
SIGPATH: A Memory Graph Based Approach for
Program Data Introspection and Modification

David Urbina1, Yufei Gu1, Juan Caballero2, Zhiqiang Lin1

UT Dallas1, IMDEA Software Institute2

firstname.lastname@utdallas.edu, juan.caballero@imdea.org

Abstract. Examining and modifying data of interest in the memory of a tar-
get program is an important capability for security applications such as memory
forensics, rootkit detection, game hacking, and virtual machine introspection. In
this paper we present a novel memory graph based approach for program data
introspection and modification, which does not require source code, debugging
symbols, or any API in the target program. It takes as input a sequence of mem-
ory snapshots taken while the program executes, and produces a path signature,
which can be used in different executions of the program to efficiently locate and
traverse the in-memory data structures where the data of interest is stored. We
have implemented our approach in a tool called SIGPATH. We have applied SIG-
PATH to game hacking, building cheats for 10 popular real-time and turn-based
games, and for memory forensics, recovering from snapshots the contacts a user
has stored in four IM applications including Skype and Yahoo Messenger.
Key words: program data introspection, memory graph, game hacking

1 Introduction

Many security applications require examining, and possibly modifying, data structures
in the memory of a target program. These data structures store private, often sensi-
tive, data of interest such as running processes in an OS, unit and resource information
in online games, and credentials and contact information in Instant Messengers (IM).
Such capability is crucial for memory forensics [1–4], rootkit detection [5–7], game
hacking [8], reverse engineering [9–11], and virtual machine introspection (VMI) [12].

We call the process of examining in-memory data structures of a target program
from an external introspector program data introspection (PDI). The introspector can
run concurrently with the target on the same OS, e.g., a user-level debugger or a kernel
module, or out-of-VM for improved isolation and higher privilege. The introspection
can be done online as the program runs or offline on a snapshot of the target’s memory.

The main challenges in PDI are how to efficiently locate the in-memory data struc-
tures storing the data of interest and how to traverse them to examine their data. Prior
memory analysis works reuse the target’s binary code or APIs to dump the data of
interest (e.g., the UNIX ps command to list processes) [13, 14], or leverage the tar-
get’s source code and debugging symbols [5, 15, 16]. However, most application-level
programs do not expose external APIs to examine the data of interest and commercial
off-the-self (COTS) programs rarely have source code or debugging symbols available.

In this paper we propose a novel memory-based approach for program data intro-
spection and modification that does not require source code or debugging symbols for

the target program, or the target to expose any APIs. Our lightweight approach takes as
input memory snapshots taken while the program runs and generates path signatures
that capture how to efficiently retrieve the data of interest in memory by traversing
pointers starting from the program’s global variables.

Prior techniques that reverse-engineer data structures from binary programs through
static (TIE [10]) or dynamic (REWARDS [9] and Howard [11]) analysis have three lim-
itations for PDI. First, even if they recover the data structures related to the data of
interest they do not address how to locate those data structures in memory. Second,
they aim to recover all data structures used by a program, thus requiring very high cov-
erage of the application’s code, even when only a few data structures may be related to
the data of interest. Third, they do not address recursive data structures (e.g., lists, trees)
where much data of interest is stored.

More similar to our approach are techniques that compare memory snapshots such
as LAIKA [17] and KARTOGRAPH [8]. However, these techniques have two limitations.
First, they do not allow to reuse their results, i.e., every time the program executes they
need to redo their expensive analysis. In contrast, our path signatures are created once
and can then be used in many program executions. Second, they compare memory snap-
shots at the page level, including large chunks of dead memory. In contrast, we propose
a novel technique to build a memory graph from a memory snapshot, structuring the live
memory of a process. To the best of our knowledge ours is the first technique that can
build an accurate memory graph without tracking the execution of the target program
from its start and without source code or symbols, simply by using introspection on a
memory snapshot. The memory graph is at the core of two techniques used to locate the
data of interest in memory: structural memory diffing, which compares memory snap-
shots based on their underlying graph structure; and fuzzing, which modifies memory
and observes its effects.

We have implemented our memory graph based approach to PDI into SIGPATH, a
tool that creates path signatures to efficiently locate and traverse the (potentially recur-
sive) data structures storing the data of interest. SIGPATH also provides an introspection
component that takes as input a path signature and can examine and modify the data of
interest while the program runs (and also from a memory snapshot). We have applied
SIGPATH to two important security applications: game hacking and memory forensics.

Game hacking. The goal of game hacking is modifying the in-memory data structures
of a game to cheat it into providing the player with an advantage, e.g., an immortal unit.
SIGPATH’s path signatures can be used to efficiently examine the game’s data structures
as it executes to locate the resource targeted by the cheat. Once located, it can modify
its value. Our cheats need to be constructed only once and can then be used every time
the game is played without further analysis. We have evaluated SIGPATH on 10 popular
RTS and turn-based games, building a variety of cheats for them.

Memory forensics. The path signatures produced by SIGPATH can be used to retrieve
private data from a memory snapshot of a suspect’s computer. We apply SIGPATH to
recover the list of contacts from a variety of IM applications a suspect may have been
running when the snapshot was taken. Such a snapshot can be obtained by connecting
an external memory capture device to the Firewire interface of the suspect’s laptop if
left unattended, even if the laptop screen was locked. We have successfully applied

2

SIGPATH to recover the user contacts from 4 popular IM applications including Skype
and Yahoo Messenger.
In short, this paper makes the following contributions:

– We propose a novel technique to build a memory graph exclusively from a memory
snapshot by introspecting the OS data structures. The memory graph is the foun-
dation of structural memory diffing and fuzzing, two techniques for identifying the
location of the data of interest in memory.

– We develop a novel memory-based path signature generation technique, which does
not require source code, debugging symbols, or API information from the target
program. The produced path signatures capture how to find a data structure in mem-
ory and how to traverse it (even if recursive) to examine its data.

– We implement SIGPATH, a tool that generates path signatures from memory snap-
shots and uses them to introspect live programs or snapshots. We evaluate SIGPATH
for game hacking and memory forensics.

2 Overview & Problem Definition

SIGPATH generates path signatures that capture how to reach the data of interest by
traversing pointers from the program’s global variables. Our path signatures have 3
important properties: they have high coverage, are stable, and efficient.

First, despite their name, our path signatures capture multiple paths in memory. This
is fundamental because the data of interest may be stored in an array or in a recursive
data structure, e.g., a list or a tree. Here, the introspection needs to examine all instances
of the data of interest in those data structures, e.g., all entries in a list. Second, our path
signatures are stable. They are created once per program and can then be applied to any
execution of that program, i.e., the paths they capture occur across executions. Third,
our path signatures are efficient; they can quickly locate the data of interest by traversing
a few pointers. They do not need to scan the (potentially huge) address space of the
application. This makes them suitable for online introspection while the target program
runs, when efficiency is key, as the program may frequently modify the introspected
data structures. Of course, they can also be used offline on a snapshot of memory taken
while the program was running.

typedef struct _contacts { typedef struct _node {
unsigned int num_groups; struct _node *next;
node_t **groups; char *email;

} contacts_t; } node_t;
contacts_t *mycontacts;

Fig. 1: Data structures used by our example IM
application to store the user contacts.

Running example. To demon-
strate our techniques through-
out the paper we use a simpli-
fied instant messaging applica-
tion (im.exe) that stores the
contacts of the user in the data
structures shown in Figure 1.
The application allows the user to store contacts in 16 groups (groups array in
contacts t). For each group array entry there is a linked list (node t) that stores
the email addresses of the users in the group. The application accesses the contact in-
formation from the mycontacts global variable. The data of interest are the email
addresses of the user’s contacts.

