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ABSTRACT

Signature-based input filtering is an important and widelyldyed
defense. But current signature generation methods haveedim
coverage and the generated signatures can be easily evwaded b
attacker with small variations of the exploit message. is plaper,
we proposerotocol-level constraint-guided exploratioanew ap-
proach towards generating high coverage vulnerabilisedasig-
natures. In particular, our approach generates high cgeenget
compactyulnerability point reachability predicatesvhich capture
many paths to the vulnerability point. We have implemented E
deavour, a system that implements our approach. Our reshdts
that our signatures have high coverage (optimal or closeticnal

in our experiments) and are small (often human-readalffeyirg
dramatic improvements over previous approaches.

1. Introduction

Automatic signature generation remains an important opeio-p
lem. According to Symantec’s latest Internet Security ahiRe-
port hundreds of new security-critical vulnerabilitiesregliscov-
ered in the second half of 2007 [30]. For many of these vulnera
bilities, the exploit development time is less than a dayilevtine
patch development time is often days or months [30]. In &aldit
the patch deployment time can be long due to extensive tesyin
cles.

To address these issuafgnature-based input filteringas been
widely deployed in IPS and IDSes. Signature-based inpurilt
ing matches program inputs against a set of signatures agsl fla
matched inputs as attacks. It provides an important meapsoto
tect vulnerable hosts when patches are not yet availablaver ot
yet been applied. Furthermore, for legacy systems whehest
are no longer provided by the vendor, or critical systemsrevhay
changes to the code might require a lengthy re-certificgtioness,
signature-based input filtering is often the only practsmition to
protect the vulnerable program.

The key technical challenge to effective signature-basdee
is to automatically and quickly generate signatures theeé Heth
low false positives and low false negatives. In additiohssigna-
tures should be generated without access to the source Thidas
crucial to wide deployment since it enables users and {hanties
to generate signatures for commercial-off-the-shelf (SPpro-
grams, without relying on software vendors, thus enablingiak
response to newly found vulnerabilities.

Coverage is the main open challenge Due to the importance
of the problem, many different approaches for automatioasig
ture generation have been proposed. Early work proposedro g
erateexploit-based signaturessing patterns that appeared in the
observed exploits, but such signatures can have high false p
tive and negative rates [20-24, 27, 29, 31, 33, 34]. Morentigce
researchers proposed to generaténerability-based signatures
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which are generated by monitoring the program executioreaad
lyzing the actual conditions needed to exploit the vulniitgtand
can guarantee a zero false positive rate [10, 15].

A vulnerability is a point in a program where execution might
“go wrong”. We call this point therulnerability point A vulnera-
bility is only exploited when a certain condition, thalnerability
condition holds on the program state when the vulnerability point
is reached. Thus, to exploit a vulnerability, the input reetsat-
isfy two conditions: (1) it needs to lead the program exerutd
reach the vulnerability point; (2) the program state needsatisfy
the vulnerability condition at the vulnerability point. Véall the
condition that denotes whether an input message will makerib-
gram execution reach the vulnerability point theénerability point
reachability predicate Thus, the problem of automatically gener-
ating a vulnerability-based signature can be decompogedvi:
identifying the vulnerability condition and identifyingé vulnera-
bility point reachability predicate. A vulnerability-bed signature
is simply the conjunction of the two. As we will describe lat@ne
of the key challenges is how to generate vulnerability poeatch-
ability predicates with high coverage and compact sizechvhiill
be the focus of this paper. And we consider the problem oftiden
fying the vulnerability condition as an orthogonal probland out
of the scope of this paper.

The main problem with early vulnerability-based signatyea-
eration approaches [10, 15] is that they only capture aaipgth
to the vulnerability point (i.e., their vulnerability pdireachability
predicate contains only one path). However, the number thfspa
leading to the vulnerability point can be very large, somes in-
finite. Thus, such signatures are easy to evade by an attadtker
small modifications of the original exploit message, sucthasg-
ing the size of variable-length fields, changing the regativdering
of the fields (e.g., HTTP), or changing field values that diive
program through a different path to the vulnerability point

Acknowledging the importance of enhancing the coverage of
vulnerability-based signatures, recent work tries toipocate mul-
tiple paths into the vulnerability point reachability preate either
by static analysis [11], or by black-box probing [14, 16]. w&ver,
due to the challenge of precise static analysis on binatesyul-
nerability point reachability predicates generated ustiadgic anal-
ysis are too big [11]. And, black-box probing techniques, 6],
which perturb the original exploit input using heuristiagch as
duplicating or removing parts of the input message or sargpli
certain field values to try to discover new paths leading éovihl-
nerability point, are highly inefficient and limited in itg@oration.
Hence, they generate vulnerability point reachabilitydizates with
low coverage.

Thus, a key open problem for generating accurate and efficien
signatures is how to generate vulnerability point readfglgred-
icates with high coverage and in a compact form. In addition,
high coverage vulnerability point reachability predicateve fur-



ther applications such as patch testing. For example, tlcedstft
patch MS05-018 missed some paths to the vulnerability oidt
as a result left the vulnerability still exploitable aftéetpatch [1].
Automatically identifying vulnerability point reachaltil predicates
with high coverage could assist in catching such problempaiohes.

In this paper, we proposprotocol-level constraint-guided ex-
ploration, a new approach to automatically generate vulnerability
point reachability predicates with high coverage and in mpact
form, for a given vulnerability point and an initial exploriessage.
Our approach has 3 main characteristics: 1) @dastraint-guided
(i.e., instead of using black-box probing), 2) it works a gnoto-
col level and 3) it effectivelymergesexplored execution paths to
remove redundant exploration. Below we give an overviewhef t
three characteristics:

Constraint-guided. Black-box probing techniques [14, 16] funda-
mentally suffer from the well-known limitations of blackbfuzzing,
where constraints that are satisfied by only a very smaltiraof

the input space are very hard to discover. For example, ai-cond
tional statement such &s (FIELD==10) || (FIELD==20)

then exploit, else safe , Creates two paths to the vulner-
ability point. If FIELD had value 10 in the original exploitessage,
the signature still needs to discover the alternate patmHeLD

== 20, which would requir@>® random probes on average to dis-
cover. If the signature only covers the original path, wHeELD
had value 10, then the attacker can easily evade detecticndng-
ing FIELD to be 20. Thus, we propose to use a constraint-guide
approach by monitoring the program execution, performiyig-s
bolic execution to generate path predicates, and gengnagw in-
puts that will go down a different path by taking a differenufich

at a branching point. Such approach would only require twtste
to discover the above condition.

At afirst glance, our constraint-guided exploration magneisle
recent work in symbolic execution for automatic test caseege
tion [13, 19]. However, there are two significant differescEirst,
the problem addressed is different. In automatic test caserg
ation, the goal is to cover all program paths or at least me@m
block or branch coverage (i.e., exploring every basic blmckoth
the true andfalse branches at each branching point), while in au-
tomatic signature generation the goal is to find all paths lded
to the vulnerability point. Moreover, in automatic testegenera-
tion, one is often only interested in findisgmenputs which make
the program execution reach a particular basic block ordbran
whereas in automatic signature generation we are interasfimd-
ing all inputs which make the program execution reach the vul-
nerability point (to minimize false negatives). Secondstntech-
niques explore paths one at a time. Given that the numbertb$ pa
is often exponential in the number of conditions or even itdin
such approaches simply do not scale in our setting. In fact, i
Bouncer [14] the authors acknowledge that they wanted tcause
constraint-guided approach but failed to do so due to tlgelaum-
ber of paths that need to be explored and thus had to fall loettiet
black-box probing approach.

To make the constraint-guided exploration feasible anetcéffe
and to make the resulting vulnerability point reachabititgdicate
compact, we have incorporated two other key charactesiatito
our approach as described below.

