

Rosetta: Extracting Protocol Semantics using Binary Analysis
with

Applications to Protocol Replay and NAT Rewriting

Juan Caballero_, Dawn Song†_
_Carnegie Mellon University †UC Berkeley

jcaballero@cmu.edu dawnsong@cs.berkeley.edu

October 9, 2007
CMU-CyLab-07-014

CyLab
Carnegie Mellon University

Pittsburgh, PA 15213

Rosetta: Extracting Protocol Semantics using Binary Analysis with
Applications to Protocol Replay and NAT Rewriting

Juan Caballero∗, Dawn Song†∗
∗Carnegie Mellon University †UC Berkeley

jcaballero@cmu.edu dawnsong@cs.berkeley.edu

Abstract

Rewriting a previously seen dialog between two entities,
so that it is accepted by another entity, is important for
many applications including: theprotocol replayproblem
and theNAT rewriting problem. Both problems are in-
stances of a larger problem that we call thedialog rewrit-
ing problem. The challenge in dialog rewriting is that
the dynamic fields, e.g., hostnames, IP addresses, session
identifiers or timestamps, in the original dialog need to be
rewritten for the modified dialog to succeed. This is par-
ticularly difficult because the protocol used in the original
dialog might be unknown.

In this paper, our goal is to generate a transformation
function that can be used to rewrite the values of the dy-
namic fields. For this, we propose binary analysis tech-
niques to solve the main two challenges: 1) how to auto-
matically identify the dynamic fields, and 2) how to auto-
matically rewrite the values in the dynamic fields.

We have implemented Rosetta, a system that creates the
transformation function using our proposed techniques.
Our results show that we are able to identify different
types of dynamic fields present in commonly used proto-
cols such as FTP, DNS and ICQ , and that we are able
to rewrite the values in the dynamic fields, even when
those fields use complex encodings to represent the data,
thus enabling the protocol replay and NAT rewriting prob-
lems.

1 Introduction

We call dialog rewriting the problem of rewriting a pre-
viously seenoriginal dialog betwen two entities, so that
it is accepted by another entity that was not involved
in the original dialog. Dialog rewriting is an impor-
tant problem for many applications. For example, dialog
rewriting is important for Network Address Translation
(NAT) [14, 16], where protocols include ports and IP ad-
dresses in the payload, which need to be rewritten for the
communication to succeed. Other examples where dialog
rewriting is important are when demonstrating software

vulnerabilities to third parties by replaying exploits that
might be hidden in the middle of complex dialogs [19],
and when building application layer gateways to scrub
confidential data being leaked out of an enterprise net-
work [27].

The main challenge in dialog rewriting is that an exact
replay of the original dialog does not work, because the
protocol messages often includedynamic fields. Dynamic
fields are fields that contain data, which might change for
different sessions or different hosts, such as hostnames, IP
addresses, ports, checksums, and timestamps Intuitively,
these dynamic fields need to be identified and rewritten
in themodified dialog, otherwise the modified dialog will
likely fail. This problem includes what previous work has
called theapplication dialog replay[11,25].

The difficulty in automatically rewriting the dynamic
fields is figuring out what needs to be rewritten, and how
it should be rewritten. In particular, we need to figure out
what type of data to write in them and what encoding to
use for that type of data. This is difficult because many
applications use closed protocols, with no publicly avail-
able specification, so the type of data and encoding being
used in the fields are unknown. Even when the protocol
is known, the problem is important because a manual ap-
proach is tedious and because there are times when the
implementations actually differ from the protocol specifi-
cation.

We divide the problem of dialog rewriting into two
stages: the offlineanalysisstage and the onlineediting
stage. In theanalysis stagethe problem is figuring out
how to rewrite the dynamic fields. To solve this problem
we need to generate thetransformation function, which
contains all the information about how to rewrite the dy-
namic fields with new values. In theediting stage, the
problem is how to locate the dynamic fields in a message.
Once located, therewriter, i.e., the entity that performs
the dialog rewriting, just needs to apply the transforma-
tion function with the new values for the dynamic fields.

The focus of this paper is on the analysis stage. Thus,
our problem is how to create the transformation function.
The transformation function needs to contain information
about how to solve two problems: 1) how to automatically

identify the dynamic fields, which includes how to locate
them in the dialog and how to infer the type of data they
contain, and 2) how to automatically rewrite the values in
the dynamic fields, which includes understanding how the
data is encoded in the dynamic field.

In this paper we propose a novel approach, which em-
ploys binary analysis techniques to solve those two prob-
lems during the analysis stage. Then, we show how to
use those techniques to create the transformation function
that the rewriter will use to rewrite the dynamic fields.
Our techniques are based on analyzing program binaries
implementing the protocol. Binary analysis is specially
useful when dealing with closed applications, since the
application’s source code is usually not available. The ad-
vantage of using program binaries compared to network
traces is that network traces only contain syntactic infor-
mation while the program binaries contain a wealth of in-
formation about the protocol semantics, because the pro-
gram binaries contain all the information about the proto-
col specification.

In addition to the dialog rewriting problem, our tech-
niques are also useful to understand the protocol and
to facilitate usage of protocol semantics for other prob-
lems such as building application layer proxies, proto-
col reverse-engineering [7, 11], intrusion detection sys-
tems [13], fingerprint generation [6], and protocol ana-
lyzers for network monitoring [4,26].

There has been previous work on application dialog re-
play, which is one instance of the dialog rewriting prob-
lem. Leita et al. [19,20] and Cui et al. [11,12] propose to
locate dynamic fields in network traces by finding fields
that change value across different sessions. In addition,
Cui et al [12] have proposed heuristics to identify a few
types of dynamic fields in the context of replaying previ-
ously captured network traces. The fundamental limita-
tion of both approaches is the lack of protocol semantics
in network traces. To overcome the lack of semantics in
network traces they need to make assumptions about the
type of encoding used in the dynamic fields or rely on
statistical variability across different sessions. But these
techniques fail to identify many types of dynamic fields.
Another line of work [25] has used binary analysis tech-
niques to solve the related, problem of replaying complete
program executions. The problem they address is differ-
ent from ours because our goal is to rewrite the network
dialog, not the complete execution.

We use two different binary analysis techniques to iden-
tify dynamic fields in unknown protocols: we identify dy-
namic fields inreceivedmessages by analyzing how the
data in a received message is used, and we identify dy-
namic fields insentmessages by analyzing how the data
in a sent message was derived. The intuition behind these
two techniques is that the values contained in the dynamic
fields are derived from auxiliary data, i.e., data that is not
part of the program’s source code. This auxiliary data is

obtained by the program through system calls to the oper-
ating system, and includes the system time, data received
from the network, the local hostname or IP address, user
keystrokes, or configuration data from a file. For exam-
ple, one type of dynamic field is keyboard input. We can
identify dynamic fields containing keyboard input by ana-
lyzing if some parts of the messages being sent are derived
from data that the user entered through the keyboard.

To understand how to rewrite the dynamic fields, it is
not enough to know the type of data contained in those
dynamic fields. In addition, we need to know exactlyhow
the value in the dynamic fields was generated. The reason
we need such knowledge is the large number of different
encodings employed by network protocols. For example,
if we know that some bytes in a message represent a port
number, but we do not know the exact encoding the field
uses to represent the port number, we will not know how
to rewrite the old value with a new one.

We have implemented Rosetta, a system that takes as
input the program binaries and returns the transformation
function that the rewriter uses during the modified dialog
to rewrite the values in the dynamic fields. Our results
show that we are able to identify different types of dy-
namic fields present in commonly used protocols such as
FTP, DNS and ICQ, and that we are able to rewrite the
values of those dynamic fields, even when complex en-
codings are used to represent the data. Thus, our results
show that when combining our techniques to automati-
cally create the transformation function with previously
proposed techniques to identify field boundaries, we en-
able automatic protocol replay and automatic NAT rewrit-
ing.

