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ABSTRACT
In this work, we present two fundamental primitives for network

security: network dialog minimization and network dialog diffing.
Network dialog minimization (NDM) simplifies an original dialog
with respect to a goal, so that the minimized dialog when replayed
still achieves the goal, but requires minimal network communica-
tion, achieving significant time and bandwidth savings. We present
network delta debugging, the first technique to solve NDM. Net-
work dialog diffing compares two dialogs, aligns them, and identi-
fies their common and different parts. We propose a novel dialog
diffing technique that aligns two dialogs by finding a mapping that
maximizes similarity.

We have applied our techniques to 5 applications. We apply
our dialog minimization approach for: building drive-by download
milkers for 9 exploit kits, integrating them in a infrastructure that
has collected over 14,000 malware samples running from a single
machine; efficiently measuring the percentage of popular sites that
allow cookie replay, finding that 31% do not destroy the server-side
state when a user logs out and that 17% provide cookies that live
over a month; simplifying a cumbersome user interface, saving our
institution 3 hours of time per year and employee; and finding a
new vulnerability in a SIP server. We apply our dialog diffing ap-
proach for clustering benign (F-Measure = 100%) and malicious
(F-Measure = 87.6%) dialogs.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Network Protocols;
D.4.6 [Operating Systems]: Security and Protection

General Terms
Security

Keywords
Network dialog minimization, network dialog diffing, network se-
curity, network delta debugging.
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1. INTRODUCTION
A network dialog comprises the exchange of network traffic be-

tween peers to achieve a goal, which can be benign such as visiting
your favorite website or downloading a file from a remote server,
but also malicious such as exploiting a networked application. For
example, a simple goal like visiting the root page of Amazon.com
produces a complex network dialog that involves multiple remote
servers and requires establishing as many as 41 TCP connections
and exchanging up to 330 HTTP messages, used among others to
download the HTML content, figures from CDNs, perform analyt-
ics, and display advertisements from ad networks.

Two fundamental primitives for network security are replaying
a network dialog previously captured in a network trace and com-
paring network dialogs. Dialog replay enables applications such as
testing which server versions are vulnerable to a exploit [11], eval-
uating intrusion detection systems [18], building interactive hon-
eypots [23], and active botnet infiltration [5, 8]. And, comparing
network dialogs enables clustering malware samples based on their
network behavior [38] and building C&C signatures [16, 31].

Many tools have been proposed to replay traffic from a trace [7,
18, 28, 35] and prior work proposes techniques for replaying a net-
work dialog regardless of the protocols involved [11,27]. However,
a network trace may contain much traffic unrelated to the replay
goal. For example, a trace obtained at the network’s boundary may
capture an attack on an internal server that an analyst wants to re-
play. But, it likely contains much traffic (e.g., Gigabytes) from
other hosts not attacked, and traffic from the attacked server un-
related to the attack, e.g., because it happens before or after the
attack. Before replaying the attack an analyst may want to remove
all unrelated traffic to better understand the attack, and also for ef-
ficiency since the attack traffic may be a small part of the full trace
and the attack may need to be replayed many times (e.g., against
different server versions).

In this work, we introduce the problems of network dialog mini-
mization (NDM) and network dialog diffing. Network dialog min-
imization is the problem of given an original dialog that satisfies
a goal, producing a minimized dialog comprising the smallest sub-
set of the original dialog that when replayed still achieves the same
goal as the original dialog. In essence, the minimized dialog pro-
vides a shortcut to the goal, removing all connections and messages
in the original dialog unrelated to the goal. A minimized dialog en-
ables understanding what parts of a dialog really matter for the goal
e.g., determining which messages and fields are really required to
exploit a network server without expensive code analysis. Further-
more, it provides huge reductions (up to 71 times) in time and band-
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Figure 1: A drive-by download network dialog.

width to achieve the goal, which is fundamental when replaying a
dialog repeatedly over time, e.g., in active botnet infiltration [5, 8].

In this work, we propose network delta debugging the first tech-
nique to automatically minimize a network dialog. Our insight is
that NDM is a generalization of the problem of minimizing an input
that crashes a program, for which delta debugging is a well-known
solution [39]. Our network delta debugging technique generalizes
delta debugging so that it can be applied to remote applications, al-
lows application-specific goals beyond crashing an application, and
takes advantage of the hierarchical structure of a network dialog.

Network dialog diffing is the problem of given two dialogs, iden-
tifying how similar they are, how to align them, and how to identify
their common and different parts. In this work we propose a novel
technique for dialog diffing, which aligns two network dialogs by
finding a mapping between the dialogs that maximizes similarity.
Once aligned, it identifies which elements (e.g., connections, mes-
sages) have been inserted, removed, and modified. We also define
a dialog similarity metric that captures how similar two dialogs are.

We have applied our dialog minimization and diffing techniques
to 5 applications. First, we apply NDM to build drive-by download
milkers, which periodically replay a minimized drive-by download
dialog to collect the malware an exploit server distributes over time.
We have built milkers for 9 exploit kits and have integrated them
into an infrastructure that has collected over 14,000 malware sam-
ples. A milker achieves a 34x reduction in replay time and their
use enables reducing our malware collection infrastructure from
three to a single host. Second, we apply NDM for measuring the
current status of well-known cookie replay issues in popular web-
sites [1, 4, 14, 17, 30]. The use of NDM achieves a 71x reduction
in replay time, saving over 20 hours of processing each day. Our
measurements show that despite years of research on the topic 31%
of the top 100 Alexa domains do not destroy the server-side state
when a user clicks the logout link. Thus, the user remains effec-
tively logged in. For 17% of all Alexa top 100 sites their cookie can
be replayed for more than a month, creating a very large window
for session hijacking. Third, we use NDM for vulnerability analy-
sis, finding a new vulnerability in the OpenSBC SIP server. Fourth,
we apply NDM for simplifying an unnecessarily cumbersome pro-
prietary web interface to move up and down a windows sunblind
in an automated building, converting it to a simple command-line
tool. The simplified interface saves up to 3 hours of time a year
per employee, and $10,000 that the building vendor would charge
for modifying the proprietary interface. Finally, we evaluate our
dialog diffing approach for clustering similar dialogs. Our dialog
clustering achieves 100% precision and 100% recall on 60 benign
dialogs from the top 30 Alexa sites, and 100% precision with 78%
recall when clustering 91 malware dialogs from 6 families.