Protocol level. Previous symbolic execution approaches gener-
ate what we calktream-level conditions.e., constraints that are
evaluated directly on the stream of input bytes. Such stiess
conditions in turn generatgream-level signaturesvhich are also
specified at the byte level. However, previous work has shibvan
signatures are better specified at the protocol level idstédahe
byte level [16, 34] as the vulnerability is often best spedfat the
protocol level. We call such signaturpsotocol-level signatures

Our contribution here is to show that, to make the constraint
guided approach feasible it is fundamental to lift streawel con-
ditions toprotocol-level conditionsso that they operate on proto-
col fields rather than on the input bytes, as using consgrainthe
protocol-level hugely reduces the number of paths to beoeggl
compared to using stream-level conditions. Protocoltlevadi-
tions reduce the space that needs to be explored for two reain r
sons. First, the parsing logic often introduces huge coxitylén
terms of the number of execution paths that need to be arthlyze
For example, our experiments show that with HTTP vulneitésl
99% of all constraints are generated by the parsing logic.iléVh
such constraints generated by the parsing logic need toesemtr
in the stream-level conditions, they can be removed in theopol-
level conditions. Second, the constraints introduced byptrsing
logic fixes the field structure to be the same as in the origixgloit
message, for example fixing variable-length fields to hagesgime
size as in the original exploit message, and fixing the fietieace
to be the same as in the exploit message (when protocols such a
HTTP allow fields to be reordered). Thus, new paths geneitated
changing the length of the variable-length fields or by redrd
the fields, would also have to be explored if we use streaml-lev
conditions. Otherwise, the resulting signature would by easy
to evade by an attacker by applying those small variatiortheo
field structure of the original exploit message. For the seeason,
expressing the vulnerability point reachability predéecat the pro-
tocol level naturally makes it much more compact than attiteam
level as it automatically accounts for variable-lengthdgehnd field
reordering. Finally, as a side benefit, expressing the vabikty
point reachability predicate at the protocol level also esakmuch
easier to understand by humans.

Merging execution paths.In Bouncer, the authors propose to use
a vulnerability point reachability predicate that is a disjtion (i.e.,
an enumeration) of all the discovered paths that lead toulreer
ability point. Such vulnerability point reachability piiedte has
two main problems. First, it suffers from the combinatoeat
plosion problem since the number of paths is exponentiahen t
number of constraints. Second, it generates signaturegufekly
explode in size. ShieldGen tries to avoid this problem byaeng
fields whose value do not affect whether the vulnerabilitinpis
reached. Their problem is that to confidently decide whether
value of a field does not matter to reach the vulnerabilitynpoi
they would need to probe all the values of the field, which dus
scale with large fields (e.g., 32-bit). Thus, they revertearistics
to sample the field values and thus can introduce false pesity
removing fields for which a few values allow to reach the vidre
bility point.

To overcome those limitations, we utilize the observatiat the
program execution may fork at one condition into differeaths
for one processing task, and then merge back to perform anoth
task. For example, a task can be a validation check on the inpu
data. Each independent validation check may generate aneler
tiple new paths (e.g., looking for a substring in the URI gates
many paths), but if the check is passed then the program nooves
to the next task, which usually merges the execution backthe
original path. Thus, in our exploration, we useratocol-level ex-
ploration graphto identify such potential merging points and give
priority to exploring paths that are likely to merge into yaosly
explored paths that reach the vulnerability point. Thipbedlle-
viate the combinatorial exploration problem, and allows@xplo-
ration to quickly reach high coverage.

Endeavour. We have designed and developed our approach into
Endeavour, a system that automatically generates highragee
yet compact, vulnerability point reachability predicat@sir evalu-
ation demonstrates the effectiveness of our approach.xaonge,



compared to Bouncer, our vulnerability point reachabpitgdicate
for the Microsoft SQL Server vulnerability contains threzndi-
tions while the one obtained by Bouncer contains more thama h
dred [14]. In addition, our vulnerability point reachabjlpredicate
for the GHttpd vulnerability is empty, meaning that any inthat
can be parsed reaches the vulnerability point, which we kesie
fied using the source code. Bouncer generates a vulneygimiint
reachability predicate with more than 2000 conditions liersame
vulnerability, and requires the exploit to be a GET requé&xim-
pared to ShieldGen, our vulnerability point reachabilitgdicate
for the Microsoft DCOM RPC vulnerability discovers condits
that are required to reach the vulnerability point and weissed by
ShieldGen. For example, the numbeG@ntexitem elementsin
theBind request, represented by tNemCtxltems field should
not exceed 20. Such condition was missed by ShieldGen [4]s,Th
their vulnerability point reachability predicate will flagfe inputs
as exploits, introducing false positives.

2. Problem Definition and Approach Overview

In this section, we first introduce the problem of automaéo-g
eration of protocol-level vulnerability point reachabyjlpredicates,
and then give the overview of our approach.

2.1 Problem Definition

Protocol-level vulnerability point reachability predicate. Given
a parser implementing a given protocol specification, tHeena-
bility point, and an input that exploits the vulnerabilitytae vul-
nerability point in a program, the problem of automatic gatien
of protocol-level vulnerability point reachability prexdites is to au-
tomatically generate a predicate functiéh such that when given
some input mapped into field structures by the parBegyaluates
over the field structures of the input: if it evaluatesttioe, then
the input is considered to be able to reach the vulnerakhliiyt,
otherwise it is not.

Note that in the problem domain of automatic generation ofgmol-
level signatures (and thus automatic generation of prédevel
vulnerability point reachability predicates), it is as®drthat we
are given a parser implementing a given protocol or file dpeci
cation consistent with the one implemented in the vulneralb-

gram. The parser given some input data can map it into the field

structures, according to the protocol specification. Thiuaption

can be addressed in many practical ways and we consider-it out

side the scope of this paper. For example, such parser islaleai
for common protocols (e.g., Wireshark [6]), and many conuiaér
network-based IDS or IPS have such a parser built-in. Inteatdi
the parser may be manually constructed [16] using domaacifp
languages for protocol specifications [9, 28], which allavilding
a generic parser that takes as input multiple protocol fipatibns.
Also, recent work has proposed to automatically extracptio¢o-
col specification from the program binary [12, 25, 32]. Sudrtkv

can be used when the protocol used by the vulnerable progra

has no public specification or its implementation deviatemfthe
specification.

01) void service() {

2 char vulBuf[128], msgBuf[4096];
03) char lineBuf[1024], method[256];
04) char uri[256], ver[256];

05% int nb=0, i=0, is_cgi=0, sockfd=0;
06

07) nb=recv(sockfd, msgBuf, 4096, 0);
08) for(i = O; i < nb; i++) {

09) if ((msgBuffi] == "\n") ||

10) (msgBuffi] == "\r'))

11) break;

12) else
13) lineBuffi] = msgBuf{i];

14)

15)  lineBuf[i] = "\0’;

16) sscanf(lineBuf,"%255s %255s %255s",
17) method, uri, ver);

18) if (strcemp(method, "GET") == 0 ||
19% strcmp(method, "HEAD") == 0)
20

21) if strncmp(uri,"/cgi-bin/",9)==0

22) is_cgi = 1;

23) else

24) is_cgi = 0;

25) if (uri[0] '= /)

26) return;

27) strepy(vulBuf, uri);

28) }

29) else if (strcmp(ver,"HTTP/0.9")==0
30) && stremp(ver,"HTTP/1.0")==0)
g%g printf("Invalid method");

Figure 1: Our running example.

example, theservice function receives and processes the net-
work requests. It uses a loop to copy the first input line i@ t
variablelinebuf  before parsing it into several variables (lines
7-17). The first line in the exploit message includes the wubth
the URI of the requested resource, and the protocol versidhe
method is GET or HEAD (lines 18-19), and the first character of
the URI is a slash (line 25), then the vulnerability pointéached

at line 27. The size ofulBuf is not checked by thstrcpy
function on line 27. Thus, a long URI can overflow thelBuf
buffer.

