Preprint

Scalable Interprocedural Analysis
A Pragmatic Approach

Mark Marrort

Ondrej Lhotak

Anindya Banerjet

1IMDEA-Software,2University of Waterloo
{mark.marron, anindya.banerjee }@imdea.org, olhotak@uwaterloo.ca

Abstract

When analyzing a program via an abstract interpretationdaork
we would like to analyze the program in a context-sensititeri
procedural manner. Analyzing the program in a manner that co
siders interprocedural flow can lead to much more accuratgtse
than local or context-insensitive analyses. However, tiraputa-
tional cost (both time and memory consumption) associatiéa w
context-sensitive interprocedural analysis techniquake®s them
infeasible for all but very small programs or simple domains

This paper presents several novel, domain independenisheu
tics for reducing the cost of analyzing a program in a context
sensitive manner while having a small impact on the pregisio
the results. The heuristics are motivated by observatiboatgun-
damental properties of software design and the semantitsraf
tive dataflow analysis. We validate the effectiveness ofrheris-
tics via experimental evaluation which shows both goodadaitity
and high precision of the results.

1. Introduction

When analyzing a program in the framework of abstract imeerp
tation [4, 25, 27] there is a fundamental tension betweenigion
and performance when deciding how to handle call-contexsise
tivity. While call-context insensitive approaches suhstdly im-
prove the performance of the analysis, they often resulivarlp
approximate analysis results. Conversely fully call-eahtsensi-
tive analyses are computationally intractable for all bividl pro-
grams (or simple properties such as points-to relations 3B3.
Thus, there is interest in the development of heuristicstthdeoff
small amounts of precision for large increases in the aisajyer-
formance [11, 17, 23]. In this paper we present a comprevessit
of heuristics for addressing the performance bottlenea#tsarise
when performing a context-sensitive analysis. We integthém
into a context-sensitive and flow-sensitive dataflow arnglgtgo-
rithm that we use to drive the shape analysis of substardia J
programs (the largest is 15KLOC and 90 classes, involvimady
ic/recursive call sequences, and substantial libraryejsag

Scalability Challenges. The standard approach for analyzing a
program in a flow and call-context sensitive manner invosedsct-
ing a base domain (intervals [4], linear relations [12],mhEL, 30],
regions [18], etc.) and then lifting this base domain to pewe
sets. Thus at each program point the state of the progéam,
{o1,...,0}, is a set ofmodels where eachmodel, gy, is an el-
ement from the base domain, referred to asabsract analysis
states (or simply states). When analyzing method calls/returns the
abstract state is passed to and from the callee method aatyusu
(for efficiency) the analysis memoizes the input state ardltiag
output state pairs for each method.

ory usage: (a) growth in the number of models that the armlysi
must process due to methods having multiple possible refirn
ues (b) the related problem of growth in the number of modweds t
the analysis must process due to method calls that havepaulti
possible implementations (i.e., overloaded virtual meshim ob-
ject oriented programs) and (c) the production of large nenslof
memoized call-context states for each method (which isquéatly
important to the memory use of the analysis).

These issues lead to the analysis generating intractatgg la
sets of models that must be manipulated and large memotables
(which keep track of memoized call/return states for eacthoth
which require large amounts of memory and large numbers of
comparison operations. In this work we address these prsbiyy
identifying points in the program where the sets of abstraadels
can be aggressively merged into a smaller number of moreaabst
models and construct a set of heuristics to decide how agjgees
to be in the merging. These merges produce smaller absteaes s
and memotables and have only a small impact on the preci$ion o
the final analysis results.

Method Call/Return Merge Heuristics. We address the first chal-
lenge (the combinatorial growth in the size of the model datsto
method calls) by using one of the fundamental concepts @&obbj
oriented programming and modular software developmenem g
eral: abstraction via method pre/post conditions. We assum
this paper that the program we are analyzing follows goodatbj
oriented software development practices where the methads
well defined pre/post conditions. However, d@ not require that
these pre/post conditions be explicitly recorded in theecartd our
analysisdoes not depend on knowing what the conditions are.
Based on this assumption we can, with a negligible impact on
the precision of the analysis, merge all of the callee adulesfs,
17, 29] parts of the abstract models at the given call sitethed
again at the return from the callee (this differs from singpatext
insensitivity as we only merge models from the same callagi
call-context). The return model from the callee is then exieal
back into each of the models at the caller site. Thus, when the
analysis encounters a call the cardinality of the model et the
call is the same cardinality as the model set before the eatt
model before the call produces a single model after the.call)

Virtual Method Merge Heuristics. The second challenge is com-
binatorial growth in the number of models when dealing with v
tual methods where there may be many possible method targets
for a single method invocation (generating multiplicatiy®wth

even with the call/return merge described above). Our aubrdo

this problem is similar to the case of multiple return valéresn a
single method. We know that all of these methods must retton p
gram states that respect the post-condition given in the blass

When analyzing a program in this manner there are three major and further that each subclass implementation of the Vinethod

issues that lead to large increases in analysis runtime amd-m

should not assume anything that is not a consequence of #ee ba

2009/12/20

class pre-condition [14]. Thus, we can, with a negligibkslof pre-
cision, merge some of the results of these calls returnirgiaced
set of models from a virtual method invocation.

Hybrid Call Context Merge Heuristics. The final issue that we

examine is how to reduce the number of entries that are in the

method entry/exit state memotables. The challenge is tairgdite
redundant entries created during the iterative procesbesednt to
dataflow analysis while ensuring that we do not cause theategde

We assume the local dataflow analysis of each method is done
in a flow-sensitive manner usingrtially disunctive [15] set.
Thus, each abstrastate 6 is a set of abstrachodels {o1, ..., 0j}.

Sec. 6.1 contains a specific domain that satisfies theseriespe

3. Call/Return Merge

The first topic we examine is how to deal with the combinatoria
growth in the size of the abstract states that can occur whan a

analysis of a given method body with the same abstract states lyzing method calls. In an object oriented programming leae
To address these challenges we use a hybrid memotable matchthere are two sources of this combinatorial growth. Onecig

ing scheme that first takes into account the call path and tfeen
pending on the call path information the memotable lookdipegi
uses the domain equality or the weaker concegtibdumption (=,
Sec. 2) to find a matching memo entry. This hybrid call-path ca
context approach first checks if the call paths for the twoeraty
states are equivalent. If they are then they must represatigip
approximations of the call/return semantics for the metbodhe
same call path and can be safely merged (i.e. there is somesiex
call or loop body that the analysis is iterating on produaimgjti-
ple approximations of a fixpoint). If the call paths diffeethwe use
the equality operator to determine if the two entries areakdthis
approach ensures that partial approximate contexts argech¢o-
gether (eliminating redundant contexts while not impagtime hit
rate of the memo table) while contexts from distinct caltesteare
maintained precisely.

