Rosetta: Extracting Protocol Semantics using Binary Analysis
with
Applications to Protocol Replay and NAT Rewriting

Juan Caballero_, Dawn Songt__
_Carnegie Mellon University TUC Berkeley
jcaballero@cmu.edu dawnsong@cs.berkeley.edu

October 9, 2007
CMU-CylLab-07-014

CyLab
Carnegie Mellon University
Pittsburgh, PA 15213

Rosetta: Extracting Protocol Semantics using Binary Asialyith
Applications to Protocol Replay and NAT Rewriting

Juan Caballerg Dawn Song*
*Carnegie Mellon University TUC Berkeley
jcaballero@cmu.edu dawnsong@cs.berkeley.edu

Abstract vulnerabilities to third parties by replaying exploits tha
might be hidden in the middle of complex dialogs [19],

Rewriting a previously seen dialog between two entitiedhd when building application layer gateways to scrub
so that it is accepted by another entity, is important sgpnfidential data being leaked out of an enterprise net-

many applications including: theotocol replayproblem work [27].

and theNAT rewriting problem. Both problems are in- The main challenge in dialog rewriting is that an exact
stances of a larger problem that we call thalog rewrit- replay of the original dialog does not work, because the
ing problem. The challenge in dialog rewriting is thgbrotocol messages often includgnamic fieldsDynamic

the dynamic fields, e.g., hostnames, IP addresses, sesi@ts are fields that contain data, which might change for
identifiers or timestamps, in the original dialog need to lfferent sessions or different hosts, such as hostnames, |
rewritten for the modified dialog to succeed. This is paaddresses, ports, checksums, and timestamps Intuitively,
ticularly difficult because the protocol used in the originshese dynamic fields need to be identified and rewritten
dialog might be unknown. in themodified dialogotherwise the modified dialog will

In this paper, our goal is to generate a transformatibiely fail. This problem includes what previous work has
function that can be used to rewrite the values of the d@lled theapplication dialog replay11, 25].
namic fields. For this, we propose binary analysis tech-The difficulty in automatically rewriting the dynamic
nigues to solve the main two challenges: 1) how to autieelds is figuring out what needs to be rewritten, and how
matically identify the dynamic fields, and 2) how to autat should be rewritten. In particular, we need to figure out
matically rewrite the values in the dynamic fields. what type of data to write in them and what encoding to

We have implemented Rosetta, a system that createsttf@ for that type of data. This is difficult because many
transformation function using our proposed techniqué@pplications use closed protocols, with no publicly avail-
Our results show that we are able to identify differe@!€ Specification, so the type of data and encoding being
types of dynamic fields present in commonly used protbsed in the fields are annown. Even when the protocol
cols such as FTP, DNS and ICQ , and that we are ab‘?é‘“OWUv the_problem is important because_a manual ap-
to rewrite the values in the dynamic fields, even whdfoach is tedious and because there are times when the
those fields use complex encodings to represent the dg@lementatlons actually differ from the protocol specifi-

thus enabling the protocol replay and NAT rewriting prot&:ation.

lems. We divide the problem of dialog rewriting into two
stages: the offlin@nalysisstage and the onlinediting
stage. In theanalysis stageghe problem is figuring out
how to rewrite the dynamic fields. To solve this problem
we need to generate thmnsformation functionwhich
contains all the information about how to rewrite the dy-
We call dialog rewriting the problem of rewriting a pre- namic fields with new values. In thediting stage, the
viously seeroriginal dialog betwen two entities, so thatproblem is how to locate the dynamic fields in a message.
it is accepted by another entity that was not involvednce located, theewriter, i.e., the entity that performs
in the original dialog. Dialog rewriting is an impor-the dialog rewriting, just needs to apply the transforma-
tant problem for many applications. For example, dialan function with the new values for the dynamic fields.
rewriting is important for Network Address Translation The focus of this paper is on the analysis stage. Thus,

((jNAT) [1‘.1’ %r?] WhelreéJrott(]).ccr)]ls |nccliutdebports a.ltrt‘d ”? a(tgur problem is how to create the transformation function.
resses In the payload, which need to be rewritien 1or a5 stormation function needs to contain information

communication to succeed. Other examples_where d'a‘LQr%ut how to solve two problems: 1) how to automatically
rewriting is important are when demonstrating software

1 Introduction

identify the dynamic fields, which includes how to locatebtained by the program through system calls to the oper-
them in the dialog and how to infer the type of data theyting system, and includes the system time, data received
contain, and 2) how to automatically rewrite the values from the network, the local hostname or IP address, user
the dynamic fields, which includes understanding how tkeystrokes, or configuration data from a file. For exam-
data is encoded in the dynamic field. ple, one type of dynamic field is keyboard input. We can

In this paper we propose a novel approach, which effientify dynamic fields containing keyboard input by ana-

ploys binary analysis techniques to solve those two prdbzing if some parts of the messages being sent are derived

lems during the analysis stage. Then, we show howffgm data that the user entered through the keyboard.

use those techniques to create the transformation functioo understand how to rewrite the dynamic fields, it is
that the rewriter will use to rewrite the dynamic fieldsot enough to know the type of data contained in those
Our techniques are based on analyzing program binaidgmamic fields. In addition, we need to know exadtiyw
implementing the protocol. Binary analysis is specialhe value in the dynamic fields was generated. The reason
useful when dealing with closed applications, since thee need such knowledge is the large number of different
application’s source code is usually not available. The ashcodings employed by network protocols. For example,
vantage of using program binaries compared to netwafkve know that some bytes in a message represent a port
traces is that network traces only contain syntactic infarumber, but we do not know the exact encoding the field
mation while the program binaries contain a wealth of imses to represent the port number, we will not know how
formation about the protocol semantics, because the pimrewrite the old value with a new one.

gram binaries contain all the information about the proto-\y,e have implemented Rosetta, a system that takes as
col specification. input the program binaries and returns the transformation
In addition to the dialog rewriting problem, our techfunction that the rewriter uses during the modified dialog

nigues are also useful to understand the protocol awdrewrite the values in the dynamic fields. Our results
to facilitate usage of protocol semantics for other probhow that we are able to identify different types of dy-
lems such as building application layer proxies, protaamic fields present in commonly used protocols such as
col reverse-engineering [7, 11], intrusion detection sy8TP, DNS and ICQ, and that we are able to rewrite the
tems [13], fingerprint generation [6], and protocol anaalues of those dynamic fields, even when complex en-
lyzers for network monitoring [4, 26]. codings are used to represent the data. Thus, our results

There has been previous work on application dialog r0W that when combining our techniques to automati-
play, which is one instance of the dialog rewriting prol§-a”y create the_transforr_natlo_n fqnctlon with prewously
lem. Leita et al. [19, 20] and Cui et al. [11, 12] propose fyoposed tec_hnlques to identify field bounc_zlarles, we en-
locate dynamic fields in network traces by finding field@PI€ automatic protocol replay and automatic NAT rewrit-

that change value across different sessions. In additil¥-
Cui et al [12] have proposed heuristics to identify a few In summary, this paper makes the following contribu-
types of dynamic fields in the context of replaying prevtions:

ously captured network traces. The fundamental Iimits— bi vsi h to the dial
tion of both approaches is the lack of protocol semanticsPPOS€ @ binary analysis approach 1o the dialog

in network traces. To overcome the lack of semantics rﬁwriting problem: To suc_cessfully rewrite a previously
network traces they need to make assumptions about YHE" dialog, th? Or'%'n?rl] dlglog ”?e‘]i'_s Itc? bel r(i;/]v_rltten as-
type of encoding used in the dynamic fields or rely ofdning new vaiues to the dynamic fields. in this paper,
statistical variability across different sessions. Buis W€ Presenta solution based on binary analysis that allows

techniques fail to identify many types of dynamic fie|gd0 9enerate a transformation function that can be used to