In this example, the vulnerability point is at line 27, and thul-
nerability condition is that the local variablelBuf  will be over-
flowed if the size of URI field in the received message is greate
than 128. Therefore, for this example, the vulnerabilitinpeeach-
ability predicate is:

(strcmp(FIELD_METHOD,"GET") == 0 ||
strcmp(FIELD_METHOD,"HEAD") == 0) ~

URI[O] = '/

while the vulnerability condition islength(FIELD  _URI) >
128, and the optimal protocol-level signature is the conjuocti

mof the two. It is important to note that ShieldGen cannot piced

such a vulnerability point reachability predicate becaiasesach
field, their blackbox probing approach only checks whetlher t

Note also that in our problem setting, we assume that an ini- field needs to have the same value as in the exploit message to e

tial exploit message is given, as in the previous work of iatiic

signature generation. In addition, we assume that the rxalhile

ity point is given as we consider identifying the vulnerékipoint

given an exploit message is an orthogonal problem and owbpfes
for this paper. Such vulnerability point may be identifiethggre-

vious techniques such as [14, 26].

Running example. Figure 1 shows our running example. We rep-
resent the example in C language for clarity, but our appiroper-
ates directly on program binaries. Our example represebssia
HTTP server and contains a buffer-overflow vulnerability. the

ploit the vulnerability or not. For example, given a exploigssage
that was aGETrequest, it is nearly impossible for their black-box
probing approach to discover thaH&ADrequest could exploit the
program as well, thus introducing false negatives. In @sttrour
results will show that Endeavour is able to accurately ifgstich
conditions.

Note that even though this running example is on memorytgafe
type of vulnerability, the problem of identifying vulneiifity point
reachability predicates is general and applies to any typaloer-
ability where one is interested in finding all the paths thayrhead
to the vulnerability point.
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designed and implemented in this work.
2.2 Approach and Architecture Overview

In this paper we propose a new approach to generate high-cover

age, yet compact, vulnerability point reachability prediés, called
protocol-level constraint-guided exploratiowhich as our exper-
iments demonstrate, achieves significantly better resés pre-
vious work. The architecture of our system, Endeavour, @svsh
in Figure 2. It comprises of two main components: toastraint
extractorand theexploration modulgan additional component, the
simplifier; and two off-the-shelf assisting components: éxecu-
tion monitorandthe parser The overall exploration process is an
iterative process, controlled by the exploration modulee €xplo-
ration module maintains the exploration state in a specéily the
protocol-level exploration graphwhich we have designed specifi-
cally to enable effective exploration.

For each iteration of the exploration process, the explomat
module uses the current protocol-level exploration graphen-
erate a new input that will lead the program execution to @l
a new edge in the protocol-level exploration graph. The rew i
put is then sent to the vulnerable program, which is run egi
execution monitor. The execution monitor oversees therprag
execution as it processes the input and outputs an exeduvdios,
which summarizes the execution. It also outputs whetheinibet
made the program execution reach the vulnerability poiwgt (e
test result). Then the parser extracts the message forntaefoew
input, according to the protocol specification.

Next, given the message format and the execution traceptie ¢
straint extractor raises the stream level path predicategqro-
tocol level and removes unnecessary parsing conditions.cdh-
straint extractor outputs theeld constraint chair(Section 3). Fi-
nally, the exploration module adds the field constraint chaithe
current protocol-level exploration graph performing a gieg step
to remove redundant paths. At that point, the exploratiomlufe
generates a new input that will allow exploring another edgee
updated protocol-level exploration graph and the wholegse re-
peats.

The process is started with the initial exploit message and it-
eratively until the termination condition is satisfied (8ew 4). At
that point the exploration module produces the intermediai-
nerability point reachability predicate, which is simgii by the
simplifier into the final vulnerability point reachabilityrgdicate.
The exploration module is detailed in Section 4.

3. Extracting the Protocol-level Path-predicate

In this section we present the constraint extractor, whighrg
an execution trace, produces a protocol-level path-pagelic

Background: path predicate. Given the execution trace of the
program processing an input, one can perform symbolic exacu
with the input represented as a symbolic variable and exthac
path predicatei.e., the predicate that an input needs to satisfy to
take the program execution to follow the same path as in the ex
ecution trace. This path predicate is essentially the cmtjon

of all branch conditions dependent on the symbolic inputhia t
given path. The concept of path predicate and how to compute i
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Figure 3: Constraint Extractor Architecture. The darker co lor
modules are given, while the lighter color components have
been designed and implemented in this work.

is well understood and has been widely used in previous work i
cluding vulnerability signature generation [10, 15] andoawatic
test case generation [13, 19]. Thus, we refer the interestder
to these previous work for details. Here we simply use an off-
the-shelf assisting componepaith predicate extractoio generate
the path predicate given an execution trace. Note that tovdda
each branch condition in the path individually, the pathdate
extractor computes a dynamic slice of each branch condititime
original path. Each slice contains all the statements tleaiewsed
to generate the branching condition from the symbolic infphien
each slice is simplified to obtain a smaller but equivalemiéon.
The detalils of this process are presented in [7].

Key goals and overview.The path predicate used in previous work
is at the stream level, i.e., the conditions are on raw bytehe
input, calledstream-level conditiong§where each byte of the in-
put is represented as a symbolic variable indexed by itsdffget

in the input, e.g.INPUT[X] , called abyte symbgl To enable
constraint-guided exploration, we need to lift the pathdprate to
the protocol level, i.e., the conditions are instead on fieldables

of the input, calledorotocol-level conditiongwhere each byte of
the input is represented as a symbolic variable indexedshiyeitd
name and its byte offsetin the field, e GLELD _FieldName[x] ,
called afield symbadl. To make the distinction clear, we refer to the
path predicate at the stream level gteeam-level path-predicate
and the path predicate at the protocol levelphatocol-level path-
predicate To accomplish this, the key contributions of the con-
straint extractor are, given the stream-level path-pegdichow to
lift it to the protocol level (achieved by th&eld condition gen-
erator), and how to further generalize it by removing the parsing
conditions (achieved by theeld condition generalizgr Finally, to
assist the construction of the protocol-level exploratioaph (ex-
plained in Section 4), the constraint extractor outputdigid con-
straint chain which is the protocol-level path-predicate annotated
with the EIP for each branch condition and formed in an ordere
chain of branch conditions using the same order as in theuérec
path.

3.1 The Field Condition Generator

Given the stream-level path-predicate generated by thepead-
icate extractor and the message format of the input giverhby t
parser, the field condition generator outputs a protocatlpath-
predicate. It performs this in two steps. First, it traretatach byte



symbol INPUT[X]
symbol

FIELD _fieldname[x - start(fieldname)]
ping produced by the parser.

in the stream-level path-predicate into a field

need to be kept in the protocol-level path-predicate.
Previous work on protocol reverse-engineering [12, 25 %4

using the map- identified three main elements that protocols use to find tite e
Second, it tries to combine sym- of variable-length fields: separators (also called deérsix, length

bols on consecutive bytes of the same field. For example, the fields, and array counter fields. Their results show thatethpys-

stream-level path-predicate might include the followingdition:
(INPUT[6] << 8 | INPUT[7]) == . If the message for-
mat states that inputs 6 and 7 belong to the same 1fbiteld,
then the condition first gets translated(EIELD _ID[0] << 8

| FIELD _ID[1]) == and then it is converted tBIELD _ID
== 0 whereFIELD _ID is a 16-bit field symbol.

Benefits. This step lifts the stream-level path-predicate, at the byt
level, to the protocol-level path-predicate, at the protdevel. By
doing so, we break the artificial constraints that the strézaval
path-predicate imposes on the position of fields inside dpéoé

message. For example, protocols such as HTTP allow somes field

in a message (i.e., all except the Request-Line/Statusyltmbe
ordered differently without changing the meaning of the sagg.
Thus, two equivalent exploit messages could have the saide fie
ordered differently and a byte-level vulnerability poiechabil-
ity predicate generated from one of them would not flag that th
other also reaches the vulnerability point. In additionafiable-
length fields are present in the exploit message, changmgite
of such fields changes the position of all fields that comertzkhi

in the exploit message. Again, such trivial variation of éxploit
message could defeat stream-level conditions. Thus, bessing
constraints using field symbols, protocol-level condisioraturally
allow a field to move its position in the input.

