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ABSTRACT

Public infrastructure-as-a-service (IaaS) clouds such as Amazon
EC2 and Microsoft Azure host an increasing number of web ser-
vices. The dynamic, pay-as-you-go nature of modern IaaS systems
enable web services to scale up or down with demand, and only pay
for the resources they need. We are unaware, however, of any stud-
ies reporting on measurements of the patterns of usage over time in
IaaS clouds as seen in practice. We fill this gap, offering a measure-
ment platform that we call WhoWas. Using active, but lightweight,
probing, it enables associating web content to public IP addresses
on a day-by-day basis. We exercise WhoWas to provide the first
measurement study of churn rates in EC2 and Azure, the efficacy
of IP blacklists for malicious activity in clouds, the rate of adoption
of new web software by public cloud customers, and more.

Categories and Subject Descriptors

C.2 [Computer-Communication Network]: Miscellaneous; C.4
[Performance of Systems]: Measurement Techniques

General Terms

Measurement
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1. INTRODUCTION
Public infrastructure-as-a-service (IaaS) clouds enable cus-

tomers to launch virtual machine (VM) instances, with each in-
stance assigned a publicly routable IP address and given access to
other resources such as storage, memory, and CPU time. The cus-
tomer can start and stop instances, and pays fixed rates per unit time
(typically per hour). An important use case for such clouds is rapid,
scalable deployment of web services: a study last year used active
DNS interrogation to show that 4% of the Alexa most popular one
million websites [1] were using IaaS clouds in some capacity [2].
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Unfortunately, little is known about the pattern of usage of IaaS
clouds and whether peculiarities arise due to the new ways in which
web systems are built. For example, an oft-advertised benefit of
using IaaS clouds is elasticity, or the ability to scale up or down
deployments as needed in response to load. We are unaware of any
measurements that reveal the extent to which customers are taking
advantage of elasticity. Such measurements can inform the design
of future cloud provisioning and scaling algorithms. Relatedly, we
do not know the level of churn of ownership of public cloud IPs,
and whether it may cause problems for tools that assume IP owner-
ship is relatively static (e.g., IP blacklists of malicious websites).

We build and exercise a platform for measuring web deploy-
ments on IaaS clouds over time. Our platform, called WhoWas,
can be used to perform measurements over time of cloud address
ranges. Unlike prior work that uses DNS interrogation, we pro-
vide direct measurements of what is running on cloud-associated
IP addresses via lightweight network probing and HTTP requests.
Analysts can then use the gathered data to perform lookups on par-
ticular IP addresses to receive a history of status and content for that
IP address over time. We include various analysis tools, including
a novel webpage clustering heuristic to associate webpages hosted
on distinct IP addresses together.

We use WhoWas to measure web deployments on Amazon EC2
for a three month period and Microsoft Azure for a two month
period, with a resulting dataset of size approximately 900 GB.
To understand changes over time, we repeatedly probe provider-
advertised IP ranges at an average rate of once per day. This enables
a number of first-of-their-kind measurement results, including:

(1) Over the time periods reported, we see sizable growth in the
number of servers running on EC2 (4.9% increase) and Azure
(7.7% increase).

(2) The majority of web services appear to use a small number
of servers, with more than three-quarters of all identified web
services on each of EC2 and Azure using just a single IP ad-
dress on average. There exist, however, very large services,
in the most extreme case we identify a service associated with
more than 30,000 EC2 IP addresses any given day.

(3) The change in status of an IP address (e.g., no longer host-
ing web content or appearing to change ownership) from one
measurement to the next is low on both clouds: around 3%
of all IP addresses scanned. Large deployments of webpages
across many IPs are highly available as well as stable in terms
of number of IPs used over time, but have significant turnover
in terms of which IP addresses are used over the course of our
measurements.

(4) We discover small amounts of malicious activity (mostly
phishing and malware hosting) by comparing data from



WhoWas with blacklists. We summarize three IP usage be-
haviors of the discovered malicious webpages, and observe
that the malicious webpages can stay up for a long time after
being blacklisted.

(5) We find that a majority of web servers use dated versions
of server and backend software, some of which have known
vulnerabilities.

To facilitate future research, we have made the source code for
WhoWas publicly available [3] and will make data available to re-
searchers upon request.

The rest of this paper is structured as follows. We present back-
ground on IaaS clouds in §2, and related work in §3. We outline
the WhoWas platform in §4, and its key analysis engines in §5. We
describe how we collect data using WhoWas in §6, and the ethical
and privacy considerations we take into account are discussed in
§7. In §8, we show the broad utility of WhoWas via three usage
cases: an analysis of the dynamics of cloud deployments, a study
of malicious activity, and a characterization of in-use web software.
We conclude in §9.

2. BACKGROUND
Infrastructure-as-a-Service (IaaS) systems allow users to rent

virtual machines (VMs or instances) with flexible computing re-
sources and operating systems. IaaS providers like Amazon EC2
and Azure typically provide a few default VM configurations with
set resources (e.g., number of CPUs, storage, and memory), and
many configuration options to adapt instances to the user’s needs.

The most commonly offered instances are on-demand, which can
be created by users as required, stopped when no longer needed,
and are charged for the hours used. Azure only offers on-demand
instances, while EC2 in addition offers reserved instances, which
are rented for one or three years at lower cost.

Each instance has two associated IP addresses, a private IP that
only works inside the cloud and a publicly routable IP. Both IPs are
by default dynamic; they are released when an instance is stopped
and can be reassigned to a different instance, possibly from a dif-
ferent customer. This creates IP churn, where the same public IP
address may frequently change ownership.

In addition, EC2 and Azure provide up to 5 static public IP ad-
dresses to each account or service deployment1 . These static IPs
are not specific to an instance, but assigned to the user until ex-
plicitly released, and the user chooses the mapping between IP and
instance. Both providers also offer load-balancing services to dis-
tribute requests to an IP across multiple instances.

In EC2, each instance is also assigned an externally resolvable
DNS name, whose structure follows a provider-specific pattern: the
prefix “ec2-” followed by a string that replaces the dots in the public
IP with hyphens, and a region-specific suffix.

EC2 virtual networking. Amazon Virtual Private Cloud (VPC)
allows users to create a fully-controllable and easy-to-customize
virtual networking environment for their instances. Each VPC is a
logically separate virtual network. We use the terms EC2-Classic
and EC2-VPC to refer to classic networking and VPC networking,
respectively. Compared to EC2-Classic, EC2-VPC provides extra
features. For example, an EC2-VPC instance (also referred to as a
VPC instance) can run on single-tenant hardware, while an instance
launched with EC2-Classic (a classic instance) may run on shared
hardware; a user can assign one or multiple specific private IP ad-
dresses to an EC2-VPC instance; classic instances can only have
one public IP, while VPC instances can bind to multiple network

1Called Elastic IPs in EC2 and Reserved IPs in Azure.

interfaces and IP addresses (at most 240 IPs, the exact maximum
depending on instance type) [4]. Because of the security and man-
agement benefits compared to EC2-Classic, Amazon has encour-
aged users to adopt VPC and announced that accounts created after
Dec. 12, 2013 can only launch instances with VPC enabled.

3. RELATED WORK
Prior measurement studies of web usage in the cloud primarily

used active DNS probing and packet capture [2]. Such an approach
provides only a limited view of website availability and deployment
changes over time. Packet captures (along with similar techniques
such as passive DNS [5]) are also subject to sampling bias.

Closely related to our work is the Wayback Machine, which
archives old versions of websites [6]. While we investigated us-
ing its data for our study, this would only provide information on
sites submitted and, in particular, provide relatively poor coverage
of cloud usage.

Active probing is a popular technique that has been used for a
variety of applications. Two decades ago, Comer and Lin proposed
active probing to identify differences between TCP implementa-
tions [7]. Internet-wide active probing has been used for iden-
tifying vulnerable SSH servers [8], compiling a Web census [9],
finding DNS servers providing incorrect resolutions [10], detecting
weak cryptography keys in network devices [11], for identifying
malicious servers [12, 13], and more. In our work we do not scan
the full Internet but only IP ranges from cloud hosting providers.
Localized scans have also been used for detecting network-based
malware [14] in a local network. In contrast we scan remote net-
works.

