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ABSTRACT
Signature-based input filtering is an important and widely deployed
defense. But current signature generation methods have limited
coverage and the generated signatures can be easily evaded by an
attacker with small variations of the exploit message. In this paper,
we proposeprotocol-level constraint-guided exploration, a new ap-
proach towards generating high coverage vulnerability-based sig-
natures. In particular, our approach generates high coverage, yet
compact,vulnerability point reachability predicates, which capture
many paths to the vulnerability point. We have implemented En-
deavour, a system that implements our approach. Our resultsshow
that our signatures have high coverage (optimal or close to optimal
in our experiments) and are small (often human-readable), offering
dramatic improvements over previous approaches.

1. Introduction
Automatic signature generation remains an important open prob-

lem. According to Symantec’s latest Internet Security Threat Re-
port hundreds of new security-critical vulnerabilities were discov-
ered in the second half of 2007 [30]. For many of these vulnera-
bilities, the exploit development time is less than a day, while the
patch development time is often days or months [30]. In addition,
the patch deployment time can be long due to extensive testing cy-
cles.

To address these issues,signature-based input filteringhas been
widely deployed in IPS and IDSes. Signature-based input filter-
ing matches program inputs against a set of signatures and flags
matched inputs as attacks. It provides an important means topro-
tect vulnerable hosts when patches are not yet available or have not
yet been applied. Furthermore, for legacy systems where patches
are no longer provided by the vendor, or critical systems where any
changes to the code might require a lengthy re-certificationprocess,
signature-based input filtering is often the only practicalsolution to
protect the vulnerable program.

The key technical challenge to effective signature-based defense
is to automatically and quickly generate signatures that have both
low false positives and low false negatives. In addition, such signa-
tures should be generated without access to the source code.This is
crucial to wide deployment since it enables users and third-parties
to generate signatures for commercial-off-the-shelf (COTS) pro-
grams, without relying on software vendors, thus enabling aquick
response to newly found vulnerabilities.

Coverage is the main open challenge.Due to the importance
of the problem, many different approaches for automatic signa-
ture generation have been proposed. Early work proposed to gen-
erateexploit-based signaturesusing patterns that appeared in the
observed exploits, but such signatures can have high false posi-
tive and negative rates [20–24, 27, 29, 31, 33, 34]. More recently,
researchers proposed to generatevulnerability-based signatures,

which are generated by monitoring the program execution andana-
lyzing the actual conditions needed to exploit the vulnerability and
can guarantee a zero false positive rate [10,15].

A vulnerability is a point in a program where execution might
“go wrong”. We call this point thevulnerability point. A vulnera-
bility is only exploited when a certain condition, thevulnerability
condition, holds on the program state when the vulnerability point
is reached. Thus, to exploit a vulnerability, the input needs to sat-
isfy two conditions: (1) it needs to lead the program execution to
reach the vulnerability point; (2) the program state needs to satisfy
the vulnerability condition at the vulnerability point. Wecall the
condition that denotes whether an input message will make the pro-
gram execution reach the vulnerability point thevulnerability point
reachability predicate. Thus, the problem of automatically gener-
ating a vulnerability-based signature can be decomposed into two:
identifying the vulnerability condition and identifying the vulnera-
bility point reachability predicate. A vulnerability-based signature
is simply the conjunction of the two. As we will describe later, one
of the key challenges is how to generate vulnerability pointreach-
ability predicates with high coverage and compact size, which will
be the focus of this paper. And we consider the problem of identi-
fying the vulnerability condition as an orthogonal problemand out
of the scope of this paper.

The main problem with early vulnerability-based signaturegen-
eration approaches [10, 15] is that they only capture a single path
to the vulnerability point (i.e., their vulnerability point reachability
predicate contains only one path). However, the number of paths
leading to the vulnerability point can be very large, sometimes in-
finite. Thus, such signatures are easy to evade by an attackerwith
small modifications of the original exploit message, such aschang-
ing the size of variable-length fields, changing the relative ordering
of the fields (e.g., HTTP), or changing field values that drivethe
program through a different path to the vulnerability point.

Acknowledging the importance of enhancing the coverage of
vulnerability-based signatures, recent work tries to incorporate mul-
tiple paths into the vulnerability point reachability predicate either
by static analysis [11], or by black-box probing [14,16]. However,
due to the challenge of precise static analysis on binaries,the vul-
nerability point reachability predicates generated usingstatic anal-
ysis are too big [11]. And, black-box probing techniques [14, 16],
which perturb the original exploit input using heuristics such as
duplicating or removing parts of the input message or sampling
certain field values to try to discover new paths leading to the vul-
nerability point, are highly inefficient and limited in its exploration.
Hence, they generate vulnerability point reachability predicates with
low coverage.

Thus, a key open problem for generating accurate and efficient
signatures is how to generate vulnerability point reachability pred-
icates with high coverage and in a compact form. In addition,
high coverage vulnerability point reachability predicates have fur-
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ther applications such as patch testing. For example, the Microsoft
patch MS05-018 missed some paths to the vulnerability pointand
as a result left the vulnerability still exploitable after the patch [1].
Automatically identifying vulnerability point reachability predicates
with high coverage could assist in catching such problems inpatches.

In this paper, we proposeprotocol-level constraint-guided ex-
ploration, a new approach to automatically generate vulnerability
point reachability predicates with high coverage and in a compact
form, for a given vulnerability point and an initial exploitmessage.
Our approach has 3 main characteristics: 1) it isconstraint-guided
(i.e., instead of using black-box probing), 2) it works at the proto-
col level, and 3) it effectivelymergesexplored execution paths to
remove redundant exploration. Below we give an overview of the
three characteristics:

Constraint-guided. Black-box probing techniques [14,16] funda-
mentally suffer from the well-known limitations of blackbox fuzzing,
where constraints that are satisfied by only a very small fraction of
the input space are very hard to discover. For example, a condi-
tional statement such asif (FIELD==10) || (FIELD==20)
then exploit, else safe , creates two paths to the vulner-
ability point. If FIELD had value 10 in the original exploit message,
the signature still needs to discover the alternate path when FIELD
== 20 , which would require230 random probes on average to dis-
cover. If the signature only covers the original path, whereFIELD
had value 10, then the attacker can easily evade detection bychang-
ing FIELD to be 20. Thus, we propose to use a constraint-guided
approach by monitoring the program execution, performing sym-
bolic execution to generate path predicates, and generating new in-
puts that will go down a different path by taking a different branch
at a branching point. Such approach would only require two tests
to discover the above condition.

At a first glance, our constraint-guided exploration may resemble
recent work in symbolic execution for automatic test case genera-
tion [13, 19]. However, there are two significant differences. First,
the problem addressed is different. In automatic test case gener-
ation, the goal is to cover all program paths or at least maximize
block or branch coverage (i.e., exploring every basic blockor both
the true and falsebranches at each branching point), while in au-
tomatic signature generation the goal is to find all paths that lead
to the vulnerability point. Moreover, in automatic test case genera-
tion, one is often only interested in findingsomeinputs which make
the program execution reach a particular basic block or branch,
whereas in automatic signature generation we are interested in find-
ing all inputs which make the program execution reach the vul-
nerability point (to minimize false negatives). Second, those tech-
niques explore paths one at a time. Given that the number of paths
is often exponential in the number of conditions or even infinite,
such approaches simply do not scale in our setting. In fact, in
Bouncer [14] the authors acknowledge that they wanted to usea
constraint-guided approach but failed to do so due to the large num-
ber of paths that need to be explored and thus had to fall back to the
black-box probing approach.

To make the constraint-guided exploration feasible and effective
and to make the resulting vulnerability point reachabilitypredicate
compact, we have incorporated two other key characteristics into
our approach as described below.

