
Beyond 2-safety: asymmetric product programs for
relational program verification

Gilles Barthe1 and Juan Manuel Crespo1 and César Kunz1,2

1 IMDEA Software Institute, Spain
2 Universidad Politécnica de Madrid, Spain

Abstract. Relational Hoare Logic is a generalization of Hoare logic that allows
reasoning about executions of two programs, or two executions of the same pro-
gram. It can be used to verify that a program is robust or (information flow)
secure, and that two programs are observationally equivalent. Product programs
provide a means to reduce verification of relational judgments to the verification
of a (standard) Hoare judgment, and open the possibility of applying standard
verification tools to relational properties. However, previous notions of product
programs are defined for deterministic and structured programs. Moreover, these
notions are symmetric, and cannot be applied to properties such as refinement,
which are asymmetric and involve universal quantification on the traces of the
first program and existential quantification on the traces of the second program.
Asymmetric products generalize previous notions of products in three directions:
they are based on a control-flow graph representation of programs, they are appli-
cable to non-deterministic languages, and they are by construction asymmetric.
Thanks to these characteristics, asymmetric products allow to validate abstrac-
tion/refinement relations between two programs, and to prove the correctness of
advanced loop optimizations that could not be handled by our previous work.
We validate their effectiveness by applying a prototype implementation to verify
representative examples from translation validation and predicate abstraction.

1 Introduction

Program verification tools provide an effective means to verify trace properties of pro-
grams. However, many properties of interest are 2-properties, i.e. consider pairs of
traces, rather than traces; examples include non-interference and robustness, which
consider two executions of the same program, and abstraction/equivalence/refinement
properties, which relate executions of two programs. Relational Hoare logic [8] gener-
alizes Hoare logic by allowing to reason about two programs, and provides an elegant
theoretical framework to reason about 2-properties. However, relational Hoare logic is
confined to reason about universally quantified statements over traces, and only relates
programs with the same termination behavior. Thus, relational Hoare logic cannot cap-
ture notions of refinement, and more generally properties that involve an alternation
of existential and universal quantification. Moreover, relational Hoare logic is not tool
supported.

Product programs [20, 4] provide a means to reduce verification of relational Hoare
logic quadruples to verification of standard Hoare triples. Informally, the product pro-
gram construction transforms two programs P1 and P2 into a single program P that

soundly abstracts the behavior of P1 and P2, so that relational verification over P1 and
P2 can be reduced to verification of P . Product programs are attractive, because they al-
low reusing existing verification tools for relational properties. However, like relational
Hoare logic, the current definition of product program is only applicable to universally
quantified statements over traces. Moreover, the construction of product programs has
been confined to structured and deterministic programs written in a single language.
This article introduces asymmetric (left or right) product programs, which generalize
symmetric products from [20, 4], and allow showing abstraction/refinement properties,
which are typically of the form: for all execution of the first program, there is a related
execution of the second program. Furthermore, asymmetric product are based on a flow-
graph representation of programs, which provides significant advantages over previous
works. In particular, asymmetric products can relate programs: 1. with different termi-
nation behaviors; 2. including non-deterministic statements; 3. written in two different
languages (provided they support a control flow graph representation). Finally, asym-
metric products allow justifying some loop transformations that where out of reach of
our previous work on translation validation. We evaluate our method on representative
examples, using a prototype implementation that builds product programs and sends the
verification task to the Why platform.

Section 2 motivates left products with examples of predicate abstraction and trans-
lation validation. Sections 3 and 4 introduce the notion of left product and show how
they can be used to reduce relational verification to functional verification. Section 5
introduces full products, a symmetric variant of left products that is used to validate
examples of translation validation that were not covered by [4]. Section 6 presents an
overview of our implementation.

2 Motivating examples

In this section we illustrate our technique through some examples. The first two are
abstraction validation examples and for their verification we use the asymmetric frame-
work, while for the verification of the loop optimization, we use a stronger version of
the method, introduced in Section 5.

For both domains of application, we first provide an informal overview of the veri-
fication technique. Throughout the rest of the paper, we refer back to these examples in
order to illustrate the technical concepts and results.

2.1 Abstraction validation

The correctness of the verification methods based on program abstraction relies on the
soundness of its abstraction mechanism. Since such abstraction mechanisms are in-
creasingly complex it becomes desirable to perform a posteriori, independent validation
of their results.

In general, abstractions induce some loss of information, represented in the abstract
programs as non-deterministic statements. The extensions presented in this paper enable
our framework to cope with non-determinism.

Predicate abstraction Predicate abstraction [1, 12] reduces complexity of a program
verification to the analysis of a bounded-state program, by representing infinite-state
systems in terms of a finite set of user-provided predicates. The program on the left of
Figure 1, drawn from [1], partitions a singly linked list of integers into two lists: one
containing the elements with value greater than the parameter v and the other one con-
taining the cells with value less than or equal to v. The program on the right represents
the predicate abstraction of the program on the left, w.r.t. a set of user-provided boolean
predicates: {curr = null, prev = null, curr 7→val > v, prev 7→val < v}. The abstrac-
tion is performed by representing each boolean predicate with a boolean variable: e.g.,
curr represents the condition curr = null. The effect of the instructions of the orig-
inal program is captured by assignments and assert statements involving the boolean
variables of the abstraction: e.g. the effect of the assignment prev := null on the pred-
icate prev = null is reflected by the assignment prev := true on the right program.
Note that some of the abstract predicates will have an unknown value after some of the
concrete instructions, as is the case with the predicate curr=null after the assignment
curr:= ∗ l, reflected by the non-deterministic assignment curr:= ?.