In summary, this paper makes the following contribu-
tions:

Propose a binary analysis approach to the dialog
rewriting problem: To successfully rewrite a previously
seen dialog, the original dialog needs to be rewritten as-
signing new values to the dynamic fields. In this paper,
we present a solution based on binary analysis that allows
to generate a transformation function that can be used to
rewrite the dynamic fields, in some unknown protocol, so
that the modified dialog is accepted.

Propose novel techniques to automatically identify dy-
namic fields: We propose two novel binary analysis
techniques to identify dynamic fields. We identify dy-
namic fields inreceivedmessages by analyzing how the
data in a received message is used, and we identify dy-
namic fields insentmessages by analyzing how the data
in a sent message was derived. Our techniques work by
monitoring how the parameters and return values of se-
lected system calls are used by the program and allow
to identify multiple types of dynamic fields including:
cookies, timestamps, IP addresses, ports, hostnames, file
names, consistency fields, keyboard input, and configura-
tion data.

2

Propose a technique to automatically rewrite the dy-
namic fields: We propose a technique to automatically
construct the transformation function, used to rewrite the
dynamic field values. The core of the transformation func-
tion are the input-output formulas that precisely capture
how the value in a dynamic field was encoded from the
output of selected system calls. Our technique allows to
rewrite the value of the dynamic fields independently of
the complex encodings that might be used. We capture
how the data sent by a program is derived from the output
of selected system calls using Dynamic Program Slicing,
Symbolic Execution, and other techniques from the pro-
gramming languages community.

Design, implement and evaluate our techniques:We
design and implement Rosetta, a system that implements
our techniques. We evaluate Rosetta using 5 different bi-
naries and 3 different widely used protocols: FTP, DNS
and ICQ. Our results show that we are able to create the
transformation function to automatically rewrite an FTP
standard mode session in under 30 minutes, and the time
to apply the transformation function during the editing
phase is negligible. Thus, our results show that we could
potentially enable any protocol with similar behavior to
work in the presence of a NAT.

The remainder of this paper is organized as follows.
Section 2 introduces the problem. Then, in Section 3 we
present the system architecture. Next, in Sections 4 and 5
we propose techniques for identifying dynamic fields and
for capturing how to rewrite the values in the dynamic
fields,. In Section 6 we explain how to obtain the transfor-
mation function and we evaluate our system in Section 7.
Finally, we describe related work in Section 8 and con-
clude in Section 9.

2 Overview and Problem Definition

2.1 Overview of the Problem

Rewriting a previously seen dialog betwen two entities, so
that it is accepted by another entity, is important many ap-
plications including theprotocol replayproblem and the
NAT rewritingproblem. We call the entity that performs
the dialog rewriting, therewriter.

In both problems, the challenge is that thedynamic
fields in the original dialog need to be rewritten for the
modified dialogto succeed. Dynamic fields contain data
that might change for different sessions or different hosts,
such as hostnames, IP addresses, ports, checksums, and
timestamps. Intuitively, these dynamic fields need to be
identified and rewritten in themodified dialog, otherwise,
this modified dialog is likely to fail. The problem is ex-
tremely challenging when the protocol is unknown or has
no publicly available specification.

In protocol replay we only need to replay one side of

Network Address

Translator (NAT)

128.2.5.1

Local host

10.0.0.2
 Remote server

198.41.0.4

From: 10.0.0.2:9397

To: 198.41.0.4:21

Payload: 10.0.0.1:9234

From: 128.2.5.1:10023

To: 198.41.0.4:21

Payload: 10.0.0.1:9234

From: 198.41.0.4:7272

To: 10.0.0.1:9234

?

Internet

Figure 1: NAT rewriting problem. The connection origi-
nated by the remote server cannot reach the local host.

the dialog. For example, when an exploit has been cap-
tured using a honeypot and we need to replay it to other
hosts running different versions of the same application to
verify if they are susceptible to the exploit.

In NAT rewriting we need to modify the dialog be-
tween two entities that communicate through some NAT
or proxy, using some unknown protocol, Here the rewriter
needs to modify both sides of the dialog. For example,
imagine the scenario in Figure 1, where a local network
connects to the Internet through a NAT that only allows
outbound connections to go through, i.e., connections that
originated from the local network. A host in the local net-
work is connected to some remote server using a com-
mand channel and wants to start a separate data transfer
using a new connection, as in FTP in standard mode. The
host selects a new port to listen to and sends this newly
selected port and its IP address, to the remote server, who
needs to start a new connection back to the client using
the IP address and port provided by the host.

For the data channel to be successfully established, the
NAT needs to be able to do two things: 1) identify the
dynamic fields in the message sent by the host (i.e., the
IP address and port) so that it knows an inbound connec-
tion is coming, 2) to rewrite the dynamic fields with new
values. The IP address needs to be rewritten so that it be-
comes the externally routable address of the NAT and the
port needs to be rewritten if it is already being used by the
NAT for another connection.

We consider protocol replay and NAT rewriting two dif-
ferent instances of the same problem that we call thedi-
alog rewriting problem. We divide the dialog rewriting
problem into two stages: the offlineanalysisstage and
the onlineeditingstage. In the analysis stage, the goal is
to generate thetransformation functionthat details how
to rewrite the dynamic fields. This stage happens offline.
Then, in the editing stage, the rewriter uses the transfor-
mation function to rewrite the dynamic fields so that the
modified dialog can succeed. This stage happens online.

Thus, in dialog rewriting, we need to address two dif-
ferent problems: 1) how to automatically identify the dy-
namic fields, and 2) how to automatically rewrite the val-
ues of the dynamic fields.

Scope of the problem: We can further subdivide the

3

problem into tasks. During the analysis stage, there are
three tasks: to identify the field boundaries, to identify
which of those fields are dynamic, and to generate the
transformation function that allows to rewrite the val-
ues of the dynamic fields. During the editing stage, the
rewriter has two tasks: identify the field boundaries, and
apply the transformation function to rewrite the dynamic
fields with new values.

Both stages need to identify, as a first step, the field
boundaries. There have been proposed solutions for the
problem of identifying the field boundaries in protocol
messages [7, 11, 19]. In this paper, for the sake of scope,
we assume that when we need the field boundaries, they
can be provided by one of the previous solutions and fo-
cus on the remaining tasks, which are challenging enough
in themselves.

Besides identifying the field boundaries, the remain-
ing task on the editing stage is for the rewriter to apply
the transformation function with the new values for the
dynamic fields. Clearly, the challenge is how to obtain
such transformation function. Once obtained, applying it
is straightforward. Thus, in this paper, we focus on the
last two tasks of the analysis stage, which are the most
challenging: how to identify the dynamic fields and how
to rewrite the values of those dynamic fields. We have
built a system called Rosetta that implements those two
tasks.

2.2 Problem Definition

We define the dialog rewriting problem as follows. Two
entities, called theinitiator and therespondent, engage
in some communication over the network using some un-
known protocol. We term such communication theorig-
inal dialog and such dialog represents an instance of an
application session.

The goal of dialog rewriting is to produce amodified
dialog, which is accepted by an external entitity, called
the verifier, which was not involved in the original dia-
log. The modified dialog occurs between the verifier and
a fourth entity that we call therewriter. Note that, in
the modified dialog, the rewriter can rewrite the initiator’s
side of the dialog, or the respondent’s side of the dialog
(e.g., in protocol replay), or both of them (e.g., in NAT
rewriting).

