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Abstract

The ability to accurately model the evolution of the programheap during the execution

of a program is critical for many types of program optimization and verification tech-

niques. Past work on the topic of heap analysis has identifieda number of important heap

properties (connectivity, shape, heap-based dependence information, and region identifi-

cation) that are used in many client applications (parallelization, instruction scheduling,

memory management) and has explored a range of approaches for computing this infor-

mation. However, past work has been unable to compute this information with the required

level of accuracy and/or has not been computationally efficient enough to make the anal-

ysis practical. The inability to precisely and efficiently extract this heap information has

limited the utility of many proposed optimization techniques, making the optimization

technique impractical or severely limited its effectiveness.

In the present work a general-purpose heap analysis technique is proposed. The major

objective is to provide the range of heap information neededby the optimization applica-

tions stated above, on real-world programs, in a computationally tractable manner. Keep-

ing tractability in mind, a set of properties/information required by client optimization
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applications, e.g., automatic parallelization, instruction scheduling, redundancy elimina-

tion transformation, stack allocation, pool allocation, object co-location, or static garbage

collection, is proposed. A set of design heuristics are selected to ensure that the analysis

is fast and precise in the common case, and to ensure good computational performance by

reducing precision in less common situations.

This general approach allows the construction of an analysis that satisfies a number of

key requirements for producing a practical heap analysis. The analysis can handle most of

the Java 1.4 language including major language features (arrays, virtual calls, interfaces,

exceptions) as well as the most commonly used standard Java libraries. No restrictions

are placed on the heap structures that are constructed and norestrictions on the recursive

data structures built or how these structures are connected/shared. The analysis is able

to provide precise information needed for a wide range of optimization applications —

aliasing, connectivity, shape, identification of logical data structures, and heap-carried data

dependence information. Finally in practice, this information is computed efficiently.

The technique has been implemented and used on a range of small to medium size

benchmarks from the JOlden and SPECjvm suites as well as a number of benchmarks

that were developed during this work. The analysis technique is evaluated using a num-

ber of detailed case studies which focus on the heap structures that the analysis is able

to identify in the program and how this information can be used in a variety of optimiza-

tion techniques (focusing on vectorization/loop scheduling, thread-level parallelization,

and memory management). Most of these benchmarks are naturally amenable to thread-

level parallelization, thus as a more empirical evaluationof the heap analysis results a

detailed evaluation of the analysis is done using the results to drive the parallelization of

the benchmark programs, resulting in a substantial speedupover the benchmark suites.

The runtime costs of the analysis are evaluated both in termsof the total analysis time

and the general scalability of the analysis. The results of this evaluation indicate that the

technique presented in this thesis is indeed a general purpose solution to the heap analysis
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problem (at least for small/medium size programs) that can be used to efficiently compute

precise and useful information for program optimization over a wide range of real world

Java programs.
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Chapter 1

Introduction

1.1 Motivation

The ability to identify relationships among data structures has a significant impact on the

effectiveness of program optimizations. Techniques from diverse areas such as optimizing

memory layouts, garbage collection, extracting thread-level parallelism, enhanced instruc-

tion scheduling, and the elimination of redundant memory operations have all been shown

to require or benefit substantially from improved information about a range of heap prop-

erties.

Early work on alias analysis [40, 63, 67], the identification of simpleconnectiv-

ity information [9, 18, 31, 38] and the explicit modeling ofmemory-carried depen-

dence[10,14,34,35] have been used to improve scheduling and the effectiveness of classic

redundancy elimination operations [10,39,45,64]. Other work focused on using more de-

tailedconnectivityandshapeto identify which sections of the heap are disjoint and thus

can be modified in parallel, which allows the introduction ofthread-level parallelism into

single-threaded programs [20,21,29].
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Chapter 1. Introduction

Work on optimizing memory layouts [11, 42, 52] uses information on how data struc-

tures are connected and the notion of identifying objects that are part of the same recursive

data structure to improve the locality of memory accesses inthe program. Other work on

memory management has focused on how to use connectivity andlifetime information to

either improve the performance of garbage collection [33] or to enable the static collection

of some parts of the heap [12,19,27,65].