Contributions:

• We introduce the problem of network dialog minimization
(NDM) and present network delta debugging, the first tech-
nique to solve NDM.

• We propose a novel dialog diffing approach that finds a map-
ping that maximizes similarity between two network dialogs,
and then identifies their common and different elements. We
define a dialog similarity metric that leverages the alignment.

• We present a novel encoding of a network dialog as a tree,
which captures the dialog’s hierarchical structure of connec-
tions, messages, and fields.

• We apply our dialog minimization and diffing techniques to
5 applications: building drive-by download milkers, cookie
expiration validation, simplifying user interfaces, vulnerabil-
ity analysis, and dialog clustering.

2. OVERVIEW
A network dialog comprises the network traffic exchanged be-

tween peers for achieving a goal such as sending an email or in-
stalling malware in a victim’s host through a drive-by download.
At the core of this work is the intuition that a network dialog can
be represented as a network dialog tree that captures the hierarchi-
cal structure of the network dialog, which comprises connections,
messages, and fields in messages.

A network dialog tree enables automatically operating on a net-
work dialog, e.g., replaying the network dialog, minimizing it, or
comparing two dialogs. Figure 1 shows a simple drive-by down-
load dialog where a victim visits a compromised site (pg22.com.
br) that redirects the victim to an exploit server at Ghanarpower.
net, which checks the browser and Java plugin version (GET /main
.php), redirects the victim’s browser to download a Java exploit
(GET /Werd.jar), and if exploitation succeeds redirects the browser
to download a malware sample (GET /w.php). Figure 2 shows the
corresponding dialog tree, where the first level below the root cor-
responds to connections, the second level to messages in those con-
nections, and deeper levels to the hierarchical field structure of each
message. We detail the network dialog tree in Section 3.

The remainder of this section presents our novel operations on
the network dialog tree (Section 2.1) and describes applications of
those operations (Section 2.2).

2.1 Network Dialog Tree Operations
We propose two novel operations on network dialog trees: dialog

minimization and dialog diffing.
Dialog minimization. One important use of network dialog trees is
to automatically replay a previously captured network dialog. The
network dialog can be periodically replayed to the same entities
involved in the dialog or to different ones (e.g., by replacing their IP
addresses / domain names). We take dialog replay one step further
and introduce the problem of network dialog minimization (NDM),
which is the process of given an original dialog that satisfies a goal,
automatically producing a minimized dialog that, when replayed,
achieves the same goal as the original dialog but with minimum
traffic, i.e., removing all connections and messages not needed to
achieve the goal. Further removal of elements from the minimized
dialog causes the goal not to be reached.

For example, Figure 3 presents the minimized dialog for the
drive-by download original dialog in Figure 1, where the goal is
to download the malware sample being distributed. The minimized
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Figure 3: Minimized drive-by download dialog.
dialog shows that it is possible to download the malware by simply
replaying two of the four requests in the original dialog.
Dialog diffing. Two dialogs that achieve exactly the same goal but
are taken at different points in time, or from different end hosts,
may intuitively be similar but may include a large number of di-
vergences due to non-determinism. For example, a visit to Mi-
crosoft’s MSN.com root page produces a complex network dia-
log with 82 connections connections and 177 requests. Visiting
MSN.com again one day later produces a similar dialog but with
99 connections and 222 requests instead.

Network dialog diffing is the problem of given two network di-
alogs automatically identifying how similar they are, which parts
are the same across them, and which parts different (i.e., connec-
tions and messages added, removed, or modified). Solving the dia-
log diffing problem implies solving the dialog similarity and dialog
alignment problems as well. Our approach first defines similarity
metrics between messages, connections, and dialogs. Then, it uses
the similarity results to align both dialogs. Once aligned, common
and different parts between both dialogs are output.

2.2 Dialog Tree Applications
This section introduces the 5 applications we use to demonstrate

our techniques.
Building drive-by download milkers. A drive-by-download milker
is a lightweight program that periodically downloads a malware
sample from an exploit server. Its goal is similar to a honeyclient,
which given a URL, visits it, gets exploited, and downloads the
malware sample being distributed. But, a drive-by download milker
does not go through the exploitation process and thus does not
require running a heavyweight VM with a vulnerable browser; it
simply replays a minimized drive-by download dialog. A drive-by
download milker takes as input a minimized drive-by download di-
alog for a specific exploit kit (e.g., RedKit or CoolExploit), a set
of exploit server IP addresses, and a time value specifying how of-
ten to replay the dialog. At each iteration it downloads a malware
sample from each exploit server.

Drive-by download milkers need to be used in combination with
honeyclients since it is not always possible to replay a drive-by
download dialog. However, they achieve large performance sav-
ings. To combine them, we first run a honeyclient on a URL ob-
tained from an external feed. If the URL leads to exploitation,
the honeyclient outputs an original dialog, which our infrastruc-
ture immediately tries to minimize using our dialog minimization

technique. If minimization succeeds, then it builds a signature on
the URL of the exploit server so that next time a URL for the same
exploit kit is seen a milker is used instead of a honeyclient. Our in-
frastructure periodically visits each exploit server every few hours
and from different IP addresses. Thus, using a milker instead of a
honeyclient quickly adds up in performance gains.

We have used this combination of drive-by download milkers
and honeyclients to collect over 14,000 malware samples during
one year from a single machine. The malware collection results
and their analysis have been introduced in prior work [26]. How-
ever, that work did not present the network dialog minimization
technique at the core of our milkers. In addition, our prior work
only built milkers for two exploit kits (BlackHole 1.x and Phoenix),
while this work builds milkers for 9 (Section 6.1).
Cookie expiration validation. Most web applications generate an
authentication token upon successful validation of a user’s creden-
tials (e.g., username and password) and embed it into a cookie
that is stored in the user’s browser. The user login is typically
protected by HTTPS. However, a significant fraction of web ap-
plications (37% of the top 100 Alexa sites) use plain HTTP for
subsequent connections because of performance and compatibility
issues. Since the unencrypted cookie is included in following re-
quests to the server, a network attacker (e.g., on a public WiFi) can
capture the cookie and include it in its own connections to hijack
the session, impersonating the user [1,4,13,14,17,30]. This enables
the adversary to access and change the user’s sensitive information
and to steal the account by changing the user’s password.

