
Preprint

Scalable Interprocedural Analysis
A Pragmatic Approach

Mark Marron1 Ondřej Lhoták2 Anindya Banerjee1

1IMDEA-Software,2University of Waterloo
{mark.marron, anindya.banerjee}@imdea.org, olhotak@uwaterloo.ca

Abstract
When analyzing a program via an abstract interpretation framework
we would like to analyze the program in a context-sensitive inter-
procedural manner. Analyzing the program in a manner that con-
siders interprocedural flow can lead to much more accurate results
than local or context-insensitive analyses. However, the computa-
tional cost (both time and memory consumption) associated with
context-sensitive interprocedural analysis techniques makes them
infeasible for all but very small programs or simple domains.

This paper presents several novel, domain independent, heuris-
tics for reducing the cost of analyzing a program in a context-
sensitive manner while having a small impact on the precision of
the results. The heuristics are motivated by observations about fun-
damental properties of software design and the semantics ofitera-
tive dataflow analysis. We validate the effectiveness of theheuris-
tics via experimental evaluation which shows both good scalability
and high precision of the results.

1. Introduction
When analyzing a program in the framework of abstract interpre-
tation [4, 25, 27] there is a fundamental tension between precision
and performance when deciding how to handle call-context sensi-
tivity. While call-context insensitive approaches substantially im-
prove the performance of the analysis, they often result in overly
approximate analysis results. Conversely fully call-context sensi-
tive analyses are computationally intractable for all but trivial pro-
grams (or simple properties such as points-to relations [13, 33]).
Thus, there is interest in the development of heuristics that tradeoff
small amounts of precision for large increases in the analysis per-
formance [11, 17, 23]. In this paper we present a comprehensive set
of heuristics for addressing the performance bottlenecks that arise
when performing a context-sensitive analysis. We integrate them
into a context-sensitive and flow-sensitive dataflow analysis algo-
rithm that we use to drive the shape analysis of substantial Java
programs (the largest is 15KLOC and 90 classes, involving dynam-
ic/recursive call sequences, and substantial library usage).

Scalability Challenges. The standard approach for analyzing a
program in a flow and call-context sensitive manner involvesselect-
ing a base domain (intervals [4], linear relations [12], shape [1, 30],
regions [18], etc.) and then lifting this base domain to power-
sets. Thus at each program point the state of the program,θ =
{σ1, . . . ,σk}, is a set ofmodels where eachmodel, σ j, is an el-
ement from the base domain, referred to as theabstract analysis
states (or simply states). When analyzing method calls/returns the
abstract state is passed to and from the callee method and usually
(for efficiency) the analysis memoizes the input state and resulting
output state pairs for each method.

When analyzing a program in this manner there are three major
issues that lead to large increases in analysis runtime and mem-

ory usage: (a) growth in the number of models that the analysis
must process due to methods having multiple possible returnval-
ues (b) the related problem of growth in the number of models that
the analysis must process due to method calls that have multiple
possible implementations (i.e., overloaded virtual methods in ob-
ject oriented programs) and (c) the production of large numbers of
memoized call-context states for each method (which is particularly
important to the memory use of the analysis).

These issues lead to the analysis generating intractably large
sets of models that must be manipulated and large memotables
(which keep track of memoized call/return states for each method)
which require large amounts of memory and large numbers of
comparison operations. In this work we address these problems by
identifying points in the program where the sets of abstractmodels
can be aggressively merged into a smaller number of more abstract
models and construct a set of heuristics to decide how aggressive
to be in the merging. These merges produce smaller abstract states
and memotables and have only a small impact on the precision of
the final analysis results.

Method Call/Return Merge Heuristics. We address the first chal-
lenge (the combinatorial growth in the size of the model setsdue to
method calls) by using one of the fundamental concepts of object-
oriented programming and modular software development in gen-
eral: abstraction via method pre/post conditions. We assume in
this paper that the program we are analyzing follows good object-
oriented software development practices where the methodshave
well defined pre/post conditions. However, wedo not require that
these pre/post conditions be explicitly recorded in the code and our
analysisdoes not depend on knowing what the conditions are.

Based on this assumption we can, with a negligible impact on
the precision of the analysis, merge all of the callee accessible [6,
17, 29] parts of the abstract models at the given call site andthen
again at the return from the callee (this differs from simplecontext
insensitivity as we only merge models from the same call siteand
call-context). The return model from the callee is then expanded
back into each of the models at the caller site. Thus, when the
analysis encounters a call the cardinality of the model set after the
call is the same cardinality as the model set before the call (each
model before the call produces a single model after the call).

Virtual Method Merge Heuristics. The second challenge is com-
binatorial growth in the number of models when dealing with vir-
tual methods where there may be many possible method targets
for a single method invocation (generating multiplicativegrowth
even with the call/return merge described above). Our approach to
this problem is similar to the case of multiple return valuesfrom a
single method. We know that all of these methods must return pro-
gram states that respect the post-condition given in the base class
and further that each subclass implementation of the virtual method
should not assume anything that is not a consequence of the base

1 2009/12/20

class pre-condition [14]. Thus, we can, with a negligible loss of pre-
cision, merge some of the results of these calls returning a reduced
set of models from a virtual method invocation.

Hybrid Call Context Merge Heuristics. The final issue that we
examine is how to reduce the number of entries that are in the
method entry/exit state memotables. The challenge is to eliminate
redundant entries created during the iterative processes inherent to
dataflow analysis while ensuring that we do not cause the repeated
analysis of a given method body with the same abstract states.
To address these challenges we use a hybrid memotable match-
ing scheme that first takes into account the call path and then, de-
pending on the call path information the memotable lookup either
uses the domain equality or the weaker concept ofsubsumption (�,
Sec. 2) to find a matching memo entry. This hybrid call-path call-
context approach first checks if the call paths for the two call entry
states are equivalent. If they are then they must represent partial
approximations of the call/return semantics for the methodon the
same call path and can be safely merged (i.e. there is some recursive
call or loop body that the analysis is iterating on producingmulti-
ple approximations of a fixpoint). If the call paths differ then we use
the equality operator to determine if the two entries are equal. This
approach ensures that partial approximate contexts are merged to-
gether (eliminating redundant contexts while not impacting the hit
rate of the memo table) while contexts from distinct call states are
maintained precisely.

Contributions. In addition to the technical contributions, in-
troducing heuristics for call/return merging (Sec. 3) and hybrid
call-context sensitivity (Sec. 4), this paper presents theintegra-
tion of these concepts into an interprocedural analysis framework
(Sec. 5). This framework, which is a general-purpose methodfor
efficiently and precisely performing context-sensitive interprocedu-
ral dataflow analysis, is the overarching contribution of the paper.
Our experimental results (Sec. 6) with this dataflow analysis frame-
work indicate that the heuristics greatly increase the scalability of
the analysis, enabling us to perform shape analysis on a 15KLoc
program (which could not be analyzed without the heuristics) in
only 115 seconds and 122MB of memory. Our experimental results
also demonstrate that the heuristics have a negligible impact on the
precision of the analysis; in fact the results on the benchmarks suite
are near the precision limits of the base shape domain.