3

im.exe
[48624]

0x342a00
[8]3460

0x342c0c
[64]

0x342f08
[8]

4 0

alex@test.com
DOI

0
0x342f18

[8]
bryan@test.com

DOI

4

0x345700
[128]

1312

0x34688c
[32]

0x3487a0
[8]

24 12

0x344d00
[8]

4

charles@tes.com
DOI

4

4

im.exe
[48624]

0x342a00
[8]3460

0x342c0c
[64]

0x342f08
[8]

4 0

alex@test.com
DOI

0
0x342f18

[8]
bryan@test.com

DOI

4

0x344e04
[8]

david@test.com
DOI

4

0

0x345700
[128]

1312

0x34688c
[32]

0x3487a0
[8]

24 12
0

0x344d00
[8]

4

charles@test.com
DOI

4

4

0x34a780
[20]4

S4

S5

Graph View Snapshot View

Fig. 2: On the left, simplified memory graph for two consecutive snapshots with the
memory diffing results highlighted. On the right, the same memory at the page level.

2.1 The Memory Graph

The memory of a process has an inherent graph structure, which can be represented as a
memory graph. A memory graph is a directed labeled graph G = (V,E), where nodes
(V) correspond to contiguous regions of live memory, often called buffers or objects.
Nodes can represent modules loaded by the application or live heap allocations. Edges
(E) represent pointers and capture the points-to relationships between live buffers when
the snapshot was taken. The left side of Figure 2 shows the memory graphs for two snap-
shots in our running example. The path at the top of both memory graphs corresponds
to data structures not shown in Figure 1.

A crucial characteristic of our approach is that it operates on a memory graph, which
structures the otherwise chaotic memory of a process. The memory graph has 3 funda-
mental advantages over the page level representation of memory offered by a snapshot:
(1) it captures only live memory; (2) it enables analyzing subgraphs of interest, e.g.,
only the memory reachable from the main module of the application; and (3) it captures
structural locality, e.g., that two nodes belong to the same recursive data structure.

A snapshot of the memory of a process often comprises hundreds of MBs, of which
large parts correspond to noise. This noise has two main components: dead memory
and live memory largely independent of the application. Dead memory is very common
in the heap. For example, LAIKA notes that only 45% of the heap is occupied by live
objects, the rest being dead allocations and reserved memory not yet allocated [17]. The
memory graph removes the noise introduced by dead memory. Furthermore, much live
memory corresponds to external libraries, e.g., OS and graphics libraries, and the heap
allocations used to store their internal data. The application requires these external li-
braries and their data to function but is largely independent of them. The memory graph
enables further eliminating noise by removing memory only reachable by independent
external libraries. The reduction in noise achieved by the memory graph is fundamental
for finding the data of interest (i.e., a needle) in memory (i.e., the haystack). Our exper-

4

imental results show that using the memory graph reduces the size of the memory of a
process that needs to be analyzed by up to 73%.

In addition, the graph representation captures structural locality, i.e., nodes in the
same data structure appear close, even if they have distant starting addresses. Structural
locality enables identifying recursive data structures such as lists or trees. This is fun-
damental because the data of interest is often stored in recursive data structures, which
need to be traversed to extract all data of interest instances (e.g., all users in a contact
list). As illustrated in Figure 2, at the page level representation it is very difficult to
identify recursive data structures, thus missing the multiple instances of data of interest
they may store.

Clearly, the memory graph is a very effective representation of the memory of a
process, but to the best of our knowledge there is currently no solution on how to build
an accurate memory graph from a memory snapshot. The main challenge when building
the memory graph is to identify where the nodes are located, i.e., their start address and
size. Prior works that operate on memory snapshots such as LAIKA [17] and KARTO-
GRAPH [8] do not offer a solution for this. In this work we propose a novel approach
to build the memory graph that applies introspection on OS data structures to extract
fine-grained information about the location and size of the loaded modules and the live
heap allocations. We describe this process in §3.2.

2.2 Path Signatures

A path signature is a directed labeled graph S = (VS , ES). Nodes correspond to
memory buffers and can be of two types: root and normal (VS = Vroot ∪ Vnor).
Edges correspond to pointers and can be of three types: normal, recursive, and array
(ES = Enor ∪ Erec ∪ Earr). A path signature has a single root node corresponding to
the module (i.e., executable or DLL), where the path starts. A normal node represents a
buffer in memory and is labeled with its size in bytes. Figure 3 shows the path signature
for our running example where the root is the im.exe module and the Normal node
corresponds to an instance of contacts t.

A normal pointer corresponds to a concrete pointer in the path to the data of inter-
est. It is a tuple (src, dst, o) where src, dst ∈ VS are the source and destination nodes
(src 6= dst), and o is the offset in the src node where the pointer is stored. In Fig-
ure 3 there are 3 normal pointers (with offsets 3460,4,4) and the one with offset 3460
corresponds to the mycontacts global variable.

Fig. 3: Path signature for running example.

A recursive pointer is an abstrac-
tion representing that the path to the
data of interest traverses a recursive data
structure. During introspection SIGPATH
needs to extract all instances of the data
of interest in the recursive data structure,
so the recursive pointer needs to be un-
rolled multiple times. In our running example, traversing the next pointer of the linked
list once leads to one email, traversing it twice to a different email, and so on. A recur-
sive pointer is a tuple (src, dst, o, cond) where src, dst, o are the same as in a normal
pointer and cond is a boolean condition that captures when the end of the recursion

5

has been reached, e.g., when the recursive pointer is null. We call the source node of a
recursive pointer, a recursive node. In Figure 3 the Recursive node corresponds to
an instance of node t and its recursive pointer to next.

An array pointer is an abstraction representing that the path to the data of inter-
est traverses an array of pointers (or an array of a data type that contains a pointer).
Again, the introspection needs to extract all instances of the data of interest reachable
from the array, so all pointers in the array need to be traversed. An array pointer is a
tuple (src, dst, o, step, size). Iterating from o in step increments until size returns all
offsets of the src node where a pointer to be traversed is stored. If o is zero and size
corresponds to the size of src we omit them and call src an array node. In Figure 3 the
Array node corresponds to the groups pointer array.

A path signature comprises two parts: the prefix and the suffix. The prefix is the
initial part of the path signature before any recursive or array pointer. It captures a
single path in memory leading from the root to the entry point of the data structure that
stores all instances of the data of interest (an array of lists in our example). The suffix
captures multiple paths inside that data structure that need to be traversed to examine
all instances of the data of interest. The presence of recursive and array pointers is what
makes the suffix capture multiple paths. Signatures that have no suffix indicate that the
program stores a single instance of the data of interest.

2.3 Approach Overview

Using SIGPATH comprises three phases: preparation, signature generation, and intro-
spection. The offline preparation and signature generation phases run once to produce
a stable path signature to the data of interest. The introspection phase can run many
times applying the path signature to examine, and possibly modify, the data of interest
in different executions of the application. In some scenarios, preparation and signature
generation could be run by one entity and introspection by another, e.g., when a com-
pany sells game cheats to end-users who apply them. Next, we introduce each phase.
Preparation. The first step in our approach is to gather a sequence of memory snapshots
during the execution of the application (§3.1). All snapshots come from the same execu-
tion and between two consecutive snapshots an analyst takes an application-specific ac-
tion related to the data of interest. For example, in our IM application the analyst inserts
new contacts, taking a snapshot after each insertion. Next, SIGPATH builds a memory
graph for each snapshot, which structures the application’s live memory when the snap-
shot was taken (§3.2). Then, SIGPATH labels which nodes in each graph store the data of
interest (§3.3). To identify the data of interest it uses a combination of three techniques:
memory diffing, value scanning, and fuzzing. Memory diffing compares consecutive
snapshots guided by their graph structure to identify their differences; value scanning
searches for values of the data of interest using different encodings; and fuzzing mod-
ifies values in memory while monitoring the modification’s effect. Preparation is the
only phase where an analyst is involved, specifically for collecting the snapshots and
during fuzzing (needed for only 12% of programs).
Path signature generation. The annotated memory graphs and the snapshots are passed
to the automatic path signature generation process (§4). For each memory graph it first

6

extracts all simple paths leading to the data of interest. Then, it identifies recursive
pointers in each path and path prefixes that appear in all snapshots. Next, it locates ar-
rays in those paths. Finally, it generalizes the paths by removing absolute addresses,
and outputs stable path signatures.
Introspection. The generated path signatures can be used for examining and mod-
ifying the data of interest in different executions (or snapshots) of the application.
To apply the signature, SIGPATH first identifies the base address of the root mod-
ule and then traverses the signature pointers, unrolling recursive and array pointers as
needed. For online introspection (and fuzzing) we have implemented two instrospec-
tors: a user-level one that reads and modifies the target application’s memory using the
ReadProcessMemory and WriteProcessMemory functions, and a customized
KVM monitor that introspects an application running in a VM (used for applications
that check if they are monitored). For modifying the data of interest, if the data encoding
is known (e.g., found through value scanning) SIGPATH can modify the data of interest
to an arbitrary value. Otherwise, it can modify it to a previously observed value or fuzz
it with arbitrary values until the desired effect is observed.

