
Show No Weakness:
Sequentially Consistent Specifications of TSO Libraries

Alexey Gotsman1, Madanlal Musuvathi2, and Hongseok Yang3

1 IMDEA Software Institute
2 Microsoft Research
3 University of Oxford

Abstract. Modern programming languages, such as C++ and Java, provide a se-
quentially consistent (SC) memory model for well-behaved programs that follow
a certain synchronisation discipline, e.g., for those that are data-race free (DRF).
However, performance-critical libraries often violate the discipline by using low-
level hardware primitives, which have a weaker semantics. In such scenarios, it is
important for these libraries to protect their otherwise well-behaved clients from
the weaker memory model.
In this paper, we demonstrate that a variant of linearizability can be used to rea-
son formally about the interoperability between a high-level DRF client and a
low-level library written for the Total Store Order (TSO) memory model, which
is implemented by x86 processors. Namely, we present a notion of linearizability
that relates a concrete library implementation running on TSO to an abstract spec-
ification running on an SC machine. A client of this library is said to be DRF if its
SC executions calling the abstract library specification do not contain data races.
We then show how to compile a DRF client to TSO such that it only exhibits SC
behaviours, despite calling into a racy library.

1 Introduction
Modern programming languages, such as C++ [3, 2] and Java [11], provide memory
consistency models that are weaker than the classical sequential consistency (SC) [10].
Doing so enables these languages to support common compiler optimisations and to
compile efficiently to modern architectures, which themselves do not guarantee SC.
However, programming on such weak memory models can be subtle and error-prone.
As a compromise between programmability and performance, C++ and Java provide
data-race free (DRF) memory models, which guarantee SC for programs without data
races, i.e., those that protect data accesses with an appropriate use of high-level syn-
chronisation primitives defined in the language, such as locks and semaphores4.

While DRF memory models protect most programmers from the counter-intuitive
effects of weak memory models, performance-minded programmers often violate the
DRF discipline by using low-level hardware primitives. For instance, it is common for
a systems-level C++ program, such as an operating system kernel, to call into highly-
optimised libraries written in assembly code. Moreover, the very synchronisation prim-

4 C++ [3, 2] also includes special weak atomic operations that have a weak semantics. Thus, a
C++ program is guaranteed to be SC only if it is DRF and avoids the use of weak atomics.

itives of the high-level language that programmers use to ensure DRF are usually im-
plemented in its run-time system in an architecture-specific way. Thus, it becomes nec-
essary to reason about the interoperability between low-level libraries native to a par-
ticular hardware architecture and their clients written in a high-level language. While it
is acceptable for expert library designers to deal with weak memory models, high-level
language programmers need to be protected from the weak semantics.

In this paper, we consider this problem for libraries written for the Total Store Order
(TSO) memory model, used by x86 processors (and described in Section 2). TSO allows
for the store buffer optimisation implemented by most modern processors: writes per-
formed by a processor are buffered in a processor-local store buffer and are flushed into
the memory at some later time. This complicates the interoperability between a client
and a TSO library. For instance, the client cannot assume that the effects of a library
call have taken place by the time the call returns. Our main contributions are:

– a notion of specification of native TSO libraries in terms of the concepts of a high-
level DRF model, allowing the model to be extended to accommodate such libraries,
while preserving the SC semantics; and

– conditions that a compiler has to satisfy in order to implement the extended memory
model correctly.

Our notion of library specification is based on linearizability [9], which fixes a cor-
respondence between a concrete library and an abstract one, the latter usually imple-
mented atomically and serving as a specification for the former. To reason formally
about the interoperability between a high-level DRF client and a low-level TSO library,
we propose a variant of linearizability called TSO-to-SC linearizability (Section 3). It
relates a concrete library implementation running on the TSO memory model to its
abstract specification running on SC. As such, the abstract specification describes the
behaviour of the library in a way compatible with a DRF memory model. Instead of re-
ferring to hardware concepts, it fakes the effects of the concrete library implementation
executing on TSO by adding extra non-determinism into SC executions. TSO-to-SC
linearizability is compositional and allows soundly replacing a library by its SC speci-
fication in reasoning about its clients.

TSO-to-SC linearizability allows extending DRF models of high-level languages
to programs using TSO libraries by defining the semantics of library calls using their
SC specifications. In particular, this allows generalising the notion of data-race free-
dom to such programs: a client using a TSO library is DRF if so is every SC execution
of the same client using the SC library specification. Building on this, we propose re-
quirements that a compiler should satisfy in order to compile such a client onto a TSO
machine correctly (Section 5), and establish the Simulation Theorem (Theorem 13, Sec-
tion 5), which guarantees that a correctly compiled DRF client produces only SC be-
haviours, despite calling into a native TSO library. The key benefit of our framework is
that both checking the DRF property of the client and checking the compiler correct-
ness does not require TSO reasoning. Reasoning about weak memory is only needed
to establish the TSO-to-SC linearizability of the library implementation. However, this
also makes the proof of the Simulation Theorem challenging.

Our results make no difference between custom-made TSO libraries and TSO im-
plementations of synchronisation primitives built into the run-time system of the high-

level language. Hence, TSO-to-SC linearizability and the Simulation Theorem provide
conditions ensuring that a given TSO implementation of the run-time system for a DRF
language has the desired semantics and interacts correctly with its compilation.