2. Domain Requirements
The interprocedural analysis framework presented in this paper
is designed to work with any abstract domain that satisfies the
standard requirements forabstract interpretation [4, 25]. Thus we
assume that we have a base domainD which defines a set of
abstract models {σ1, . . . ,σk}which form a lattice with the standard
concretization (γ), join (⊔), and order (⊑) operations. To ensure
good performance and accuracy we place the following additional
requirements on the domain:

• We assume that the domain provides project/extend opera-
tions [6, 17, 24, 29] as needed by the domain.

• We require an upper approximation operation⊔̃ with the prop-
erty,∀σi,σ j γ(σi) ⊆ γ(σi⊔σ j) ⊆ γ(σi⊔̃σ j).

• Using the upper approximation operator we define a subsump-
tion relation�: D ×D 7→ bool as σi � σ j iff σ j = σi⊔̃σ j.
We note that this definition implies: ifσi � σ j then γ(σi) ⊆
γ(σi⊔̃σ j) = γ(σ j). Thus the subsumption relation is order pre-
serving with respect to the concrete domain and we can safely
use it to determine when a fixpoint of the interprocedural anal-
ysis has been reached.

We assume the local dataflow analysis of each method is done
in a flow-sensitive manner using apartially disjunctive [15] set.
Thus, each abstractstate θ is a set of abstractmodels {σ1, . . . ,σ j}.
Sec. 6.1 contains a specific domain that satisfies these properties.

3. Call/Return Merge
The first topic we examine is how to deal with the combinatorial
growth in the size of the abstract states that can occur when ana-
lyzing method calls. In an object oriented programming language
there are two sources of this combinatorial growth. One source is
the potential that passing in and returning sets of abstractmodels
ends up lifting callee-local control flow information into the caller
scope, that is if there arek paths through the callee method and we
pass in a set ofm models then the result of analyzing the method
can containk ∗m models. The other source of exponential growth
in the size of the abstract state is that a dynamic method invocation
may have multiple possible targets (since we cannot always resolve
a precise invocation target), resulting in the creation of new models
for each possible target.

3.1 Entry/Exit Merge

We first look at how the growth in the number of models when
analyzing a single callee method can be controlled by merging all
of the models at call entry and exit (a heuristic used with minimal
explanation/justification in [17]). These merges ensure that the
number of models before the call is proportional to the number
after the call and based on the pre/post conditions of the methods
the precision loss due to this merge is negligible.

1. If the callee depends on some propertyP holding as part of the
precondition of the method then all models at each call sitemust
satisfyP.

2. If a propertyP is not enforced by the preconditions then the
calleemust test for this property internally if needed.

3. If a property is part of the post condition then every stateat the
exit of the methodmust satisfyP.

4. If a property is not enforced by the post conditions then the
callermust test for this property after the call if needed.

The first two conditions ensure that for every property that
holds on the program stateaccessible to the callee (e.g., for heap
properties this is the section of the heap accessible from the call
arguments [6, 17, 29]), that either it is part of the precondition
and holds for every abstract model or that the callee makes no
assumption on the property. For the first case, assuming the⊔̃
operator is reasonably precise, the result of merging the models
should have a small impact on the accuracy of the model.1 For
example if the callee assumes that a given argument (say variable
x) is alwaysnon-null then all calls to this method must only occur
with states wherex is non-null. Thus all abstract models should
entail thatx is non-null and the join of all these models should
result in a model that also entails thatx is non-null. In the second
case, assuming that tests for the propertyP in the callee can restore
(or at least closely approximate) the information lost by the join,
then there is again a negligible loss in precision. Considera singly
linked list class with aprintList method which is called from
a location where the argument may benull or non-null. If the pre-
condition of theprintList method does not place conditions
on the nullity of the argument, the method must contain a testof
the form if(l == null) {... }. At this point we can split
(assuming the analysis models nullity information) the abstract

1 Techniques for reducing the possible information loss in the merge (in
particular relational information) on call/return are examined in [16].

2 2009/12/20

model σ? where l may benull or non-null into two new
modelsσnull (where l must be null) and σnon-null where (where
l must be non-null), thus recovering much of the precision of the
original set of abstract models.

From the perspective of the caller the third and fourth properties
(along with call scope visibility) ensure that for every property P
of the program state after the call, either the propertyP is part
of the post-condition and holds for all models at method exit, it
is not enforced by the post-condition, or it involves parts of the
model that were not accessible to the callee and the value of the
property is assumed to be unchanged. In the first case, as the
property holds for all models, the join at method return loses no
information (as in the case of properties joined at the call entry).
In the second case the caller makes no assumptions about the
property, thus assuming that later tests for the property can restore
(or at least closely approximate) the information lost by the join,
there is a negligible loss in precision (as in the case of recovering
nullity information above). Finally in the third case if theproperty
does not involve part of the program state accessible to the callee
then the joins will not affect it (since the use of theproject/extend
operations [6, 17, 24, 29] ensure these parts of the abstractmodel
are not involved in the joins).

While the above approach works well in general, to obtain the
best performance we handle smallleaf methods such asgetters,
setters, and other simple methods as special cases. The computa-
tional cost of directly analyzing these small methods by passing in
and returning full model sets is less than the cost of performing the
required project/join/analyze/extend operations.

3.2 Dynamic Merge

The second issue that contributes to combinatorial growth when
analyzing method invocations in object-oriented programsis that
there may be many possible targets for the invocation of eachcall.
A simple example of this is an arithmetic expression evaluation
program. In this type of program there is often an abstract base
class (Exp) with a number of pure virtual methods (eval , . . .)
and many concrete subclasses (Add, Mult , . . .) that inherit from
the abstract base class and override the required methods. Even in
our relatively simple expression evaluator there are 6 subclasses of
Exp which all override a number of methods and there can easily
be much larger numbers. Thus, even if we employ the call/return
joins for the individual methods (ensuring that the analysis of each
method body produces a single model) the analysis of a call toone
of these overridden methods will, in this case, result in a factor of
6 growth in the number of models.

To address this problem we use a similar approach as was used
for the reduction in the number of models produced when analyzing
a single method body. One of the fundamental concepts of object-
oriented design is that when calling a virtual method it should be
transparent to the caller which of the child class implementations
is actually invoked. That is, the pre/post conditions of themethod
implementations in the subclasses must respect the pre/post condi-
tions of the overridden method in the base class.

Based on this observation we could decide to, just as for the case
of multiple models at call/return, merge the analysis results for each
possible invocation target into a single model that we return as the
final abstract model for the call. However, our experience indicates
that this is slightly too strong an approach. While the pre/post of
each subclass implementation must be consistent with the pre/post
conditions of the base class definition, the way in which the seman-
tics of the pre/post condition is satisfied can vary substantially de-
pending on how each particular subclass is implemented. These dif-
ferences are particularly strong when some of the subclasses have
non-recursive implementations of the virtual method whileother
classes have implementations that are recursive. OurExp evalua-

tor example illustrates this point: several subclasses (Add, Mult ,
. . .) of the Exp class implement the virtualeval method by re-
cursively evaluating other sub-expressions, while other subclasses
(Variable and Const , which may be shared between several
otherExp objects) have simple non-recursive implementations of
theeval method.