Contributions. In addition to the technical contributions, in-
troducing heuristics for call/return merging (Sec. 3) arnybrid
call-context sensitivity (Sec. 4), this paper presentsithegra-
tion of these concepts into an interprocedural analysisémork
(Sec. 5). This framework, which is a general-purpose method
efficiently and precisely performing context-sensitiveeiprocedu-
ral dataflow analysis, is the overarching contribution & faper.
Our experimental results (Sec. 6) with this dataflow analfrsime-
work indicate that the heuristics greatly increase theadulily of
the analysis, enabling us to perform shape analysis on a &KL
program (which could not be analyzed without the heuristies
only 115 seconds and 122MB of memory. Our experimental tesul
also demonstrate that the heuristics have a negligibleétpathe
precision of the analysis; in fact the results on the bencksnsuite
are near the precision limits of the base shape domain.

2. Domain Requirements

The interprocedural analysis framework presented in thisep

is designed to work with any abstract domain that satisfies th
standard requirements fabstract interpretation [4, 25]. Thus we
assume that we have a base domginwhich defines a set of
abstract models {01, ..., ok} which form a lattice with the standard
concretization), join (L), and order C) operations. To ensure
good performance and accuracy we place the following auiti
requirements on the domain:

the potential that passing in and returning sets of absinactels
ends up lifting callee-local control flow information intoet caller
scope, that is if there atepaths through the callee method and we
pass in a set ofn models then the result of analyzing the method
can contairk«m models. The other source of exponential growth
in the size of the abstract state is that a dynamic methoctatian
may have multiple possible targets (since we cannot alwes@ve

a precise invocation target), resulting in the creationesf models
for each possible target.

3.1 Entry/Exit Merge

We first look at how the growth in the number of models when
analyzing a single callee method can be controlled by mgrgih

of the models at call entry and exit (a heuristic used withimat
explanation/justification in [17]). These merges ensura the
number of models before the call is proportional to the humbe
after the call and based on the pre/post conditions of théadst
the precision loss due to this merge is negligible.

1. If the callee depends on some propdrthiolding as part of the
precondition of the method then all models at each callsits
satisfyP.

2. If a propertyP is not enforced by the preconditions then the
calleemust test for this property internally if needed.

3. If a property is part of the post condition then every stdtine
exit of the methodnust satisfyP.

4. If a property is not enforced by the post conditions them th
callermust test for this property after the call if needed.

The first two conditions ensure that for every property that
holds on the program stasecessible to the callee (e.g., for heap
properties this is the section of the heap accessible fracat
arguments [6, 17, 29]), that either it is part of the prectadi
and holds for every abstract model or that the callee makes no
assumption on the property. For the first case, assumingithe
operator is reasonably precise, the result of merging thdetso
should have a small impact on the accuracy of the mbdesr
example if the callee assumes that a given argument (sagblari
x) is alwaysnon-null then all calls to this method must only occur
with states wherex is non-null. Thus all abstract models should
entail thatx is non-null and the join of all these models should
result in a model that also entails thats non-null. In the second

e We assume that the domain provides project/extend opera-case, assuming that tests for the prop€rig the callee can restore

tions [6, 17, 24, 29] as needed by the domain.

¢ We require an upper approximation pperatmbwith the prop-
erty,vai, 0j y(ai) € y(ai L 0j) C y(ailoj).

* Using the upper approximation operator we define a subsump- condition of theprintList

tion relation=<: Z x 2 — bool asag; < gj iff g = gilg;.
We note that this definition implies: i < oj theny(qj) C
y(oilioj) = y(oj). Thus the subsumption relation is order pre-

serving with respect to the concrete domain and we can safely

use it to determine when a fixpoint of the interprocedural-ana
ysis has been reached.

(or at least closely approximate) the information lost by jiin,
then there is again a negligible loss in precision. Considgngly
linked list class with grintList method which is called from
a location where the argument may ¢l or non-null. If the pre-
method does not place conditions
on the nullity of the argument, the method must contain adést
the formiif(l null) {... }. At this point we can split
(assuming the analysis models nullity information) thetus

1Techniques for reducing the possible information loss i nferge (in
particular relational information) on call/return are eyaed in [16].

2009/12/20

model o, wherel may benull or non-null into two new
modelsapy (Wherel must be null) and Gnon-nuit Where (where
I must be non-null), thus recovering much of the precision of the
original set of abstract models.

From the perspective of the caller the third and fourth prioge
(along with call scope visibility) ensure that for every peoty P
of the program state after the call, either the propéttis part
of the post-condition and holds for all models at method, ékit
is not enforced by the post-condition, or it involves parftghe
model that were not accessible to the callee and the valuleeof t

tor example illustrates this point: several subclasgesi(Mult ,

...) of the Exp class implement the virtuaval method by re-
cursively evaluating other sub-expressions, while othlcksses
(Variable andConst , which may be shared between several
otherExp objects) have simple non-recursive implementations of
theeval method.

3.3 Call AnalysisWith Merge

Our approach to merging the call/return models for the iatioa
of a single call to a dynamic method is to first partition thetedct

property is assumed to be unchanged. In the first case, as themodels and call targets based on the structure of the cgdittésim-

property holds for all models, the join at method return sose
information (as in the case of properties joined at the aatity.

ple leaf methods, builtin methods, non-recursive methedsirsive
methods), then process each of the possible targets in eash,g

In the second case the caller makes no assumptions about theand finally to merge all the call results within each grougdsTives

property, thus assuming that later tests for the propemyrestore
(or at least closely approximate) the information lost bg jbin,

there is a negligible loss in precision (as in the case ofusriog

nullity information above). Finally in the third case if tipgoperty
does not involve part of the program state accessible todleec
then the joins will not affect it (since the use of theject/extend

operations [6, 17, 24, 29] ensure these parts of the abstradel

are not involved in the joins).

While the above approach works well in general, to obtain the

best performance we handle smiaghf methods such agetters,

setters, and other simple methods as special cases. The computa-

tional cost of directly analyzing these small methods bysjregsin
and returning full model sets is less than the cost of peifogrthe
required project/join/analyze/extend operations.

3.2 Dynamic Merge

The second issue that contributes to combinatorial growibnwv
analyzing method invocations in object-oriented prograsnhat
there may be many possible targets for the invocation of ealth
A simple example of this is an arithmetic expression evanat
program. In this type of program there is often an abstrastba
class Exp) with a number of pure virtual methodsval , ...)
and many concrete subclasségld, Mult , ...) that inherit from
the abstract base class and override the required methees.ift
our relatively simple expression evaluator there are 6lagbes of

Exp which all override a number of methods and there can easily

be much larger numbers. Thus, even if we employ the caltietu
joins for the individual methods (ensuring that the analydieach
method body produces a single model) the analysis of a cali¢o
of these overridden methods will, in this case, result incaofaof

6 growth in the number of models.

us theAnalyzeProc method shown in Alg. 1.

