
A Framework for the Analysis of Access Control
Models for Interactive Mobile Devices

Juan Manuel Crespo1,2, Gustavo Betarte3, and Carlos Luna3

1 FCEIA, Universidad Nacional de Rosario, Argentina
2 IMDEA Software, Madrid, Spain
juanmanuel.crespo@imdea.org

3 Instituto de Computación, Universidad de la República, Uruguay??

{gustun,cluna}@fing.edu.uy

Abstract. The Java Micro Edition platform (JME), a Java enabled
technology, provides the Mobile Information Device Profile (MIDP) stan-
dard that facilitates applications development and specifies a security
model for the controlled access to sensitive resources of the device. The
model builds upon the notion of protection domain, which in turn can be
grasped as a set of permissions. An alternative model has been proposed
that extends MIDP’s by introducing permissions with multiplicities and
adding flexibility to the way in which permissions are granted by the
user of the device and used by the applications running on it. This paper
presents a framework, formalized using the proof-assistant Coq, suit-
able for defining and comparing the access control policies that can be
enforced by (variants of) those security models and to prove desirable
properties they should satisfy. The proofs of some of those properties are
also stated and discussed in this work.

Keywords: Access control models, mobile devices, formal proofs.

1 Introduction

Devices such as cell phones or personal digital assistants often have access to
sensitive personal information and are subscribed to paid services in order to
communicate with other entities. In addition to this, users are able to download
and install applications from unreliable sources at their will. Java Micro Edition
(JME) [10] is a version of the Java platform targeted at resource-constrained
devices which comprises two kinds of components: configurations and profiles.
The Mobile Information Device Profile (MIDP) [7, 6] defines an application
life cycle, a security model and APIs that offer the functionality required by
mobile applications, including networking, user interface, push activation and
persistent local storage. Many mobile device manufacturers have adopted MIDP

?? This work was partially funded by the Project PDT 63/118 STEVE, DINACYT,
Uruguay

2

since the specification was made available. A formal specification of the JME-
MIDP 2.0 security model developed using the proof-assistant Coq is presented
and described in detail in [12].

In [2], a security model for interactive mobile devices is put forward which can
be grasped as an extension of the JME-MIDP model. The work presented in that
paper has focused in developing a formal model for studying, in particular, inter-
active user querying mechanisms for permission granting for application execu-
tion on mobile devices. Like in the MIDP case, the notion of permission is central
to this model and MIDP is extended by introducing permissions with multiplic-
ities and by adding flexibility to the way in which permissions are granted by
the user and used by the applications.

One of the main objectives of the work reported here has been to build
a framework which would provide a formal setting to define and analyse the
permission models defined by MIDP and the one presented in [2]. This frame-
work, which is formally defined using the Calculus of Inductive Constructions
[4, 5], adopts, with variations, most of the security and programming construc-
tions defined in [2]. The principal difference is that most of those constructions
are now parameterized by a permission grant policy. In this paper it is shown
how the framework can be used to define a type of permission grant policies
and to represent the four user permission modes of MIDP and the policies de-
fined in [2] as objects of that type. The paper also presents the definition of
an order relation, based on a notion of safe programs, which can be used to
perform a comparative analysis of grant policies. In particular, it is described
the proof, which has been constructed using the proof-assistant Coq [11], of
the theorem that establishes how the grant policies mentioned above are re-
lated according to the defined order. The complete definition of the frame-
work as well as the statement and proof of the properties are available in
www.fing.edu.uy/inco/grupos/mf/projects/PermModel/ACM-Coq.zip.

The structure of the rest of the paper is organized as follows. Section 2
provides a brief account of the permission models that are the object of the
analysis presented in this work. Section 3 describes the formal setting and the
security concepts that constitute the basis of the access control mechanisms used
to define those models. In section 4 the grant policies and the order relation are
formally defined. A theorem that establishes the conditions that suffice to prove
that two grant policies are in the order relation is also discussed. In section 5 it is
presented the proof of the theorem that establishes how the concrete permission
grant policies studied in this work are related. Section 6 concludes and describes
further work.

2 Security Models for Interactive Mobile Devices

This section provides a brief account of the permission models that are the object
of the analysis presented in this work.