We consider the problem of automatically validating abstractions that are expressed
as non-deterministic programs in some variant of the original programming language.
Our goal is to verify that the program on the right soundly abstracts the original one, i.e.
any execution path of the original program can be simulated by an execution path of the
abstracted program. In order to establish the correctness of the program abstraction, we
must verify a simulation relation between the execution traces of both programs. This
simulation is captured by a new program constructed from the original and abstract
programs, shown in Figure 4, providing a fixed control flow for the simulation relation.

The validation of the abstraction is carried over the product program in Fig. 4 by two
independent verification steps. One must first verify that the product program captures
correctly the synchronous executions of the original and abstract programs, i.e., that for
any trace on the left program there exists a trace on the right program. We say then that
the graph is a left product and it satisfies the properties stated in Lemma 2. In a second
step, one must check that the product program satisfies the given refinement relation,
stated as a relational invariant specification: (curr= null ⇔ curr) ∧ (prev = null ⇔
prev) ∧ (curr 7→val<v ⇔ currV) ∧ (prev 7→val<v ⇔ prevV)

Numeric abstraction Numeric abstraction [14] is a similar program abstraction strategy
based on a shape analysis defined from user-provided size abstractions. The output of
this transformation is not necessarily a bounded-state program, but it can be used to es-
tablish some properties of the original program, e.g., termination behavior, or resource
consumption.

Figure 2 shows an example of a source and an abstract programs, drawn from [14].
The program on the left performs left to right, depth first traversal of the binary tree
pointed by its argument. It maintains a stack of nodes to be processed. On each iteration,
the top of the stack is removed and its children (if any) are added. The program on
the right of the figure is a numeric abstraction of the source program that explicitly
keeps track of the changes in data structure sizes. In the abstract program, tsizeroot
represents the number of nodes in the tree, slen the length of the list representing the
stack and ssize the number of nodes contained in the trees held within the stack. More

curr:= ∗ l; prev:= null;
newl:= null;
while (curr 6= null) do
nextCurr:= curr 7→next;
if (curr 7→val > v) then
if (prev 6= null) then
prev 7→next:=nextCurr;

if (curr = ∗l) then ∗l:=nextCurr;
curr 7→next:=newl; newl:= curr;

else
prev:= curr;

curr:=nextCurr;

curr:= ?; prev:= true;
currV:= ?; prevV:= ?;
while (∗) do

assert(¬curr);
if (∗) then

assert(currV);
if (∗) then
assert(¬prev);

else
assert(currV = false);
prev:= curr;
prevV:= currV;

curr:= ?; currV:= ?;
assert(curr);

Fig. 1. Predicate abstraction

precisely, the user-provided abstractions are defined as inductive predicates over acyclic
heap structures, e.g.:

ListLength(null, 0)

ListLength(ls7→tail, n)
ListLength(ls, n+1)

ls 6=null

TreeSize(null, 0)

TreeSize(t7→left, nl) TreeSize(t 7→right, nr)

TreeSize(t, nl+nr+1)
t 6=null

Note that upon entering the loop, we do not have information on the size of the first
tree contained in the stack, nor of the size of the trees in the rest of the stack. This is
represented in the abstraction by a non-deterministic assignment.

As in the previous example, we can verify a posteriori that the numeric program
soundly abstracts a heap manipulating program by constructing a product program that
fixes the control flow of the simulation to be verified. The product program shown
in Figure 5 is totally synchronized, in the sense that every program edge represents a
simultaneous execution of the program components.

The simulation relation is defined in terms of the user-provided size abstractions.
This relational specification makes explicit the correspondence between the abstract
numeric variables and the size predicates over the original data structures; these size
relations include, e.g., ListLength(st, slen) and TreeSize(root, tsizeroot), which must
hold whenever the variables are in scope.

We develop the notion of left product used for abstraction validation in Section 3.

2.2 Translation validation

Translation validation [3, 16] is a general method for ensuring the correctness of opti-
mizing compilation by means of a validator which checks, after each run of the com-
piler, that the source and target programs are semantically equivalent. In previous work,
we have used a notion of program products to formally verify the correctness of several
program optimizations [4]. An important limitation of our previous notion of program
products is that they are required to be representable syntactically as structured code.

st:= push(root, 0);

while (st 6= 0) do
tail:= st→next;

if (st→ tree=0) then
free(st); st:= tail;

else
tail:= push(st→ tree→right, tail);
tail:= push(st→ tree→ left, tail);
free(st);
st:= tail;

assert(0 ≤ tsizeroot);
slen:=1; ssize:= tsizeroot;
while (slen>0) do

tsize:= ?; ssizetail:= ?;
assert(0≤tsize ∧ 0≤ssizetail);
assert(ssize=tsize+ssizetail);
if (tsize=0) then
slen--;

else
tsizel:= ?; tsizer:= ?;
assert(0≤tsizel ∧ 0≤tsizer);
assert(tsize=tsizel+tsizer+1);
ssize:= tsizel+tsizer+ssizetail;
slen++;

Fig. 2. Numeric abstraction

a : x:=0;
b : while (x<NM) do

a[x]:= f(x);
x++

0: i:= 0;
1 : while (i<N) do

j:= 0;
2 : while (j<M) do

A[i, j]:= f(iM+j); j++;
i++

Fig. 3. Loop tiling example

The extension provided in this work enables the verification of more complex loop op-
timizations that were not considered in previous work.

