in which it does. Hence,
releasing a lock by a thread corresponds to removing it frieen t
lockset of the thread if it is there, and to a no-op if it is nogre.
This semantics of releasing a lock corresponds to treaticigslas
binary semaphores.

3.2 Abstract interpretation with state separation

As can be seen from the illustrative example in Section 2,uin o
thread-modular shape analysis we have to split abstrapshato
disjoint parts. For this to be possible the concrete andatistio-
mains have to have a separated structure that allows farrpairfg
such splittings. In this section we specialize the coneerati notion
of abstract interpretation [7] for the case when the dombase
such a structure. In the subsequent sections we use thisispec
tion as a foundation for designing thread-modular shapl/ses

DEFINITION 1 (Separation domain)A separation domain is a do-
main (D,C,| |, L, T,e,) equipped with an operation of sepa-
rate combinations : (D x D) — D such that(D,C, e, %) is a
partially-ordered commutative monoid, i.e.:

The order in the domai is subset inclusion withl" being the
topmost element. This is essentially equivalent to usingppéd
powerset. However, in the further sections the formulati@nuse
here allows us to simplify certain definitions.

In this paper we use the following notation for partial fuoos:
f(x)] means that the functiof is defined onz, f(x)T means
that the functionf is undefined oz, anddom(f) denotes the set
of arguments on which the functiofiis defined. We denote with
flz : y] the function that has the same value fagverywhere,
except forz, where it has the valug (even if f(x)1). f W g is the
union of the disjoint partial functiong and g. It is undefined if
dom(f) N dom(g) # 0. We denote withf|, the function identical
to f except for its domain has been restricted to thelset

We define the operation of separate combination on the domain
D in the following way: fors1, s2 € States

S1 % S = {(t1 Wiz, h1 W h2) | (t17h1) € s1 N\ (t2,h2) € 82}7
S1 *T:T*SQIT.

The unit element with respect to this operation is a singletet
containing a pair of everywhere undefined functions. A reade
familiar with separation logic [23] can immediately notiteat
the definition ofx we gave here corresponds to the model of the
separating conjunction from separation logic in the caserwh
variables are treated as resources [21]. m|

As can be seen from the example above, in this paper we useF*(Q,I) = (Q',1") where

the topmost element of a separation domain to indicate axpiake
error. In this case the operation should also satisfy the following
requirement:

Vu,v e D.uxv=T=u=TVov=T.

)

That is,* does not produce the error state unless one of its argu-
ments is the error state.

For a program analysis to benefit from the structure present
in a separation domain, transfer functions defining the i@ac
semantics of sequential program statements have to behaae i
local way with respect to this structure. The following difom
formalizes this condition.

DeFINITION 2 (Local function).A functionf : D — D defined
over a separation domaiqD, C, | |, L, T, e, *) is local if for all
u,v € D itisthe case that

fluxv) C f(u) *v. 2

For the separation domains we consider in this paper, ivelyt if

f is the meaning of a commard, this condition requires that if
executingC' from a state in x v results in an erroff (u xv) = T,
then executing” from a smaller state im also produces an error:
T C f(u) *vimplies f(u) = T by (1). Furthermore, if executing
C from a state inu does not produce an error, then executing
from a larger state, int * v, has the same effect and leaves
unchangedy (u x v) = f(u) * v.

The construction of thread-modular shape analyses iskgdessi
due the fact that concrete transfer functions for all stechdheap-
manipulating commands are local as illustrated by the \otig
example.

Example. Consider the domaif from the previous example and

a transfer functiory : D — D corresponding to the command that
stores the value of the variableat the address equal to the value
of the variabler, in C syntax %z = y". We first define a function

f : States — D. Fort € Stacks andh € Heaps

Ft.h) = {(t’h[t(x) W), i @)L)L AlE)

T, otherwise
We let f(T) = T and lift f to D pointwise.
The functionf is local—when run on a piece of state it either

® Q'(start;,) = Pre; (pret);
*Q(wL)= |
(v9,Cw)EE
gh(s,L) =
FE(s(L)),
s(L\{) 8 1,
Locals(s(L U {£:})) U s(L),
1,

g“C(Q(UO), L) for every nodev € N, where

if C'is a sequential command
if C isacquire(¢;) and¢; € L;
if Cisreleasd?;) and?; ¢ L;
otherwise;

Frame; (Q(v°, L))

o I/ = Init;(pref) U L

(v9 releasd ;) ,v)EE,
{€:}NL#0

for each locke;.

Figure 5. The functionalF* defining a thread-modular analysis.
FunctionsLocal; andFrame; define a heuristic that decides how to
split the state upon releasing a lodke; andlInit; decide how to
split the initial abstract staere’ between threads and locks.

® ~is a homomorphism between the monoids in the abstract and
concrete separation domains:

Vu,v € D¥. Y(utv) = y(u) *y(v); 3)

e abstract transfer functions over-approximate the coaases:
Yue D!, C eC. fo(y(w) TA(fE(w). (@)

Note that we use the same symbols for the order, bottom and top
elements, and the join operator for both domains when it does
cause confusion. Note also that we do not require that thieaabs
transfer functions be local or monotone.

3.3 Constructing thread-modular shape analyses

We now define a thread-modular analysis on a multithreaded pr
gram. The main idea of the analysis is to infer the part of the
state protected by each lock—its resource invariant. Resan-
variants are computed incrementally during the analysesefore,

produces the same result as when run on the extended state or ifor each locké; the analysis maintains the current approximation

producesT . m|

Consider a concurrent programming language from the ckass d
fined in Section 3.1. In Section 3.3 we show how, given an @maly
for the underlying sequential language, we can constructemat-
modular analysis for the concurrent language. More pricige
assume given:

e a concrete separation domdi, C, | |, L, T,e,) represent-
ing sets of concrete states of the program;

e an abstract separation domai®?, C,| |, L, T,e* 4) repre-
senting sets of abstract states of the program;

e a monotone concretization function: DY — D;

e monotone concrete transfer functiofis : D — D defining
the concrete semantics of sequential commandsC;

* abstract transfer functiong, : D* — D* defining the abstract
semantics of sequential commar@s: C.