Another line of work [25] has used binary analysis tec ewrite the dynamic fields, in some unknown protocol, so
t the modified dialog is accepted.

nigues to solve the related, problem of replaying compl
program executions. The problem they address is diff@ropose novel techniques to automatically identify dy-

ent from ours because our goal is to rewrite the netwaflsmic fields: We propose two novel binary analysis
dialog, not the complete execution. techniques to identify dynamic fields. We identify dy-

We use two different binary analysis techniques to idefamic fields inreceivedmessages by analyzing how the
tify dynamic fields in unknown protocols: we identify dydata in a received message is used, and we identify dy-
namic fields inreceivedmessages by analyzing how th@amic fields insentmessages by analyzing how the data
data in a received message is used, and we identify #ya sent message was derived. Our techniques work by
namic fields insentmessages by analyzing how the daf@onitoring how the parameters and return values of se-
in a sent message was derived. The intuition behind thégeted system calls are used by the program and allow
two techniques is that the values contained in the dynarificidentify multiple types of dynamic fields including:
fields are derived from auxiliary data, i.e., data that is ne@okies, timestamps, IP addresses, ports, hostnames, file

part of the program’s source code. This auxiliary dataﬁ}s’é\mgs- consistency fields, keyboard input, and configura-
tion data.

Propose a technique to automatically rewrite the dy- From: 10.0.0.2:9397 From: 128.2.5.1:10023

namic fields: We propose a technique to automatically ' 198:41.0.4:21 T0:198.41.0.4:21
. . ; Payload: 10.0.0.1:9234 Payload: 10.0.0.1:9234
construct the transformation function, used to rewrite the =

dynamic field values. The core of the transformation fune| /] > EE Internet

tion are the input-output formulas that precisely captu e ? - §

how the value in a dynamic field was encoded from th&s ' Transiator (NAT) From: 198.41.0.4:7272 perore server
o 128.2.5.1 To:10.0.0.1:9234 198.41.0.4

output of selected system calls. Our technique allows to
rewrite the value of the dynamic fields independently of -) o
the complex encodings that might be used. We captimgure 1: NAT rewriting problem. The connection origi-
how the data sent by a program is derived from the outﬂlﬁmd by the remote server cannot reach the local host.
of selected system calls using Dynamic Program Slicing,
Symbolic Execution, and other techniques from the pro-

gramming languages community. the dialog. For example, when an exploit has been cap-

Design, implement and evaluate our techniques: We tured using a honeypot and we need to replay it to other
design and implement Rosetta, a system that implemé@$ts running different versions of the same application to
our techniques. We evaluate Rosetta using 5 different ¥@rify if they are susceptible to the exploit.

naries and 3 different widely used protocols: FTP, DNS |n NAT rewriting we need to modify the dialog be-
and ICQ. Our results show that we are able to create tagen two entities that communicate through some NAT
transformation function to automatically rewrite an FTBr proxy, using some unknown protocol, Here the rewriter
standard mode session in under 30 minutes, and the tife@ds to modify both sides of the dialog. For example,
to apply the transformation function during the editingnagine the scenario in Figure 1, where a local network
phase is negligible. Thus, our results show that we cowénnects to the Internet through a NAT that only allows
potentially enable any protocol with similar behavior tgutbound connections to go through, i.e., connections that
work in the presence of a NAT. originated from the local network. A host in the local net-

The remainder of this paper is organized as follow&Ork is connected to some remote server using a com-
Section 2 introduces the problem. Then, in Section 3 W#and channel and wants to start a separate data transfer
present the system architecture. Next, in Sections 4 andS5"g a new connection, as in FTP in standard mode. The
we propose techniques for identifying dynamic fields afpst selects a new port to listen to and sends this newly
for capturing how to rewrite the values in the dynamgelected portand its IP address, to the remote server, who
fields,. In Section 6 we explain how to obtain the transforeeds to start a new connection back to the client using
mation function and we evaluate our system in Sectiontie IP address and port provided by the host.

Finally, we describe related work in Section 8 and con- For the data channel to be successfully established, the
clude in Section 9. NAT needs to be able to do two things: 1) identify the
dynamic fields in the message sent by the host (i.e., the
IP address and port) so that it knows an inbound connec-
2 Overview and Problem Definition tionis coming, 2) to rewrite the dynamic fields with new
values. The IP address needs to be rewritten so that it be-
comes the externally routable address of the NAT and the
port needs to be rewritten if it is already being used by the

" NAT for another connection.
Rewriting a previously seen dialog betwen two entities, so

that it is accepted by another entity, is important many ap-Ve consider protocol replay and NAT rewriting two dif-
plications including theprotocol replayproblem and the ferent instances of the same problem that we calliihe

NAT rewritingproblem. We call the entity that performglog rewriting problem. We divide the dialog rewriting
the dialog rewriting, theewriter. problem into two stages: the offlirenalysisstage and

the onlineeditingstage. In the analysis stage, the goal is
i ; - . . to generate théransformation functiorthat details how

flelds!n th":‘ original dialog need to _be rewritten fqr theto rewrite the dynamic fields. This stage happens offline.
modified dialogo succeed. Dynamic fields contain d"“t‘?‘hen, in the editing stage, the rewriter uses the transfor-

thathm|gh; chtange forIdFlffe(;((ejnt sessions :)r dlr]ferint hOSFﬁati n function to rewrite the dynamic fields so that the
such as hostnames, 1= addresses, ports, checksums fied dialog can succeed. This stage happens online.
timestamps. Intuitively, these dynamic fields need to be

identified and rewritten in thenodified dialogotherwise, ~ T1hus, in dialog rewriting, we need to address two dif-
this modified dialog is likely to fail. The problem is exferent problems: 1) how to automatically identify the dy-
tremely challenging when the protocol is unknown or h&&mic fields, and .2) .how to automatically rewrite the val-
no publicly available specification. ues of the dynamic fields.

In protocol replay we only need to replay one side &cope of the problem: We can further subdivide the

2.1 Overview of the Problem

In both problems, the challenge is that ttgnamic

problem into tasks. During the analysis stage, there &3 Approach

three tasks: to identify the field boundaries, to identify

which of those fields are dynamic, and to generate tfie obtain the transformation function needed by the
transformation function that allows to rewrite the valkewriter, we have to solve two main problems: 1) identify
ues of the dynamic fields. During the editing stage, théhich fields in the original dialog are dynamic and what
rewriter has two tasks: identify the field boundaries, argpe of data they contain, and 2) learn how to rewrite the
apply the transformation function to rewrite the dynamitynamic fields values.

fields with new values. Identifying the dynamic fields: The intuition we use

Both stages need to identify, as a first step, the figld igentify the dynamic fields is the following: if we un-
boundaries. There have been proposed solutions for fi¢stand either how a dynamic field is used or how the
problem of identifying the field boundaries in protocajajye of a dynamic field is derived, then we can usually
messages [7,11,19]. In this paper, for the sake of scopger what type of dynamic field it is, that is, the seman-
we assume that when we need the field boundaries, the¥ of the dynamic field. Using this intution we propose
can be provided by one of the previous solutions and fgyo different techniques to identify dynamic fields, which
cus on the remaining tasks, which are challenging enoughend on the direction of the message: 1) for messages
in themselves. that arereceivedby the progam, we analyze how the data

Besides identifying the field boundaries, the remaiir the message is used, and 2) for messages thaeate
ing task on the editing stage is for the rewriter to apply the program, we analyze how the data in the message
the transformation function with the new values for theas derived.

dynamic fields. Clearly, the challenge is how to obtain For received messages, we observe if the data contained
such transformation function. Once obtained, applyingji the received message is used inpagameterof some
is straightforward. Thus, in this paper, we focus on th@jected system calls. Since the goal of the system call
last two tasks of the analysis stage, which are the m@gfq the meaning of its parameters is usually well defined
challenging: how to identify the dynamic fields and hoy, some specification (e.g., the Windows APl documenta-
to rewrite the values of those dynamic fields. We haygn), then when previously received data is used in those
built a system called Rosetta that implements those tygrameters we can infer its semantics. For example, when
tasks. the parameters of a system call to start a new connection
(e.g., connnect), which are defined to be an IP address and
a port, have been derived from some parts of a previously
received message, then we can infer that those parts of the
2.2 Problem Definition received message encoded an IP address and a port.