3.2 The Field Condition Generalizer

The field condition generalizer takes as input the protéeat!
path-predicate generated by the field condition generatdrtiae
loops extracted by tHeop analyzeran off-the-shelf assisting com-
ponent, and outputs a field constraint chain where the parsiated
conditions have been removed.

Theloop analyzeextracts the loops in the execution trace using
the static information extracted from the vulnerable paogr The
loop analyzer implements standard loop detection anablgis-
rithms [8] and outputs for each loop: the loop head, the loagyb
and the loop exit conditions.

Motivation and Intuition. As shown in Section 3.1, by lifting
the stream-level path-predicate to the protocol-levdi{maedicate,
we allow the vulnerability point reachability predicatecover ad-
ditional variants where each field may be at a different posit
e.g., when a variable-length field changes size. Howevepéans-
ing conditions that remain in the protocol-level path-pcate still
over-constrain the variable-length fields, forcing therhdge some
specific size (usually the same as in the exploit messagels, Th
allow the vulnerability point reachability predicate torkie ex-
ploit messages where the variable-length fields have a #ifee-d
ent than in the original exploit message, we need to remogk su
parsing conditions. In addition, for some protocols sucka3P,
the number of parsing conditions in a single protocol-lgvath-
predicate can range from several hundreds to a few thous8ndh
a huge number of unnecessary conditions would blow up tlees$iz
the vulnerability point reachability predicate and negglti impact
the exploration that we will present in Section 4.

In this paper, we term parsing conditions to be conditioresdus
by the program to identify the end of variable-length fieldsai
received message. These are the conditions that overaionst
variable-length fields to have a specific size. Other cooitigen-

tocol elements are often used in programs to control the Bamb
of times that parsing loops iterate. Such usage is the reabgn
parsing conditions constrain the size of variable-lengthi$ to be
the same one as in the exploit message. Such behavior can be ob
served in our running example, where the loop at lines 14 to 20
is trying to locate the end of the first line of the message ctvhi
is variable-length and marked by the separator CarriagarRet
Line Feed (\r\n"). Theif conditionals at lines 15-16 gener-
ate the following conditions in the protocol-level patlegicate:
(FIELD _.METHODI[O] # '\n) A (FIELD _-METHOD|O] #
"\r) A .., A(FIELD _-VERSIONI[x AN

A new input with an extra byte in the URI field would have the
Carrier Return character at positigil rather than at positior
and thus would not match the previous predicate since femtéiv
inputFIELD _-VERSION[x] # ' \n’ . Such input would be con-
sidered not to reach the vulnerability point, thus creatinfalse
negative.

if (count > 64) then abort();
for (i = 0; i < count; i++) {
/* Code to parse a record here */

Figure 4: Example of array parsing loop

The same occurs with length and array counter fields. For ex-
ample, in the code snippet in Figure 4 whemnt is a field di-
rectly copied from the exploit message, representing tiebeu of
records in a variable-length arraycidunt had value 3 during the
execution, the resulting conditions would lepunt > 0) A
(count > 1) A (count > 2) A (count < 3).Clearly,
such loop constrains tfeunt variable to have value 3. All other
length and array counter fields that are used to control time-nu
ber of iterations in a loop, become similarly constrainetiug, a
new exploit with four elements in the array, instead of 3, ldaot
satisfy the conditiomount < 3 and would be considered safe.

Such exploit variants that modify the size of variable-lrfgelds
are already in use. For example, tools such as the Metagploie-
work [5] can create such exploits. To avoid such exploitasts to
evade detection, the parsing conditions in the protocatlpath-
predicate need to be identified and removed. We use two eliffer
techniques to remove the parsing conditions: function saries
for well-defined functions, and examining the loop exit citinds
for other functions.

We use function summaries for well-known functions, most of
ten for functions that operate on strings. Such functionreanes
have been proposed to limit the combinatorial explosionaihg
in a program [11, 18]. In addition, function summaries exposn-
ditional dependencies that are otherwise hidden by funatails.
We describe our function summaries implementation in edi
Next, we present our loop analysis technique to remove narsi
conditions, which can be used regardless of whether thergamog
uses well-known functions for parsing the protocol message

Removing the parsing conditions. The field condition general-
izer takes as input the information about the loops in theeien
trace, extracted by the loop analyzer. For each loop it dedithe
loop head, the loop body, and the loop exit conditions. Intamid

erated by the program to check the value of a field (e.g., that a the execution trace contains information about which lodpaen-

protocol version is supported, or that a maximum field vatueait
exceeded) do not over-constrain the variable-length fhdsthus

ditions use input data.
For each loop which contains exit conditions that use inpita,d
the field condition generalizer removes those exit conditibthey



compare against the value of a separator (as provided irrtiie-p
col specification) or if the exit condition generates coiodis that
differ by a constant increment/decrement in each iterati®och
conditions map to the parsing conditions used by the progmam
identify the end of the variable-length fields.

In our running example, the loop at lines 14 to 20 is used by
the program to identify the end-of-message separator, amains
an exit condition that depends on input data and on the vdiue o
the separator at line 15. From the HTTP protocol specifinatie
would obtain that the Carriage-Retuin, the Line-Feed\r), the
space and the tab characters can be used as separatorsthEhus,
conditions generated from thie conditional at line 15 would be
identified as parsing conditions because they compare ihgtat
with a separator value. Consequently, they would be remfroad
the protocol-level path-predicate.

In the loop snippet in Figure 4, all the conditions generdigd
the loop exit condition would be identified as parsing cdndi be-
cause the generated conditiofsount > 0) A (count >
1) A (count > 2) A (count < 3) differ by a constant
increment . However, the condition generated by the ifirston-
ditional does not belong to a loop exit condition and thusfitlel
condition generalizer would not remove it. Intuitivelyjstwould
keep among others, conditions that programs might perforvalt
idate the value of the length and array counter fields befeiegu
them in a loop, which are not part of the parsing process.

Symbolic Memory AddressesThe field condition generalizer also
performs some special handling if there is any field conditiat

the execution trace obtained using the given exploit messhg
exploration module performs protocol-level constraintegd ex-
ploration to generalize the constraints and output thearalnility
point reachability predicate (VPRP).

Two unique characteristics enable our approach to extigbt h
coverage VPRPs. First, our exploration works on a specaplgr
the protocol-level exploration graghthe nature of this graph en-
ables us to drastically cut down on the exploration space by
ing many execution paths into equivalent paths, so thatdbayot
need to be explored separately. Second, as we discover ribs/ pa
and add them to the protocol-level exploration graph, wegeer
the new paths with previously discovered paths as much as-pos
ble, thus further reducing the exploration space. In thitige, we
first introduce the protocol-level exploration graph anglain its
benefits and our intuition of merging paths, and then we dsscr
the overall exploration process and how to extract the finkder-
ability point reachability predicate. Note that as we ekpgd in
Section 1, our exploration problem is markedly differewinfirpre-
vious work on automatic test case generation (such as [)3an8
thus their techniques are inadequate to address our task her

4.1 The Protocol-level Exploration Graph

The protocol-level exploration graph. The explorer dynamically
builds aprotocol-level exploration graplas the exploration pro-
gresses. In a protocol-level exploration graph, each nepiesents
an input-dependant branching point (i.e., a conditionalgyin the
execution, which comprises the protocol-level conditiow d¢he

depends on a memory read from a symbolic address, which are of address of the program’s instructicgigg) for this branching point.

ten the result of a translation table. Such translatioresbkually
occur with string operations that do upper/lower-case o€ V8-

nicode transformations. For example, one such conditioiddoe:
mem[FIELD _URI[6] + 0x81d9440] == 0x49 , Where the

Each node can have two edges representing the branch taken if
node’s condition evaluated to tru€)(or false §). We call the node
where the edge originates teeurce nodend the node where the
edge terminates thadestination nodeIf a node has aompen edge

input data is used to look up into a mapping table whose base ad (i.e, one edge is missing), it means that the correspondiaigch

dress is 0x81d9440. Clearly, with a different value of thilfigRl,

the address being accessed would be different and we wotild no

know how to handle it. We address this problem in two différen
ways depending on the scenario. The first case is if the symbol
memory address belongs to a static table in the data segrivent.
this case, we simply incorporate the table into the sigeatun

has not yet been explored.