Loop tiling is an optimization that splits the execution of a loop into smaller blocks,
improving the cache performance. If the loop accesses a block of contiguous data during
its execution, splitting the block in fragments that fits the cache size can help avoiding
cache misses, depending on the target architecture. The program at the right of Fig. 3
shows the result of applying a loop tiling transformation to the code at the left. The
traversal of a block of size NM is split into N iterations accessing smaller blocks of
size M , by the introduction of an inner loop and new iteration variables i and j. It is
not hard to see that the iteration space of the outermost loops are equal and that the
relational invariant x = iM+j holds.

The structural dissimilarity of the original and transformed loop is a main obstacle
for the application of our previous relational verification method. However, the relaxed
notion of program product presented in this article can be used to validate this trans-
formation. Figure 6 shows a possible product of the two programs in Fig. 3. The loop
bodies (i.e., edges 〈2, 2〉 and 〈b, b〉) are executed synchronously, represented by edge
〈(b, 2), (b, 2)〉. Notice that asynchronous edges represents the transitions of the right
program that cannot be matched with transitions on the left program. We develop the
notion of full products for the validation of compiler optimizations in Section 5.

3 Simulation by left products

We define a general notion of product program and prove that under mild conditions
they mimic the behavior of their constituents. We adopt a representation of programs
based on labeled directed graphs. Nodes correspond to program points, and include an
initial and a final node; for simplicity, we assume their unicity. Edges are labeled with
statements from the set Stmt.

Definition 1 (Program). A program P is a tuple 〈N , E , G〉, where 〈N , E〉 is a directed
graph with unique source in∈N and sink out∈N , and G : E → Stmt maps edges to
statements.

The semantics of statements is given by a mapping [[.]] : Stmt → P(S × S), where
S is a set of states. A configuration is a pair 〈l, σ〉, where l ∈ N and σ ∈ S; we let
〈l, σ〉 〈l′, σ′〉 stand for (σ, σ′) ∈ [[G〈l, l′〉]]. A trace is a sequence of configurations
s.t. the first configuration is of the form 〈in, σ〉, and (σ, σ′) ∈ [[G〈l, l′〉]] for any two
consecutive elements 〈l, σ〉 and 〈l′, σ′〉 of the sequence; we let Tr(P) denote the set of
traces of P . Moreover, an execution is a trace whose last configuration is of the form
〈out, σ〉; we let Ex(P) ⊆ Tr(P) denote the set of executions of P . Finally, we write
(σ, σ′) ∈ [[P]] if there exists an execution of P with initial state σ and final state σ′;
and we say that P is strongly terminating, written P ⇓?, iff for every t ∈ Tr(P) there
exists t′ ∈ Ex(P) such that t is a prefix of t′. For example, the abstract program in the
right of Fig. 1 is strongly terminating, since every execution trace can be extended to a
terminating trace by suitable choices when evaluating the non-deterministic guards.

3.1 Synchronized products

Informally, a product of two programs is a program that combines their effects. We
begin with a weaker definition (Def. 3) which only guarantees that the behavior of
products is included in the behavior of their constituents. Then, we provide a sufficient
condition (Def. 4) for the behavior of products to coincide with the behavior of its
constituents.

One practical goal of this article is to be able to perform relational reasoning about
programs that are written in the same language, by using off-the-shelf verification tools
for this language. The embedding relies on separability; our conditions are inspired
from self-composition [5], and are reminiscent of the monotonicity and frame properties
of separation logic [19].

Assume given two functions π1, π2 : S → S s.t. for all σ, σ′ ∈ S , σ = σ′ iff
π1(σ) = π1(σ

′) and π2(σ) = π2(σ
′). Given two states σ1, σ2 ∈ S, we define σ1]σ2 ∈

S to be the unique, if it exists, state σ s.t. π1(σ) = σ1 and π2(σ) = σ2.

Definition 2 (Separable statements). A statement c is a left statement iff for all σ1, σ2
in S s.t. σ1]σ2 is defined:

1. for all σ′1∈S , if (σ1, σ′1)∈ [[c]], then σ′1]σ2 is defined and (σ1]σ2, σ′1]σ2)∈ [[c]];
2. for all σ′ ∈S , if (σ1]σ2, σ′)∈ [[c]], then there exists σ′1 ∈S s.t. (σ1, σ′1)∈ [[c]] and
σ′1]σ2 = σ′.

Right statements are defined symmetrically. Two statements c1 and c2 are separable
iff c1 is a left statement and c2 is a right statement. Finally, two programs P1 and P2 are
separable iff P1 is a left program, i.e. it only contains left statements, and P2 is a right
program, i.e. it only contains right statements. In this section, we let P1=〈N1, E1, G1〉
and P2=〈N2, E2, G2〉 be separable programs.

Example 1. The programs in Fig. 1 manipulate disjoint fragments of scalar state, thus
they are clearly separable. Dynamic memory manipulation may break separability if
both the left and right programs invoke a non-deterministic allocator. However, in this
particular example one of the product components does not manipulate the heap.