3.3 Call Analysis With Merge

Our approach to merging the call/return models for the invocation
of a single call to a dynamic method is to first partition the abstract
models and call targets based on the structure of the call target (sim-
ple leaf methods, builtin methods, non-recursive methods,recursive
methods), then process each of the possible targets in each group,
and finally to merge all the call results within each group. This gives
us theAnalyzeProc method shown in Alg. 1.

Algorithm 1: AnalyzeProc

input : programp, callermfrom, call sig.csig, stateθ
(mbi

to,m
sl
to,m

dag
to ,mrec

to)← p.getImpls(csig, θ);
θ f ← [];
for mto ∈mbi

to do
θt ← θ .copy();
p.analyzeBuiltin(mto, θt);
θ f .addAll(θt);

for mto ∈msl
to do

θt ← θ .copy();
p.analyzeDirect(mto, θt);
θ f .addAll(θt);

if ! mdag
to .empty() then

analyzeCallGroup(θ .copy(),θ f , csig, mfrom, mdag
to);

if ! mrec
to .empty() then

analyzeCallGroup(θ .copy(),θ f , csig, mfrom, mrec
to);

θ ← θ f ;

ThegetImpls algorithm takes a call signaturecsig and an abstract
stateθ . It then looks up every possible method target of that call
signature given the possible types of the receiver object (this).
These possible targets are partitioned into four categories mbi

to the
methods with special builtin semantics,msl

to the methods with sim-
ple bodies that which should be analyzed directly,mdag

to the methods
which are not recursive, andmrec

to the methods which are recursive.
These groups of methods are then analyzed as needed with the ar-
gument abstract state and the results are accumulated to produce
the result abstract state (θ f). The methodanalyzeBuiltin handles
the application of builtin domain semantics for specific methods
(i.e., java.io or java.util), and the methodanalyzeDirect
preforms the direct analysis of the bodies of simple leaf methods.

Algorithm 2: analyzeCallGroup

input : in θ , outθ f , sig.csig, callermfrom, targetsmtrgt
(θr, θu)← projectAll(csig, θ .copy());
(θm,θc)← ([

⊔̃
(θr)], []);

for mto ∈mtrgt do
θt ← θm.copy();
θt .assertReciverTypeIs(mto.declInClassType());
p.analyzeInvoke(mto, mfrom, θt);
θc.addAll(θt);

σr ←
⊔̃

(θc);
extendAllInto(θu, σr, θ f);

The analyzeCallGroup method (Alg. 2) takes a set of method
implementationsmtargets for a given virtual callcsig, and manages

3 2009/12/20

the analysis for each of the calls followed by merging the results.
The first step is to project out the inaccessible state of eachmodel
followed by merging the accessible portions of each model. Then
for each possible implementation we assert that the receiver object
is of the type that corresponds to the implementing method class
and analyze the implementation, accumulating the results of each
method analysis. Finally, we merge the results from each possi-
ble target and then extend this summary result back to the inac-
cessible sections of each model extracted earlier. These extended
models are then added to the final state set,θ f , as part of theex-
tendAllInto method. The methodanalyzeInvoke examines the call
graph (computed by the frontend) and selects one of the call graph
exploration strategies from Sec. 5. The two methodsprojectAll and
extendAllInto are used to manage the extraction and recombination
of the callee accessible and inaccessible program state (via domain
specificproject/extend operations as described in [6, 17, 29]).

Algorithm 3: projectAll

input : called method sig.csig, abstract stateθ
output: callee accessible and inaccessible components
(θr,θu)← ([], []);
for σ ∈ θ do

(σr,σu)← project(σ ,csig.args);
θr.add(σr);
θu.add(σu);

return (θr, θu);

Algorithm 4: extendAllInto

input : inaccessible componentθu, result modelσr, outθ
for σu ∈ θu do

θ .add(extend(σr.copy(),σu));

4. Partial Context Sensitivity
In this section we develop a context sensitivity heuristic that uses
both call-path information and domain equivalence to control the
creation and merging of call-contexts. Our goal in this combination
is to produce a heuristic that is able to use domain equality infor-
mation to ensure that semantically distinct call states to the method
are not merged together (as can happen when using a k-limitedcall
string or partial token approach [10, 23, 31]) but that the analysis
does not produce redundant call states that only represent interme-
diate steps in the fixpoint computation (as happens when using pure
domain equality as the call context [17]).

The problem of introducing infeasible call paths though merg-
ing call states (e.g., the classic k-limited call string approach) is
well known. However, the problem of creating large numbers of
semantically meaningless call-contexts that represent intermediate
states in the fixpoint computation is more subtle. Consider:

vo id ppa th (i n t k) {
a s s e r t (foo (5) == 0) ;
f o r (i n t i = 0 ; i < k ; ++ i)

System . ou t . p r i n t l n (foo (i)) ;
a s s e r t (foo (5) == 0) ;

}

i n t foo (i n t x) {
re turn (x == 5) ? 0 : x ;

}

If we were analyzing this program with a simple numeric do-
main such as intervals [4] in a fully context sensitive manner the
loop would produce a number of partial call contexts for the method

foo . Depending on the exact widening operation we could get the
models,x = [0], x = [0, 1] andx = [0, ∞), corresponding to the first,
second and third analysis passes over the loop body. However, no-
tice that the first two contexts are in fact just partial approximations
of the final loop body fixpoint [0,∞) and are never used again (the
other calls create/use the call contextx = [5]). Although these con-
texts are no longer useful they remain in the memotable, requiring
additional storage space and are continually involved in compar-
isons when checking for memotable matches.

If we were to use a strict call path comparison to determine
equality of call contexts this would eliminate the generation of spu-
rious call contexts in the loop body but would result in the redun-
dant analysis of the calls tofoo in the assert statements (although
these calls have identical call values they occur on different lines
and thus have different call contexts wrt. to call path information).
Other approaches, such as using a weaker form of comparison than
full equality (such as⊑ or partial context tokens [10, 23]) or using
some sort of heuristics to remove call contexts that do not appear
to be of use from the set of memoized analysis contexts, reduce
these issues but are not, independently, robust solutions to the prob-
lem. The use of weak forms of equivalence of call states (partial
tokens [10, 23] etc.) clearly leads to the propagation of infeasible
flow information (since they by definition use imprecise matching)
and heuristics that flush parts of the memotable (such as staleness)
suffer from the standard problems of overly aggressively flushing
useful states or letting the memotable fill with useless values.