Other works study how to scan fast. Staniford et al. described
techniques that malware can use to quickly spread through scan-
ning [15]; Netmap [16] proposed a software framework for fast
packet I/O, enabling a single core to saturate a 10Gbps link; and
Durumeric et al. released Zmap [17], a horizontal scanner that can
probe the Internet in 45 minutes from a single host. WhoWas does
not aim to scan fast or wide. Rather, it periodically scans the same
IP ranges to analyze temporal evolution.

The ethical issues of active probing and sharing measurement
data are treated by several prior works. Leonard et al. [18] de-
scribe how to perform maximally polite Internet-wide horizontal
scans. We use their recommendations as guidelines for our prob-
ing. Allman and Paxson [19] discuss issues when sharing network
measurement data. Currently, we do not make our data publicly
available on the Internet, but will release it to researchers upon re-
quest, after privacy issues have been evaluated.

Prior works have studied malicious activity in cloud services.
Balduzzi et al. [20] investigate security issues in the sharing of vir-
tual images among EC2 users. Canali et al [21] install web applica-
tions on shared hosting providers and issue abuse reports on them.
In contrast, we measure malicious activity by cloud users renting
virtual machines. Nappa et al. [22] show that attackers are abusing
cloud instances to host drive-by exploit servers. Our work further
quantifies this trend by including multiple types of malicious activ-
ity, and analyzing the effect of cloud IP churn on blacklists.

4. THE WHOWAS PLATFORM
To track website deployments on IaaS clouds over time, we de-

sign and build a system that can perform lightweight probing of
clouds, process the results, and enable a programmatic interface for
conducting analyses on the gathered data. The basic functionality
we seek is to be able to associate a (cloud) IP address with its status
and content at some point in time, where status means whether it



is hosting a VM instance responding to network packets, running a
web server, or otherwise.

To do so, WhoWas performs lightweight, active measurements
over some user-specified time period and records the results for
later analysis. A key design choice we faced involved how to bal-
ance the granularity of observations (how often we probe) of an IP
address’s status against not burdening customers of cloud services
with many network requests. Another challenge is in identifying
and extracting website features that may be useful for determining
if two IP addresses are hosting the same web content. If success-
ful, this would allow us to measure the “footprint” of a particular
service: the number of IP addresses used by the service at a given
period of time.

The main components of the WhoWas system are shown in Fig-
ure 1. They consist of a scanner, webpage fetcher, and feature gen-
erator, which are used in that order to populate a database with
information about measurement results. WhoWas defines a Python
library interface to allow programmatic access to the resulting data
sets. This makes it easy to write analyses, and also to build ex-
tensions on top of the basic platform (see §5). All source code is
publicly available [3].

We discuss each of the main components of WhoWas in turn.

Scanner. WhoWas is seeded with a list of IP address ranges to
target. At the moment these must be manually gathered. Both EC2
and Azure make public the IP addresses used by their services [23,
24]. For clouds that do not, one could enumerate them via other
means (e.g., via appropriate Whois interrogation) to seed a list. The
scanner also takes a blacklist of IP addresses that should not be
scanned. This enables users to avoid certain ranges, which enables
operators to allow tenants to opt out from measurement studies.

The scanner translates these IP lists into a task list. The primary
goal of the scanner is to ascertain what IP addresses are running
typical services. In particular we focus on identifying instances
running HTTP and/or HTTPS services. For each IP address, the
scanner sends a TCP SYN (from now on, a probe) first to port 80
(HTTP default) and then to 443 (HTTPS default). If both probes
fail to respond, then a probe is sent to port 22 (SSH). The SSH
probe enables identifying live instances that are not hosting pub-
licly accessible HTTP(S) servers.

The scanner times out a probe after two seconds and does not
retry failed probes. The former increases speed of the scanner while
the latter minimizes interaction with the cloud customers. To eval-
uate the effect of larger timeouts, we performed the following ex-
periment. First, we randomly selected 5% of EC2 IPs from each
/24 prefix used by EC2. This resulted in 235,070 IPs. For these
IPs, we compared probes with timeouts of 2 s and 8 s. We observed
an increase of only 0.61% in the number of IPs responding with
the longer timeout. For the same set of IPs we also had the scanner
probe with a 2 s timeout once, then again 200 s later and again three
more times at intervals of 100 s for a total of 5 probes. Compared to
the first round of scanning, only 0.27% more IPs responded if one
took into account the additional 4 probes. We concluded that these
failure rates will not unduly affect interpretation of scanner results.

By default, the scanner uses a global scan rate of 250 probes per
second (pps) and only treats each IP once a day. This means that an
IP address receives at most three probes (80/tcp, 443/tcp, 22/tcp) in
a day. These scan rates are significantly smaller than those used in
prior work that range from 1,000 pps up to 1.4 million pps [17, 18]
(though we will admittedly be targeting smaller ranges). One round
of scanning visits all the IP addresses input to WhoWas. We chose
small defaults to balance burden on infrastructure with the temporal
granularity of WhoWas measurements.

Cloud 
IPs

1.Scanner

IP/Domain 

whitelist

2.Fetcher
3.Feature
Generator

DB

Data Collection and ProcessingInput Analysis Engine

……

Clustering

VPC lookup

Figure 1: The main components of WhoWas.

We say an IP address is responsive if it responds to any of the
network probes. Otherwise it is unresponsive.

HTTP requests. For any IP address that responds as being open
on port 80 or port 443, the scanner submits the IP to the web-
page fetcher, which will randomly pick up a worker process from a
worker pool to gather further information from this IP. The worker
generates a URL by concatenating the IP address to either “http://”
(should port 80 and 443 have been seen as open) or “https://” (if
only port 443 was open). A GET request is submitted to the re-
sultant URL concatenating with “robots.txt”. Then, a GET may be
sent to the URL depending on the content of robots.txt. At most
two GETs are made per round of scanning for a given IP address.

The fetcher records any received HTTP response code, response
header, or error information in a MySQL database. Each round
of scanning uses a distinct database table, with a timestamp in
the table name to indicate the start of the round. If the type of
the response content is “application/*”, “audio/*”, “image/*” or
“video/*”, the fetcher foregoes downloading the content as our
analysis engine cannot yet process non-text data. For text con-
tent (e.g., HTML, JSON, XML) we store the first 512 KB of content
into the database. The fetcher does not follow links in the collected
content and does not execute active content. The fetcher is built
using the Python Requests library [25].

An IP is available in a round if the HTTP(S) request for the URL
without robots.txt succeeded, and unavailable otherwise. Note that
unresponsive IPs are also unavailable.

Feature extraction. After a round of scanning is finished,
WhoWas invokes a separate process to extract various features from
the results. For each webpage successfully fetched, we extract and
insert into the database: (1) the back-end technology from the “x-
powered-by” field in HTTP response headers; (2) a description
of a webpage from the “description” tag in the returned HTML;
(3) a string that consists of all field names in the HTTP response
header (sorted alphabetically and separated by “#”); (4) the length
of the returned HTML; (5) the title string from the HTML; (6) the
web template (e.g., Joomla!, WordPress, or Drupal) indicated by
“generator” tags in the HTML; (7) the server type as reported in
HTTP response headers; (8) the keywords as indicated in a key-
words tag in the HTML; and (9) any Google Analytics ID found
in the HTML. We mark entries as unknown when they are missing
from the HTML or HTTP headers.

We additionally compute (10) a simhash [26–28] over the HTML
of the returned webpage. This algorithm has been used previously
for webpage comparison: two webpages are similar if their finger-
prints have low Hamming distance. We use 96-bit hashes.

Limitations. We briefly highlight a few limitations of our platform.
First, it can only detect a portion of web-facing instances hosted in
the cloud. For example, the scanner fails to successfully discover a
web server instance if the owner configures firewalls to only allow
traffic from a given source; the instance is not bound to a public



IP address (e.g., instances in some EC2 VPC networks); and/or the
ports used for SSH or web services are not set to the default.

A second limitation is that we can visit a website using only the
IP address instead of the intended domain. PaaS providers or web
hosting providers may use one instance for multiple websites or
web applications, and not allow requests without specific URLs.
In this case, they will return 404 pages or other customized pages
to the fetcher. Even so, for some IPs, we can still identify their
ownership by looking at unique features in the returned contents
(e.g., if the 404 response contains the domain name of the website).