Definition 3 (Product). Let P = 〈N , E , G〉 be a program with statements in Stmt. P
is a product of P1 and P2, written P ∈P1×P2, iffN ⊆N1×N2, and (in1, in2)∈N and
for all (l1, l2)∈N l1=out1 iff l2=out2, and every edge e ∈ E is of one of the forms:

– left edge: (l1, l2)
l7→ (l′1, l2), with 〈l1, l′1〉 in E1, and [[Ge]] = [[G1 〈l1, l′1〉]];

– synchronous edge: (l1, l2) Z⇒ (l′1, l
′
2), with edges 〈l1, l′1〉 in E1 and 〈l2, l′2〉 in E2, and

[[Ge]]=[[G1 〈l1, l′1〉]] ◦ [[G2 〈l2, l′2〉]]; or
– right edge: (l1, l2)

r7→ (l1, l
′
2), with 〈l2, l′2〉 in E2, and [[Ge]] = [[G2 〈l2, l′2〉]].

For simplicity, the notion of product program is defined for two programs of the same
language. However, the definition readily extends to 2-languages products, i.e. products
of programs written in two distinct languages. Alternatively, 2-languages products can
be encoded in our setting: given two programming languages with statements in Stmt1
and Stmt2 respectively, and with state spaces S1 and S2 respectively and semantics
[[.]]1 : Stmt1 → P(S1 × S1) and [[.]]2 : Stmt2 → P(S2 × S2), one can define Stmt =
Stmt1+Stmt2, and S = S1+S2, and [[.]] = [[.]]1+[[.]]2. Then, programs of the first and
second languages can be embedded in a semantic-preserving manner into the “sum”
language, and one can use the notion of product program the usual way.

Example 2. The definition of products ensures that every edge in E represents either an
execution step of program P1, an execution step of program P2, or a pair of simultane-
ous steps of both programs. The program product in Fig. 4 contains both synchronous
and left edges. In this particular example, the left edges represent portions of the origi-
nal program that are sliced out in the abstract program, since they do not have an effect
on the validity of the boolean predicates.

Products underapproximate the behavior of their constituents, i.e, every trace of
P ∈ P1×P2 is a combination of a trace of P1 and a trace of P2. We formalize this fact
using left and right projections of traces. The left projection of an execution step in P
is defined by case analysis: 1. if 〈(l1, l2), σ〉 〈(l′1, l′2), σ′〉 and either (l1, l2)

l7→(l′1, l
′
2)

or (l1, l2)Z⇒(l′1, l
′
2), then the left projection is defined as 〈l1, π1(σ)〉 〈l′1, π1(σ′)〉;

2. otherwise, the left projection is undefined. The left projection π1(t) of a trace t is
then defined as the concatenation of the left projections of its steps (steps with undefined
projections are omitted). The right projection π2(t) of a trace t is defined in a similar
way.

Lemma 1. Let P ∈P1×P2. For all t∈Tr(P), π1(t)∈Tr(P1) and π2(t)∈Tr(P2).

l1 l2curr:= ∗l; curr:= ?
prev:= null;prev:= true;
newl:= null; currV:= ?;
prevV:= ?

l3

{curr 6= null} ;
{¬curr} ;
nextCurr:= curr 7→next

{curr 7→val≤v ∧ ¬currV} ;
prev:= curr;
prev:= curr;
curr:=nextCurr;
prevV:= currV;
curr:= ?; currV:= ?

l4

{curr 7→val>v} ;
{currV}

l5{prev=null}

{prev 6=null ∧ ¬prev} ;
prev 7→next:=nextCurr

l6

{c
u
rr
6=
∗l
}

{c
u
rr

=
∗l
}
;

∗l
:
=
n
ex
tC
u
rr

curr 7→next:=newl
newl:= curr
curr:=nextCurr
curr:= ?; currV:= ?

l7

{curr}
{curr=null}

Fig. 4. Predicate abstraction example — Product program

l1

l2

{0≤tsizeroot} ;
st:= push(root, 0);
slen:=1;
ssize:= tsizeroot

l3{st 6=0 ∧ slen>0} ;
tail:= st→next; tsize:= ?; ssizetail:= ?;
{0≤tsize ∧ 0≤ssizetail} ;
{ssize=tsize+ssizetail}

l4
{t
si
z
e
=
0
}

{s
t→

tr
ee

=
0
}

free(st); st:= tail; slen--

l5 {
st→

tree6=
0}

{
tsiz

e6=
0}

tail:= push(st→ tree→right, tail);
tail:= push(st→ tree→ left, tail);
free(st); st:= tail; slen++; tsizel:= ?; tsizer:= ?;
{0≤tsizel ∧ 0≤tsizer} ; {tsize=tsizel+tsizer+1} ;
ssize:= tsizel+tsizer+ssizetail;

l6
{st=0 ∧ slen≤0}

Fig. 5. Numeric abstraction — Product Program

The notion of left product guarantees that some converse of Lemma 1 holds. Informally,
a program P is a left product of P1 and P2 if P can progress at any program point where
P1 can progress. More precisely, we informally want that for every node (l1, l2) such
that P1 can progress from l1 to l′1 and P2 is not stuck, there exists a left or synchronous
edge from (l1, l2) to (l′1, l

′
2). Since it would be clearly too strong to require this progress

property for arbitrary states, the definition is parametrized by a precondition.