The approach we take is to use a combination of call string in-
formation and model equivalence to determine how many contexts
are needed for each method. This is done by handling contextsfrom
different call paths (based on call string information) viafull do-
main equality and handling contexts that arise from the samecall
path in a completely insensitive manner (merging them). This ap-
proach allows us to use equality to determine the creation ofcon-
texts in cases where merging abstract state information from dif-
ferent call sites would propagate infeasible flow information, while
the call string information prevents the creation of multiple inter-
mediate contexts that result from repeatedly analyzing themethod
with approximations of the final call/return state. Thus, the use of
call strings limits the number of contexts created to one percall
path (with the usual caveats about strongly-connected components
in the call graph), while the use of abstract model equality prevents
the creation of large numbers of contexts that have different call
strings but the same abstract model value at call/return.

4.1 Call String Representation and Context Testing

We assume that we have a fixed call graph in the analysis. For non-
recursive calls we track the line number of each method invocation
in the call stack. For recursive calls (strongly-connectedcompo-
nents in the call graph) we ignore any calls within the strongly-
connected component (inserting⋆ in the call path string) and when
we encounter a call that exits the strongly-connected component we
add that call site to the call string (i.e., we ignore path information
inside the strongly-connected components of the call graph).

DEFINITION 1 (Call Path (η)). A call path state for a given pro-
gram p is a sequence of the form 〈ℓ1, . . . , ℓk〉 where the ℓi are from
the set {ℓi ∈N|∃ a method call at line i} ∪ {⋆}.

Given this representation for the call paths it is straightforward
to handle the updates of the current call paths at each call/return
via two methodspushCall(callLine, targetMethod, callGraph) and
popCall(callLine, targetMethod, callGraph).

During the analysis of a program in a classic context sensitive
analysis, when we encounter a call to a methodm with the call
context described by the model (σ) we look at the call contexts that
we have previously encountered when analyzing the method body

4 2009/12/20

{σ in
1 , . . . ,σ in

k }, and if we find a call context that is the same asσ
we simply return the already computed result (i.e., ifσ in

j = σ then
we can use the memoized analysis resultσout

j). We want to revise
this formulation to take into account the call path that leadto this
method invocation as well as the relations between the memoized
analysis values for the method and the current abstract model.

DEFINITION 2 (Memoized Abstract Analysis Models).For each
method m in the program we maintain a list of memoized (and
for recursive calls, potentially partial) abstract models σ in

i and
σout

i . Where when m is analyzed with the abstract model σ in
i the

resulting abstract model is σout
i . We augment these input/output

pairs with call path information on the set of call paths that corre-
spond to the given input/output pair. Thus, the memoized abstract
analysis table is of the form mtable = {λ1, . . . ,λk} where λi =
(paths = {η1, . . . ,η j}, in = σ in

i ,out = σout
i).

Alg. 5 shows how the path information is used to determine if
a given context is memoized and can be reused directly, if it is part
of a more general call state, or is a fresh call state.

The algorithm first determines which category the current call
model falls into. If there is a memotable entry that is associated
with the same call path as the current call (η) then we check if
the current call model (σ) is subsumed by the current input model
(λ .in) and if so we can just return the memoized output state
(λ .out). Otherwise we need to merge the current call model and
the current approximate input state to create a more generalmodel
(and we will need to recompute the memoized result at some later
point in time as well). Before we generalize the memoized input
we make sure that this particular memo entry is associated with
only the pathη via the splitEntryAsNeeded method (if we didn’t
do this we could, as other call paths may be associated with this
memo entry, spuriously generalize the state for other models from
unrelated call paths).

The other two cases correspond closely to what is done in
standard context sensitive analysis. We first check to see ifthere
exists some memotable entry with the same input model (λ .in)
as the current call model (σ) regardless of the call path. If there
is we simply return the memoized output model (λ .out) and add
the call path information to the set of call paths that this state is
related to (for later use in later invocations). If we cannotfind such
a memotable entry we create a new entry with the special bottom
value (⊥) and note that the caller needs to decide how to compute
the output model.

Algorithm 5: memoCheck

input : input modelσ , input call pathη, memo tablemtable
output: (flag , λ) whereflag ∈ {Memo,Compute}
if mtable contains λ s.t. η ∈ λ .paths then

if σ � λ .in then
return (Memo, λ);

else
mtable.splitEntryAsNeeded(λ);
λ .in← λ .in ⊔̃ σ ;
return (Compute, λ);

else if mtable contains λ s.t. σ = λ .in then
λ .paths.add(η);
return (Memo, λ);

else
λ ← ({η}, σ .copy(),⊥);
mtable.add(λ);
return (Compute, λ);

5. Analysis Algorithm
Now that we have techniques for handling calls/returns withmul-
tiple models, reducing the multiplicative effects of virtual method
invocation, and have a context heuristic for minimizing thesize
of method memotables, we can combine these techniques into a
complete interprocedural dataflow analysis method. This method is
then invoked from the local analysis phase by callinganalyzeProc
(Alg. 1) whenever a call is encountered.

The order in which methods are analyzed has a substantial
impact on the efficiency of the program analysis [11, 22, 24, 26, 28]
and thus we use a hybrid approach for call graph exploration that
varies the order based on structural information about the call graph
and the method bodies (similar to what is done in [11, 22, 28]).
In particular we distinguish between calls that are in a recursive
cycle (a strongly connected component in the call graph) andcalls
that are non-recursive. In the non-recursive case the analysis also
distinguishes between small leaf (orgetter/setter type methods) and
more complex methods, Alg. 1.

Analyze Recursive Call Inside SCC. TheanalyzeRecSame method
(Alg. 6) is used to analyze calls that are within the same recursive
component of the call graph. For these calls we want the analysis
to explore the call graph in a breadth-first manner as opposedto
the depth-first exploration used for non-recursive calls. This avoids
problems with depth first path exploration in densely connected
recursive call structures which can result in a number of long call
paths through the component being explored. Thus Alg. 6 sim-
ply checks for the current approximate abstract semantics of the
given abstract state (creating a new entry if needed) and returns
this approximate result. If the new call state is not subsumed by the
existing input approximation then we note that this result value is
approximate and needs to be reanalyzed.

We use two global worklistswlDown and wlUp which keep
track of the methods in a strongly connected component of a call
graph that need to be re-analyzed. ThewlDown list is added to
when we encounter a memo entry that needs to be re-analyzed
because the input model changed while thewlUp list contains
memo entries that need to be re-analyzed because the resultsof
one methods that they depend on has changed. The separation of
these two allows us a relatively fine grain of control over theorder
in which the methods in the call graph are processed.

In the case where this is the first time the methodmto has
been called from within the SCC (λ .out = ⊥) we compute the
base case approximation of the output model by callinganalyzeAs-
sumeNoRec which analyzes the body ofmto but assumes that only
control flow paths that are non-recursive can be executed. This is
a simple but important optimization to reduce the number of times
that the SCC needs to be traversed to reach a fixed point [22, 26]
(we immediately compute a first step up the lattice preventing un-
needed iterations of the fixpoint algorithm).