For sent messages, we capture how the sent data was
We define the dialog rewriting problem as follows. Tweonstructed using theeturn values$ of selected system
entities, called thénitiator and therespondentengage calls. Since we know what the values returned by a system
in some communication over the network using some wegll mean, then we can infer the semantics of data that
known protocol. We term such communication trig- has been derived from those values. For example, one

inal dialog and such dialog represents an instance of e of dynamic field is keyboard input. We can identify
application session. dynamic fields containing keyboard input by analyzing if

some parts of the messages being sent are derived from

The goal of dialog rewriting is to produceraodified gata that the user entered through the keyboard.

dialog, which is accepted by an external entitity, calle
the verifier, which was not involved in the original dia-Understanding how to rewrite the dynamic fields: To

log. The modified dialog occurs between the verifier angwrite the dynamic fields it is not enough to know what

a fourth entity that we call theewriter. Note that, in type of data is stored in the dynamic field. We also need
the modified dialog, the rewriter can rewrite the initiasorto understand how that type of data needs to be encoded
side of the dialog, or the respondent’s side of the dialggo the dynamic field. For example we might know that a
(e.g., in protocol replay), or both of them (e.g., in NAHynamic field contains time data but there exist many dif-
rewriting). ferent encodings for time. For example, according to the

Problem definition: Our problem is, given the programISO 8601 standard [1], October 4th, 2007 could be repre-

o e t using months and days as 2007-10-04, but it could be
binaries of both the initiator and the respondent, to ge%ng ;
erate atransformation functionwhich can be used byrepresented using weeks as 2007-W40-4. Clearly, when

the rewriter to successfully communicate with the verifié?wgt'tngkthe valhqeho;‘ a dy?f[amm field mtrt] tﬂew dlata_, we i
during the modified dialog. Such transformation functight€d 10 kKnowwhich format {o use, so that the vaiue 1S no

is based on the original dialog and states which parts UllBy return values, we mean all ouput values of a system caljusb

the original dialog need to be modified by the rewriter, $Qe return value usually place imzz. Here, we try to avoid overloading
that the verifier accepts the modified dialog. the term output.

Program binaries Execution traces Transformation
— | Execution ———» Input-Output formulas —— g Function function
Selected — | Monitor | Network trace ——» ~ vonl >
system calls Network trace Program binaries ——|
a) The execution monitoring phase c) The function generation phase
Execution| ~Conversions Input-Output
trace IR ic |Slices Formulas
> R Memory . SSA_ 3| Dynamic S Formul_a Ll For_mula_
Generation conversions translation Slicing Generation Simplification

b) The formula generation phase

Figure 2: System Architecture for Rosetta.

rejected. 3 System Architecture

To understand how to rewrite the dynamic fields, we
need to precisely capture how the values in the dynan@ar system, Rosetta, implements the last two steps in the
field were generated. Thus, we are interested in undeffline analysis stage: identifying the dynamic fields and
standing how the different bytes in a message being santlerstanding how the values in those dynamic fields are
have been derived from the output of selected system cgéserated. Figure 2 shows the system architecture for
To address this problem we use data dependency teRbsetta. It is comprised of three phases: d¢xecution
nigues from the programming languages community. monitoringphase, théormula generatiorphase, and the
particular, we use Dynamic Program Slicing [3] and Synfunction generatiophase.

bolic Execution, which extracts, for a execution history 1he execution monitoring phase takes as input the pro-
and a variable, an slice that contains all the statementg, il pinaries of the initiator and the respondent, and the
the execution history that affected the value of that valia; of selected system calls. It executes both binaries in-
able. In our case, the variables are the different bytes sgf the execution monitor, while they generate the origi-
over the network, and the slices contain only the infofy| gialog. The output of the execution monitoring phase
mation about how those bytes were generated. Then, 38 he execution traces that capture all the processing
use those slices to generate input-output formulas that ggg,e by each of the binaries during the dialog, and the
semantically equivalent to the slices, but much smaller lanvork trace that contains all messages exchanged dur-

size. ing the dialog. We present the execution monitoring phase
The input-output formulas precisely capture, how the section 3.1.

value of the dynamic field was generated in that execu—pe formula generation phase is the core of the system.
tion. Even if the input-output formulas only encode g s repeated for each message in the network trace in the
single execution, the fact that fields do not usually hold, e order that they were sent. It takes as input the exe-
two different types of values, or two different encoding§,tion trace of the originator of the current message being
of the same value, means that the_se mput—outputform%cessed and outputs an input-output formula that cap-
can normally be used to replay different values. Thereyses how that message was generated from the output of

one exception though with variable-length dynamic fieldg,q se|ected system calls. We present the formula genera-
Our input-output formulas only allow byte-by-byte rewritz; phase in section 5.

ing of the dynamic fields. But sometimes, the new value
that we want to encode into a variable-length dynamicThe function generation phase takes as input the input-

field might have a larger length than the original value diaﬁtpm formulas generated during the formula generationd
In this case, such byte-by-byte rewriting will fail. ThugPnase, the program binaries, and the network trace, an

for these cases we further analyze the program binary gc_)duces th_e trans_formauon 1_‘L_|nct|on, which will be used
the rewriter during the editing stage. We present the

ing static analysis techniques, to identify the part of t . . h ; ion 6
code that performs the encoding, and add this knowled§8ction generation phase in section 6.

to the transformation function.
3.1 The Execution Monitoring phase
In this section we briefly describe the execution monitor

that we use to monitor the program binaries of the initiator
and the respondent during the execution of the original

dialog. In addition we describe the different groups ¢ify them.

system calls that we currently suport. Direction fields: Direction fields are fields that store in-

The execution monitor: We implement the executionformation about the location of another field in the mes-
monitor using an emulator [2]. Executing a program irsage, called the target field. The most common direction
side an emulator allows us to monitor the internal ex@elds are length fields, whose value encodes the length of
cution of the program and the input/output operationsdttarget field. Other types of direction fields are pointer
performs. The execution trace generated by the exefialds and counter fields. There have been previously pro-
tion monitor contains all the instructions executed by thosed techniques to identify the direction fields in a mes-
program or any library that the program uses, includirsgge [7, 11]. In this paper, we use some of those tech-
system libraries and dynamically loaded libraries such migjues, which identify direction fields by monitoring how
dil's. In addition to the instructions themselves, the emthe binary parses a received message [7].

lator also collects, for each instruction, the content ef t

operands at the time the instruction is executed. I:|'|mestamps: Timestamps are fields that contain time

data. We identify timestamps by analyzing if some parts
Selected system calls: To detect the dynamic fields weof a message being sent by the program have been derived
monitor the parameters and return values of selected dysm the output of system calls that request the local or
tem calls. We note to the reader that we are lax in our uBestem time (e.g., Windows GetLocalTime and GetSys-
of the term system calls throughout this paper, since v&nTime).

denote calls to the Windows API as system calls where
they are really only an interface to the real system cal ookies: Cookies are data present in messages in both

The specific system calls to be monitored can be defi cuogs tOf thﬁ c%n;)mukmtca;t;]on, Su((;h a\'/svsgjsmtn |dent|l—
by the user. We currently provide support for six lar (ers or data echoed back to the sender. YWe iden ify cook-

groups of systems calls: File system calls to create fil & by analyzing if some parts of a message being sent

open files or read file information; Network system cal y the program have been derived from data previously

to receive data, open sockets, bind ports, and start Cg;rrgeived over the network, which includes the case when
nections; Keyboard system calls to receive data writt data is directly copied and also when it is modified.

through keyboard; Time system calls to get the systargcal host identifiers: Local host identifiers identify

or local time; Registry system calls to open Windows reghe local host sending the information. Typical host iden-

istry keys, or read and write the values; and Host identifigiers are the IP address and the hostname. This local

system calls that return data that identifies the host, sugformation can be obtained from the operating system

as the IP address or the hostname. through system calls (e.g., gethostname), or from config-
uration data, which we describe later. We identify local

o) . host identifiers by analyzing if some data in a message

4 ldentifying the Dynamic Fields being sent has been derived using the values returned by

such system calls.