While work in these areas examined the importance of identifying and utilizing in-

formation about various heap properties, the effectiveness of all these approaches was

limited (sometimes severely) by the inability to obtain this information with the desired

level of precision. The inability to compute precise heap information using simple variable

sharing properties [9, 18, 20, 31, 40, 63] motivated the development of more sophisticated

heap modeling approaches that tracked the shape and connectivity properties of the entire

heap [3, 24–26, 28, 43, 58–60, 68]. These approaches provided significant increases in the

level of accuracy, but they still lack the representationalcapacity to model important struc-

tures, such as arrays that point to the same object in multiple indices or unstructured cyclic

regions. They also do not provide support for the standard Java libraries, which are used

extensively in any non-trivial program (they either ignorethem or attempt to analyze them

directly, which is computationally expensive and often imprecise). The computational cost

of these approaches makes them infeasible for the analysis and transformation of realistic

programs. In many of these approaches analysis times are reported in the 100’s of seconds

even for small programs (a few thousand lines of code), or only simple micro-benchmarks

are analyzed. While some of these techniques have been efficiently applied to larger pro-

grams, severe restrictions are placed on the behavior of theprogram (e.g., the program

may only build lists without sharing).

2



Chapter 1. Introduction

1.2 Properties of Interest

Before we begin on the technical portion of the thesis we firstwant to look at the set

of heap properties that we have chosen as important and that we want to capture in our

analysis. Below we outline each of the properties that we would like the analysis to be able

to provide information on and references to the literature where this property (or similar

information) has been used in an optimization of application. Our study of the needs of

optimization applications in Section 1.1 provided a fairlysmall set of properties that are

sufficient to support the majority of optimization applications (and most other applications

can be supported by post-processing the results of the analysis). These properties can be

grouped into roughly three categories: connectivity (aliasing, reachability, interference and

shape), locality (region identification), and store properties (dependency and lifetime).

Aliasing. One of the most basic heap properties to model is the concept of aliasing

between variables [9, 40, 63, 67]. This property is used in almost every optimization or

verification technique that requires heap information. It is used heavily in optimizations

that perform simple redundancy elimination or scheduling optimizations [39,45]. Aliasing

answers the question: given variablesx andy , maythere exist a memory location that both

x andy refer to?

Connectivity. Two related but more general concepts arereachabilityandinterference.

These properties have significant applications in thread-level parallelization transforma-

tions [21, 29, 58]. These techniques utilize information onwhat parts of the heap must be

disjoint to determine that a given recursive call sequence or loop cannot have any heap-

carried data dependencies. Once this determination is made, the calls or loop iterations

can be re-written to run on multiple threads in parallel. Thereachabilitypredicate we con-

sider is: given two memory locations,m1, m2, does there exist a (potentially empty) path

of pointers that starts atm1 and ends atm2? We can also ask aboutinterference: given two

3



Chapter 1. Introduction

memory locations,m1, m2, does there exist a third memory locationm3 which is distinct

from m1, m2, such thatm3 is reachable fromm1 andm3 is reachable fromm2?

These properties were a major focus of the work in [18, 20, 38,60]. An interesting

feature of these approaches is the detail that they use to represent the paths. At one end

of the spectrum is the binary representation in [20] where the only information kept on

the paths is their existence. At the other end of the spectrumis the model for the paths

used in [18,25] where the sequence of fields and the number of times each field is taken is

modeled.

Shape. A major motivation for the modeling ofreachabilityandinterferencewas the use

of these properties to determine theshapeof some section of program memory. As with

reachabilityandinterference, the concept ofshapeof a given section of the heap enables

a range of thread-level parallelization transformations.Early work on shape analysis [20]

focused on the shape of the section of memory that was reachable from a given variable.

Usingreachabilityandinterferenceinformation, it is possible to determine if the memory

locations reachable from a variable are connected in aTreeshape, aDAG (Directed Acyclic

Graph)shape, or aCycleshape. More recent work on shape analysis has focused on more

precise methods for identifying the layout of recursive data structures [24,26,43,59,60].

Regions. A number of recent analysis techniques [3, 28, 41] have looked at the problem

of identifying regions of memory that are part of the samelogical data structure. In par-

ticular [41] demonstrated performance improvements that are possible by pool-allocating

objects that make up the same data structure in the same section of memory. In [33] the

idea of regions and connectivity was used to do garbage collection on small parts of the

heap (which are expected to contain large numbers of dead objects) and it was shown that

improved region identification had a substantial impact on the speed of the garbage col-

lector. The approach for identifying which objects are in the samelogical data structure

4
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is a heuristic notion based on a definition of what constitutes a recursive data structure and

when do two sections of the heap contain equivalent data structures. For example, [41]

uses allocation sites, call site context sensitivity, and local flow analysis to identify indi-

vidual data structures, while [28] uses the points-to sets computed in a preprocessing step

to partition the heap into sections. Finally [3] uses the separating conjunction (∗) as an

implicit partition of the heap into disjoint sections.