A third limitation is the granularity achieved by WhoWas. By
only querying once per day, or even once per several days, we
can only measure changes in status with that granularity. Network
packet drops or other temporary failures will have WhoWas mark
an IP as unresponsive or unavailable for the entire measurement pe-
riod. More generally, EC2 and Azure (as well as other clouds) have
per-hour charging models, meaning that we might expect an hourly
granularity to better reflect the rapidity of changes.

Increasing the scan rate could be easily accommodated via par-
allelism. However, while fetching webpage content at such granu-
larities might not represent a burden for large enterprise tenants (let
alone the IaaS provider), it is impossible to know whether WhoWas
is also interacting with tenants expecting very little, or even no,
network traffic2. For these reasons we err on the side of having a
relatively conservative scan rate.

5. ANALYSIS TOOLS
As described thus far, WhoWas can perform scans, fetch pages,

and store them. To enable richer analyses, we build in extra tools
to aid users. We first include a clustering algorithm to associate IP
addresses that are likely to be hosting the same webpage or, at least,
be operated by the same owner. We also build in some knowledge
of the semantics associated with particular IP addresses by way of
cloud cartography techniques.

Clustering. After collecting webpages for a period of time, we use
clustering to help identify IP addresses that are likely to be host-
ing the same web applications. Features used for clustering are the
title, template, server software, keywords, Google Analytics ID,
and simhash. Other extracted features are not used for clustering
because they are unstable (e.g., HTML length) or redundant. We
then use a 2-level hierarchical clustering, using the features for IPs
across all rounds of measurement. The clustering is run across all
rounds, so that each entry in a cluster corresponds to an <IP, round>
pair. In the first level clustering, we cluster solely on the first five
features. At this level, strict equality is used for comparison, so
each first-level cluster only has webpages with the same title, tem-
plate, server, keywords, and Analytics ID.

In the second level clustering we use the simhashes. The distance
measure here is the Hamming distance between two simhashes,
which can take on a value from 0 (identical) to 96 (very dissimi-
lar) since we use 96-bit hashes. We use a simple tuning procedure
to pick a distance threshold for clustering based on the gap statistic,
which is a common method for estimating the number of clusters
when doing unsupervised clustering [29]. Each resulting second-
level cluster is given a unique random identifier, and we associate
to each IP’s round record their cluster assignment.

If using this clustering approach to identify IPs belonging to the
same website, an immediate limitation is that significant changes to
the features (e.g., due to an update to the page or underlying server
software) will result in IPs being placed into distinct clusters. We

2Indeed, we received emails from a handful of tenants that did not
realize their web servers were publicly accessible! See also §7.

therefore provide some additional heuristics to help catch changes
in features that may not be indicative of change of ownership of
an IP address. In a post-processing step after clustering, we merge
clusters using the following algorithm.

Consider two records in the database:
DB[IP, T, simhash, cluster, fa, fb, fc, fd, fe],
DB[IP ′, T ′, simhash′, cluster′, f ′

a, f
′
b, f

′
c, f

′
d, f

′
e]

where we store the IP, the timestamp (T), the simhash of the
content of the page and the cluster to which the IPs belong, and
the other features (fx) namely: title, server, template, keywords,
and Google Analytics ID. We merge two records if the following
conditions hold: the IPs are the same, the simhashes differ at most
by 3 bits (used also in [30]), one feature is the same between the
two records, and the two clusters are temporally ordered.

The 2-level clustering and merging heuristic above strive to iden-
tify web applications that are being used across distinct IPs or
across time on the same IP address. It was the culmination of
a manual refinement process, where we started with using just
simhashes and then added top level features to help improve clus-
tering results (as measured by manual inspection of samples). This
was made easy by the programmatic WhoWas interface. The inter-
face also makes it easy to modify, for example, the approach above
to cluster with other goals in mind, such as simply finding related
content (dropping the server feature) or only using Analytics IDs.

After merging, some clusters may still include IP addresses ac-
tually operated by different owners. For example, sites that lack
a Google Analytics ID but reply with a default Apache page all
end up in the same cluster. To not have such clusters bias analyses
further in the paper, we perform some manual cleaning of the clus-
ters. First, we write a script to remove the top-level clusters (and
associated second-level clusters) whose title contains expressions
indicating that WhoWas failed to fetch useful content. (e.g., “not
found” and “error”.) Then, for second-level clusters with over 20 IP
addresses associated with them on average per day, we check the ti-
tles of their top-level clusters, and exclude them if they correspond
to default server test pages. (e.g., with title “welcome-apache”.)

Unless specified otherwise, from now on we refer to second-level
clusters after merging and cleaning as simply clusters.

Cloud cartography. Previous work highlighted the utility of so-
called cloud cartography, in which one uses measurements to as-
sociate cloud public IP addresses to types of infrastructure. For
example, this has been used to estimate in EC2 the type [31] and
availability zone [2,31] of a given instance. Different than previous
works, we use cartography to help disambiguate distinct network-
ing configurations associated with public EC2 IPs.

Recall that Amazon EC2 provides two ways to launch instances:
classic and VPC. For classic instances, one public IP address rep-
resents one VM instance. VPC instances can instead have multiple
public IPs associated to them. If we see a cluster of N IPs, if these
IPs are VPC it may therefore be the case that these IPs are associ-
ated with fewer than N VM instances.

We would therefore like to have WhoWas be able to differentiate
between VPC and classic instances. We use DNS interrogation to
differentiate between public IP addresses used for classic instances
and those used for VPC instances: Amazon’s internal DNS always
returns a public IP address when resolving the public domain name
associated to a VPC IP address (c.f., [32]).

In more detail, we have the following procedure for a one-
time measurement to label each public IP in a region with VPC
or classic. In that region, we launch an instance in the classic
network, and then perform a DNS query for each public IP in
this region. For example, say the IP address is 1.2.3.4, then we



Region VPC prefixes % all IPs in region

USEast 280 13.7

USWest_Oregon 256 36.4
EU 124 20.8

AsiaTokyo 98 32.0

AsiaSingapore 82 33.9

USWest_NC 72 22.5

AsiaSydney 64 33.3

SouthAmerica 56 31.9

Table 2: Breakdown of public IP prefixes in EC2 by VPC

form the EC2-style public domain name3 “ec2-1-2-3-4.compute-
1.amazonaws.com” and perform a DNS lookup from the instance.
If the DNS response contains a start-of-authority (SOA) record
(meaning no DNS information for that DNS name), then there is
no active instance on this IP and also the IP is labeled as classic.
If instead the response contains an IP address that is in EC2’s pub-
lic IP address space, then the IP is using VPC; otherwise, the IP is
using classic networking.

After performing such queries for all EC2 public IP addresses
(with a suitably low rate limit), we obtain a map of IP prefixes as
being used for VPC or classic. Table 2 shows the results in terms
of the number of /22 prefixes (c.f., [33]) used for VPC compared to
all IPs associated to that region.

We include in WhoWas the resulting /22 map to add to any public
EC2 IP address round record an indicator of whether the IP uses
VPC or classic networking.

6. DATA COLLECTION
We seed WhoWas with the Amazon EC2 and Azure public IP

address ranges as of Sep. 10, 2013 and use them as the target IP
addresses [23, 24]. There are 4,702,208 target IP addresses in EC2
and 495,872 in Azure. The probing on EC2 began on Sep. 30, 2013
and lasted for 3 months, and the probing on Azure began on Oct. 31,
2013 and lasted for 2 months. In October and November, a round
of measurements was performed every 3 days. We then increased
the frequency to one round per day in December. The final round
of measurement was on Dec. 31, 2013. In the end, we collected
a total of 51 rounds of scanning in EC2 and 46 in Azure. The
number of rounds are similar despite an extra month of probing on
EC2 because of the slower rate in the first two months and because
at the beginning we occasionally stopped the probing for updates
on our infrastructure.

We run WhoWas from a pair of machines, one for EC2 and one
for Azure. The machines had the same configuration: Ubuntu 12.10
i386 server, 8 core Intel i7 @ 3.40 GHz CPU, 32 GB memory, and
2 TB hard drive for storing data. The only software dependencies
are Python Requests and Python MySQLdb libraries. The worker
number for the crawler is set to 250 by default. The timeout for
HTTP(S) connections is set to 10 seconds.