Algorithm 6: analyzeRecSame

input : programp, calleemto, abstract modelσ
(mval,λ)← mto.memoCheck(σ);
if mval= Memo then

return λ .out.copy();
else

if λ .out = ⊥ then
body← mto.getBody();
σc ← λ .in.copy();
λ .out← p.analyzeAssumeNoRec(body,σc);

wlDown.add((mto, λ));
return λ .out.copy();

5 2009/12/20

Analyze Call Into SCC. The analyzeRecNew (Alg. 7) algorithm
is used for the first call into a recursive component of the call graph.
It sets up the worklists and then runs the analysis of the methods
until the fixed point is reached (thus safely approximating the re-
sult of the call). TheanalyzeRecNew method (Alg. 7) initializes the
worklists by analyzing the method body (theanalyzeBody method,
which triggers the creation of the needed new memo entries inthe
analyzeRecSame method). While thewlUp andwlDown worklists
are non-empty we select a memo entry that may need to be repro-
cessed and perform the analysis (Alg. 8). Memo states that need
to be recomputed are added to the worklists as needed inanalyz-
eRecPending (Alg. 8) andanalyzeRecSame (Alg. 6). The entries
are processed in a breadth first fashion (methods are taken from the
front of thewlDown worklist and added at the back, while they are
added to the back and removed from the back of thewlUp worklist).
We also favor thedown calls to theup calls as we want to reach a
back edge in the SCC (giving a large step up the lattice) before we
begin propagating partial information back through the SCC.

Algorithm 7: analyzeRecNew

input : programp, calleemto, abstract modelσ
(mval,λ)← mto.memoCheck(σ);
if mval= Memo then

return λ .out.copy();
else

(wlUp,wlDown)← ([], []);
(change,pend)← (true, true);
body← mto.getBody();
λ .out← p.analyzeBody(body,λ .in.copy());
while change ∨ pend do

while (! wlUp.empty()) ∨ (! wlDown.empty()) do
if (! wlDown.empty()) then

(mpend, λ ′)← wlDown.popFront();
p.analyzeRecPending(mpend, λ ′);

else
(mpend, λ ′)← wlUp.popBack();
p.analyzeRecPending(mpend, λ ′);

σold ← λ .out;
λ .out← analyzeBody(body,λ .in.copy());
change = (σold 6= λ .out);
pend = (! wlUp.empty())∨ (! wlDown.empty());

Algorithm 8: analyzeRecPending

input : programp, methodmto, memo entryλ
σ ← p.analyzeBody(mto.getBody(),λ .in.copy());
if σ 6= λ .out then

λ .out← σ ;
foreach (mfrom, λ ′) that may depend on (mto, λ) do

wlUp.add((mfrom, λ ′));

Analyze DAG Call. The analyzeDAGCall method is used to an-
alyze the larger non-recursive methods. TheanalyzeDAGCall sim-
ply passes the state into the local analysis method and returns the
result. Analyzing the callee before returning to the analysis of the
caller results in the exploration of the call graph in a depthfirst or-
der for non-recursive calls, which is an optimal order for these calls.
Thus, this method is a straight forward check if the given path and
model are memoized and either computing the result model (orre-
turning a memoized value) as needed.

6. Experimental Evaluation
In order to evaluate the effectiveness of the interprocedural analysis
presented in this work we examine both the precision of the results
produced and the computational cost when analyzing variouspro-
grams.2 Since the analysis algorithm is a general purpose frame-
work we need to select a specific domain with which to instantiate
the algorithm. Since shape analysis is known to be a challenging
analysis domain and we have experience with the MTSA domain
(Sec. 6.1) we use this domain for the evaluation.

We use a number of benchmarks from a version of the Jolden
suite [8], two programs from SPECjvm98 [32], and two programs
(exp and interpreter) which were developed as challenge prob-
lems for interprocedural shape analysis. The JOlden suite contains
pointer-intensive kernels (taken from high performance computing
applications with minor changes to reflect modern object oriented
programming idioms). The benchmarksraytrace anddb are taken
from SPECjvm98 (with minor modifications to remove test harness
code and threading). The other benchmarks are a simple arithmetic
expression evaluator (exp) designed to stress the ability of the anal-
ysis to deal with virtual method invocations with multiple targets,
and a simple interpreter for the computational core of Java which
stresses both the interprocedural analysis and shape domain. Al-
though we use the hypothesis that methods have well defined pre/-
post conditions to motivate the development of the heuristics in this
paper, we emphasize that the analysisdoes not require them to be
explicit and the benchmark code is not annotated in any way.

Theexp program is an excellent challenge problem for this area
of research as it contains all of the fundamental difficulties of in-
terprocedural analysis (virtual methods, recursion, and non-trivial
calls out of recursive calls), a variety of heap analysis challenges
(heap structures with and without sharing, copy and destructive
traversals of the structures), and is small enough to understand
(both what is happening in the benchmark and how the analysis
proceeds through the program). The interpreter program stresses
many aspects of both the shape and interprocedural analysis. It is
a large program with many virtual classes and overridden meth-
ods. The heap structures are varied, from a large well definedtree
structure in the AST, symbol and local variable tables, a call stack
of pending call frames, and a very poorly defined cyclic structure
in the internal model of the heap built by the interpreter (thus the
heap analysis must be both precise and able to deal with ambiguity
efficiently). It also has substantial amounts of sharing (variables,
method signatures, and objects on the interpreter’s internal repre-
sentation of the heap are shared in multiple structures). The inter-
procedural analysis must also deal with a mixture of recursive/non-
recursive calls, methods that are called from multiple locations in
the program, and methods that are called in loops/recursivecalls
that produce multiple approximate fixpoint states.

6.1 MTSA Heap Domain

The MTSA [18, 19] heap domain is based on thestorage shape
graph approach [3]. In this approach the concrete state of the pro-
gram is viewed as an environment, mapping variables into values,
and a store, mapping addresses into values. We refer to the environ-
ment and the store together as the concrete heap, which is treated
as a labeled, directed multi-graph(V,O,R) where eachv ∈ V is a
variable, eacho ∈ O is an object on the heap and eachr ∈ R is a
reference (either a variable reference or a pointer betweenobjects).

We can partition the concrete heap into disjoint regions andde-
fine a number of structural concepts. Aregion of memoryℜ =
(C,P,Rin,Rout) consists of a subsetC ⊆ O of the objects in the
heap, all the pointersP = { (a,b, p) ∈ R | a,b ∈C∧ p ∈ L} that

2 Benchmarks and analysis source code are available online atwww.
software.imdea.org/ ˜ marron/software/software.html .

6 2009/12/20

Figure 1: Analysis result for the program state at entry to the stepSystem method inbh.

connect these objects, the references that enter the regionRin =
{ (a,b,r) ∈ R | a ∈ (V ∪O)\C∧b ∈C∧ r ∈ L} and references ex-
iting the regionRout = { (a,b,r) ∈ R | a ∈C∧b ∈O\C∧ r ∈ L}.