3 Preparation

3.1 Collecting the Snapshots

The first step in our approach is to take a number of memory snapshots while running
the application. A snapshot is a dump of the content of all physical memory pages
that are part of the application’s address space at the time the snapshot is taken, the
base virtual address of those pages, and additional metadata. SIGPATH supports two
types of snapshots: Minidumps [18] produced by Microsoft’s off-the-shelf tools running
in parallel with the target on the same OS (e.g., WindDbg, Visual Studio, Windows
Task Manager), and out-of-VM snapshots produced by the TEMU emulator [19]. The
snapshots are collected at different times during the same execution. An analyst takes a
snapshot before and after an action. There are positive and negative actions.

– A positive action forces the application to operate on the data of interest, leaking
some information about its location in memory. For example, in our running IM ex-
ample the analyst inserts a series of new contacts through the GUI taking a snapshot
after each insertion. Each insertion forces the application to add the contact into its
internal data structures. In a game hacking scenario where the goal is to create a
unit that cannot be killed, the analyst orders one of her units to attack another of
her units, forcing the game to reduce the life of the second unit.

– A negative action makes the program not to operate on the data of interest. The
simplest negative action is to let time pass without doing anything, which helps
identifying memory areas that change value independently of the data of interest.

The analyst selects one positive and one negative action for each application. It pro-
duces a sequence with an initial snapshot followed by a number of positive and negative
snapshots (taken after the positive and the negative action, respectively). Obtaining both
positive and negative snapshots is fundamental to structural memory diffing, detailed in

7

§3.3. When possible, the analyst also annotates the snapshots with the value of the data
of interest being inserted or modified, e.g., the contact’s email address or the unit’s life.
In some cases, value annotations cannot be added, e.g., when the game displays a unit’s
life using a bar rather than a value.

In our running example, the analyst inserts the email addresses of two contacts
tagging each as group 1 and then another two tagged as group 2. It produces a sequence
of 6 snapshots: one before any insertion, a positive snapshot after each insertion, and a
negative snapshot a few seconds later without taking any action.

3.2 Building the Memory Graph

Algorithm 1: Memory Graph Creation
Input: A Memory Snapshot S
Output: A Memory Graph G

1 H ← IntrospectHeap(S);
2 M ← IntrospectModules(S);
3 X ← IntrospectStack(S);
4 V ← H ∪M ∪X;
5 G← (V, ∅);
6 for each v ∈ V do
7 b← ReadNodeBlock(S, v);
8 P ← FindPointers(V, b);
9 for each p ∈ P do

10 G.AddEdge(p);

11 return G;

atop the Heap Manager, (3) it does not help identify the stacks and track their size,
(4) the targeted program may contain protections against tracing (e.g., games check
for debuggers and Skype rejects PIN-based tracing). These problems are behind our
lightweight memory introspection approach.

The introspected data structures are OS-specific and we focus on the Windows plat-
form because that is where most proprietary programs run. In particular SIGPATH sup-
ports both Windows 7 and Windows XP. The data structures containing the module,
stack, and heap information are all stored in user-level memory and can be accessed
following paths that start at the Process Environment Block (PEB), whose address is
included in the memory snapshots.

The live heap allocations can be recovered from the Windows heap management
data structures. In Windows, heaps are segments of pages controlled by the Heap Man-
ager from which the application can allocate and release chunks using OS-provided
functions. Each process has a default heap provided by the OS and can create additional
heaps. Standard C/C++ functions such as malloc or new allocate memory from the
CRT heap. As far as we know, no prior tool extracts the individual heap allocations of
a process, so we have manually built a path signature (Figure 4, top) to introspect the
Heap Manager’s data structures (based on the information on the ntdll.dll PDB
file and external sources, e.g., [21]). SIGPATH uses this signature to automatically re-
cover the live heap allocations from a memory snapshot. The signature captures that
a process has an array of heaps (HEAP), each containing a linked list of segments
(HEAP SEGMENT) where each segment points to a list of the individual heap entries
(HEAP ENTRY). Each heap entry contains the start address and size of a live heap
buffer. For each heap entry SIGPATH adds a node to the memory graph.

In contrast with the heap allocations there are off-the-shelf tools that can extract the
loaded modules [22, 23] but we have also built our own path signature (Figure 4, bot-
tom). The loaded modules can be recovered from the loader information in PEB LDR DATA,
which points to three lists with the loaded modules in different orderings (InLoadOrder,
InMemoryOrder, and InInitializationOrder). Each list entry contains among others the
module name, load address, and total module size. Note that for each loaded module
there is a single node in the memory graph, representing the module’s code and data. We
could alternatively build a separate node for each module region (e.g., .data) by parsing
the PE header in memory. However, this is not needed as offsets from the module base
are stable.

8

For each memory snapshot SIGPATH builds
a memory graph G = (V,E) using Algo-
rithm 1. A node v ∈ V corresponds to a live
memory buffer and has three attributes: type,
start address, and size. A node can be of 2
types: a module loaded into the application’s
address space (main executable or DLL) and
a live heap buffer. An edge p ∈ E is a tu-
ple (src, dst, osrc, odst), where src, dst ∈ V
are the source and destination nodes, osrc is
the offset in the src node where the pointer
is stored, and odst is the offset into dst where
the pointer points-to. For pointers to the head
of the destination node we omit odst.
Nodes. SIGPATH extracts the node information using introspection on the OS data
structures present in the memory snapshot. Introspection is very efficient, recovering
all live objects (including their size) at once from the snapshot. The alternative would
be to hook the heap allocation/deallocation and module load/unload functions during
program execution, tracking the size and lifetime of those objects. We have used this
approach in the past and found it problematic due to: (1) being expensive and cum-
bersome as it has to track execution from the start (including process creation and ini-
tialization), (2) need to identify and track hundreds of Windows allocation functions
built atop the Heap Manager, (3) the targeted program may contain protections against
tracing (e.g., games check for debuggers and Skype rejects PIN-based tracing). These
problems justify our lightweight memory introspection approach.

The introspected data structures are OS-specific and we focus on the Windows plat-
form because that is where most proprietary programs run. SIGPATH supports both
Windows 7 and Windows XP. The data structures containing the module and heap in-
formation are stored in user-level memory and can be accessed following paths starting
at the Process Environment Block (PEB), whose address is included in the snapshots.

The live heap allocations can be recovered from the Windows heap management
data structures. In Windows, heaps are segments of pages controlled by the Heap Man-
ager from which the application can allocate and release chunks using OS-provided
functions. Each process has a default heap provided by the OS and can create additional

8

heaps. Standard C/C++ functions such as malloc or new allocate memory from the
CRT heap. As far as we know, no prior tool extracts the individual heap allocations
of a process, so we have manually built a path signature (Fig. 4, top) to introspect the
Heap Manager’s data structures (based on the information on the ntdll.dll PDB
file and external sources, e.g., [20]). SIGPATH uses this signature to automatically re-
cover the live heap allocations from a memory snapshot. The signature captures that
a process has an array of heaps (HEAP), each containing a linked list of segments
(HEAP SEGMENT) where each segment points to a list of the individual heap entries
(HEAP ENTRY). Each heap entry contains the start address and size of a live heap
buffer. For each heap entry SIGPATH adds a node to the memory graph.