We assume further that:

e concrete transfer functiong- are local;

I; € D¥ of a corresponding resource invariant. In addition, for ev-
ery nodev in the CFG and every set of locksthe analysis main-
tains the part of the stat@ (v, L) € D* owned by the thread at
the nodev in the case when the set of locks held by the thread is
L—its local state. Formally, the analysis operates on theadiom
D¥ = (N — (P(L) — D*%)) x (D¥)" ordered by the pointwise
extension of the abstract order.

We denote with® the iterated version of: ®%_,z; =

The thread-modular analysis is defined using the functional
F* : D' — D that takes a tupléQ,I) and produces a tuple
(Q',T') as shown in Figure 5. The analysis receives as input an
abstract initial state of the prograpre’ € D* such that

pre C ~(pre) (5)

and is parameterized with the following functions:

e Local; : D¥ — D* andFrame; : D* — D* for eachi = 1..n
such that for alk € D*

~(s) C ~y(Local;(s) f Frame;(s)); (6)

e Pre; : D' — D¥ for eachi = 1..m andlnit; : D¥ — D! for
eachi = 1..n such that for alk € D*

127 (B, prei)) £ (B, i))

Pre; andInit; determine the initial splitting of abstract staie?
between threads and lockgre; andInit; map the abstract initial
state of the programre® to the abstract initial state of thread
respectively, the initial approximation of the resourceaiant 7.
The condition (7) ensures that, when recombined, the seatdtan
over-approximation of the abstract initial state.

The interesting part of the analysis concerns the treatroint
acquiring and releasing locks. When a thread acquires adgck
it obtains the current approximation of the correspondewpurce
invariant—the current approximation of the resource irmararis -
conjoined with the current local state of the thread to yeldew
local state.

When a thread releases the lotk its current local state is
partitioned into two parts, one of which returns to the reseu
invariant and the other one stays with the thread. The fansti
Local; and Frame; determine this splitting. The functiobocal;
determines the part of the state that becomes the localaftéte
thread and the functioRrame; the part that goes to the resource
invariant. The condition (6) ensures that the combinatibnhe
parts of the splitting over-approximates the given abststate.
Note that the treatment of locksets in processioguire or release

@)

\% =T, Y, variables

E = nll|V expressions

G 1= E==FE|E!=E branch guards

C == V=E|V=V-next sequential commands
| V-next=FE
| V = new| deleteV/
| assumé@)

Figure 6. Sequential commands for a heap-manipulating concur-
rent programming language

ones. Formally, if we add an extra copy of a thre@dinto the
program and change the concrete and the abstract initiaksta
that the condition (7) is still satisfied (which correspotaladding
an extra piece of state to the initial state of the programotnf
a precondition for a newly added thread), then the resulthef
analysis for the new program with tlig for the new thread equal
to the Q for P; still form a fixed point of the new functional®
and, hence, over-approximate the concrete semantics.

Similar versions of the specialization of abstract intetation
presented in Section 3.2 were developed independently and c
also be used as a basis for scaling up other static analygis al
rithms even for programs without multithreading and dyratty
allocated memory (see [13] for more information). For exemp
they are applicable in interprocedural analysis to spfitlod (ab-
stract) state of the called procedure from the abstract stathe

commands in Figure 5 mimics the one in the concrete semanticscaller [24, 12].

(Figure 3).

A computation of a fixed point of the function&l* would an-
alyze each thread accumulating possible values of resawas-
ants during the analysis. Each time a new possible value ef a r
source invariant associated with a lock is discovered, itldibave
to be propagated to evegcquire command for the lock. Hence,
each thread is analyzed repeatedly, but separately, viithqulor-
ing the set of interleavings. In this sense the analysis eefiry F'*
is thread-modular. Note also that after the analysis sphlisstate

4. Resource invariants as least fixed points

In this section we show that if the borders of the part of the
heap protected by a lock are specified, then the resourcaanva
describing this part can be defined as least fixed point of & firs
order equation. For programs that have resource invariantsthe
class we define here the precision of our thread-modulaysisal
depends only on the precision of the underlying (sequértiepe

at areleasecommand, it loses correlations between the parts of the analysis.

state that become local states of the thread and the partgcha
the resource invariant. This loss of precision is similathte one
observed in thread-modular model checking [11].

To show how to design thread-modular shape analyses we ab-
stract from the particular shape domain used and construictea
alistic shape analysis that operates on concrete statesloWes

the analysis defined by the function&f. The following theorem
says that reachable states at the locatian. . . , v,) such that the
lockset held by threads i1, . . ., L) are over-approximated by
the combination of the local states of all threads along veigource
invariants associated with the locks that are not in thedetkrhe
conditions listed at the end of Section 3.2 pinpoint the siaffit
requirements that the underlying sequential analysis daatisfy

for the thread-modular analysis to be sound and are usecein th
proof of the theorem.

THEOREM1 (Soundness)Let g be least fixed point of the func-
tional F' defined in Figure 3 andQ, I) be a fixed point of the func-
tional F* defined in Figure 5. Then for each locatiom,, . . ., v,
and admissible locksé¢t1, ..., L)

41, my Dy ey L) C oy ((@ﬁ(vi,g)) 4 <l@;L I))

whereL = L1 U...U Lyp,.

The proof appears in Appendix A.

crete and abstract domains. In Section 5 this instantisterues
as a template for designing thread-modular shape analybes.
instantiation provides a fixed-point characterization aflass of

resource invariants and can be seen as defining a non-siacatar
crete semantics. Theorem 1 ensures its adequacy with tespee

standard collecting interleaving semantics.

4.1 Programming language and concrete semantics

Programming language. We consider a concurrent heap-
manipulating programming language from the class of coeoar
CFG-based languages defined in Section 3.1 with sequential ¢
mands shown in Figure 6. To simplify presentation we assinaie t
each structure stored in the heap has only one field The devel-
opment carried out in this section generalizes easily tc#se of
structures with multiple fields. The meaning of commandsda-s
dard.assuméG) acts as a filter on the state space of prograres—
is assumed to be true aftassumeis executed. It is used to replace
conditional expressions imhile andif statements while translating
programs to CFGs.