Protocol level. Previous symbolic execution approaches gener-
ate what we callstream-level conditions, i.e., constraints that are
evaluated directly on the stream of input bytes. Such stream-level
conditions in turn generatestream-level signatures, which are also
specified at the byte level. However, previous work has shownthat
signatures are better specified at the protocol level instead of the
byte level [16, 34] as the vulnerability is often best specified at the
protocol level. We call such signaturesprotocol-level signatures.

Our contribution here is to show that, to make the constraint-
guided approach feasible it is fundamental to lift stream-level con-
ditions toprotocol-level conditions, so that they operate on proto-
col fields rather than on the input bytes, as using constraints at the
protocol-level hugely reduces the number of paths to be explored
compared to using stream-level conditions. Protocol-level condi-
tions reduce the space that needs to be explored for two main rea-
sons. First, the parsing logic often introduces huge complexity in
terms of the number of execution paths that need to be analyzed.
For example, our experiments show that with HTTP vulnerabilities
99% of all constraints are generated by the parsing logic. While
such constraints generated by the parsing logic need to be present
in the stream-level conditions, they can be removed in the protocol-
level conditions. Second, the constraints introduced by the parsing
logic fixes the field structure to be the same as in the originalexploit
message, for example fixing variable-length fields to have the same
size as in the original exploit message, and fixing the field sequence
to be the same as in the exploit message (when protocols such as
HTTP allow fields to be reordered). Thus, new paths generatedby
changing the length of the variable-length fields or by reordering
the fields, would also have to be explored if we use stream-level
conditions. Otherwise, the resulting signature would be very easy
to evade by an attacker by applying those small variations tothe
field structure of the original exploit message. For the samereason,
expressing the vulnerability point reachability predicate at the pro-
tocol level naturally makes it much more compact than at the stream
level as it automatically accounts for variable-length fields and field
reordering. Finally, as a side benefit, expressing the vulnerability
point reachability predicate at the protocol level also makes it much
easier to understand by humans.

Merging execution paths.In Bouncer, the authors propose to use
a vulnerability point reachability predicate that is a disjunction (i.e.,
an enumeration) of all the discovered paths that lead to the vulner-
ability point. Such vulnerability point reachability predicate has
two main problems. First, it suffers from the combinatorialex-
plosion problem since the number of paths is exponential on the
number of constraints. Second, it generates signatures that quickly
explode in size. ShieldGen tries to avoid this problem by removing
fields whose value do not affect whether the vulnerability point is
reached. Their problem is that to confidently decide whetherthe
value of a field does not matter to reach the vulnerability point,
they would need to probe all the values of the field, which doesnot
scale with large fields (e.g., 32-bit). Thus, they revert to heuristics
to sample the field values and thus can introduce false positives by
removing fields for which a few values allow to reach the vulnera-
bility point.

To overcome those limitations, we utilize the observation that the
program execution may fork at one condition into different paths
for one processing task, and then merge back to perform another
task. For example, a task can be a validation check on the input
data. Each independent validation check may generate one ormul-
tiple new paths (e.g., looking for a substring in the URI generates
many paths), but if the check is passed then the program moveson
to the next task, which usually merges the execution back into the
original path. Thus, in our exploration, we use aprotocol-level ex-
ploration graphto identify such potential merging points and give
priority to exploring paths that are likely to merge into previously
explored paths that reach the vulnerability point. This helps alle-
viate the combinatorial exploration problem, and allows our explo-
ration to quickly reach high coverage.

Endeavour. We have designed and developed our approach into
Endeavour, a system that automatically generates high coverage,
yet compact, vulnerability point reachability predicates. Our evalu-
ation demonstrates the effectiveness of our approach. For example,

2



compared to Bouncer, our vulnerability point reachabilitypredicate
for the Microsoft SQL Server vulnerability contains three condi-
tions while the one obtained by Bouncer contains more than a hun-
dred [14]. In addition, our vulnerability point reachability predicate
for the GHttpd vulnerability is empty, meaning that any input that
can be parsed reaches the vulnerability point, which we haveveri-
fied using the source code. Bouncer generates a vulnerability point
reachability predicate with more than 2000 conditions for the same
vulnerability, and requires the exploit to be a GET request.Com-
pared to ShieldGen, our vulnerability point reachability predicate
for the Microsoft DCOM RPC vulnerability discovers conditions
that are required to reach the vulnerability point and were missed by
ShieldGen. For example, the number ofContexItem elements in
theBind request, represented by theNumCtxItems field should
not exceed 20. Such condition was missed by ShieldGen [4]. Thus,
their vulnerability point reachability predicate will flagsafe inputs
as exploits, introducing false positives.

2. Problem Definition and Approach Overview
In this section, we first introduce the problem of automatic gen-

eration of protocol-level vulnerability point reachability predicates,
and then give the overview of our approach.

2.1 Problem Definition
Protocol-level vulnerability point reachability predicate. Given
a parser implementing a given protocol specification, the vulnera-
bility point, and an input that exploits the vulnerability at the vul-
nerability point in a program, the problem of automatic generation
of protocol-level vulnerability point reachability predicates is to au-
tomatically generate a predicate functionF , such that when given
some input mapped into field structures by the parser,F evaluates
over the field structures of the input: if it evaluates totrue, then
the input is considered to be able to reach the vulnerabilitypoint,
otherwise it is not.

Note that in the problem domain of automatic generation of protocol-
level signatures (and thus automatic generation of protocol-level
vulnerability point reachability predicates), it is assumed that we
are given a parser implementing a given protocol or file specifi-
cation consistent with the one implemented in the vulnerable pro-
gram. The parser given some input data can map it into the field
structures, according to the protocol specification. This assumption
can be addressed in many practical ways and we consider it out-
side the scope of this paper. For example, such parser is available
for common protocols (e.g., Wireshark [6]), and many commercial
network-based IDS or IPS have such a parser built-in. In addition,
the parser may be manually constructed [16] using domain-specific
languages for protocol specifications [9, 28], which allow building
a generic parser that takes as input multiple protocol specifications.
Also, recent work has proposed to automatically extract theproto-
col specification from the program binary [12, 25, 32]. Such work
can be used when the protocol used by the vulnerable program
has no public specification or its implementation deviates from the
specification.

Note also that in our problem setting, we assume that an ini-
tial exploit message is given, as in the previous work of automatic
signature generation. In addition, we assume that the vulnerabil-
ity point is given as we consider identifying the vulnerability point
given an exploit message is an orthogonal problem and out of scope
for this paper. Such vulnerability point may be identified using pre-
vious techniques such as [14,26].

Running example.Figure 1 shows our running example. We rep-
resent the example in C language for clarity, but our approach oper-
ates directly on program binaries. Our example represents abasic
HTTP server and contains a buffer-overflow vulnerability. In the

01) void service() {
02) char vulBuf[128], msgBuf[4096];
03) char lineBuf[1024], method[256];
04) char uri[256], ver[256];
05) int nb=0, i=0, is_cgi=0, sockfd=0;
06)
07) nb=recv(sockfd, msgBuf, 4096, 0);
08) for(i = 0; i < nb; i++) {
09) if ((msgBuf[i] == ’\n’) ||
10) (msgBuf[i] == ’\r’))
11) break;
12) else
13) lineBuf[i] = msgBuf[i];
14) }
15) lineBuf[i] = ’\0’;
16) sscanf(lineBuf,"%255s %255s %255s",
17) method, uri, ver);
18) if (strcmp(method, "GET") == 0 ||
19) strcmp(method, "HEAD") == 0)
20) {
21) if strncmp(uri,"/cgi-bin/",9)==0
22) is_cgi = 1;
23) else
24) is_cgi = 0;
25) if (uri[0] != ’/’)
26) return;
27) strcpy(vulBuf, uri);
28) }
29) else if (strcmp(ver,"HTTP/0.9")==0
30) && strcmp(ver,"HTTP/1.0")==0)
31) printf("Invalid method");
32) }

Figure 1: Our running example.

example, theservice function receives and processes the net-
work requests. It uses a loop to copy the first input line into the
variable linebuf before parsing it into several variables (lines
7-17). The first line in the exploit message includes the method,
the URI of the requested resource, and the protocol version.If the
method is GET or HEAD (lines 18-19), and the first character of
the URI is a slash (line 25), then the vulnerability point is reached
at line 27. The size ofvulBuf is not checked by thestrcpy
function on line 27. Thus, a long URI can overflow thevulBuf
buffer.