Problem definition: Our problem is, given the program
binaries of both the initiator and the respondent, to gen-
erate atransformation function, which can be used by
the rewriter to successfully communicate with the verifier
during the modified dialog. Such transformation function
is based on the original dialog and states which parts of
the original dialog need to be modified by the rewriter, so
that the verifier accepts the modified dialog.

2.3 Approach

To obtain the transformation function needed by the
rewriter, we have to solve two main problems: 1) identify
which fields in the original dialog are dynamic and what
type of data they contain, and 2) learn how to rewrite the
dynamic fields values.

Identifying the dynamic fields: The intuition we use
to identify the dynamic fields is the following: if we un-
derstand either how a dynamic field is used or how the
value of a dynamic field is derived, then we can usually
infer what type of dynamic field it is, that is, the seman-
tics of the dynamic field. Using this intution we propose
two different techniques to identify dynamic fields, which
depend on the direction of the message: 1) for messages
that arereceivedby the progam, we analyze how the data
in the message is used, and 2) for messages that aresent
by the program, we analyze how the data in the message
was derived.

For received messages, we observe if the data contained
in the received message is used in theparametersof some
selected system calls. Since the goal of the system call
and the meaning of its parameters is usually well defined
in some specification (e.g., the Windows API documenta-
tion), then when previously received data is used in those
parameters we can infer its semantics. For example, when
the parameters of a system call to start a new connection
(e.g., connnect), which are defined to be an IP address and
a port, have been derived from some parts of a previously
received message, then we can infer that those parts of the
received message encoded an IP address and a port.

For sent messages, we capture how the sent data was
constructed using thereturn values1 of selected system
calls. Since we know what the values returned by a system
call mean, then we can infer the semantics of data that
has been derived from those values. For example, one
type of dynamic field is keyboard input. We can identify
dynamic fields containing keyboard input by analyzing if
some parts of the messages being sent are derived from
data that the user entered through the keyboard.

Understanding how to rewrite the dynamic fields: To
rewrite the dynamic fields it is not enough to know what
type of data is stored in the dynamic field. We also need
to understand how that type of data needs to be encoded
into the dynamic field. For example we might know that a
dynamic field contains time data but there exist many dif-
ferent encodings for time. For example, according to the
ISO 8601 standard [1], October 4th, 2007 could be repre-
sent using months and days as 2007-10-04, but it could be
represented using weeks as 2007-W40-4. Clearly, when
rewriting the value of a dynamic field with new data, we
need to know which format to use, so that the value is not

1By return values, we mean all ouput values of a system call, not just
the return value usually place ineax. Here, we try to avoid overloading
the term output.

4

Execution

Monitor

Execution traces
Program binaries

Selected

system calls

IR

Generation

Memory

conversions

SSA

translation

Dynamic

Slicing

Formula

Generation

Slices
 Formula

Simplification

Input-Output

Formulas
IR

Conversions

b) The formula generation phase

Execution

trace

Network trace

a) The execution monitoring phase

Function

Generation

Input-Output formulas

Network trace

Transformation

function

c) The function generation phase

Program binaries

Figure 2: System Architecture for Rosetta.

rejected.

To understand how to rewrite the dynamic fields, we
need to precisely capture how the values in the dynamic
field were generated. Thus, we are interested in under-
standing how the different bytes in a message being sent
have been derived from the output of selected system calls
To address this problem we use data dependency tech-
niques from the programming languages community. In
particular, we use Dynamic Program Slicing [3] and Sym-
bolic Execution, which extracts, for a execution history
and a variable, an slice that contains all the statements in
the execution history that affected the value of that vari-
able. In our case, the variables are the different bytes sent
over the network, and the slices contain only the infor-
mation about how those bytes were generated. Then, we
use those slices to generate input-output formulas that are
semantically equivalent to the slices, but much smaller in
size.

The input-output formulas precisely capture, how the
value of the dynamic field was generated in that execu-
tion. Even if the input-output formulas only encode a
single execution, the fact that fields do not usually hold
two different types of values, or two different encodings
of the same value, means that these input-output formulas
can normally be used to replay different values. There is
one exception though with variable-length dynamic fields.
Our input-output formulas only allow byte-by-byte rewrit-
ing of the dynamic fields. But sometimes, the new value
that we want to encode into a variable-length dynamic
field might have a larger length than the original value did.
In this case, such byte-by-byte rewriting will fail. Thus,
for these cases we further analyze the program binary us-
ing static analysis techniques, to identify the part of the
code that performs the encoding, and add this knowledge
to the transformation function.

3 System Architecture

Our system, Rosetta, implements the last two steps in the
offline analysis stage: identifying the dynamic fields and
understanding how the values in those dynamic fields are
generated. Figure 2 shows the system architecture for
Rosetta. It is comprised of three phases: theexecution
monitoringphase, theformula generationphase, and the
function generationphase.

The execution monitoring phase takes as input the pro-
gram binaries of the initiator and the respondent, and the
set of selected system calls. It executes both binaries in-
side the execution monitor, while they generate the origi-
nal dialog. The output of the execution monitoring phase
are the execution traces that capture all the processing
done by each of the binaries during the dialog, and the
network trace that contains all messages exchanged dur-
ing the dialog. We present the execution monitoring phase
in section 3.1.

The formula generation phase is the core of the system.
It is repeated for each message in the network trace in the
same order that they were sent. It takes as input the exe-
cution trace of the originator of the current message being
processed and outputs an input-output formula that cap-
tures how that message was generated from the output of
the selected system calls. We present the formula genera-
tion phase in section 5.

The function generation phase takes as input the input-
output formulas generated during the formula generation
phase, the program binaries, and the network trace, and
produces the transformation function, which will be used
by the rewriter during the editing stage. We present the
function generation phase in section 6.

3.1 The Execution Monitoring phase

In this section we briefly describe the execution monitor
that we use to monitor the program binaries of the initiator
and the respondent during the execution of the original

5

dialog. In addition we describe the different groups of
system calls that we currently suport.

The execution monitor: We implement the execution
monitor using an emulator [2]. Executing a program in-
side an emulator allows us to monitor the internal exe-
cution of the program and the input/output operations it
performs. The execution trace generated by the execu-
tion monitor contains all the instructions executed by the
program or any library that the program uses, including
system libraries and dynamically loaded libraries such as
dll’s. In addition to the instructions themselves, the emu-
lator also collects, for each instruction, the content of the
operands at the time the instruction is executed.

Selected system calls:To detect the dynamic fields we
monitor the parameters and return values of selected sys-
tem calls. We note to the reader that we are lax in our use
of the term system calls throughout this paper, since we
denote calls to the Windows API as system calls where
they are really only an interface to the real system calls.
The specific system calls to be monitored can be defined
by the user. We currently provide support for six large
groups of systems calls: File system calls to create files,
open files or read file information; Network system calls
to receive data, open sockets, bind ports, and start con-
nections; Keyboard system calls to receive data written
through keyboard; Time system calls to get the system
or local time; Registry system calls to open Windows reg-
istry keys, or read and write the values; and Host identifier
system calls that return data that identifies the host, such
as the IP address or the hostname.

4 Identifying the Dynamic Fields

In this section we introduce the different dynamic fields
that we want to identify, and how to identify them. We
use two different techniques to identify dynamic fields: 1)
we identify dynamic fields inreceivedmessages by ana-
lyzing how the data in a received message is used, and 2)
we identify dynamic fields insentmessages by analyzing
how the data in a sent message was derived.

For received messages, we observe if the data contained
in the received message is used in theparametersof some
selected system calls. Since the goal of the system call
and the meaning of its parameters is usually well defined
in some specification (e.g., the Windows API documenta-
tion), then when received data is used in those parameters
we can infer its semantics. For sent messages, we capture
how the sent data was constructed using thereturn values
of selected system calls. Since we know what the values
returned by a system call mean, then we can infer the se-
mantics of the sent data that has been derived from those
values.