The abstract graph is a tuple of the form(V̂ , N̂, Ê,Û), where
V̂ is a set of abstract nodes representing the variables,N̂ is a
set of abstract nodes (each of which abstracts a regionℜ of the
heap), andÊ are the graph edges (each of which abstracts a set of
pointers). The set̂U is a set of labels that we attach to nodes and
edges in the abstract graph to further restrict the set of concrete
heaps that each shape graph abstracts. The labels allow us tomore
precisely model shape and sharing (among other properties)than
is possible using only the connectivity information present in the
graph structure. Based on the examination of client applications
that use heap information (program optimization, error detection,
and software engineering) we track the following properties in Û
which (in conjunction with the structural information in the graph)
provide the information needed for many client applications.
Abstract Layout. To approximate the shape of the heap in the re-
gion that a node abstracts, the analysis usesabstract layout proper-
ties{(S)ingleton, (L)ist, (T)ree, and(C)ycle}. The(S)ingleton prop-
erty states that there are no pointers between any of the objects ab-
stracted by the node, given a noden whereℜ = (C,P,Rin,Rout) then
P = /0. The other properties correspond to standard definitionsfor
list, tree, and cyclic structures [1, 5].
Sharing. As each edge may represent a set of pointers we want
to track how the targets of these pointers may be related (i.e., we
want to distinguish an array where each index refers to a unique
object from an array where the same object may be stored in
multiple indicies). We accomplish this by using an interference
property as described in [19]. Given an edgee that ends at node
n, we say it isnon-interfering (np) if it abstracts a set of references
{r1, . . . ,rm} s.t. allri,r j refer to objects that are in different weakly-
connected components of the region(C,P) represented byn.3 We
label an edgee asinterfering (ip) if it abstracts a set of references
{r1, . . . ,rm} s.t. there may existri,r j that refer to objects in the
same weakly-connected component of(C,P).

In the pictorial representations of the heap, nodes are repre-
sented as records of the formid , types , layout , wheretypes
is a set of all the object types the node may represent andid is a

3 Two nodes are in a weakly-connected component if there is a (possibly
non-empty) path between them (treating all edges as undirected).

unique identifier we give to the node to simplify discussion.Sim-
ilarly all (non-self) edges are labeled with records of the form
id , offset , interfere , whereoffset is the field name the
pointers are stored in (or? for pointers stored in collections) andid
is again a unique identifier.

6.2 Analysis Case Study

We begin by examining in detail the results of analyzing a single
program as a case study on the type of properties and the levelof
precision that the analysis can extract. Thebh (Barnes-Hut) pro-
gram preforms a gravitational interaction simulation on a set of
bodies (theBody objects) using afast-multipole technique with
a space decomposition tree. The tree is composed ofCell ob-
jects each of which has aVector containing references to other
Cell objects or references to theBody objects. The program also
keeps twoVector objects for accessing the bodies,bodyTab and
bodyTabRev . The positions (pos), velocities (vel), and accel-
eration (acc) values of the bodies are represented with composite
structures consisting of aMathVector object and adouble[] .
Using a common OOP idiom theCell andBody objects both in-
herit from an abstractNode class.

The result of the shape analysis at entry to thestepSystem
method in thebh program is shown in Fig. 1. The analysis is not
able to precisely resolve the construction of the space decompo-
sition tree and conservatively assumes it may be cyclic (theC in
node 17, representing theCell objects). However, the analysis
is able to determine that theCell objects and theBody objects
representdisjoint regions of the heap (nodes 14 and 17 have dis-
joint type sets). The analysis is also able to determine a number
of useful sharing properties with respect to how theBody objects
(node 14) are stored in the two vectors (bodyTab , node 11, and
bodyTabRev , node 18) and the space decomposition tree. In par-
ticular it has assumed that theCell objects in the space decompo-
sition tree may have aliasing pointers (theip entry in edge 18) while
there are no aliasing pointers stored inbodyTab or bodyTabRev
(edges, 3 and 21, abstracting these pointers have theinterfere prop-
ertynp). The analysis has also determined that eachMathVector
object is stored in a single field of a singleBody object (thenp in-
terfere label on the edges into theMathVector nodes) and the
MathVector objectsown their double[] arrays (thenp label
for thedata edges).

7 2009/12/20

Benchmark Region Shape Share
tsp 100% 100% 98%
em3d 100% 100% 99%
voronoi 97% 98% 98%
bh 100% 96% 96%
db 100% 100% 81%
raytrace 100% 95% 92%
exp 100% 100% 100%
interpreter 100% 97% 96%

Figure 2: Avg. accuracy of analysis results. Percentage of known
maximally precise properties computed by the static analysis for
region, shape and sharing properties of the abstract graph.

The results above are identical to the results obtained in pre-
vious work [18, 19] which used a dataflow analysis similar to the
analysis described in [17]. Thus, in this example the dataflow anal-
ysis optimizations cause no precision losses that would prevent the
application of the memory/TLP optimizations from [18, 19] and the
analysis time is reduced by a factor of 2.5.

6.3 Quantitative Precision

The case study provides an example of a nontrivial program in
which the analysis is able to extract a range of information on
shape, sharing, and regions. Aside from the misidentification of
the space decomposition tree as cyclic structure instead ofa tree
and that the references from the space decomposition tree tothe
Body objects may alias, the information precisely captures the set
of feasible program states. Formally, we say an abstract graph g
is maximally precise if there is no abstract heap graphg′ in where
g′ ⊑ g andg′ is also asafe approximation of the program state.

In this work we perform empirical evaluation of the precision
of the dataflow analysis results based on this concept ofmaximal
precision. We believe that this notion of precision is a better basis
for examining the impact of the heuristics on analysis results than
the use of a specific client application (which may hide many
precision losses thathappen to not matter for the particular client).

Recent work [20] has experimented with a general framework
for translating concrete program execution states into abstract mod-
els for debugging purposes (and provides the needed machinery to
accumulate these models at specific program points). Thus, for each
methodm we can construct an abstract graphgc

in, constructed from
the call states seen at the entry tom during a specific execution of
the program. Since this graph must represent under approximation
of the maximally precise heap graph (it is derived from a specific
run of the program) then given our statically computed heap graph
(gin), if gin = gc

in thengin is maximally precise. In fact in we can fur-
ther refine our comparison to be property specific (we can examine
the maximal precision of individual properties such as region iden-
tification, sharing, or shape). In thebh example there are 15 nodes
in the shape graph, all of which appear in the dynamically com-
puted graph, thus the analysis is 100% accurate wrt. to region iden-
tification. In the case of the shape information the analysiscorrectly
identified the shape of 14 of the 15 regions (i.e., 93% accurate) and
the analysis also correctly identified the sharing properties of 15 of
the 16 edges (i.e., 93% accurate).

Fig. 2 lists the accuracy of the analysis on each program av-
eraged over all methods in the program. We rate the accuracy
on region information, shape information, and sharing information
(i.e., whether pointers abstracted by an edgeinterfere). We can see
that overall the analysis results are very close to the limitof what
can be computed via the abstract domain that we have selectedto
work with. Thus, for the benchmarks examined here, the proposed

heuristics and dataflow analysis have a negligible impact onthe
precision of the results.