Definition 4 (Left product). P ∈ P1×P2 is a left product w.r.t. a precondition ϕ,
written P ∈ P1nϕ P2, iff for every trace t :: 〈(l1, l2), σ1]σ2〉 ∈ Tr(P) with initial
state σ such that ϕ(σ), and for every nodes l′1 ∈ N1 and l′2 ∈ N2 such that σ1 ∈
dom([[G1〈l1, l′1〉]]) and σ2 ∈ dom([[G2〈l2, l′2〉]]), one of the following holds:

1. (l1, l2)
l7→ (l′1, l2) or (l1, l2)

r7→ (l1, l
′
2) belongs to P ;

2. there exists an edge (l1, l2) Z⇒ (l′1, l
′′
2) in P s.t. σ2 ∈ dom([[G2〈l2, l′′2 〉]]);

Example 3. One can verify that the product examples shown in Section 2 are left prod-
ucts. For the product in Fig. 4, one can deduce at node l2 the validity of the invariant
curr=null⇔ curr. In order to verify the leftness condition at node l2 one must check
that every feasible transition on the left program is eventually feasible in the product
program. In this particular case, the equivalent of the boolean guards holds by the in-
variant above.

Lemma 2 (Lifting left products). Assume P ∈P1nϕ P2 with P2 ⇓?. Let t1 ∈ Tr(P1)
with initial state σ1, and let σ2∈S s.t. ϕ (σ1]σ2). Then there exists a trace t ∈ Tr(P)
with initial state σ1]σ2 s.t. π1(t) = t1.

The result above requires in general proving strong-termination of the right com-
ponent P2. However, it is often sufficient to perform a syntactic check over a program
product P ∈P1nϕ P2 as suggested by the following result.

Lemma 3. Assume P ∈ P1nϕ P2 has no asynchronous right loops, i.e., that for all
sequences of edges l1

r7→ l2, . . . , ln−1
r7→ ln we have l1 6= ln. Then P1 ⇓? implies P2 ⇓?.

It follows from the lemma above, and the fact that we are interesting in terminating
executions of P1, that it is enough to check for the absence of asynchronous right loops
in the product P .

4 Logical validation

We now show how to check the correctness of product constructions and relational spec-
ifications using standard logical frameworks. Assuming that P1 and P2 are separable,
we cast the correctness of two programs P1 and P2 w.r.t. a relational specification Φ, in
terms of the functional correctness of a left product P ∈ P1nΦ(in) P2. If the statement
languages of P1 and P2 are amenable to verification condition generation, one can gen-
erate from a product program P a set of verification conditions that ensure that P is a
left product of P1 and P2, and that P1 and P2 are correct w.r.t. a relational specifica-
tion Φ. For clarity, we instantiate this section to the programming model used for the
examples in Section 2, and a weakest precondition calculus over first-order formulae.

Program correctness is usually expressed by a judgment of the form {ϕ}P {ψ},
where P = 〈N , E , G〉 is a program, and ϕ,ψ are assertions. A judgment is valid, writ-
ten � {ϕ}P {ψ}, iff for all states σ, σ′ ∈ S s.t. (σ, σ′) ∈ [[P]], if ϕσ then ψ σ′. One
can prove the validity of triples using a variant of Hoare logic [2], or working with a
compositional flow logic [17]. However, the prominent means to prove that {ϕ}P {ψ}
is valid is to exhibit a partial specification Φ :N ⇀ φ s.t. all cycles in the graph of P go
through an annotated node, i.e. a node in dom(Φ); and in, out∈dom(Φ) with ϕ = Φ(in)
and ψ = Φ(out).

We adopt a simplified version of the memory model of Leroy and Blazy [13]—
locations are interpreted as integer values and field accesses as pointer offsets. We in-
troduce to the assertion language a variable h, and the non-interpreted functions load,
store, alloc, and free, and the predicate Valid. We also introduce a suitable set of axioms,

including for instance:

Valid(h, l) =⇒ load(store(h, l, v), l)=v
Valid(h, l) ∧ Valid(h, l′) ∧ l 6= l′ =⇒ load(store(h, l′, v), l)= load(h, l)

alloc(h)=(h′, l) =⇒ Valid(h′, l)
Valid(h, l) ∧ l 6= l′ ∧ free(h, l)=h′ =⇒ Valid(h′, l′)

The weakest precondition calculus is standard, with the exception perhaps of heap op-
erations:

wp(x:= [l] , φ)
.
= φ[load(h, l)/x] wp([l]:=x, φ)

.
= φ[store(h, l, x)/h]

wp(free(l), φ)
.
= φ[free(h, l)/h] wp(l:= alloc, φ)

.
= φ[h?/h] ∧ (h?, l) = alloc(h)

where h? stands for a fresh variable. One can use the weakest preconditions to generate a
specification Φ\ that extends Φ to all nodes. Using the well-founded induction principle
attached to partial specifications, see e.g. [7], we set

Φ\(l)
.
=

∧
〈l,l′〉∈E

wp(G〈l, l′〉, Φ\(l′)) for all l 6∈ dom(Φ)

The logical judgement ` {ϕ}P {ψ} is verifiable if there is a specification Φ\ with
ϕ