Recently, a lot of attention has been devoted to criteria for checking whether a TSO
program produces only sequentially consistent behaviours [12, 4, 1]. Such criteria are
less flexible than TSO-to-SC linearizability, as they do not allow a program to have
internal non-SC behaviours; however, they are easier to check. We therefore also anal-
yse which of the criteria can be used for establishing the conditions required by our
framework (Sections 4 and 6).

Proofs of all the theorems stated in the paper are given in [7, Appendix C].

2 TSO Semantics
Due to space constraints, we present the TSO memory model only informally; a formal
semantics is given in [7, Appendix A]. The most intuitive way to explain TSO is using
an abstract machine [13]. Namely, consider a multiprocessor with n CPUs, indexed by
CPUid = {1, . . . ,NCPUs}, and a shared memory. The state of the memory is described
by an element of Heap = Loc → Val, where Loc and Val are unspecified sets of
locations and values, such that Loc ⊆ Val. Each CPU has a set of general-purpose
registers Reg = {r1, . . . , rm} storing values from Val. In TSO, processors do not write
to memory directly. Instead, every CPU has a store buffer, which holds write requests
that were issued by the CPU, but have not yet been flushed into the shared memory.
The state of a buffer is described by a sequence of location-value pairs.

The machine executes programs of the following form:

L ::= {m = Cm | m ∈M} C(L) ::= let L in C1 ‖ . . . ‖ CNCPUs

A program C(L) consists of a declaration of a library L, implementing methods m ∈
M ⊆ Method by commands Cm, and its client, specifying a command Ct to be run by
the (hardware) thread in each CPU t. For the above program we let sig(L) = M . We
assume that the program is stored separately from the memory. The particular syntax
of commands Ct and Cm is of no concern for understanding the main results of this
paper and is deferred to [7, Appendix A]. We consider programs using a single library
for simplicity only; we discuss the treatment of multiple libraries in Section 3.

The abstract machine can perform the following transitions:

– A CPU wishing to write a value to a memory location adds an appropriate entry to
the tail of its store buffer.

– The entry at the head of the store buffer of a CPU is flushed into the memory at a
non-deterministically chosen time. Store buffers thus have the FIFO ordering.

– A CPU wishing to read from a memory location first looks at the pending writes in
its store buffer. If there are entries for this location, it reads the value from the newest
one; otherwise, it reads the value directly from the memory.

– Modern multiprocessors provide commands that can access several memory loca-
tions atomically, such as compare-and-swap (CAS). To model this in our machine,
a CPU can execute a special lock command, which makes it the only CPU able to

execute commands until it executes an unlock command. The unlock command has a
built-in memory barrier, forcing the store buffer of the CPU executing it to be flushed
completely. This can be used by the programmer to recover SC when needed.

– Finally, a CPU can execute a command affecting only its registers. In particular, it
can call a library method or return from it (we disallow nested method calls).
The behaviour of programs running on TSO can sometimes be counter-intuitive. For

example, consider two memory locations x and y initially holding 0. On TSO, if two
CPUs respectively write 1 to x and y and then read from y and x, as in the following
program, it is possible for both to read 0 in the same execution:

x = y = 0;

x = 1; b = y; ‖ y = 1; a = x;

{a = b = 0}

Here a and b are local variables of the corresponding threads, stored in CPU registers.
The outcome shown cannot happen on an SC machine, where both reads and writes ac-
cess the memory directly. On TSO, it happens when the reads from y and x occur before
the writes to them have propagated from the store buffers of the corresponding CPUs
to the main memory. Note that executing the writes to x and y in the above program
within lock..unlock blocks (which on x86 corresponds to adding memory barriers after
them) would make it produce only SC behaviours.

We describe computations of the machine using traces, which are finite sequences
of actions of the form

ϕ ::= (t, read(x, u)) | (t,write(x, u)) | (t, flush(x, u)) |
(t, lock) | (t, unlock) | (t, call m(r)) | (t, ret m(r))

where t ∈ CPUid, x ∈ Loc, u ∈ Val, m ∈ Method and r ∈ Reg → Val. Here
(t,write(x, u)) corresponds to enqueuing a pending write of u to the location x into the
store buffer of CPU t, (t, flush(x, u)) to flushing a pending write of u to the location
x from the store buffer of t into the shared memory. The rest of the actions have the
expected meaning. Of transitions by a CPU affecting solely its registers, only calls and
returns are recorded in traces. We assume that parameters and return values of library
methods are passed via CPU registers, and thus record their values in call and return
actions. We use the standard notation for traces: τ(i) is the i-th action in the trace τ , |τ |
is its length, and τ |t its projection to actions by CPU t. We denote the concatenation of
two traces τ1 and τ2 with τ1τ2.

Given a suitable formalisation of the abstract machine transitions, we can define
the set of traces JC(L)KTSO generated by executions of the program C(L) on TSO
[7, Appendix A]. For simplicity, we do not consider traces that have a (t, lock) action
without a matching (t, unlock) action.

To give the semantics of a program on the SC memory model, we do not define
another abstract machine; instead, we identify the SC executions of a program with
those of the TSO machine that flush all writes immediately. Namely, we let JC(L)KSC
be the set of sequentially consistent traces from JC(L)KTSO, defined as follows.