6.4 Analysis Performance

We next examine the time and memory requirements of analyzing
a program using the method described in this paper. The cost of
analyzing a program with a full powerset domain on call and re-
turn is generally infeasible (the No Opt column in Fig. 3) with the
heap domain we are using (all but two of the benchmarks time out).
The next variation of interprocedural analysis we examine (the Cal-
l/Ret column) uses an improved version of the technique described
in [17] along with the call-site merge heuristic from Sec. 3.1. The
analysis described in this paper (the Optimized column) uses the
call-site merge heuristics described in Sec. 3.1, the dynamic call
merge heuristics from Sec. 3.2, and the memotable matching oper-
ations described in Sec. 4. The analysis algorithm is written in C++
and compiled using MSVC 8.0. The analysis was run on a 2.6 GHz
Intel quad-core machine with 2 GB of RAM.

For each benchmark we list thenormalized LOC count as well
as the number of classes (not including standard library classes
from java.lang , java.io , and java.util). Normalized
LOC is the number of lines in the program where expressions/calls
are un-nested and the required stubs have been automatically added
by the frontend for handling the builtin Java libraries (thestubs add
a few hundred LOC on average, up to 1500 LOC for theinterpreter
program which uses many standard library classes).

Fig. 3 shows the aggregate performance of the analysis ap-
proaches. The timing measurements exclude the time required to
startup and read/transform the source program into the internal IR.
For the timeout we use a limit of 10 min. or 500MB of memory.

The no opt approach is unable to handle most of the bench-
marks, so we will not discuss it further. When compared to the
call/ret approach theoptimized technique is a factor of 2-4 faster in
all of the smaller benchmarks and enables the analysis to complete
the two challenge programs where thecall/ret analysis times out
(exp and interpreter). Both thecall/ret and optimized analysis re-
quire very little memory to analyze the simpler programs (less than
30MB). In fact in these simpler programs most of the memory that
is used is taken up by the executable and internal representation
of the program being analyzed. Thus, we do not attempt to further
break down the exact impact of the modified analysis on memory
use for these programs. However, as the size and complexity of
the program increases we see that theoptimized analysis improves
memory usage as well. For theraytrace program theoptimized in-
terprocedural analysis uses slightly less memory (38MB vs 45MB)
and in theinterpreter program the analysis only uses 122MB (lead-
ing us to believe that the analysis will continue to scale up well).
This is in contrast to thecall/opt analysis which was using 400MB+
before it timed out on theinterpreter program.

To understand the source of this difference in performance we
examine the impact of theoptimized analysis on the maximum
number of models in the model set during the local flow analysis,
the maximum number of memo entries for any method and the
average number of memo entries per method (shown in Fig. 4).
Looking at the results in the table we can see that the reduction in
the maximum model set size is moderate, on average reducing the
number by 1-2 models. However, as this number already is quite
low in the call/ret column it is not clear that more reduction is
possible without a large impact on precision. Conversely the impact
on the number of memo entries per method is quite significant.
This reduction occurs in the maximum number of entries (reduced
to 13 from 87 forraytrace, with a factor of 2 or more for many
others) and in the average number per method (near a factor of4
in some cases and an average reduction of around 1 context per
method for the rest of the benchmarks). This has a huge impacton

8 2009/12/20

Benchmark Statistics No Opt Call/Ret Merge Optimized
Name LOC Classes Time(s) Mem(MB) Time(s) Mem(MB) Time(s) Mem(MB)
tsp 910 2 1.81 ≤30 0.15 ≤30 0.03 ≤30
em3d 1103 5 1.12 ≤30 0.31 ≤30 0.09 ≤30
voronoi 1324 6 - - 1.80 ≤30 0.50 ≤30
bh 2304 7 - - 1.84 ≤30 0.72 ≤30
db 1985 3 - - 1.42 ≤30 0.68 ≤30
raytrace 5809 24 - - 37.09 45 15.5 38
exp 3567 17 - - - - 152.3 48
interpreter 15293 90 - - - - 114.8 122

Figure 3: Benchmark statistics and aggregate performance of the No Opt, Call/Ret, andOptimized analysis.

Benchmark Call/Ret Merge Optimized
Name Max Set Max Cont. Avg Cont. Max Set Max Cont. Avg Cont.
tsp 4 9 2.1 4 4 1.2
em3d 7 6 2 4 2 1.2
voronoi 3 53 10 3 6 1.8
bh 8 13 3.5 6 8 1.6
db 12 9 3.1 12 3 1.9
raytrace 65 87 9.1 32 13 2.2
exp - - - 18 11 2.1
interpreter - - - 14 37 1.8

Figure 4: Comparison ofCall/Ret andOptimized analysis on model set size and memo table entries.Max Set is the maximum number of
models in an abstract state set during local dataflow analysis,Max Cont. is the maximum number of entries in the memotable of any method,
andAvg Cont. is the average number of entries in each memotable.

the number of comparisons that need to be done to test if a given
call model is memoized and in the number of times each method
body is analyzed. As the program gets larger this reduction has a
large impact in the amount of time and memory needed to analyze a
program. We note that the impact of the techniques presentedin this
paper is small on the simpler benchmarks but become increasingly
important as the complexity increases indb and raytrace, and is
critical to successfully analyzingexp andinterpreter.

These results emphasize the robustness of the scaling of the
interprocedural analysis with respect to growth in model set and
memo table sizes. In particular the average number of memo entries
is nearly constant regardless of the size of the program (thus the
memory required by the analysis scales in a fairly linear waywith
the number of methods). We have been unable to analyze larger
programs due to the limited nature of the compiler frontend we used
in our prototype implementation (which translates from a subset of
the Java language to the intermediate form used by the analysis).
However we believe that the analysis can continue to scale to
larger programs and are currently integrating the analysisinto a
production level frontend. This integration will enable usto analyze
and evaluate the analysis over a much larger set of programs and
enable other researchers to utilize the analysis results.

7. Related Work
There has been a substantial amount of work on techniques for
speeding up interprocedural dataflow analysis. These rangefrom
methods for efficiently encoding call contexts using BDD’s [13,
33], to heuristics that alter the level of context sensitivity based on
structural properties of the call or flow graph [11, 21, 28], to meth-
ods for generating partial call context tokens [9, 23, 34]. The work
in this paper draws on the general concepts of context heuristics
presented in [11, 15, 21, 24, 28] and work on project/extend opera-
tions [6, 17, 29], to efficiently and precisely manage the challenges
presented by object oriented programs.

This work differs substantially from previous work in a number
of respects. While there has been work on heuristics for introducing
join points in programs and in support for flow structure aware join
heuristics [15, 21] these have focused on frameworks for thejoins
and not specific heuristics. The related work on context sensitivity
has used either partial context tokens [9, 23, 34] or limitedcontext
sensitivity based on call graph structure [11, 24]. Thus theapproach
taken in this paper of a combined call string and domain context
information is distinct and complementary to the previous work
(and in fact can be combined with previous techniques).

One of the key insights into this work is that there exist spe-
cific points in the program where the programmer makes gener-
alizing assumptions about the state of the program and thus most
of the subtle differences between abstract models in a givenab-
stract state are not critical to understanding the later behavior of
the program. This idea has been exploited implicitly in previous
work on interprocedural analysis which often applies some set of
heuristics for merging states either at call or local control flow
joins [17, 21, 35, 24] but do not provide justification (beyond the
experimental results) for why the specific set of join pointsselected
is a good choice.