The resulting data set. We collected about 900 GB of data in total.
Afterwards, we ran the analysis tools described in §5 to cluster the
IP addresses and also label IP addresses as being VPC or classic.
Recall that clusters contain <IP, round> pairs. As shown in Table 4,
an average of 64.7% of the responsive EC2 IP addresses (60.6%
for Azure) are available in each round of probing. Table 3 shows
a break down of the ports open on responsive IPs. For the avail-

3Recall as per §2 that these differ slightly on a per-region and per-
zone basis, but that it is easy to determine from looking at examples
from one’s own accounts.

provider
port

22-only 80-only 443-only 80&443

EC2 25.9 38.0 5.5 30.6
Azure 9.3 45.8 16.5 28.4

Table 3: Average percentage of responsive IPs per measurement
round that open a given port(s)

provider
code

200 4xx 5xx other

EC2 64.7 28.0 7.2 0.10
Azure 60.6 30.2 9.2 0.02

Table 4: Average percentage of responsive IPs per measurement
round that respond with a given HTTP status code.

able IP addresses, Table 5 shows the top 5 text content types in the
responses, as only text content is collected by WhoWas.

Table 6 summarizes the clustering for both datasets. First, it
shows the number of responsive IP addresses. Then, the distinct
simhashes for the content obtained from those IP addresses, which
is larger than the number of IP addresses because the content col-
lected from an IP address varies over time. Next, it shows the
number of first-level and second-level clusters, which shows that
some first-level clusters are split into multiple second-level clus-
ters. The last row shows the final number of clusters, after merging
and cleaning has been applied to the second-level clusters.

7. ETHICAL CONSIDERATIONS
The unsolicited nature of active probing can make some targets

consider it offensive and can potentially place a burden on both the
individual tenants and the cloud provider. We take this issue seri-
ously in our study and seek a careful balance between the amount of
interaction required and the merits of the obtained data. We guide
our active probing on the recommendations of prior work [18].

Our scanner and fetcher are located at the premises of one of our
institutions and their use was made in cooperation with the insti-
tution’s IT staff. To minimize the impact on the EC2 and Azure
networks we limit the probing to an average of once per day and
constrain our probing to only 3 ports (80/tcp, 443/tcp, 22/tcp).

Our HTTP fetcher includes a brief note in the User-Agent
string stating that the request is being made for a research project.
The note includes an email address to contact in case of ques-
tions/concerns. This allows tenants to request opting out of future
queries. We also exclude IPs that we have observed to disallow
robots requesting the top-level content, as per the robots exclusion
protocol [34]. In the course of operating WhoWas we received 84
emails from instance operators. Upon further explanation, most op-
erators were happy to hear about our research project. Only 16 re-
quested to have IPs excluded from future scans, which we promptly
did. In total 67 IPs were excluded in the course of the experiment.
In general, the reasons offered for requesting IPs be excluded were
either: (1) the servers are not designed to be public, but with care-
less configurations, they are accidentally discovered by WhoWas;
and (2) since IaaS providers charge tenants based on traffic, the
traffic generated by WhoWas, though it is very small, is still un-
welcome for some tenants.

While technically any data we obtain is public, in the sense that
we are simply fetching webpages from publicly advertised IP ad-
dresses, it is clear that some cloud tenants inadvertently made ac-
cessible what should not be. So as to respect potential privacy is-
sues, we will not make our data set publicly available on the In-



EC2 Azure

text/html 95.9 text/html 97.8

text/plain 2.1 text/plain 1.0
application/json 1.0 application/xml 0.7

application/xml 0.3 application/json 0.2

text/xml 0.3 application/xhtml+xml 0.1

other 0.4 other 0.2

Table 5: Top 5 content-types in EC2 and Azure and the percentage
of webpages of each content-type in all collected webpages.

EC2 Azure

Responsive IPs 1,359,888 154,753
Unique simhashes 1,767,072 210,418
Top-level clusters 236,227 30,581
2nd-level clusters 256,335 39,183
Final clusters 243,164 31,728

Table 6: The number of responsive IPs and unique simhashes of
their content, as well as the number of clusters output by the differ-
ent steps of the clustering.

ternet. Interested researchers should contact the authors if they de-
sire access to the data set, and we will evaluate the privacy issues
of each request and use appropriate privacy safeguards (e.g., use
anonymization tools [35]). The code and other tools that WhoWas
consists of will however be released publicly, and in future work
we may investigate making a public interface to our data set that
provides appropriate privacy protections (e.g., only providing ag-
gregate statistics).

8. ANALYSES USING WHOWAS
In this section we report on various analyses performed using

WhoWas with the data sets gathered as discussed in §6. We start by
using WhoWas to study usage and its change over time in EC2 and
Azure. Then we use WhoWas to shed light on malicious activity in
clouds, and finally we use WhoWas to describe the distribution of
software in the web ecosystem in clouds.

8.1 Cloud Usage Dynamics

IP responsiveness and availability. Table 7 summarizes the usage
statistics across all measurement rounds. The average number of
responsive IPs is almost an order of magnitude larger in EC2 than
in Azure, which illustrates their difference in popularity. The aver-
age IP address space usage is almost identical on both services and
relatively low (23.7–23.9%), so both have ample room for growth.
EC2 has on average 758 K available IPs, 7.6 times more than Azure
with 99 K, which indicates that EC2 hosts a higher proportion of
services running on ports other than 80/tcp and 443/tcp, which are
less likely to be web services.

Figure 8 shows the IP responsiveness and availability over the
two month measurement period. The variation of responsive and
available IP addresses in both services over the two months is low,
with a 0.3–0.5% standard deviation. On absolute numbers, EC2
grew more over this period, adding 36,414 responsive IPs by the
end of the period, compared to 8,270 for Azure. However, the rela-
tive growth of Azure is larger, with an increase in 7.3% of respon-
sive and 7.7% of available IPs, compared to 3.3% and 4.9% for
EC2. Figure 8 shows several noticeable dips in the curves. In EC2,
these dips correspond to the dates Oct. 4, Nov. 8, Nov. 30, Dec. 14,
and Dec. 28, all in 2013. Interestingly, they are all Fridays or Sat-
urdays. By appropriate queries to the WhoWas database, we found

that 3,198, 2,767, 1,449, 983, and 1,327 clusters become unavail-
able on EC2 on these dates, respectively, and never return again. In
Azure, the dips happened on Nov. 29 and Dec. 07, 2013, also Fri-
day and Saturday. On these two days, 360 and 385 clusters become
unavailable and never return again. A total of 15,295 IPs in EC2
and 775 IPs in Azure are associated with these clusters. These dips
may be caused by web service maintenance, webpage update, web
service migration (to other providers or to new added networks that
we did not probe), or other reasons. It is possible that the servers
that left the cloud were intended for other purposes instead of web
services. Unfortunately, we could not figure out the exact reason
for these departures.

Cluster number and size. The average number of clusters for a
round of probing in EC2 is 185,701 and in Azure 27,048. Over the
measurement period, the number of clusters increased by 3.3% in
EC2 and by 6.2% in Azure.

We define the average size of a cluster to be the average number
of IPs in a cluster per round of measurement. The average cluster
size distribution for EC2 is: 78.8% have average size of one IP
address; 20.8% between 2 and 20; 0.28% between 21 and 50; and
only 0.07% greater than 50. For Azure the distribution is quite
similar, with a slightly larger number of small clusters: 86.2% (1),
13.6% (2–20), 0.1% (21–50), and 0.1% (> 50). The numbers show
that the vast majority of clusters in both clouds use just a small
number of IPs.

The amount of overlap across the two clouds we study is small.
We find 980 clusters are using both EC2 and Azure, and 85% (834)
of them use the same average number of IPs in each cloud. These
latter clusters all use a small number of IPs on average (at most 5
IPs). We also observe 110 clusters that use more IPs in EC2 than
they use in Azure, on average. One of these clusters, a VPN service
(cluster 3 in Table 15), uses over 2,000 IPs more in EC2 than it uses
in Azure. We did not see any cluster migrations between EC2 and
Azure during our measurement period.

The clustering heuristics we use can only provide estimates, and
so we may be under- or over-counting cluster size in some cases.
Web services may also be making use of other providers not in-
cluded in our study, which would lead us to underestimate their
overall resource usage. Indeed some larger services may use other
hosting solutions such as content delivery networks, which are not
included in our study. Despite these potential sources of error, the
data still supports the conclusion that the majority of the services
hosted in clouds are small. We delve more deeply into some of the
largest clusters at the end of this section.