To mitigate cookie replay attacks, the web server should expire
the authentication token in the cookie after some time forcing the
user to re-authenticate afterwards (thus minimizing the time win-
dow for an adversary to launch a session-hijacking attack). Here, it
is not enough to delete the cookie in the user’s browser when she
clicks on a logout link. The web application also needs to remove
the authentication token on the server-side, otherwise the attacker
can still replay it, even if the user has (apparently) logged out.

While these problems have been known for over a decade [14,
30], it is necessary to understand if web applications are address-
ing it and how fast. However, manually checking cookie expira-
tion times for many web applications is cumbersome because each
application’s cookie has a different format and may be encrypted.
The most general way to test cookie expiration times is to replay
the cookie periodically until the server stops accepting it. For this,
we use our dialog minimization technique on a valid authenticated
dialog for each application under test and automatically replay the
minimized dialog at fixed intervals.

We have applied our approach to the top 100 Alexa sites that
do not use full HTTPS communication, measuring how many sites
allow cookie replay and for how long (Section 6.2). Our measure-
ments show that 31% of the top 100 Alexa domains still do not
destroy the server-side state when a user clicks the logout link and
that 17% have cookies the live over a month, creating a large op-
portunity window for session hijacking.



Simplifying user interfaces. Web applications often require the
user to go through several manual steps (e.g., traversing multi-
ple webpages, filling forms) to reach an interesting state. Net-
work dialog minimization can be used to produce a shortcut to that
state that removes unnecessary steps and which can be automat-
ically replayed. This simplifies application access, e.g., convert-
ing a web based application into a command line tool. Simplified
user interfaces save user time and also provide benefits for disabled
users [21]. For example, one of our institutions recently moved to
a brand new fully automated building. This building has no manual
switches; tasks like turning on the lights, moving sunblinds, and
setting the temperature of an office can only be performed through
a web application that interfaces with a building automation system
(BAS). A simple task like moving the sunblind down when the sun
hits the computer screen, requires accessing three different web-
pages (login, office selection, value setting) through a cumbersome
interface. Unfortunately, the web application and the BAS interface
are proprietary and undocumented. Any changes to them requires
expensive work by the BAS manufacturer. We have applied our
dialog minimization technique to generate minimized dialogs for
moving a sunblind up and down, and a command line tool that re-
plays them (Section 6.3). Employees can now perform these tasks
more efficiently saving 3 hours per person and year.
Vulnerability analysis. Replaying an attack on a vulnerable net-
worked application is a useful capability that enables testing the
vulnerability and determining which versions are vulnerable [11].
In addition, minimizing a network attack dialog enables under-
standing the conditions leading to exploitation without expensive
code inspection, and the minimized dialog can be used as an ex-
ploit signature [12]. Furthermore, minimization is fundamental to
isolate the real attack when the input is a network trace (e.g., cap-
tured at an IDS) that contains an attack on a vulnerability but also
much other traffic unrelated to the attack. We have applied our
network dialog minimization technique to minimize an attack on
the OpenSBC SIP server (Section 6.4). The minimized dialog still
exploits a patched version of the OpenSBC server unveiling a pre-
viously unknown vulnerability, which has been acknowledged by
the author and assigned an OSVDB identifier [29].
Dialog clustering. Our dialog diffing approach defines a similar-
ity metric between network dialogs that enables clustering multiple
similar dialogs at once. We have evaluated dialog clustering on 60
benign and 91 malicious dialogs (Section 6.5). The benign dialogs
correspond to visiting the top 30 Alexa sites twice, spacing the vis-
its one day apart. Our clustering groups with perfect accuracy and
recall the dialogs from the same site in the same cluster, despite
the many changes between both dialogs due to non-determinism.
The malicious dialogs are obtained by running malware, captur-
ing their C&C communication. Here, the clustering achieves 100%
accuracy and 78% recall. The perfect accuracy enables integrat-
ing our clustering as a first step into existing signature generation
tools [31, 33].

3. NETWORK DIALOG TREE
A network dialog may comprise multiple connections, each with

multiple messages on both dialog directions, and each message
with its own field hierarchy. The network dialog tree captures this
hierarchical structure. The nodes of the tree correspond to con-
nections, messages, or fields depending on the depth in the tree.
An edge from a parent node to a child node implies that the child
belongs to the parent, e.g., that a message belongs to a specific con-
nection or a field to a specific message. Nodes at the same depth
and with the same parent (e.g., all messages in a connection) re-

spect a temporal ordering in which the beginning of a node (e.g.,
the first packet in a message or the first byte in a field) appeared on
the network earlier than the start of the node on its right.

The root represents the complete dialog and is annotated with the
list of peers involved in the dialog (at least two but possibly more),
each peer characterized by an IP address, a DNS domain, or both.

Nodes at depth 1 correspond to connections. Each connection
node has 7 attributes: source and destination peers, source and
destination ports, transport protocol, application protocol, and the
timestamp of the first packet. We build UDP “connection” nodes
by grouping all UDP packets between two peers until no traffic is
seen between them for a predefined window of time. The source
peer corresponds to the initiator of the connection. Connections
are ordered using the timestamp of their first packet.

Nodes at depth 2 correspond to the messages in the connection.
Each message node is annotated with the peer that sends the mes-
sage, which captures its direction. For UDP connections, each
packet is considered a separate message. Messages in the same
connection are ordered using the timestamp of their first packet.