In this example, the vulnerability point is at line 27, and the vul-
nerability condition is that the local variablevulBuf will be over-
flowed if the size of URI field in the received message is greater
than 128. Therefore, for this example, the vulnerability point reach-
ability predicate is:
(strcmp(FIELD_METHOD,"GET") == 0 ||
strcmp(FIELD_METHOD,"HEAD") == 0) ˆ
URI[0] != ’/’

while the vulnerability condition is:length(FIELD URI) >
128 , and the optimal protocol-level signature is the conjunction
of the two. It is important to note that ShieldGen cannot produce
such a vulnerability point reachability predicate becausefor each
field, their blackbox probing approach only checks whether the
field needs to have the same value as in the exploit message to ex-
ploit the vulnerability or not. For example, given a exploitmessage
that was aGETrequest, it is nearly impossible for their black-box
probing approach to discover that aHEADrequest could exploit the
program as well, thus introducing false negatives. In contrast, our
results will show that Endeavour is able to accurately identify such
conditions.

Note that even though this running example is on memory-safety
type of vulnerability, the problem of identifying vulnerability point
reachability predicates is general and applies to any type of vulner-
ability where one is interested in finding all the paths that may lead
to the vulnerability point.
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2.2 Approach and Architecture Overview
In this paper we propose a new approach to generate high cover-

age, yet compact, vulnerability point reachability predicates, called
protocol-level constraint-guided exploration, which as our exper-
iments demonstrate, achieves significantly better resultsthan pre-
vious work. The architecture of our system, Endeavour, is shown
in Figure 2. It comprises of two main components: theconstraint
extractorand theexploration module; an additional component, the
simplifier; and two off-the-shelf assisting components: theexecu-
tion monitorandthe parser. The overall exploration process is an
iterative process, controlled by the exploration module. The explo-
ration module maintains the exploration state in a special graph, the
protocol-level exploration graph, which we have designed specifi-
cally to enable effective exploration.

For each iteration of the exploration process, the exploration
module uses the current protocol-level exploration graph to gen-
erate a new input that will lead the program execution to explore
a new edge in the protocol-level exploration graph. The new in-
put is then sent to the vulnerable program, which is run inside the
execution monitor. The execution monitor oversees the program
execution as it processes the input and outputs an executiontrace,
which summarizes the execution. It also outputs whether theinput
made the program execution reach the vulnerability point (e.g. the
test result). Then the parser extracts the message format for the new
input, according to the protocol specification.

Next, given the message format and the execution trace, the con-
straint extractor raises the stream level path predicate tothe pro-
tocol level and removes unnecessary parsing conditions. The con-
straint extractor outputs thefield constraint chain(Section 3). Fi-
nally, the exploration module adds the field constraint chain to the
current protocol-level exploration graph performing a merging step
to remove redundant paths. At that point, the exploration module
generates a new input that will allow exploring another edgein the
updated protocol-level exploration graph and the whole process re-
peats.

The process is started with the initial exploit message and runs it-
eratively until the termination condition is satisfied (Section 4). At
that point the exploration module produces the intermediate vul-
nerability point reachability predicate, which is simplified by the
simplifier into the final vulnerability point reachability predicate.
The exploration module is detailed in Section 4.

3. Extracting the Protocol-level Path-predicate
In this section we present the constraint extractor, which given

an execution trace, produces a protocol-level path-predicate.

Background: path predicate. Given the execution trace of the
program processing an input, one can perform symbolic execution
with the input represented as a symbolic variable and extract the
path predicate, i.e., the predicate that an input needs to satisfy to
take the program execution to follow the same path as in the ex-
ecution trace. This path predicate is essentially the conjunction
of all branch conditions dependent on the symbolic input in the
given path. The concept of path predicate and how to compute it
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Figure 3: Constraint Extractor Architecture. The darker co lor
modules are given, while the lighter color components have
been designed and implemented in this work.

is well understood and has been widely used in previous work in-
cluding vulnerability signature generation [10, 15] and automatic
test case generation [13, 19]. Thus, we refer the interestedreader
to these previous work for details. Here we simply use an off-
the-shelf assisting componentpath predicate extractorto generate
the path predicate given an execution trace. Note that to deal with
each branch condition in the path individually, the path predicate
extractor computes a dynamic slice of each branch conditionin the
original path. Each slice contains all the statements that were used
to generate the branching condition from the symbolic input. Then
each slice is simplified to obtain a smaller but equivalent condition.
The details of this process are presented in [7].

Key goals and overview.The path predicate used in previous work
is at the stream level, i.e., the conditions are on raw bytes of the
input, calledstream-level conditions(where each byte of the in-
put is represented as a symbolic variable indexed by its byteoffset
in the input, e.g.,INPUT[x] , called abyte symbol). To enable
constraint-guided exploration, we need to lift the path predicate to
the protocol level, i.e., the conditions are instead on fieldvariables
of the input, calledprotocol-level conditions(where each byte of
the input is represented as a symbolic variable indexed by its field
name and its byte offset in the field, e.g.,FIELD FieldName[x] ,
called afield symbol). To make the distinction clear, we refer to the
path predicate at the stream level thestream-level path-predicate,
and the path predicate at the protocol level theprotocol-level path-
predicate. To accomplish this, the key contributions of the con-
straint extractor are, given the stream-level path-predicate, how to
lift it to the protocol level (achieved by thefield condition gen-
erator), and how to further generalize it by removing the parsing
conditions (achieved by thefield condition generalizer). Finally, to
assist the construction of the protocol-level explorationgraph (ex-
plained in Section 4), the constraint extractor outputs thefield con-
straint chain, which is the protocol-level path-predicate annotated
with the EIP for each branch condition and formed in an ordered
chain of branch conditions using the same order as in the execution
path.

3.1 The Field Condition Generator
Given the stream-level path-predicate generated by the path pred-

icate extractor and the message format of the input given by the
parser, the field condition generator outputs a protocol-level path-
predicate. It performs this in two steps. First, it translates each byte
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symbol INPUT[x] in the stream-level path-predicate into a field
symbol
FIELD fieldname[x - start(fieldname)] using the map-
ping produced by the parser. Second, it tries to combine sym-
bols on consecutive bytes of the same field. For example, the
stream-level path-predicate might include the following condition:
(INPUT[6] << 8 | INPUT[7]) == 0 . If the message for-
mat states that inputs 6 and 7 belong to the same 16-bitID field,
then the condition first gets translated to(FIELD ID[0] << 8
| FIELD ID[1]) == 0 and then it is converted toFIELD ID
== 0 whereFIELD ID is a 16-bit field symbol.

Benefits.This step lifts the stream-level path-predicate, at the byte
level, to the protocol-level path-predicate, at the protocol level. By
doing so, we break the artificial constraints that the stream-level
path-predicate imposes on the position of fields inside the exploit
message. For example, protocols such as HTTP allow some fields
in a message (i.e., all except the Request-Line/Status-Line) to be
ordered differently without changing the meaning of the message.
Thus, two equivalent exploit messages could have the same fields
ordered differently and a byte-level vulnerability point reachabil-
ity predicate generated from one of them would not flag that the
other also reaches the vulnerability point. In addition, ifvariable-
length fields are present in the exploit message, changing the size
of such fields changes the position of all fields that come behind it
in the exploit message. Again, such trivial variation of theexploit
message could defeat stream-level conditions. Thus, by expressing
constraints using field symbols, protocol-level conditions naturally
allow a field to move its position in the input.