Consider a program in the language introduced above corgist

Note that although we have assumed a fixed number of threads,of threadsPx, ..., P, (represented by their CFGs) with locks

from the definition of the functionat® it follows that the results of
the analysis are sound for an unbounded number of copiegsé th
threads provided they have the same initial states as teati

l1,..., 4, and a preconditiopre.
The domain of states. We now define a concrete semantics and
a corresponding concrete separation donf@nC, | |, L, T, e, *)

Values ={...,—1,0,1,...}

Heaps = Locs —g,, Values

Stacks = Vars —g, (Values x Perms)
States = (Stacks x Heaps) U{T}

Locs ={1,2,...}
Perms = (0, 1]
Vars = {z,y,...}
D = P(States)

Figure 7. The domainD of the concrete semantics

for this language. As was previously noted, in our fixed-poirar-
acterization of resource invariants for heap-manipuggirograms,
we assume that the borders between parts of the heap ownéd by d
ferent threads or protected by different locks are stalide,pointed
to by fixed stack variables. We thus have to account for thettfat
local state of several threads and resource invariantvefaidocks
may reference the same variable. Supposing that therk sueh
locks and threads, we handle this case by giving to eachdtaec
lock a fractional permissioi/k for this variable [2]. The permis-
sion shows “how much” of this variable is owned by the thread o
protected by the lock. The idea is that a thread having a [ssiari
less tharl for a variable can read it; a thread can write to a variable
only if the permission associated with it in its local stageequal
to 1, i.e., only if it gathers the permissions from all the othmsks
that own this variable by acquiring them. Thus, as our cdeale-
main we chose an extension of the example of a separationidoma
presented in Section 3.2 with fractional permissions foraides.
The domainD is defined in Figure 7. As before, we identify
all the sets of states frorfitates containing T and denote such
elements of the domain simply witfi. The order in the domain
is subset inclusion withl" being the topmost element, the join
operation is set union, and the bottom element is the empty se
We proceed to define an operation of separate combination
on the domain. Informallys adds up permissions for variables and
computes the disjoint combination of heaps. It correspaadbe
model of the separating conjunction from separation logithie
case when variables are treated as resources with permgssio
Fort € Stacks let functionsVal; and Perm; be selectors for
values, respectively, permissions, of variables on theksttor
all x € Vars, (Valy(x),Perm(z)) t(x) and, additionally,
Perm:(z) = 0if t(x)1.
We define the combination * ¢2 of stacksty,t2 € Stacks as
follows: if Vo € Vars. Permy, (x)+Permy, (z) < 1A(Valy, (z) A
Valy, (z)| = Valy, (x) = Valy, (z)), then

(t1 * t2)(x)

(Valg, (z), Permy, () 4+ Permy, (z)), if Valy, (2)];
(Valg, (), Permy, () 4+ Permy, (z)), if Valy, (2)];
undefined otherwise

andt; = t2 is undefined otherwise.
We define the combinatiohy; * ho of heapshi, ho € Heapsin
the following way:

hiWho, if dom(hi) Ndom(hs) = 0;
hl * h2 =) N
undefined otherwise.

Finally, fort1,¢2 € Stacks andhi, ho € Heaps we let(t1, h1) *
(t27h2) = (tl xto, hi *hz),fOl’S eDweletTxs=Txs=T,
and we lift« to D pointwise.

The unit elemeng of x is the singleton set containing a pair of
an empty heap and an empty stack, both represented by eveng/wh
undefined functions.

Transfer functions. We define the concrete transfer functions
fc : D — D for primitive commands using the transition relation
~» shown in Figure 8. We lefc(t,h) = {s | C,t,h ~ s},
fe(T) T, and lift fc to D pointwise. It is not difficult to

x =y, t,h~ tlz: (Val(y),1)],h
x =null,t,h~ t[z: (0,1)],h
x = y—nextt, h~ t[z : h(Vali(y))], h

if Perm¢(z) = 1,t(y)|
if Perm(z) =1

if Perm¢(z) =1,
t(y)l, h(Vali(y))|

it 1)1, t(y).,
h(Valg(z))]

it ()L, h(Valy(2))|
if Perm¢(z) =1,

a € Locs \ dom(h),

e € Values

if t(z)] ,e € Values

if [G]¢t] ., [G]¢ = true
if [G]t], [G]t = false
otherwise

x—next=y,t, h ~ t,h[Valg(z) : Vali(y)]

z—next= null,t, h ~ t, h[Val¢(z) : 0]
x =new,t,h~> tx : al,hla: €]

deletex, t, h[Vali(z) : €] ~ ¢, h
assuméG),t,h ~ t, h
assuméG), t, h

C,t,h~ T

Figure 8. Transition relation for primitive command$G]t €
{true, false} is the valuation of the guar@ over the stack (which
is undefined ift is undefined for a variable used @#). Here-
denotes that the command does not fault, but gets stuck.

show that for each primitive commaiddfrom Figure 6 the transfer
function fc is monotone and local.

4.2 Fixed-point characterization

In the setup of Section 3.3 we let both the abstract separatio
domain D* and the concreté be equal to the domain defined
in Section 4.1 and the abstract transfer functions be equtiet
concrete onesy is the identity function. We also latre! = pre.

All the conditions listed at the end of Section 3.2 are sa&tikfi

We would like to characterize resource invariants as leastfi
points of a functional from the class defined in Figure 5. Tahi®
we have to provide functionkocal; and Frame; (i = 1..n) for
each lockPre; (i = 1..m) for each thread, anihit; (: = 1..n) for
each lock.

To this end we assume that for each léckve are given two sets
of program variables, which specify the borders of the pathe
heap protected by the lock—the setesftry pointsEntry(¢;) and
the set ofexit pointsExit(¢;). The part of the heap protected by the
lock is defined as everything that is reachable from entrptgaip
to exit points. Therefore, exit points are pointers thatl lemparts
of the heap owned by others. In addition, for each thr€adve
assume given the s@wns(FP;) of program variables that it owns.
These are variables that the thread is allowed to accessétrenut
holding any locks. We defin®@wns(¢;) = Entry(¢;) U Exit(¢;).

First, we define howLocal; and Frame; partition the stack.
To this end we define an auxiliary function that describes the
ownership partitioning of the stack. For a thread or I&§kPerm%
defines via permissions the part of the stack owne@®bfor each
r € Vars

if € Owns(P);

Perm? ;
rmp () otherwise.

_ {1/|{P’ | € Owns(P')}],

undefined

For a stackt € Stacks if Vz € Vars. t(z)] = Permp (z) <
Perm(z), then let

Local;(t) = Az.(Val¢(z), Permy(x) — Perm?i (x)),
Frame;(t) = Az.(Vali(x), Perm?i (z)),

otherwise letocal;(t) = Frame;(¢t) = T.