DEFINITION 1. A trace is sequentially consistent (SC), if every action (t,write(x, u))
in it is immediately followed by (t, flush(x, u)).

We assume that the set of memory locations Loc is partitioned into those owned by
the client (CLoc) and the library (LLoc): Loc = CLoc] LLoc. The client C and the
library L are non-interfering in C(L), if in every computation from JC(L)KTSO, com-
mands performed by the client (library) code access only locations from CLoc (LLoc).
In the following, we consider only programs where the client and the library are non-
interfering. We provide pointers to lifting this restriction in Section 7.

3 TSO-to-SC Linearizability

We start by presenting our notion of library specification, discussing its properties and
giving example specifications. The notion of specification forms the basis for interop-
erability conditions presented in Section 5.

TSO-to-SC Linearizability. When defining library specifications, we are not interested
in internal library actions recorded in traces, but only in interactions of the library with
its client. We record such interactions using histories, which are traces including only
interface actions of the form (t, call m(r)) or (t, ret m(r)), where t ∈ CPUid, m ∈
Method, r ∈ Reg → Val. Recall that r records the values of registers of the CPU that
calls the library method or returns from it, which serve as parameters or return values.
We define the history history(τ) of a trace τ as its projection to interface actions and
lift history to sets T of traces pointwise: history(T) = {history(τ) | τ ∈ T}. In the
following, we write for an expression whose value is irrelevant.

DEFINITION 2. The linearizability relation is a binary relation v on histories de-
fined as follows: H v H ′ if ∀t ∈ CPUid. H|t = H ′|t and there is a bijection
π : {1, . . . , |H|} → {1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and ∀i, j. i < j ∧
H(i) = (, ret) ∧H(j) = (, call)⇒ π(i) < π(j).

That is, H ′ linearizes H when it is a permutation of the latter preserving the order of
actions within threads and non-overlapping method invocations.

To generate the set of all histories of a given library L, we consider its most gen-
eral client, whose hardware threads on every CPU repeatedly invoke library meth-
ods in any order and with any parameters possible. Its formal definition is given in
[7, Appendix B]. Informally, assume sig(L) = {m1, . . . ,ml}. Then MGC(L) =
(let L in Cmgc

1 ‖ . . . ‖ Cmgc
NCPUs), where for all t, the command Cmgc

t behaves as

while (true) { havoc; if (*) m1; else if (*) m2; ... else ml; }

Here * denotes non-deterministic choice, and havoc sets all registers storing method
parameters to arbitrary values. The set of traces JMGC(L)KTSO includes all library be-
haviours under any possible client. We write JLKTSO for JMGC(L)KTSO and JLKSC for
JMGC(L)KSC. We can now define what it means for a library executing on SC to be a
specification for another library executing on TSO.

DEFINITION 3. For libraries L1 and L2 such that sig(L1) = sig(L2), we say that
L2 TSO-to-SC linearizes L1, written L1 vTSO→SC L2, if ∀H1 ∈ history(JL1KTSO).
∃H2 ∈ history(JL2KSC). H1 v H2.

word x=1;

void acquire()

{

while(1) {

lock;

if (x==1) {

x=0;

unlock;

return;

}

unlock;

while(x==0);

}

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1) {

x=0; unlock;

return 1;

}

unlock;

return 0;

}

word x=1;

void acquire()

{

lock;

assume(x==1);

x=0;

unlock;

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1 && *)

{

x=0;

unlock;

return 1;

}

unlock;

return 0;

}

(a) (b)

Fig. 1. (a) Lspinlock: a test-and-test-and-set spinlock implementation on TSO; (b) L]
spinlock: its SC

specification. Here * denotes non-deterministic choice. The assume(E) command acts as a filter
on states, choosing only those where E evaluates to non-zero values (see [7, Appendix A]).

Thus, L2 linearizes L1 if every history of the latter on TSO may be reproduced in a
linearized form by the former on SC. When the library L2 is implemented atomically,
and so histories in history(JL2KSC) are sequential, Definition 3 becomes identical to the
standard linearizability [9], except the libraries run on different memory models.

Example: Spinlock. Figure 1a shows a simple implementation Lspinlock of a spinlock
on TSO. We consider only well-behaved clients of the spinlock, which, e.g., do not
call release without having previously called acquire (this can be easily taken into
account by restricting the most general client appropriately). The tryacquire method
tries to acquire the lock, but, unlike acquire, does not wait for it to be released if it is
busy; it just returns 0 in this case. For efficiency, release writes 1 to x without execut-
ing a memory barrier. This optimisation is used, e.g., by implementations of spinlocks
in the Linux kernel [5]. On TSO this can result in an additional delay before the write re-
leasing the lock becomes visible to another CPU trying to acquire it. As a consequence,
tryacquire can return 0 even after the lock has actually been released. For example,
the following is a valid history of the spinlock implementation on TSO, which cannot
be produced on an SC memory model:

(1, call acquire) (1, ret acquire) (1, call release) (1, ret release)

(2, call tryacquire) (2, ret tryacquire(0)). (1)

Figure 1b shows an abstract SC implementation L]
spinlock of the spinlock capturing

the behaviours of its concrete TSO implementation, such as the one given by the above
history. Here release writes 1 to x immediately. To capture the effects of the concrete
library implementation running on TSO, the SC specification is weaker than might be
expected: tryacquire in Figure 1b can spuriously return 0 even when x contains 1.