3.2 The Field Condition Generalizer
The field condition generalizer takes as input the protocol-level

path-predicate generated by the field condition generator and the
loops extracted by theloop analyzer, an off-the-shelf assisting com-
ponent, and outputs a field constraint chain where the parsing-related
conditions have been removed.

The loop analyzerextracts the loops in the execution trace using
the static information extracted from the vulnerable program. The
loop analyzer implements standard loop detection analysisalgo-
rithms [8] and outputs for each loop: the loop head, the loop body,
and the loop exit conditions.

Motivation and Intuition. As shown in Section 3.1, by lifting
the stream-level path-predicate to the protocol-level path-predicate,
we allow the vulnerability point reachability predicate tocover ad-
ditional variants where each field may be at a different position,
e.g., when a variable-length field changes size. However, the pars-
ing conditions that remain in the protocol-level path-predicate still
over-constrain the variable-length fields, forcing them tohave some
specific size (usually the same as in the exploit message). Thus, to
allow the vulnerability point reachability predicate to handle ex-
ploit messages where the variable-length fields have a size differ-
ent than in the original exploit message, we need to remove such
parsing conditions. In addition, for some protocols such asHTTP,
the number of parsing conditions in a single protocol-levelpath-
predicate can range from several hundreds to a few thousands. Such
a huge number of unnecessary conditions would blow up the size of
the vulnerability point reachability predicate and negatively impact
the exploration that we will present in Section 4.

In this paper, we term parsing conditions to be conditions used
by the program to identify the end of variable-length fields in a
received message. These are the conditions that over-constrain
variable-length fields to have a specific size. Other conditions gen-
erated by the program to check the value of a field (e.g., that a
protocol version is supported, or that a maximum field value is not
exceeded) do not over-constrain the variable-length fieldsand thus

need to be kept in the protocol-level path-predicate.
Previous work on protocol reverse-engineering [12, 25, 32]has

identified three main elements that protocols use to find the end
of variable-length fields: separators (also called delimiters), length
fields, and array counter fields. Their results show that those pro-
tocol elements are often used in programs to control the number
of times that parsing loops iterate. Such usage is the reasonwhy
parsing conditions constrain the size of variable-length fields to be
the same one as in the exploit message. Such behavior can be ob-
served in our running example, where the loop at lines 14 to 20
is trying to locate the end of the first line of the message, which
is variable-length and marked by the separator Carriage Return +
Line Feed (" \r \n" ). The if conditionals at lines 15-16 gener-
ate the following conditions in the protocol-level path-predicate:
(FIELD METHOD[0] 6= ’ \n’) ∧ (FIELD METHOD[0] 6=
’ \r’) ∧ ,..., ∧(FIELD VERSION[x] == ’ \n’)

A new input with an extra byte in the URI field would have the
Carrier Return character at positionx+1 rather than at positionx
and thus would not match the previous predicate since for this new
inputFIELD VERSION[x] 6= ’ \n’ . Such input would be con-
sidered not to reach the vulnerability point, thus creatinga false
negative.

if (count > 64) then abort();
for (i = 0; i < count; i++) {

/ * Code to parse a record here * /
}

Figure 4: Example of array parsing loop

The same occurs with length and array counter fields. For ex-
ample, in the code snippet in Figure 4 wherecount is a field di-
rectly copied from the exploit message, representing the number of
records in a variable-length array, ifcount had value 3 during the
execution, the resulting conditions would be:(count > 0) ∧
(count > 1) ∧ (count > 2) ∧ (count ≤ 3) . Clearly,
such loop constrains thecount variable to have value 3. All other
length and array counter fields that are used to control the num-
ber of iterations in a loop, become similarly constrained. Thus, a
new exploit with four elements in the array, instead of 3, would not
satisfy the conditioncount ≤ 3 and would be considered safe.

Such exploit variants that modify the size of variable-length fields
are already in use. For example, tools such as the Metasploitframe-
work [5] can create such exploits. To avoid such exploit variants to
evade detection, the parsing conditions in the protocol-level path-
predicate need to be identified and removed. We use two different
techniques to remove the parsing conditions: function summaries
for well-defined functions, and examining the loop exit conditions
for other functions.

We use function summaries for well-known functions, most of-
ten for functions that operate on strings. Such function summaries
have been proposed to limit the combinatorial explosion of paths
in a program [11,18]. In addition, function summaries expose con-
ditional dependencies that are otherwise hidden by function calls.
We describe our function summaries implementation in Section 5.
Next, we present our loop analysis technique to remove parsing
conditions, which can be used regardless of whether the program
uses well-known functions for parsing the protocol messages.

Removing the parsing conditions. The field condition general-
izer takes as input the information about the loops in the execution
trace, extracted by the loop analyzer. For each loop it includes the
loop head, the loop body, and the loop exit conditions. In addition,
the execution trace contains information about which loop exit con-
ditions use input data.

For each loop which contains exit conditions that use input data,
the field condition generalizer removes those exit conditions if they
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compare against the value of a separator (as provided in the proto-
col specification) or if the exit condition generates conditions that
differ by a constant increment/decrement in each iteration. Such
conditions map to the parsing conditions used by the programto
identify the end of the variable-length fields.

In our running example, the loop at lines 14 to 20 is used by
the program to identify the end-of-message separator, and contains
an exit condition that depends on input data and on the value of
the separator at line 15. From the HTTP protocol specification we
would obtain that the Carriage-Return (\n), the Line-Feed (\r), the
space and the tab characters can be used as separators. Thus,the
conditions generated from theif conditional at line 15 would be
identified as parsing conditions because they compare inputdata
with a separator value. Consequently, they would be removedfrom
the protocol-level path-predicate.

In the loop snippet in Figure 4, all the conditions generatedby
the loop exit condition would be identified as parsing conditions be-
cause the generated conditions:(count > 0) ∧ (count >

1) ∧ (count > 2) ∧ (count ≤ 3) differ by a constant
increment . However, the condition generated by the firstif con-
ditional does not belong to a loop exit condition and thus thefield
condition generalizer would not remove it. Intuitively, this would
keep among others, conditions that programs might perform to val-
idate the value of the length and array counter fields before using
them in a loop, which are not part of the parsing process.

Symbolic Memory AddressesThe field condition generalizer also
performs some special handling if there is any field condition that
depends on a memory read from a symbolic address, which are of-
ten the result of a translation table. Such translation tables usually
occur with string operations that do upper/lower-case or ASCII/U-
nicode transformations. For example, one such condition could be:
mem[FIELD URI[6] + 0x81d9440] == 0x49 , where the
input data is used to look up into a mapping table whose base ad-
dress is 0x81d9440. Clearly, with a different value of the field URI,
the address being accessed would be different and we would not
know how to handle it. We address this problem in two different
ways depending on the scenario. The first case is if the symbolic
memory address belongs to a static table in the data segment.In
this case, we simply incorporate the table into the signature. In
the second case, the symbolic memory address does not belong
to a static table. In this case, we take the conservative approach
and fix the symbol to have the same value as in the exploit mes-
sage. For example if FIELDURI[6] had value 0x69 in the ex-
ploit message, then the above condition would be transformed into:
FIELD URI[6] == 0x69. Such condition might over-constrain the
value of the symbol and we address this case in two ways. First,
most times such translation tables appear in well-defined functions
such assscanf . Thus, those conditions are removed by the func-
tion summaries. In addition, during exploration, new values for the
over-constrained symbol will be explored and if the vulnerability
point is still reached for those values, then the conditionson the
symbol will be relaxed and sometimes even eliminated.

The field constraint chain. To assist the construction of the protocol-
level exploration graph (explained in Section 4), the constraint ex-
tractor constructs thefield constraint chainusing the generated protocol-
level path-predicate. A field constraint chain is an enhanced version
of the protocol-level path-predicate where each branch condition is
annotated with the EIP of the corresponding branching point, and
these annotated branch conditions are put in an ordered chain using
the same order as they appear in the execution path.