We now define howlLocal, and Frame; partition the heap.
Frame; takes the part of the heap reachable from entry points up
to exit points. The intuition is that modifying pointers theap cell
such that it moves into this part of the heap means that itrheso
protected by the corresponding lock and a part of its resourc
invariant (recall that in the analysirame; computes the part of

the heap that goes into the resource invariant). The rebedie¢ap
becomes the result dfocal;.

Fort¢t € Stacks, h € Heaps, and a locks; let d(¢;,t,h)
be the smallest setl such that(Val:(Entry(¢;)) U (h(d) \
Val:(Exit(¢;))))NLocs C d. d(¢;, t, h) defines the part of the heap
reachable from the entry points of the lo€kup to exit points as-
sociated with this lock. We now let fare Stacks andh € Heaps

Local;(t, h) = (Locali(t), hldom(n)\d(e;,t,n))
Frame;(t, h) = (Frame;(t), h|ace; ¢,n))-

Here we assume thatT,h) T. We let Local;(T)
Frame;(T) = T and lift Local; andFrame; to D pointwise.
We proceed to determine the initial splitting of the heap agho
threads and locks. This is done in the same spirit as spjittin
the heap atrelease commands. For each thredd we define
Entry(P;) = Owns(F;), Exit(P;) = {Owns(P) |1 < i <
mAi # k}U{Entry(¢;) | 1 < ¢ < n}. Thatis, for a thread
P; we consider the entry points of its initial states to be theé-va
ables owned by the thread and exit points to be the varialblasd
by other threads and entry points of locks. For a thréadet
d(P;,t,h) be defined as before, but with ndsmtry andExit. For
a stackt and a heap we let

Prei(t, h) = (A\x.(Vali(x), Perm®, (2)), hlacp, +.1))s
Init; (¢, h) = (Az.(Vale(x), Permy, (), hlace, +.n))-
Fors € D we define
Prei(s) = {Pres(t,h) | (t,h) € s}, Pre;(T) =
Init;(s) = {Init;(t, h) | (t,h) € s}, Inity(T)
if for each(t,h) € s
(WiZdom(Pre; (¢, h))) W (Wi=;dom(Init; (¢, h))) = dom(h),

wheredom(t,h) = dom(h) andPre;(s) = Init;(s) = T oth-
erwise. The latter case corresponds to the situation wheareve
unable to split the initial states using the definitionsEatry and
Exit above.

Since the transfer functionf- and functionsLocal;, Frame;
Pre;, andlInit; are monotone, by Tarski's fixed point theorem the
functional F* defined in Figure 5 given the instantiations above
always has least fixed poir(Q, I). It is not difficult to show
that Local; and Frame; defined above satisfy (6) an@dre; and
Init; defined above satisfy (7). Hence, from Theorem 1 it follows
that (Q, I)
in Figure 3) and provides a valid fixed-point characteraatof
resource invariants for a class of heap-manipulating jarogr

)

Example. The program in Figure 9 is adapted from [19]. Two

threads—a producer and a consumer—use fine-grained synchro

nization to access an unbounded buffer represented by b/-sing
linked list. Variablesfirst and last point to the first, respectively,
last element of the list. Variable is a local variable of the con-
sumer,y of the producer. Théast element is a dummy node. The
producer adds a portion to the buffer by placing that poriiotine
datafield of last, then allocates a new cell, and links that cell into
the list making it thdast (and dummy). Removing a portion re-
sults in a value being read from thata field of the first node,
disposing this node, and moviriigst along the list by one. When
the list is of length ondast and first are equal, and this corre-
sponds to an empty buffer; it is in this case that synchraiciza

is necessary. In this examphatry(¢) = {first}, Exit(¢) = {last},
Owns(producel = {last, y}, andOwns(consumey = {first, z}.
Figure 10 defines a fixed point of the functional introducedvab
We use separation logic formulae to denote elements of the do
main D (in fact, the formulae in Figure 10 represent an outline of
a proof in concurrent separation logic). The only deviaticom

the standard syntax and semantics [23] is that we treatblaesas
resources [21] (as required by the semantics in Section AtB
syntax of formulae is the same as in Figure 2 except for tHeviel
ing:

e Each formula is prefixed with an expression of the form
piz1, - .., prrr describing the stack, wherg; is a number
in (0, 1] representing the permission for the variableand
x1,...,xk iS the list of free variables in the formula.

o We useE;—{next E;} instead ofE— {prev: E, next E}.

¢ We use a predicate(E1, E2) for singly-linked lists rather than
a predicate for doubly-linked lists.

We contractlz to simply z, Fi—{next E;} to Ei1—F>, and
use z+—_ instead ofz—z’ when the value ofr’ is irrelevant.
Is(E1, E2) is the least predicate such thetE';, F2) < Jz.(E)
E>; Nemp) V (E1 # E2 A Er—z x Is(x, E2)) and denotes all of
the states in which the heap has the shape of an acyclic ighossi
empty) singly-linked list, with the head nod&; and the value of
the nextfield of the last noddv. Note thatF, must be a dangling
pointer in a heap defined by(E:, E2). The adjustments to the
semantics of formulae for handling variables as resourcesas
in [21]. The formula for the linev corresponds to the value of
Q(v, L), where L is the set of locks held at by the thread to
which v belongs (in this example for each CFG nadéhe setl
can be determined syntactically). The resource invarissteiated
with the lock is Lfirst, 2last - Is(first, last). We omitted formulae
for some program lines to conserve space. m|

5. Instantiating the framework

By instantiating the framework for thread-modular anadypee-
sented in Section 3.3 with the concrete domain defined in Sec-
tion 4.1, and abstract domain and transfer functions frofierdi
ent sequential shape analyses we can get different threddier
shape analyses. In this section we present an instantiafitme
framework on which our implementation is based and outhne t
other instantiations. Their design follows the fixed-pahéaracter-
ization of resource invariants presented in Section 42 the anal-
yses split the heap on releasing a lock by computing (an appro
mation of) reachability between entry and exit points. Wt fiiote
an important property of thread-modular shape analysesiraat
by instantiating the framework with the concrete domainraefiin

over-approximates the concrete semantics (as defined Section 4.1—they detect data races, i.e., having a dataimabe

program results in the analysis signaling a possible bug.