In this section we introduce the different dynamic fieldsgnnection endpoints: Some protocols, such as FTP or
that we want to identify, and how to identify them. Wggjce over IP protocols, use data channels that are dynam-
use two different techniques to identify dynamic fields: 1351y created using the control channel. The connection
we identify dynamic fields imeceivedmessages by ana-endpoint information for these data channels is usually
lyzing how the data in a received message is used, an¢@ated during run time. The usual transaction is that one
we identify dynamic fields irsentmessages by analyzingyf the parties selects the new connection endpoint, usually
how the data in a sent message was derived. consisting of theladdres, port) pair, and tells the other
For received messages, we observe if the data contaipedy to establish a connection back to that endpoint. We
in the received message is used inplagameterof some identify connection endpoints by analyzing how the pa-
selected system calls. Since the goal of the system calineters of the system calls used by the program to start
and the meaning of its parameters is usually well definedw connections (e.g., connect), and bind new listening
in some specification (e.g., the Windows API documentaerts (e.g., bind) have been derived from a previously re-
tion), then when received data is used in those parametsived message. If such parameters (i.e., addresses and
we can infer its semantics. For sent messages, we cappo#s) depend on some previously received network data,
how the sent data was constructed usingétern values then we can infer that the received network data encoded
of selected system calls. Since we know what the valugsme connection endpoint.
returned by a system call mean, then we can infer the Sf
S
0

mantics of the sent data that has been derived from th %nsistency fields: Consistency fields are fie"?‘? used
values. check if the data has been erronously modified dur-

ing transmission. Examples of consistency fields are

~Next, we present the different dynamic fields we coBhecksum and hash fields. Consistency fields need to be
sider, and which of these two techniques we use to iden-

checked when a message is received and need to be tore how the bytes in a message being sent have been de-
structed when a message is sent. We identify consisteniggd from the output of selected system calls.

fields in the following way: if we find that some bytes of & The formula generation comprises three steps. First,

message being sent have dependencies on all other byfe$onvert the execution trace into our intermediate rep-

in the same message, or certain fields, then we flag thes&ntation (IR) and apply additional SSA and memory
bytes as a consistency field. conversions to prepare the IR in the format expected by

Keyboard input: Messages often include data provideli€ following steps. Then, we apply a Dynamic Program
by the user via the keyboard, such as the filename in a FF#€INg algorithm which extracts, for each variable, all
download, the domain name in a DNS query or the usgftements that affected the value of the variable, where
name and password in an ICQ login session. We identifje variables are in this case the bytes sent over the net-
keyboard input by analyzing if any part of a sent messal erk. These statements form a slice, which is different

has been derived from data obtained from the keyboardO" €ach variable and contains all the needed dependen-
cies. Note that, we consider each byte in a message sent

File names: We identify file names present in receivedver the network independently and each slice contains
messages, rather than in sent messages as presented i|th&tements that affected how a single byte was derived.
above paragraph, by analyzing if the parameters of sysnally, we create a formula by combining all the state-
tem calls used to open files (e.g., open) or used to get filents in a slice together and simplify such formula using
properties (e.g., NtQueryInformationFile) have been dgifferent techniques. The output of this simplification is
rived from data previously received over the network. the input-output formula, which captures how a byte in a

Configuration data: Configuration data is data provide&ent message was constructed.
by the user in a non-interactive way. For example, proto-

col configuration parameters such as the number of ti S.I. .

to retry a connection. We identify configuration datarkg' Conversions
analyzing if some parts of a sent message have beengg-[- .
rived from data read from file. As an special case, we al -1 IR generation

consider if data has been derived from values stored in th
(/\fé convert the instructions logged in the execution trace

Windows reg|§try._) . to an intermediate representation (IR). The advantage of
To summarize, in this section we have shown how Wging an intermediate representation is that it allows us to
can identify dynamic fields using one of two techniquegerform subsequent steps over the simpler IR statements,
analyzing how the data in a received message is UseGh&ead of the hundreds of cumbersome x86 instructions.
derive the parameters of selected system calls, or analyge translation from an x86 instruction to our IR is de-
ing how the data in a sent message has been derived ugjg@led to correctly model the semantics of the original
the return values of selected system calls, where analyzjig instruction, including making otherwise implicit side
means extracting the dependencies between those valggsets explicit. For example, we correctly model instruc-
In Section 5 we show the techniques we use to extract f{hs that set theflags register, prefixes that allow sin-
dependencies. gle instruction loops (e.grep), instructions with hidden
operands (e.g.imul %ebx which also operates oeux
andedx), and instructions that behave differently depend-

5 Formula Generation ing on the operands (e.g., shifts).
Our IR is shown in Table 1. It has assignments£ v),

In this section we describe the formula generation pha8i1ary operationsr{(:= ub,v), unary operationsr(:=

The formula generation phase generates the input-output’); l0ading a value from memory into a register (=
formulas, which precisely capture how a value was genéf!’2)), storing a value«(r1) := r,), direct jumps to a
ated. We can use the formulas to capture two types of §80Wn target label (jmp), indirect jumps to a computed
pendencies: 1) how the different bytes in a message beY@{€ stored in a register (ijmg), and conditional jumps
sent have been derived from the output of selected systéhi then jmp¢; else jmpty).

calls, and 2) how the input parameters to selected systeriiVvhen converting the execution trace to the IR, we need
calls have been derived from data previously received otemmark the output of the selected system calls so we can
the network. trace how the sent messages are derived from these values.

The second case is only used to identify dynamic fielfi@" €ach occurrence of one of the selected system calls,
in received messages, as explained in Section 4 but W&tMark the return values of the system calsgmibolic
to understand how the data in the dynamic field was e?,_symbohc _/arlable is a variable with a special name that
coded. Since both cases are instances of the same tEcReVer assigned a concrete value throughout the IR.
nigue, in this section we will only describe the first case. Then, for each instruction that operates on a sym-
Thus, the dependencies we describe in this section, chplic variable, we propagate this symbolic marking to

Instructions 1

(1) i= ralry i=*(ro)|r = v|r ;== ubyv
|r:==O,v | label ;| jmp ¢|ijmp r
|if r jmp ¢, else mp ¢

Operations 0O, +, %, /, > &, |, ®,==,! =, <, < (Binary operations)

O, == ~—,!(unary operations)
Operands v := n (aninteger literal) » (a register) ¢ (a label)
Reg. Types 7 = reg64| reg32| reg16| reg8| regl (number of bits)

Table 1: Our RISC-like assembly IR. We convert x86 assemidiructions into this IR.

the destination. For example, given the instructiome additional processing.
add%eaz, %ecr, which adds the contents ez andecz |t 3 memory read or write has a symbolic index, i.e., the

placing the result ircz, whereeax is symbolic anceez memory address has been derived from a symbolic vari-
is concrete, then the value efz after the instruction be- gpje we know that values derived from this value have a
comes symbolic. Thus, symbolic variables represent Valépendency on the symbolic index. Ideally, in this case
ues that depend on the output of the selected system cglis.\vould perform range analysis on the symbolic index

After we have translated the execution trace into the determine which other memory locations could be ac-
IR, we convert the IR into Static Single Assignment forroessed using the symbolic index. However, in our current
(SSA), a representation in which every variable is asaplementation, we restric the symbolic variable to be the
signed exactly once [23]. Since SSA is a well-knowsame one that appeared in the execution. We plan to in-
technique, we do not describe it here in detail. corporte detailed range analysis in the near future.