The nodes at depth≥ 3 correspond to fields in the message. Each
field node is annotated with the range of bytes it occupies in the
message and fields can only have completely disjoint or completely
enclosed ranges (i.e., fields cannot partially overlap). Field nodes
can be hierarchical fields if they have children or leaf fields other-
wise. The children of a hierarchical field cover disjoint parts of the
parent’s range. For example, every HTTP GET message in Figure 2
contains a Request-line field that in turn contains 3 other fields: the
method, the URI, and the protocol version. Field nodes are ordered
using the start offset of the field in the message it belongs to (offset
zero is the first byte).
Node dependencies. A network dialog tree also captures field de-
pendencies, e.g., a field may be the length or checksum of another
field in the same message. Dependencies can also happen across
messages, e.g., the value of a Cookie field received from a web
server in an HTTP response may be sent in a later HTTP request
to the same server. There can also be dependencies across connec-
tions, e.g., the Referer and Location HTTP headers indicate that a
request was originated by a redirection in a previous response.
Protocol knowledge. The network dialog tree is a general ab-
straction that can be used to represent any network dialog regard-
less of the protocols involved. However, only the construction of
the first level, i.e., extracting the connections nodes, is protocol-
independent. Extracting the message and field levels requires knowl-
edge about the application protocol used in the connection. We
assume the availability of the grammar of each protocol involved.
When the grammar is not available, prior work has shown how to
recover it from an implementation of the protocol [6,10,24,37]. In
this paper, we focus on HTTP and SIP dialogs since these are the
only protocols needed by our applications.

4. DIALOG MINIMIZATION
Minimizing a network dialog is an intuitive process: create a test

dialog by removing some part of the original dialog, replay the test
dialog, and check if the goal is still achieved. If the test passes (i.e.,
the goal is still achieved) the part removed is not needed to achieve
the goal and thus should not be in the minimized dialog. If the test
fails (i.e., goal not achieved), it is needed and should be kept in the
minimized dialog. The main goals are that the minimized dialog
should not contain unnecessary parts and that the number of tests
to produce the minimized dialog should be as small as possible.

Our insight is that network dialog minimization (NDM) is a gen-
eralized version of the problem of minimizing an input that crashes



a program, for which delta debugging is a well known solution [39].
The differences are that (1) NDM deals with remote networked
applications, which we may not control, rather than a local pro-
gram; (2) NDM’s goal is not necessarily crashing the remote ap-
plication, but more generally to drive it to some externally visible
state; and (3) NDM operates on sequences of connections and mes-
sages rather than a file or a single network packet. We detail how
we address these differences next.
Reset button. The first difference is that in input minimization
the analyst controls the program for which the input is being min-
imized. More specifically, the analyst can restart the program be-
fore each test. Thus, the tests are independent because the program
starts each test in the same initial state. However, NDM deals with
a remote server which we may not control because it may belong
to another party, e.g., an exploit server. This is problematic be-
cause when we perform a test, the remote server may be left in a
state different from its initial state. Thus, the next test starts in a
different server state and the tests are not independent. Without in-
dependent tests, the minimization may produce an incorrect result.
For example, the minimized drive-by download dialog in Figure 3
shows that messages M2 and M4 are both needed to download the
malware. If a test consisted only of message M2 and the next test
only of message M4, the second test would reach the goal thanks
to the server state set by the first test, which would be incorrectly
interpreted as only M4 being needed to reach the goal.

The solution to this problem is to define an application-specific
reset button that the minimization process can use to reset the re-
mote server to its initial state before each test. We propose one reset
button implementation, applicable to many network server types,
but other implementations are possible.

The intuition behind our reset button is that a network server
handles multiple simultaneous clients by keeping a separate state
machine for each. Thus, if the replayer uses a previously unused IP
address for every test, then at the start of a new test every endpoint
will be in its initial state. For each level of the tree with n nodes,
the minimization may generate up to n2+3n tests, so that our reset
button may require a large IP address pool. In addition, the remote
application may limit the geographical location of IP addresses it
serves. To identify this case, the minimization first conducts a ge-
ographical distribution test (GDT) where it replays the full original
dialog from one IP address in each region. If some regions are
blocked, the reset button is modified to utilize only IP addresses in
the allowed regions.

To implement the reset button we use a commercial Virtual Pri-
vate Network (VPN) that offers exit points in more than 50 coun-
tries, each with a pool of IP addresses, totaling more than 45,000
IPs. Each test changes the VPN observable IP. In our applications
we never run out of IP addresses. For very large trees, NDM sup-
ports limiting the minimization to a certain tree depth.
Goal function. The second difference is that NDM minimizes the
original dialog with respect to a goal that may not be crashing the
remote network application. For example, in the drive-by download
dialog in Figure 1 the goal is downloading a malware binary from
the exploit server. NDM takes as input a boolean goal function that
given the responses received from the peers during the test, returns
true if the goal was achieved in the test, false otherwise. The im-
plementation of the goal function is dialog-specific. In some appli-
cations it is enough to check the received responses, e.g., whether a
response from an exploit server contains an executable. Other goal
functions may be more complex, e.g., for vulnerability analysis it
may check if the application crashed through local monitoring or
by sending a probe to see if the application still responds.
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Dialog tree. The third difference is that NDM does not deal with
minimizing a single input, but rather a sequence of network con-
nections and messages. Our insight is that by encoding a network
dialog as a tree we can use a hierarchical version of delta debugging
to minimize the dialog [25]. Capturing the hierarchical structure
of the network dialog enables applying delta debugging (ddmin)
at each level of the tree. Intuitively, this greatly speeds up mini-
mization because only properly-formatted inputs are produced and
because if a test removes the subtree rooted at one node and the test
passes, then the complete subtree requires no more tests.
Architecture overview. Figure 4 shows the architecture of NDM,
which comprises 3 modules: dialog generation, network delta de-
bugging, and replayer. The dialog generation module runs once.
It takes as input a network trace and the goal function. It builds a
network dialog tree from the traffic in the trace and uses the goal
function to remove any connections and messages after the goal
was reached, since they are unrelated to the goal. The core of
NDM is the network delta debugging module, which takes as in-
put the original dialog tree, the goal function, and the reset button.
It implements an iterative process. At each iteration it produces a
test network dialog by removing some elements from the original
dialog. The test dialog is passed to the replayer module, which re-
plays it to the remote peers and passes the responses back to the
network delta debugging module. The responses are checked with
the goal function to determine if the test passed or failed, and a new
test dialog is produced for the next iteration. This iterative process
eventually outputs the minimized dialog.
Network delta debugging. Network delta debugging applies ddmin
at each level of the network dialog tree from the root to the leaves,
using the goal function to determine if a test passed and the reset
button to restart the server state after each test. In a nutshell, ddmin
executes the following 3 steps:

1. Reduce to subset: Split the current configuration into n par-
titions. Test each partition. If a partition reaches the goal,
treat it as the current configuration and go to 1.