Memory-Carried Dependencies. Often the interest in the shape or connectivity of the

heap is to use the information as a proxy for identifying memory-carried data dependen-

cies. That is, if the analysis can determine that two portions of the heap are disjoint then

we can be certain that operations performed in one of the portions cannot affect the values

in the other portion of the heap. However, in general it wouldbe desirable to directly

track which portions of the heap may be modified by any given program statement. This

was partially explored in [34] but the imprecision of the heap model and the lack of field

sensitivity in the analysis severely limited the utility ofthe results. More recent work [53]

has shown promise but is still highly constrained by the baseheap model.

Object Lifetimes. The final property that is of interest to us is the identification of object

lifetimes. The ability to determine when an object dies allows a number of improvements

in managing a program’s memory. The first work on identifyingobject lifetimes attempted

to identify allocations that are local to a single procedure[19,65] (escape analysis). Other

work has generalized this to handle situations where objects may escape the local frame

and to identify objects that have similar lifetimes [13, 41,52]. More recent work has fo-

cused on how to statically identify the lifetime of individual objects to allow them to be

collected without the use of a garbage collector [12,27].
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1.3 Contributions

The major contribution of this thesis is the heap analysis technique. While there is ex-

tensive prior work on modeling the program heap this work represents the first approach

that is capable of analyzing small to medium size real-worldJava programs (that make use

of the range of language features, dynamic methods, arrays,the use of standard libraries,

exceptions, etc., present in real Java programs) in an efficient and precise manner. As our

experimental results show, we are able to efficiently produce precise heap information over

a wide range of programs that build and manipulate a diverse set of heap structures (lists,

trees, cyclic structures, and collections from the standard libraries, both with and without

sharing). The approach taken in this thesis is to identify and address the myriad problems

that arise when attempting to analyze the program heap and toaddress each of them in turn

in whatever manner is the most practical. Thus, throughout this work we draw on a range

of prior work and develop a number of novel techniques according to what is needed to

solve the problem at hand.

From the previous work we build on the ideas of astorage shape graphas presented

in [9], we heavily use the concepts of materialization of recursive structures and the appli-

cation of a focus operation from the Three-Value Logic Analysis (TVLA) work [59, 60],

we develop a notion of separation and identification of logically related portions of the

heap based on the ideas in [9,18,41,54], and we also draw fromthe ideas of shape in [20].

We extend these ideas in a number of novel ways:

• In Chapter 3 we extend the classicstorage shape graph modelinto a parametric

heap analysis framework by allowing it to be augmented with anumber of novel

instrumentation predicates.

• In Chapter 8 we use these instrumentation predicates to define materialization and

focus operations based on the ideas in [59, 60], which allowsus to precisely model

recursive data structures and sharing in the heap.

6



Chapter 1. Introduction

• In Chapter 9 we develop a modified set of local and interprocedural data-flow equa-

tions to efficiently analyze a program with these extended storage shape graphs.

• In Chapter 11 we use the natural explicit store representation present in the storage

shape graph model and we show how heap-carried data dependence information can

be precisely and efficiently computed.

In addition to solutions based on the extension of existing ideas with new properties

this work also introduces several new techniques for dealing with problems that arise when

analyzing the heap. In particular these techniques addressa number of problems which

have not been previously addressed (in any significant way) in the previous work on heap

analysis.

• In Section 3.3 we introduce a novel method for modeling unstructured sharing be-

tween heap structures. While most previous work has focusedon the precise mod-

eling of recursive data structures, very little attention has been paid to the problem

of modeling sharing between two distinct data structures orcollection objects.

• In Section 3.4 we further improve the support for modeling sharing by introducing a

second concept for sharing that not only allows us to precisely model if two collec-

tions or data structuresmayshare but also to precisely model on what objects they

mustshare.

• In Chapter 6 we explore a novel heuristic for identifying andgrouping logically

related sections of the heap based on a number of definitions which characterize

uniformsections of recursive data structures and contents of unbounded structures.