The reason why nodes are labeled with both the conditiontand t
eip (as shown in Figure 5A) is that the same branching poianhin
execution trace can generate different conditions depgnoti the
content of the operands. For example, a comparg %eax,%ecx
instruction followed by a jump-if-above instructigan Ox7el2abc

the second case, the symbolic memory address does not belongan generate both conditiorStELD 0 > 5 andFIELD .1 > 7

to a static table. In this case, we take the conservativeoappr

and fix the symbol to have the same value as in the exploit mes-

sage. For example if FIELJRI[6] had value 0x69 in the ex-
ploit message, then the above condition would be transfdiinte:
FIELD_URI[6] == 0x69. Such condition might over-constrain the
value of the symbol and we address this case in two ways., First
most times such translation tables appear in well-definedtions
such asscanf . Thus, those conditions are removed by the func-
tion summaries. In addition, during exploration, new valta the
over-constrained symbol will be explored and if the vulihdity
point is still reached for those values, then the conditionghe
symbol will be relaxed and sometimes even eliminated.

The field constraint chain. To assist the construction of the protocol-

level exploration graph (explained in Section 4), the caist ex-

tractor constructs thfgeld constraint chaimising the generated protocol

level path-predicate. A field constraint chain is an enhdnvession
of the protocol-level path-predicate where each branchklition is
annotated with the EIP of the corresponding branching paimd
these annotated branch conditions are put in an ordered ohizig
the same order as they appear in the execution path.

4. Execution-guided Exploration

In this section we present the exploration module. Given the
field constraint chain produced by the constraint extra@tom

at different points of a program by loading the content ofeh®
andecx registers with different values.

Differences with automatic test case generatiorlJsing a protocol-
level exploration graph is significantly different from ttnaditional
constraint-based exploration used in automatic test casergtion
approaches such as DART [19] and EXE [13]. First, in a prdtoco
level exploration graph the condition associated with ezmiie is
at the protocol level, whereas in the traditional constrhased
exploration, the conditions are at the stream level. Second
protocol-level exploration graph, the branching pointeespond-
ing to parsing conditions have already been removed, whég t
are present in the traditional constraint-based explamati

Benefits of the protocol-level exploration graph.The above dif-
ferences showcase the two fundamental benefits of usingdhbecpl-
level exploration graph: 1) the exploration space is sigaittly re-
duced, and 2) it becomes easy to merge paths, which in tuwsll
to further reduce the exploration space, and to generat@acim
vulnerability point reachability predicates.

The reduction in the exploration space is achieved in twosway
First, the protocol-level exploration graph does not ciorttae large
number of parsing conditions that are usually present inrte
vidual stream-level path-predicates because they hawadlbeen
removed by the constraint extractor. Thus, we avoid oveoly-c
straining the input fields, which makes the constraints nrore
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Figure 5: Building the protocol-level exploration graph for our
running example.

bust to evasion attacks (e.g., reordering fields). Secoachuse
the node’s condition is at the protocol level then each pattiné
protocol-level exploration graph represents many pathiertra-
ditional constraint-based exploration approach. For e@tarall
paths generated by changing the size of the variable-Idiggtls or
by reordering fields in a message, are summarized in theqmieto
level exploration graph, and thus do not need to be explored.
The second benefit is that having the node’s condition atritre p
tocol level allows to effectively merge paths (as explaibetbw),
even when the paths have been generated by multiple expdgit m
sages that may contain the same variable-length fields viffdr-d
ent sizes, or the same fields but in different order. For examp
when handling an HTTP request, a server could first parse ése m
sage and next check if thdost field contains a private address.
This check could be always done right after the parsing chgss

of the position of théHost field in the message, which can change.

Thus, the stream-level conditions generated for one messagld

not match a different message wherelttost field is at a different
position, but the protocol-level conditions would, thukaing to

merge the paths.

Intuition for merging execution paths. Another important char-
acteristic of our approach is that as we discover new pattised
them to the protocol-level exploration graph, we merge tee n
paths with previously discovered paths in the protocoélexplo-
ration graph as much as possible, and thus further reducexthe
ploration space. The key intuition behind merging path$ia it

is common for new paths generated by taking a different thramc
one node, to quickly merge back into the original path. Thig-h
pens because programs may fork execution at one conditiamé
processing task, and then merge back to perform another@amsk
task could be a validation check on the input data. Each ewlep
dent check may generate one or multiple new paths (e.g.ingok
for a substring in the URI generates many paths), but if thexich
is passed then the program moves on to the next task (e.gheano
validation check), which usually merges the execution liattkthe
original path. For example, when parsing a message the grogr
needs to determine if the message is valid or not. Thus, lipeit
form a series of independent validity checks to verify thieiea of
the different fields in the message. As long as checks aregass
the program still considers the message to be valid and theuex
tion will merge back into the original path. But, if a checklsa
then the program will move into a very different path, for exae
sending an error message.

Next, we present the exploration process. We illustratedifie
ferent steps using Figure 5 which represents differentssiephe
exploration process using our running example. Note thatA—

F node labels are not really part of the protocol-level esation
graph but we add them here to make it easier to refer to thesnode

4.2 The Exploration Process

Overall process.Figure 6 shows the architecture of the exploration
module. Theexploreris the core of the exploration; it maintains the
protocol-level exploration graph and directs the other ponents.

At the beginning, the explorer initializes the protocotdeexplo-
ration graph with the field constraint chain output by thestaint
extractor from the execution trace generated using thalirgk-
ploit message. This is shown in Figure 5A where the origidhp
starts at theStart node and contains the three nodes introduced
by lines 18, 21, and 25 in our running example. The sink of the
original field constraint chain is the vulnerability poirdde {/P).

The remaining exploration is an iterative process that atsap
of six steps: (1) Given the current protocol-level explanagraph,
the prioritization engine decides which node with an opegeed
to explore next; (2) For the selected node’s open edgeintg
generatorgenerates a new input that will lead the program exe-
cution to reach that node and follow the selected open e®)e; (
The new input is passed to theplay toolthat sends it to the ex-
ecution monitor; (4) The execution monitor checks whetlner t
program execution has reached the vulnerability point ariguis
an execution trace (5) The constraint extractor extracts the field
constraint chain from the execution trace; (6) The explorserts
the new field constraint chain into the current protocoklesx-
ploration graph and obtains an updated protocol-levelaagbn
graph. Then the prioritization engine selects a new oper &0m
the updated protocol-level exploration graph and the whodeess
repeats. The process repeats until all open edges have keen e
plored or a user-specified timeout expires. When the exjiora
stops, the explorer extracts the VPRP and passes it to thpdifsém
who performs different simplifications and outputs the fMBRP.

In the remaining of this section, we first provide more dstéf
steps 2 and 6, and then we explain how to prioritize which node
to explore next (step 1). Step 5 has already been explain8dadn
tion 3 and steps 3 and 4 do not require further explanatiamallyi
we explain how to extract the final VPRP.

Adding the new path to the exploration graph. To insert a new
field constraint chain into the protocol-level exploratgmaph, the
explorer starts merging from the bottom until it finds a ndukat it
cannot merge, either because it is not in the protocol-lexplo-
ration graph already, or because the predecessor in the athw p
is not the same one as in the protocol-level explorationtyrdj
check if the node is already in the protocol-level explanagraph,
the explorer checks if the node to be inserted is equivakarmé
EIP and equivalent condition) to any other node already & th
protocol-level exploration graph. We call the last nodé tzm be
merged from the bottom thiein node At that point, the explorer
starts merging from the top until it finds a node that it canmetge,
either because it is not in the protocol-level exploraticaypd or be-
cause the successor is not the same one in the new path as in the
protocol-level exploration graph. We call the last node tzm be
merged from the top theplit node Next, we add the sequence of
nodes in the new path between the join node and the split rode a
new sequence of nodes in the protocol-level exploratioptgra

For example, in Figure 5B, the prioritization engine seddbe
false branch of node A to be explored, which discovers the fol

1The execution monitor decides that the vulnerability pbis not
been reached if an answer is sent or a timeout expires befenegs
the address of the vulnerability point.
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Figure 6: Exploration module architecture. The darker color modules are given, while the lighter color components havéeen

designed and implemented in this work.

lowing new path to the VPA A D A B A C. The explorer starts
merging the new path from the bottom, first merging node @) the
merging node B. At that point it cannot merge node D becalese th
is no equivalent node in the graph. Thus, node D is the joirenod
Then, it starts merging from the top. First it merges node #in
protocol-level exploration graph with nodkin the new path using
the false branch of node A. Then, it cannot merge node D becaus
there is no equivalent node in the protocol-level exploratiraph.
Thus, node D is also the split node. Since there are no moresnod
in the new path between the split node and the join node (beth a
node D), then the explorer is done adding the path.