PROPOSITION 4. Lspinlock vTSO→SC L
]
spinlock.

The same specification is also suitable for more complicated spinlock implementations
[7, Appendix B]. We note that the weak specification of tryacquire has been adopted
by the C++ memory model [3] to allow certain compiler optimisations. As we show in
Section 5, linearizability with respect to an SC specification ensures the correctness of
implementations of tryacquire and other synchronisation primitives comprising the
run-time system of a DRF language. Our example thus shows that the specification used
in C++ is also needed to capture the behaviour of common spinlock implementations.

Correctness of TSO-to-SC Linearizability. A good notion of library specification has
to allow replacing a library implementation with its specification in reasoning about a
client. We now show that the notion of TSO-to-SC linearizability proposed above sat-
isfies a variant of this property. To reason about clients of TSO libraries with respect
to SC specifications of the latter, we consider a mixed TSO/SC semantics of programs,
which executes the client on TSO and the library on SC. That is, read and write com-
mands by the library code bypass the store buffer and access the memory directly (the
formal semantics is given in [7, Appendix B]). We denote the set of traces of a program
C(L) in this semantics with JC(L)KTSO/SC.

To express properties of a client preserved by replacing the implementation of the
library it uses with its specification, we introduce the following operation. For a trace τ
of C(L), let client(τ) be its projection to actions relevant to the client, i.e., executed by
the client code or corresponding to flushes of client entries in store buffers. Formally,
we include an action ϕ = (t,) such that τ = τ ′ϕτ ′′ into the projection if:
– ϕ is an interface action, i.e., a call or a return; or
– ϕ is not a flush or an interface action, and it is not the case that τ |t =
τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action; or

– ϕ = (, flush(x,)) for some x ∈ CLoc.
We lift client to sets T of traces pointwise: client(T) = {client(τ) | τ ∈ T}.

THEOREM 5 (Abstraction to SC). IfL1 vTSO→SC L2, then client(JC(L1)KTSO) ⊆
client(JC(L2)KTSO/SC).

According to Theorem 5, while reasoning about a client C(L1) of a TSO library L1,
we can soundly replace L1 with its SC version L2 linearizing L1: if a trace property
over client actions holds of C(L2), it will also hold of C(L1). The theorem can thus be
used to simplify reasoning about TSO programs. Although Theorem 5 is not the main
contribution of this paper, it serves as a sanity check for our definition of linearizability,
and is useful for discussing our main technical result in Section 5.

Compositionality of TSO-to-SC Linearizability. The following corollary of Theo-
rem 5 states that, like the classical notion of linearizability [9], ours is compositional:
if several non-interacting libraries are linearizable, so is their composition. This allows
extending the results presented in the rest of the paper to programs with multiple li-
braries. Formally, consider libraries L1, . . . , Lk with disjoint sets of declared methods
and assume that the set of library locations LLoc is partitioned into locations belonging
to every library: LLoc = LLoc1] . . .] LLock. We assume that, in any program, a li-
brary Lj accesses only locations from LLocj . We let L, respectively, L] be the library
implementing all of the methods from L1, . . . , Lk, respectively, L]

1, . . . , L
]
k.

COROLLARY 6 (Compositionality). If ∀j. Lj vTSO→SC L
]
j , then L vTSO→SC L

].

Comparison with TSO-to-TSO Linearizability. As the abstract library implementa-
tion in TSO-to-SC linearizability executes on SC, it does not describe how the concrete
library implementation uses store buffers. TSO libraries can also be specified by ab-
stract implementations running on TSO, which do describe this usage. In [6], we pro-
posed the notion of TSO-to-TSO linearizabilityvTSO→TSO between two TSO libraries,
which validates the following version of the Abstraction Theorem.

THEOREM 7 (Abstraction to TSO). If L1 vTSO→TSO L2, then client(JC(L1)KTSO) ⊆
client(JC(L2)KTSO).

The particularities of TSO-to-TSO linearizability are not relevant here; suffice it to
say that the definition requires that the two libraries use store buffers in similar ways,
and to this end, enriches histories with extra actions. The spinlock from Figure 1a has
the abstract TSO implementation with acquire and release implemented as in Fig-
ure 1b, and tryacquire, as in Figure 1a (the implementation and the specification of
tryacquire are identical in this case because the spinlock considered is very simple;
see [7, Appendix B] for more complicated cases). Since the specification executes on
TSO, the write to x in release can be delayed in the store buffer. In exchange, the
specification of tryacquire does not include spurious failures.