.
= γ(Γ (in)) and ψ

.
= γ(Γ (out)) such that the verification conditions Φ(l) ⇒

wp(G〈l, l′〉, Φ\(l′)) are valid for all 〈l, l′〉 ∈ E and l∈dom(Φ).
The leftness of a product can also be checked by logical means. We use a simple

form of path condition, which we call edge condition, to express leftness. Formally, the
edge condition ec(c) for a statement c is, if it exists, the unique (up to logical equiv-
alence) formula φ s.t. for all states σ ∈ S , σ ∈ [[φ]] iff σ ∈ dom([[c]]). We define for
every node (l1, l2)∈N and edges 〈l1, l′1〉∈E1 and 〈l2, l′2〉∈E2 s.t. (l1, l2) 6

l7→ (l′1, l2) and
(l1, l2) 6

r7→ (l1, l
′
2) the Φ-leftness condition as

Φ(l1, l2) ∧ ec(G1〈l1, l′1〉) ∧ ec(G2〈l2, l′2〉)⇒
∨

l′′2 :(l1,l2) Z⇒ (l′1,l
′′
2)

ec(G2〈l2, l′′2 〉)

and say that P is Φ-left iff all its Φ-leftness conditions are valid.
Weakest preconditions can be used to compute edge conditions. For instance one

can define ec(c) by the clauses:

ec(skip)
.
= true ec(x:= e)

.
= true

ec({b}) .= b ec(c1; c2)
.
= ec(c1) ∧ wp(c1, ec(c2))

ec([l]:=x)
.
= Valid(h, l) ec(x:= [l])

.
= Valid(h, l)

ec(free(l))
.
= Valid(h, l) ec(l:= alloc)

.
= true

Example 4. In order to verify the leftness of the product program in Figure 4 it is suffi-
cient to check for every synchronous edge (l1, l2) Z⇒ (l′1, l

′
2) that ec(G1〈l1, l′1〉) implies

ec(G2〈l2, l′2〉). Consider for instance the product edge 〈l2, l3〉. The edge condition of the
corresponding left edge is curr 6=null whereas the edge condition of the corresponding
right edge is ¬curr. The validity of curr 6= null ⇒ ¬curr follows trivially from the
strong invariant curr = null⇔ curr.

Let S1,S2 ⊆ S be sets of pairwise separable3 states. From the separability hy-
pothesis, one can embed relational assertions on P(S1 × S2) as assertions on the set

3 Two states σ1 and σ2 are separable if σ1]σ2 is defined.

{σ1]σ2 | σ1 ∈ S1, σ2 ∈ S2}. Relational program correctness is formalized by refine-
ment quadruples of the form |={ϕ}P1 7→P2{ψ}, where P1, P2 are programs, and ϕ,ψ
are assertions. Such refinement judgment is valid iff for all t1 ∈ Ex(P1) with initial
state σ1 and final state σ′1, and σ2 s.t. ϕ (σ1]σ2) and P2 ⇓?, there exists t2 ∈ Ex(P2)
with initial state σ2 and final state σ′2 s.t. ψ (σ′1]σ′2).
Theorem 1. Let P1, P2 be separable programs and let ϕ,ψ be assertions. Then the
judgement |= {ϕ}P1 7→P2{ψ} holds, provided there is a partial specification Φ s.t.
ϕ = Φ(in1, in2) and ψ = Φ(out1, out2), and a product program P ∈ P1×P2 that is
Φ-left and correct w.r.t. Φ.

Theorem 1 provides direct proofs of correctness for many common refinement steps,
e.g. replacing a non-deterministic assignment by an assignment (or a non-deterministic
choice by one of its substatements). Observe that by Lemma 3 it is enough to check
alternatively for the absence of right loops in the product program instead of requiring
the strong-termination of P2.

4.1 Completeness of Abstraction Validation

We briefly show that abstraction validation is relatively complete under a soundness
assumption of the program abstraction procedure. To this end, we use the framework of
abstract interpretation [11] to characterize sound program abstractions. Then we show
that the correctness of the abstract semantics w.r.t. the verification calculus implies
the verifiability of the resulting program abstraction using left products. For brevity,
we only consider forward abstract semantics; the adaptation to backward semantics is
straightforward.

In the rest of this section we let I = 〈A, [[.]]]〉 be an abstract semantics composed of

– an abstract domain A, that can be interpreted as assertions over states;
– an abstract interpretation function [[.]]

]
: Stmt → A → A for statements: [[c]]]

approximates the execution of statement c in the abstract domain;

We assume the existence of a concretization function γ from abstract values in A to
first order formulae. We need to assume also the soundness of the abstract semantics
I = 〈A, [[.]]]〉 w.r.t. the wp calculus, i.e. that for all c ∈ Stmt and a ∈ A, Φ .

= γ(a) ⇒
wp(c, γ([[c]]]a)) is a verifiable formula. We also assume a standard characterization of
valid post-fixpoints: a labeling Γ : N → A is a post-fixpoint of the abstract semantics
I if for all 〈l, l′〉 ∈ E [[G〈l, l′〉]]Γ (l) v Γ (l′).

Let P = 〈N , E , G〉 and P̂ = 〈N , E , Ĝ〉 be separable programs, and assume that
the abstract domain A represents relations between the disjoint memories of P and P̂ .
We say that a P̂ is a sound abstraction of P w.r.t. a labeling Γ : N → A if for all
e = 〈l, l′〉 ∈ E we have

[[Ge; Ĝ e]]
]
Γ (l) v Γ (l′)

Lemma 4. Let P be a program, I = 〈A, [[.]]]〉 an abstract semantics, and P ′ a sound
abstraction of P w.r.t. a post-fixpoint Γ : N → A. Assume that γ a⇒ γ a′ is verifiable
for all a, a′ ∈ A s.t. a v a′. If I is sound w.r.t the wp calculus then there exists
Q ∈ P nϕ P ′ s.t. ` {ϕ}Q {ψ} is a verifiable judgement, where ϕ .