Next, we present the different dynamic fields we con-
sider, and which of these two techniques we use to iden-

tify them.

Direction fields: Direction fields are fields that store in-
formation about the location of another field in the mes-
sage, called the target field. The most common direction
fields are length fields, whose value encodes the length of
a target field. Other types of direction fields are pointer
fields and counter fields. There have been previously pro-
posed techniques to identify the direction fields in a mes-
sage [7, 11]. In this paper, we use some of those tech-
niques, which identify direction fields by monitoring how
the binary parses a received message [7].

Timestamps: Timestamps are fields that contain time
data. We identify timestamps by analyzing if some parts
of a message being sent by the program have been derived
from the output of system calls that request the local or
system time (e.g., Windows GetLocalTime and GetSys-
temTime).

Cookies: Cookies are data present in messages in both
directions of the communication, such as session identi-
fiers or data echoed back to the sender. We identify cook-
ies by analyzing if some parts of a message being sent
by the program have been derived from data previously
received over the network, which includes the case when
the data is directly copied and also when it is modified.

Local host identifiers: Local host identifiers identify
the local host sending the information. Typical host iden-
tifiers are the IP address and the hostname. This local
information can be obtained from the operating system
through system calls (e.g., gethostname), or from config-
uration data, which we describe later. We identify local
host identifiers by analyzing if some data in a message
being sent has been derived using the values returned by
such system calls.

Connection endpoints: Some protocols, such as FTP or
voice over IP protocols, use data channels that are dynam-
ically created using the control channel. The connection
endpoint information for these data channels is usually
created during run time. The usual transaction is that one
of the parties selects the new connection endpoint, usually
consisting of the〈addres, port〉 pair, and tells the other
party to establish a connection back to that endpoint. We
identify connection endpoints by analyzing how the pa-
rameters of the system calls used by the program to start
new connections (e.g., connect), and bind new listening
ports (e.g., bind) have been derived from a previously re-
ceived message. If such parameters (i.e., addresses and
ports) depend on some previously received network data,
then we can infer that the received network data encoded
some connection endpoint.

Consistency fields: Consistency fields are fields used
to check if the data has been erronously modified dur-
ing transmission. Examples of consistency fields are
checksum and hash fields. Consistency fields need to be

6

checked when a message is received and need to be con-
structed when a message is sent. We identify consistency
fields in the following way: if we find that some bytes of a
message being sent have dependencies on all other bytes
in the same message, or certain fields, then we flag those
bytes as a consistency field.

Keyboard input: Messages often include data provided
by the user via the keyboard, such as the filename in a FTP
download, the domain name in a DNS query or the user
name and password in an ICQ login session. We identify
keyboard input by analyzing if any part of a sent message
has been derived from data obtained from the keyboard.

File names: We identify file names present in received
messages, rather than in sent messages as presented in the
above paragraph, by analyzing if the parameters of sys-
tem calls used to open files (e.g., open) or used to get file
properties (e.g., NtQueryInformationFile) have been de-
rived from data previously received over the network.

Configuration data: Configuration data is data provided
by the user in a non-interactive way. For example, proto-
col configuration parameters such as the number of times
to retry a connection. We identify configuration data by
analyzing if some parts of a sent message have been de-
rived from data read from file. As an special case, we also
consider if data has been derived from values stored in the
Windows registry.

To summarize, in this section we have shown how we
can identify dynamic fields using one of two techniques:
analyzing how the data in a received message is used to
derive the parameters of selected system calls, or analyz-
ing how the data in a sent message has been derived using
the return values of selected system calls, where analyzing
means extracting the dependencies between those values.
In Section 5 we show the techniques we use to extract the
dependencies.

5 Formula Generation

In this section we describe the formula generation phase.
The formula generation phase generates the input-output
formulas, which precisely capture how a value was gener-
ated. We can use the formulas to capture two types of de-
pendencies: 1) how the different bytes in a message being
sent have been derived from the output of selected system
calls, and 2) how the input parameters to selected system
calls have been derived from data previously received over
the network.

The second case is only used to identify dynamic fields
in received messages, as explained in Section 4 but not
to understand how the data in the dynamic field was en-
coded. Since both cases are instances of the same tech-
nique, in this section we will only describe the first case.
Thus, the dependencies we describe in this section, cap-

ture how the bytes in a message being sent have been de-
rived from the output of selected system calls.

The formula generation comprises three steps. First,
we convert the execution trace into our intermediate rep-
resentation (IR) and apply additional SSA and memory
conversions to prepare the IR in the format expected by
the following steps. Then, we apply a Dynamic Program
Slicing algorithm which extracts, for each variable, all
statements that affected the value of the variable, where
the variables are in this case the bytes sent over the net-
work. These statements form a slice, which is different
for each variable and contains all the needed dependen-
cies. Note that, we consider each byte in a message sent
over the network independently and each slice contains
all statements that affected how a single byte was derived.
Finally, we create a formula by combining all the state-
ments in a slice together and simplify such formula using
different techniques. The output of this simplification is
the input-output formula, which captures how a byte in a
sent message was constructed.

5.1 Conversions

5.1.1 IR generation

We convert the instructions logged in the execution trace
to an intermediate representation (IR). The advantage of
using an intermediate representation is that it allows us to
perform subsequent steps over the simpler IR statements,
instead of the hundreds of cumbersome x86 instructions.
The translation from an x86 instruction to our IR is de-
signed to correctly model the semantics of the original
x86 instruction, including making otherwise implicit side
effects explicit. For example, we correctly model instruc-
tions that set theeflags register, prefixes that allow sin-
gle instruction loops (e.g.,rep), instructions with hidden
operands (e.g.imul %ebx which also operates oneax
andedx), and instructions that behave differently depend-
ing on the operands (e.g., shifts).

Our IR is shown in Table 1. It has assignments (r := v),
binary operations (r := u2bv), unary operations (r :=
2uv), loading a value from memory into a register (r1 :=
∗(r2)), storing a value (∗(r1) := r2), direct jumps to a
known target label (jmpℓ), indirect jumps to a computed
value stored in a register (ijmpr), and conditional jumps
(if r then jmpℓ1 else jmpℓ2).

When converting the execution trace to the IR, we need
to mark the output of the selected system calls so we can
trace how the sent messages are derived from these values.
For each occurrence of one of the selected system calls,
we mark the return values of the system call assymbolic.
A symbolic variable is a variable with a special name that
is never assigned a concrete value throughout the IR.

Then, for each instruction that operates on a sym-
bolic variable, we propagate this symbolic marking to

7

Instructions i ::= ∗(r1) := r2|r1 := ∗(r2)|r := v|r := u2bv
|r := 2uv | label li | jmp ℓ | ijmp r
| if r jmp ℓ1 else jmp ℓ2

Operations 2b ::= +,−, ∗, /,≪,≫, &, |,⊕, ==, ! =, <,≤ (Binary operations)
2u ::= ¬, ! (unary operations)

Operands v ::= n (an integer literal)| r (a register)| ℓ (a label)
Reg. Types τ ::= reg64| reg32| reg16| reg8| reg1 (number of bits)

Table 1: Our RISC-like assembly IR. We convert x86 assembly instructions into this IR.

the destination. For example, given the instruction
add%eax,%ecx, which adds the contents ofeax andecx
placing the result inecx, whereeax is symbolic andecx
is concrete, then the value ofecx after the instruction be-
comes symbolic. Thus, symbolic variables represent val-
ues that depend on the output of the selected system calls.

After we have translated the execution trace into the
IR, we convert the IR into Static Single Assignment form
(SSA), a representation in which every variable is as-
signed exactly once [23]. Since SSA is a well-known
technique, we do not describe it here in detail.