3

2.1 The JME–MIDP Security Model

In MIDP, applications (MIDlets) are packaged and distributed as suites. A MI-
Dlet suite can contain one or more MIDlets and is distributed as two files, an
application descriptor file and an archive file that contains the actual classes and
resources. A suite that needs access to protected APIs or functions must declara-
tively request the corresponding permissions in its descriptor. MIDlet suites may
request permissions either as required or as optional. In the first version of MIDP
[7], any application not installed by the device manufacturer or a service provider
runs in a sandbox that prohibits access to security sensitive APIs or functions of
the device. Although this sandbox security model effectively prevents any rogue
application from jeopardising the security of the device, it is excessively restric-
tive and does not allow many useful applications to be deployed after issuance
of the device.

Version 2.0 of MIDP [6] introduces a new security model based on the concept
of protection domain. A protection domain can be grasped as an abstraction of
the execution context of an application, and it determines the access rights to
the protected functions of the device. Each sensitive API or function on the
device may define permissions in order to prevent it from being used without
authorisation. A protection domain consists of both a set of permissions which
are granted unconditionally, without intervention of the device’s user (called
allowed permissions), and a set of permissions which require authorisation from
the user (called user). Permissions may be granted by the user to an active
MIDlet suite in either of the following three modes:

– blanket: the permission is granted for as long as the application remains
installed in the device

– session: the permission is granted for as long as the application is running
– one-shot: the permission is granted for only one use of the function

An installed MIDlet suite is bound to a unique protection domain. Untrusted
MIDlet suites are bound to a protection domain with permissions equivalent to
those in a MIDP 1.0 sandbox. Trusted MIDlet suites may be identified by means
of cryptographic signatures and bound to more permissive protection domains.
This security model enables applications developed by trusted third parties to
be downloaded and installed after issuance of the device without compromising
its security.

The set of permissions effectively granted to a suite is determined from its
protection domain, the permissions the suite request in its descriptor and the
authorisations granted by the user.

For a more detailed description of the mechanisms defined by the security
model the reader is referred to [7, 6]. A formal specification of the MIDP 2.0
security model is presented in [12] and a certified access controller for the en-
forcement of policies admitted by that model is described in details in [9].

4

2.2 An Alternative Model

In [2], a security model for interactive mobile devices is put forward which can
be grasped as an extension of that of MIDP. The work presented in that paper
has focused in developing a formal model for studying, in particular, interactive
user querying mechanisms for permission granting for application execution on
mobile devices. Like in the MIDP case, the notion of permission is central to this
model. A generalisation of the one-shot permission described above is proposed
that consists in associating to a permission a multiplicity which states how many
times that permission can be used.

The proposed model has two basic constructs for manipulating permissions:
grant and consume. The grant construct models the interactive querying of
the user, asking whether he grants a particular permission with a certain multi-
plicity. The consume construct models the access to a sensitive function which is
protected by the security police, and therefore requires (consumes) permissions.

A semantics of the model constructs is proposed as well as a logic for reason-
ing on properties of the execution flow of programs using those constructs. The
basic security property the logic allows to prove is that a program will never at-
tempt to access a resource for which it does not have a permission. The authors
also provide a static analysis that makes it possible to verify that a particu-
lar combination of the grant-consume constructs does not violate that security
property. For developing that kind of analysis the constructs are integrated into
a program model based on control-flow graphs. This model has also been used
in previous work on modelling access control for Java, see for instance [8, 3].

One of the main objectives of the work that is being reported here, has
been to build a framework which would provide a formal setting to define the
permission models defined by MIDP and the one presented in [2] (and variants
of it) in an uniform way and to perform a formal analysis and comparison of
those models. This framework, which is formally defined using the Calculus of
Inductive Constructions [4, 5], adopts, with variations, most of the security and
programming constructions defined in [2]. In particular it has been modified so
as to be parameterized by permission granting policies, while in the original work
this relation is fixed.

3 A Framework for Access Control Modeling

This section introduces the formal setting used to define the security concepts
that constitute the basis of certain access control mechanisms, to proceed then
to described how those mechanisms are used to define the permission granting
models which are object of analysis of this work.