4. Execution-guided Exploration
In this section we present the exploration module. Given the

field constraint chain produced by the constraint extractorfrom

the execution trace obtained using the given exploit message, the
exploration module performs protocol-level constraint-guided ex-
ploration to generalize the constraints and output the vulnerability
point reachability predicate (VPRP).

Two unique characteristics enable our approach to extract high
coverage VPRPs. First, our exploration works on a special graph,
the protocol-level exploration graph; the nature of this graph en-
ables us to drastically cut down on the exploration space by group-
ing many execution paths into equivalent paths, so that theydo not
need to be explored separately. Second, as we discover new paths
and add them to the protocol-level exploration graph, we merge
the new paths with previously discovered paths as much as possi-
ble, thus further reducing the exploration space. In this section, we
first introduce the protocol-level exploration graph and explain its
benefits and our intuition of merging paths, and then we describe
the overall exploration process and how to extract the final vulner-
ability point reachability predicate. Note that as we explained in
Section 1, our exploration problem is markedly different from pre-
vious work on automatic test case generation (such as [13,19]) and
thus their techniques are inadequate to address our task here.

4.1 The Protocol-level Exploration Graph
The protocol-level exploration graph. The explorer dynamically
builds aprotocol-level exploration graphas the exploration pro-
gresses. In a protocol-level exploration graph, each node represents
an input-dependant branching point (i.e., a conditional jump) in the
execution, which comprises the protocol-level condition and the
address of the program’s instruction (eip) for this branching point.
Each node can have two edges representing the branch taken ifthe
node’s condition evaluated to true (T) or false (F). We call the node
where the edge originates thesource nodeand the node where the
edge terminates thedestination node. If a node has anopen edge
(i.e, one edge is missing), it means that the corresponding branch
has not yet been explored.

The reason why nodes are labeled with both the condition and the
eip (as shown in Figure 5A) is that the same branching point inan
execution trace can generate different conditions depending on the
content of the operands. For example, a comparecmp %eax,%ecx
instruction followed by a jump-if-above instructionja 0x7e12abc
can generate both conditions:FIELD 0 > 5 andFIELD 1 > 7
at different points of a program by loading the content of theeax
andecx registers with different values.

Differences with automatic test case generation.Using a protocol-
level exploration graph is significantly different from thetraditional
constraint-based exploration used in automatic test case generation
approaches such as DART [19] and EXE [13]. First, in a protocol-
level exploration graph the condition associated with eachnode is
at the protocol level, whereas in the traditional constraint-based
exploration, the conditions are at the stream level. Second, in a
protocol-level exploration graph, the branching points correspond-
ing to parsing conditions have already been removed, while they
are present in the traditional constraint-based exploration.

Benefits of the protocol-level exploration graph.The above dif-
ferences showcase the two fundamental benefits of using the protocol-
level exploration graph: 1) the exploration space is significantly re-
duced, and 2) it becomes easy to merge paths, which in turn allows
to further reduce the exploration space, and to generate compact
vulnerability point reachability predicates.

The reduction in the exploration space is achieved in two ways.
First, the protocol-level exploration graph does not contain the large
number of parsing conditions that are usually present in theindi-
vidual stream-level path-predicates because they have already been
removed by the constraint extractor. Thus, we avoid overly con-
straining the input fields, which makes the constraints morero-
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Figure 5: Building the protocol-level exploration graph for our
running example.

bust to evasion attacks (e.g., reordering fields). Second, because
the node’s condition is at the protocol level then each path in the
protocol-level exploration graph represents many paths inthe tra-
ditional constraint-based exploration approach. For example, all
paths generated by changing the size of the variable-lengthfields or
by reordering fields in a message, are summarized in the protocol-
level exploration graph, and thus do not need to be explored.

The second benefit is that having the node’s condition at the pro-
tocol level allows to effectively merge paths (as explainedbelow),
even when the paths have been generated by multiple exploit mes-
sages that may contain the same variable-length fields with differ-
ent sizes, or the same fields but in different order. For example,
when handling an HTTP request, a server could first parse the mes-
sage and next check if theHost field contains a private address.
This check could be always done right after the parsing regardless
of the position of theHost field in the message, which can change.
Thus, the stream-level conditions generated for one message would
not match a different message where theHost field is at a different
position, but the protocol-level conditions would, thus allowing to
merge the paths.

Intuition for merging execution paths. Another important char-
acteristic of our approach is that as we discover new paths and add
them to the protocol-level exploration graph, we merge the new
paths with previously discovered paths in the protocol-level explo-
ration graph as much as possible, and thus further reduce theex-
ploration space. The key intuition behind merging paths is that it
is common for new paths generated by taking a different branch at
one node, to quickly merge back into the original path. This hap-
pens because programs may fork execution at one condition for one
processing task, and then merge back to perform another task. One
task could be a validation check on the input data. Each indepen-
dent check may generate one or multiple new paths (e.g., looking
for a substring in the URI generates many paths), but if the check
is passed then the program moves on to the next task (e.g., another
validation check), which usually merges the execution backinto the
original path. For example, when parsing a message the program
needs to determine if the message is valid or not. Thus, it will per-
form a series of independent validity checks to verify the values of
the different fields in the message. As long as checks are passed,
the program still considers the message to be valid and the execu-
tion will merge back into the original path. But, if a check fails
then the program will move into a very different path, for example
sending an error message.

Next, we present the exploration process. We illustrate thedif-
ferent steps using Figure 5 which represents different steps in the
exploration process using our running example. Note that, the A–
F node labels are not really part of the protocol-level exploration
graph but we add them here to make it easier to refer to the nodes.

4.2 The Exploration Process
Overall process.Figure 6 shows the architecture of the exploration
module. Theexploreris the core of the exploration; it maintains the
protocol-level exploration graph and directs the other components.
At the beginning, the explorer initializes the protocol-level explo-
ration graph with the field constraint chain output by the constraint
extractor from the execution trace generated using the initial ex-
ploit message. This is shown in Figure 5A where the original path
starts at theStart node and contains the three nodes introduced
by lines 18, 21, and 25 in our running example. The sink of the
original field constraint chain is the vulnerability point node (VP).

The remaining exploration is an iterative process that comprises
of six steps: (1) Given the current protocol-level exploration graph,
the prioritization engine decides which node with an open edge
to explore next; (2) For the selected node’s open edge, theinput
generatorgenerates a new input that will lead the program exe-
cution to reach that node and follow the selected open edge; (3)
The new input is passed to thereplay tool that sends it to the ex-
ecution monitor; (4) The execution monitor checks whether the
program execution has reached the vulnerability point and outputs
an execution trace1; (5) The constraint extractor extracts the field
constraint chain from the execution trace; (6) The explorerinserts
the new field constraint chain into the current protocol-level ex-
ploration graph and obtains an updated protocol-level exploration
graph. Then the prioritization engine selects a new open edge from
the updated protocol-level exploration graph and the wholeprocess
repeats. The process repeats until all open edges have been ex-
plored or a user-specified timeout expires. When the exploration
stops, the explorer extracts the VPRP and passes it to the simplifier
who performs different simplifications and outputs the finalVPRP.

In the remaining of this section, we first provide more details for
steps 2 and 6, and then we explain how to prioritize which node
to explore next (step 1). Step 5 has already been explained inSec-
tion 3 and steps 3 and 4 do not require further explanation. Finally
we explain how to extract the final VPRP.

Adding the new path to the exploration graph. To insert a new
field constraint chain into the protocol-level explorationgraph, the
explorer starts merging from the bottom until it finds a node that it
cannot merge, either because it is not in the protocol-levelexplo-
ration graph already, or because the predecessor in the new path
is not the same one as in the protocol-level exploration graph. To
check if the node is already in the protocol-level exploration graph,
the explorer checks if the node to be inserted is equivalent (same
EIP and equivalent condition) to any other node already in the
protocol-level exploration graph. We call the last node that can be
merged from the bottom thejoin node. At that point, the explorer
starts merging from the top until it finds a node that it cannotmerge,
either because it is not in the protocol-level exploration graph or be-
cause the successor is not the same one in the new path as in the
protocol-level exploration graph. We call the last node that can be
merged from the top thesplit node. Next, we add the sequence of
nodes in the new path between the join node and the split node as a
new sequence of nodes in the protocol-level exploration graph.