Generating a new input for a new branch. We define anode
reachability predicatdo be the predicate that summarizes how to
reach a specific node in the protocol-level exploration lyriipm
theStart
all the paths that allow to reach the node in the current podto
level exploration graph. Similarly, we definebeanch reachability

predicateto be the predicate that summarizes how to traverse a

specific branch (true of false) from a specific node. Inteitiva
branch reachability predicate is the conjunction of a naeha-
bility predicate with the node’s condition (if we want tovease the
true branch), or the negation of the node’s condition (teerse the
false branch). The branch reachability predicate captuoesthe
execution reaches the node and then takes the desired lingtheh
current protocol-level exploration graph.

the original exploit message. Third, it checks the messagadt
provided by the parser to identify any fields that need to luaten
given the dependencies on the modified values (such as length
checksum fields). Using all the collected field values it gates a
new input and passes it to the replay tool.

Prioritizing paths. To prioritize which path to explore next, the
prioritization engine uses a simple weight scheme, wheseethre
only two weights 0 and 1. The explorer assigns a weight of 1 to
each newly added node. Ifit finds a node such that none ofgsed
can lead to the/P node in the current protocol-level exploration
graph, then it changes the weight for that node and all itsesgors

to 0. (e.g., node E and its successor F in Figure 5C). Thetiionyli

is that if a new path does not quickly lead back to YHe node,
then the message probably failed the current check or wett an

node. Thus, the node reachability predicate summarizes different task and thus it is unlikely to reatt® later. The explorer

simply selects the next node with weight 1 where only one édge
been explored, until it exhausts that list.

After no more nodes with weight 1 have open edges, then the ex-
plorer recalculates the branch reachability predicatalfdaranches
connected to thEinreachablenode to check if they can be traversed
now. This could happen if a new path had been discovered (afte
that branch was explored) that leads into the node that isdhece
of that branch. If any of those branches can be traversedthew,
the exploration keeps iterating until no nodes with weigatd. left.
After finishing this step, the whole process is repeated witties

To compute a new input that traverses the specific open edgewith weight 0.

selected by the prioritization engine, the explorer firsnpates
the branch reachability predicate. Then, the input geaecakates
a new input that satisfies the branch reachability predicate

To compute the branch reachability predicate, the expliongtr
computes the node reachability predicate. The node redithab
predicate is essentially the weakest-precondition (W) ¢f the
source node of the open edge over the protocol-level expora
graph—Dby definition, the WP captures all paths in the prdtoco
level exploration graph that allow to reach the node. Thies eix-
plorer computes the conjunction of the WP with the node’sdcon
tion or with the negated condition depending on the selemtaach.
Such conjunction is the branch reachability predicatectvis passed
to the input generator.

For example, in Figure 5B if the prioritization engine séfec

the false branch of node D to be explored next, then the branch

reachability predicate produced by the explorer would fves D.
Similarly, in Figure 5C if the prioritization engine selsdhe false
branch of node B to be explored next, then the branch redilabi
predicate produced by the explorer would bd:v (A A D)) A B.
The input generator generates a new input that satisfiesaheto
reachability predicate using a 3-step process. First,e asdeci-
sion procedure to generate field values that satisfy thechnaach-
ability predicate. If the decision procedure returns ttwatield val-
ues allow to reach that branch, then the branch is connecttt t
specialUnreachable node. Second, it extracts the values for the
remaining fields (not constrained by the decision procedinoen

For example, in Figure 5C, after reversing the false brarfch o
node E, the explorer discovers that none of the branchesdsf Bo
lead to the VP node. At that point node E and its successor F are
assigned weight 0, while the remaining nodes have weighhis;,T
the false branch of node F is not explored until all other \weig
1 nodes have no remaining open edges, meaning that it isghe la
branch explored in Figure 5C.

Extracting the vulnerability point reachability predicat e. Once
the exploration ends, the protocol-level exploration grapntains
all the discovered paths leading to the vulnerability poifib ex-
tract the vulnerability point reachability predicate freine protocol-
level exploration graph the explorer computes the nodehadality
predicate for the VP node, which as explained above correspo
to the WP of the VP node.

For our running example, represented in Figure 5D the eetlac
vulnerability point reachability predicate i$4 v (A A D)) A C.
Note that, the disjunction approach used by Bouncer wouhgige
ate the following vulnerability point reachability predie: (A A
BAC)V(AANDABAC)V(AABAC). Such signature con-
tains 10 conditions as opposed to 4 in our signature. Clesulth
signature is inefficient and can quickly explode in size.

Simplifier. After the explorer outputs the initial VPRP, the simpli-
fier performs a simplification step to remove conditions thaty
be redundant. The simplifier checks whether a conditiorresadly
implied by any of its dominator conditions. For example, ¢badi-



tion FIELD > 5 has a single predecessor condit€lELD > 8
then the conditiorIELD > 5 is redundant because it is implied
by the predecessor. After removing such redundant conditiloe
simplifier outputs the final VPRP.

5. Implementation

In this section we provide some notable implementationideta
of our system. We have implemented the constraint extrastdr
the exploration module with 5000 lines of Ocaml code. Nex, w
present the remaining assisting components.

Execution Monitor. The execution monitor is an assisting com-
ponent based on the QEMU emulator [2]. The execution moni-
tor marks the inputs to the program as symbolic and keepk trac
of which parts of the program state become symbolic during ex
ecution. It outputs an execution trace that contains theudze
instructions that operate on symbolic data, the contenhefin-
struction’s operands when the instruction was executediftemas-
sociated symbolic information for each operand.

Function summaries. We have implemented function summaries
in the execution monitor. In particular, we define a list ofdu
tions that we are interested in (e.g., string operationshelVany
of those functions is called, the execution monitor callmespe-
cial handling code which retrieves the function’s arguragnom
the stack and checks whether they are symbolic. If any argtiime
symbolic, then all the arguments are stored, all outputbefcall
are marked with new symbols, and any instructions that epenma
symbolic data inside the function are ignored. Such pracgss-
lows us to obtain conditions that depend on the output of &fle ¢
For example our vulnerability point reachability predeahight
contain conditions such as: strstr(FIELLIRI,"/../") == 0. In ad-
dition, for each function summary we have added a small paéce
code that allows to reverse the function summary condit©uar-
rently we have support for 4 groups of string functions: camp
ison functions such as strcmp, strncmp, strcasecmp, SEQo®m;
substring functions such as strstr, strrstr; length fumstisuch as
strlen; and tokenization functions such as strtok.

Parser. Currently, we use Wireshark as our parser due to its sup-
port of a large number of protocols. We have defined our ovex tre
like field structure to which we map the field information pided

in the Wireshark API. We are also studying the use of morergéne
languages that provide a cleaner interface to the pars28]9,

6. Evaluation

In this section, we present the results of our evaluation fi&e
present the experiment setup, then the constraint extreesalts
and finally the exploration results.