3.1 The formal language used

Standard notation is used for equality and logical connectives (∧,∨,¬,→,∀,∃).
Anonymous functions and predicates use standard lambda notation (e.g. λ (x :

5

T) . x, λ (x : nat) . x > 10). In case there is more than one binder, the standard
abbreviation λ (x : nat) (y : nat) . x + y is used.

An inductive relation I is defined by giving introduction rules of the form:

P1 . . . Pm

I x1 . . . xn

where the variables occurring free are implicitly universally quantified. Similarly,
inductive types are defined by giving constructors in the following form:

T
def
= | C1 : A1,1 → . . . A1,n1 → T

...
| Cm : Am,1 → . . . Am,nm

→ T

where C1 . . . Cn are the constructors of T .
A (dependent) record type R is defined as follows:

R
def
= {field1 : A1, . . . , fieldn : An}

This definition generates a non-recursive inductive type with a single construc-
tor mkR : A1 → . . . An → R and projection functions fieldi : R → Ai. Ap-
plication of projection functions is abbreviated using dot notation: fieldi r =
r.fieldi. When the type is clear for the context 〈x1, . . . , xn〉 is written instead
of mkR x1, . . . , xn.

In the fomalization developed it has been used inductive types that have
valid and invalid cases. In the rest of this paper it is adopted the convention
that a type with the same name but prefixed with valid is the type consisting
only of the valid cases. Which are the valid constructors is usually clear from
the context, otherwise it is specified.

The following parametric inductive types are assumed to be predefined:

– option T with constructors None : option T and Some : T → option T ,
– finite lists over T, list T . The empty list is denoted by [] and the (infix)

constructor that inserts an element a at the front of a list s is denoted by
a . s. Finite snoc lists over T, snocList T , that is, lists that are constructed
by inserting elements at the back, are also used. [] denotes the empty snoc
list and s / a denotes the insertion of an element a at the back of the snoc
list s.

3.2 Permissions

Every (controlled) resource of the device is given a type. Let ResType be the
set of types of resources. If rt is a resource type, Resources rt and Actions rt
define the set of resources of type rt available on the device and the actions that
can performed over them, respectively. The permissions of a resource type are

6

defined as follows:

PermRes (rt : ResType)
def
=

| valid : list (Resources rt) → list (Actions rt) → PermRes rt

| invalid : PermRes rt

That is, given a resource type rt, an object of type PermRes rt is a set (rep-
resented by a list) of actions and resources over rt, or the constant invalid. A
relation vPermRes is defined by applying set inclusion component-wise. This re-
lation defines a lattice structure where invalid is the bottom element ⊥PermRes

and tPermRes a lub operator which is obtained applying set union component-
wise.

As already mentioned, a notion of multiplicity of granted permission is in-
troduced in [2]. A multiplicity is defined to be either a natural number, a special
value ∞ that denotes an irrestricted permission, or an error value ⊥. A type
Mul is defined:

Mul
def
= | ⊥ : Mul

| val : nat → Mul
| ∞ : Mul

It is straightforward to see that a lattice can be constructed over Mul with ⊥
and ∞ as the bottom and top elements, respectively. The obvious extensions of
functions and predicates defined over naturals to functions and predicates over
Mul, such as vMul, +Mul, −Mul, predMul, are also defined.

An accumulated permission for a resource type is comprised of two com-
ponents: the set of resources and actions allowed and a multiplicity. One such
permission (of resource type rt) is then grasped as an object of the following
record type:

PermMul (rt : ResType)
def
= {permRes : PermRes rt;mul : Mul}

The lattice of permissions of a resource type can be obtained by defining the
order vPermMul:

pm1 vPermMul pm2
def
= pm1.permRes vPermRes pm2.permRes

∧ pm1.mul vMul pm2.mul

where pm1 and pm2 are objects of type PermMul rt. Now, the permission state
of the device is defined. One such state is ultimately a mapping that associates
a permission to each resource type. Therefore, it is defined as the following
dependent function type:

Perm
def
= ∀(rt : ResType), P ermMul rt

It is said that two permissions p1 and p2 are (extensionally) equal if for every
resource type rt it holds that p1 rt = p2 rt.