Algorithm 1: AnalyzeProc
input : programp, callermgom, call sig.cgg, Stated

(B, i, 9 m{&0) — p.getimplstsg, 6);

O —]

for my € Ml do
& < 6.copy();
p.analyzeBuiltinfryo, 6);
0:.addAll(6);

for my € i) do
6 — 6.copy();
p.analyzeDirectfyo, &);
B¢ .addAll(&);

if 1 m329 empty() then

analyzeCallGrougd(.copy(). 6 , Csg, Mrom, MeY);
if I mSC.empty() then

analyzeCallGrougd].copy(), 6, Csig, Mirom, M5°);
0 «— 6s;

Thegetimplsalgorithm takes a call signatucgg and an abstract
state@. It then looks up every possible method target of that call
signature given the possible types of the receiver objids ().
These possible targets are partitioned into four categm%:the
methods with special builtin semantiesg, the methods with sim-
ple bodies that which should be analyzed direcrxﬁ?,g the methods
which are not recursive, amd S the methods which are recursive.
These groups of methods are then analyzed as needed with the a
gument abstract state and the results are accumulated dagaro

To address this problem we use a similar approach as was usedhe result abstract stat@s). The methodanalyzeBuiltin handles

for the reduction in the number of models produced when aiady
a single method body. One of the fundamental concepts ottbje
oriented design is that when calling a virtual method it $tidae
transparent to the caller which of the child class impleratons

is actually invoked. That is, the pre/post conditions of tinethod
implementations in the subclasses must respect the ptefmodi-
tions of the overridden method in the base class.

Based on this observation we could decide to, just as fordbe ¢
of multiple models at call/return, merge the analysis tssor each
possible invocation target into a single model that we reag the
final abstract model for the call. However, our experienckciates
that this is slightly too strong an approach. While the pustpof
each subclass implementation must be consistent with #pgst
conditions of the base class definition, the way in which #raan-
tics of the pre/post condition is satisfied can vary subgthyide-
pending on how each particular subclass is implementedeTthié
ferences are particularly strong when some of the subddsses
non-recursive implementations of the virtual method wiaitber
classes have implementations that are recursive.Eprevalua-

the application of builtin domain semantics for specific lhoels
(i.e.,java.io or java.util), and the methodnalyzeDirect
preforms the direct analysis of the bodies of simple leahods.

Algorithm 2: analyzeCallGroup
input :in @, out B4, Sig.Csg, callermygny, targetamg
(6r, Bu) — projectAll(csg, 6.copy());

(9m7 9(:) — (H_'(GI’)LH)’

for mo S mrgt dO
& « 6m.copy();
6;.assertReciverTypelsty.decl InClassType());
p.analyzelnvoketo, Miom, &);
Bc.addAll(&);

or — L(6);

extendAllinto@,, o, 6%);

The analyzeCallGroup method (Alg. 2) takes a set of method
implementationsnrgets for a given virtual callcgg, and manages

2009/12/20

the analysis for each of the calls followed by merging theiltss
The first step is to project out the inaccessible state of ezmitel
followed by merging the accessible portions of each modeénT
for each possible implementation we assert that the recebject

is of the type that corresponds to the implementing methasscl
and analyze the implementation, accumulating the restiksich
method analysis. Finally, we merge the results from eaclsipos
ble target and then extend this summary result back to the ina
cessible sections of each model extracted earlier. Thesaded
models are then added to the final state 8gt.as part of thex-
tendAllInto method. The methodnalyzelnvoke examines the call
graph (computed by the frontend) and selects one of the igihg
exploration strategies from Sec. 5. The two methadgectAll and
extendAllInto are used to manage the extraction and recombination
of the callee accessible and inaccessible program statel¢wain
specificproject/extend operations as described in [6, 17, 29]).

Algorithm 3: projectAll

input : called method sigcgg, abstract staté
output: callee accessible and inaccessible components
(6, 6u) — ([.0):
for o € 6 do
(0r,0u) < project(o, cgg.args;
6 .add@r);

6u.addu);
return (6, 6);

Algorithm 4: extendAllinto

input : inaccessible componef, result model;, out 8
for oy € 6, do
6.addéxtend(oy .copy(), ou));

4. Partial Context Sensitivity

In this section we develop a context sensitivity heuridtiat tuses
both call-path information and domain equivalence to aarttre
creation and merging of call-contexts. Our goal in this covation
is to produce a heuristic that is able to use domain equatftyr-
mation to ensure that semantically distinct call statebéanethod
are not merged together (as can happen when using a k-licated
string or partial token approach [10, 23, 31]) but that thalysis
does not produce redundant call states that only representrie-
diate steps in the fixpoint computation (as happens wheig psire
domain equality as the call context [17]).

The problem of introducing infeasible call paths thoughgner
ing call states (e.g., the classic k-limited call string geh) is
well known. However, the problem of creating large numbsdrs o
semantically meaningless call-contexts that represéairirediate
states in the fixpoint computation is more subtle. Consider:
void ppath(int k) {

assert (foo(5) == 0);
for (int i 0; i < k; ++i)
System . out. println (foo(i));

assert (foo(5) == 0);
}
int foo(int x) {

return (x == 5) ?2 0 : Xx;
}

If we were analyzing this program with a simple numeric do-
main such as intervals [4] in a fully context sensitive marthe
loop would produce a number of partial call contexts for thehod

foo . Depending on the exact widening operation we could get the
modelsx =[0], x=[0, 1] andx = [0, »), corresponding to the first,
second and third analysis passes over the loop body. Howewver
tice that the first two contexts are in fact just partial apprations

of the final loop body fixpoint [Og) and are never used again (the
other calls create/use the call context [5]). Although these con-
texts are no longer useful they remain in the memotable itiegu
additional storage space and are continually involved imzar-
isons when checking for memotable matches.

If we were to use a strict call path comparison to determine
equality of call contexts this would eliminate the genenaif spu-
rious call contexts in the loop body but would result in theue-
dant analysis of the calls foo in the assert statements (although
these calls have identical call values they occur on diffeliees
and thus have different call contexts wrt. to call path infation).
Other approaches, such as using a weaker form of compatiaan t
full equality (such a$- or partial context tokens [10, 23]) or using
some sort of heuristics to remove call contexts that do npeap
to be of use from the set of memoized analysis contexts, eeduc
these issues but are not, independently, robust solutidhe fprob-
lem. The use of weak forms of equivalence of call states igdart
tokens [10, 23] etc.) clearly leads to the propagation ofasfble
flow information (since they by definition use imprecise rhitig)
and heuristics that flush parts of the memotable (such ansisd)
suffer from the standard problems of overly aggressivelghiilng
useful states or letting the memotable fill with uselesseslu

The approach we take is to use a combination of call string in-
formation and model equivalence to determine how many &tste
are needed for each method. This is done by handling corfterts
different call paths (based on call string information) fid do-
main equality and handling contexts that arise from the sealle
path in a completely insensitive manner (merging them)s Hii-
proach allows us to use equality to determine the creatiaroof
texts in cases where merging abstract state informatian fitif-
ferent call sites would propagate infeasible flow informatiwhile
the call string information prevents the creation of muétimter-
mediate contexts that result from repeatedly analyzingrathod
with approximations of the final call/return state. Thug tse of
call strings limits the number of contexts created to oneqadir
path (with the usual caveats about strongly-connected oneris
in the call graph), while the use of abstract model equaligyents
the creation of large numbers of contexts that have diftecafi
strings but the same abstract model value at call/return.