In contrast with the heap allocations there are off-the-shelf tools that can extract the
loaded modules [21,22] but we have also built our own path signature (Fig. 4, bottom).
The loaded modules can be recovered from the loader information in PEB LDR DATA,
which points to three lists with the loaded modules in different orderings (InLoadOrder,
InMemoryOrder, and InInitializationOrder). Each list entry contains, among others, the
module name, load address, and total module size. Note that for each loaded module
there is a single node in the memory graph, representing the module’s code and data.
We could alternatively build a separate node for each module region (e.g., .data, .text)
by parsing the PE header in memory. However, this is not needed as offsets from the
module base are stable.

_PEB
[580]

Array
[64]

_HEAP
[312]

144 4x _HEAP_SEGMENT
[46]

16

16

_HEAP_ENTRY
[8]

36

_PEB
[580]

_PEB_LDR_DATA
[48]

_LDR_DATA_TABLE_ENTRY
[120]

0

1212

Fig. 4: Path signatures for examining the heaps and
loaded modules of a process in Windows 7.

Pointers. To extract the
pointers SIGPATH scans the
ranges in the snapshot that
correspond to live buffers.
Each consecutive four bytes
(8 for 64-bit) in a live buffer
that forms an address point-
ing inside the range of a live
buffer is considered a candi-
date pointer. This pointer detection technique is similar to the mark phase of a garbage
collector and was also used by LAIKA. It can find spurious pointers (e.g., 1% of integers
and 3% of strings point to the heap [17]). However, the advantage of using the memory
graph is that only live memory is considered, so the probability of spurious pointers is
significantly smaller. In addition, as will be shown in §4, the probability of an spurious
pointer ending up in a path signature is negligible because a spurious pointer would
have to appear at the same address in all snapshots and in the path to the data of interest
to end up in a signature.

Reducing the graph size. Full memory graphs can contain hundreds of thousands of
nodes. To reduce their size, SIGPATH includes only loaded modules shipped with the
application, i.e., it excludes any libraries that are shipped with the OS. In addition, it re-
moves any nodes not reachable from the remaining modules, e.g., those only reachable
from the OS libraries. Again, as stated earlier, the memory graph we constructed can
contain on average 27% of the memory in the corresponding snapshot.

9

3.3 Finding the Data of Interest

SIGPATH needs to identify which nodes store instances of the data of interest to extract
paths leading to them. For this, it uses a combination of three techniques: structural
memory diffing, value scanning, and fuzzing. The first two are new evolutions of previ-
ously proposed techniques for identifying data of interest in games, and our fuzzing is
inspired by vulnerability discovery techniques.

In particular, structural memory diffing significantly evolves the snapshot diffing
technique in KARTOGRAPH [8] and value scanning is used among others by the CHEAT-
ENGINE [23]. Our structural memory diffing and value scanning techniques differ in
that they operate on the memory graph rather than on the unstructured raw memory,
which makes them substantially more accurate. For example, compared with the page
level diffing in KARTOGRAPH [8], structural memory diffing greatly reduces the mem-
ory to diff as illustrated in Fig. 2, where the page level view (right) contains many more
changes due to dead and unrelated memory. Our evaluation (§5) shows an average mem-
ory reduction of 82% on the memory graph after the application of structural memory
diffing. In addition, structural memory diffing enables comparing the structure of the
changes, which is fundamental to identify changes in the same recursive data structure.
Structural memory diffing. Given a sequence of memory graphs G1, . . . , Gn and the
corresponding snapshots S1, . . . , Sn structural memory diffing compares each pair of
consecutive memory graphs Gi, Gi+1 extracting 3 sets: the nodes added into Gi+1 and
not present in Gi (Ai,i+1), the nodes removed from Gi and not present in Gi+1 (Ri,i+1),
and the modified nodes present in both (Mi,i+1). Fig. 2 highlights the nodes in these 3
sets after diffing the two memory graphs.

To obtain the set of changes across all snapshots, structural memory diffing com-
putes the intersection of the sets of nodes (and byte ranges in them) modified across
pairs of positive snapshots and then substracts the modifications in the negative snap-
shots (as they are unrelated to the data of interest):

M =

p−1⋂
i=1

M
P
i,i+1 \

n−1⋃
i=1

M
N
i,i+1

where MP
i,i+1 and MN

i,i+1 represent the nodes modified between snapshot i and positive
or negative snapshot i+ 1, respectively.

It also computes the union of all sets of nodes added across pairs of positive snap-
shots minus the removed ones, and then substracts the set of nodes removed in the
negative snapshots:

A =

p−1⋃
i=1

A
P
i,i+1 \

p−1⋃
i=1

R
P
i,i+1 \

n−1⋃
i=1

R
N
i,i+1

where AP
i,i+1 represents the set of nodes added between snapshot i and positive snap-

shot i+ 1, and RP
i,i+1 and RN

i,i+1 represent the set of nodes removed between snapshot
i and positive or negative snapshot i+1, respectively. These two sets (M,A) are passed
to the next technique as candidate locations storing data of interest.
Value scanning. If the snapshots have a value annotation, SIGPATH linearly scans
the buffers output by memory diffing for the annotated value using common encod-
ings. In our running example the first 4 snapshots are annotated respectively with:

10

alex@test.com, bryan@test.com, charles@test.com, and david@test.com. SIGPATH scans
for the ASCII and Unicode versions of those email addresses. Similarly, for a unit’s life
it uses encodings such as short, integer, long, float, and double.

Note that we only use value scanning during preparation, as scanning memory at
introspection while the program runs is too slow and precisely one of the reasons to
generate path signatures. Also, value scanning is applied after structural memory diffing
has significantly reduced the number of candidates. This is important because some
values may not be discriminating enough and would match many locations otherwise.
Value scanning is a simple yet surprisingly effective technique, and if it finds a value it
also identifies its encoding. However, it does not work when the value is very common
(e.g., zero); when the data uses non-standard encoding; is obfuscated or encrypted; or
when the value to search is unknown.
Fuzzing. If multiple candidate nodes are still left the analyst uses fuzzing. In fuzzing,
the analyst modifies the value of memory locations and monitors the effect of the modi-
fication. If the modification produces a visually observable result such as modifying the
unit’s life or changing the name of a contact on the screen, then the node stores the data
of interest. Fuzzing is an online technique, similar to the process of modifying the data
of interest in game hacking.

4 Path Signature Generation

Algorithm 2: Path Signature Generation
Input: A sequence of pairs 〈Si, Gi〉, and the data of interest d
Output: A set of stable path signatures SIGS for d

1 SIGS ← ∅;
2 NSP ← ∅;
3 for each Gi ∈ 〈Si, Gi〉 do
4 SPi ← ExtractSimplePaths(Gi, d);
5 NSP ← NSP ∪ FindRecursivePointers(SPi);

6 CP ← FindSetsOfPathsWithCommonPrefix(NSP);
7 for each pathSet ∈ CP do
8 C ← ChunkPaths(pathSet);
9 if EquivalentChunks(C) then

10 A← FindArrays(C);
11 sig ←MergeChunks(C,A);
12 SIGS ← SIGS ∪ sig;

13 SIGS ← GeneralizePathSignatures(SIGS);
14 return SIGS;

4 Path Signature Generation

The input to the signature generation is a sequence of pairs 〈Si, Gi〉 where Gi is the
memory graph for snapshot Si, annotated with the nodes storing the data of interest. The
output is a set of stable path signatures. Algorithm 2 describes the signature generation.
For each memory graph Gi, SIGPATH first extracts the set of simple paths rooted at one
of the loaded modules and leading to any of the nodes labeled as data of interest (line
4). Simple paths do not contain repeating vertices (i.e., no loops) and for each data of
interest node SIGPATH may extract multiple simple paths, possibly rooted at different
nodes. Figure 5 shows the 5 paths extracted from the 4 positive snapshots (S2–S5) in
our running example.