IP status churn. A key feature of WhoWas is our ability to es-
timate churn, meaning the quantity of change in status of IP ad-
dresses. The overall churn rate, meaning the number of IPs that
change status in terms of responsiveness, availability, or which
cluster they are associated to divided by the total number of IPs, is
3.0% for each of EC2 and Azure. Investigating individual types of
status change, we have that for EC2 the average change in respon-
siveness was 2.5%, the average change in availability was 1.0%,
and an average of 0.1% of IPs changed clusters between measure-
ment rounds.4 The same values for Azure are 2.2%, 1.7%, and
0.3%. A time series of churn rates is shown in Figure 9.

If one instead looks at percentages relative to all unique IP ad-
dresses that are responsive on either round T − 1 or T , then overall
churn rate becomes 11.9% in EC2 and 12.2% in Azure on average.
The responsiveness, availability, and cluster change rates become

4Note that they do not sum to 3.0% since unavailable IPs include
unresponsive IPs, as well as responsive but unavailable IPs.



EC2 Azure
# Responsive IPs # Available IPs # Clusters # Responsive IPs # Available IPs # Clusters

Minimum 1,061,834 (22.6%) 718,693 (15.3%) 179,870 111,851 (22.6%) 94,348 (19.0%) 25,903

Maximum 1,145,448 (24.4%) 773,832 (16.5%) 188,274 120,605 (24.3%) 102,953 (20.8%) 27,786

Average 1,113,599 (23.7%) 758,144 (16.1%) 185,701 118,290 (23.9%) 99,720 (20.1%) 27,048

Std. dev. 18,733 ( 0.4%) 13,232 ( 0.3%) 1,939 2,169 ( 0.4%) 2,640 ( 0.5%) 605

Overall growth 36,414 ( 3.3%) 35,442 ( 4.9%) 5,984 8,270 ( 7.3%) 7,299 ( 7.7%) 1,604

Table 7: Summary of overall usage of EC2 and Azure address spaces. Percentages are the fraction of the total number of IP addresses probed.
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Figure 8: Change over time in responsive IPs, available IPs and clusters (from top to bottom) in (left) EC2 and (right) Azure. X-axis is the
round of scanning and note that the Y-axes have gaps in the range covered.
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Figure 9: Change in status of responsive IPs and available IPs as a
fraction of all IP addresses in (left) EC2 and (right) Azure.

10.1%, 4.0%, and 0.3% for EC2 and 8.7%, 6.8%, and 1.1% for
Azure.

Even considering that these are just estimates (sources of error
including incorrect clustering or transitory network failures), the
per-round churn in these clouds appears quite small.

Cluster availability over time. A cluster is available in a given
round if at least one of the IPs in the cluster is available in that
round. Figure 10 plots for each round the fraction of clusters that
changed from available to unavailable or vice versa, compared to
the previous round, over the total number of unique clusters ob-
served throughout the measurement period. On average across all
rounds, the average percentage of cluster status changes is 4.6% on
EC2 and 7.3% on Azure.

Cluster size over time. We now characterize the observed ways in
which a cluster’s size (the number of IPs associated to the cluster)
changes over time. Table 11 shows the results of our analysis, in
particular the top five size change patterns observed. Here a pattern
of 0 means no change; 0,1,0 indicates an increasing trend; 0,-1,0
a decreasing trend; and so on. So about half of clusters are quite
stable in terms of size. We now describe how we arrived at these
patterns, and then discuss the results in further detail.

For each cluster, we first generate a vector D of the number of in-
stances it used at each time point. So a vector of (10, 3, 20) means
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Figure 10: Change in availability of clusters as a percentage of the
total number of clusters seen throughout the measurement period
in (left) EC2 and (right) Azure.

that in time period one the cluster had 10 IPs associated to it, 3 in
the next time period, etc. The dimension of the vector is the number
of rounds of scanning. We reduce the dimensionality of the result-
ing vectors in order to more accurately compare and understand
general usage patterns.

To do so we use piecewise aggregate approximation (PAA) [36],
a method for reducing the dimensionality of time-series data. We
divide the vector into frames and use the median value of a frame
to represent the frame. Since the time interval of our data is not
always constant, we could not simply use an equal number of data
points in each frame. We use a 7-day window to generate frames.
We use the 7-day time window because it can cover at least 3 data
points and can catch more changes in IP usage. Each frame may
contain different numbers of data points. For example, frame one
may contain 3 data points from the first 7 days of scanning while
frame two contains 4 data points from the next 7 days.

We therefore compute from D a new vector D′ of dimension 13
for EC2 (since measurement lasts for 93 days) and 9 for Azure (62
days) whose values are the median of the values in each window.
We use median so as to be robust in the face of outliers.

Using D′, we then define a new vector D′′, called the ten-
dency vector, as shown in Algorithm 1. For example, and us-
ing smaller vector dimension for brevity, if D′ = (1, 2, 3, 1, 1, 1)



pattern description # EC2 clusters # Azure clusters

0 121,297 (49.9%) 17,092 (53.9%)

0,1,0 36,465 (15.0%) 4,406 (13.9%)

0,-1,0 33,400 (13.7%) 3,952 (12.5%)

0,1,0,-1,0 12,598 ( 5.2%) 1,189 ( 3.8%)

0,-1,1,0 9,857 ( 4.1%) 1,376 ( 4.3%)

Table 11: Top five size-change patterns observed in EC2 and Azure.
Percentages in parentheses are with respect to total number of clus-
ters.

Algorithm 1 Algorithm for computing tendency vector given D′

1: for 1 ≤ i ≤ |D′| − 1 do

2: if D′[i+ 1] > D′[i] then

3: set D′′[i] = 1
4: else if D′[i+ 1] = D′[i] then

5: set D′′[i] = 0
6: else

7: set D′′[i] = −1
8: end if

9: end for

then D′′ = (1, 1,−1, 0, 0), or if D′ = (1, 10, 0, 5, 4, 2) then
D′′ = (1,−1, 1,−1,−1). Finally we merge repeat values in D′′,
so for example, (0, 1, 1, 0,−1,−1) becomes (0, 1, 0,−1). The re-
sulting merged tendency vector is the size-change pattern. Again
the top five such patterns observed are given in Table 11.

As previously noted, about half the clusters in EC2 and Azure,
respectively, follow pattern 0 (no change in cluster size). Clusters
in pattern 0 can be further split into two groups:

(1) Ephemeral clusters: the median number of IPs they used is
zero, because they just appeared in the cloud for a very short pe-
riod of time. In EC2, 11.4% of all clusters are ephemeral while in
Azure 13.1% are ephemeral. Of ephemeral clusters, 92.8% only
use 1 IP, 99.1% use less than 3 IPs, and 24 clusters use more than
10 IPs. We arbitrarily chose 10 of these last 24 clusters for manual
investigation, which revealed a few explanations that may general-
ize more broadly: (a) a website was under maintenance so it tem-
porarily changed the top-level webpage; (b) a website just moved
into the cloud and was under construction, and we caught the in-
development webpage; or (c) the webpage was developed by ten-
ants who may temporarily use the cloud for testing and left the
cloud soon.

(2) Relatively stable clusters: The other 38.5% of clusters in
EC2 (40.8% in Azure) instead use nearly the same number of IPs
in each round over the entire measurement period. In this group,
38,466 (15.8%) clusters in EC2 and 7,789 (24.5%) in Azure haven’t
changed the number of IPs they used during measurement periods
and are available in each scan round. Most of these clusters (92.7%)
use the exact same IP addresses all the time.

Pattern 0,-1,1,0 represents clusters that have a drop in the in-
stance usage, immediately followed by an increase. A short-term
unavailability can cause such a drop. We define the lifetime of a
cluster as the time period between the first time a cluster is avail-
able and the last time it was available. The cluster uptime is the
fraction of time the cluster is available relative to its lifetime. For
example, if a cluster was first observed on one day, and last ob-
served 10 days later, and no IP associated with it responded on one
of the days in between, then the lifetime is 10 days and the uptime is
90%. In EC2 54.3%’s of the singleton clusters have 100% uptime,
89.1% have ≥90% uptime, and 92.7% have ≥80%. Of clusters of
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Figure 12: Distribution of average IP uptime of clusters of size two
or larger.

size 2, 86.4% have a 100% uptime. The cluster uptime of all the
clusters with size greater than or equal to 18 is 100%. Clusters in
Azure show a similar pattern — in general, the more IPs a cluster
uses, the higher cluster uptime it has. The cluster IP time of only
a small fraction of clusters are less than 90% (9.4% of clusters in
EC2 and 10.6% in Azure).