2. Reduce to complement: Test the complement of each parti-
tion. If any reaches the goal, treat it as the current configura-
tion and go to 1.

3. Increase granularity: Split the current configuration into 2n
partitions, where n is the current number of partitions, and go
to 1. If the configuration cannot be split further, the algorithm
outputs the current configuration as the minimized dialog.

Figure 5 details the minimization process for the dialog tree in
Figure 2. First, it applies ddmin to the connections (level 1). Here,
ddmin splits the connections into 2 subsets and tests each subset
separately (tests §1–2). The first test contains connection C1 (i.e.,
all messages in C1) and fails to reach the goal. The second test
contains {C2, C3} and this time the goal is reached. The current
configuration is set to {C2}, {C3}; the subtree rooted at C1 will no
longer be tested. Next, it reduces the current configuration into 2
subsets, testing C2 and C3 individually (§3–4), both failing to reach
the goal. Since the complements have been tested and the granular-
ity cannot be increased, level 1 minimization outputs C2 and C3.
Next, ddmin is applied to the messages (level 2) of the remaining
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Figure 5: Minimization of the dialog in Figure 2.

connections. The messages are split into 2 subsets, both failing to
reach the goal (§5–6). Here, ddmin increases the granularity to 2n,
halving the message subsets. Thus, M3 and M4 are tested sepa-
rately, both failing (§7–8). Note that M2 had already been tested in
§5. Next, the complement of M3 is tested reaching the goal (§9), so
the current configuration is reduced to {M2}, {M4}, but both fail
(§10–11). At this point, level 2 minimization finishes determining
that messages M2 in C2 and M4 in C3 are required to reach the
goal. We leave level 3 minimization as an exercise to the reader.
Figure 3 shows the resulting minimized dialog.

5. DIALOG DIFFING
Our dialog diffing approach first computes similarity scores be-

tween messages in both dialogs. Then, it aligns the dialogs by find-
ing an optimal mapping between their messages. Once aligned,
common and different parts are output and the dialog similarity
score is computed. The two dialogs are compared on their struc-
ture and message content. Similar dialogs are identified despite
changes in endpoints (domains, IPs), message reordering, and dif-
ferent number of connections and messages in both dialogs. End-
points often change with malware since C&C domains and IPs are
frequently updated, and also with benign dialogs if CDNs or load
balancers are involved. Many HTTP dialogs contain asynchronous
connections producing alternative message and connection order-
ings, which do not affect the dialog semantics. Furthermore, while
different number of messages make the dialogs less similar, it is
still possible to flag similarity if the spurious messages are few.
RRP similarity. Rather than comparing individual messages, our
approach compares HTTP request-response pairs (RRPs). RRP
similarity uses 11 features:

1. Request type: same HTTP method in both requests.
2. URL path: same path in both requests’ URL.
3. URL filename: same filename in both requests’ URL.
4. URL parameters: Jaccard index of the sets of parameter names

(without values) in the URLs of both requests.
5. Referer: same value of the Referer header in both requests.
6. Response type: same response code and response status in

both responses.

GET /
302 Found

P11

P12

P13

P14

P21

P22

P23

P24

GET /
200 OK 

GET /
302 Found

POST /login.php
404 Not Found

GET /favicon.ico 
200 OK

Dummy

Dialog1 Dialog2 

GET /
200 OK 

0.9 0.5 0.1 0
0.1 0.4 1.0 0
0.5 1.0 0.4 0

0.1 0.1 0.1 0

P11

P12

P13

P14

P21 P22 P23 P24

(a) Dialog alignment 

(b) Similarity matrix 
0 

0.5  

0.4 

0.1 

0.9

0.4 

0.5 
0 

0 
1.0

0.1  

1.0 

0 

0.
1  

0.1  

0.1  

GET /favicon.ico 
200 OK

Figure 6: Example of dialog alignment (a) and similarity ma-
trix (b) for two dialogs with 4 and 3 messages respectively.

7. Server header: same value in both responses.
8. Location header: same value in both responses.
9. Content-Type header: same value in both responses.

10. Content length: computes 1− ||L1−L2||
max(L1, L2)

where L1, L2 are
the content lengths for both responses (after joining chunks
and decompressing, if needed).

11. Response headers: Jaccard index between the set of response
headers (without values).

Features 1–3, 5–9 are boolean, while 4, 10, and 11 output a value
in [0,1]. RRP similarity simply computes the average of the RRP
features: RRPsim(RRP1, RRP2) =

1
11

∑
i

fi(RRP1, RRP2).

Message alignment. The first step to align the messages in both
dialogs is building an N × N matrix, where N is the maximum
number of nodes in either dialog, and a row captures the similarity
between an RRP in dialog 1 and all RRPs in dialog 2. If a dialog has
less messages than the other, it is padded with dummy RRPs, and
the similarity of any RRP with a dummy RRP is zero. This matrix
can be represented as a complete bipartite graph G = (V1∪V2, E)
where vi ∈ V1 corresponds to an RRP in dialog 1 and vj ∈ V2 to
an RRP in dialog 2. The bipartite graph is complete because there
is an edge between each RRP in one dialog and all RRPs in the
other dialog (vi ∈ V1, vj ∈ V2) weighted by their RRP similarity
score. Figure 6 shows the bipartite graph (a) and similarity matrix
(b) for two dialogs with 4 and 3 messages respectively, the latter
padded with one dummy RRP (N = 4).

Our insight is that aligning the messages in both dialogs cor-
responds to the assignment problem in graph theory, which finds
the mapping in a weighted bipartite graph that maximizes the total
weight of the mapping. The Hungarian algorithm [22] solves this
problem in polynomial time. The solid lines in Figure 6a corre-
spond to the alignment output by the Hungarian algorithm.