For example, in Figure 5B, the prioritization engine selects the
false branch of node A to be explored, which discovers the fol-

1The execution monitor decides that the vulnerability pointhas not
been reached if an answer is sent or a timeout expires before seeing
the address of the vulnerability point.
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lowing new path to the VP:A ∧ D ∧ B ∧ C. The explorer starts
merging the new path from the bottom, first merging node C, then
merging node B. At that point it cannot merge node D because there
is no equivalent node in the graph. Thus, node D is the join node.
Then, it starts merging from the top. First it merges node A inthe
protocol-level exploration graph with nodeA in the new path using
the false branch of node A. Then, it cannot merge node D because
there is no equivalent node in the protocol-level exploration graph.
Thus, node D is also the split node. Since there are no more nodes
in the new path between the split node and the join node (both are
node D), then the explorer is done adding the path.

Generating a new input for a new branch. We define anode
reachability predicateto be the predicate that summarizes how to
reach a specific node in the protocol-level exploration graph from
theStart node. Thus, the node reachability predicate summarizes
all the paths that allow to reach the node in the current protocol-
level exploration graph. Similarly, we define abranch reachability
predicate to be the predicate that summarizes how to traverse a
specific branch (true of false) from a specific node. Intuitively a
branch reachability predicate is the conjunction of a node reacha-
bility predicate with the node’s condition (if we want to traverse the
true branch), or the negation of the node’s condition (to traverse the
false branch). The branch reachability predicate captureshow the
execution reaches the node and then takes the desired branchin the
current protocol-level exploration graph.

To compute a new input that traverses the specific open edge
selected by the prioritization engine, the explorer first computes
the branch reachability predicate. Then, the input generator creates
a new input that satisfies the branch reachability predicate.

To compute the branch reachability predicate, the explorerfirst
computes the node reachability predicate. The node reachability
predicate is essentially the weakest-precondition (WP) [17] of the
source node of the open edge over the protocol-level exploration
graph—by definition, the WP captures all paths in the protocol-
level exploration graph that allow to reach the node. Then, the ex-
plorer computes the conjunction of the WP with the node’s condi-
tion or with the negated condition depending on the selectedbranch.
Such conjunction is the branch reachability predicate, which is passed
to the input generator.

For example, in Figure 5B if the prioritization engine selects
the false branch of node D to be explored next, then the branch
reachability predicate produced by the explorer would be:A ∧ D.
Similarly, in Figure 5C if the prioritization engine selects the false
branch of node B to be explored next, then the branch reachability
predicate produced by the explorer would be:(A∨ (A∧D))∧B.

The input generator generates a new input that satisfies the branch
reachability predicate using a 3-step process. First, it uses a deci-
sion procedure to generate field values that satisfy the branch reach-
ability predicate. If the decision procedure returns that no field val-
ues allow to reach that branch, then the branch is connected to the
specialUnreachable node. Second, it extracts the values for the
remaining fields (not constrained by the decision procedure) from

the original exploit message. Third, it checks the message format
provided by the parser to identify any fields that need to be updated
given the dependencies on the modified values (such as lengthor
checksum fields). Using all the collected field values it generates a
new input and passes it to the replay tool.

Prioritizing paths. To prioritize which path to explore next, the
prioritization engine uses a simple weight scheme, where there are
only two weights 0 and 1. The explorer assigns a weight of 1 to
each newly added node. If it finds a node such that none of its edges
can lead to theVP node in the current protocol-level exploration
graph, then it changes the weight for that node and all its successors
to 0. (e.g., node E and its successor F in Figure 5C). The intuition,
is that if a new path does not quickly lead back to theVP node,
then the message probably failed the current check or went onto a
different task and thus it is unlikely to reachVP later. The explorer
simply selects the next node with weight 1 where only one edgehas
been explored, until it exhausts that list.

After no more nodes with weight 1 have open edges, then the ex-
plorer recalculates the branch reachability predicate forall branches
connected to theUnreachablenode to check if they can be traversed
now. This could happen if a new path had been discovered (after
that branch was explored) that leads into the node that is thesource
of that branch. If any of those branches can be traversed now,then
the exploration keeps iterating until no nodes with weight 1are left.
After finishing this step, the whole process is repeated withnodes
with weight 0.

For example, in Figure 5C, after reversing the false branch of
node E, the explorer discovers that none of the branches of node E
lead to the VP node. At that point node E and its successor F are
assigned weight 0, while the remaining nodes have weight 1. Thus,
the false branch of node F is not explored until all other weight
1 nodes have no remaining open edges, meaning that it is the last
branch explored in Figure 5C.

Extracting the vulnerability point reachability predicat e. Once
the exploration ends, the protocol-level exploration graph contains
all the discovered paths leading to the vulnerability point. To ex-
tract the vulnerability point reachability predicate fromthe protocol-
level exploration graph the explorer computes the node reachability
predicate for the VP node, which as explained above corresponds
to the WP of the VP node.

For our running example, represented in Figure 5D the extracted
vulnerability point reachability predicate is:(A ∨ (A ∧ D)) ∧ C.
Note that, the disjunction approach used by Bouncer would gener-
ate the following vulnerability point reachability predicate: (A ∧

B ∧ C)∨ (A ∧ D ∧ B ∧ C)∨ (A ∧ B ∧ C). Such signature con-
tains 10 conditions as opposed to 4 in our signature. Clearly, such
signature is inefficient and can quickly explode in size.

Simplifier. After the explorer outputs the initial VPRP, the simpli-
fier performs a simplification step to remove conditions thatmay
be redundant. The simplifier checks whether a condition is already
implied by any of its dominator conditions. For example, if acondi-
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tion FIELD > 5 has a single predecessor conditionFIELD > 8
then the conditionFIELD > 5 is redundant because it is implied
by the predecessor. After removing such redundant conditions the
simplifier outputs the final VPRP.

5. Implementation
In this section we provide some notable implementation details

of our system. We have implemented the constraint extractorand
the exploration module with 5000 lines of Ocaml code. Next, we
present the remaining assisting components.

Execution Monitor. The execution monitor is an assisting com-
ponent based on the QEMU emulator [2]. The execution moni-
tor marks the inputs to the program as symbolic and keeps track
of which parts of the program state become symbolic during ex-
ecution. It outputs an execution trace that contains the executed
instructions that operate on symbolic data, the content of the in-
struction’s operands when the instruction was executed, and the as-
sociated symbolic information for each operand.

Function summaries. We have implemented function summaries
in the execution monitor. In particular, we define a list of func-
tions that we are interested in (e.g., string operations). When any
of those functions is called, the execution monitor calls some spe-
cial handling code which retrieves the function’s arguments from
the stack and checks whether they are symbolic. If any argument is
symbolic, then all the arguments are stored, all outputs of the call
are marked with new symbols, and any instructions that operate on
symbolic data inside the function are ignored. Such processing al-
lows us to obtain conditions that depend on the output of the call.
For example our vulnerability point reachability predicate might
contain conditions such as: strstr(FIELDURI,”/../”) == 0. In ad-
dition, for each function summary we have added a small pieceof
code that allows to reverse the function summary condition.Cur-
rently we have support for 4 groups of string functions: compar-
ison functions such as strcmp, strncmp, strcasecmp, strncasecmp;
substring functions such as strstr, strrstr; length functions such as
strlen; and tokenization functions such as strtok.

Parser. Currently, we use Wireshark as our parser due to its sup-
port of a large number of protocols. We have defined our own tree-
like field structure to which we map the field information provided
in the Wireshark API. We are also studying the use of more general
languages that provide a cleaner interface to the parser [9,28].