To summarize, in this section first we have presented
two memory related optimizations that we have found to
significantly increase the performance of the simplifica-
an step. Without these optimizations the simplification

One of the advantages of dynamic analysis over stal b h ve. Th h
analysis is that we know the exact memory addresses tﬂ'&?se ecomes much more expensive. 1hen, we have pre-
nted how to deal with memory accesses that operate on

the program accessed during execution, since dynamicsr%-

gions have already been allocated when they are used%bonc indices. The IR that results after these conver-

the content of registers are available when indirect ayons have been applied, is the input to the Dynamic Pro-

dressing modes are used gram Slicing algorithm, which we present next.

Still, there are certain issues related to memory that we
need to address. In particular, the simplification moé 2 Dynamic Program Slicing
ules can reason about memory accesses but this reasoning
is expensive. We have found out that if we do not prgthe problem of finding dependencies in a program has
process our IR to simplify the memory reasoning, théseen extensively studied in the programming languages
the simplications usually run out of memory. community. The goal is to find all the statements in a pro-
gram that affect a variable occurrence. One proposed so-
eIH{ion is Dynamic Program Slicing [3], the dynamic anal-
Sis counterpart to Program Slicing [30]. Dynamic Pro-
am Slicing can be defined as follows: Given a particular
Xecution historyrist of programP, and a variablear,
gge dynamic slice of with respect tchist andwvar is the
et of all statements ihist whose execution affected the
value ofvar, as observed at the end of the execution.

Modeling memory locations as registers:For all mem- The gifference between Program Slicing and Dynamic
ory accesses that use a concrete memory index, thapigygram Slicing is that the latter works only on a specific
when the value of the memory index does not depend ggecution, so it only contains the dependencies for that
the selected system calls, we model the memory accg$$ The reason we use Dynamic Program Slicing versus
as a read or write to a temporary register that represeptggram Slicing is that the static slices produced by Pro-

alrray accesses, which are expensive to reason about.

5.1.2 Memory conversions

Memory accesses with different memory sizes: The

x86 architecture allows memory accesses of differ
sizes (i.e., one, two, or four bytes in 32-bit architectur
This makes it difficult to reason about data dependenc
that involve memory. We address this problem by co
verting all memory accesses in the IR to work on a singS
byte level.

Dynamic data slices contain only data dependencies
Memory indices that depend on the input: The above while full dynamic slices contain both data and control
conversion can only happen when the indices are concreliependencies. Control dependencies capture the differ-
When the indices depend on the input we need to perfoemt decisions taken by the program to follow the specific

execution path (i.e., the conditions of all the conditionate clearly identical to “add $0x3,%eax”. Removing this
jumps taken during the execution). Data dependenciegdundant instructions, in their IR representation, makes
capture how values were derived during that executigdhe formula simpler but semantically equivalent. In ad-

In this paper we only include data dependencies in adition, our SSA and memory conversions insert redun-
slices. The intuition behind this decision is that controlant statements, because doing so makes the conversions
dependencies are not needed to understand how a $pemselves easier and less prone to implementation errors.
cific value was derived. On the other hand they captuFais is a common technique used in compilers, where se-
whether different values in the execution would follow guential optimizations might introduce redundant state-
different execution path. We argue why understandingrents, which are removed at the end by some simplifi-
single execution is often enough for our purposes in Seation stage such as dead code elimination.

tion 6. Thus, the second step simplifies this preliminary for-
In our problem, the execution history is the executianula to remove those inefficiencies and outputs the input-
trace, converted to our IR representation and having beerput formula. We use two simplification modules. One
through the SSA and memory conversions. The variables decision procedure, called STP [15], which provides
are the different bytes in a message being sent. We alsimplification interface. To be able to use this interface,
tain a slice for each variable, where each slice contains\a# have modules to convert our expressions to STP’s in-
the statements whose execution affected the value of @ue language and back to our IR representation. The sec-
variable. ond simplification module we have developed ourselves

The generated slices contain all the information abdyffth additional simplifications not yet available in STP
how each byte of a sent message was constructed, fehgh as expression .reordermg in some commutative bi-
the output of the selected system calls, during the origif’y operations, which allows further constant folding.
dialog. Each slice is much smaller than the complete @he_overall_effect of the simplification is a large reduc-
around 0.2% of the total size on average and below 1.5641 in the size of the formula.
of the total size for the largest ones. Still, the slices aoe t
large for understanding how each variable was generated

and in Section 5.3 we explain how we further simplify th : .
dependencies by generating input-output formulas. % The Function Generation Phase

We have implemented a slicing algorithm proposed b

Zhang et al [32], which is precise, i.e., only statemen-{%e last step in the analysis stage is to generate the trans-

with dependencies to the variable are included in the sli€fmation function that the rewriter will use during the
The algorithm works bottom to top on the IR and allo diting stage. So far, we have obtained the input-output

generating multiple slices (e.g., one per byte in the m rmulas for the different messages in the original dialog.

sage being sent) in a single pass. This algorithm has i inPut-output formulas precisely capture, how the dy-
advantage that it does not need to generate the dynafftgnic fields were derived from the output of the selected
dependence graph first. Our experience has shown 4tiem calls during the original dialog.
generating the dynamic dependence graph is too experBut, if the output of the selected system calls was dif-
sive for large traces as previously observed by Venkatdehent than in the original dialog, then the execution could
et al. [29]. have gone through a different path. In this case, the
input-output formula may be different than the one we
have generated. One example is with variable-length dy-
5.3 Formula Generation and Simplification namic fields. Note that our input-output formulas gen-
erated in the previous step only allow byte-by-byte sub-
The formula generation takes as input the slices genstitution of the dynamic fields. The reason being again
ated by the slicing algorithm, i.e., one slice per byte in tileat the input-output formulas only capture what hap-
message being analyzed, and outputs a set of input-oufperied in one execution, the one that originated the orig-
formulas that capture for each byte in the message, thal dialog, where the variable-length dynamic fields had
exact way it was derived from the output of the selectsdme specific length. It could happen that the rewriter
system calls. It comprises two steps. needs to rewrite a variable-length dynamic field with a

First, we perform symbolic execution [18] in the slice?®W value that is longer than the value.in the original dia-
which generates a preliminary formula that combines 9. Then, there would be some bytes in the new value of
the statements in the slice. The problem with using tH&€ variable-length dynamic field that we would not have
preliminary formula is its size. There are two main reg&nough information to rewrite by using information only
sons why this formula is large: redundant instructions aff{@™m one previous execution.
additional statements introduced by our SSA and mem-Thus, in this step, we enhance the dynamic analysis
ory conversions. For example, the following two instructone in the previous step with static analysis to capture ad-
tions: “add $0x1,%eax” followed by “add $0x2,%eax"ditional information not presentin previous executioms. |

Program Version | Type Size note the offset with respect to the start of the response and
Bind 9.3.4 | DNS server| 224kB the labels below the fields indicate the field type. There
Microsoft ftp 5.1.2600| FTPclient | A40kB are three types of dynamic fields in the DNS response:
Micros. nslookup| 5.1.2600 | DNS client | 70kB cookies, configuration data and direction fields. We label
Filezilla 0.9.23 | FTP server | 570kB . -
TinylCQ 12 ICQclient | 11kB those flel_ds as Coc_)kle, Config qnd D|rect|on_ respecn_vely.