Churn within clusters. We turn now to measuring the amount
of turnover in IPs used by a given cluster. Website deployments
may be designed to have relatively high turnover, taking advantage
of cloud elasticity to scale with demand. For example, EC2 in-
cludes an auto-scaling feature, and several third party companies
advertise similar services. Alternatively, churn may be indicative
of instability in deployments such as VM instance restarts caused
by crashes or other failures. Our measurements cannot distinguish
between such causes of churn, but can give an overall estimate of
the amount of churn.

We define the uptime of an IP for a given cluster as the fraction of
days the IP is available and associated to the cluster divided by the
total amount of time the cluster is available. The average IP uptime
of a cluster is the average of IP uptimes for all IPs associated to the
cluster. Average IP uptime therefore provides a measure of how
much a cluster experiences churn within the IPs that it uses. If a
cluster uses the same IP addresses all the time, then the average
IP uptime of this cluster will be 100%. Low average IP uptime
indicates the cluster frequently changes IPs.

A total of 183,119 (75.3%) clusters in EC2 and 25,037 (78.9%)
in Azure have a 100% average IP uptime. The bulk of these are
singleton clusters, meaning clusters of size one. In EC2, 71.4% of
all clusters are singletons, and in Azure 76.2% are singletons. For
non-singleton clusters, we find more evidence of churn. Figure 12
gives a CDF of the average IP uptimes across all clusters of size
two or larger. We see that about half of the clusters have average
IP uptime greater than 90%, in either cloud. A large fraction in fact
(27.2% and 30.1% of clusters in EC2 and Azure, respectively) have
average IP uptime between 95% and 99%, indicative of low churn.
For the other half of clusters having below 90% average IP uptime,
we see quite a spread of uptimes.

When the cluster size increases, the average IP uptime becomes
smaller. For clusters with cluster size 50 or greater, the average IP
uptime is 62%. For the top 10 websites by cluster size, about 90%
of the IPs being used in one measurement round, are still used in
the next round, but less than 50% of the IPs have been used for the
entire 3 months.

Region and VPC usage. Prior work [2] showed that the vast ma-
jority of websites use a single region. Our measurements are inline
with this: 97.0% of all clusters use a single region. Even among
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clusters (from top to bottom) in EC2.

the top 5% of all clusters (in terms of cluster size), only 21.5% use
more than a single region. While most of the clusters use the same
region(s) over time, a small number of them have a change in re-
gion usage. 98.37% of clusters use the same region(s), 0.7% use 1
extra region, 0.07% use 2 extra regions, 0.76% decrease by 1, and
0.07% decrease by 2 in EC2. In Azure, 97.33% use the same re-
gion(s), 1.28% use 1 extra region, 1.13% decreased by 1 and 0.09%
decreased by 2.

For EC2, we can use the cartographic mechanisms described in
§5 to examine the usage of VPC versus classic networking. This
is particularly interesting as it shows the uptake of a newer feature,
and one that is required for new accounts. Figure 13 shows a time-
line of the number of responsive and available IPs as broken down
by VPC/classic. We found in total 177,246 (72.9% of all clusters)
use only classic IPs; 59,547 (24.5%) use only VPC IPs; and 6,371
(2.6%) use both classic and VPC IPs. As shown in Figure 14, the
number of classic-only clusters is decreasing rapidly while VPC-
only and mixed clusters are increasing. We also observed a total
of 1,024 mixed clusters that transitioned from classic to VPC while
483 went in the other direction.

Large clusters. We found a number of very large clusters within
the collected data. Table 15 gives details regarding the top ten clus-
ters in EC2, by average cluster size (the clusters in Azure have rel-
atively smaller sizes compared with those in EC2, so we did not
examine them in detail). We manually investigated these ten clus-

ters, and provide a categorization of the type of industry they are
associated to. These clusters show a diversity of usage dynamics.

In the table, the total number of unique IPs associated to the
cluster across the entire measurement period is “Total #IP”, while
“Mean/Median/Min/Max #IP” indicate the basic statistics of num-
ber of IPs used by a cluster across all rounds. The average IP up-
time of these clusters varies greatly, and is generally lower than the
uptime of smaller clusters. As noted previously, most IPs are stable
for short periods of time, meaning if they are used by the clus-
ter in one round of measurement they are likely to be used in the
next. The column “Max IP departure” gives the maximum, across
all rounds, of IPs leaving a cluster as a fraction of the number of
IPs used by the cluster in that round. An IP leaves a cluster in a
given round if it was not associated with the cluster in that round,
but was in the previous round. The column “Stable IP” gives the
ratio of the number of IPs that were used throughout the entire mea-
surement period by the cluster over the total number of unique IPs
used by the cluster. As can be seen, long-run stability is low except
for cluster 9. Finally, we give the number of regions used and the
average number of VPC IPs per round for each cluster.

8.2 Finding and Analyzing Malicious Activity
We turn to using WhoWas to investigate malicious activity on

IaaS clouds. We use two sources for flagging malicious behavior,
Google Safe Browsing and VirusTotal. We will show that WhoWas
can help investigate, as well as discover new, malicious activity.
We will also quantify the time between a website appearing and
it being marked as malicious and the time an IP address remains
malicious after being dropped from a blacklist.

Google Safe Browsing. The Google Safe Browsing API allows
one to submit a URL and obtain a status report indicating a status
of either “phishing”, “malware” (hosting malicious software), or
“ok”. To make use of the API, we extracted all the URLs con-
tained in top-level webpages gathered by WhoWas and queried
each against the safe browsing API after each round of scanning. In
each round, there were about 3.2 M distinct URLs across the entire
set of pages fetched, only a small fraction of which end up marked
as malicious by Safe Browsing.

For EC2, we found 196 unique IPs (149 in classic and 47 in VPC)
that contain at least one link labeled as phishing or malware, for a
total of 1,393 distinct malicious URLs. Many of the webpages con-
tain multiple malicious URLs: nine had a total of 63 URLs marked
as phishing and 187 of them had a total of 1,330 URLs marked as
malware. These 196 IPs are associated to 51 distinct clusters. A
total of 19 IPs hosting malicious links were associated to different
clusters (over time), but upon manual inspection of the webpages it
was clear that the different clusters were in fact just revisions of the
same, significant enough to push them into a distinct cluster. All but
18 of the IPs that the malicious URLs resolved to are outside EC2.
Interestingly, one IP address removed the malicious URL around 3
days after being detected, changed the webpage to include a differ-
ent malicious URL, and then changed it later to again include the
first malicious URL. The webpage on this IP in fact appears to be
legitimate (upon manual inspection), so it could be that the hosting
server is compromised.

For Azure, we found 14 malicious URLs hosted on 13 distinct
IPs that are associated to 11 clusters. All of these URLs are mal-
ware URLs. The malicious URLs were resolved to 19 IPs, and 7
of these IPs are in Azure. We did not find any malicious URLs that
were linked to by webpages in both clouds.

Below we say that an IP is malicious if it hosts a webpage includ-
ing a malicious URL. We define the lifetime of a malicious IP as the
number of days that an IP address has a malicious URL within its



Cluster Total #IP Mean
#IP

Median
#IP

Min #IP Max #IP Avg IP
uptime (%)

Max IP
departure (%)

Stable IP
(%)

Regions
used

Mean
#VPC IP

Category

1 51,211 33,145 33,513 30,624 34,509 73.8 6.6 49.9 2 1 PaaS

2 15,283 5,597 5,601 5,435 5,785 49.1 8.1 22.2 8 1,344 Cloud hosting

3 3,869 2,029 2,050 1,724 2,228 65.9 8.9 36.2 8 1,346 VPN

4 22,226 1,167 1,077 179 2,501 13.1 85.4 0.1 6 5 SaaS

5 8,488 617 403 57 1,836 14.1 81.3 0.1 1 0 Game

6 919 529 625 169 738 78.1 62.0 1.4 1 0 Shopping

7 1,928 370 320 141 622 26.2 86.3 1.6 1 0 PaaS

8 1,207 366 367 338 419 50.1 18.7 14.3 2 366 Video
9 303 281 285 269 291 94.5 6.3 89.1 1 0 Marketing

10 3,263 255 253 132 478 16.6 68.3 0.6 5 0 Cloud hosting

Table 15: Top 10 websites based on average number of IPs used per round, all in EC2.
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Figure 16: CDF of lifetimes of IPs hosting malicious content as in-
dicated by Google Safe Browsing in (left) EC2 and (right) Azure.