6. Evaluation
In this section, we present the results of our evaluation. Wefirst

present the experiment setup, then the constraint extractor results
and finally the exploration results.

Experiment setup. We evaluate our approach using 5 vulnerable
programs, summarized in Table 1. The table shows the program,
the protocol used by the vulnerable program, the type of protocol
(i.e., binary or text), and the guest operating system used to run the
vulnerable program. The exploits are either from the Metasploit
Framework [5] or from SecurityFocus.com [3]. The first four vul-
nerabilities are buffer overflows affecting vulnerable HTTP servers
(GHttpd, AtpHttpd) running on Linux, and services shipped by de-
fault in Microsoft Windows (DCOM RPC, SQL server). The last
vulnerability affects the gdi32.dll library included in Windows XP.
It is an integer overflow in the code to parse a Windows Media file
(WMF), which causes an infinite loop.

6.1 Constraint Extractor results
In this section we evaluate the effectiveness of each step inthe

constraint extractor, which we measure by the number of unneces-
sary conditions that are removed at each step. For simplicity, we

Program Protocol Type Guest OS
Win. DCOM RPC RPC Binary Win. XP
Micros. SQL Server Proprietary Binary Win. 2000
GHttpd HTTP Text Red Hat 7.3
AtpHttpd HTTP Text Red Hat 7.3
gdi32.dll WMF file Binary Win. XP

Table 1: Vulnerable programs used in the evaluation.

only show the results for the protocol-level path-predicate obtained
by the constraint extractor from the execution trace generated by
the original exploit. Note that, during exploration this process is re-
peated once per newly generated input. The four leftmost columns
in Table 2 summarize the results. TheOriginal column represents
the number of input-dependant conditions in the original path con-
straint and is used as the base for comparison. TheSummaries
column shows the number of remaining conditions after conditions
generated by the functions that have function summaries have been
removed. TheParsing column shows the number of remaining
conditions after the field condition generalizer removes the pars-
ing conditions.

The results show the effectiveness of each step. First, the func-
tion summaries are very useful with the HTTP vulnerabilities, re-
moving between 60% and 83% of the original conditions. This is
because both servers use many standard string functions provided
by the C library such asstrstr or strlen . Surprisingly, thou-
sands of conditions in the SQL Server are also removed by function
summaries. This happens because the exploit message contains a
long database name string, and the server uses thestrlen func-
tion to find the end of the string, which results in a comparison
to the null terminator for each character in the string. However, we
have no function summaries for the private functions in the dynami-
cally link libraries (DLLs) used by Windows to parse the RPC mes-
sages, thus no conditions are removed by the function summaries.
Such equivalent conditions are mainly due to functions thatare re-
peatedly called by the program and to redundant checks that the
program performs.

Second, the results show that parsing conditions constitute 99%
of all conditions for both HTTP vulnerabilities. These are due to
loop scanning for the end of line delimiters. The number of parsing
conditions removed in the DCOM RPC example is not large, but it
is important to remove such conditions because otherwise they con-
strain the Context Item Array in the first message to the original 13
elements that it contained in the exploit message. The GDI original
protocol-level path-predicate contains only four conditions, all on
fixed-length fields, thus no parsing conditions are removed.

6.2 Exploration Results
The two rightmost columns in Table 2 show the results for the

exploration phase. TheExplorationcolumn shows the number of
nodes that can reach the vulnerability point, remaining in the protocol-
level exploration graph after the exploration has finished.Finally,
theVPRPcolumn shows the final number of conditions in the VPRP
after the explorer has extracted the VPRP and the simplifier has re-
moved all redundant conditions from it.

Note that, previous work has just provided the number of con-
ditions as a measure of their approach without providing detailed
explanation about what those remaining conditions represent due to
the large number of remaining conditions. Given the successof the
constraint extractor at removing conditions in four of the five orig-
inal protocol-level path-predicates and also to the small size of our
conditions, we are the first to be able to show what the remaining
conditions in the protocol-level path-predicate represent. We do
that by labeling the nodes in the protocol-level exploration graph
with the full protocol-level conditions.
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Constraint Extractor (Original exploit) Exploration phase
Vulnerable Program Original Summaries Parsing Exploration VPRP
Windows DCOM RPC 732 732 662 659 423

SQL Server 2447 7 6 6 1
GHttpd 2498 420 5 3 3

AtpHttpd 6034 2430 11 19 13
GDI 4 4 4 5 5

Table 2: Summary of evaluation results. On the left the results for each step of the constraint extractor on the original exploit
messages, and on the right the exploration results.

Performance summary. As a measure of the scalability of the
approach we note that the average time to complete an iteration of
the exploration process varies between 20 seconds (in the case of
the GDI and SQL Server vulnerabilities) and 21 minutes (in the
case of the Atphttpd vulnerability). Due to space limit, we do not
provide the full detailed time breakdowns. Also, the performance
can be significantly improved by a more optimized implementation.

MS SQL server. The parser shows that there are only two fields
in the exploit message: the CMD (command) field and the DB
(database name) field. The original protocol-level path-predicate
returned by the constraint extractor contains 6 conditions: 4 on
the CMD field and the other 2 on the DB field. Thus, the initial
protocol-level exploration graph contains 6 nodes.

The exploration explores the open edges of those 6 nodes and
finds that none of the newly generated inputs reaches the vulner-
ability point and no new nodes are discovered. Thus, the VPRP
returned by the explorer contains the following 6 conditions:
(FIELD_CMD <= 9) ˆ (FIELD_CMD != 9) ˆ
(2 <= FIELD_CMD <= 8) ˆ (FIELD_CMD == 4) ˆ
(strcmp(FIELD_DB, "") != 0) ˆ
(strcasecmp(FIELD_DB, "MSSQLServer") != 0)

After the simplifier removes the redundant conditions, the result-
ing VPRP is
(FIELD_CMD == 4) ˆ
(strcmp(FIELD_DB, "") != 0) ˆ
(strcasecmp(FIELD_DB, "MSSQLServer") != 0)

Note that, the vulnerability condition for this vulnerability states
that the length of the DB field needs to be larger than 64 bytes.
Thus, the last two conditions in the VPRP are redundant and the
final protocol-level signature would be:
(FIELD_CMD == 4) ˆ
length(FIELD_DB) > 64

GHttpd. The parser shows that there are three fields in the exploit
message: the METHOD, the URI, and the VERSION. The orig-
inal protocol-level path-predicate contains 5 conditions: 3 on the
METHOD, 1 on the URI and 1 on the whole message. Thus, the
initial protocol-level exploration graph contains 5 nodes. The ex-
ploration discovers five new paths to the vulnerability point and no
new nodes. It turns out that exploring any branch of the original
5 nodes always leads to the vulnerability point. Thus, the VPRP
returned by the simplifier is empty, meaning that any input that can
be parsed would reach the vulnerability point. Figure 11 shows
the optimal signature for the GHttpd vulnerability that we manu-
ally extracted from the source code. It contains a disjunction of 3
cases but a close look reveals that indeed any input allows toreach
the vulnerability point. But, not every input exploits the program.
The vulnerability condition varies depending on the path taken to
the vulnerability but requires the METHOD field to be at least166
bytes or the URI field to be at least 160 bytes (since the minimum
IP address string has 6 bytes). Thus, in this case we extract the
optimal VPRP.

AtpHttpd. As in the GHttpd exploit, there are three fields in the
exploit message: the METHOD, the URI, and the VERSION. The
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Figure 7: Part of the AtpHttpd protocol-level exploration
graph corresponding to a strcmp(URI sub[1], ”..”) function call
inlined by the compiler.

original protocol-level path-predicate contains 11 conditions: 2 on
the METHOD field and the other 9 on the URI field. Thus, the
initial protocol-level exploration graph contains 11 nodes.