As explained, the field boundaries and the direction fields
Table 2: Different program binaries used in our evalul the dialog are extracted by previously proposed tech-
tion. All binaries are for Windows. The size represenfddues [7,11,19]. The remaining dynamic fields are cook-
the main executable if there are several. ies and configuration data.

Cookies are fields that have been directly copied from
the received DNS query. Cookies include the session
[entifier present on the first two bytes of the DNS re-

onse and all the fields containing the original DNS

convert this static slice into a program. This program w ry (offsets 12 through 28). Configuration fields are

. e ields that contain data that has been derived from file.
then be able to handle variable-length dynamic f|elds_ q-elére all fields have been derived from the servers

cause it could include loops as well. The actual tQChquStabase file, which contains all the DNS records. There

how'to pe”‘.or”? SPCh static slicing and ouptput the slice &fe numerous configuration data fields in the DNS re-
a program is similar to the techniques we have develop

for a different application, vulnerability signature geme Sep nse such as, among others, the Time-to-Live (TTL),

tion [5]. Due to scope and space limit, we refer interestggd the email address to send complahas(mastey

reader to this paper for details. The fields labeled as Fixed do not show any dependen-
cies to the selected system calls. The remaining case, la-
beled Net, is a cookie field but that it has not been di-
rectly copied from the DNS query and thus we mark it
differently. This byte is part of the Flags field and shows
a dependency on some bytes of the received DNS query,
In this section we present our evaluation results. We hayg this dependency is not a direct copy from the DNS
evaluated our system using 5 different binaries and thiggery and thus we mark it differently. We give more de-
different protocols as shown in Table 2. All binaries angjls about this byte in the following paragraphs. Here we
for Windows and have been run on a Windows XP en\dnly note the surprising fact that both bytes belonging to
ronment. They range in size from the 11kB of the Tinyhe Flags field are marked with different field types. This
ICQ client to the 570kB of the FileZilla FTP server. Bothappens because the Flags field contains subfields smaller

the Bind DNS server and the FileZilla FTP server atfian one byte and those subfields might have been derived
widely deployed implementations, which we use to studyom different sources.

our techniques on real size binaries. For all the experi-]] .
ments we use the same set of 44 selected system chRderstanding how to rewrite the fields: Here we
which can be grouped into the six categories that were f{10W input-output formulas for some of the bytes belong-

troduced in Section 3.1: Network, File, Time, Registr{nd to the dynamic fields in the DNS response and illus-
Keyboard, and Host identifiers. trate how they are used to rewrite the value. The session

Th tocol d tudy include di d identifier (ID) field has been directly copied from the DNS
€ prolocals under study Include diverse dynam ery to the response, without any modification. Thus, the

fields such as session identifiers, IP addresses, ports, lt-output formulas for the two bytes of that field are:
names, passwords, and configuration data. The results
INPUT_18514142_0:reg8;

show that we can correctly identify the dynamic fields arfgd TPUT_O:reg8
generate the corresponding transformation function, OUTPUT_1:reg8 = INPUT_18514142_1.reg8;
where for each INPUT variable the first suffix is an in-
put stream identifier and the second one an offset in that
7.1 DNS Dialog stream. In this case, the suffix 18514142 identifies the
DNS query and the suffix 0 indicates that it has been de-
In this experiment we study a DNS query/response seised from the first byte of that message. Itis by observing
sion. We show the input-output formulas extracted f@tiese input-output formulas that we learn that these two
each byte of the DNS response. The DNS client is thgtes are part of a Cookie field.
nslookup binary shipped with Windows XP, while the ot o)1 input-output formulas are this concise. For ex-
DNS server is the open source Bind server. ample the input-output formula for byte 2, the first byte of

Identifying the dynamic fields: Figure 3 shows a sum-the Flags field, is the following:
mary of the dynamic fields identified in the DNS respongexf:reg8 & (Oxf:reg8 &
sent by the Bind server. The numbers above the fields de{INPUT_18514142_2:reg8 &

particular, in this case, we perform limited static progra
slicing, where we statically identify statements which m
be needed to compute the variable of interest and t

7 Evaluation

10

0xf8:reg8) >> 3:reg8 : 220 FileZilla Server version 0.9.23 beta
)) << 3ireg8 : USER anonymous
| : 331 Password required for anonymous
(Ox8f:reg8 & (0x4:reg8 PASS
| (0x80:reg8 : 230 Logged on
| (Ox1l:reg8 & SYST

(Ox8f:reg8 &

: 215 UNIX emulated by FileZilla
INPUT_18514142_2:reg8)

: PORT 10,0,0,1,149,167

: 200 Port command successful

LIST

: 150 Opening data channel for directory list.
: 226 Transfer OK

)

This input-output formula indicates that this byte is only
dependant on the second byte of the DNS query, and ex-
actly how it was derived from this value. The second byte
of the query is part of the Flags field and the different
constants that appear in the input-output formula are thigure 4: FTP dialog. Each line represent a message. The
masks used to extract the different flag fields. For exafirst letter denotes the originator of the message, where S
ple, the constant 0x8f near the bottom, zeros out the gpands for the server and C for the client.

code field from the query, since it needs to have a new

value in the response.

VVOLOVOVOVO W

.) . anonymous user (providing no password) and query a di-

p Lhe mput—oultput formdutlr;'z\s for the contﬂgglrattlor} d? ctory listing. The directory listing triggers a new data

t'ﬁ N ﬁre veFry arge arll thus' wetaretnotfa e IO |fnc;1 flannel to be established, where the client sends its IP ad-
€m here. For éxample, the input-output formuta for '?fess and a new port to the server, who connects back to

first byte of the Serial Number field, contains 462,501 &he client using those parameters. This is known as FTP
ements, which can be classified as binary operations, crg{%1)

tant " d variables. Thouah the inbut-outout indard mode. The dialog is shown in Figure 4, where
stants, casts, and variables. Though the input-output Ige., jine represents a different message and the first letter

mula is complex, it only contains 10 unique input vari; -
ables, representing bytes 103 through 112 of the datab"e efrﬁ Zesr(]atrflgrgr? 3%ns?;%rdszgﬁhrgecsl;ﬁe’ where S stands

file, which contain the serial number as a string. The rea-

son why these input-output formulas are so large is thdentifying the dynamic fields: On the client side of the
most configuration data is encoded as integers in the DHiSlog we identify two types of dynamic fields: keyboard
response, but the data is read from file as a string. Tihputand host identifier fields. Keyboard inputis data pro-
needed string to integer conversions generate large inpidted interactively by the user using the keyboard. The
output formulas. Note that, large input-output formuldsst message sent by the client contains the USER com-
are difficult to interpret by a human, but they can be effestand and the user name typed by the user during login.
tively used for rewriting the dynamic field values. ThugVe properly identify such dynamic field and mark it with
they are added to the transformation function. the Keyboard type.