5.1 Data race freedom

Suppose we are given a thread-modular shape analysis ethtain
from an instantiation of the framework of Section 3.3 in whibe
concrete separation domaid is equal to the domain defined in
Section 4.1. Thus, we assume given an abstract separatioainio
D!, a concretization functiony, abstract transfer functionﬁg,
and functionsLocal’, Frame?, Pref, andInit?. We fix a program

in the programming language introduced in Section 4.1 ahd le
q be least fixed point of the functiond (Figure 3) that defines
the concrete semantics of the program. We prove that theessicc
of the thread-modular shape analysis on the program imghats
the program has no data races (both on stack variables and on
heap cells). The analysis succeeds if the fixed p@it I¥) of the
functional F* (Figure 5) that defines its result is such that for every
nodev and every set of lock# it is the case thaQ® (v, L) C T

and for all locks¢; it is the case thaf’ = T. We denote this
with (Q*, I*) = T. In other words, a possible error found by the
analysis is denoted by the topmost element in the abstrachito
This requires us to put an additional constraint on the abstr

1 struct ListEntry 9 consumef) { 26 producex) { 36 main)) {
2 10 while (true) { 27 while (true) { 37 last= newListEntry,
3 ListEntry* next 11 = first 28 last~data= producd); | 38 first=last
4 intdatg 12 while (true) { 29 y = new ListEntry, 39 startThread&consumey;
5) 13 acquire(?); 30 last—next= y; 40 startThread& produce);
6 14 if (first!=last) { 31 acquire(¢); 41 1}
7 Lock?; 15 first = first—next 32 last = y;
8 ListEntry* z, y, first, last 16 release(/); 33 releas€/?);

17 break; 34

18 } else{ 35 }

19 releas€’);

20

21

22 consumér—data);

23 deletex;

24

25 }

Figure 9. Example program

[Line] Local state | DEFINITION 4 (Data race)The program has a data race if for

10 x, %first IF emp

11 x, %first I- emp

13 | =, Zfirstl- z = first A emp

14 | a,first, Zlastl- o = first A Is(first, last)

16 | =,first, 2lastIF- z—first « Is(first, last)

17 | =, ZfirstIF z—first

19 x, first, %Iastlk first = last A = = first A Is(first, last)
20 x, %first Ik« = first A emp

21 | =, Zfirstlk @ = first A emp

23 | a, SfirstIF asfirst

24 x, %first I- emp

28 | y, slastl- last—._

30 | y, glasti-last—_x y—_

31 | y, slastl-last—y * y—_

32 | y,last firstIF Is(first, last) * last—y * y—-

33 | y,last Sfirstl-y = lastA (Is(first, last) x last—_)
34 | y, 2lastl-last—._

37 x, vy, first, lastIF emp

39 x, y, first, last I first = last A last—_

Figure 10. The fixed point defined by the fixed-point characteri-

zation for the program in Figure 9. Results for some lineshef t
program are elided.

domain: we require that

VseD . q(s)=T=s=T. (8)

Letaccesses(C, ¢, h), respectivelywrites(C, ¢, h) be the set of
variables and locations that the primitive sequential camdC'
may access (i.e., read, write or dispose), respectiveliye ws or
dispose, when run from the stgte h).

DEFINITION 3 (Interfering commands)Primitive se-
quential commands C; and C> interfere with each
other when executed from the statg,h), denoted with
C1 >,y Co, if accesses(Ch,t, k) N writes(Ca,t,h) # 0
or writes(C1, t, h) N accesses(Ca, t, h) # (.

Given this formulation of interference, the usual notiordafa
races is formulated as follows.

some locatiorfvs, . . . , vm), admissible locksétL+, . .., L), and
state(t,h) € q(vi,...,vm,L1,...,Lm) C T there exist CFG
edges(vi,C1,v1) € E; and (ve,C1,v5) € Ej (i # j) labeled
with sequential commands; and C> such thatCq,t,h & T,

Ca,t,h ')Z» T andCy >(¢,n) Cs.

THEOREM2 (Data race freedomSuppose thatQ*, I*) is a fixed
point of the functionalF™* obtained from an instantiation of the
framework from Section 3.3 with the concrete domain from Sec
tion 4.1 and a concretization functiensatisfying (8). I{Q*, I*) C

T, then the program has no data races.

The proof appears in Appendix B.

5.2 Thread-modular shape analysis with separated heap
abstractions

We define a thread-modular analysis based on a sequentjz sha
analysis in which abstract states are represented by $igpdcmic
formulae. The underlying sequential analysis is spe@dlifor
handling doubly-linked lists and is similar to the one of.[9]

The abstract domaif* is the domain of sets of separation logic
formulae from the subset defined in Section 2 (Figure 2) and ex
tended to handle variables as resources as described atdhaf e
Section 4.2. A special elemeiit € D* denotes an error. The order
on the domain is subset inclusion with being the topmost ele-
ment. The concrete domain is the domain from Section 4.1 mod-
ified in the obvious way to account for multiple field selestar
structures. The concretization function is defined follogvithe se-
mantics of separation logic formulae. The operation of sgpa
combinationt on the abstract domain is just separating conjunction
« lifted to the sets of formulae. Transfer functions are simib
those presented in [9, 12], but adapted for handling dolibked
lists rather than singly-linked lists. Functiobscal?, Frame?, Pre?,
andInit? mirror their concrete counterparts defined in Section 4.2.
Their implementation is similar to the implementation of thper-
ations used in interprocedural shape analysis with anaatigtep-
resentation based on separation logic [12] to split therabisheap
at a procedure call (functioriscal andframe in [12]). The dif-
ference with respect to the concrete operations is thagadsof
computing reachability precisely in the concrete, we compts
approximation—reachability in the formula as defined in][The
analysis performs the sequential shape analysis of thalinétion
code to obtain an abstract preconditipre® of the program. The
reader may now revisit the example in Section 2 to get the idea

of how the analysis works. Note that to simplify presentatice
elided the discussion of treating variables as resourctianal-
ysis while presenting the example.

We note that in situations when all of the heap cells in the
data structure protected by a lock are reachable from sotma se
program variables, the sets of exit points are empty andehefs
program variables protected by a lock forms a reasonablesgue
for the set of entry points associated with the lock. The $et o
entry points can then be inferred using, e.qg., tools (baticsand
dynamic) for analyzing correlations between locks andakdeis
that determine the set of locks that are held consistenti &me
a variable is accessed [22, 25, 5].