Both TSO-to-SC and TSO-to-TSO linearizability validate versions of the Abstrac-
tion Theorem (Theorems 5 and 7). The theorem validated by TSO-to-SC is weaker than
the one validated by TSO-to-TSO: a property of a client of a library may be provable
after replacing the latter with its TSO specification using Theorem 7, but not after re-
placing it with its SC specification using Theorem 5. Indeed, consider the following
client of the spinlock in Figure 1a, where a and b are local to the second thread:

u = 0;

acquire(); release(); u = 1; a = u; b = tryacquire();

{a = 1 ⇒ b = 1}

The postcondition shown holds of the program: since store buffers in TSO are FIFO, if
the write to u has been flushed, so has been the write to x in release, and tryacquire
has to succeed. However, it cannot be established after we apply Theorem 5 with the
spinlock specification in Figure 1b, as the abstract implementation of tryacquire re-
turns an arbitrary result when the lock is free. The postcondition can still be established
after we apply Theorem 7 with the TSO specification of the spinlock given in Sec-
tion 3, since the specification allows us to reason about the correlations in the use of
store buffers by the library and the client. To summarise, SC specifications of TSO
libraries trade the weakness of the memory model for the weakness of the specification.

Example: Seqlock. We now consider an example of a TSO library whose SC specifica-
tion is more subtle than that of a spinlock. Figure 2 presents a simplified version Lseqlock

of a seqlock [5]—an efficient implementation of a readers-writer protocol based on ver-
sion counters used in the Linux kernel. Two memory addresses x1 and x2 make up a
conceptual register that a single hardware thread can write to, and any number of other

word x1 = 0, x2 = 0, c = 0;

write(in word d1, in word d2) {

c++;

x1 = d1; x2 = d2;

c++;

}

read(out word d1, out word d2) {

word c0;

do {

do { c0 = c; } while (c0 % 2);

d1 = x1; d2 = x2;

} while (c != c0);

}

Fig. 2. Lseqlock: a TSO seqlock implementation

threads can read from. A version number is stored at c. The writing thread maintains
the invariant that the version is odd during writing by incrementing it before the start of
and after the finish of writing. A reader checks that the version number is even before
attempting to read. After reading, it checks that the version has not changed, thereby en-
suring that no write has overlapped the read. Neither write nor read includes a barrier,
so that writes to x1, x2 and c may not be visible to readers immediately.

An SC specification for the seqlock is better given not by the source code of an ab-
stract implementation, like in the case of a spinlock, but by explicitly describing the set
of its histories history(JL2KSC) to be used in Definition 2 (an operational specification
also exists, but is more complicated; see [7, Appendix B]). We now adjust the definition
of TSO-to-SC linearizability to accept a library specification defined in this way.

Specifying Libraries by Sets of Histories. For a TSO library L and a set of histories T ,
we let L vTSO→SC T , if ∀H1 ∈ history(JLKTSO).∃H2 ∈ T.H1 v H2. The formula-
tion of Theorem 5 can be easily adjusted to accommodate this notion of linearizability.

We now give a specification to the seqlock as a set of histories Tseqlock. First of all,
methods of a seqlock should appear to take effect atomically. Thus, in histories from
Tseqlock, if call action has a matching return, then the latter has to follow it immediately.
Consider a history H0 satisfying this property. Let writes(H0) be the sequence of pairs
(d1, d2) from actions of the form (, call write(d1, d2)) in H0, and reads(H0), the
sequence of (d1, d2) from actions of the form (, ret read(d1, d2)). For a sequence α,
let α† be its stutter-closure, i.e., the set of sequences obtained from α by repeating some
of its elements. We lift the stutter-closure operation to sets of sequences pointwise.
Given the above definitions, a history H belongs to Tseqlock if for every prefix H0 of
H , reads(H0) is a subsequence of a sequence from ((0, 0)writes(H0))

†. Recall that a
seqlock allows only a single thread to call write. This specification thus ensures that
readers see the writes in the order it issues them, but possibly with a delay.

PROPOSITION 8. Lseqlock vTSO→SC Tseqlock.

4 TSO-to-SC Linearizability and Robustness
One way to simplify reasoning about a TSO program is by checking that it is robust,
meaning that it produces only those externally visible behaviours that could also be ob-
tained by running it on an SC machine. Its properties can then be proved by considering
only its SC executions. Several criteria for checking robustness of TSO programs have
been proposed recently [12, 4, 1]. TSO-to-SC linearizability is more flexible than such
criteria: since an abstract library implementation can have different source code than

its concrete implementation, it allows the latter to have non-SC behaviours. However,
checking the requirements of a robustness criterion is usually easier than proving lin-
earizability. We therefore show how one such criterion, data-race freedom, can be used
to simplify establishing TSO-to-SC linearizability when it is applicable. On the way, we
introduce some of the technical ingredients necessary for our main result in Section 5.

We first define the notion of DRF for the low-level machine of Section 2. Our in-
tention is that the DRF of a program must ensure that it produces only SC behaviours
(see Theorem 10 below). All robustness criteria proposed so far have assumed a closed
program P consisting of a client that does not use a library. We define the robustness of
libraries using the most general client of Section 3. For a trace fragment τ with all ac-
tions by a thread t, we denote with block(τ) a trace of one of the following two forms:
τ or (t, lock) τ1 τ τ2 (t, unlock), where τ1, τ2 do not contain (t, unlock).

DEFINITION 9. A data race is a fragment of an SC trace of the form
block(τ) (t′,write(x,)) (t′, flush(x,)), where τ ∈ {(t,write(x,)) (t, flush(x,)),
(t, read(x,))} and t 6= t′. A program P is data-race free (DRF), if so are traces
in JP KSC; a library L is DRF, if so are traces in JLKSC.