7

An order vPerm can be defined as the product-wise extension of vPermMul

as follows:

p1 vPerm p2
def
= ∀(rt : ResType), (p1 rt) vPermMul (p2 rt)

In order to model the operations that affect the state of the permissions an
update function is introduced:

update (p : Perm)(rt : ResType)(pres : PermRes rt)(m : Mul) : Perm

The intended (and formalized) behaviour of this function is that of an usual store
updating operator: the permission state remains unchanged for every resource
type different from rt, and for rt yields 〈pres, m〉.

If rt is a resource type and p a permission state, then the following inductive
relation Error is defined

(p rt).permRes = invalid rt

Error p

(p rt).mul = ⊥
Error p

The intuition is that an error situation may occur when either there is an at-
tempt to perform an action over a resource of type rt and no valid permission
is associated to it (first rule) or when there are no granted permissions for that
resource (second rule).

3.3 Programs

A program in, among others, [2, 1] is represented by a control-flow graph that
captures the manipulations of permissions and the handling of method calls and
returns as well as exceptions.
A control-flow graph is a tuple G = (NO, EX,KD, TG,CG,EG, n0) where:

– NO is the set of nodes of the graph (one for each instruction),
– EX is the set of exceptions,
– KD is a function of type KD : NO → Instr that associates each node to

an instruction,
– TG : NO → NO → Prop is the propositional function that characterizes

the set of intra-procedural edges (i.e. n1 TG n2 if control can be transferred
from instruction at node n1 to instruction at node n2 within the currect
procedure),

– CG is the set of inter-procedural edges (which can be used to capture dy-
namic method calls),

– EG : EX → NO → NO → Prop are the intra-procedural exception edges,
– n0 : NO is the graph entry node.

8

The instructions are formally defined in the framework by means of the following
inductive type:

Instr
def
=
| Grant : ∀(rt : ResType), validPermRes rt → MulV alid → Instr

| Consume : ∀(rt : ResType), validPermRes rt → Instr

| Call : Instr

| Return : Instr

| Throw : EX → Instr

where MulV alid is the type of valid multiplicities, that is, different from the
multiplicity ⊥. The definition of the operational semantics of programs strongly
depends on those of the permission granting and consumption mechanisms. They
are briefly discussed and described in what follows.

In [2] two variants are discussed concerning the effect of the update operation
after a permission has been granted: either the permissions before the update in-
struction are discarded or they are accumulated. At a first sight these permission
granting policies have advantages and drawbacks. Furthermore, independently of
this particular discussion, it is at this point that the permission model proposed
by the authors introduces a generalization with respect to that of MIDP: the
multiplicity of a permission. One of the main objectives of the work presented
here has been to design a framework that would make it possible to provide a
uniform setting where those different permissions models could be formally de-
fined and compared. To that end, the constructions defined to provide semantics
to the computational behaviour of the programs as well as to reason over that
behaviour have been parameterized by permission granting policies. One such
parameter shall be formally represented by an object of the following type:

grantPolicy
def
= ∀(rt : ResType),

validPermRes rt → NZMulV alid → Perm → Perm

where an object of type NZMulV alid is a valid multiplicity constructed with a
non-zero natural.

As to the consumption of permissions, the following is the definition of the
consume operation:

consume (rt : ResType)(pr : validPermRes rt)(p : Perm) : Perm
def
=

if (pr vPermRes (p rt).permRes)
then update p rt (p rt).permRes (predMul (p rt).mul)
else update p rt (invalid rt) (predMul (p rt).mul)

The consume operation is monotonic on permissions. This is stated (and proved)
in the following lemma:

9

Lemma 1.

Lemma consumeMon :
∀(rt : ResType)(pr : validPermmRes rt)(p p′ : Perm),
p vPerm p′ → (consume rt pr p) vPerm (consume rt pr p′)

Following [2] the small-step operational semantics of a control-flow graph has
been defined basically as a relation that defines transitions between states con-
sisting of a standard control-flow stack of nodes enriched with the permissions
held at that point in the execution. This definition has been extended by making
it depend on a permission granting policy g. Formally, it has been defined as an
inductive propositional function g whose rules are depicted in Fig. 1. An im-

KD n = Grant rt pr m TG n n′

(n . s) None p g (n′ . s) None (g rt pr m p)