• In Chapter 10 we present a novel technique for modeling the semantics of collection

objects in the from the standard collection libraries in Java.
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To evaluate the effectiveness of the approach presented in this thesis and to show that

it is indeed “a practical technique for modeling the heap” weextensively evaluate how the

analysis performs (both in terms of the utility of the information produced and the compu-

tational cost of obtaining this information) on a range of small and mid size programs. We

draw from the JOlden Suite [37] and the SPECjvm98 suite [62] as well as developing some

of our own benchmark programs to ensure that our tests cover adiverse and representative

set of heap structures that are commonly built and techniques that are used to traverse or

update these structures.

Our case study evaluations of the analysis on the benchmarks(Chapter 5) and the paral-

lelization results and the experimental evaluation of the computational costs (Chapter 13)

demonstrate that we have produced a powerful, general-purpose analysis technique that

can be used to analyze small and medium size, real-world Javaprograms. While we have

not achieved our final goal of producing a fully general analysis (as the analysis frame-

work is still immature and there are open questions about scalability to large programs),

this thesis represents a substantial advance in the state ofthe art of heap analysis. We have

succeeded in developing a heap analysis method that is able to precisely model a wide

range of heap properties that are useful for program optimization. We can support nearly

the full Java language including many non-trivial featuressuch as full support for the stan-

dard Java collection classes. We have produced a (fairly robust) full implementation of this

method and verified that it can indeed produce information (in a computationally tractable

manner) that is useful in optimization applications. Thus,this work addresses (at least

for smaller programs) the long-standing open problem of producing accurate and useful

information about the shape and connectivity of the programheap and provides a solid

foundation for continued work to scale this solution up to much larger programs.
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1.4 Organization

The main body of the thesis is roughly divided into two major parts such that it is acces-

sible to a range of audiences. Chapter 2 through Chapter 5, along with Chapters 6 and 7

as needed, are designed to provide the reader interested in the potential applications of

this analysis with an understanding of what information canbe extracted by the analysis

and how it might be applied to various optimization applications. The second half of the

thesis, Chapters 8-11, are devoted to how the properties we are interested in are actually

computed. Since our main goal was the development of a practical heap analysis tech-

nique, work was done on many aspects of the problem: the modeldefinitions, the abstract

semantic operations, and the interprocedural analysis, all of which are discussed in the

second part of the thesis.
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Chapter 2

Concrete Model and Storage Shape

Graph

The approach taken in this work is based on theabstract interpretationframework pro-

posed by Cousot in [17]. This work formalized the concepts ofdata-flow analysis that

are used for many classic compiler analysis techniques [45]. The technique ofabstract

interpretationtakes an abstract model that capturesinterestinginformation about possible

concrete states of the program (in this work information about the program heap) and then

uses this model to statically determine all possible configurations of the concrete program

at each point in the program. The text [49] contains an extensive and accessible description

of the abstract interpretation framework and the requirements of the models. In Chapter 7

and Chapter 9 we present a variation on this framework that isspecialized for the particular

aspects of statically analyzing the heap.

Given this general framework we first (in this chapter) definea simple abstract model

and define the relationships between the abstract models andconcrete program states that

they represent. Thus in this chapter we introduce theLabeled Storage Shape Graphmodel

which is an extension of the classicStorage Shape Graphmodel described in [9,38]. The
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labeled storage shape graphis a parametric model that can be extended with additional

instrumentation properties to improve the precision of theanalysis and to allow us to track

information that cannot be expressed with astorage shape graph. Once we have defined

this model (and given a formalization of the concrete program heap) we can construct an

abstractionfunction and aconcretizationfunction that relates sets of concrete program

states to elements (models) in the abstract domain ofLabeled Storage Shape Graphs.

The labeled storage shape graphis a natural base representation for a large number

of the connectivity and shape properties that we are interested in, and it is simple to add

additional instrumentation properties to track other useful information about the concrete

heap. Thelabeled storage shape graphworks by using the nodes in the graph to repre-

sent regions of the concrete heap or variables, and the edgesrepresent sets of pointers or

variable targets.

2.1 Concrete Program Model

For the purpose of having a well-defined problem in this work we decided to restrict our

analysis to the Java language and associated libraries. However, the technique should be

easily generalizable to most memory-safe, object-oriented programming languages. In

particular we minimize the Java-specific idioms, and simplify the dataflow equations and

abstract semantic operations by preprocessing the Java source program into a simple (fairly

generic) intermediate representation.