Experiment setup. We evaluate our approach using 5 vulnerable
programs, summarized in Table 1. The table shows the program
the protocol used by the vulnerable program, the type ofogemt
(i.e., binary or text), and the guest operating system useart the
vulnerable program. The exploits are either from the Mdtaiisp
Framework [5] or from SecurityFocus.com [3]. The first fowr-v
nerabilities are buffer overflows affecting vulnerable HT3ervers
(GHttpd, AtpHttpd) running on Linux, and services shippgdie-
fault in Microsoft Windows (DCOM RPC, SQL server). The last
vulnerability affects the gdi32.dll library included in Wiows XP.

It is an integer overflow in the code to parse a Windows Medéa fil
(WMF), which causes an infinite loop.

6.1 Constraint Extractor results

In this section we evaluate the effectiveness of each stépein
constraint extractor, which we measure by the number of cesie
sary conditions that are removed at each step. For simplici

Program Protoco Type Guest OS
|

Win. DCOM RPC RPC Binary | Win. XP
Micros. SQL Server| Proprietary| Binary | Win. 2000
GHttpd HTTP Text | Red Hat7.3
AtpHttpd HTTP Text | Red Hat7.3
gdi32.dll WMF file | Binary | Win. XP

Table 1: Vulnerable programs used in the evaluation.

only show the results for the protocol-level path-predicattained
by the constraint extractor from the execution trace geedrhy
the original exploit. Note that, during exploration thi®pess is re-
peated once per newly generated input. The four leftmosinwas
in Table 2 summarize the results. TBeiginal column represents
the number of input-dependant conditions in the originéh gan-
straint and is used as the base for comparison. Sitn@maries
column shows the number of remaining conditions after caons
generated by the functions that have function summaries besn
removed. TheParsing column shows the number of remaining
conditions after the field condition generalizer removes plars-
ing conditions.

The results show the effectiveness of each step. Firstutie f
tion summaries are very useful with the HTTP vulnerabitiee-
moving between 60% and 83% of the original conditions. This i
because both servers use many standard string functionisledo
by the C library such astrstr  or strlen . Surprisingly, thou-
sands of conditions in the SQL Server are also removed byifumc
summaries. This happens because the exploit messagensoatai
long database name string, and the server usesttlea  func-
tion to find the end of the string, which results in a compariso
to the null terminator for each character in the string. Hasvewe
have no function summaries for the private functions in yeani-
cally link libraries (DLLs) used by Windows to parse the RP€sm
sages, thus no conditions are removed by the function sui@snar
Such equivalent conditions are mainly due to functions énatre-
peatedly called by the program and to redundant checks ltkat t
program performs.

Second, the results show that parsing conditions cors@ato
of all conditions for both HTTP vulnerabilities. These atgeedo
loop scanning for the end of line delimiters. The number o$ivay
conditions removed in the DCOM RPC example is not large,thut i
is important to remove such conditions because otherwesedbn-
strain the Context Item Array in the first message to the oaigl3
elements that it contained in the exploit message. The GBina
protocol-level path-predicate contains only four cortig, all on
fixed-length fields, thus no parsing conditions are removed.

6.2 Exploration Results

The two rightmost columns in Table 2 show the results for the
exploration phase. ThExplorationcolumn shows the number of
nodes that can reach the vulnerability point, remainingéyrotocol-
level exploration graph after the exploration has finishEhally,
theVPRPcolumn shows the final number of conditions in the VPRP
after the explorer has extracted the VPRP and the simplifisiré-
moved all redundant conditions from it.

Note that, previous work has just provided the number of con-
ditions as a measure of their approach without providinguibket
explanation about what those remaining conditions repiehee to
the large number of remaining conditions. Given the sucottse
constraint extractor at removing conditions in four of the forig-
inal protocol-level path-predicates and also to the snied sf our
conditions, we are the first to be able to show what the remgini
conditions in the protocol-level path-predicate représaffe do
that by labeling the nodes in the protocol-level explomatipaph
with the full protocol-level conditions.



Constraint Extractor (Original exploit) Exploration phase
Vulnerable Program | Original | Summaries Parsing Exploration | VPRP
Windows DCOM RPC| 732 732 662 659 423
SQL Server 2447 7 6 6 1
GHttpd 2498 420 5 3 3
AtpHttpd 6034 2430 11 19 13
GDI 4 4 4 5 5

Table 2: Summary of evaluation results. On the left the resubk for each step of the constraint extractor on the original &ploit

messages, and on the right the exploration results.

Performance summary. As a measure of the scalability of the
approach we note that the average time to complete an derafi
the exploration process varies between 20 seconds (in Heeafa
the GDI and SQL Server vulnerabilities) and 21 minutes (i th
case of the Atphttpd vulnerability). Due to space limit, wertbt
provide the full detailed time breakdowns. Also, the parfance
can be significantly improved by a more optimized implemtaoita

MS SQL server. The parser shows that there are only two fields
in the exploit message: the CMD (command) field and the DB
(database name) field. The original protocol-level patdmate
returned by the constraint extractor contains 6 conditiohon

the CMD field and the other 2 on the DB field. Thus, the initial
protocol-level exploration graph contains 6 nodes.

URI[1] 1= .

0x8049190 URI[2] 1= .

0x8049199
URI[2] 1= .
0x80491al
URI[3]

=0
0x80491al

URI[L] = .
0x80491al
strncmp
(URI_sub [1],
J3)1=0
ox804o1dl  T| i
v

The exploration explores the open edges of those 6 nodes and

finds that none of the newly generated inputs reaches thewruln

Figure 7: Part of the AtpHttpd protocol-level exploration

ability point and no new nodes are discovered. Thus, the VPRP 9raph corresponding to a stremp(URLsub[1], "..") function call

returned by the explorer contains the following 6 condision
(FIELD_CMD <= 9) ~ (FIELD_CMD != 9) ©

(2 <= FIELD_CMD <= 8) "~ (FIELD_CMD == 4) ~
(stremp(FIELD_DB, ™) = 0)
(strcasecmp(FIELD_DB, "MSSQLServer") = 0)

After the simplifier removes the redundant conditions, dwailt-
ing VPRP is
(FIELD_CMD == 4) ~
(strcemp(FIELD_DB, ™) = 0) ~
(strcasecmp(FIELD_DB, "MSSQLServer") = 0)

Note that, the vulnerability condition for this vulneratyilstates
that the length of the DB field needs to be larger than 64 bytes.
Thus, the last two conditions in the VPRP are redundant aed th
final protocol-level signature would be:

(FIELD_CMD == 4) ~
length(FIELD_DB) > 64

GHttpd. The parser shows that there are three fields in the exploit
message: the METHOD, the URI, and the VERSION. The orig-
inal protocol-level path-predicate contains 5 conditioBson the
METHOD, 1 on the URI and 1 on the whole message. Thus, the
initial protocol-level exploration graph contains 5 nodd$e ex-
ploration discovers five new paths to the vulnerability pa@ind no
new nodes. It turns out that exploring any branch of the pailgi

5 nodes always leads to the vulnerability point. Thus, th&RWPP
returned by the simplifier is empty, meaning that any inpat tan

be parsed would reach the vulnerability point. Figure 1lwsho
the optimal signature for the GHttpd vulnerability that wama-

ally extracted from the source code. It contains a disjanctif 3
cases but a close look reveals that indeed any input allowesaith

the vulnerability point. But, not every input exploits theogram.
The vulnerability condition varies depending on the paketato

the vulnerability but requires the METHOD field to be at |eb86
bytes or the URI field to be at least 160 bytes (since the mimmu
IP address string has 6 bytes). Thus, in this case we extract t
optimal VPRP.

AtpHttpd. As in the GHttpd exploit, there are three fields in the
exploit message: the METHOD, the URI, and the VERSION. The
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inlined by the compiler.

original protocol-level path-predicate contains 11 ctinds: 2 on
the METHOD field and the other 9 on the URI field. Thus, the
initial protocol-level exploration graph contains 11 nede

The exploration discovers 8 new nodes in the protocol-lexel
ploration graph The 8 newly discovered nodes correspondf+to d
ferent paths generated by the compiler inlining the folloyvtwo
function calls: stremp(URI  _sub[1], "..") , andstrcmp
(URI _sub[2], "/..") ,whereURI _sub[1] ,andURI_sub[2]
are the URI substrings starting at the second byte and tlytesb
respectively.