KD n = Consume rt pr TG n n′

(n . s) None p g (n′ . s) None (consume rt pr p)

KD n = Call CG n n′

(n . s) None p g (n′ . n . s) None p

KD r = Return TG n n′

(r . n . s) None p g (n′ . s) None p

KD n = Throw ex EG ex n h

(n . s) None p g (h . s) None p

KD n = Throw ex ∀(h : NO),¬EG ex n h

(n . s) None p g (n . s) (Some ex) p

∀(h : NO),¬EG ex n h

(t . n . s) (Some ex) p g (n . s) (Some ex) p

EG ex n h

(t . n . s) (Some ex) p g (h . s) None p

Fig. 1. Semantics of instructions

portant property of this semantics is that it is non-intrusive, that is to say, the
permission state does not interfere with execution. In other words, a transition
will not be blocked by the absence of permissions. This is formally stated, and
proved, in the following lemma:

Lemma 2.

Lemma nonIntrusive :
∀(g : grantPolicy)(s s′ : list NO)(ex ex′ : option EX)(p p′ : Perm),
s ex p g s′ex′p′ → ∀(p : Perm), (∃(p′ : Perm), s ex p g s′ ex′ p′)

3.4 Traces

In [2] global results on the execution of programs are expressed on traces, which
in turn are defined in terms of the operational semantics described above (instan-
tiated for a particular grant policy) as follows: a partial trace of a control-flow
graph is a sequence (of type snocList (NO, option EX)) of nodes []/〈n0, None〉/

10

〈n1, e1〉 / · · · / 〈nk, ek〉 such that for all 0 ≤ i < k there exists ρ, ρ′ε Perm,
s, s′ε (list NO) and verifying ni . s, ei, ρ ni+1 . s′, ei+1, ρ

′.
The stacks s and s′ in the above definition are existentially quantified because

they are not defined to be components of the elements of a trace. This quan-
tification however induces a loss of information w.r.t. the operational semantics.
An example4 should clarify this situation. Consider the control-flow graph:

NO = {A,B, C, D}, TG = {(B,C), (C,D)}, EX = CG = EG = {}, n0 = A
KD = {(A,Return), (B, x), (C,Consume rt y), (D,Return)}

where x : Instr, rt : ResType, y : validPermRes rt, and with initial per-
mission pinit = λ (rt : ResType) . 〈(valid rt [] []), (val 0)〉. Fig. 2 depicts
the control-flow graph in question. From this definition it can be noticed that

A B

C D
TG

TG

Return x

Consume rt y Return

Fig. 2. Control-flow graph example

[] / 〈A,None〉 is the only admissible trace yielding a valid permission state. Ac-
cording to the definition of partial trace stated above, the object ([]/〈A,None〉/
〈C,None〉 / 〈D,None〉) is admitted as a partial trace of the defined control-flow
graph. This trace can be built using the transition rules for the Consume and
Return instructions (see Fig. 1). However, this latter trace yields an error situa-
tion, because the transition from node C to node D attempts to consume a not
available permission.

The definition of program execution traces that are proposed in the frame-
work presented here remedies the situation described above by including the node
stack as a component of the elements of the trace. This is formally represented
by the following type: Trace

def
= snocList {noT : NO, stT : list NO, exT :

option EX}.
The notion of parameterized partial trace is then inductively defined over

elements of type Trace as follows:

PTraceg [] PTraceg([] / 〈n0, [], None〉)

PTraceg (tr / 〈n, s, ex〉) ∃(p p′ : Perm), n . s ex p g n′ . s′ ex′ p′

PTraceg (tr / 〈n, s, ex〉 / 〈n′, s′, ex′〉)
Let tr be a trace and g be a grant policy, if PTraceg tr holds then it shall be
said that tr is a valid trace according to g.
4 This example is due to Santiago Zanella

11

Given a trace tr and a grant policy g, the function PermsOfg : Perm →
Trace → Perm computes the permission state resulting from the execution of
the program that tr represents:

PermsOfg(pinit : Perm)(tr : Trace) : Perm
def
=

match tr with
|[] ⇒ pinit

|tr′ / e ⇒ match KD e.noT with
|Consume rt pr ⇒ consume rt pr (PermsOfg pinit tr′)
|Grant rt pr m ⇒ g rt pr m (PermsOfg pinit tr′)
| ⇒ PermsOfg pinit tr′

end
end

Finally, given a grant policy g, a trace is said to be safe if none of its prefixes
yields a faulty permission state:

Safeg(tr : Trace)(pinit : Perm)
def
=

∀tr′ : Trace, (prefix tr′ tr) → ¬Error(PermsOfg pinit tr′)

4 Permission Grant Policies

Two kinds of grant policies are analysed in [2]: given a resource type rt, one of
the policies establishes that when a new permission is granted to resources of
rt, all previous granted permissions are overwritten. This policy is called here
grantow. The another policy, called here grantac, establishes that new granted
permissions for rt are accumulated with the ones previously obtained for that
resource type. These policies are formally defined as follows:

grantow : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr m

grantac : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr tPermRes (p rt).permRes) (m +mul (p rt).mul)

The permission modes defined by MIDP are also defined below as grant poli-
cies. The grantbk term represents the blanket permission mode, which specifies
unrestricted access to a given resource type. The one-shot permission mode,
which specifies a single access to a given resource type, is represented by the
term grantos.

grantbk : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt (pr tPermRes (p rt).permRes) ∞

grantos : grantPolicy
def
=

λ (p : Perm) (rt : ResType) (pr : PermRes rt) (m : Mul) .
update p rt pr 1

12

It should be noticed that both the allowed mode and the session permission
mode specified by MIDP 2.0 can be modeled as a blanket grant policy. In the
first case, the granted permission would hold for the rest of the life cycle of the
application to which is granted the permission and, in the second case, the scope
would be that of a session during which that application is active.

In order to perform a comparative analysis of grant policies of the kind of
the ones just defined, the following relation is defined:

g1 vg g2
def
= ∀(tr : Trace)(p : Perm),

P traceg1 tr → Safeg1 p tr → Safeg2 p tr

This order establishes that given a control-flow graph, for every valid trace of
the graph according to g1 and every initial set of permissions it holds that if the
trace is safe by granting the permissions using g1 as policy, then it must also be
safe if the permissions are granted using the policy g2. Intuitevely, g1 yields a
more restrictive permission model.

The following lemma states that the order relation between permission states
preserves error situations. It can also be proved that vg is a partial order (reflex-
ive, transitive and antisymmetric). These results shall be of help when relating
the grant policies described so far.

Lemma 3.

Lemma lePermError : ∀(p1 p2 : Perm), Error p1 → p1 vPerm p2 → Error p2

The relation vg defines a lattice structure with the policies grantos and
grantbk as the bottom and top elements respectively.

The following theorem states a sufficient condition (a criterion) to prove
that two permission granting policies, g1 and g2 say, are in the order relation
(g1 vg g2):

1. the error situations that arise using g2 as a policy are also error situations
if g1 is used, and

2. if a grant policy g1 is applied, then every permission available at the end of
a trace is also available if g2 is used instead of g1.

This theorem is important in order to compare different security policies.

Theorem 1.

Theorem lePolicyCrit :
∀(g1 g2 : grantPolicy)
(Herrors : ∀(rt : ResType) (pr : validPermRes rt) (m : NZMulV alid)

(p : Perm), Error(g2 rt pr m p) → Error(g1 rt pr m p))
(Hperms : ∀(p : Perm) (tr : Trace),

(PermsOfg1 p tr) vPerm (PermsOfg2 p tr)),
g1 vg g2

13

Proof. The proof proceeds by induction over (PTraceg1 tr), which is obtained
after unfolding g1 vg g2. If the trace tr is empty, then the theorem holds trivially.
In the case the trace is a singleton node, the proof uses hypothesis Herrors and
proceeds by doing case analysis on the instruction type associated with that
node; the interesting case corresponds to the Grant instruction, since consume
is monotonic w.r.t. vPerm and the rest of the instructions do not affect the
permission state.

The inductive step follows basically from the lemma lePermError, the hy-
pothesis Hperms, and the induction hypothesis. �

5 Relating Permission Grant Policies

Using the formal setting defined so far it is now possible to state and prove a
theorem that establishes how the four policies described in the previous section
are related according to the order relation vg.