5.3 Other instantiations

Distefano et al. [9] present a shape analysis for singlyeléhlists in
which abstract states are represented by separation mgifae.
The construction of a thread-modular shape analysis thest (9§
as the underlying sequential analysis is done in the samasvdg-
scribed in Section 5.2. Unlike the domain presented in 8e&i2,
the domain from [9] is finite provided the number of program-va
ables is bounded. Hence, the corresponding thread-moaiuddy-
sis is always guaranteed to terminate, which is not the cashé
analysis presented in Section 5.2.

Lev-Ami et al. [16] present a shape analysis that handlesiamwi
range of data structures including singly- and doublyditKists
and binary trees. Abstract states in the analysis are reiexs by
shape graphs. To define functionscal?, Frame®, Pre?, andlnit’
for this abstract domain we have to be able to split shapehgrap
creating dangling pointers across splittings. The abstegresen-
tation of [16] does not allow dangling pointers, but can be ex
tended [15] so that it is suitable for us in a restricted casghich
the set of exit points for each lock is empty and each stack var
able is owned by only one process or resource (i.e.,Bety and
Owns are pairwise disjoint). More precisely, as the concreteasep
ration domain we again take the domain from Section 4.1. Bhe a
stract domain is represented by a topped powerset of shapagr
extended to allow specialnusable pointersThese are pointers
such that no information about them is preserved by the analy
sis and dereferencing them results in an error. Adding thesm p
serves the finiteness of the domain. The operation of sepenat-
bination is the union of shape graphs. Functitnsal?, Frame?,
Pre?, andInit? are defined following their concrete counterparts in
Section 4.2 using reachability in shape graphs. Since wensss
empty sets of exit points, there may only be two kinds of diauggl
pointers: dangling pointers resulting from ttieletecommand and
pointers from the part of the heap computedF'mymeg to the part
of the heap computed Uyocalg. Both of these kinds of pointers
can be modeled in the abstract representation by unusaible o

6. Implementation and experimental results

We have implemented the thread-modular shape analysislsc

in Section 5.2 in a prototype tool and applied it to multitted
heap-manipulating code from Windows device drivers. Tiselte
from our experiments are presented in Figure 11. Tests ware p
formed on a 3.4GHz Pentium 4 PC. In all of our experiments the
maximum memory usage by the tool was 22MB. The sizes of ac-
tual C code (without comments, irrelevant definitions,)dtat was
analyzed for examples from Figure 11 ranged from 50 to 300 LOC

Threads
Time (sec)

3 6 9
11.4| 27.7 | 50.3

12
79.9

15
118.7

18
170.7

Figure 12. Results of testing the tool on programs with varying
number of threads

threads that are present in the code. In all cases we let thefe
exit points for all locks be empty. The tool found bugs in thre
programs and proved that the rest of programs are memoey-giaf

not leak memory and are data race free. In each case the ignalys
converged within a few iterations. We have not encountersad a
false bugs in our experiments. The bugs found by the analysis
were due to accesses to data structures not protected tgydock
would manifest themselves as dereferencing a danglingeyaim

a memory leak.

To speed up convergence to a fixed point in our implementation
we use a non-standard widening operator [8, 4] that elirese-
dundant formulae from sets of formulae representing atisttates
using a prover for entailment between separation logic e
similar to the one described in [1]. The proof of Theorem 1 lban
adjusted to ensure the soundness of the analysis using ties-wi
ing operator. Due to the use of the non-standard wideningydst
cases the final number of states per program point was 1 or 2.

To assess the scalability of our shape analysis we took amogr
2 and duplicated the code of threads in it knowing that théyaea
will not realize that the threads are duplicates. The rssait
presented in Figure 12. As can be seen from the figure, we do not
observe the analysis being exponential in the number chtise

7. Related work

The shape analysis for concurrent programs presented Jitn§26
dles unbounded numbers of locks (in the heap) and threads-but
lies on abstracting program interleaving and thus does cales
well. A number of analyses have been developed to detect lace
multithreaded programs, both automatic (e.g., [25, 5, 28,17])
and requiring user annotations (e.g., [10, 3, 14]). To trst bEour
knowledge all of the automatic tools are either overly incfse or
unsound in the presence of deep heap update. The analyses tha
require annotations, which are usually based on type sgstera-
clude ownership transfer; besides, the annotations redjbly them
are often too heavyweight. In contrast, our analysis hanaden-
ership transfer and requires lightweight annotations ¢aatbe in-
ferred by existing automatic tools. Some of the techniqoesdce
detection (including [22, 25, 5]) provide information abevhich
locks protect which variables. Such techniques are congpitery
to ours—they can be used to discover entry points for regonrc
variants needed by our analysis.

Our method for constructing thread-modular shape anaigses
inspired by concurrent separation logic [19], which addptiee
idea of resource invariants to heap-manipulating progratiese
we use this idea in the context of program analysis. Howeétvisr,
important to note a difference between the approach we hirgta
in this paper and the approach that is taken in concurrearatpn
logic. In concurrent separation logic resource invariduatge to be
precise—informally, they have to unambiguously pick outasa
of heap; see [19] for a formal definition. The reason is thatrita
imprecise resource invariants leads to the possibilityhafosing

Each program we attempted to verify consisted of 2-6 threads different splittings of the heap atleasecommands in a proof,

representing concurrently executing dispatch routineslesfice
drivers that performed different operations on doubldid lists.
The precondition of each thread was just the empty heap. éienc

which makes the conjunction rule of Hoare logic unsound.eHer
the determinism of heap splittingsrateasecommands is enforced
by using deterministic functionkocal, and Frame;. Hence, in

according to the note at the end of Section 3.3, the results of our analysis we can compute resource invariants withoutyivay

our analysis are also valid for an unbounded number of cagies

about their precision and still keep the analysis sound.

Test 1 2 3 4 5 6 7

9 10 11 12 13 | 14 15 16

Time(sec) | 22| 11.7| 34| 42| 35| 6.6 | 8.6

133 | 6.9 | 6.6

272 | 286 | 9.7 | 53| 34| 53

Bugfound | No | No | No | No | No | No | No

No | No No No No | Yes | Yes | Yes

Figure 11. Results of the application of the tool to multithreaded cfyden Windows device drivers

Previous work [6] presented a fixed-point characterizatitme-
source invariants for integer programs with semaphoresdrcase
when programs have no shared variables. This paper is thedirs
the best of our knowledge, to present a fixed-point charizetion
of a class of resource invariants for heap-manipulating@ims.