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x342f08
[8]

4 0
alex@test.com

DOI

4

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x342f18
[8]

4 0
bryan@test.com

DOI

40x342f08
[8]

0

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x344e04
[8]

4 4
david@test.com

DOI

40x344d00
[8]

0

im.exe
[48624]

0x345700
[128]

1312 0x34688c
[32]

0x3487a0
[8]

24 12
alex@test.com

DOI

0

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x344d00
[8]

4 4
charles@test.com

DOI

4

S3

S4

S5

S2

S5

Fig. 5: Paths extracted from 4 snapshots from
running example.

Next, SIGPATH searches for re-
cursive pointers in each of the paths
(line 5). A recursive pointer is a
pointer that points-to a node of the
same type as the node holding the
pointer. If a path contains two con-
secutive nodes of the same type, then
the pointer linking them is recursive.
As we do not know the type of each
node, we approximate it using its
size and internal structure. In par-
ticular, for each pair of consecutive
nodes of the same size, we compare
the offsets of all the pointers stored
in each node, including those not in
the path and taking special care of
null pointers, as well as the offset of any ASCII or Unicode string they may store.
If the offsets are identical, we consider the nodes to be of the same type and mark the
pointer linking them as recursive.

11

The input to the signature
generation is a sequence of
pairs 〈Si, Gi〉 where Gi is
the memory graph for snap-
shot Si, annotated with the
nodes storing the data of in-
terest. The output is a set of
stable path signatures. Al-
gorithm 2 describes the sig-
nature generation. For each
memory graph Gi, SIG-
PATH first extracts the set of
simple paths rooted at one
of the loaded modules and
leading to any of the nodes
labeled as data of interest (line 4). Simple paths do not contain repeating vertices (i.e.,
no loops) and for each data of interest node SIGPATH may extract multiple simple paths,
possibly rooted at different nodes. Fig. 5 shows the 5 paths extracted from the 4 positive
snapshots (S2–S5) in our running example.

Next, SIGPATH searches for recursive pointers in each of the paths (line 5). A re-
cursive pointer is a pointer that points-to a node of the same type as the node holding
the pointer. If a path contains two consecutive nodes of the same type, then the pointer
linking them is recursive. As we do not know the type of each node, we approximate it
using its size and internal structure. In particular, for each pair of consecutive nodes of

11

the same size, we compare the offsets of all the pointers stored in each node, including
those not in the path and taking special care of null pointers, as well as the offset of
any ASCII or Unicode string they may store. If the offsets are identical, we consider the
nodes to be of the same type and mark the pointer linking them as recursive.

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x342f08
[8]

4 0
alex@test.com

DOI

4

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x342f18
[8]

4 0
bryan@test.com

DOI

40x342f08
[8]

0

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x344e04
[8]

4 4
david@test.com

DOI

40x344d00
[8]

0

im.exe
[48624]

0x345700
[128]

1312 0x34688c
[32]

0x3487a0
[8]

24 12
alex@test.com

DOI

0

im.exe
[48624]

0x342a00
[8]

3460 0x342c0c
[64]

0x344d00
[8]

4 4
charles@test.com

DOI

4

S3

S4

S5

S2

S5

Fig. 5: Paths from 4 snapshots of running example.

Then, SIGPATH searches
for stable prefixes, which
are path prefixes that
appear in at least one
path from each mem-
ory graph (line 6). Such
prefixes capture struc-
tural proximity, i.e., data
in the same data struc-
ture. To identify stable
prefixes SIGPATH com-
pares the paths node by

node, considering two nodes from different paths equivalent if the source offset of the
pointer leading to them, their address, and their size are identical. Shared prefixes stop
at recursive pointers. Once the stable prefixes are identified, any paths that do not con-
tain a stable prefix are removed as they cannot lead to a stable path signature. If no
stable prefix is found, the process stops. However, this situation is unlikely and does
not happen in our experiments. Fig. 6 shows the paths in our running example after
identifying recursive pointers and stable prefixes.

Fig. 6: Recursive pointers and stable prefix in paths
from running example.

Stable prefixes that reach
the data of interest corre-
spond already to stable path
signatures and can proceed
to generalization. For the
remaining paths, SIGPATH
splits them into chunks (line
8), ending a chunk at a re-
cursive node (dashed verti-
cal lines in Fig. 6). Then, it
compares the shape of each
chunk across the paths. If
the nodes in the chunk have the same address, are data of interest nodes, or have the
same size and internal structure, they are considered equivalent. In Fig. 6 all four nodes
in chunks 1 and 2 are equivalent. If the chunks are not equivalent, the shared prefix
cannot generate a stable signature, so the paths containing them are removed (line 9).

For each chunk where the nodes are equivalent, SIGPATH looks for arrays (line 10).
If the offset of the pointers leading to the chunk are different across snapshots there may
be an array that is being exited through different array elements. This is the case with the
last node in the shared prefix in Fig. 6, which leads to chunk 1 through offset 0 and 4 in
different snapshots. Here, SIGPATH computes the greatest common denominator (gcd)
of the offsets of the pointers leading to the chunk. If the gcd is larger or equal to the

12

word size, the node is flagged as an array with step = gcd. The array size is determined
by the largest offset leading to the chunk plus the step, accounting for NULL entries
and being limited by the heap object size.

At this point, only stable paths that reach the data of interest in each of the snapshots
remain and their chunks and arrays can be combined into a path signature (line 11).
Finally, the path signatures are generalized by removing the nodes’ memory addresses,
since the same node on different executions will have different addresses (line 13).
Fig. 3 shows the resulting stable path signature for our running example.

5 Evaluation

We have implemented the memory graph construction, finding the data of interest, and
path signature generation components of SIGPATH using 3,400 lines of Python code
(excluding external libraries). In addition, the user-level introspector comprises 1,500
lines of C++ and the KVM introspector with another 1,800 lines of C. In this section
we present our evaluation results.

Table 1: Applications used in our evaluation.

Type Application Version Data of Interest

IM

Yahoo Msg 11.5 Email
Skype 6.6.0.106 Contact ID
Pidgin 2.10.7 Email
Miranda 0.10 Contact ID

RTS

SimCity 4 – Money
StarCraft 1.15 Mineral, Gas, CC life, SCV life
Age of Empires II 0.14 Gold, Wood, Iron, Food
WarCraft III 1.24 Gold, Wood
Dune 2000 1.02 Money
Emperor 1.04 Money
Warlords Battlecry III 1.03 Gold, Hero experience
C&C Generals 1.80 Money

BG
Spider Solitaire 5.10 Cards, Points
Monopoly 1.00 Money

Experiment setup. Table 1
presents the applications used to
evaluate SIGPATH. For each ap-
plication, it details the differ-
ent data of interest for which
we use SIGPATH to produce a
path signature. Applications are
grouped into 3 categories: in-
stant messengers (IM), real-time
games (RTS), and board games
(BG). The goal with IM ap-
plications is to retrieve from a
given memory snapshot the user
contacts the application stores
(email address or contact iden-
tifier). In RTS games the goal is
to modify the game’s state at runtime to gain advantage, i.e., to cheat. The cheater
plays against a variable number of adversaries controlled by remote players (or by the
computer), and his goal is to (unfairly) beat them by obtaining an unlimited number
of resources and units that heal themselves. Finally, in board games, the cheater plays
against the computer and his goal is to set high scores to impress his friends.