Thus, a race is a memory access followed by a write to the same location, where the
former, but not the latter, can be in a lock..unlock block. This is a standard notion of
a data race with one difference: even though (t, read(x)) (t′,write(x)) (t′, flush(x)) is
a race, (t, read(x)) (t′, lock) (t′,write(x)) (t′, flush(x)) (t′, unlock) is not. We do not
consider conflicting accesses of the latter kind (e.g., with the write inside a CAS, which
includes a memory barrier) as a race, since they do not lead to a non-SC behaviour.

We adopt the following formalisation of externally visible program behaviours.
Assume a set VLoc ⊆ CLoc of client locations whose values in memory can be ob-
served during a program execution by its environment. Visible actions are those of
the form (t, read(x, u)) or (t, flush(x, u)), where x ∈ VLoc. We let visible(τ) be
the projection of τ to visible actions, and lift visible to sets T of traces pointwise:
visible(T) = {visible(τ) | τ ∈ T}. Visible locations are protected in C(L), if every
visible action in a trace from JC(L)KTSO occurs within a lock..unlock block. On x86,
this requires a memory barrier after every output action, thus ensuring that it becomes
visible immediately. The following is a folklore robustness result.

THEOREM 10 (Robustness via DRF). If P is DRF and visible locations are protected
in it, then visible(JP KTSO) ⊆ visible(JP KSC).

Note that here DRF is checked on the SC semantics and at the same time implies that
the program behaves SC. This circularity is crucial for using results such as Theorem 10
to simplify reasoning, as it allows not considering TSO executions at all.

THEOREM 11 (Linearizability via DRF). If L is DRF, then L vTSO→SC L.

This allows using classical linearizability [9] to establish TSO-to-SC one by linearizing
the library L running on SC to its SC specification L], thus yielding L vTSO→SC L

].
This can then be used for modular reasoning by applying Theorem 5.

Many concurrent algorithms on TSO (e.g., the classical Treiber’s stack) are DRF,
as they modify the data structure using only CAS operations, which include a memory

barrier. Hence, their linearizability with respect to SC specifications can be established
using Theorem 11. However, the DRF criterion may sometimes be too strong: e.g., in
the spinlock implementation from Figure 1a, the read from x in acquire and the write
to it in release race. We consider more flexible robustness criteria in Section 6.

5 Conditions for Correct Compilation
Our goal in this section is to extend DRF memory models of high-level languages to the
case of programs using native TSO libraries, and to identify conditions under which the
compiler implements the models correctly. We start by presenting the main technical
result of the paper that enables this—the Simulation Theorem.

Simulation Theorem. Consider a program C, meant to be compiled from a high-level
language with a DRF model, which uses a native TSO library L. We wish to determine
the conditions under which the program produces only SC behaviours, despite possible
races inside L. To this end, we first generalise DRF on TSO (Definition 9) to such
programs. We define DRF with respect to an SC specification L] of L.

DEFINITION 12. C(L]) is DRF if so is any trace from client(JC(L])KSC).

This allows races inside the library code, as its internal behaviour is of no concern to
the client. Note that checking DRF does not require reasoning about weak memory.

THEOREM 13 (Simulation). If L vTSO→SC L], C(L]) is DRF, and visible locations
are protected in C(L), then visible(JC(L)KTSO) ⊆ visible(JC(L])KSC).

Thus, the behaviour of a DRF client of a TSO library can be reproduced when the
client executes on the SC memory model and uses a TSO-to-SC linearization of the
library implementation. Note that the DRF of the client is defined with respect to the
SC specification L] of the TSO library L. Replacing L by L] allows hiding non-SC
behaviours internal to the library, which are of no concern to the client. Corollary 6
allows applying the theorem to clients using multiple libraries.

Extending Memory Models of High-Level Languages. We describe a method for
extending a high-level memory model to programs with native TSO libraries in general
terms, without tying ourselves to its formalisation. We give an instantiation for the case
of the C++ memory model (excluding weak atomics) in [7, Appendix B]. Consider a
high-level language with a DRF memory model. That is, we assume an SC semantics for
the language, and a notion of DRF on this semantics. For a program P in this language,
let JPK be the set of its externally visible behaviours resulting from its executions in the
semantics of the high-level language. At this point, we do not need to define what these
behaviours are; they might include, e.g., input/output information.

Let C(L) be a program in a high-level language using a TSO library L with an SC
specification L], i.e., L vTSO→SC L]. The specification L] allows us to extend the
semantics of the language to describe the intended behaviour of C(L). Informally, we
let the semantics of calling a method of L be the effect of the corresponding method
of L]. As both C and L] are meant to have an SC semantics, the effect of L] can be
described within the memory model of the high-level language.

To define this extension more formally, it is convenient for us to use the specifica-
tion of L] given by its set of histories history(JL]KSC), rather than by its source code, as
this sidesteps the issues arising when composing the sources of programs in a low-level
language and a high-level one. Namely, we define the semantics of C(L) in two stages.
First, we consider the set of executions of C(L) in the semantics of the high-level lan-
guage where a call to a method of L is interpreted in the same way as a call to a method
of the high-level language returning arbitrary values. Since the high-level language has
an SC semantics, every program execution in it is a trace obtained by interleaving ac-
tions of different threads, which has a single history of calls to and returns from L.
We then define the intended behaviour of C(L) by the set JC(L])K of externally visi-
ble behaviours resulting from the executions that have a history from history(JL]KSC)5.
This semantics also generalises the notion of DRF to the extended language: programs
are DRF when the executions of C(L) selected above have no races between client ac-
tions as defined for high-level programs without TSO libraries. In particular, DRF is
defined with respect to SC specifications of libraries that the client uses, not their TSO
implementations.