The analysis is performed on a core sequential imperative language (MIL, Mid-level

Intermediate Language) with memory allocation and destructive updates. The MIL lan-

guage supports a wide range of object-oriented features including classes, interfaces, and

dynamic dispatch (on argument types as well as receiver class), and has support for an-

notating library methods with implementations or specialized semantic functions. That is,
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a library code can either be given as a direct implementationor we can specify a special

semantic function in the analysis that directly implementsthe required semantics of the

method. See Chapter 10 for an example from thejava.util library.

The computational core of the MIL language is statically typed and has the standard

range of primitive operations, method invocations, conditional constructs (if , switch ),

exception handling (try , throw , catch ), and the standard looping statements (for ,

do , while ). The state modification and expressions cover the standardrange of pro-

gram operations (load, store, and assign, along with logical, arithmetic, and comparison

operators). Below is a subset of the MIL grammar:

atom ::= var | literal

expr ::= atom| atom+atom| new type(atom, . . . ,atom) | atom. f

| atom.m(atom, . . . ,atom) | var instanceof type| . . .

stmt ::= var=expr| var. f =atom| break | . . .

contol ::= if (atom) blockelse block | while (atom) block | . . .

block ::= (stmt| control)∗

The semantics of the language is defined using an environmentthat maps variables

into values, and a store that maps addresses into values. We refer to the environment and

the store together as the concrete heap. We model the concrete heap as a labeled, directed

multi-graph ((V)ariables, (O)bjects, (R)eferences) where each variablev∈V is a variable

in the environment, eacho∈O is an object in the store, and each labeled directed reference

edger ∈R represents a reference (a pointer between objects or a variable reference). Each

reference has a storage location label that is either a field identifier from the program or

an integeri ∈ N (the integers label the pointers stored in the collection orarrays). For a

referencep∈ E we use the notationa
p
−→ b to indicate that the object/variablea points to

b via the referencep. We also use the notationa
ψ
; b to denote that there is a non-empty

path of references,ψ = 〈r1 . . . rk〉, in the concrete heap that starts ata and leads tob. We
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use the notationψ ⊆path{r1, . . . , r j} to denote that every reference that appears in the path

ψ is in the set of references{r1, . . . , r j}.

A regionof memoryℜ is a subset of the objects in memory, with all the pointers that

connect these objects and all the cross-region references that start or end at an object in

this region. Formally, letC⊆O be a subset of objects, and letP = {p | ∃a,b∈C,a
p
−→ b}

and Rcross= {r | ∃a ∈ C,x 6∈ C,a
r
−→ x∨ x

r
−→ a} be respectively the set of internal and

cross-region references forC. Then a region is the tuple(C,P,Rcross).

If we treat a subgraph,(C′,P′), of a given region,(C,P,Rcross) whereC′⊆C∧P′⊆P, as

an undirected graph we can defineweakly-connectedcomponents of the graph in the usual

way. For a regionℜ = (C,P,Rcross) and objectsa,b∈C, we saya andb areconnectedin

ℜ if they are in the same weakly-connected component of the subgraph(C′,P′). Objects

a and b are disjoint in ℜ if they are in different weakly-connected components of the

subgraph(C′,P′).

2.2 Example Concrete Heap and

Labeled Storage Shape Graph

Figure 2.1 shows a concrete heap that uses several types, a simple dummy data object,DN

≡ {int val }, a class that can be used to build a linked list containingDNobjects,LN≡

{DN data, LN next } and a pair class -PN≡ {LN first, LN second }.

In Figure 2.1 the variablel points to the head of linked list ofLN objects, the first

element in the list has anull data entry, the second two elements in the list share their

(d)ata targets with the array pointed to by variableA and the next two elements in

the list reference the sameDNobject which is also referred to by the variabley . These

elements in the linked list are also pointed to by the(f)irst and(s)econd fields of

a PN object and this object is referred to by the variablesp1 , p2 . Finally, the last two
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Figure 2.1: Concrete Heap

LN objects point to each other creating a cycle at the tail of thelist. Thus, this particular

heap contains a range of interesting structures and sharingrelations including an acyclic

list segment, a cyclic list segment, an array, and objects that are aliased as well as objects

that are unaliased.