HTML. We find the lifetime of malicious IPs to be relatively long;
see Figure 16. In EC2, 62% of malicious IPs host malicious URLs
for more than 7 days, and 46% host malicious URLs for over 14
days. The lifetime of malicious IPs in EC2-VPC is slightly shorter
than in EC2-Classic. The longest availability of a malicious IP was
45 days in VPC and 93 days (the complete measurements period)
for classic. In Azure, about 70% of malicious IPs host malicious
URLs for more than 7 days, and 50% for at least 14 days.

We also find some IPs appear to serve as a “linchpin” for ma-
liciousness. A linchpin IP hosts a webpage that aggregates many
malicious URLs [37]. For example, we found at one point a partic-
ular IP address on EC2 contained 128 malware URLs (associated
with different domains); all of these URLs linked to webpages that
contained the Blackhole Exploit kit [38]. In our dataset, we iden-
tify five linchpin IPs that all host the same webpage. The malicious
URLs in these webpages point to 23 different domains. The aver-
age lifetime of the IPs that host these malicious URLs is 20 days.

VirusTotal. VirusTotal aggregates information from multiple en-
gines that detect malicious activity (e.g., AV products and black-
lists). One service VirusTotal provides is to query an IP address
to obtain a JSON report of malicious activity associated with the
IP. Each report contains passive DNS information for the IP, and
for each engine that detected malicious activity on that IP, the time
and type of the malicious activity, e.g, malicious URLs and MD5
hashes of malware hosted on the IP. During Feb. 2014, we used this
service to collect reports on all the IPs in EC2 and Azure.

VirusTotal aggregates information from the multiple engines
without validating their detections, thus it is possible that an en-
gine may (incorrectly) consider an IP address as malicious, when
other engines do not. To reduce false positives, we only consider
an IP address malicious when it is reported as malicious by two or
more engines. Even with this constraint there could still be some
false positives, which will be inherited by the following analysis.

After applying the above constraint, we find that from Sep. 30,
2013 to Dec. 31, 2013, there were 2,070 malicious IPs in EC2,
hosting 13,752 malicious URLs. The malicious IPs represent 0.3%

# Malicious IP
Region Oct Nov Dec Total

USEast 544 847 728 1,422
EU 60 106 107 200
USWest_Oregon 50 94 110 192
USWest_NC 18 56 44 91
SouthAmerica 8 28 32 57
AsiaSingapore 13 26 22 51
AsiaTokyo 7 19 23 35
AsiaSydney 5 14 6 22

Table 17: Number of IPs in each EC2 region labeled as malicious
by two or more engines in VirusTotal.

Domain # URLs

dl.dropboxusercontent.com 993
dl.dropbox.com 936
download-instantly.com 295
tr.im 268
www.wishdownload.com 223
dlp.playmediaplayer.com 206
www.extrimdownloadmanager.com 128
dlp.123mediaplayer.com 122
install.fusioninstall.com 120
www.1disk.cn 119

Table 18: Top 10 domains associated with malicious IPs in EC2 by
VirusTotal.

of the average available IPs in EC2. In contrast, no malicious IPs
were found in Azure. Table 17 breaks down the malicious EC2
IPs by region and month, showing an overall increase of malicious
activity over time.

We extract 2,888 unique domains from the 13,752 malicious
URLs. Of these, 222 (7.7%) contain the substring “download” in
their domain names. Table 18 shows the top 10 domains by number
of URLs that include the domain. The results show that Dropbox
(which runs on EC2) and other file hosting providers have become
a popular platform for distributing malware. The VirusTotal re-
ports show that 371 IPs belonging to Dropbox have been used to
distribute malicious content (the domains of these IPs all resolved
to “dl.dropboxusercontent.com” or “dl.dropbox.com”.) These 371
IPs hosted 1,929 malicious URLs and 2,421 pieces of malware.
Tr.im provides a URL-shortening service [39] that attackers some-
times use to hide malicious URLs. We observe some engines only
detecting the shortened URL, so the malicious page remains ac-
cessible via the malicious long URL. The remaining URLs in the
top 10 correspond to sites distributing adware and other potentially
unwanted software.
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Figure 19: CDFs of the number of days an IP address hosts the
same webpage (left) before first being labeled as malicious by
VirusTotal and (right) after last being detected as malicious by
VirusTotal.

WhoWas. We use WhoWas to analyze the content hosted over time
by the malicious EC2 IPs obtained from VirusTotal. Only 98 of the
malicious EC2 IP addresses appear in one of the final clusters in our
analysis. The others return default webpages or errors. These 98
IPs are associated to 166 different clusters: 63 IPs are associated to
only one cluster, 21 to two clusters, and five to three clusters. Two
of the IPs are associated to 19 clusters. Among these 98 IPs, we ob-
serve three types of malicious behaviors over time. The first type
corresponds to 34 IPs that host the same malicious webpage with-
out any changes over time. The second type are 42 IPs where the
same malicious webpage repeatedly appears and disappears. Once
detected, the malicious webpage is temporarily removed from the
IP, but returns several days later. The third type corresponds to 22
IPs that host multiple malicious webpages.

Next, we examine the lag time of the blacklists, defined to be
the time a blacklist takes to detect a malicious website after it goes
up. The engines in VirusTotal may scan an IP multiple times, gen-
erating multiple records, which may be associated with different
malicious webpages. For our purposes, there are two import time
points for any given webpage: (1) the first detection time, which
is the first time an engine labels a webpage on an IP as malicious,
and (2) the last detection time, which is the last time the malicious
webpage on that IP was reported as being malicious by an engine.
The last detection time also indicates when the engines believe the
webpage has become benign.

Using WhoWas, we compare the lifetime of a cluster associated
with a malicious IP address to those two time points. Figure 19
shows CDFs of the time between a webpage becoming available
and being marked as malicious by the blacklist (left graph), and
the time after being removed from blacklists that a malicious web-
page remains active (right graph). Overall, about 90% of type 1
and type 3 webpages, and 50% of type 2 are detected within three
days. Most of the type 1 and type 3 webpages are removed after
the last detection. But in type 2, only about 40% of webpages are
actually removed. There are some webpages that have a very long
lifetime. For example, a particular type 1 IP hosted malware for
at least 82 days (at the time of writing it is still available, in fact).
Anecdotally, we also found that it frequently changes its domain
name, presumably to avoid detection.

We can also use the clustering mechanism of WhoWas to find
new malicious IP addresses, by labeling as malicious IP addresses
in a cluster with a VirusTotal-labeled malicious IP address. In
this way, we label an additional 191 IPs. As a breakdown, 15
VirusTotal-labeled IPs each had one additional IP; 10 IPs had 2
additional IPs, 6 had 3, and 16 had 4–13. We manually inspected
the WhoWas records for these additional IPs, verifying the correct-
ness of the approach in every case. All this shows that WhoWas
can help find malicious activity.

8.3 Characterizing the Web Software Ecosys-
tem on Clouds

As a final case study to exercise WhoWas, we study the software
ecosystem of web services running the cloud. This includes the a
census covering the kinds of web servers, back-end software lan-
guages, website templates, and third party-trackers running on top
of EC2 and Azure.

In the rest of this section all the percentages reported are averages
taken over all rounds of measurement; we omit repeatedly referring
to them as averages for brevity.

Web servers and backend techniques. For EC2, we identified
the server software running on 89.9% (682 K on average) of the
available IPs. Apache (55.2%), nginx (21.2%), and Microsoft-IIS
(12.2%) are the most popular web servers, accounting for over
88.6% of the identified servers. MochiWeb is also used (30,372
servers on average, 4.4%), but the servers running it are only asso-
ciated with 47 clusters in total. Its use is almost entirely accounted
for by a single PaaS provider. We further identify the backend tech-
niques that support about 32% (215 K on average) of servers. Of
these servers, 52.6% are using PHP, followed by ASP.NET (29.0%)
and Phusion Passenger (8.1%). For the server usage and backend
techniques, we did not see any significant difference between VPC
and classic.