= γ(Γ (in)) and
ψ
.
= γ(Γ (out)).

It follows from the lemma above that, under mild conditions, if P ′ is an abstract
program computed from P using a sound abstract semantics, then one can verify that P
is correctly abstracted by P ′. Besides, in settings in which the abstract semantics is de-
fined as a strongest postcondition calculus, as in e.g. predicate abstraction, abstraction
validation is decidable. Indeed, it is sufficient that the decision procedure used for pro-
gram verification is as complete as the one used by the program abstraction algorithm.

5 Full products

We introduce a symmetric variant of the notion of left product of Section 3, which al-
lows verifying one-to-one correspondences between traces of a source and transformed
program, as required by translation validation.

Definition 5 (Full product). P ∈ P1×P2 is a full product w.r.t. a precondition ϕ,
written P ∈ P1 onϕ P2, iff for every trace t :: 〈(l1, l2), σ1]σ2〉 ∈ Tr(P) with initial
state σ such that ϕ(σ), and for every nodes l′1 ∈ N1 and l′2 ∈ N2 such that σ1 ∈
dom([[G1〈l1, l′1〉]]) and σ2 ∈ dom([[G2〈l2, l′2〉]]), one of the edges (l1, l2)

l7→ (l′1, l2),
(l1, l2)

r7→ (l1, l
′
2), or (l1, l2) Z⇒ (l′1, l

′
2) belongs to P ;

Product fullness is a stronger property than being both left and right. Indeed, requir-
ing the existence of the edge (l1, l2) Z⇒ (l′1, l

′
2) is stronger that requiring the existence

of (l1, l2) Z⇒ (l′1, l
′′
2) or (l1, l2) Z⇒ (l′′1 , l

′
2) for some l′′1 or l′′2 . In a deterministic setting,

however, a product program P is full iff P is left and right. Moreover, for deterministic
programs, left products and full products coincide: assume that P2 is deterministic, i.e.
if σ ∈ dom([[G〈l, l′〉]]) and σ ∈ dom([[G〈l, l′′〉]]) then l′ = l′′. Then P ∈ P1nϕ P2 iff
P ∈ P1 onϕ P2. This has practical advantages when verifying deterministic programs,
since it is sufficient to discharge verification conditions for leftness to formally verify
the fullness of a program product.

Relational correctness is formalized by judgments of the form {ϕ}P1∼P2 {ψ},
where P1, P2 are separable programs, and ϕ,ψ are assertions. A relational judgment is
valid, written � {ϕ}P1∼P2 {ψ}, iff for all t1 ∈ Ex(P1) and t2 ∈ Ex(P2) with initial
states σ1 and σ2, and final states σ′1 and σ′2, ϕ (σ1]σ2) imply ψ (σ′1]σ′2). Full products
yield a symmetric variant of Theorem 1.

Theorem 2. Let P1, P2 be deterministic separable programs and let ϕ,ψ be assertions.
Then � {ϕ}P1∼P2 {ψ}, provided there is a partial specification Φ and a product pro-
gram P ∈P1×P2 s.t. ϕ = Φ(in1, in2), ψ = Φ(out1, out2), and P is Φ-left and correct
w.r.t. Φ.

Example 5. Figure 6 shows a full product for the validation of the loop tiling example
in Fig. 3. From Theorem 2, one can show that the product is full by proving that is
Φ-left, where Φ is shown in the figure. E.g. Φ-leftness at the node (b, 2) and for the
edges 〈b, b〉 and 〈2, 2〉 reduces to showing that Φ(b, 2) ∧ ec(2, 2) ∧ ec(b, b) implies
ec((b, 2) Z⇒ (b, 2)).

Product

a, 0

b, 1

x:=0; i:= 0

b, 2

{i<N} ; j:= 0
{x<NM ∧ j<M} ;
a[x]:= f(x);
A[i, j]:= f(iM+j);
x++; j++

{M≤j} ;
i++

out

{NM≤x ∧N≤ i}

Specification
Φ(a, 0)

.
= true

Φ(b, 2)
.
= x= iM+j ∧ i<N ∧ j≤M ∧ ϕ(i) ∧ ∀r. 0≤r<j ⇒ A[i, r]=a[iM+r]

Φ(out)
.
= ϕ(N)

where ϕ(i)
.
= ∀l, r. 0≤ l<i ∧ 0≤r<M ⇒ A[l, r]=a[lM+r]

Fig. 6. Loop tiling example — Product program

6 Implementation

We have implemented a proof of concept verification plugin in the Frama-C environ-
ment. We have used our this plugin to validate abstraction examples for list traversing
algorithms.

The plugin receives as input a file with a program, its abstraction, and a predicate
that describes the relation between the abstract and concrete states, using the ANSI C
Specification Language (ACSL). A product of the supplied programs is constructed by
following the program graphs and deciding at each branch statement whether to intro-
duce a right, left or synchronized edge, and generating additional program annotations.
Non-deterministic assignments are modeled in abstract programs with the use of unde-
fined functions, and assert statements were added to introduce hypotheses regarding the
non-deterministic output values. In order to deal with the weakness of the alias analysis,
we added some memory disjointness annotations manually.

The final annotated product program is fed into the Frama-C Jessie plugin, which
translates the C product program into Why’s intermediate language and discharges the
verification conditions using the available SMT solvers (AltErgo, Simplify, Z3, etc.).
Figure 7 depicts the interaction of the plugin with other components of the framework.