Figure 2.2(a) shows one possible partition for this particular concrete heap into re-

gions. There are many possibilities for this partition but we selected this particular one to

illustrate the properties of the model and because it is verysimilar to what the heuristics

in the analysis would produce. The optimal partitioning seeks to group related objects

into the same recursive data structures and to group objectsthat are stored in the same

collections into the same regions. We describe in detail howthis is done in Chapter 6.

We have created regions for the singlePNobject, theDNobject pointed to byy and the

first LN object (referred to byl ). We have also chosen to group the 2nd and 3rd elements
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in the list together as a recursive structure as well as grouping the 4th and 5th together.

We group the twoDN objects stored in the array together since they are stored inthe

same collection. Finally, we have grouped the two cyclicLN objects into the same region.

These regions are shown in Figure 2.2(a) as dotted boxes (in green if color is available)

surrounding the nodes which have been grouped into the same region.

By abstracting the objects in the regions with nodes and the pointers between the re-

gions with edges we get theLabeled Storage Shape Graph (lssg)model shown in Fig-

ure 2.2(b). Each node and non-self edge is given a unique integer identifier and labeled

with the types of objects contained in the region (or a variable name). The edges are also

given unique integer identifiers and are labeled with the storage location (offset) that the

reference is stored in (a field identifier, a variable name, orthe special offset? for pointers

stored in an array). The only information retained in this model is the types of the objects

in the regions and some coarse connectivity information provided by the graph structure

and the edge storage location offsets.

It is clear that we have lost a considerable amount of information that was present in

the concrete heap using this basic abstraction. For example, it is no longer clear that the

pointers in arrayApoint to differentDNobjects, and the same holds for the(d)ata entries

in the linked list represented by node 2. Additionally, we have lost relational information

between various references in the heap, for example we do notknow if the variablesp1

andp2 alias, if the(f)irst and(s)econd fields of the pair refer to the same object,

different objects, of if there is a path from the object the(f)irst field refers to the object

that the(s)econd field refers to. Finally we know that there is some sort of internal

connectivity in the three regions that we identified as containing LN objects (based on the

self edges) but we do not know if this internal connectivity indicates cyclic structures or

only simple acyclic lists.

The loss of this information due to a lack of expressive powerin the model has a

substantial impact on the utility of this approach to support the optimization applications
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(a) Concrete Heap With Regions Marked

(b) Abstraction Heap Graph

Figure 2.2: Concrete Heap With Partition and Basic Abstraction
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we are interested in. In Chapter 3 we introduce a number ofinstrumentation properties

that will allow us to more precisely express various properties of the concrete heap which

are needed to effectively and consistently be able to perform the program optimizations

we are interested in.

2.3 Abstraction and Concretization

Given a concrete heap(V,O,R) and a partition,Ξ, of the objects in this heap into regions

we can abstract the concrete heap graph into alabeled storage shape graph((V̂)ariables,

(N̂)odes, (Ê)dges, L̂n, L̂e), whereL̂n is a map from the nodes to their labels (the integer

identifiers and sets of type names) andL̂e is a map from the edges to their labels (the

integer identifiers and offsets). This is done using the following abstraction function (α):

Definition 1 (Abstraction (αlssg) given partitionΞ). Given a concrete heap(V,O,R) and

Ξ a partition of the objects O we can construct alabeled storage shape graphthat approx-

imates the given heap as follows:

1. For each variable v inV a variable node is added and labeled with the variable

name.

2. For each regionℜ = (C,P,Rcross) in Ξ we add a node and label it with the types of

all the objects in the region.

3. For each reference r inR where a
r
−→ b we add an edge from the node that represents

a to the node that represents the region inΞ containing b. The edge is labeled with

the storage location the reference is stored at in a (variable name, field offset or for

integer indices the special offset?).

To concretize alabeled storage shape graphwe enumerate all possible concrete heaps

along with all possible partitions of the objects in each heap and then check if the heap and
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partition are consistent with the abstractlabeled storage shape graph. If for a given heap

there is a partition such that it is consistent (as defined below) then it is in the concretization

otherwise we discard it.

Definition 2 (Concretization (γlssg)). Given the labeled storage shape graphg =

(V̂, N̂, Ê, L̂n, L̂e), a concrete heap h= (V,O,R), and partitionΞ are consistent with g if:

1. There exists a 1-1 functionΠv : V 7→ V̂ , a 1-1 functionΠo : O 7→ N̂ and a function

Πr : R 7→ Ê.