Replaying the DNS response: The set of input-output Additiona!ly, on lthe _client side we also detect two dif-
formulas for the DNS query and response get inclugtgrent host |dent|f_|er fields, the IP address qnd the port.
into the transformation function, which allows the rewrite/Ve detect these fields because they are derived from the
to rewrite the dynamic fields in the modified dialogPutput of the getsockname function, one of our selected
For example, the rewriter impersonating the DNS sen@stem calls in the Network group. The process followed
would know how to rewrite the ID field by just copyindoy the chen; is the following. First, the client blnds_ a
the one received in the DNS query from the client. THEEW portletting the kernel select the port number to bind.
rewriter could as well choose to rewrite the configuratioten. the program calls the getsockname function to ob-
data, with a different DNS record to convince the clief@in the IP address and port that the kernel selected in the
to connect to a server different than the one it requestBEVvious bind call. Finally, it encodes the IP address and
Thus, by combining previously proposed techniques RO and puts them in the output buffer to be sent to the
identify field boundaries, and the techniques presenfe®f Ver:
in this paper to automatically generate the transformationOn the server side we detect one cookie field and we
function we have shown that we enable automatic protiso identify the IP address and port being sent by the
col replay. client. The cookie field appears in the third message,
which echoes back to the client theonymousiser name

. previously sent by the client. We are also able to identify

7.2 FTP Dialog the IP address and port from the server side by monitoring

. . . how the parameters to the connect system call are derived
In this experiment we analyze an FTP session. Here, W&m previously received network dafa

use the Microsoft command line ftp client to start the con-
trol channel with the Filezilla server, then we log in as tHenderstanding how to rewrite the fields: The input-

11

0 2 4 6 8 10 12 13 24 25 27

| ID | Flags | # Queries | # Anwers # Auth. | # Addit. | L l_ jxam_plelet" _ | 0 | Type | Class
"Cookie Net Fixed s Cookie -
29 31 33 35 39 41 42 46 48 49
| Pointer | Type | Class | TTL | Datalen | L | “dns1” | Pointer | L l _“h;me;r"_
-yt Pp—————————————Pp——————Pp———p——p I
Direction Fixed Config Direction Config Direction Config
59 61 65 69 73 7 80
| Pointer | Serial Number | Refresh interval | Retry interval | Expiration limit | Minimum TTL
-t P PP
Direction Config Config Config Config Config

Figure 3: Direction fields identified in a DNS response.

output formulas for the IP address and port are only genef-Steps in the formula generation phase| Run time
ated on the client side, even if those dynamic fields are de-!R generation 3min 58sec

tected on both sides, since only the client constructs thege>SA generation 12”;“ S3sec
fields before sending the PORT command. The input- MeMOry conversions 43.5sec
Slicing (46 slices) 23sec

output formulas corresponding to the IP address and poft
encoding range in size from 14 to 74 elements. The input
output formulas indicate that all the commas included i

the PORT command are concrete values with no depgaple 3: Run time for the different steps in the formula
dencies to the output of the getsockname system call. Tferation phase using the FileZilla execution trace. The

input-output formulas also indicate that the portis detivgime in the last 3 steps is the total for all 46 slices.
from bytes 4 and 5 of the getsockname parameters, and

the IP address is derived from bytes 6 through 9 of the

parameters. The first four bytes of the getsockname pa-

rameters are the socket descriptor and the address family,

which are not used to derive the encoded port and IP aebeds to perform a similar call to vsprintf with that format
dress. string and the new values. Thus, by combining previously

. . . proposed techniques to identify field boundaries, and the
Replaying the FTP session:When the rewriter wants totechniques presented in this paper to automatically gen-

replay the client side of the dialog, it might wantto rewrit rate the transformation function we have shown that we
the address or port number that the server will connect Mrable automatic NAT rewriting

maybe even redirecting it to a different host. In this case,
the IP address and port get encoded as a variable-lerigtim time: Here we provide some performance numbers
string. Thus, our input-output formulas are not enough to give the reader an idea about the scalability of our ap-
build the transformation function, and we need to incluggoach. Table 3 shows the running time for the FileZilla
some additional information about the encoding. We obxecution trace durig the formula generation phase. We
tain such information from static analysis. only show the run time for the Filezilla execution trace,

In particular, from the dynamic information, we deriv®ecause it is the largest of our execution traces being
that we only need to perform static slicing of the binar§round 3GB. The results show that we can run the com-
on the sections between the getsockname and the See formula generation phase in under 20 minutes with
calls, which significantly reduces the amount of code {B8& SSA translation taking about 66% of the whole execu-
analyze. In this case the static slice shows that the enciigi? time. The reason SSA is slower than the other steps is
ing gets done by one call to the vsprintf function in thihat our implementation is general and has not been opti-

msvert.dll library (the name of the function is obtainef!ized for execution traces. Notice that, the last threesstep
using IDA Pro) with the following format string «poRT Show the total time for the 46 slices that were computed.
%d,%d,%d,%d,%d,%d"” where the first four parametersThe total time for the complete analysis stage, which
are the four bytes of the IP address and the last two areith@udes the execution monitoring and the function gener-
port bytes. All these six bytes are derived from the outpation phases in addition to the formula generation phase,
of the getsockname sytem call. This information is theés under 30 minutes. Note that, this is the time to gener-
encoded in the transformation function, so that whenate the transformation function. The online editing stage
wants to rewrite the IP address or the port, the rewriter juakes negligible time to apply the transformation function
with the new values for the dynamic fields.

Formula Generation (46 slices) 14sec
~ Formula Simplification (46 slices) 28sec

12

7.3 1CQ Dialog field structure in protocol messages. Leita06 et al. [19]
and Cui et al [11] propose to use variations between differ-
In this experiment we analyze an ICQ login session. Thast sessions to extract the protocol message formatgtrictl
time we only have access to the client binary, thus vil®m network traces. Caballero et al. [7] present dynamic
will be only able to replay that side of the original diabinary analysis techniques to extract the field boundaries
log. Here, the client application asks the user for the ugesm a given message. Lim et al [21] use static analysis to
name and password and tries to login into the server. extract the format from the output by a program. Their ap-
proach needs the user to identify the output functions and
St,[heir corresponding parameters. Our works builds on pre-
vious techniques to identify the field boundaries in proto-
col messages [7]. We extend those techniques to deal with
Understanding how to rewrite the fields: The input- protocol field semantics.

output f_ormulas show that the user name is being directlyThere has also been previous work on identifying traf-
copied into the login request message at offsets 14 throyighhat uses the same application-layer protocol [22], and
22. Interestingly, a modified version of the password agn analyzing how to extract the application-level struetur
pears at offsets 27 through 31 in the sent message ThRetwork data [17] There has been also research on lan-

Identifying the dynamic fields: We correctly identify
two keyboard input dynamic fields in the login reque
which correspond to the user name and the password.

resulting input-output formulas are: guages and parsers that simplify the specification of net-
OUTPUT 27 = Oxf3:reg8 " INPUT_123_9:reg8:; work protocols [4, 26].
OUTPUT_28 = 0x26:reg8 ~ INPUT_123 10:reg8;

Dynamic Taint Analysis: Another technique that could

88%‘38?58 8?35::33 R :Hggl_igg_ié:zgg be used to identify the inputs involved in generating an
OUTPUT 31 = 0x39:reg8 ~ INPUT_123_13:regs: output is dynamic taint analysis [8-10, 24, 28]. Compared

to dynamic taint analysis, our input-output formulas cap-
This shows that the password is being XORed againsfuge not only which inputs were involved in the generation
constant string. This constant string is usually called tbé the output but also capture exactly how those inputs
roast array in ICQ, and the process is known as roastingre used to compute the output.

the password. L :
Dynamic slicing Our work takes advantage of previous

Replaying the ICQ session: In this case, the rewriterresearch on dynamic slicing [3]. Previous dynamic slicing
might want to login using some different account infompplications have focused on debugging program source
mation it has access to. Here, we cannot directly use thsgtle but there have been other applications as well [31].
input-output formulas, since they would allow us to replaye use a precise slicing algorithm proposed by Zhang et
only passwords up to 5 characters. Since the roast arragli§32] in this work. Venkatesh et al. [29] showed that pre-
larger than 5 characters, we would not know the right cogise slicing algorithms generate slices that can be orders
stant to XOR against the sixth character of the new pas$magnitude smaller than imprecise dynamic slices.
word. Thus, we extract the whole roast array from the

TinylCQ binary by using static analysis techniques, and

add this information to the transformation function so that

the rewriter can use this array to rewrite the password. 9 Conclusion

In this paper we have proposed a binary analysis approach

8 Related Work to the dialog rewriting problem. For the dialog rewriting
to be successful, the values of the dynamic fields in the
We group previous work into four categories. original dialog usually need to be rewritten with new val-