Theorem 2.

Theorem grantPolicyRel : grantos vg grantow vg grantac vg grantbk

Proof. The proof of this theorem proceeds first by proving the three inequalities
grantos vg grantow, grantow vg grantac and grantac vg grantbk, and then
applying the transitivy of the order vg. Each inequality is proved applying the
theorem that establishes the sufficient conditions to prove that two grant policies
are in the order relation (theorem lePolicyCrit), and following a similar strategy.
Here it shall be presented in detail the proof of the first inequality, indications
on how to proceed for the remainding two cases shall also be provided.

The application of the lemma lePolicyCrit to prove grantos vg grantow

generates in turn the following proof obligations:

1. ∀(rt : ResType) (pr : validPermRes rt) (m : NZMulV alid) (p : Perm),
Error(g2 rt pr m p) → Error(g1 rt pr m p))

2. ∀(p : Perm) (tr : Trace), (PermsOfg1 p tr) vPerm (PermsOfg2 p tr))

The proof of (1) proceeds by first applying the lemma lePermError. This leads
to have to prove that (grantos rt pr m p) vPerm (grantow rt pr m p). Un-
folding the definition of grantow and grantos, and applying the lemmas that
characterize the function update, we have to prove 〈pr, 1〉 vPermMul 〈pr,m〉 and
(p rt) vPermMul (p rt). The latter follows directly because vPermMul is reflex-
ive. As to the former, as m : NZMulV alid so the least number it can be is 1,
in which case, since vPermMul is reflexive, the obligation is discharged.

For (2), the proof poceeds by induction on tr:

– tr = [], the inequality simplifies to p vPerm p and since vPerm is reflexive,
this obligation is discharged.

14

– tr = tr′ / 〈n, st, ex〉, the proof proceeds by case analysis on KD n. The
relevant cases are Grant and Consume, since the rest of the instructions do
not affect the permission state. The Consume case is straightforward since
the function consume is monotonic, and by induction hypothesis it is known
that (PermsOfgrantos

p tr′) vPerm (PermsOfgrantow
p tr′). The Grant

case is proved using transitivity of vPerm, the induction hypothesis and the
following two lemmas:
• ∀(rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p : Perm),

(grantos rt pr m p) vPerm (grantow rt pr m p)
• ∀(rt : ResType)(pr : validPermRes rt)(m : NZMulV alid)(p p′ :

Perm), p vPerm p′ → (grantow rt pr m p) vPerm (grantow rt pr m p′).
The proofs of these lemmas are omitted due to space restrictions.

The structure of the proof of the two remaining inequalities are quite similar
to the one just described above. In both cases the bulk of the proof reduces to
prove auxiliary lemmas similar to the ones of the proof obligation (2) for the
involved grant policies. �

This theorem and its proof provide a formal evidence that, in the first place,
of the four policies, MIDP’s one-shot is the most restrictive policy and MIDP’s
blanket is the most permissive one. In addition to that, these two policies have
been formally related with the permission grant policies defined in [2]. Fur-
thermore, the theorem also formally relates these two latter granting policies,
showing that the accumulative one is more permissive than the overwriting one.

The difference between accumulating permissions and overwriting permis-
sions is subtle. The problem with accumulating permissions is that at any pro-
gram point to approximate the permissions available for a given resource type
it has to be considered all the consumptions and all the permissions granted
for that resource type. Whereas in the overwriting grant policy it is enough to
consider the last grant operation and the subsequent consume operations. This
suggest that a static permission analysis might be simpler using the overwriting
grant policy.

6 Conclusion and Further Work

This paper reports work concerning the formal specification and analysis of
access control models for interactive mobile devices.

Here it has been presented an unprecedented framework, formalized using the
proof-assistant Coq, that provides a uniform setting to define and analyse ac-
cess control models which incorporate interactive permission requesting/granting
mechanisms. In particular, the work presented here has focused on two distin-
guished permission models: the one defined by version 2.0 of MIDP and the one
defined by Besson et al. in [2]. A drawback of MIDP permission model is that
the user is forced to decide between tedious continuous interruption in interac-
tive programs in order to grant a (one-shot) permission or otherwise to trust
applications and concede almost irrestricted permission for it to access sensible

15

resources. The model proposed in [2] is more flexible than MIDP’s, allowing
additional possibilities in the way permissions are granted. A characterization
of both models in terms of a formal definition of grant policy has also been
provided.