5.1.2 Memory conversions

One of the advantages of dynamic analysis over static
analysis is that we know the exact memory addresses that
the program accessed during execution, since dynamic re-
gions have already been allocated when they are used and
the content of registers are available when indirect ad-
dressing modes are used.

Still, there are certain issues related to memory that we
need to address. In particular, the simplification mod-
ules can reason about memory accesses but this reasoning
is expensive. We have found out that if we do not pre-
process our IR to simplify the memory reasoning, then
the simplications usually run out of memory.

Memory accesses with different memory sizes: The
x86 architecture allows memory accesses of different
sizes (i.e., one, two, or four bytes in 32-bit architecture).
This makes it difficult to reason about data dependencies
that involve memory. We address this problem by con-
verting all memory accesses in the IR to work on a single
byte level.

Modeling memory locations as registers:For all mem-
ory accesses that use a concrete memory index, that is,
when the value of the memory index does not depend on
the selected system calls, we model the memory access
as a read or write to a temporary register that represents
the specific memory location. This reduces the number of
array accesses, which are expensive to reason about.

Memory indices that depend on the input: The above
conversion can only happen when the indices are concrete.
When the indices depend on the input we need to perform

some additional processing.

If a memory read or write has a symbolic index, i.e., the
memory address has been derived from a symbolic vari-
able, we know that values derived from this value have a
dependency on the symbolic index. Ideally, in this case
we would perform range analysis on the symbolic index
to determine which other memory locations could be ac-
cessed using the symbolic index. However, in our current
implementation, we restric the symbolic variable to be the
same one that appeared in the execution. We plan to in-
corporte detailed range analysis in the near future.

To summarize, in this section first we have presented
two memory related optimizations that we have found to
significantly increase the performance of the simplifica-
tion step. Without these optimizations the simplification
phase becomes much more expensive. Then, we have pre-
sented how to deal with memory accesses that operate on
symbolic indices. The IR that results after these conver-
sions have been applied, is the input to the Dynamic Pro-
gram Slicing algorithm, which we present next.

5.2 Dynamic Program Slicing

The problem of finding dependencies in a program has
been extensively studied in the programming languages
community. The goal is to find all the statements in a pro-
gram that affect a variable occurrence. One proposed so-
lution is Dynamic Program Slicing [3], the dynamic anal-
ysis counterpart to Program Slicing [30]. Dynamic Pro-
gram Slicing can be defined as follows: Given a particular
execution historyhist of programP , and a variablevar,
the dynamic slice ofP with respect tohist andvar is the
set of all statements inhist whose execution affected the
value ofvar, as observed at the end of the execution.

The difference between Program Slicing and Dynamic
Program Slicing is that the latter works only on a specific
execution, so it only contains the dependencies for that
run. The reason we use Dynamic Program Slicing versus
Program Slicing is that the static slices produced by Pro-
gram Slicing are often too large due to memory aliasing.

Dynamic data slices contain only data dependencies
while full dynamic slices contain both data and control
dependencies. Control dependencies capture the differ-
ent decisions taken by the program to follow the specific

8

execution path (i.e., the conditions of all the conditional
jumps taken during the execution). Data dependencies
capture how values were derived during that execution.
In this paper we only include data dependencies in our
slices. The intuition behind this decision is that control
dependencies are not needed to understand how a spe-
cific value was derived. On the other hand they capture
whether different values in the execution would follow a
different execution path. We argue why understanding a
single execution is often enough for our purposes in Sec-
tion 6.

In our problem, the execution history is the execution
trace, converted to our IR representation and having been
through the SSA and memory conversions. The variables
are the different bytes in a message being sent. We ob-
tain a slice for each variable, where each slice contains all
the statements whose execution affected the value of one
variable.

The generated slices contain all the information about
how each byte of a sent message was constructed, from
the output of the selected system calls, during the original
dialog. Each slice is much smaller than the complete IR,
around 0.2% of the total size on average and below 1.5%
of the total size for the largest ones. Still, the slices are too
large for understanding how each variable was generated
and in Section 5.3 we explain how we further simplify the
dependencies by generating input-output formulas.

We have implemented a slicing algorithm proposed by
Zhang et al [32], which is precise, i.e., only statements
with dependencies to the variable are included in the slice.
The algorithm works bottom to top on the IR and allows
generating multiple slices (e.g., one per byte in the mes-
sage being sent) in a single pass. This algorithm has the
advantage that it does not need to generate the dynamic
dependence graph first. Our experience has shown that
generating the dynamic dependence graph is too expen-
sive for large traces as previously observed by Venkatesh
et al. [29].

5.3 Formula Generation and Simplification

The formula generation takes as input the slices gener-
ated by the slicing algorithm, i.e., one slice per byte in the
message being analyzed, and outputs a set of input-output
formulas that capture for each byte in the message, the
exact way it was derived from the output of the selected
system calls. It comprises two steps.

First, we perform symbolic execution [18] in the slice,
which generates a preliminary formula that combines all
the statements in the slice. The problem with using this
preliminary formula is its size. There are two main rea-
sons why this formula is large: redundant instructions and
additional statements introduced by our SSA and mem-
ory conversions. For example, the following two instruc-
tions: “add $0x1,%eax” followed by “add $0x2,%eax”,

are clearly identical to “add $0x3,%eax”. Removing this
redundant instructions, in their IR representation, makes
the formula simpler but semantically equivalent. In ad-
dition, our SSA and memory conversions insert redun-
dant statements, because doing so makes the conversions
themselves easier and less prone to implementation errors.
This is a common technique used in compilers, where se-
quential optimizations might introduce redundant state-
ments, which are removed at the end by some simplifi-
cation stage such as dead code elimination.

Thus, the second step simplifies this preliminary for-
mula to remove those inefficiencies and outputs the input-
output formula. We use two simplification modules. One
is a decision procedure, called STP [15], which provides
a simplification interface. To be able to use this interface,
we have modules to convert our expressions to STP’s in-
put language and back to our IR representation. The sec-
ond simplification module we have developed ourselves
with additional simplifications not yet available in STP
such as expression reordering in some commutative bi-
nary operations, which allows further constant folding.
The overall effect of the simplification is a large reduc-
tion in the size of the formula.

6 The Function Generation Phase

The last step in the analysis stage is to generate the trans-
formation function that the rewriter will use during the
editing stage. So far, we have obtained the input-output
formulas for the different messages in the original dialog.
The input-output formulas precisely capture, how the dy-
namic fields were derived from the output of the selected
system calls during the original dialog.

But, if the output of the selected system calls was dif-
ferent than in the original dialog, then the execution could
have gone through a different path. In this case, the
input-output formula may be different than the one we
have generated. One example is with variable-length dy-
namic fields. Note that our input-output formulas gen-
erated in the previous step only allow byte-by-byte sub-
stitution of the dynamic fields. The reason being again
that the input-output formulas only capture what hap-
pened in one execution, the one that originated the orig-
inal dialog, where the variable-length dynamic fields had
some specific length. It could happen that the rewriter
needs to rewrite a variable-length dynamic field with a
new value that is longer than the value in the original dia-
log. Then, there would be some bytes in the new value of
the variable-length dynamic field that we would not have
enough information to rewrite by using information only
from one previous execution.