Recent work on separation logic-based shape analysis [1, 35]
has also shown promise in scaling to large programs (up to a
12KLoc device driver). However, this work has focused on a class
of analysis problems that present different challenges from what
is encountered in this paper (and have different requirements on
the level of precision needed from the analysis). In particular the
programs they have analyzed are device drivers in C (thus do not
have inheritance or virtual calls). Restrictions are also placed on
sharing/aliasing and the types of data structures that are built. While
these limitations are reasonable in the context of verifying low-level
C programs such as device drivers (which use a small number of
well-defined heap-allocated structures in limited ways andwhere
the analysis results must be very accurate) they become overly
restrictive when moving to general purpose programs.

9 2009/12/20

This approach differs from recent work on abduction based ap-
proaches to shape analysis [2, 7] which infer call-context informa-
tion from the callee method instead of relying on a whole program
analysis to provide the call-contexts directly. While abductive anal-
ysis is very attractive from a scalability standpoint, as methods can
be analyzed independently, performing the needed abductive infer-
ences in the presence of complex heap structures is very difficult.
In [2] Table 1 nearly half of the methods inspected could not be suc-
cessfully analyzed even with the restricted heap model. However,
the combination of an abductive analysis followed by a context sen-
sitive interprocedural analysis presents a promising way to leverage
the strengths of both approaches.

8. Conclusion
This work introduced and provided justification for a numberof
heuristics for minimizing the size of the abstract states and the
memo tables that are created when performing flow-sensitive,
context-sensitive interprocedural analysis. The development of
novel heuristics for call/return sites and for dynamic methods with
multiple implementations led to substantial reductions inthe size
of the abstract states that the analysis is required to process (by pre-
venting combinatorial growth of the model based on the number of
call paths/possible targets of a call). This work also developed a
hybrid call path and domain context-sensitive equivalencerelation
which had a large impact on the number of entries in the memo ta-
bles while avoiding the propagation of infeasible flow information.

The impact of these contributions was demonstrated by integrat-
ing them into a complete flow-sensitive context-sensitive dataflow
analysis and then using this algorithm, and an existing highpreci-
sion shape analysis domain, to analyze a number of Java programs.
The results of the analysis on our benchmarks provide empirical
evidence that the heuristics drastically reduce the time required to
analyze a program, constrain the memory required to performthe
analysis, and have a small impact on precision. In the largest bench-
mark (a 15+ KLoc interpreter for the core of Java) the baseline
shape analysis times out at 10 min. and uses 400MB+ of memory
before being terminated. However, when we apply the heuristics
described in the paper the program can be analyzed in 114 sec-
onds and 122MB of memory. At the same time the precision loss is
negligible and we are able to extract precise (in fact near optimal)
region, shape, and sharing information about the program.

References
[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’Hearn, T. Wies,

and H. Yang. Shape analysis for composite data structures. In CAV,
2007.

[2] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional
shape analysis by means of bi-abduction. InPOPL, 2009.

[3] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointers and
structures. InPLDI, 1990.

[4] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. InPOPL, 1977.

[5] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclic graph? A
shape analysis for heap-directed pointers in C. InPOPL, 1996.

[6] A. Gotsman, J. Berdine, and B. Cook. Interprocedural shape analysis
with separated heap abstractions. InSAS, 2006.

[7] B. Gulavani, S. Chakraborty, G. Ramalingam, and A. Nori.Bottom-
up shape analysis. InSAS, 2009.

[8] Jolden Suite. http://www-ali.cs.umass.edu/DaCapo/.

[9] N. Jones and S. Muchnick. Flow analysis and optimizationof Lisp-
like structures. InPOPL, 1979.

[10] N. Jones and S. Muchnick. A flexible approach to interprocedural
data flow analysis and programs with recursive data structures. In
POPL, 1982.

[11] C. Lattner, A. Lenharth, and V. Adve. Making context-sensitive
points-to analysis with heap cloning practical for the realworld. In
PLDI, 2007.

[12] V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable
approach to infer linear inequalities. InVMCAI, 2009.

[13] O. Lhoták and L. Hendren. Evaluating the benefits of context-
sensitive points-to analysis using a BDD-based implementation.
ACM Trans. Softw. Eng. Method., 18(1), 2008.

[14] B. Liskov. Data abstraction and hierarchy. InOOPSLA, 1987.

[15] R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. Partially
disjunctive heap abstraction. InSAS, 2004.

[16] M. Marron, M. Hermenegildo, and O. Lhoták. Program analysis with
write invariant properties. InSubmission, 2009.

[17] M. Marron, M. Hermenegildo, D. Stefanovic, and D. Kapur. Efficient
context-sensitive shape analysis with graph based heap models. In
CC, 2008.

[18] M. Marron, D. Kapur, and M. Hermenegildo. Identification of
logically related heap regions. InISMM, 2009.

[19] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stefanovic, and
D. Kapur. Sharing analysis of arrays, collections, and recursive
structures. InPASTE, 2008.

[20] M. Marron, C. Sanchez, and Z. Su. Visualizing high-level heap ab-
stractions for program understanding and debugging. InSubmission,
2009.

[21] L. Mauborgne and X. Rival. Trace partitioning in abstract interpreta-
tion based static analyzers. InESOP, 2005.

[22] M. Méndez, J. Navas, and M. Hermenegildo. An efficient,parametric
fixpoint algorithm for analysis of Java bytecode. InBYTECODE,
2007.

[23] A. Milanova, A. Rountev, and B. Ryder. Parameterized object
sensitivity for points-to and side-effect analyses for Java. In ISSTA,
2002.

[24] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of
Variable Dependency Using Abstract Interpretation.JLP, 13(2/3),
1992.

[25] F. Nielson, H. Nielson, and C. Hankin.Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[26] G. Puebla and M. Hermenegildo. Optimized Algorithms for the
Incremental Analysis of Logic Programs. InSAS, 1996.

[27] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow
analysis via graph reachability. InPOPL, 1995.

[28] T. Reps, A. Lal, and N. Kidd. Program analysis using weighted
pushdown systems. InFSTTCS, 2007.

[29] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhelm.A semantics
for procedure local heaps and its abstractions. InPOPL, 2005.

[30] S. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems
in languages with destructive updating. InPOPL, 1996.

[31] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. InProgram Flow Analysis: Theory and Applications, 1981.

[32] Standard Performance Evaluation Corporation. JVM98 Version 1.04,
August 1998. http://www.spec.org/jvm98.

[33] J. Whaley and M. Lam. Cloning-based context-sensitivepointer alias
analysis using binary decision diagrams. InPLDI, 2004.

[34] R. Wilson and M. Lam. Efficient context-sensitive pointer analysis
for C programs. InPLDI, 1995.

[35] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and
P. O’Hearn. Scalable shape analysis for systems code. InCAV, 2008.

10 2009/12/20