All applications are 32-bit and run on both Windows 7 and Windows XP SP3 Virtual
Machines. Experiments are performed on an host Intel Xeon with 16 cores 2.4GHz,
with 48GB RAM, running Red Hat Enterprise 64-bit with kernel 2.6.32.
Collecting the snapshots. For each application and data of interest we select a positive
action and take snapshots after performing the action. For IM applications the positive
action is inserting a new contact. For RTS games and resources (i.e., money, mineral,
gas, gold, wood, iron, food) it is to put a unit to collect the resource, taking a snapshot
when the resource counter increases. For StarCraft and the life of a unit (CC life, SCV

13

Table 2: Evaluation results for the preparation and signature generation phases.
Snapshot Memory Graph Generation Finding the Data of Interest Signature

Collection Generation

Application DOI #S
na

ps
.

A
vg

.S
iz

e
(M

B
)

A
vg

.#
N

od
es

A
vg

.#
Pt

r

A
vg

.S
iz

e
(M

B
)

A
vg

.F
ilt

er
ed

Si
ze

(M
B

)
A

vg
.R

at
io

(%
)

M
em

or
y

D
iffi

ng
(M

B
)

V
al

ue
Sc

an
ni

ng
(b

yt
es

)

Fu
zz

in
g

(b
yt

es
)

E
nc

od
in

g

#N
od

es

#P
at

hs

#S
ig

.

Yahoo Msg Email 6 93 8,422 14,837 20 19 20 2 16 - ASCII 2 6 1
Skype Contact ID 6 102 3,761 12,618 70 63 61 8 20 - ASCII 7 10 1
Pidgin Email 6 52 6,305 41,981 5.6 5.5 10 1 32 - ASCII 7 123 2
Miranda Contact ID 6 34 671 5,790 6.2 6 17 2 16 - ASCII 4 11 1

SimCity 4 Money 6 269 32,643 128,637 102 97 36 13 4 - Integer 1 1 1

StarCraft

Minerals 10 45 1,069 1,672 5.5 5.2 12 1.1 4 - Integer 1 1 1
Gas 10 45 1,069 1,672 5.5 5.2 12 1.1 4 - Integer 1 1 1
CC life 10 45 1,069 1,672 5.5 5.2 12 1.1 2 - Short 1 1 1
SCV life 10 45 1,069 1,672 5.5 5.2 12 1.1 2 - Short 1 1 1

Age of Empires II

Gold 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Food 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Wood 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1
Iron 6 157 488 1,709 85 79 50 5 4 - Float 1 1 1

WarCraft III
Gold 6 269 4,419 12,649 27 24 8 9 4 - Integer 1 2 1
Wood 6 269 4,419 12,649 27 24 8 9 4 - Integer 1 2 1

Dune 2000 Money 6 40 842 1,575 10 10 4 2 4 - Integer 1 1 1

Emperor Money 10 114 37,129 10,232 70 65 57 7 102 4 Integer 1 4 1

Warlords Battlecry III
Gold 6 218 13,242 5,784 42 41 18 1 2 - Short 1 1 1
Hero XP 6 218 13,242 5,784 42 41 18 1 2 - Short 1 1 1

C&C Generals Money 10 339 2,537 140,157 68 56 17 10 4 - Integer 1 2 1

Spider Solitaire
Cards 6 26 372 819 3 3 12 1 - 4 (Integer) 18 18 1
Points 6 26 372 819 3 3 12 1 4 - Integer 1 1 1

Monopoly Money 6 114 4,628 55,389 24 19 17 8 2 - Short 1 2 1

life) it is to order one unit to attack the target unit (CC, SCV) taking a snapshot when-
ever the target’s life decreases. For Warlords Battlecry III and the Hero experience it
is to use the Hero unit to kill other units, taking a snapshot after each killing, which
increases the Hero’s experience. For Spider (both cards and points) it is to move a card
from one stack of cards to another and for Monopoly to buy some new property, which
reduces the player’s money. By default we collect 6 snapshots for each application. We
take an initial snapshot, then apply the positive action 4 times, and finally collect a final
snapshot after 5 minutes of inactivity (negative action). When finding the data of inter-
est, if SIGPATH cannot locate it (i.e., too many candidate locations are left), we redo
this process doubling the number of positive actions.

The first part of Table 2 summarizes the snapshot collection. It presents the number
of snapshots taken for each game and the average size in Megabytes of those snap-

14

shots. For all games except StarCraft, Emperor, and C&C Generals the first batch of 6
snapshots was enough to identify the data of interest. These three games exhibit a large
number of memory changes between snapshots, which makes it more difficult to pin-
point the data of interest. Taking a second batch of snapshots was enough to locate the
data of interest. The snapshots are in Windows Minidump format and contain all user-
level memory pages (0–0x7fffffff). The largest snapshots correspond to RTS games and
all applications increase their memory usage as time passes.

Generating the memory graphs. The next part of Table 2 shows the average number of
nodes and pointers in the memory graphs generated from the snapshots. These numbers
are obtained after removing all nodes unreachable from the modules shipped with the
program’s executable, i.e., those only reachable from Windows libraries. The numbers
show that memory graphs can be large comprising up to tens of thousands of nodes
and over a hundred thousand pointers. However, their total size is still a small fraction
of the snapshot size, as an important fraction of the pages in the snapshot corresponds
to dead memory and OS data structures. Additionally, we also present the average size
of the graph before and after removing unreachable nodes. Finally, we show the ratio
between the average graph size and the average snapshot size, representing the fraction
of the original process memory that needs to be examined. The results show that using
the memory graph translates in an average 73% reduction of the memory space.

Finding the data of interest. The following part of Table 2 captures the combination
of techniques needed to identify the data of interest, its encoding, and the total number
of nodes flagged storing data of interest. We depicted the average size of memory space
where the data of interest must be searched for after the application of each technique.
A dash sign represents that the technique was not needed.

In 22 of 23 cases the combination of structural memory diffing and value scanning
located the data of interest. This combination is very powerful as structural memory
diffing first reduces the set of candidate locations up to 82% on average of the memory
graph, and then value scanning pinpoints the data of interest. Without memory diffing,
value scanning flagged too many candidate locations. For the money in Emperor, we
needed to apply fuzzing as two candidate nodes remained after memory diffing and
value scanning. For the cards in Spider, value scanning does not apply because we
move cards rather than inserting data. In this case, a combination of structural memory
diffing and fuzzing identifies the data of interest.

Signature generation. The last part of Table 2 shows the number of paths passed to
the signature generation and the final number of path signatures produced. For cases
where multiple paths are input to the signature generation, the common prefix extraction
identifies which of those paths are stable and discards the rest. For all applications
except Pidgin, there is only one stable path and thus have a single path signature. We
find that Pidgin stores two different copies of the contact’s email address. Both of them
are stored in the same contacts data structure but their paths differ on the final steps.
Both paths are stable producing two different signatures, both of which can be used to
identify the contact emails during introspection.