8. Conclusion

We have described a new analysis designed to eliminate tisédzo
eration of interleavings for programs with deep heap upudéiiée
preserving soundness and precision. Our analysis is alastadb-
lish that the program is memory-safe (i.e., it does not @deezice
heap cells that are not allocated), does not leak memory aesl d
not have data races (including races on heap cells). Thgssal
handles low-level language features including non-ldkiczoped
and nested locking, and memory disposal. Our solution wpaks
ticularly well in situations in which all of the heap cellstine data
structure protected by a lock are reachable from some sabef p
gram variables as it is the case, e.g., in systems code.

Acknowledgements. We would like to thank Cristiano Calcagno,
Dino Distefano, Peter O’Hearn, Tal Lev-Ami, Stephen MadRb-
man Manevich, Matthew Parkinson, Andreas Podelski, Zvonim
Rakamaric, Ganesan Ramalingam, John Reynolds, Noam Rynetz
Viktor Vafeiadis, Hongseok Yang, Jian Zhang, and the anauysn
reviewers for comments and discussions that helped to vegte

paper.

References

[1] J. Berdine, C. Calcagno, and P. O'Hearn. Symbolic exenuwith
separation logic. IMPLAS’05: Asian Symposium on Programming
Languages and Systemelume 3780 ofLNCS pages 52-68.
Springer, 2005.

R. Bornat, C. Calcagno, P. W. O’'Hearn, and M. Parkinsorer- P
mission accounting in separation logic. ROPL'05: Principles of
Programming Languagepages 259—270. ACM Press, 2005.

[2

—

3

—

C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: preventing data races and deadlocks. In
OOPSLA'02: Object-Oriented Programming, Systems, Laggsia

and Applicationspages 211-230. ACM Press, 2002.

C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. @&y
reachability: Shape abstraction in the presence of poartdmetic.
In SAS’06: Static Analysis Simposiuvolume 4134 oL.NCS pages
182-203. Springer, 2006.

[5] J. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, akd Srid-
haran. Efficient and precise datarace detection for mrétitied
object-oriented programs. IRLDI'02: Programming Languages
Design and Implementatiopages 258—-269. ACM Press, 2002.

[4

[l

6

—_

E. Clarke. Synthesis of resource invariants for corenirprograms.
ACM Trans. Program. Lang. Sys2(3):338-358, 1980.

P. Cousot and R. Cousot. Abstract interpretation: a edifi
lattice model for static analysis of programs by constarctor
approximation of fixpoints. I®?OPL'77: Principles of Programming
Languagespages 238-252. ACM Press, 1977.

[8] P. Cousot and R. Cousot. Abstract interpretation fraor&e. Journal
of Logic and Computatiqr2(4):511-547, 1992.

[9] D. Distefano, P. W. O’Hearn, and H. Yang. A local shapelysia
based on separation logic. TACAS’06: Tools and Algorithms for

[7

—

Analysis and Construction of Systemslume 3920 oL.NCS pages
287-302. Springer, 2006.

[10] C. Flanagan and S. N. Freund. Type-based race detectiqlava.
In PLDI'00: Programming Languages Design and Implementation
pages 219-232. ACM Press, 2000.

[11] C. Flanagan and S. Qadeer. Thread-modular model atgckin
SPIN’03: Workshop on Model Checking Softwarelume 2648 of
LNCS pages 213-224. Springer, 2003.

[12] A. Gotsman, J. Berdine, and B. Cook. Interprocedurapsh
analysis with separated heap abstractionsSA$'06: Static Analysis
Symposiunvolume 4134 oL NCS pages 240-260. Springer, 2006.

[13] A. Gotsman, N. Rinetzky, J. Berdine, B. Cook, D. DistefaP. W.
O’Hearn, M. Sagiv, and H. Yang. Abstract interpretationhnstate
separation. In preparation, 2007.

[14] D. Grossman. Type-safe multithreading in Cyclone.TiDI'03:
Types in Languages Design and Implementatfmages 13-25. ACM
Press, 2003.

[15] T. Lev-Ami. Personal communication. 2006.

[16] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstraction fdnape
analysis with fast and precise transformers.Ci#’'06: Computer
Aided Verification volume 4144 oLNCS pages 547-561. Springer,
2006.

[17] M. Naik and A. Aiken. Conditional must not aliasing fdatic race
detection. IPPOPL'07: Principles of Programming Languagemges
327-338. ACM Press, 2007.

[18] M. Naik, A. Aiken, and J. Whaley. Effective static racetelction
for Java. InPLDI'06: Programming Languages Design and
Implementationpages 308-319. ACM Press, 2006.

[19] P. W. O’Hearn. Resources, concurrency and local reagonin
CONCUR’04: International Conference on Concurrency Tlyeor
volume 3170 oL.NCS pages 49-67. Springer, 2004.

[20] S. Owicki and D. Gries. Verifying properties of pardlfgFograms:
An axiomatic approachCommun. ACM19(5):279-284, 1976.

[21] M. Parkinson, R. Bornat, and C. Calcagno. Variablesessurce
in Hoare logics. InLICS’06: Logic in Computer Scienc@ages
137-146. IEEE Press, 2006.

[22] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmitmteat-sensitive
correlation analysis for race detection. P.DI'06: Programming
Languages Design and Implementatipages 320-331. ACM Press,
2006.

[23] J. Reynolds. Separation logic: A logic for shared migadata
structures. InLICS’02: Logic in Computer Sciencpages 55-74.
IEEE Press, 2002.

[24] N. Rinetzky, M. Sagiv, and E. Yahav. Interprocedurazh analysis
for cutpoint-free programs. IBAS’05: Static Analysis Symposium
volume 3672 oLLNCS pages 284-302. Springer, 2005.

[25] S. Savage, M. Burrows, G. Nelson, P. Soblvarro, and Tdekson.
Eraser: A dynamic data race detector for multithreaded rarog.
ACM Trans. on Comp. Sysi5(4):371-411, 1997.

[26] E. Yahav. Verifying safety properties of concurrental@rograms
using 3-valued logic. IlPOPL'01: Principles of Programming
Languagespages 27—40. ACM Press, 2001.

[27] H. Yang and P. W. O’Hearn. A semantic basis for local osdrsg.
In FOSSACS’02: Foundations of Software Science and Compuitati
Structuresvolume 2303 of.NCS pages 402—-416. Springer, 2002.