4.1 Call String Representation and Context Testing

We assume that we have a fixed call graph in the analysis. Fer no
recursive calls we track the line number of each method iztioa

in the call stack. For recursive calls (strongly-conneatechpo-
nents in the call graph) we ignore any calls within the sthipng
connected component (insertirgn the call path string) and when
we encounter a call that exits the strongly-connected compove
add that call site to the call string (i.e., we ignore patloinfation
inside the strongly-connected components of the call graph

DEeFINITION 1 (Call Path §)). A call path state for a given pro-
gram p is a sequence of the form (¢4, ..., ¢) where the ¢; are from
the set {¢; € N|3 amethod call atlinei} U {x}.

Given this representation for the call paths it is straigiwird
to handle the updates of the current call paths at eachetalifr
via two methodgushCall(callLine, targetMethod, callGraph) and
popCall(callLine, targetMethod, callGraph).

During the analysis of a program in a classic context seesiti
analysis, when we encounter a call to a methodavith the call
context described by the modet)we look at the call contexts that
we have previously encountered when analyzing the methdg bo

2009/12/20

{oj",...,q{"}, and if we find a call context that is the samecs
we simply return the already computed result (i.eq}ﬁ = o then
we can use the memoized analysis resifif'). We want to revise
this formulation to take into account the call path that leathis
method invocation as well as the relations between the mexdoi
analysis values for the method and the current abstractimode

DEFINITION 2 (Memoized Abstract Analysis Modelsfor each
method m in the program we maintain a list of memoized (and
for recursive calls, potentially partial) abstract models ;" and
aPUt. Where when m is analyzed with the abstract model gi" the
resulting abstract model is oi°”‘. We augment these input/output
pairs with call path information on the set of call paths that corre-
spond to the given input/output pair. Thus, the memoized abstract
analysis table is of the form mype = {A1,...,A} where A =
(paths={n1,...,n;},in= o, out = o).

Alg. 5 shows how the path information is used to determine if
a given context is memoized and can be reused directly,sfgait
of a more general call state, or is a fresh call state.

The algorithm first determines which category the currefit ca
model falls into. If there is a memotable entry that is asseci
with the same call path as the current cal) then we check if
the current call modeld) is subsumed by the current input model
(A.in) and if so we can just return the memoized output state
(A.out). Otherwise we need to merge the current call model and
the current approximate input state to create a more gemerde|
(and we will need to recompute the memoized result at sorse lat
point in time as well). Before we generalize the memoizediinp
we make sure that this particular memo entry is associatéld wi
only the pathn via the splitEntryAsNeeded method (if we didn’t
do this we could, as other call paths may be associated wiih th
memo entry, spuriously generalize the state for other nsofdem
unrelated call paths).

The other two cases correspond closely to what is done in
standard context sensitive analysis. We first check to steeit
exists some memotable entry with the same input modléh)
as the current call modeby) regardless of the call path. If there
is we simply return the memoized output modéldut) and add
the call path information to the set of call paths that thatests
related to (for later use in later invocations). If we caniied such
a memotable entry we create a new entry with the special footto
value (L) and note that the caller needs to decide how to compute
the output model.

Algorithm 5: memoCheck

input : input modelg, input call pathr, memo tablengye
output: (flag ,A) whereflag € {MemgCompute }
if mgpecontains A st. n € A.pathsthen
if o < A.inthen
return (Meno, A);
else
Mable-SPIItENtryAsNeeded();
Ain—A.inlJo;
return (Conput e, A);
elseif mgpie cOntains A st. = A.inthen
A .paths.add{);
return (Meno, A);
else
A —({n}, o.copy(), L);
Miable-2dd@);
return (Conmput e, A);

5. AnalysisAlgorithm

Now that we have techniques for handling calls/returns witit-
tiple models, reducing the multiplicative effects of vatunethod
invocation, and have a context heuristic for minimizing #iee
of method memotables, we can combine these techniques into a
complete interprocedural dataflow analysis method. Thikhatkis
then invoked from the local analysis phase by calbinglyzeProc
(Alg. 1) whenever a call is encountered.

The order in which methods are analyzed has a substantial
impact on the efficiency of the program analysis [11, 22, 34 28]
and thus we use a hybrid approach for call graph exploratian t
varies the order based on structural information aboutaigraph
and the method bodies (similar to what is done in [11, 22,.28])
In particular we distinguish between calls that are in a rsva
cycle (a strongly connected component in the call graph)caifid
that are non-recursive. In the non-recursive case the sisadyso
distinguishes between small leaf @&tter/setter type methods) and
more complex methods, Alg. 1.

AnalyzeRecursiveCall Inside SCC. TheanalyzeRecSame method
(Alg. 6) is used to analyze calls that are within the samersheel
component of the call graph. For these calls we want the aisaly
to explore the call graph in a breadth-first manner as opptsed
the depth-first exploration used for non-recursive callésvoids
problems with depth first path exploration in densely cotegc
recursive call structures which can result in a number of loall
paths through the component being explored. Thus Alg. 6 sim-
ply checks for the current approximate abstract semanfitheo
given abstract state (creating a new entry if needed) anoinet
this approximate result. If the new call state is not subsiibyethe
existing input approximation then we note that this resaltug is
approximate and needs to be reanalyzed.

We use two global worklistsviDown and wiUp which keep
track of the methods in a strongly connected component ofla ca
graph that need to be re-analyzed. T®own list is added to
when we encounter a memo entry that needs to be re-analyzed
because the input model changed while th&p list contains
memo entries that need to be re-analyzed because the refults
one methods that they depend on has changed. The separation o
these two allows us a relatively fine grain of control over dhger
in which the methods in the call graph are processed.

In the case where this is the first time the methmg has
been called from within the SCQ\ (out = 1) we compute the
base case approximation of the output model by calimdyzeAs-
sumeNoRec which analyzes the body ofy, but assumes that only
control flow paths that are non-recursive can be executed.i$h
a simple but important optimization to reduce the numbeimoés
that the SCC needs to be traversed to reach a fixed point [22, 26
(we immediately compute a first step up the lattice preventin-
needed iterations of the fixpoint algorithm).

Algorithm 6: analyzeRecSame

input : programp, calleemy,, abstract modetr
(mval,A) < my.memoChecky);
if mval= Meno then
return A.out.copy();
else
if A.out = L then
body — my.getBody();
Oc + A.in.copy();
A.out«+— p.analyzeAssumeNoRec(body);
wiDown.add(fro, A));
return A.out.copy();

2009/12/20

Analyze Call Into SCC. The analyzeRecNew (Alg. 7) algorithm

is used for the first call into a recursive component of thegralph.