For RTS games and Monopoly, the path signatures have a single node indicating that
those games store resources, unit life, and unit experience in global variables, likely for
performance reasons. One could naively think that such signatures do not contain im-

15

Table 3: Path signatures produced by SIGPATH.
Application DOI Segment Example Signature

Yahoo Msg Email Heap yahoo.exe[2394323]→ A(32)[4]→ B(46)[*4][32]→ C(12)[4]→ D[0]“Email”

Skype Contact ID Heap
skype.exe[7930844]→ A(64)[60]→ B(2062)[136]→ C(686)[16]→ D(488)[244]
→ E(553)[360] → F(256)[8*x]→ G[0]“Contact ID”

Pidgin Email

Heap libpurple.dll[495776]→ A(12)[0]→ B(48)[16]→ C(56)[*8][48]→ D(64)[32]
→ E[0]“Email”

Heap libpurple.dll[495776]→ A(12)[0]→ B(48)[16]→ C(56)[*8][48]→ D(64)[56]
→ E(40)[32]→ F[0]“Email”

Miranda Contacts ID Heap
yahoo.dll[147340]→ A(12)→ B(92)[32]→ C(12)[*0][8]→ D(28)[4]
→ E[0]“Contact ID”

SimCity 4 Money Global SimCity 4.exe[25674647]“Money”

StarCraft

Mineral Global StarCraft.exe[1569012]”Mineral”
Gas Global StarCraft.exe[1569060]”Gas”
CC Life Global StarCraft.exe[2241505] ”Command Center Life”
SCV life Global StarCraft.exe[2241231]”SCV life”

Age of Empires II

Gold Global empires2.exe[4564562]“Gold”
Wood Global empires2.exe[4564566]“Gas”
Food Global empires2.exe[4564570]“Food”
Iron Global empires2.exe[4564574]“Iron”

WarCraft III
Gold Global war.exe[3022425]“Gold”
Wood Global war.exe[3022445]“Wood”

Dune 2000 Money Global dune2000.dat[3901300]“Money”
Emperor Money Global game.dat[3530433]“Money”

Warlords Battlecry III
Gold Global Battlecry III.exe[3400232]“’Gold”
Hero XP Global Battlecry III.exe[2374828]“Hero XP”

C&C Generals Money Global game.dat[55456432]“Money”

Spider Solitaire
Card Heap spider.exe[73744]→ A(120)[4*x]→ B(4)[0]→ C(12)[*8]“Card”
Points Global spider.exe[77664]“Points”

Monopoly Money Global Monopoly.exe[3230202]“Money”

portant information, but this is hardly so. They capture at which offset and in which
module the global variable is stored. This enables to quickly introspect the application
without having to scan all modules for a value that is likely to appear many times. Dur-
ing preparation, our approach combines memory diffing, value scanning, and fuzzing
to accurately pinpoint the location of the data of interest, so that there is no need to
check during online introspection which candidate is the right location. The root of the
path signatures is not always the main module of the application, e.g., libpurple.dll in
Pidgin. A special case happens with games where the main executable starts a separate
process in charge of the game, such as in Emperor and C&C Generals. Table 3 shows
the path signatures in a path-like representation.

Performance evaluation. We have measured the execution time and memory usage
of SIGPATH. On average it takes an analyst 25 minutes to collect the 6 snapshots, the
largest being 45 minutes for Warcraft III. After that, SIGPATH takes on average 10
minutes to produce the path signatures. The slowest generation is 22 minutes for Pidgin
due to the large number of candidate paths. Overall, it takes 35–60 minutes to create the
signatures. Signature generation is memory consuming because it requires operating
on large memory graphs and snapshots. The largest memory consumption was C&C
Generals with close to 4GB. We plan to add optimizations to minimize the number of
memory graphs and raw pages from snapshots to be simultaneously loaded in memory.

16

Application: Game hacking. For each tested game in Table 2 and data of interest
pair we create a cheat and use SIGPATH to identify the location of the data of interest
in memory, modifying it with the cheat’s value. During preparation we identified the
encoding for each data of interest, so here we only need to select an appropriate value.
For RTS games we select a large number corresponding to a ridiculously high amount
of resources, unit life, or unit experience. For board games we select a very large score
and make sure that the game stores it in its high score list. The cheats work flawlessly.
As an example, one cheat for StarCraft increases the Command Center unit life to 9,999
points, even if the maximum life of that unit type is 1,500 points. After the cheat the
game continues operating correctly and the unit’s life is accepted to be 9,999. Setting
the life to zero is even a better cheat as it makes the unit immortal.
Application: Memory forensics. We evaluated whether our path signatures are able to
recover all email contacts stored by the IM programs in Table 2, given a snapshot taken
from a suspect’s computer. We run each IM application and insert 3 new contacts (dif-
ferent from the ones inserted when collecting the snapshots during preparation) taking a
single snapshot for each application after all insertions. Then, we use the introspection
component of SIGPATH to apply the signature on the snapshot. SIGPATH successfully
identifies and dumps the email addresses of all 3 contacts in all 4 IM applications. This
demonstrates that the generated path signatures can examine all instances of the data of
interest stored in a data structure. It also demonstrates that they can be used to examine
a different execution from the one used to generate them.

6 Limitations and Future Work

Obfuscation. Our approach works with many common code protections such as those
used by Skype [24]. For data obfuscation, if the data of interest is encrypted SIGPATH
can still find it using structural memory diffing and fuzzing, and can modify it by re-
playing a previously seen (encrypted) value. Other obfuscation techniques such as data
structure randomization (DSR) [25] target data analysis techniques. SIGPATH cannot
handle DSR, but DSR requires expensive code refactoring to existing programs.
Correlating actions and effects. Our memory diffing technique requires positive ac-
tions chosen by the analyst to affect the data of interest. And, our fuzzing technique
requires modifications of the data of interest to be observable by the analyst. Such di-
rect relationships between analyst actions and effects on the data of interest was easy to
find in our applications. However, other scenarios may prove more difficult.
Complex code idioms. Some complex code idioms are unsupported or only supported
partially by SIGPATH. For example, while SIGPATH handles most unions, a subtle case
is a union of two types, both with a pointer at the same offset and only one those
pointers leading to the data-of-interest, which produces an unstable path. Another issue
are tail-accumulator arrays; while our array detection technique identifies the array at
the end of the node, full support would require handling variable-length nodes. Also
problematic are data structures whose traversal requires computation, e.g., masking the
bottom 7 bits of a pointer field used as a reference count. Finally, custom allocators hide
the proper structure of memory, but can be identified by recent techniques [26].

17

3D support. VirtualBox, QEMU, and XEN do not support 3D graphics, required by
some recent games like StarCraft2. We are developing a VMWare introspector for these.

7 Related Work

Game hacking. Hoglund and McGraw [27] describe common game cheating tech-
niques such as memory editing, code injection, and network traffic forgery. CHEAT-
ENGINE [23] is an open source engine that uses value scanning to identify the data of
interest while the game runs. As acknowledged by the author, such approach does not
work with highly dynamic online games. KARTOGRAPH [8] is a state-of-the-art tool for
hacking games. It differs from SIGPATH in two key properties. First, SIGPATH produces
path signatures, which can be reused to cheat the game in many runs without redoing
the analysis. In addition, SIGPATH operates on memory graphs while KARTOGRAPH
operates at the page level. The memory graph removes dead memory and unrelated
data, and enables structural memory diffing, which improves accuracy over the page
level diffing in KARTOGRAPH.
Data structure reverse engineering. Prior works recover data structures using program
analysis without source code or debugging symbols, e.g., REWARDS [9], HOWARD [11],
and TIE [10]. In contrast, SIGPATH employs a lightweight memory-based approach that
locates the data of interest and generates a path signature to it, avoiding the need to re-
cover all data structures. Most similar is LAIKA [17], which applies machine learning
to identify data structures in a memory snapshot, clusters those of the same type, and
computes the similarity of two snapshots. SIGPATH differs in that it produces path sig-
natures that identify the exact location of the data of interest in memory and that its
structural memory diffing operates on a memory graph rather than at the page level.
Memory forensics. Prior work identifies data structures in memory by traversing point-
ers starting from program (kernel) global variables and following the points-to relation-
ships to reach instances of the data structure. KOP [5], MAS [16], FATKIT [1] and
VOLATILITY [3] all use such technique. While SIGPATH also leverages this approach
the substantial difference is that these works require access to the target’s source code
or its data structure definitions in symbol files. They also often involve sophisticated
points-to analysis (e.g., for void pointers), whereas SIGPATH simply requires mem-
ory snapshots. Instead of object traversal, other works use data structure signatures
to scan for instances of data structures in memory, such as PTFINDER [2], Robust-
Signatures [6], and SIGGRAPH [7]. SIGPATH differs in that it produces path signatures
that do not require to scan memory and also in that it does not require access to the type
definitions in the source code.
Virtual machine introspection (VMI). LIVEWIRE [12] demonstrated the concept of
VMI and there is a significant amount of works that improve VMI for better practical-
ity, automation, and wider applications such as VMWATCHER [15], SBCFI [28],VIR-
TUOSO [13] and VMST [14]. The difference with SIGPATH is that these systems focus
on kernel level introspection, whereas SIGPATH focuses on user level data introspec-
tion. Recently, TAPPAN ZEE BRIDGE [29] finds hooking points at which to interpose
for active monitoring. Our work differs on being snapshot-based and producing path
signatures.