. N] . ues. Our solution automatically generates a transforma-
Dialog rewriting: Leita et al. [20] and Cui et al [12] ion function, which can be used by the rewriter to rewrite

and propose heuristics to identify dynamic fields from nehe values of the dynamic fields during the modified dia-
work traces with application to the replay problem. Oqg,g_

work differs in that we use binary analysis since bina-
ries are richer in protocol semantics than network trace
which mostly contain syntactic information. Newsome

We have proposed two novel techniques to identify the
namic fields presentin the original dialog by 1) analyz-
al. [25] introduce a binary analysis technique to repl g how the data in sent messages has been denyed from
complete executions. Our work differs in that our go je output of selected system calls, and 2) analyzing how
is to replay the protocol messages and that our techni parameters frO'T‘ selected system calls have been de-
does not need information about the state of the verifie '|ved from data previously received over the net\(vork. Our
results show that we can successfully identify fields such
Protocol reverse engineering: Previous work on pro- as IP addresses, ports, cookies, user names, passwords,

tocol reverse engineering has focused on identifying thad configuration data.

13

We have also proposed a technique to generate ingidt W. Cui, V. Paxson, N. C. Weaver, and R. H. Katz. Protocol-
output formulas which precisely capture how the data sent Independent Adaptive Replay of Application DialogNetwork

over the network was generated during the original dia-

log. Our techniques builds on data dependency analyﬁt'ﬁ

techniques such as Dynamic Program Slicing. The inp

output formulas form the core of the transformation func-

tion because they normally capture how the values of the
dynamic fields have to be encoded. In addition, our tedid]
nigues allow a deep understanding on the protocol seman-

tics useful for problems such as protocol reverse engin

ing,

building application layer gateways, or intrusion di‘ig]

tection systems.

We have implemented Rosetta, a system that suppd¥és
our techniques. We have evaluated Rosetta using 5 bina-
ries and 3 widely used protocols: FTP, DNS and ICQ. Obf]
results indicated that we can successfully generate atrans
formation function that can be used to rewrite the dynarq'i%]
fields. Thus, in this paper we have shown that when com-
bining our techniques to automatically create the trarss)
formation function with previously proposed techniques
to identify field boundaries, we enable automatic protocol

replay and automatic NAT rewriting.

[20]
References 2
[21]
[1] ISO 8601 Date and Time Standard. http://isotc.iso.org.
[2] Qemu: Open Source Processor Emulatof22]
http://fabrice.bellard.free.fr/gemul/.
[3] H. Agrawal and J. R. Horgan. Dynamic Program SlicirgCM
SIGPLAN Notices?5(6), White Plains, NY, June 1990. (23]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

N. Borisov, D. J. Brumley, H. J. Wang, and C. Guo. Generi[.‘z4]

Application-Level Protocol Analyzer and lts Languageetwork
and Distributed System Security SymposiS8an Diego, CA, Feb.
2007.

D. Brumley, Z. Liang, J. Newsome, and D. Song.
tomatic Generation of Multi-Path Vulnerability Signatsre
http://www.cs.cmu.edu/ dbrumley/bitblaze, Carnegie IbtelUni-
versity Technical Report.

J. Caballero, S. Venkataraman, P. Poosankam, M. G. KBng, [26]

Song, and A. Blum. FiG: Automatic Fingerprint Generatidtet-
work and Distributed System Security Symposisam Diego, CA,
Feb. 2007.

J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Amtatic
Extraction of Protocol Message Format Using Dynamic Binary

Analysis. ACM Conference on Computer and Communicatior[:;g]

Security,Alexandria, VA, Oct. 2007.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Ras
blum. Understanding Data Lifetime Via Whole System Simula-
tion. USENIX Security Symposiuan Diego, CA, Aug. 2004.

M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L
Zhang, and P. Barham. Vigilante: End-to-End Containment of

Internet Worms. Symposium on Operating Systems Principle§30]

Brighton, United Kingdom, Oct. 2005.

J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architeal
Support for Protecting Control DatACM Transactions on Archi-
tecture and Code OptimizatioBec. 2006.

W. Cui, J. Kannan, and H. J. Wang. Discoverer: AutomBtiato-
col Description Generation from Network Traca$SENIX Secu-
rity SymposiumBoston, MA, Aug. 2007.

14

Au 125]

[27]

[29]

[31]

[32]

and Distributed System Security SymposiSam Diego, CA, Feb.
2006.

H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Somrbsr:
namic Application-Layer Protocol Analysis for Network fasion
Detection.USENIX Security Symposiuivancouver, Canada, July
2006.

B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer Conization
Across Network Address TranslatorelSENIX Annual Technical
ConferenceAnaheim, CA, Apr. 2005.

V. Ganesh and D. Dill. A Decision Procedure for Bit-\et and
Arrays. Proceedings of the Computer Aided Verification Confer-
enceJuly 2007.

M. Holdrege and P. Srisuresh. Protocol Complicatioits the IP
Network Address Translator. RFC 3027, Jan. 2001.

J. Kannan, J. Jung, V. Paxson, and C. E. Koksal. Sembthated
Discovery of Application Session Structutaternet Measurement
ConferenceRio de Janeiro, Brazil, Oct. 2006.

J. King. Symbolic Execution and Program Testir@ommunica-
tions of the ACM19, 1976.

C. Leita, M. Dacier, and F. Massicotte. Automatic Hanglof
Protocol Dependencies and Reaction to 0-Day Attacks witipSc
Gen Based Honeypotsinternational Symposium on Recent Ad-
vances in Intrusion Detectiofjamburg, Germany, Sept. 2006.

C. Leita, K. Mermoud, and M. Dacier. ScriptGen: An Autated
Script Generation Tool for HoneydAnnual Computer Security
Applications Conferenc&ucson, AZ, Dec. 2005.

J. Lim, T. Reps, and B. Liblit. Extracting Output Forradtom
Executables.Working Conference on Reverse EngineeriBgn-
evento, ltaly, Oct. 2006.

J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M.Ikee
Unexpected Means of Protocol Inferendaternet Measurement
ConferenceRio de Janeiro, Brazil, Oct. 2006.

S.S. Muchnick.Advanced Compiler Design and Implementation.
Academic Press, 1997.

J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation ofl&tg
on Commodity Software Network and Distributed System Secu-
rity SymposiumSan Diego, CA, Feb. 2005.

J. Newsome, D. Brumley, J. Franklin, and D. Song. Regiay
Automatic Protocol Replay By Binary Analysi&CM Conference
on Computer and Communications Securtiexandria, VA, Oct.
2006.

R. Pang, V. Paxson, R. Sommer, and L. Peterson. Binpaack
for Writing Application Protocol Parsersinternet Measurement
ConferenceRio de Janeiro, Brazil, Oct. 2006.

N. Schear, C. Kintana, Q. Zhang, and A. Vahdat. Gla®itevent-
ing Exfiltration At Wire Speed ACM Workshop on Hot Topics in
NetworksNov. 2006.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Securedmog
Execution Via Dynamic Information Flow Trackingnternational
Conference on Architectural Support for Programming Laamgps
and Operating SystemBpston, MA, Oct. 2004.

G. Venkatesh. Experimental Results from Dynamic 8ticof C
Programs. ACM Transactions on Programming Languages and
Systemsvolume 17, 2, New York, NY, USA, 2003.

M. Weiser. Program Slicingnternational Conference on Software
EngineeringMar. 1981.

B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A Brief Survey
of Program Slicing SIGSOFT Software Engineering Nota8(2),
New York, NY, USA, 2005.

X. Zhang, R. Gupta, and Y. Zhang. Precise Dynamic Sjict
gorithms.International Conference on Software Engineeribigy
2003.