The reader may realize that our approach aligns messages with-
out considering connection structure. This is to handle misaligned
connections, e.g., a connection with 4 messages in one dialog may
align with 2 connections with 2 messages each in the other dialog.
Dialog diffing. For the diffing, RRPs aligned with similarity 1.0 are
considered identical. RRPs aligned with high similarity (s ≥ 0.7)
are considered changed. RRPs aligned with low similarity (s <
0.7) are considered new. Threshold selection is explained in Sec-
tion 6.5. In Figure 6, the diffing outputs two identical RRPs, one
changed, and one new.
Dialog similarity. The dialog similarity is computed by summing
the weights of all alignment edges and dividing by the maximum
number of nodes in a dialog:

sim(D1, D2) =
1

N

N∑
i=1

wi (1)

In Figure 6, sim(D1, D2) = 2.9/4 = 0.725.



Dialog Generation Network Delta Debuging Milking Time

Exploit Pre-filtering Filtered L1 L2 L3 Tree IPs GDT Time Honeyclient Milker
Kit Nodes C:M:F C:M:F IPs C:M:F C:M:F C:M:F Nodes used Pref. (sec.) (sec.) (sec.)

BlackHole 1.x 73 6:6:60 5:5:50 2 2:2:22 2:2:22* 2:2:6 11 33 3 157.0 53.5 11.1
CoolExploit 646 18:58:569 5:5:49 2 1:1:7 1:1:7* 1:1:3 6 15 7 42.5 118.8 1.2
CritiXPack 192 4:19:168 2:7:62 2 1:4:33 1:1:7 1:1:3 6 17 7 49.0 46.8 1.3
Eleonore 936 12:76:848 8:66:736 2 1:1:8 1:1:8* 1:1:4 7 27 7 215.8 238.0 3.3
Phoenix 132 12:12:107 7:7:73 1 1:1:7 1:1:7* 1:1:3 6 15 7 24.2 20.8 2.2
ProPack 137 10:12:114 6:6:57 2 1:1:7 1:1:7* 1:1:3 6 15 7 37.3 94.1 0.4
RedKit 154 8:17:128 2:6:57 1 2:6:57 2:2:19 2:2:10 15 71 3 250.4 25.9 0.5
Serenity 54 5:5:43 5:5:43 1 2:2:15 2:2:15* 2:2:6 11 28 7 79.7 96.2 0.8
Unknown 79 5:7:66 5:7:66 2 1:2:14 1:1:7 1:1:3 6 18 7 51.0 29.6 0.4

Table 1: Summary of network dialog minimization of drive-by downloads dialogs.

6. EVALUATION
In this section we evaluate our dialog minimization and dialog

diffing techniques for 5 different applications.

6.1 Building Drive-by Download Milkers
Our drive-by download malware collection infrastructure runs a

honeyclient on any suspicious URL received from external feeds.
If the honeyclient is exploited, it outputs a network trace. The in-
frastructure then applies NDM on the honeyclient dialog, to check
if a milker can replace the honeyclient for increased performance.
Goal. The goal function checks if the body of a HTTP response
contains an executable file (after joining chunks and decompress-
ing, if needed) since in the drive-by download dialogs examined
the binary was not encrypted. If the exploit server drops more than
one executable, the goal function can be set to output true after the
first executable is seen, or after a specified number of binaries is
received using a conjunction of constraints.
Results. Table 1 details the dialog minimization for the 9 exploit
kits for which we built milkers. The left part of Table 1 summa-
rizes the honeyclient dialogs (responses not included). It shows
the number of nodes in the dialog tree built from the honeyclient
network trace; the split of those nodes into connections, messages,
and fields (C:M:F); the remaining nodes when messages and con-
nections after the goal are filtered (e.g., C&C communication after
exploitation); and the number of endpoints (IPs) in the filtered dia-
log. Filtering reduces the number of messages by a factor of 1.8 on
average and up to a factor of 11 (CoolExploit). The filtered dialogs
comprise 2–8 connections, 5–66 messages, and 1–2 peers.

The middle part of Table 1 summarizes the 3-level minimiza-
tion on the filtered dialogs. It shows the connections, messages,
and fields left after each minimization level (L1–L3); the number
of nodes in the minimized dialog; the number of IPs (i.e., tests)
used in the minimization; whether the exploit kit distributed sam-
ples geographically; and the minimization runtime. For 6 kits L2
minimization is not run (marked with asterisk) because connections
remaining after L1 minimization contain at most one request each.
The minimized dialogs for 6 kits contain a single request, i.e., the
malware can be directly downloaded. For BlackHole 1.x and Red-
Kit two messages are left, indicating that the first request sets server
state. For Serenity, 2 connections are required because it drops 2
malware samples.

L3 minimization results show that the majority of HTTP head-
ers are not needed to download the malware. For 7 kits, only the
Request-Line (HTTP method, URI, and protocol version) is re-
quired. In addition, Redkit requires Referer and User-agent head-
ers in both requests and Eleonore the Host header. This shows that
NDM reveals which fields are checked by the server. The 3-level
minimization reduces the nodes in the original tree by a factor of 39

on average, and up to a factor of 162 for Eleonore. The geograph-
ical distribution test (GDT) shows that 7 kits drop the malware to
visitors from any country. BlackHole and Redkit did not serve mal-
ware for IPs in China. After GDT, only 27 IPs (i.e., tests) were
needed on average to minimize a dialog. The Time column shows
the minimization runtime in seconds, when run on a 32-bit 3.3GHz
host with 4 cores and 4GB RAM. On average, 3-level minimiza-
tion took 1.7 minutes, the slowest being RedKit with 4.2 minutes.
Tree size is the dominant runtime factor, but latency and whether
the server keeps state (i.e., L2 minimization needed) also matter.

There were 2 other exploit kits (BlackHole 2.x and Neutrino) for
which minimization failed due to replay protection through dynam-
ically generated URLs. For these exploit kits we used honeyclients.
Savings. The right side of Table 1 shows the milking time when
using a honeyclient and a milker. Using a milker is 34 times faster
than using a honeyclient. These values only include the time for
network communication. The overall savings are larger because the
honeyclient requires an additional 10 seconds to load the snapshot
and transfer the URL, and runs for 4 minutes after initialization to
allow exploitation to complete. Furthermore, each VM uses 512
MB, so the number of VMs that can simultaneously run on a host
is memory constrained. In practice, milkers enabled us to reduce
our milking infrastructure from 3 hosts down to a single host that
runs all milkers and honeyclients.