In Azure, we find, perhaps unsurprisingly, that the software
ecosystem displays less diversity. Microsoft-IIS runs on 89%
(about 86 K on average) of the identified servers in Azure. Only
about 7.6 K IPs are running Apache and 1.7 K are running nginx,
accounting for a total of 9.7% of identified servers. For back-ends
in Azure, we found that 94.2% are using ASP.net, followed by PHP
(4.3%) and Express (0.6%).

Examining the versions of commonly used servers, we find
new versions of servers are not being adopted quickly. Of the
Apache servers in EC2, 24.6% are using Apache/2.2.22, followed
by Apache-Coyote/1.1 (15.0%) and Apache/2.2.25 (7.6%). More
than 40% of identified Apache servers are using Apache/2.2.*. A
few IPs (208 in total) in EC2 use Apache 1.3.*. The most recent
version of Apache used in EC2 is Apache 2.4.7, and this is used by
147 IPs in the last round of measurement (the highest measured).
Surprisingly, some of the websites that employ a large number of
IPs are still using Apache/2.2.22.

In Azure, the top three IIS releases being used are 8.0 (39.0%),
7.5 (23.7%), and 7.0 (19.8%). Only 3.4% are using IIS 8.5.

The Security Engineering Research Term (SERT) reported the
ten most vulnerable server versions as determined by a large-scale
scan [40]. We find seven of the ten vulnerable servers are also being
used in both clouds. For example, in EC2 in total across all rounds
of measurement 2,641 IPs are running Microsoft-IIS/6.0, and 56
IPs are running ‘‘Apache/2.2.24 (Unix) mod_ssl/2.2.24 OpenSSL/
1.0.0-fips mod_auth_passthrough/2.1 mod_bwlimited/1.4 FrontPa
ge/5.0.2.2635’’. Most servers also use old releases of PHP. Of the
servers that are using PHP in EC2, 60% are using PHP 5.3.*. PHP
5.3.10 (24.5%), 5.3.27 (16.22%) and 5.3.3 (9.7%) are the 3 top used
PHP releases. The most recent version of PHP used in EC2 is PHP
5.4.23, used by 845 servers in the last round of measurement.

Website templates. We identify the template of webpages on
an average of about 26 K IPs (3% of available IPs) running on
EC2. The top 3 templates being used are: WordPress (71.1%),
Joomla! (9.7%) and Drupal (4.1%). In Azure, we only find tem-
plates for an average of about 950 webpages. WordPress (55%) and
Joomla! (12%) are still the most popular templates in this smaller
set.



WordPress versions below 3.6 contain a series of known cross-
site scripting (XSS) vulnerabilities [41]. More than 68% of the sites
using WordPress are running vulnerable versions of WordPress.
Checking the distribution of WordPress major versions we ob-
served from Sep. 30, 2013 to Dec. 31, 2013, WordPress 3.5.* (6.5 K
on average) and 3.6.* (5 K on average) are used by most of the
identified WordPress-using webpages. We saw that one month af-
ter WordPress 3.7.* (released on Oct. 14, 2013) and 3.8.* (released
on Dec. 12, 2013) were released, around 3,500 webpages and 2,500
webpages on average are using the new WordPress version, respec-
tively, but 3.5.* and 3.6.* are still the most popular WordPress re-
leases.

Third-party trackers. Many third party trackers work by having
site owners embed a specific piece of JavaScript, called tracking
code, into their webpage. We can determine if a website uses a
given tracker by searching for the tracker’s corresponding track-
ing code in the page’s HTML contents. This method will miss
trackers loaded dynamically or in the case that the code is mod-
ified by the site operator. Tracking code always contains a spe-
cial URL which can serve as a fingerprint. Using MySQL regular
expressions to search these fingerprints in the WhoWas database
provides a lower bound on the number of websites using a given
tracker. As a concrete example, for the tracker associated with
scorecardresearch.com, we construct a query string

‘‘<script.*http:\\/\\/b\\.scorecardresearch \\.com.*\\//script>”

which means search for ‘‘http://b.scorecardresearch.com’’ in the
JavaScript section of a page. The URL is the link to the tracker’s
service extracted from its tracking code.

We search for use of the trackers previously identified by Mayer
et al. [42]. Table 20 shows the Top 10 trackers used by websites in
EC2 and Azure on Dec. 31, 2013 (the last round of our measure-
ments). In both clouds, Google-Analytics, Facebook and Twitter
sharing widgets, and doubleclick are the most widely used third-
party trackers.

The Google Analytics service is the most popular tracker being
used in EC2-hosted and Azure-hosted websites. In EC2, we can
see on average 55 K clusters use this service. Using the service
requires a user to apply for a Google Analytics ID and put that
ID in her tracking code. We extract a total of 71,363 unique IDs
from the webpages over 275,513 unique IPs in EC2. These IDs
belong to 106,871 top-level clusters and 111,696 webpage clusters.
In Azure, we collect 6,254 IDs from 11,840 IPs. We also find 166
IDs appeared in both clouds. According to Google [43], a Google
Analytics ID can be split into two parts: user account and profile
identifier. For example, in an ID “UA-0000-*”, the “0000” is an ID
for the user. The user might use “UA-0000-01”, “UA-0000-02”,
and so on with different websites or applications. By checking IDs
we can quickly estimate a lower bound on the number of unique
websites in the two clouds, as well as the number of websites that
belong to the same user. In EC2, the collected IDs belonging to
64,716 user accounts. Of these accounts, 93.5% use only one pro-
file, 4.8% have two profiles, 1.6% have 3–11 profiles, and the rest
(0.1%) use 14–35 profiles. In Azure, the IDs belong to 5,794 user
accounts, 94.4% have one profile and 3.9% have two. An account
in Azure is at most associated with 13 profiles.

Websites may use multiple trackers. We observed 77% of
tracker-using webpages only use a single tracker, 16% use two
trackers and 6% use three trackers in EC2. In Azure, 81% of
tracker-using webpages use a single tracker, 15% use two trackers
and 3.8% use three trackers.

EC2 Azure

Tracker #IP #Clust. Tracker #IP #Clust.

google-analytics 127,604 55,406 google-analytics 6,839 5,148

facebook 24,130 13,462 facebook 1,615 1,253

twitter 14,706 8,520 twitter 1,115 696

doubleclick 5,342 2,189 doubleclick 316 178
quantserve 2,243 742 atdmt 50 31

scorecardresearch 1,509 475 scorecardresearch 40 29

imrworldwide 474 95 quantserve 35 25

serving-sys 383 136 serving-sys 11 7

atdmt 275 69 adnxs 10 6

yieldmanager 188 54 imrworldwide 7 4

Total 176,852 81,147 Total 10,037 7,376

Table 20: Top 10 third party trackers in EC2 and Azure (on Dec. 31,
2013)

9. CONCLUSION
A growing number of web services are being hosted on public

IaaS clouds such as EC2 and Azure. These cloud providers offer
a variety of features, such as elastic scale in/out and pay-as-you-
go payment models. Understanding how different tenants exercise
these features can inform a variety of work on workload modeling,
data center compute/network provisioning and placement, as well
as on securing tenants’ deployments. Unfortunately, however, very
little is known about prevalent usage patterns and their evolution
over time.

To shed light on this, we designed a measurement platform called
WhoWas. Using carefully designed active probes, WhoWas en-
ables direct measurements of what web services are running on
cloud-associated IP addresses. This data can be used to perform
lookups on particular IP addresses or web services, and retrieve a
history of their activities over the period of measurement.

This paper presented the design of WhoWas and reported on us-
ing WhoWas to perform a first-of-its-kind measurement studies of
usage patterns over time in EC2 and Azure, efficacy of blacklists
for malicious activities in clouds, and adoption of new Web soft-
ware by cloud customers.

Future work may include expanding WhoWas to analyze non-
web services, evaluate improved clustering heuristics and pro-
vide more rigorous estimates of clustering error, provide deeper
crawling of websites by following links in HTML, and correlate
WhoWas data with other sources such as passive or active DNS in-
terrogation. To facilitate such work, we have made the software
underlying WhoWas public and open source [3].
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