Thus, in this step, we enhance the dynamic analysis
done in the previous step with static analysis to capture ad-
ditional information not present in previous executions. In

9

Program Version Type Size
Bind 9.3.4 DNS server 224kB
Microsoft ftp 5.1.2600 FTP client 40kB
Micros. nslookup 5.1.2600 DNS client 70kB
FileZilla 0.9.23 FTP server 570kB
TinyICQ 1.2 ICQ client 11kB

Table 2: Different program binaries used in our evalua-
tion. All binaries are for Windows. The size represents
the main executable if there are several.

particular, in this case, we perform limited static program
slicing, where we statically identify statements which may
be needed to compute the variable of interest and then
convert this static slice into a program. This program will
then be able to handle variable-length dynamic fields be-
cause it could include loops as well. The actual technique
how to perform such static slicing and ouptput the slice as
a program is similar to the techniques we have developed
for a different application, vulnerability signature genera-
tion [5]. Due to scope and space limit, we refer interested
reader to this paper for details.

7 Evaluation

In this section we present our evaluation results. We have
evaluated our system using 5 different binaries and three
different protocols as shown in Table 2. All binaries are
for Windows and have been run on a Windows XP envi-
ronment. They range in size from the 11kB of the Tiny-
ICQ client to the 570kB of the FileZilla FTP server. Both
the Bind DNS server and the FileZilla FTP server are
widely deployed implementations, which we use to study
our techniques on real size binaries. For all the experi-
ments we use the same set of 44 selected system calls,
which can be grouped into the six categories that were in-
troduced in Section 3.1: Network, File, Time, Registry,
Keyboard, and Host identifiers.

The protocols under study include diverse dynamic
fields such as session identifiers, IP addresses, ports, user
names, passwords, and configuration data. The results
show that we can correctly identify the dynamic fields and
generate the corresponding transformation function.

7.1 DNS Dialog

In this experiment we study a DNS query/response ses-
sion. We show the input-output formulas extracted for
each byte of the DNS response. The DNS client is the
nslookup binary shipped with Windows XP, while the
DNS server is the open source Bind server.

Identifying the dynamic fields: Figure 3 shows a sum-
mary of the dynamic fields identified in the DNS response
sent by the Bind server. The numbers above the fields de-

note the offset with respect to the start of the response and
the labels below the fields indicate the field type. There
are three types of dynamic fields in the DNS response:
cookies, configuration data and direction fields. We label
those fields as Cookie, Config and Direction respectively.
As explained, the field boundaries and the direction fields
in the dialog are extracted by previously proposed tech-
niques [7,11,19]. The remaining dynamic fields are cook-
ies and configuration data.

Cookies are fields that have been directly copied from
the received DNS query. Cookies include the session
identifier present on the first two bytes of the DNS re-
sponse and all the fields containing the original DNS
query (offsets 12 through 28). Configuration fields are
fields that contain data that has been derived from file.
Here, all fields have been derived from the server’s
database file, which contains all the DNS records. There
are numerous configuration data fields in the DNS re-
sponse such as, among others, the Time-to-Live (TTL),
and the email address to send complains (hostmaster).

The fields labeled as Fixed do not show any dependen-
cies to the selected system calls. The remaining case, la-
beled Net, is a cookie field but that it has not been di-
rectly copied from the DNS query and thus we mark it
differently. This byte is part of the Flags field and shows
a dependency on some bytes of the received DNS query,
but this dependency is not a direct copy from the DNS
query and thus we mark it differently. We give more de-
tails about this byte in the following paragraphs. Here we
only note the surprising fact that both bytes belonging to
the Flags field are marked with different field types. This
happens because the Flags field contains subfields smaller
than one byte and those subfields might have been derived
from different sources.

Understanding how to rewrite the fields: Here we
show input-output formulas for some of the bytes belong-
ing to the dynamic fields in the DNS response and illus-
trate how they are used to rewrite the value. The session
identifier (ID) field has been directly copied from the DNS
query to the response, without any modification. Thus, the
input-output formulas for the two bytes of that field are:

OUTPUT_0:reg8 = INPUT_18514142_0:reg8;
OUTPUT_1:reg8 = INPUT_18514142_1:reg8;

where for each INPUT variable the first suffix is an in-
put stream identifier and the second one an offset in that
stream. In this case, the suffix 18514142 identifies the
DNS query and the suffix 0 indicates that it has been de-
rived from the first byte of that message. It is by observing
these input-output formulas that we learn that these two
bytes are part of a Cookie field.

Not all input-output formulas are this concise. For ex-
ample the input-output formula for byte 2, the first byte of
the Flags field, is the following:

(0xf:reg8 & (0xf:reg8 &
(INPUT_18514142_2:reg8 &

10

0xf8:reg8) >> 3:reg8
)) << 3:reg8

|
(0x8f:reg8 & (0x4:reg8

| (0x80:reg8
| (0x1:reg8 &

(0x8f:reg8 &
INPUT_18514142_2:reg8)

))))

This input-output formula indicates that this byte is only
dependant on the second byte of the DNS query, and ex-
actly how it was derived from this value. The second byte
of the query is part of the Flags field and the different
constants that appear in the input-output formula are the
masks used to extract the different flag fields. For exam-
ple, the constant 0x8f near the bottom, zeros out the op-
code field from the query, since it needs to have a new
value in the response.

The input-output formulas for the configuration data
fields are very large and thus we are not able to include
them here. For example, the input-output formula for the
first byte of the Serial Number field, contains 462,501 el-
ements, which can be classified as binary operations, con-
stants, casts, and variables. Though the input-output for-
mula is complex, it only contains 10 unique input vari-
ables, representing bytes 103 through 112 of the database
file, which contain the serial number as a string. The rea-
son why these input-output formulas are so large is that
most configuration data is encoded as integers in the DNS
response, but the data is read from file as a string. The
needed string to integer conversions generate large input-
output formulas. Note that, large input-output formulas
are difficult to interpret by a human, but they can be effec-
tively used for rewriting the dynamic field values. Thus
they are added to the transformation function.

Replaying the DNS response: The set of input-output
formulas for the DNS query and response get included
into the transformation function, which allows the rewriter
to rewrite the dynamic fields in the modified dialog.
For example, the rewriter impersonating the DNS server
would know how to rewrite the ID field by just copying
the one received in the DNS query from the client. The
rewriter could as well choose to rewrite the configuration
data, with a different DNS record to convince the client
to connect to a server different than the one it requested.
Thus, by combining previously proposed techniques to
identify field boundaries, and the techniques presented
in this paper to automatically generate the transformation
function we have shown that we enable automatic proto-
col replay.

7.2 FTP Dialog

In this experiment we analyze an FTP session. Here, we
use the Microsoft command line ftp client to start the con-
trol channel with the Filezilla server, then we log in as the

S: 220 FileZilla Server version 0.9.23 beta

C: USER anonymous

S: 331 Password required for anonymous

C: PASS

S: 230 Logged on

C: SYST

S: 215 UNIX emulated by FileZilla

C: PORT 10,0,0,1,149,167

S: 200 Port command successful

C: LIST

S: 150 Opening data channel for directory list.

S: 226 Transfer OK

Figure 4: FTP dialog. Each line represent a message. The
first letter denotes the originator of the message, where S
stands for the server and C for the client.

anonymous user (providing no password) and query a di-
rectory listing. The directory listing triggers a new data
channel to be established, where the client sends its IP ad-
dress and a new port to the server, who connects back to
the client using those parameters. This is known as FTP
standard mode. The dialog is shown in Figure 4, where
each line represents a different message and the first letter
represents the originator of the message, where S stands
for the server and C stands for the client.

Identifying the dynamic fields: On the client side of the
dialog we identify two types of dynamic fields: keyboard
input and host identifier fields. Keyboard input is data pro-
vided interactively by the user using the keyboard. The
first message sent by the client contains the USER com-
mand and the user name typed by the user during login.
We properly identify such dynamic field and mark it with
the Keyboard type.