Figure 7 shows the relevant part of the protocol-level epgilon
graph for the first inlined call, which introduces 3 new nadese
three nodes vertically aligned on the left were introducgdhe
original protocol-level path-predicate, and the otherseadiscov-
ered by the exploration. Note that, there are two pairs oivaépnt
conditions: URI[1] = '’ andURI[2] = ' appear
twice. Those equivalent conditions in turn generate tweasfble
paths, that is, we cannot generate inputs that take the bedgeh
for the latter conditions. We have found that such equivaland
redundant) conditions often appear when the compilerésliunc-
tion calls.

The initial VPRP extracted from the protocol-level explara
graph contains 6 redundant nodes that are removed by thdi-simp
fier. The final VPRP is:

(strcasecmp(FIELD_METHOD,"get") == 0) ~

(FIELD_URI[0] == "T) ~
(FIELD_URI[1] = /) ©
(stremp(FIELD_URI_sub[1],"..") = 0) ~
(strncmp(FIELD_URI_subl[1],"../*,3) = 0) ~
(strstr(FIELD_URI_sub[1],"/../") == 0) ~
(strcemp(FIELD_URI_sub[2],"/..") 1= 0) ~

(FIELD_URI[1] != 0) ~

where we have substituted the conditions inlined by the d¢l@mp
with the equivalent function calls (lines 4 and 7 above) fead-
ability. Figure 10 shows the optimal signature for this \ashbil-
ity, which we have manually extracted from the source codmeN
that, our VPRP is almost optimal. Ignoring the last line ia tp-



MX: MaxXmitFrag

Start MR: MaxRecvFrag
VPR | AU: AuthLength
65535 F
0x77cedced MR < Start
7 s
0x77cedced i
MX <= (Flags &
MR 0x80) == 0
0x77ce4ced 0x77cc9ach
v FragLerzlgth
>=
MX <=
o) FragLength 0x77cc9a8b
Ox77cedcf7 i) =4
X77ce: >= 0x800 0x77cc9a8b
pdafd :
(MX & Oxfffg) Version
>=0x800 =0
Ox77cedatd 0x77cctasd
AL==0
0x77ce4b0a
¥
A B

Figure 8: Parts of the DCOM RPC protocol-level exploration
graph showing the newly discovered paths.
16-bit

FileType H_Header
HeaderSize Sk
Version 0x77f20829
Header FileSize H_Version
== 0x300
NumOfObjects 0x77f208b7 H_Version
== 0x100
MaxRecordSize H_FileSize 0x77f20a2b
>=12
NoParameters Ox77f23f67
Size R_Size
Function <= 8183
Record " 0X77133756
: Parameters :

Figure 9: On the left, the format of the GDI exploit file. On the
right the final GDI vulnerability point reachability predic ate.
There are 4 fields in the WMF file header that do not affect
whether the VP is reached.

timal signature that represents the vulnerability conditEndeav-
our only misses the disjunction starting wigmotdir because
we currently don’t model system calls suchséat , used to check
whether a file exists in the server.

GDI. The original protocol-level path-predicate for the GDI ex-
ploit file contained 4 conditions. Figure 9 shows on the Ig& t
field structure for the exploit file, where an invalid valuethe
Size field exploits the vulnerability. During exploration 9 new
nodes are discovered but only one new path is discoveretbtus
back to the vulnerability point. For eight of the newly diseced
nodes, none of their branches lead to the vulnerability tpdiine
right hand side of Figure 9 shows the complete VPRP returged b
the simplifier. As shown in the figure, the successful testkbe
whether the version field is 0x300 (Windows 3.0). When regert

it checks if the version field is 0x100 (Windows 1.0). Thushié
version is 0x300 or 0x100 then the vulnerability point isateed,
otherwise it is not. Note that blackbox approaches, suchasds
Gen, can only find such conditions by probing all the field galu
(2'¢ in this case), which they usually avoid to do because it is too
expensive. In ShieldGen, after a few failed tests they wtikiédy
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strcasecmp(METHOD "get) == 0 °

URI[O] =

URI[1] '- / "

strcemp(URI_sub[1], "..") = 0 ~
strncmp(URI_sub[l] /, 3) =07
strstr(URI_sub[1], "/. d ) ==10"
stremp(URI_sub[2], "/.") = 0 ~

((isnotdir(URI_sub[1]) ~

stat(URI_sub[1], ptr) < 0) ||
(isdir(URI_sub([1])

stat(URI_ sub[1]+"|ndex html", ptr) < 0)
(URI_sub[1] = - stat("lndex html", ptr) < 0

URI[1] '= 0 °
length(URI) > 679

Figure 10: Optimal signature for the Atphttpd http _send.error
exploit

(strcmp(METHOD, "GET") != 0 ©
length(METHOD) > 165) Il

(strcmp(METHOD "GET") == 0"
strstr(URI, "/..") 1= 0~
length(URI) > 170) ||

(strcmp(METHOD "GET") = -
strstr(URI, "/..") =
length(URI) + Iength(ChentAddr) > 166)

Figure 11: Optimal signature for the GHttpd Log exploit.
There is a fourth case that requires the attacker to guess cdig-
uration information from the server. We omit it for simplici ty.

decide that the value of théersion field has to be 0x300 for the
vulnerability point to be reached, which would allow theaakter to
easily avoid detection by changing the value of the field tb0@x

Windows DCOM RPC. The original protocol-level path-predicate
for the DCOM RPC exploit contains 662 conditions, while thesm
sage format contains hundreds of fields. During exploraioew
paths are discovered that lead to the vulnerability poinguie 8
shows the relevant portion of the protocol-level explanatgraph
for all the newly discovered paths.

On the left hand side, Figure 8A shows 5 vertically aligned-co
ditions that were added by the original protocol-level paitbdicate.
The top four conditions depend on taxXmitFrag (MX) or
MaxRecvFrag (MR) fields and the last one on theithLength
(AL) field. The remaining 3 nodes in Figure 8A were discovered
by the exploration. Interestingly, when extracting the \FPfiRom
the protocol-level exploration graph, the 7 nodes that depan
MX and MR can be removed since both out-edges always point
to the same successor. Thus, the whole Figure 8A simplifies to
the nodeAuthLength == 0 . Since there are no more condi-
tions on the original protocol-level path-predicate thae either
the MaxXmitFrag or MaxRecvFrag fields, that means that the
exploration allows us to confidently remove those two fietdsnf
the final VPRP.

On the right hand side, Figure 8B shows the other new patteto th
vulnerability point that was discovered. It was found by lexing
the other branch of théFlags & 0x80) == condition at
the top. The new path traverses a new node and merges back into
the original protocol-level path-predicate at a latterditan. The
reason behind this new path is that the program is checkitigeif
optional 16-byteObject header is present in the RPC message. If
it is, then the size of the message is required to be 16 bytegto
(20 rather than 4) to account for it. The final VPRP contain3 42
conditions and is too large to be shown here.



7. Conclusion

In this paper we address the main challenge remaining faesig
ture generation: increasing the coverage of vulneraHiléged sig-
natures. We have proposed protocol-level constraintegligkplo-
ration, a novel approach to automatically generate higleiame,
yet compact, vulnerability point reachability predicat@be three
salient properties of our approach are that 1) @asstraint-guided
thus much more effective than black-box probing, 2) it woaks
the protocol leve] thus the constraints are more resistant to vari-
ations in the input such as field reordering or changes inittee s
of the variable-length fields, and 3)ritergespaths, which allows
to significantly reduce the exploration space and to geeam@in-
pact vulnerability point reachability predicates. Our esmental
results demonstrate that our approach is extremely efeeagien-
erating vulnerability point reachability predicates whilgh cov-
erage (optimal or close to optimal in cases) and small sifter(o
human-readable), offering dramatic improvements ovevipos
approaches. Our work also has applicability in other apfibns
such as patch testing. The efficient exploration may alsof fre- o
dependent interest to other applications requiring théoeapon
of large program execution space such as automatic tesgease
eration. We hope our work sheds new light on directions fauri
work.
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