From the point of view of the extended memory model, the run-time system of the
high-level language, implementing built-in synchronisation primitives, is no different
from external TSO libraries. The extension thus allows deriving a memory model con-
sistent with the implementation of synchronisation primitives on TSO (e.g., spinlocks
or seqlocks from Section 3) from the memory model of the base language excluding
the primitives. Below, we use this fact to separate the reasoning about the correctness
of a compiler for the high-level language from that about the correctness of its run-
time system. This approach to deriving the memory model does not result in imprecise
specifications: e.g., the SC specification of a TSO spinlock implementation in Section 3
corresponds to the one in the C++ standard.

Conditions for Correct Compilation. Theorem 13 allows us to formulate conditions
under which a compiler from a high-level DRF language correctly implements the ex-
tended memory model defined above. Let 〈C〉(L) be the compilation of a program C in
the high-level language to the TSO machine from Section 2, linked with a native TSO
library L. Assume an SC specification L] of L:

(i) L vTSO→SC L
].

Then the extended memory model defines the intended semantics JC(L])K of the pro-
gram. Let us denote the compiled code linked with L], instead of L, as 〈C〉(L]). We
place the following constraints on the compiler:
(ii) C is correctly compiled to an SC machine: visible(J〈C〉(L])KSC) ⊆ JC(L])K.

(iii) 〈C〉(L]) is DRF, i.e., so are all traces from client(J〈C〉(L])KSC).
(iv) Visible locations are protected in 〈C〉(L).

From Theorem 13 and (i), (iii) and (iv), we obtain visible(J〈C〉(L)KTSO) ⊆
visible(J〈C〉(L])KSC), which, together with (ii), implies visible(J〈C〉(L)KTSO) ⊆

5 Here we assume that language-level threads correspond directly to hardware-level ones.
This assumption is sound even when the actual language implementation multiplexes several
threads onto fewer CPUs using a scheduler, provided the latter executes a memory barrier at
every context switch; see [7, Appendix B] for discussion.

JC(L])K. Hence, any observable behaviour of the compiled code using the TSO library
implementation is included into the intended semantics of the program defined by the
extended memory model. Therefore, our conditions entail the compiler correctness.

The conditions allow for a separate consideration of the hardware memory model
and the run-time system implementation when reasoning about the correctness of a
compiler from a DRF language to a TSO machine. Namely, (ii) checks the correctness
of the compiler while ignoring the fact that the target machine has a weak memory
model and assuming that the run-time system is implemented correctly. Conditions (iii)
and (iv) then ensure the correctness of the compiled code on TSO, and condition (i), the
correctness of the run-time system.

Establishing (iii) requires ensuring the DRF of the compiled code given the DRF of
the source program in the high-level language. In practice, this might require the com-
piler to insert additional memory barriers. For example, the SC fragment of C++ [3,
2] includes so-called strong atomic operations, whose concurrent accesses to the same
location are not considered a race. The DRF of the high-level program thus ensures
that, in the compiled code, we cannot have a race in the sense of Definition 9, except
between instructions resulting from strong atomic operations. To prevent the latter, ex-
isting barrier placement schemes for C++ compilation on TSO [2] include a memory
barrier when translating a strong atomic write. As this prevents a race in the sense of
Definition 9, these compilation schemes satisfy our conditions.

Discussion. Theorem 13 is more subtle than might seem at first sight. The crux of the
matter is that, like Theorem 10, it allows checking DRF on the SC semantics of the
program. This makes the theorem powerful in practice, but requires its proof to show
that a trace from JC(L)KTSO with a visible non-SC behaviour can be converted into one
from JC(L])KSC exhibiting a race. Proving this is non-trivial. A naive attempt to prove
the theorem might first replace L with its linearization L] using Theorem 5 and then try
to apply a variant of Theorem 10 to show that the resulting program is SC:

visible(JC(L)KTSO) ⊆ visible(JC(L])KTSO/SC) ⊆ visible(JC(L])KSC).

However, the second inclusion does not hold even ifC(L]) is DRF, as Theorem 10 does
not generalise to the TSO/SC semantics. Indeed, take the spinlock implementation and
specification from Figure 1 as L and L] and consider the following client C:

x = y = 0;

acquire(); x = 1; release(); lock; y = 1; unlock;

b = y; acquire(); a = x; release();

{a = b = 0}

The outcome shown is allowed by JC(L])KTSO/SC, but disallowed by JC(L])KSC, even
though the latter is DRF. It is also disallowed by JC(L)KTSO: in this case, the first
thread can only read 0 from y if the second thread has not yet executed y = 1; but
when the second thread later acquires the lock, the write of 1 to x by the first thread
is guaranteed to have been flushed into the memory, and so the second thread has to
read 1 from x. The trouble is that JC(L])KTSO/SC loses such correlations between the
store buffer usage by the client and the library, which are important for mapping a non-
SC trace from JC(L)KTSO into a racy trace from JC(L])KSC. The need for maintaining

the correlations leads to a subtle proof that uses a non-standard variant of TSO to first
make the client part of the trace SC and only then replace the library L with its SC
specification L]. See [7, Appendix C] for a more detailed discussion.