Additionally, on the client side we also detect two dif-
ferent host identifier fields, the IP address and the port.
We detect these fields because they are derived from the
output of the getsockname function, one of our selected
system calls in the Network group. The process followed
by the client is the following. First, the client binds a
new port letting the kernel select the port number to bind.
Then, the program calls the getsockname function to ob-
tain the IP address and port that the kernel selected in the
previous bind call. Finally, it encodes the IP address and
port and puts them in the output buffer to be sent to the
server.

On the server side we detect one cookie field and we
also identify the IP address and port being sent by the
client. The cookie field appears in the third message,
which echoes back to the client theanonymoususer name
previously sent by the client. We are also able to identify
the IP address and port from the server side by monitoring
how the parameters to the connect system call are derived
from previously received network data.

Understanding how to rewrite the fields: The input-

11

ID
 Flags
 # Queries
 # Anwers
 # Auth.
 # Addit.
 L
 “example.net”
 0
 Type
 Class

0
 2
 4
 6
 8
 10
 12
 13
 24
 25
 27

Pointer
 Type
 Class
 TTL
 Datalen
 L
 “dns1”
 Pointer

Minimum TTL

29

L
 “hostmaster”

Pointer
 Serial Number
 Refresh interval

31
 33
 35
 39
 41
 42
 48

Retry interval
 Expiration limit

46
 49

59
 61
 65
 69
 73
 77
 80

Cookie
 Fixed
 Cookie

Fixed
 Config
 Config
 Direction
 Config

Direction
 Config
 Config
 Config
 Config
 Config

Direction
Direction

Net

Figure 3: Direction fields identified in a DNS response.

output formulas for the IP address and port are only gener-
ated on the client side, even if those dynamic fields are de-
tected on both sides, since only the client constructs these
fields before sending the PORT command. The input-
output formulas corresponding to the IP address and port
encoding range in size from 14 to 74 elements. The input-
output formulas indicate that all the commas included in
the PORT command are concrete values with no depen-
dencies to the output of the getsockname system call. The
input-output formulas also indicate that the port is derived
from bytes 4 and 5 of the getsockname parameters, and
the IP address is derived from bytes 6 through 9 of the
parameters. The first four bytes of the getsockname pa-
rameters are the socket descriptor and the address family,
which are not used to derive the encoded port and IP ad-
dress.

Replaying the FTP session:When the rewriter wants to
replay the client side of the dialog, it might want to rewrite
the address or port number that the server will connect to,
maybe even redirecting it to a different host. In this case,
the IP address and port get encoded as a variable-length
string. Thus, our input-output formulas are not enough to
build the transformation function, and we need to include
some additional information about the encoding. We ob-
tain such information from static analysis.

In particular, from the dynamic information, we derive
that we only need to perform static slicing of the binary
on the sections between the getsockname and the send
calls, which significantly reduces the amount of code to
analyze. In this case the static slice shows that the encod-
ing gets done by one call to the vsprintf function in the
msvcrt.dll library (the name of the function is obtained
using IDA Pro) with the following format string “PORT
%d,%d,%d,%d,%d,%d” where the first four parameters
are the four bytes of the IP address and the last two are the
port bytes. All these six bytes are derived from the output
of the getsockname sytem call. This information is then
encoded in the transformation function, so that when it
wants to rewrite the IP address or the port, the rewriter just

Steps in the formula generation phase Run time
IR generation 3min 58sec
SSA generation 12min 53sec
Memory conversions 43.5sec
Slicing (46 slices) 23sec
Formula Generation (46 slices) 14sec
Formula Simplification (46 slices) 28sec

Table 3: Run time for the different steps in the formula
generation phase using the FileZilla execution trace. The
time in the last 3 steps is the total for all 46 slices.

needs to perform a similar call to vsprintf with that format
string and the new values. Thus, by combining previously
proposed techniques to identify field boundaries, and the
techniques presented in this paper to automatically gen-
erate the transformation function we have shown that we
enable automatic NAT rewriting.

Run time: Here we provide some performance numbers
to give the reader an idea about the scalability of our ap-
proach. Table 3 shows the running time for the FileZilla
execution trace durig the formula generation phase. We
only show the run time for the Filezilla execution trace,
because it is the largest of our execution traces being
around 3GB. The results show that we can run the com-
plete formula generation phase in under 20 minutes with
the SSA translation taking about 66% of the whole execu-
tion time. The reason SSA is slower than the other steps is
that our implementation is general and has not been opti-
mized for execution traces. Notice that, the last three steps
show the total time for the 46 slices that were computed.

The total time for the complete analysis stage, which
includes the execution monitoring and the function gener-
ation phases in addition to the formula generation phase,
is under 30 minutes. Note that, this is the time to gener-
ate the transformation function. The online editing stage
takes negligible time to apply the transformation function
with the new values for the dynamic fields.

12

7.3 ICQ Dialog

In this experiment we analyze an ICQ login session. This
time we only have access to the client binary, thus we
will be only able to replay that side of the original dia-
log. Here, the client application asks the user for the user
name and password and tries to login into the server.

Identifying the dynamic fields: We correctly identify
two keyboard input dynamic fields in the login request,
which correspond to the user name and the password.

Understanding how to rewrite the fields: The input-
output formulas show that the user name is being directly
copied into the login request message at offsets 14 through
22. Interestingly, a modified version of the password ap-
pears at offsets 27 through 31 in the sent message The
resulting input-output formulas are:

OUTPUT_27 = 0xf3:reg8 ˆ INPUT_123_9:reg8;
OUTPUT_28 = 0x26:reg8 ˆ INPUT_123_10:reg8;
OUTPUT_29 = 0x81:reg8 ˆ INPUT_123_11:reg8;
OUTPUT_30 = 0xc4:reg8 ˆ INPUT_123_12:reg8;
OUTPUT_31 = 0x39:reg8 ˆ INPUT_123_13:reg8;

This shows that the password is being XORed against a
constant string. This constant string is usually called the
roast array in ICQ, and the process is known as roasting
the password.

Replaying the ICQ session: In this case, the rewriter
might want to login using some different account infor-
mation it has access to. Here, we cannot directly use the
input-output formulas, since they would allow us to replay
only passwords up to 5 characters. Since the roast array is
larger than 5 characters, we would not know the right con-
stant to XOR against the sixth character of the new pass-
word. Thus, we extract the whole roast array from the
TinyICQ binary by using static analysis techniques, and
add this information to the transformation function so that
the rewriter can use this array to rewrite the password.

8 Related Work

We group previous work into four categories.

Dialog rewriting: Leita et al. [20] and Cui et al [12]
and propose heuristics to identify dynamic fields from net-
work traces with application to the replay problem. Our
work differs in that we use binary analysis since bina-
ries are richer in protocol semantics than network traces,
which mostly contain syntactic information. Newsome et
al. [25] introduce a binary analysis technique to replay
complete executions. Our work differs in that our goal
is to replay the protocol messages and that our technique
does not need information about the state of the verifier.

Protocol reverse engineering: Previous work on pro-
tocol reverse engineering has focused on identifying the

field structure in protocol messages. Leita06 et al. [19]
and Cui et al [11] propose to use variations between differ-
ent sessions to extract the protocol message format strictly
from network traces. Caballero et al. [7] present dynamic
binary analysis techniques to extract the field boundaries
from a given message. Lim et al [21] use static analysis to
extract the format from the output by a program. Their ap-
proach needs the user to identify the output functions and
their corresponding parameters. Our works builds on pre-
vious techniques to identify the field boundaries in proto-
col messages [7]. We extend those techniques to deal with
protocol field semantics.

There has also been previous work on identifying traf-
fic that uses the same application-layer protocol [22], and
on analyzing how to extract the application-level structure
in network data [17] There has been also research on lan-
guages and parsers that simplify the specification of net-
work protocols [4,26].