Another kind of permission policies can also be expressed in the framework.
In particular, it can be adapted to introduce a notion of permission revocation,
a permission mode not considered in MIDP. A revoke can be modeled in the
permission overwriting approach, for instance, by assigning a zero multiplicity
to a resource type. In the accumulative approach, revocation might be modeled
using negative multiplicities. To introduce revocations, in turn, enables, without
further changes to the framework, to model a notion of permission scope. One
such scope would be grasped as the session interval delimited by an activation
and a revocation of that permission.

An order relation vg on grant policies has also been presented in this work.
Two theorems have been established and their proofs discussed: one that states
a sufficient condition to prove that two permission granting policies are related
by that order, and another one that establishes a precise comparison of permis-
sion granting policies defined by the models. In particular it is formally proved
that the accumulative grant policy is more permissive than the overwriting one.
Furthermore, it has been shown that vg defines a lattice structure with the poli-
cies grantos and grantbk as the bottom and top elements respectively, providing
then a formal algebraic setting in which grant policies can be precisely related
and compared.

Further work is the study and specification, using the formal setting provided
by the framework, of algorithms for enforcing the security policies derived from
different sort of permission models to control the access to sensitive resources
of the devices. Moreover, one main objective is to extend the framework so as
to be able to construct certified prototypes from the formal definitions of those
algorithms.

References

[1] M. Bartoletti, P. Degano, and G-L. Ferrari. Static analysis for stack inspection.
In Electronic Notes in Computer Science, volume 54, 2001.

[2] F. Besson, G. Dufay, and T. Jensen. A formal model of access control for mo-
bile interactive devices. In 11th European Symposium on Research in Computer
Security (ESORICS’06), LNCS 4189, pages 110–126, 2006.

[3] F. Besson, T. Jensen, D. Le Métayer, and T. Thorn. Model ckecking security
properties of control flow graphs. Journal of Computer Security, 9:217–250, 2001.

[4] T. Coquand and G. Huet. The Calculus of Constructions. In Information and
Computation, volume 76, pages 95–120. Academic Press, February/March 1988.

[5] T. Coquand and C. Paulin-Mohring. Inductively defined types. In P. Martin-
Löf and G. Mints, editors, COLOG-88, International Conference on Computer
Logic, Tallinn, USSR, December 1988, volume 417 of Lecture Notes in Computer
Science, pages 50–66. Springer-Verlag, 1990.

[6] JSR 118 Expert Group. Mobile information device profile for java 2 micro edition.
version 2.0. Technical report, Sun Microsystems, Inc. and Motorola, Inc., 2002.

16

[7] JSR 37 Expert Group. Mobile information device profile for java 2 micro edition.
version 1.0. Technical report, Sun Microsystems, Inc., 2000.

[8] T. Jensen, D. Le Métayer, and T. Thorn. Verification of control flow based security
properties. In Proc. of the 20th IEEE Symp. on Security and Privacy, pages 89–
103. New York: IEEE Computer Society, may 1999.

[9] R. Roushani, G. Betarte, and C. Luna. A Certified Access Controller for JME-
MIDP 2.0 enabled Mobile Devices. In I Chilean Workshop on Formal Methods,
Punta Arenas, Chile. IEEE Computer Society, 2008. To be published.

[10] Sun Microsystems, Inc. Java Platform Micro Edition., Last accessed: Oct. 2008.
http://java.sun.com/javame/index.jsp.

[11] The Coq Development Team. The Coq Proof Assistant Reference Manual – Ver-
sion V8.1, 2006.

[12] S. Zanella Béguelin, G. Betarte, and C. Luna. A formal specification of the MIDP
2.0 security model. In Formal Aspects in Security and Trust, Fourth International
Workshop, FAST 2006, Hamilton, Ontario, Canada, August 26-27, 2006, Revised
Selected Papers, volume 4691 of LNCS, pages 220–234. Springer-Verlag, 2006.