A. Proof of Theorem 1 (Soundness)

Letg € D be defined as follows: for each locatidm, . .., vm)
and admissible locks€L, ..., L)

T A A R (CL L) H E-RD)
i=1 L, &L

(whereL = L, U...UL,,) and for each locatiofws, . . . , vn,,) and

inadmissible locksetLq, ..., Lm), G(v1,...,Vm,L1,...,Lp) =

1. We show thatF'(§) C ¢. By Park induction principle this

implies thatg = Ifp(F") C ¢, which is required.
First of all, from (5) and (7) it follows that
(F(q))(starty, ..., startm,,0,...,0) C
G(start, ..., startm,,0,...,0).
According to the definition of the functionat’ (Figure 3), it is
now sufficient to show that for all location{s1, ..., vj,...,vm),

admissible locksetéLy, . . .
the case that

, L), and edge$v}, C,v;) € Eitis

gé(q(vl7 o ,v?, cesUm), L1, ...
q~(U17..A,Uj7..A, ,Lm). (9)
There are three cases corresponding to the type of the cothfhan
Case 1C is a sequential commantVe have to show that

L) E

’Um,Lh.“

fe(@i, .. v), o Um, Ly ooy L)) C
G(viy ..y 05, oy Um, L1y ..o Lin). (10)
LetL =Ly U...ULm, s1 = Q(vY}, L;), s2 = Q(vj, L;), and
s=| ® Qw.Ly ﬁ(@ 1) (11)
1§_i§_m, 0;ZL
i£]

Then (10) is equivalent tdc (v(s#s1)) C (st s2). Since(Q, I)
is a fixed point of the functional™, by the definition ofF"* (Fig-
ure 5) we get

FE(51) C 5. (12)
Then, sincex and~ are monotone,
fely (sﬁsl)) foly ()*7(81)) by (3)
v(s) * (7(81)) by (2)
¥(s) ¥ 7(f&(s1)) by (4)
= (st fE(s1)) by (3)
V(s 4 s2) by (12)

Case 2.C is acqulre(ék). We can assume tha, € Lj,
otherwise the left-hand side of (9) is. Thus, we have to show
that

q~(v17..4,v§),..., ,LJ\{ék},,Lm)E
Lj(’l}l,...,’l}j,..A,U””Ll,...,LJ‘P..,Lm). (13)

Let s be defined by (11) witht = L, U ... U L,, and let
s1 = Q(v),L; \ {x}) andsz = Q(vj, L;). Since the lockset
(L1,...,Lm) is admissible and;, € L;, (13) can then be rewrit-
ten asy(sts1fIx) C v(sfs2). From the definition of the func-
tional F* we gets; # I, C s». The required then follows from the
monotonicity off and~y.

Case 3.C isreleasd/;). We can assume théf, ¢ L;, other-
wise the left-hand side of (9) is. Thus, we have to show that

L] U{gk}7 . m) E
,Lj7..4,Lm) (14)

U’””Ll, .

~ 0
v, ..., 05, ., m, L1, ...

q(vh...,vj,...,vm,Lh...

and
Gv1, 0y Vmy L1y Ly ooy Lin)
(j(vl,...,’Uj,...,’Um,Ll,...,Lj,...,Lm). (15)

We first prove (14). Let be defined by (11) witl, = L1 U. ..U
L, U {ék}, §1 = Q(’U?7LJ‘ U {(k}) andss = Q(Uj,Lj). We can
assume thatthe lockset, ..., L; U{lc}, ..., L) is admissible
as otherwise the left-hand side of (14)lis Sincels, ¢ L;, (14)is
then equivalent to(sff s1) C (st s2 # Ix). From the definition of
the functionalF* we getLocal(s1) C so andFramey(s1) C Ii.
From the monotonicity of it follows that

Localx(s1) Frameg(s1) C s2 £ 1. (16)
Then, sincex is monotone,

Y(sts1) =(s) *v(s1) by (3)
C v(s) * y(Localk(s1) # Frameg(s1)) by (6)
E y(s) * y(s2 8 Ix) by (16)
=(sts2) by (3)

which proves (14). We now proceed to prove (15). L e defined
by (11) and lets; = Q(U%L), s2 = Q(v;, L;). Then (15) is
equivalent toy(sfs1) C ~(sfs2). From the definition of the
functional F* we have thats; T s. The required then follows
from the monotonicity ofy and.

So, in all the cases (9) is fulfilled, which implies the sta¢ein
of the theorem.]

B. Proof of Theorem 2 (Data race freedom)

Suppose the contrary: there exist a locatidn, ..., vm),
an admissible lockset(L+,...,L,), a state (t,h) €
q(vi,...,vm, L1,...,Lw), CFG edges(vi,Ci,v]) € FE;
and (ve,C1,v5) € E; (i # j) labeled with sequential com-
mandsC; and C2 such thatCy,t,h 4 T, Co,t,h o T and
Ch Dd(t’h) Cs. Lets; = Qu(vi,Li), So = Qﬁ(vj,Lj), and

50 = ® Q'(ve,Li) |t < ® [£> -
1<k<m, £,@L10...ULm

k#i, k;é]
Then by Theorem 1 and (3, h) € v(so) *y(s1) *v(s2). Hence,
(t,h) = (to, ho) * (t1, h1) * (t2, h2), 17)

where
(to,ho) S ’)’(80)7 (t17h1) (S 7(81), (t27h2) S 7(82). (18)

Since(Q*, I*) C T, from the definition of the functional*
(Figure 5) it follows that

Fois) T T, fe(s2) T T (19)
Therefore,
foi(ti, k1) € fe, (v(s1)) by (18)
C y(f&, (s1) by (4)

CT by (8) and (19)

So, fc, (t1, h1) T T and, analogouslyfc, (t2, h2) C T. Hence,
Ci,t1,h1 6 T and Ca,ta, ha + T. From this and the fact
thatC1 <, 5y C2 using the definition of and transfer functions
for sequential commands given in Section 4.1 we easily gt th
(t1, h1) * (t2, h2) is undefined, which contradicts (17). The intu-
ition behind this is that fronC, t1, h1 & T andCa, t2, he & T

it follows that both(¢1, h1) and(t2, h2) should have the full per-
mission for the same variable or location accessed'bynd Cs,
which makes the stat, k1) * (t2, h2) inconsistent. O