The exploration discovers 8 new nodes in the protocol-levelex-
ploration graph The 8 newly discovered nodes correspond to dif-
ferent paths generated by the compiler inlining the following two
function calls: strcmp(URI sub[1], "..") , and strcmp
(URI sub[2], "/..") , whereURI sub[1] , andURI sub[2]
are the URI substrings starting at the second byte and third bytes
respectively.

Figure 7 shows the relevant part of the protocol-level exploration
graph for the first inlined call, which introduces 3 new nodes. The
three nodes vertically aligned on the left were introduced by the
original protocol-level path-predicate, and the others were discov-
ered by the exploration. Note that, there are two pairs of equivalent
conditions: URI[1] != ’.’ and URI[2] != ’.’ appear
twice. Those equivalent conditions in turn generate two infeasible
paths, that is, we cannot generate inputs that take the falsebranch
for the latter conditions. We have found that such equivalent (and
redundant) conditions often appear when the compiler inlines func-
tion calls.

The initial VPRP extracted from the protocol-level exploration
graph contains 6 redundant nodes that are removed by the simpli-
fier. The final VPRP is:
(strcasecmp(FIELD_METHOD,"get") == 0) ˆ
(FIELD_URI[0] == ’/’) ˆ
(FIELD_URI[1] != ’/’) ˆ
(strcmp(FIELD_URI_sub[1],"..") != 0) ˆ
(strncmp(FIELD_URI_sub[1],"../",3) != 0) ˆ
(strstr(FIELD_URI_sub[1],"/../") == 0) ˆ
(strcmp(FIELD_URI_sub[2],"/..") != 0) ˆ
(FIELD_URI[1] != 0) ˆ

where we have substituted the conditions inlined by the compiler
with the equivalent function calls (lines 4 and 7 above) for read-
ability. Figure 10 shows the optimal signature for this vulnerabil-
ity, which we have manually extracted from the source code. Note
that, our VPRP is almost optimal. Ignoring the last line in the op-
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Figure 8: Parts of the DCOM RPC protocol-level exploration
graph showing the newly discovered paths.

FileType

HeaderSize

Version

FileSize

NumOfObjects

MaxRecordSize

NoParameters

Size

Function

Parameters

16-bit

T

T

H_Header
Size
== 9

0x77f208a9

H_FileSize
>= 12

Start

VP

0x77f208b7

H_Version
== 0x300

T0x77f23f67

R_Size
<= 8183

0x77f33756

0x77f20a2b

H_Version
== 0x100

F

T

Header

Record

Figure 9: On the left, the format of the GDI exploit file. On the
right the final GDI vulnerability point reachability predic ate.
There are 4 fields in the WMF file header that do not affect
whether the VP is reached.

timal signature that represents the vulnerability condition, Endeav-
our only misses the disjunction starting withisnotdir because
we currently don’t model system calls such asstat , used to check
whether a file exists in the server.

GDI. The original protocol-level path-predicate for the GDI ex-
ploit file contained 4 conditions. Figure 9 shows on the left the
field structure for the exploit file, where an invalid value inthe
Size field exploits the vulnerability. During exploration 9 new
nodes are discovered but only one new path is discovered thatleads
back to the vulnerability point. For eight of the newly discovered
nodes, none of their branches lead to the vulnerability point. The
right hand side of Figure 9 shows the complete VPRP returned by
the simplifier. As shown in the figure, the successful test checks
whether the version field is 0x300 (Windows 3.0). When reverted
it checks if the version field is 0x100 (Windows 1.0). Thus, ifthe
version is 0x300 or 0x100 then the vulnerability point is reached,
otherwise it is not. Note that blackbox approaches, such as Shield-
Gen, can only find such conditions by probing all the field values
(216 in this case), which they usually avoid to do because it is too
expensive. In ShieldGen, after a few failed tests they wouldlikely

strcasecmp(METHOD, "get") == 0 ˆ
URI[0] == ’/’ ˆ
URI[1] != ’/’ ˆ
strcmp(URI_sub[1], "..") != 0 ˆ
strncmp(URI_sub[1], "../", 3) != 0 ˆ
strstr(URI_sub[1], "/../" ) == 0 ˆ
strcmp(URI_sub[2], "/..") != 0 ˆ
((isnotdir(URI_sub[1]) ˆ

stat(URI_sub[1], ptr) < 0) ||
(isdir(URI_sub[1]) ˆ

stat(URI_sub[1]+"index.html", ptr) < 0) ||
(URI_sub[1] == 0 ˆ stat("index.html", ptr) < 0

) ˆ
URI[1] != 0 ˆ
length(URI) > 679

Figure 10: Optimal signature for the Atphttpd http senderror
exploit

(strcmp(METHOD, "GET") != 0 ˆ
length(METHOD) > 165) ||

(strcmp(METHOD, "GET") == 0 ˆ
strstr(URI, "/..") != 0 ˆ
length(URI) > 170) ||

(strcmp(METHOD, "GET") == 0 ˆ
strstr(URI, "/..") == 0 ˆ
length(URI) + length(ClientAddr) > 166)

Figure 11: Optimal signature for the GHttpd Log exploit.
There is a fourth case that requires the attacker to guess config-
uration information from the server. We omit it for simplici ty.

decide that the value of theVersion field has to be 0x300 for the
vulnerability point to be reached, which would allow the attacker to
easily avoid detection by changing the value of the field to 0x100.

Windows DCOM RPC. The original protocol-level path-predicate
for the DCOM RPC exploit contains 662 conditions, while the mes-
sage format contains hundreds of fields. During exploration8 new
paths are discovered that lead to the vulnerability point. Figure 8
shows the relevant portion of the protocol-level exploration graph
for all the newly discovered paths.

On the left hand side, Figure 8A shows 5 vertically aligned con-
ditions that were added by the original protocol-level path-predicate.
The top four conditions depend on theMaxXmitFrag (MX) or
MaxRecvFrag (MR) fields and the last one on theAuthLength
(AL) field. The remaining 3 nodes in Figure 8A were discovered
by the exploration. Interestingly, when extracting the VPRP from
the protocol-level exploration graph, the 7 nodes that depend on
MX and MR can be removed since both out-edges always point
to the same successor. Thus, the whole Figure 8A simplifies to
the nodeAuthLength == 0 . Since there are no more condi-
tions on the original protocol-level path-predicate that use either
theMaxXmitFrag or MaxRecvFrag fields, that means that the
exploration allows us to confidently remove those two fields from
the final VPRP.

On the right hand side, Figure 8B shows the other new path to the
vulnerability point that was discovered. It was found by exploring
the other branch of the(Flags & 0x80) == 0 condition at
the top. The new path traverses a new node and merges back into
the original protocol-level path-predicate at a latter condition. The
reason behind this new path is that the program is checking ifthe
optional 16-byteObject header is present in the RPC message. If
it is, then the size of the message is required to be 16 bytes longer
(20 rather than 4) to account for it. The final VPRP contains 423
conditions and is too large to be shown here.
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7. Conclusion
In this paper we address the main challenge remaining for signa-

ture generation: increasing the coverage of vulnerability-based sig-
natures. We have proposed protocol-level constraint-guided explo-
ration, a novel approach to automatically generate high coverage,
yet compact, vulnerability point reachability predicates. The three
salient properties of our approach are that 1) it isconstraint-guided,
thus much more effective than black-box probing, 2) it worksat
the protocol level, thus the constraints are more resistant to vari-
ations in the input such as field reordering or changes in the size
of the variable-length fields, and 3) itmergespaths, which allows
to significantly reduce the exploration space and to generate com-
pact vulnerability point reachability predicates. Our experimental
results demonstrate that our approach is extremely effective, gen-
erating vulnerability point reachability predicates withhigh cov-
erage (optimal or close to optimal in cases) and small size (often
human-readable), offering dramatic improvements over previous
approaches. Our work also has applicability in other applications
such as patch testing. The efficient exploration may also be of in-
dependent interest to other applications requiring the exploration
of large program execution space such as automatic test casegen-
eration. We hope our work sheds new light on directions for future
work.
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