It sets up the worklists and then runs the analysis of the oasth
until the fixed point is reached (thus safely approximating te-
sult of the call). TheanalyzeRecNew method (Alg. 7) initializes the
worklists by analyzing the method body (taealyzeBody method,
which triggers the creation of the needed new memo entridein
analyzeRecSame method). While thevUp andwlDown worklists
are non-empty we select a memo entry that may need to be repro
cessed and perform the analysis (Alg. 8). Memo states theat ne
to be recomputed are added to the worklists as neededaiyz-
eRecPending (Alg. 8) and analyzeRecSame (Alg. 6). The entries
are processed in a breadth first fashion (methods are taiertlfie
front of thewlDown worklist and added at the back, while they are
added to the back and removed from the back ofittiép worklist).
We also favor thelown calls to theup calls as we want to reach a
back edge in the SCC (giving a large step up the lattice) befar
begin propagating partial information back through the SCC

Algorithm 7: analyzeRecNew

input : programp, calleemy,, abstract modedr
(mval,A) — myp.memoChecky);
if mval= Meno then
return A.out.copy();
else
(WIUp,wiDown) « ({1, []);
(change, pend) « (true true);
body « my.getBody();
A.out— p.analyzeBody(body .in.copy());
while change Vv pend do
while (! wiUp.empty()) Vv (! wiDown.empty()) do
if (! wiDown.empty()) then
(Mpend, A”) < wiDown.popFront();
p.analyzeRecPendin®end, A');
else
(Mpend, A”) < wlUp.popBack();
p.analyzeRecPendin®end, A');
Jgid < A.out;
A.out«+ analyzeBody(body) .in.copy());
change =g q # A.out);
pend = (! wiUp.empty()) (! wiDown.empty());

Algorithm 8: analyzeRecPending

input : programp, methodm,, memo entryA
0 — p.analyzeBodyty,.getBody().A .in.copy());
if 0 # A.out then
A.out— ;
foreach (Mgom, A’) that may depend on (M, A) do

wlUp.add((ngrom, A”));

Analyze DAG Call. The analyzeDAGCall method is used to an-
alyze the larger non-recursive methods. BhalyzeDAGCall sim-
ply passes the state into the local analysis method ancheetbe
result. Analyzing the callee before returning to the arialg$ the
caller results in the exploration of the call graph in a deptt or-
der for non-recursive calls, which is an optimal order fagh calls.
Thus, this method is a straight forward check if the giverh zatd
model are memoized and either computing the result modeéfor
turning a memoized value) as needed.

6. Experimental Evaluation

In order to evaluate the effectiveness of the interprocadamalysis
presented in this work we examine both the precision of thelte
produced and the computational cost when analyzing vapoats
grams? Since the analysis algorithm is a general purpose frame-
work we need to select a specific domain with which to instaeti
the algorithm. Since shape analysis is known to be a chatigng
analysis domain and we have experience with the MTSA domain
“(Sec. 6.1) we use this domain for the evaluation.

We use a number of benchmarks from a version of the Jolden
suite [8], two programs from SPECjvm98 [32], and two progsam
(exp and interpreter) which were developed as challenge prob-
lems for interprocedural shape analysis. The JOlden saiteans
pointer-intensive kernels (taken from high performancesating
applications with minor changes to reflect modern objearagd
programming idioms). The benchmarkgtrace anddb are taken
from SPECjvm98 (with minor modifications to remove test legs
code and threading). The other benchmarks are a simplenestiit
expression evaluatoexp) designed to stress the ability of the anal-
ysis to deal with virtual method invocations with multipergets,
and a simple interpreter for the computational core of Javihv
stresses both the interprocedural analysis and shape nloAlai
though we use the hypothesis that methods have well defimgd pr
post conditions to motivate the development of the hegssti this
paper, we emphasize that the analyikies not require them to be
explicit and the benchmark code is not annotated in any way.

Theexp program is an excellent challenge problem for this area
of research as it contains all of the fundamental difficalté in-
terprocedural analysis (virtual methods, recursion, aomttnivial
calls out of recursive calls), a variety of heap analysidlehges
(heap structures with and without sharing, copy and destric
traversals of the structures), and is small enough to utaiets
(both what is happening in the benchmark and how the analysis
proceeds through the program). The interpreter prograessts
many aspects of both the shape and interprocedural andlyiss
a large program with many virtual classes and overridderhmet
ods. The heap structures are varied, from a large well defieed
structure in the AST, symbol and local variable tables, astatk
of pending call frames, and a very poorly defined cyclic stre
in the internal model of the heap built by the interpreteustithe
heap analysis must be both precise and able to deal with arbig
efficiently). It also has substantial amounts of sharingiéides,
method signatures, and objects on the interpreter’s iateapre-
sentation of the heap are shared in multiple structures.ifter-
procedural analysis must also deal with a mixture of revafson-
recursive calls, methods that are called from multiple tiocs in
the program, and methods that are called in loops/recucsiite
that produce multiple approximate fixpoint states.

6.1 MTSA Heap Domain

The MTSA [18, 19] heap domain is based on sherage shape
graph approach [3]. In this approach the concrete state of the pro-
gram is viewed as an environment, mapping variables intoegl
and a store, mapping addresses into values. We refer tovhreren
ment and the store together as the concrete heap, whictatedre
as a labeled, directed multi-gragtf, O,R) where eactv eV is a
variable, eaclo € O is an object on the heap and each Ris a
reference (either a variable reference or a pointer betwbpatts).
We can partition the concrete heap into disjoint regionsdexd
fine a number of structural concepts.région of memory [=
(C,P,Rin,Raut) consists of a subs&l C O of the objects in the
heap, all the pointer® = {(a,b,p) e R| a,be CApeL} that

2Benchmarks and analysis source code are available onlingwat.
software.imdea.org/ ~marron/software/software.html

2009/12/20

0, BTree, S

[{2, subp}] [19, root, np]

17, {Cell Vector}, C

[16, pos, np]

[18, 2, w, ip]

15, MathVector, S

[17, data, np]
Y

16, double[], S

[9, newAcc, np]

[10, acc, np]

7, MathVector, S

[14, bodyTab, np]

Y
14, Body, S

[12, bodyTabRev, np]

A

18, Vector, S

[3, 2, np]

[21,7?, np]

[8, pos, np]

[11, vel, np] 9, MathVector, S

[5, data, np]

[5, MathVector, S]

[3, MathVector, S] [4, data, np]

A [7, data, np]
8, doublef[], S ¥

Y

10, double[], S

[6, data, np]

[6, double(], S]

\
(4, doublef], s]

Figure 1: Analysis result for the program state at entry estepSystem method inbh.

connect these objects, the references that enter the r&ica
{(ab;r)eRjae (VUO)\CAbeCAr e L} and references ex-
iting the regionRyyt = { (a,b,r) e R|ac CAbe O\CAr eL}.
The abstract graph is a tuple of the fofwi,N,E,U), where
V is a set of abstract nodes representing the variathleis a
set of abstract nodes (each of which abstracts a regiaf the

heap), ancE are the graph edges (each of which abstracts a set of

pointers). The sef is a set of labels that we attach to nodes and
edges in the abstract graph to further restrict the set ofreta
heaps that each shape graph abstracts. The labels allowng¢o
precisely model shape and sharing (among other propettiar)

is possible using only the connectivity information presienthe
graph structure. Based on the examination of client apjxics
that use heap information (program optimization, erroedton,
and software engineering) we track the following propertieU
which (in conjunction with the structural information ingtigraph)
provide the information needed for many client applicagion
Abstract Layout. To approximate the shape of the heap in the re-
gion that a node abstracts, the analysis absgact layout proper-
ties{(S)ingleton, (L)ist, (T)ree, and(C)ycle}. The(S)ingleton prop-
erty states that there are no pointers between any of thetelzjb-
stracted by the node, given a nateherel = (C, P, Rin, Rout) then

P = 0. The other properties correspond to standard definifions
list, tree, and cyclic structures [1, 5].