6 Using Robustness Criteria More Flexible than DRF
Assume that code inside a lock..unlock block accesses at most one memory location.

DEFINITION 14. A quadrangular race is a fragment of an SC trace of the form:

(t,write(x,)) τ1 (t, read(y,)) block((t′,write(y,)) (t′, flush(y,))) τ2 block(ϕ),

where ϕ ∈ {(t′′,write(x,)) (t′′, flush(x,)), (t′′, read(x,))}, t 6= t′, t 6= t′′, x 6= y,
τ1 contains only actions by t, and τ1, τ2 do not contain (t, unlock). A program P is
quadrangular-race free (QRF), if so are traces in JP KSC.

THEOREM 15 (Robustness via QRF). If P is QRF and visible locations are protected
in it, then visible(JP KTSO) ⊆ visible(JP KSC).

This improves on a criterion by Owens [12], which does not require the last access to
x, and thus falsely signals a possible non-SC behaviour when x is local to thread t.

Unfortunately, QRF cannot be used to simplify establishing TSO-to-SC lineariz-
ability, because Theorem 11 does not hold if we assume only that L is QRF. Intuitively,
transforming a TSO trace satisfying QRF into an SC one can rearrange calls and returns
in ways that break linearizability. Formally, the spinlock Lspinlock in Figure 1a is QRF,
and its history (1) has a single linearization—itself. However, it cannot be reproduced
when executing Lspinlock on an SC memory model. Moreover, the QRF of a library does
not imply Theorem 13 for L] = L [7, Appendix B]. We now show that Theorem 13 can
be recovered for QRF libraries under a stronger assumption on the client.

DEFINITION 16. A program C(L) is strongly DRF if it is DRF and traces
in client(JC(L)KSC) do not contain fragments of the form (t, read(x,))
block((t′,write(x,)) (t′, flush(x,))), where t 6= t′.

THEOREM 17. If L is QRF, C(L) is strongly DRF, and visible locations are protected
in it, then visible(JC(L)KTSO) ⊆ visible(JC(L)KSC).

When C is compiled from C++, the requirement that C be strongly DRF prohibits the
C++ program from using strong atomic operations, which is restrictive.

7 Related Work
To the best of our knowledge, there has been no research on modularly checking
the interoperability between components written for different language and hardware
memory models. For example, the existing proof of correctness of C++ compilation
to x86 [2] does not consider the possibility of a C++ program using arbitrary native
components and assume fixed implementations of C++ synchronisation primitives in
the run-time system. In particular, the correctness proofs would no longer be valid if

we changed the run-time system implementation. As we discuss in Section 5, this paper
provides conditions for an arbitrary run-time system implementation of a DRF lan-
guage ensuring the correctness of the compilation.

We have previously proposed a generalisation of linearizability to the TSO memory
model [6] (TSO-to-TSO linearizability in Section 3). Unlike TSO-to-SC linearizability,
it requires specifications to be formulated in terms of low-level hardware concepts,
and thus cannot be used for interfacing with high-level languages. Furthermore, the
technical focus of [6] was on establishing Theorem 7, not Theorem 13.

To concentrate on the core issues of handling interoperability between TSO and
DRF models, we assumed that the data structures of the client and its libraries are com-
pletely disjoint. Recently, we have proposed a generalisation of classical linearizability
that allows the client to communicate with the libraries via data structures [8]. We hope
that the results from the two papers can be combined to lift the above restriction.

Acknowledgements. We thank Matthew Parkinson and Serdar Tasiran for comments
that helped to improve the paper. Yang was supported by EPSRC.

References
1. J. Alglave and L. Maranget. Stability in weak memory models. In CAV, 2011.
2. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency. In

POPL, 2011.
3. H.-J. Boehm and S. V. Adve. Foundations of the C++ concurrency memory model. In PLDI,

2008.
4. A. Bouajjani, R. Meyer, and E. Mohlmann. Deciding robustness against total store ordering.

In ICALP, 2011.
5. D. Bovet and M. Cesati. Understanding the Linux Kernel, 3rd ed. O’Reilly, 2005.
6. S. Burckhardt, A. Gotsman, M. Musuvathi, and H. Yang. Concurrent library correctness on

the TSO memory model. In ESOP, 2012.
7. A. Gotsman, M. Musuvathi, and H. Yang. Show no weakness: Sequentially consistent spec-

ifications of TSO libraries (extended version). Available from
www.software.imdea.org/~gotsman, 2012.

8. A. Gotsman and H. Yang. Linearizability with ownership transfer. In CONCUR, 2012.
9. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.

TOPLAS, 1990.
10. L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess

programs. IEEE Trans. Comp., 1979.
11. J. Manson, W. Pugh, and S. V. Adve. The Java memory model. In POPL, 2005.
12. S. Owens. Reasoning about the implementation of concurrency abstractions on x86-TSO. In

ECOOP, 2010.
13. S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In TPHOLs,

2009.