7 Related work

Our technique builds upon earlier work on relational verification using product pro-
grams [4, 20], and is closely related to relational logics [8, 18] used to reason about
compiler correctness and program equivalence. Furthermore, there exist strong connec-
tions between abstraction validation and refinement proofs—refinement can be viewed
as a form of contextual approximation. In particular, developing connections between
our method and proof methods for program refinement, such as the refinement calcu-
lus [15], or refinement with angelic non-determinism [10] is left for future work.

Original Abstraction
Spec

CIL Product construction JESSIE

WHYSIMPLIFY

ALT-ERGO

Z3

COQ

ISABELLE

FRAMA-C

Fig. 7. Tool architecture

Abstraction validation may be seen as an instance of result checking, i.e. of the
a posteriori validation of a computed result, in the context of program analysis and
program transformations algorithms. In this sense, it is closely related to translation
validation [21] and abstraction checking for embedded systems [9].

8 Conclusion

Asymmetric products provide a convenient means to validate relational properties using
standard verification technology. They provide an automated method for reducing a re-
finement task to a functional verification task, and allow the validation of a broad set of
program optimizations. Their applicability has been illustrated with the implementation
a product construction prototype. In the future, we intend to used asymmetric products
for performing a certified complexity analysis of cryptographic games [6]. Another tar-
get for future work is to broaden the scope of relational validation to object-oriented
and concurrent programs.

Acknowledgement. Partially funded by European Projects FP7-231620 HATS and
FP7-256980 NESSoS, Spanish project TIN2009-14599 DESAFIOS 10, Madrid Re-
gional project S2009TIC-1465 PROMETIDOS. C. Kunz is funded by the Spanish Juan
de la Cierva programme (JCI-2010-08550). Juan Manuel Crespo is funded by FPI Span-
ish programme (BES-2010-031271)

References

1. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. In Programming Languages Design and Implementation, pages 203–213,
2001.

2. F. Y. Bannwart and P. Müller. A program logic for bytecode. Electronic Notes in Theoretical
Computer Science, 141:255–273, 2005.

3. C. W. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. D. Zuck. Tvoc: A translation
validator for optimizing compilers. In K. Etessami and S. K. Rajamani, editors, Computer
Aided Verification, volume 3576 of Lecture Notes in Computer Science, pages 291–295.
Springer-Verlag, 2005.

4. G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product programs. In
Formal Methods, Lecture Notes in Computer Science. Springer, 2011.

5. G. Barthe, P. D’Argenio, and T. Rezk. Secure Information Flow by Self-Composition. In
R. Foccardi, editor, Computer Security Foundations Workshop, pages 100–114. IEEE Press,
2004.

6. G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for
the working cryptographer. In P. Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes
in Computer Science, pages 71–90. Springer, 2011.

7. G. Barthe and C. Kunz. Certificate translation in abstract interpretation. In S. Drossopoulou,
editor, European Symposium on Programming, volume 4960 of Lecture Notes in Computer
Science, pages 368–382. Springer-Verlag, 2008.

8. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In N. D. Jones and X. Leroy, editors, Principles of Programming Languages, pages
14–25. ACM Press, 2004.

9. J. O. Blech, I. Schaefer, and A. Poetzsch-Heffter. Translation validation of system abstrac-
tions. In O. Sokolsky and S. Tasiran, editors, RV, volume 4839 of Lecture Notes in Computer
Science, pages 139–150. Springer, 2007.

10. R. Bodı́k, S. Chandra, J. Galenson, D. Kimelman, N. Tung, S. Barman, and C. Rodar-
mor. Programming with angelic nondeterminism. In Principles of Programming Languages,
pages 339–352, 2010.

11. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In Principles of Programming
Languages, pages 238–252, 1977.

12. S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In O. Grumberg, editor,
CAV, volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

13. X. Leroy and S. Blazy. Formal verification of a C-like memory model and its uses for
verifying program transformations. J. Autom. Reasoning, 41(1):1–31, 2008.

14. S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. Automatic numeric abstractions for heap-
manipulating programs. In M. Hermenegildo and J. Palsberg, editors, Principles of Pro-
gramming Languages, pages 211–222. ACM, 2010.

15. C. Morgan. Programming from specifications. Prentice-Hall International Series in Com-
puter Science. Prentice-Hall, Inc., June 1990.

16. A. Pnueli, E. Singerman, and M. Siegel. Translation validation. In B. Steffen, editor, Tools
and Algorithms for the Construction and Analysis of Systems, volume 1384 of Lecture Notes
in Computer Science, pages 151–166. Springer-Verlag, 1998.

17. G. Tan and A. W. Appel. A compositional logic for control flow. In E. A. Emerson and
K. S. Namjoshi, editors, VMCAI, volume 3855 of Lecture Notes in Computer Science, pages
80–94. Springer, 2006.

18. H. Yang. Relational separation logic. Theoretical Computer Science, 375(1-3):308–334,
2007.

19. H. Yang and P. W. O’Hearn. A semantic basis for local reasoning. In Foundations of Software
Science and Computation Structures, pages 402–416, 2002.

20. A. Zaks and A. Pnueli. Covac: Compiler validation by program analysis of the cross-product.
In Formal Methods, pages 35–51, 2008.

21. L. D. Zuck, A. Pnueli, and B. Goldberg. Voc: A methodology for the translation validation
of optimizing compilers. J. UCS, 9(3):223–247, 2003.