Dynamic Taint Analysis: Another technique that could
be used to identify the inputs involved in generating an
output is dynamic taint analysis [8–10,24,28]. Compared
to dynamic taint analysis, our input-output formulas cap-
ture not only which inputs were involved in the generation
of the output but also capture exactly how those inputs
were used to compute the output.

Dynamic slicing Our work takes advantage of previous
research on dynamic slicing [3]. Previous dynamic slicing
applications have focused on debugging program source
code but there have been other applications as well [31].
We use a precise slicing algorithm proposed by Zhang et
al. [32] in this work. Venkatesh et al. [29] showed that pre-
cise slicing algorithms generate slices that can be orders
of magnitude smaller than imprecise dynamic slices.

9 Conclusion

In this paper we have proposed a binary analysis approach
to the dialog rewriting problem. For the dialog rewriting
to be successful, the values of the dynamic fields in the
original dialog usually need to be rewritten with new val-
ues. Our solution automatically generates a transforma-
tion function, which can be used by the rewriter to rewrite
the values of the dynamic fields during the modified dia-
log.

We have proposed two novel techniques to identify the
dynamic fields present in the original dialog by 1) analyz-
ing how the data in sent messages has been derived from
the output of selected system calls, and 2) analyzing how
the parameters from selected system calls have been de-
rived from data previously received over the network. Our
results show that we can successfully identify fields such
as IP addresses, ports, cookies, user names, passwords,
and configuration data.

13

We have also proposed a technique to generate input-
output formulas which precisely capture how the data sent
over the network was generated during the original dia-
log. Our techniques builds on data dependency analysis
techniques such as Dynamic Program Slicing. The input-
output formulas form the core of the transformation func-
tion because they normally capture how the values of the
dynamic fields have to be encoded. In addition, our tech-
niques allow a deep understanding on the protocol seman-
tics useful for problems such as protocol reverse engineer-
ing, building application layer gateways, or intrusion de-
tection systems.

We have implemented Rosetta, a system that supports
our techniques. We have evaluated Rosetta using 5 bina-
ries and 3 widely used protocols: FTP, DNS and ICQ. Our
results indicated that we can successfully generate a trans-
formation function that can be used to rewrite the dynamic
fields. Thus, in this paper we have shown that when com-
bining our techniques to automatically create the trans-
formation function with previously proposed techniques
to identify field boundaries, we enable automatic protocol
replay and automatic NAT rewriting.

References
[1] ISO 8601 Date and Time Standard. http://isotc.iso.org.

[2] Qemu: Open Source Processor Emulator.
http://fabrice.bellard.free.fr/qemu/.

[3] H. Agrawal and J. R. Horgan. Dynamic Program Slicing.ACM
SIGPLAN Notices,25(6), White Plains, NY, June 1990.

[4] N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo. Generic
Application-Level Protocol Analyzer and Its Language.Network
and Distributed System Security Symposium,San Diego, CA, Feb.
2007.

[5] D. Brumley, Z. Liang, J. Newsome, and D. Song. Au-
tomatic Generation of Multi-Path Vulnerability Signatures.
http://www.cs.cmu.edu/ dbrumley/bitblaze, Carnegie Mellon Uni-
versity Technical Report.

[6] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang,D.
Song, and A. Blum. FiG: Automatic Fingerprint Generation.Net-
work and Distributed System Security Symposium,San Diego, CA,
Feb. 2007.

[7] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic
Extraction of Protocol Message Format Using Dynamic Binary
Analysis. ACM Conference on Computer and Communications
Security,Alexandria, VA, Oct. 2007.

[8] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosen-
blum. Understanding Data Lifetime Via Whole System Simula-
tion. USENIX Security Symposium,San Diego, CA, Aug. 2004.

[9] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L.
Zhang, and P. Barham. Vigilante: End-to-End Containment of
Internet Worms. Symposium on Operating Systems Principles,
Brighton, United Kingdom, Oct. 2005.

[10] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architectural
Support for Protecting Control Data.ACM Transactions on Archi-
tecture and Code Optimization,Dec. 2006.

[11] W. Cui, J. Kannan, and H. J. Wang. Discoverer: AutomaticProto-
col Description Generation from Network Traces.USENIX Secu-
rity Symposium,Boston, MA, Aug. 2007.

[12] W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz. Protocol-
Independent Adaptive Replay of Application Dialog.Network
and Distributed System Security Symposium,San Diego, CA, Feb.
2006.

[13] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer.Dy-
namic Application-Layer Protocol Analysis for Network Intrusion
Detection.USENIX Security Symposium,Vancouver, Canada, July
2006.

[14] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer Communication
Across Network Address Translators.USENIX Annual Technical
Conference,Anaheim, CA, Apr. 2005.

[15] V. Ganesh and D. Dill. A Decision Procedure for Bit-Vectors and
Arrays. Proceedings of the Computer Aided Verification Confer-
ence,July 2007.

[16] M. Holdrege and P. Srisuresh. Protocol Complications with the IP
Network Address Translator. RFC 3027, Jan. 2001.

[17] J. Kannan, J. Jung, V. Paxson, and C. E. Koksal. Semi-Automated
Discovery of Application Session Structure.Internet Measurement
Conference,Rio de Janeiro, Brazil, Oct. 2006.

[18] J. King. Symbolic Execution and Program Testing.Communica-
tions of the ACM,19, 1976.

[19] C. Leita, M. Dacier, and F. Massicotte. Automatic Handling of
Protocol Dependencies and Reaction to 0-Day Attacks with Script-
Gen Based Honeypots.International Symposium on Recent Ad-
vances in Intrusion Detection,Hamburg, Germany, Sept. 2006.

[20] C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Automated
Script Generation Tool for Honeyd.Annual Computer Security
Applications Conference,Tucson, AZ, Dec. 2005.

[21] J. Lim, T. Reps, and B. Liblit. Extracting Output Formats from
Executables.Working Conference on Reverse Engineering,Ben-
evento, Italy, Oct. 2006.

[22] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M. Voelker.
Unexpected Means of Protocol Inference.Internet Measurement
Conference,Rio de Janeiro, Brazil, Oct. 2006.

[23] S.S. Muchnick.Advanced Compiler Design and Implementation.
Academic Press, 1997.

[24] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software.Network and Distributed System Secu-
rity Symposium,San Diego, CA, Feb. 2005.

[25] J. Newsome, D. Brumley, J. Franklin, and D. Song. Replayer:
Automatic Protocol Replay By Binary Analysis.ACM Conference
on Computer and Communications Security,Alexandria, VA, Oct.
2006.

[26] R. Pang, V. Paxson, R. Sommer, and L. Peterson. Binpac: AYacc
for Writing Application Protocol Parsers.Internet Measurement
Conference,Rio de Janeiro, Brazil, Oct. 2006.

[27] N. Schear, C. Kintana, Q. Zhang, and A. Vahdat. Glavlit:Prevent-
ing Exfiltration At Wire Speed.ACM Workshop on Hot Topics in
Networks,Nov. 2006.

[28] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program
Execution Via Dynamic Information Flow Tracking.International
Conference on Architectural Support for Programming Languages
and Operating Systems,Boston, MA, Oct. 2004.

[29] G. Venkatesh. Experimental Results from Dynamic Slicing of C
Programs. ACM Transactions on Programming Languages and
Systems, volume 17, 2, New York, NY, USA, 2003.

[30] M. Weiser. Program Slicing.International Conference on Software
Engineering,Mar. 1981.

[31] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A Brief Survey
of Program Slicing.SIGSOFT Software Engineering Notes,30(2),
New York, NY, USA, 2005.

[32] X. Zhang, R. Gupta, and Y. Zhang. Precise Dynamic Slicing Al-
gorithms.International Conference on Software Engineering,May
2003.

14