Sharing. As each edge may represent a set of pointers we want

to track how the targets of these pointers may be related \iie
want to distinguish an array where each index refers to aueniq

object from an array where the same object may be stored in

multiple indicies). We accomplish this by using an integfege
property as described in [19]. Given an edgthat ends at node
n, we say it isnon-interfering (np) if it abstracts a set of references
{r1,...,rm} s.t. allrj,rj refer to objects that are in different weakly-
connected components of the regi@ P) represented bp.® We
label an edge asinterfering (ip) if it abstracts a set of references
{r1,...,rm} s.t. there may exist;,r; that refer to objects in the
same weakly-connected component{©fP).

In the pictorial representations of the heap, nodes areerepr
sented as records of the foiith, types , layout , wheretypes
is a set of all the object types the node may representcigla

3Two nodes are in a weakly-connected component if there ioss{ply
non-empty) path between them (treating all edges as uneifec

unique identifier we give to the node to simplify discussiSim-
ilarly all (non-self) edges are labeled with records of tloenf
id , offset , interfere , whereoffset is the field name the
pointers are stored in (&for pointers stored in collections) andi
is again a unique identifier.

6.2 AnalysisCase Study

We begin by examining in detail the results of analyzing @lsin
program as a case study on the type of properties and thedgvel
precision that the analysis can extract. Tahe(Barnes-Hut) pro-
gram preforms a gravitational interaction simulation onet af
bodies (theBody objects) using dast-multipole technique with

a space decomposition tree. The tree is compose@edif ob-
jects each of which hasVector containing references to other
Cell objects or references to tlB®dy objects. The program also
keeps twd/ector objects for accessing the bodiesdyTab and
bodyTabRev . The positions gos), velocities yel), and accel-
eration @cc) values of the bodies are represented with composite
structures consisting oflathVector object and alouble]]

Using a common OOP idiom theell andBody objects both in-
herit from an abstradtiode class.

The result of the shape analysis at entry to stepSystem
method in theébh program is shown in Fig. 1. The analysis is not
able to precisely resolve the construction of the spacerdpoe
sition tree and conservatively assumes it may be cyclic Gl
node 17, representing theell objects). However, the analysis
is able to determine that theell objects and thd8ody objects
representigoint regions of the heap (nodes 14 and 17 have dis-
joint type sets). The analysis is also able to determine abeum
of useful sharing properties with respect to how Buly objects
(node 14) are stored in the two vectobo¢yTab , node 11, and
bodyTabRev , node 18) and the space decomposition tree. In par-
ticular it has assumed that teIl objects in the space decompo-
sition tree may have aliasing pointers (tpentry in edge 18) while
there are no aliasing pointers storedodyTab orbodyTabRev
(edges, 3 and 21, abstracting these pointers havietiréere prop-
ertynp). The analysis has also determined that ddathVector
object is stored in a single field of a sindgd®dy object (thenpin-
terfere label on the edges into tHdathVector nodes) and the
MathVector objectsown their double[] arrays (thenp label
for thedata edges).

2009/12/20

Benchmark|| Region| Shape| Share
tsp 100% | 100% | 98%
em3d 100% | 100% | 99%
VOoronoi 97% 98% | 98%
bh 100% | 96% | 96%
db 100% | 100% | 81%
raytrace 100% 95% | 92%
exp 100% | 100% | 100%
interpreter 100% 97% | 96%

Figure 2: Avg. accuracy of analysis results. Percentagenofvk
maximally precise properties computed by the static analysis for
region, shape and sharing properties of the abstract graph.

The results above are identical to the results obtainedeén pr
vious work [18, 19] which used a dataflow analysis similarhe t
analysis described in [17]. Thus, in this example the dataedlioal-
ysis optimizations cause no precision losses that wouldepiehe
application of the memory/TLP optimizations from [18, 18Hahe
analysis time is reduced by a factor of 2.5.

6.3 Quantitative Precision

The case study provides an example of a nontrivial program in
which the analysis is able to extract a range of information o
shape, sharing, and regions. Aside from the misidentitioatif

the space decomposition tree as cyclic structure insteadtafe
and that the references from the space decomposition tréeeto
Body objects may alias, the information precisely captures éte s
of feasible program states. Formally, we say an abstragthgga

is maximally precise if there is no abstract heap graghin where

¢ C gandd is also asafe approximation of the program state.

In this work we perform empirical evaluation of the precisio
of the dataflow analysis results based on this conceptasfmal
precision. We believe that this notion of precision is a better basis
for examining the impact of the heuristics on analysis testhian
the use of a specific client application (which may hide many
precision losses thd&iappen to not matter for the particular client).

Recent work [20] has experimented with a general framework
for translating concrete program execution states intorattsmod-
els for debugging purposes (and provides the needed maghme
accumulate these models at specific program points). Thiusath
methodmwe can construct an abstract gragit constructed from
the call states seen at the entrymiauring a specific execution of
the program. Since this graph must represent under appatioim
of the maximally precise heap graph (it is derived from a specific
run of the program) then given our statically computed heaply
(gin), if gin = g%, thengy, is maximally precise. In fact in we can fur-
ther refine our comparison to be property specific (we can @geam
the maximal precision of individual properties such asaagden-
tification, sharing, or shape). In tivd example there are 15 nodes
in the shape graph, all of which appear in the dynamically -com
puted graph, thus the analysis is 100% accurate wrt. tomedén-
tification. In the case of the shape information the analysisectly
identified the shape of 14 of the 15 regions (i.e., 93% aceyeaid
the analysis also correctly identified the sharing propsmif 15 of
the 16 edges (i.e., 93% accurate).

heuristics and dataflow analysis have a negligible impacthen
precision of the results.

6.4 AnalysisPerformance

We next examine the time and memory requirements of angyzin
a program using the method described in this paper. The ¢ost o
analyzing a program with a full powerset domain on call and re
turn is generally infeasible (the No Opt column in Fig. 3)wihe
heap domain we are using (all but two of the benchmarks tirtle ou
The next variation of interprocedural analysis we examine Cal-
I/Ret column) uses an improved version of the techniqueridest

in [17] along with the call-site merge heuristic from Sed..3The
analysis described in this paper (the Optimized column} tise
call-site merge heuristics described in Sec. 3.1, the dimaall
merge heuristics from Sec. 3.2, and the memotable matcigieg o
ations described in Sec. 4. The analysis algorithm is vrritieC++

and compiled using MSVC 8.0. The analysis was run on a 2.6 GHz
Intel quad-core machine with 2 GB of RAM.

For each benchmark we list timermalized LOC count as well
as the number of classes (not including standard librargsela
from java.lang , java.io , and java.util). Normalized
LOC is the number of lines in the program where expressiafis/c
are un-nested and the required stubs have been automediddéd
by the frontend for handling the builtin Java libraries (dtebs add
a few hundred LOC on average, up to 1500 LOC foritherpreter
program which uses many standard library classes).

Fig. 3 shows the aggregate performance of the analysis ap-
proaches. The timing measurements exclude the time regtore
startup and read/transform the source program into thenialtéR.