6.2 Cookie Expiration Validation
In this experiment, we measure how many of the top 100 Alexa

websites are affected by cookie replay attacks, leading to session
hijacking, and the expiration time of their cookies. As preparation,
we create a user account in each of the websites. Then, we obtain
the original network dialog by logging into the website using those
credentials, accessing the user profile, and logging out.
Goal. To determine if the user logged in successfully, the goal
function checks if a server response includes the username string;
all evaluated sites include it in the web page sent to the user after
successful login.
Minimization and replay. 2-level minimization is applied to each
dialog. Then, the minimized dialog is automatically replayed every
30 minutes, each time checking if the goal is reached. If a replay
does not reach the goal, the replayer outputs the cookie lifetime.
Results. Table 2 summarizes the cookie replay experiments. Of the
top 100 Alexa websites, 53 are not vulnerable because they either
use full HTTPS (42) or have no user login (11). For other 10 we
were unable to create a user account due to stricter requirements,
e.g., having a cell phone from a specific region. Cookies can be
replayed for 37 of the top 100 Alexa sites1. All 37 sites destroy the
1Some of those (e.g., youtube.com, linkedin.com) can be
accessed fully through HTTPS, but by default use HTTP.



Cookie Replays No Replay

Total Replay Replay Replay Duration Duration Duration Comp. No Others
Websites login remote logout > 2 days > 1 week > 1 month HTTPS login

100 37 36 31 27 22 17 42 11 10

Table 2: Summary of cookie replay results for Alexa Top 100.
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Figure 7: Building Automation Dialog.

client-side cookie when the user clicks the logout link. However,
only 6 sites destroy the server state after the user clicks the logout
link. For the other 31 sites, cookies can still be replayed after the
user believes he has logged out. One site (vk.com) does not allow
cookie replay from an IP address different from the one used to
login. Of the 37 sites for which replay works, for 27 the cookie still
replays after 2 days, for 22 after a week, and for 17 after a month.

Our experiment flags two issues. First, 31% of popular sites do
not destroy the server-side state when a user clicks the logout link.
Thus, the user is effectively still logged in. In addition, for 17% of
the sites the cookie replays for more than a month, creating a very
large window in which session hijacking is possible.

On average a minimized dialog replays in 0.6 seconds compared
to 42.6 seconds for the original, a 71 times reduction. Each site
is visited 48 times a day, so minimization saves over 20 hours of
processing each day.

6.3 Simplifying User Interfaces
In this experiment we simplify the cumbersome proprietary web

interface to move a sunblind up/down in our brand new automated
building, into a simpler command line tool. To begin, we capture
two original dialogs corresponding to a user going through the web
interface to move the sunblind down and up, respectively. Figure
7 shows the sunblind-up dialog, which requires 6 HTTP request-
response pairs during which the user visits the service (an addi-
tional 2 unsuccessful requests are not included), logs in with a user-
name and password; selects the office, sunblind item, and event
type; and finally rises the sunblind.
Goal. The goal function checks whether the server redirects the
user to a webpage that indicates that the command was successful.
Minimization. The minimized dialog comprises a single POST
request to the web service, with the request line, the session cookie,
and a payload defining the sunblind-up event. The replayer is able
to replay this dialog over time without updating the cookie value,
which indicates that the cookie does not have any expiration time.

We have built a 10-line C wrapper for the replayer that takes a
parameter to indicate if the sunblind-up or sunblind-down dialog

should be replayed. On average, a user moves the blind twice a day
and each use of our tool saves 22 seconds. This amounts to signifi-
cant savings of 3 hours per person each year. More importantly, we
save $10,000 that the building vendor would charge for simplifying
their proprietary web interface.

6.4 Vulnerability Analysis
Dialog minimization and replay is a useful capability in vulnera-

bility analysis. In this experiment, we use our dialog minimization
technique to replay a previously published attack on the OpenSBC
SIP server [32]. Surprisingly, the minimization finds another, pre-
viously unknown, attack on the OpenSBC server.

To obtain the original dialog we deploy a test OpenSBC server,
configured in UDP stateful proxying mode without authentication,
and use SIPp [34] to simulate both a SIP user agent client (UAC)
and a SIP user agent server (UAS). Then, we use the available at-
tack tool against the test server, producing an attack trace.
Goal. To check server availability after each test, the goal function
sends a benign request to the server, verifying it still responds.
New attack. The 3-level minimization outputs that a single 74-byte
SIP INVITE request is needed to crash the server (Figure 8). How-
ever, the minimized input does not contain the Via header, whose
flawed processing created the original vulnerability. Replaying the
minimized input against a version of OpenSBC that patches the
original vulnerability, still crashes the server. We have reported
the new vulnerability to the OpenSBC author, who has confirmed
that it corresponds to a null-pointer dereference in the parser. The
vulnerability has been assigned an OSVDB identifier [29]. This
example illustrates that beyond performance savings when replay-
ing, the minimized dialog is also useful for capturing the essential
constraints to reach and exercise a vulnerability, without expensive
code analysis. It can also be used as an exploit signature.

6.5 Dialog Clustering
This experiment describes the use of our dialog similarity met-

rics for clustering benign and malicious dialogs.
Datasets. Our benign dialog dataset contains 60 dialogs obtained
by visiting twice the root page of each Alexa Top 30 website, one
day apart. Each pair of dialogs achieves the same goal but contains
changes introduced by non-determinism and the time difference
such as message reordering, additional messages, and small con-
tent modifications. Four sites simply redirect a user to the HTTPS
version, which produces short dialogs with 1–2 RRPs. On average
each benign dialog comprises 27.8 connections and 66.3 messages,
the largest being a dialog for 163.com with 177 connections and
355 messages. These numbers highlight how complex web appli-
cation dialogs can be.