18

8 Conclusion

In this paper we have presented a novel memory graph based approach for program
data introspection and modification that generates path signatures directly from mem-
ory snapshots, without requiring source code, debugging symbols, or APIs in the target
program. To this end, we have developed a number of new techniques including a tech-
nique for generating a memory graph directly from a snapshot without tracking the pro-
gram execution; a structural memory diffing technique to compare the graph structure
of two snapshots; and a signature generation technique that produces path signatures
that capture how to efficiently locate and traverse the in-memory data structures where
the data of interest is stored. We have implemented our techniques into a tool called
SIGPATH and have evaluated SIGPATH for hacking popular games and for recovering
contact information from IM applications.

9 Acknowledgements

The authors thank the anonymous reviewers for their feedback. This material is based
upon work supported by The Air Force Office of Scientific Research under Award No.
FA-9550-12-1-0077. This research was also partially supported by the Spanish Gov-
ernment through Grant TIN2012-39391-C04-01 and a Juan de la Cierva Fellowship for
Juan Caballero. All opinions, findings and conclusions or recommendations expressed
herein are those of the authors and do not necessarily reflect the views of the sponsors.

References

1. Petroni, N.L., Jr., Walters, A., Fraser, T., Arbaugh, W.A.: Fatkit: A framework for the extrac-
tion and analysis of digital forensic data from volatile system memory. Digital Investigation
3(4) (2006) 197 – 210

2. Schuster, A.: Searching for processes and threads in Microsoft Windows memory dumps.
Digital Investigation 3(Supplement-1) (2006) 10–16

3. Walters, A.: The volatility framework: Volatile memory artifact extraction utility framework
https://www.volatilesystems.com/default/volatility.

4. Lin, Z., Rhee, J., Wu, C., Zhang, X., Xu, D.: Dimsum: Discovering semantic data of interest
from un-mappable memory with confidence. In: Proceedings of Network and Distributed
System Security Symposium, San Diego, CA (February 2012)

5. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping Kernel Objects
to Enable Systematic Integrity Checking. In: Proceedings of the 16th ACM Conference on
Computer and Communications Security, Chicago, IL (November 2009)

6. Dolan-Gavitt, B., Srivastava, A., Traynor, P., Giffin, J.: Robust Signatures for Kernel Data
Structures. In: Proceedings of the 16th ACM conference on Computer and Communications
Security, Chicago, IL (November 2009)

7. Lin, Z., Rhee, J., Zhang, X., Xu, D., Jiang, X.: SigGraph: Brute Force Scanning of Kernel
Data Structure Instances Using Graph-based Signatures. In: Proceedings of the 18th Annual
Network and Distributed System Security Symposium, San Diego, CA (February 2011)

8. Bursztein, E., Hamburg, M., Lagarenn, J., Boneh, D.: OpenConflict: Preventing Real Time
Map Hacks in Online Games. In: Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, CA (May 2011)

19

https://www.volatilesystems.com/default/volatility

9. Lin, Z., Zhang, X., Xu, D.: Automatic Reverse Engineering of Data Structures from Binary
Execution. In: Proceedings of the 17th Annual Network and Distributed System Security
Symposium, San Diego, CA (February 2010)

10. Lee, J., Avgerinos, T., Brumley, D.: TIE: Principled Reverse Engineering of Types in Binary
Programs. In: Proceedings of the 18th Annual Network and Distributed System Security
Symposium, San Diego, CA (February 2011)

11. Slowinska, A., Stancescu, T., Bos, H.: Howard: A Dynamic Excavator for Reverse Engineer-
ing Data Structures. In: Proceedings of the 18th Annual Network and Distributed System
Security Symposium, San Diego, CA (February 2011)

12. Garfinkel, T., Rosenblum, M.: A Virtual Machine Introspection Based Architecture for In-
trusion Detection. In: Proceedings of the 10th Annual Network and Distributed Systems
Security Symposium, San Diego, CA (February 2003)

13. Dolan-Gavitt, B., Leek, T., Zhivich, M., Giffin, J., Lee, W.: Virtuoso: Narrowing the Se-
mantic Gap in Virtual Machine Introspection. In: Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA (May 2011)

14. Fu, Y., Lin, Z.: Space Traveling across VM: Automatically Bridging the Semantic-Gap in
Virtual Machine Introspection via Online Kernel Data Redirection. In: Proceedings of the
IEEE Symposium on Security and Privacy, San Francisco, CA (May 2012)

15. Jiang, X., Wang, X., Xu, D.: Stealthy Malware Detection Through VMM-Based Out-of-
the-Box Semantic View Reconstruction. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, Alexandria, VA (November 2007)

16. Cui, W., Peinado, M., Xu, Z., Chan, E.: Tracking Rootkit Footprints with a Practical Memory
Analysis System. In: Proceedings of the USENIX Security Symposium. (August 2012)

17. Cozzie, A., Stratton, F., Xue, H., King, S.T.: Digging for Data Structures. In: Proceedings
of the 8th Symposium on Operating System Design and Implementation, San Diego, CA
(December 2008)

18. Microsoft: Minidump definitions http://msdn.microsoft.com/en-us/
library/windows/desktop/ms680378.aspx.

19. Yin, H., Song, D.: TEMU: Binary Code Analysis via Whole-System Layered Annotative Ex-
ecution. Technical Report UCB/EECS-2010-3, EECS Department, University of California,
Berkeley, CA (January 2010)

20. McDonald, J., Valasek, C.: Practical windows xp/2003 heap exploitation (2009)
21. Russinovich, M., Cogswell, B.: Vmmap http://technet.microsoft.com/

en-us/sysinternals/dd535533.asp.
22. Russinovich, M.: Process explorer http://technet.microsoft.com/en-us/

sysinternals/bb896653.
23. Team, C.E.: Cheat engine http://www.cheatengine.org/.
24. Biondi, P., Desclaux, F.: Silver Needle in the Skype. In: BlackHat Europe. (March 2006)
25. Lin, Z., Riley, R.D., Xu, D.: Polymorphing Software by Randomizing Data Structure Layout.

In: Proceedings of the 6th SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment, Milan, Italy (July 2009)

26. Chen, X., Slowinska, A., Bos, H.: Who Allocated my Memory? Detecting Custom Memory
Allocators in C Binaries. In: Working Conference on Reverse Engineering. (October 2013)

27. Hoglund, G., McGraw, G.: Exploiting Online Games: Cheating Massively Distributed Sys-
tems. First edn. Addison-Wesley Professional (2007)

28. Petroni, Jr., N.L., Hicks, M.: Automated Detection of Persistent Kernel Control-Flow At-
tacks. In: Proceedings of the 14th ACM Conference on Computer and Communications
Security, Alexandria, VA (October 2007)

29. Dolan-Gavitt, B., Leek, T., Hodosh, J., Lee, W.: Tappan zee (north) bridge: Mining mem-
ory accesses for introspection. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & Communications Security. (Nov 2013)

20

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680378.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms680378.aspx
http://technet.microsoft.com/en-us/sysinternals/dd535533.asp
http://technet.microsoft.com/en-us/sysinternals/dd535533.asp
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://www.cheatengine.org/

	SigPath: A Memory Graph Based Approach for Program Data Introspection and Modification
	 David Urbina1, Yufei Gu1, Juan Caballero2, Zhiqiang Lin1