For the timeout we use a limit of 10 min. or 500MB of memory.

The no opt approach is unable to handle most of the bench-
marks, so we will not discuss it further. When compared to the
call/ret approach theptimized technique is a factor of 2-4 faster in
all of the smaller benchmarks and enables the analysis tpleten
the two challenge programs where ttal/ret analysis times out
(exp andinterpreter). Both thecall/ret and optimized analysis re-
quire very little memory to analyze the simpler programsgl#nan
30MB). In fact in these simpler programs most of the memoay th
is used is taken up by the executable and internal repraégemta
of the program being analyzed. Thus, we do not attempt thduart
break down the exact impact of the modified analysis on memory
use for these programs. However, as the size and complekity o
the program increases we see thatdpgmized analysis improves
memory usage as well. For th@ytrace program theoptimized in-
terprocedural analysis uses slightly less memory (38MB5MB)
and in thenterpreter program the analysis only uses 122MB (lead-
ing us to believe that the analysis will continue to scale ughw
This is in contrast to theall/opt analysis which was using 400MB+
before it timed out on thiaterpreter program.

To understand the source of this difference in performanee w
examine the impact of theptimized analysis on the maximum
number of models in the model set during the local flow anajysi
the maximum number of memo entries for any method and the
average number of memo entries per method (shown in Fig. 4).
Looking at the results in the table we can see that the reatudati
the maximum model set size is moderate, on average redueng t
number by 1-2 models. However, as this number already i quit
low in the call/ret column it is not clear that more reduction is

Fig. 2 lists the accuracy of the analysis on each program av- possible without a large impact on precision. Conversedyirtipact
eraged over all methods in the program. We rate the accuracyon the number of memo entries per method is quite significant.

on region information, shape information, and sharingrimfation
(i.e., whether pointers abstracted by an eugerfere). We can see
that overall the analysis results are very close to the lohivhat
can be computed via the abstract domain that we have selected
work with. Thus, for the benchmarks examined here, the mepo

This reduction occurs in the maximum number of entries (cedu

to 13 from 87 forraytrace, with a factor of 2 or more for many
others) and in the average number per method (near a factbr of
in some cases and an average reduction of around 1 context per
method for the rest of the benchmarks). This has a huge ingpact

2009/12/20

Benchmark Statistics No Opt Call/Ret Merge Optimized
Name LOC | Classes|| Time(s) | Mem(MB) || Time(s) | Mem(MB) || Time(s) | Mem(MB)
tsp 910 2 1.81 <30 0.15 <30 0.03 <30
em3d 1103 | 5 1.12 <30 0.31 <30 0.09 <30
Voronoi 1324 6 - - 1.80 <30 0.50 <30
bh 2304 | 7 - - 1.84 <30 0.72 <30
db 1985 | 3 - - 1.42 <30 0.68 <30
raytrace 5809 | 24 - - 37.09 45 15.5 38
exp 3567 | 17 - - - - 152.3 48
interpreter | 15293 | 90 - - - - 114.8 122

Figure 3: Benchmark statistics and aggregate perfo

rmafrtbe dlo Opt, Call/Ret, andOptimized analysis.

Benchmark Call/Ret Merge Optimized

Name Max Set | Max Cont. | Avg Cont. || Max Set | Max Cont. | Avg Cont.
tsp 4 9 2.1 4 4 1.2
em3d 7 6 2 4 2 1.2
voronoi 3 53 10 3 6 1.8
bh 8 13 3.5 6 8 1.6
db 12 9 3.1 12 3 1.9
raytrace 65 87 9.1 32 13 2.2
exp - - - 18 11 2.1
interpreter - - - 14 37 1.8

Figure 4: Comparison dfall/Ret and Optimized analysis on model set size and memo table enthilex Set is the maximum number of
models in an abstract state set during local dataflow arsalMsix Cont. is the maximum number of entries in the memotable of any nigtho

andAvg Cont. is the average number of entries in each memotable.

the number of comparisons that need to be done to test if a give
call model is memoized and in the number of times each method
body is analyzed. As the program gets larger this reductaman
large impact in the amount of time and memory needed to aaalyz
program. We note that the impact of the techniques presantbis
paper is small on the simpler benchmarks but become inoglgsi
important as the complexity increasesdin and raytrace, and is
critical to successfully analyzingkp andinterpreter.

This work differs substantially from previous work in a nuenb
of respects. While there has been work on heuristics foodiuicing
join points in programs and in support for flow structure anjam
heuristics [15, 21] these have focused on frameworks fojdiimes
and not specific heuristics. The related work on contextigeits
has used either partial context tokens [9, 23, 34] or limiteatext
sensitivity based on call graph structure [11, 24]. Thusi@oach
taken in this paper of a combined call string and domain ctinte

These results emphasize the robustness of the scaling of theinformation is distinct and complementary to the previousrkv

interprocedural analysis with respect to growth in modélasel
memo table sizes. In particular the average number of metniegn

is nearly constant regardless of the size of the prograns (tihe:
memory required by the analysis scales in a fairly linear witi

the number of methods). We have been unable to analyze large
programs due to the limited nature of the compiler fronteedised

in our prototype implementation (which translates from lassu of

the Java language to the intermediate form used by the asalys
However we believe that the analysis can continue to scale to
larger programs and are currently integrating the analyécs a
production level frontend. This integration will enabletosnalyze

and evaluate the analysis over a much larger set of prograchs a
enable other researchers to utilize the analysis results.

7. Related Work

(and in fact can be combined with previous techniques).

One of the key insights into this work is that there exist spe-
cific points in the program where the programmer makes gener-
alizing assumptions about the state of the program and tlugs m
rof the subtle differences between abstract models in a giten
stract state are not critical to understanding the lateatieh of
the program. This idea has been exploited implicitly in pyas
work on interprocedural analysis which often applies sosteof
heuristics for merging states either at call or local cdnfimwv
joins [17, 21, 35, 24] but do not provide justification (begame
experimental results) for why the specific set of join posgkected
is a good choice.

Recent work on separation logic-based shape analysis [1, 35
has also shown promise in scaling to large programs (up to a
12KLoc device driver). However, this work has focused onassl
of analysis problems that present different challengem frchat

There has been a substantial amount of work on techniques foris encountered in this paper (and have different requirésnen

speeding up interprocedural dataflow analysis. These riange
methods for efficiently encoding call contexts using BDDIS [
33], to heuristics that alter the level of context sendijitiased on
structural properties of the call or flow graph [11, 21, 28]nteth-
ods for generating partial call context tokens [9, 23, 34je Work
in this paper draws on the general concepts of context himgris
presented in [11, 15, 21, 24, 28] and work on project/extereta
tions [6, 17, 29], to efficiently and precisely manage thdlehges
presented by object oriented programs.

the level of precision needed from the analysis). In paldicthe
programs they have analyzed are device drivers in C (thusoto n
have inheritance or virtual calls). Restrictions are alEwed on
sharing/aliasing and the types of data structures thataite\While
these limitations are reasonable in the context of verifyinv-level

C programs such as device drivers (which use a small number of
well-defined heap-allocated structures in limited ways ahere

the analysis results must be very accurate) they becomeyover
restrictive when moving to general purpose programs.