The malicious dialog dataset comprises 91 dialogs obtained by
executing 91 labeled malware binaries from 6 families (cleaman,
qakbot.ae, malagent, spyeye, zbot, and zeroaccess),
once each, in a contained environment that allows only HTTP C&C
traffic to reach the Internet. On average, each malware family dia-
log comprises 2.0 connections and 2.6 messages, the largest being
a dialog for spyeye with 4.5 connections and 6.0 messages.
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Figure 8: Minimized SIP INVITE request revealing previously
unknown vulnerability on the OpenSBC SIP server.

Similarity matrix. The first step is building the similarity matrix
by computing the similarity between each pair of dialogs. The av-
erage similarity between two dialogs from the same website is 0.96
and the minimum 0.80, which shows that our metric correctly cap-
tures their similarity despite changes due to non-determinism. The
average similarity for dialogs from different sites is 0.16 and the
maximum is 0.73 (between facebook and twitter which have
only 1 RRP), which shows that the dialog similarity metric prop-
erly differentiates between similar and different dialogs. For the
malicious dialogs the average similarity between dialogs from the
same family is 0.74 and the minimum 0.41. The average similarity
for dialogs from different families is 0.25 and the maximum is 0.73
(between zeroaccess and zbot).
Clustering algorithms. We use two different clustering algorithms:
partitioning around mediods (PAM) [20] and aggressive. PAM
takes as input the similarity matrix and the number k of clusters to
output, so we run it with different k values, selecting the one which
maximizes the silhouette width, an internal measure of clustering
quality [20]. Our aggressive clustering starts with zero clusters and
iterates on the list of dialogs. For each dialog, it checks if its sim-
ilarity is larger than 0.8 with any dialog already in a cluster. If the
comparison holds only for dialogs in the same cluster, it adds the
dialog to that cluster. If it holds for dialogs in multiple clusters,
it merges those clusters and adds the current dialog to the merged
cluster. Otherwise, it creates a new cluster for it.

To select the 0.8 threshold we measured the clustering accuracy
on a subset of the dataset for each threshold value between [0,1]
with a step of 0.1 [15]. A threshold of 0.8 achieved best results.
Clustering results. Table 3 shows the clustering results for benign
and malicious dialogs using both algorithms. For the benign di-
alogs, both algorithms output 30 clusters, each with the 2 dialogs
for the same website, achieving perfect precision and accuracy. For
the malware dialogs, the precision is perfect but the recall is 64.8%-
78.0% respectively. This is because the same malware family is
split into multiple clusters. There are two main reasons for this.
First, zbot is a malware kit and zeroaccess an affiliate program. In
both cases owners/affiliates may configure the malware differently,
which creates differences captured by our metric. In addition, our
metric fails to detect similarity for short dialogs with highly poly-
morphic requests. This is why signature generation tools use traffic
clustering only as a first step before analyzing other information
like content and endpoints [31, 33]. Given its perfect accuracy, our
dialog clustering could be integrated as a first step in those tools.

7. RELATED WORK
Traffic replay. A number of tools have been proposed to replay
traffic from a network trace [7,18,28,35]. NDM differs from traffic

Dataset Algor. Clusters Precision Recall F-Measure

Alexa PAM 30 100% 100% 100%
Malware PAM 10 100% 64.8% 78.6%

Alexa Agg. 30 100% 100% 100%
Malware Agg. 12 100% 78.0% 87.6%

Table 3: Dialog clustering results.

replay in that the aim is not cloning the original dialog on a new set-
ting, but rather to deliberately produce a different, minimized, dia-
log that achieves the same goal with minimal traffic. Other works
automatically identify and adjust state-dependant fields, e.g., cook-
ies and IP addresses, in the traffic to be replayed, regardless of
its protocol, using network-based [11] and dynamic binary anal-
ysis [27] approaches. Our goal is not replaying any protocol, but
rather minimizing a dialog or comparing two dialogs. The mini-
mization achieves significant performance savings and enables un-
derstanding the minimum set of constraints to achieve a goal, while
dialog diffing is a very different problem. Our approach assumes
the protocol grammar is available, which is true in all our applica-
tions. If unknown, protocol reverse-engineering techniques can be
used to recover its grammar [6, 10, 24, 37], state-machine [9], and
application session structure [19]. Also related is ShieldGen [12],
which generates vulnerability data patches by modifying an attack
and replaying it to an oracle. A key difference with this work is that
NDM operates on a complete dialog rather than a packet.
Drive-by download malware collection. Honeyclients are a pop-
ular approach for collecting malware distributed through drive-by
downloads [36]. We develop drive-by download milkers that pe-
riodically replay a previous dialog for the same goal. Drive-by
download milkers are more lightweight but less flexible than hon-
eyclients, being specific to an exploit kit. Our drive-by download
infrastructure [26] uses a combination of honeyclients and drive-by
download milkers to achieve both flexibility and efficiency.
Cookie replay. Session hijacking through cookie replay has been
known for more than a decade [14,30]. Attacks on WiFi have been
demonstrated [17] and tools are available to exploit it [1, 4]. It has
also been mentioned that cookie replay still works after a user logs
out [4, 17]. A large number of techniques have also been proposed
to prevent session hijacking attacks [2,3,13,14,30]. Our work does
not discover any new attacks. Instead, we show how dialog min-
imization and replaying tools provide an efficient and convenient
way to automate the periodic visiting of a large number of sites to
determine for how long cookie replays works, measuring the cur-
rent state of these issues.
Traffic clustering. A number of works perform malware clus-
tering based on their traffic [16, 31, 33, 38]. Most of these works
cluster traffic at the packet level [16, 31, 33]. Most related is Ne-
mean [38], which generates semantics-aware network signatures,
clustering similar connections and sessions using request/response
types and byte distribution features. Our work is different in that we
propose a dialog alignment technique that finds a mapping between
dialogs that maximizes similarity.

8. CONCLUSION
In this work, we have introduced the problems of network dialog

minimization and network dialog diffing. We have proposed net-
work delta debugging, the first technique to solve network dialog
minimization. We have also proposed a novel technique for net-
work dialog diffing, which aligns two dialogs by finding a mapping
between them that maximizes similarity.



We have demonstrated our techniques for 5 applications: build-
ing drive-by download milkers for 9 exploit kits, measuring cookie
replay on popular websites, simplifying cumbersome proprietary
web interfaces, vulnerability analysis, and clustering benign and
malicious dialogs.
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