2009/12/20

This approach differs from recent work on abduction based ap
proaches to shape analysis [2, 7] which infer call-contefdrima-
tion from the callee method instead of relying on a whole paog
analysis to provide the call-contexts directly. While attilte anal-
ysis is very attractive from a scalability standpoint, aghnds can
be analyzed independently, performing the needed abevicfier-
ences in the presence of complex heap structures is verguiiffi
In[2] Table 1 nearly half of the methods inspected could mosiic-
cessfully analyzed even with the restricted heap model. édew
the combination of an abductive analysis followed by a cargen-
sitive interprocedural analysis presents a promising wégmerage
the strengths of both approaches.

8. Conclusion

This work introduced and provided justification for a numioér
heuristics for minimizing the size of the abstract stated te
memo tables that are created when performing flow-sensitive
context-sensitive interprocedural analysis. The devekq of
novel heuristics for call/return sites and for dynamic noehwith
multiple implementations led to substantial reductionshie size
of the abstract states that the analysis is required to psqbgy pre-
venting combinatorial growth of the model based on the nurobe
call paths/possible targets of a call). This work also davetl a
hybrid call path and domain context-sensitive equivalaetation
which had a large impact on the number of entries in the memo ta
bles while avoiding the propagation of infeasible flow imf@tion.
The impact of these contributions was demonstrated byriateg
ing them into a complete flow-sensitive context-sensitiatatiow
analysis and then using this algorithm, and an existing pigiai-
sion shape analysis domain, to analyze a number of Javagonsgr
The results of the analysis on our benchmarks provide eoapiri
evidence that the heuristics drastically reduce the tirgeired to
analyze a program, constrain the memory required to pertbem
analysis, and have a small impact on precision. In the labgesh-
mark (a 15+ KLoc interpreter for the core of Java) the baselin

shape analysis times out at 10 min. and uses 400MB+ of memory

before being terminated. However, when we apply the hécsist

described in the paper the program can be analyzed in 114 sec-

onds and 122MB of memory. At the same time the precision bss i
negligible and we are able to extract precise (in fact netima)
region, shape, and sharing information about the program.

References

[1] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. O’'Hedr Wies,
and H. Yang. Shape analysis for composite data structureSAY,
2007.

[2] C. Calcagno, D. Distefano, P. O'Hearn, and H. Yang. Cositimnal
shape analysis by means of bi-abductionP®PL, 2009.

[3] D. Chase, M. Wegman, and K. Zadeck. Analysis of pointerd a
structures. IrfPLDI, 1990.

[4] P. Cousot and R. Cousot. Abstract interpretation: a edifi
lattice model for static analysis of programs by constorctor
approximation of fixpoints. I#OPL, 1977.

[5] R. Ghiya and L. J. Hendren. Is it a tree, a dag, or a cyclappP A
shape analysis for heap-directed pointers in CPQPL, 1996.

[6] A. Gotsman, J. Berdine, and B. Cook. Interprocedurapstenalysis
with separated heap abstractions.SKS, 2006.

[7] B. Gulavani, S. Chakraborty, G. Ramalingam, and A. N&attom-
up shape analysis. BAS 2009.

[8] Jolden Suite. http://www-ali.cs.umass.edu/DaCapol/.

[9] N. Jones and S. Muchnick. Flow analysis and optimizatibhisp-
like structures. IPOPL, 1979.

10

[10] N. Jones and S. Muchnick. A flexible approach to intecprtural
data flow analysis and programs with recursive data strestuin
POPL, 1982.

[11] C. Lattner, A. Lenharth, and V. Adve. Making contextisitive
points-to analysis with heap cloning practical for the meatld. In
PLDI, 2007.

[12] V. Laviron and F. Logozzo. Subpolyhedra: A (more) sbida
approach to infer linear inequalities. YMCAI, 2009.

[13] O. Lhotak and L. Hendren. Evaluating the benefits oftern
sensitive points-to analysis using a BDD-based implentiemta
ACM Trans. Softw. Eng. Method., 18(1), 2008.

[14] B. Liskov. Data abstraction and hierarchy. ®OPSLA, 1987.

[15] R. Manevich, S. Sagiv, G. Ramalingam, and J. Field. i&brt
disjunctive heap abstraction. 8A\S 2004.

[16] M. Marron, M. Hermenegildo, and O. Lhotak. Programlgsis with
write invariant properties. I8ubmission, 2009.

[17] M. Marron, M. Hermenegildo, D. Stefanovic, and D. KapHfficient
context-sensitive shape analysis with graph based heaglsiobh
CC, 2008.

[18] M. Marron, D. Kapur, and M. Hermenegildo.
logically related heap regions. 18MM, 2009.

[19] M. Marron, M. Méndez-Lojo, M. Hermenegildo, D. Stetasc, and
D. Kapur. Sharing analysis of arrays, collections, and nece
structures. IMPASTE, 2008.

[20] M. Marron, C. Sanchez, and Z. Su. Visualizing high-ldveap ab-
stractions for program understanding and debuggingubmission,
2009.

[21] L. Mauborgne and X. Rival. Trace partitioning in abstraterpreta-
tion based static analyzers. BESOP, 2005.

[22] M. Méndez, J. Navas, and M. Hermenegildo. An efficigatrametric
fixpoint algorithm for analysis of Java bytecode. BNTECODE,
2007.

[23] A. Milanova, A. Rountev, and B. Ryder. Parameterizegecb
sensitivity for points-to and side-effect analyses foralain | SSTA,

Identificatief

[24] K. Muthukumar and M. Hermenegildo. Compile-time Dation of
Variable Dependency Using Abstract Interpretatiah.P, 13(2/3),
1992.

[25] F. Nielson, H. Nielson, and C. HankinPrinciples of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[26] G. Puebla and M. Hermenegildo. Optimized Algorithms tioe
Incremental Analysis of Logic Programs. $AS 1996.

[27] T. Reps, S. Horwitz, and S. Sagiv. Precise interprocadiatafiow
analysis via graph reachability. POPL, 1995.

[28] T. Reps, A. Lal, and N. Kidd. Program analysis using V&gl
pushdown systems. IRSTTCS 2007.

[29] N. Rinetzky, J. Bauer, T. Reps, S. Sagiv, and R. Wilhensemantics
for procedure local heaps and its abstractionsP@iPL, 2005.

[30] S. Sagiv, T. Reps, and R. Wilhelm. Solving shape-anslysoblems
in languages with destructive updating.ROPL, 1996.

[31] M. Sharir and A. Pnueli. Two approaches to interprocatidata flow
analysis. InProgram Flow Analysis: Theory and Applications, 1981.

[32] Standard Performance Evaluation Corporation. JVM@gsion 1.04,
August 1998. http://www.spec.org/jvm98.

[33] J. Whaley and M. Lam. Cloning-based context-sensipoimter alias
analysis using binary decision diagrams.PlrDI, 2004.

[34] R. Wilson and M. Lam. Efficient context-sensitive p@ntnalysis
for C programs. IPLDI, 1995.

[35] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. &ato, and
P. O’'Hearn. Scalable shape analysis for systems cod8AVhn2008.

2009/12/20