2. ∀o,o′ ∈O (o,o′ in the same partition ofΞ iff Πo(o) = Πo(o′)).

3. The types of the objects in each region of the partitionΞ are a subset of the type

names in node label under the map,Πo ({type| ∃ object o∈ Ξ,o instanceoftype})

⊆ L̂n(Πo(o)).types.

4. The edge labels are consistent with the storage locationsunder the mapΠr (given a

reference r thestorage locationof reference r= L̂e(Πr(r)).offset).

5. The graph connectivity properties are consistent under the mappingsΠv,Πo,Πr (∀

objects o1,o2 ∈ O and pointer p∈ R s.t. o1
p
−→ o2 ∃ edge e= Πr(p) where e starts

at Πo(o1) and ends atΠo(o2)). Similarly for the variable references (∀ variables

v∈V, objects o∈O and references r∈R s.t. v
r
−→ o ∃ edge e= Πr(r) where e starts

at Πv(v) and ends atΠo(o)).

We can view the concretization function (γlssg) as a filter on the set of all concrete heap

graphs that are feasible for a givenlabeled storage shape graph. By making the language

used to describe this filter more expressive (by extending the language that is used for the

node and edge labels) we can increase the precision of the analysis. The extended label

language we present in Chapter 3 and Chapter 4 introduces a number of new labels which

imply additional consistency properties of the regions andreference sets that the nodes and
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edges in thelabeled storage shape graphconcretize to. These additional restrictions allow

a more precise description of the state of the program at eachpoint during its execution.
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Chapter 3

Extended Storage Shape Graph

In this chapter we enumerate additional instrumentation properties that we use in the labels

of the labeled storage shape graph(lssg). Using our running example concrete heap,

Figure 2.1 in Chapter 2, we demonstrate how these propertiescan be used to more precisely

identify the feasible states of the program.

3.1 Basic Instrumentation Properties

Types. As in thelssgapproach we track the types of the objects that each node abstracts.

This information is particularly important in Java programs, which often heavily use vir-

tual methods. Thus this type information is critical to resolving the targets of the calls,

to allow for more accurate analysis results and a more precise call graph for use by later

optimizing passes. Each node in the graph represents a region of the heap (which may

contain objects of many types). We track these possible object types with a set of type

names for each node.
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Offsets. Each edge in the graph represents a variable target or a set ofpointers stored

in some object field or an array. The edges are labeled with thestorage location (offset)

that the reference is stored in (a field identifier, a variablename, or the special offsets

described below for pointers stored in arrays or collections). We assume that an edge

always represents references that are stored in the same class of storage location. Thus,

for instance, the same edge will never abstract one pointer stored at fieldf and another

pointer stored at fieldg.

For arrays and collections we use several special names for the locations where point-

ers are stored. If we have a container (an array or a collection from java.util ) and

the program is not actively indexing in the container (either with an integer index or an

Iterator ) then we use theoffset?. When an array or collection is being actively in-

dexed by the program we partition the elements into three groups ofoffsets. We order

the contents based on the natural iteration order (for integer indexing the≤ on N and for

Iterator objects the order items are returned from the collection). Using this order

we give the single unique pointer stored at the current indexing position theoffsetat (at

index), all of the pointers that come before the current indexing position theoffsetbi (be-

fore index), and all of the pointers that come after the current indexing position theoffset

ai (after index).

Linearity. In the basiclssgmodel each region is abstracted by a node in the abstract heap

graph and no information is provided about the number of objects abstracted by the node.

In our example several of the regions we picked contained only a single object (the objects

pointed to byl and byy ) while others contained many objects (the regions representing

parts of the list and the data elements stored in the arrayA). The same situation occurs

with the edges. The edge with the offsetfirst (edge 9) represents a single pointer while

the edges with the(d)ata offsets (edges 3, 7) represent multiple pointers.

This multiplicity information is critical to performing strong updates during the anal-
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Figure 3.1: Abstract List with Linearity

ysis [9, 59] but can also be useful for some optimization applications (such as stack allo-

cation). To model this information we introduce a property called linearity which has two

possible values:1, which indicates that the node (edge) concretizes to either0 or 1 objects

(pointers) and the valueω, which indicates that the node (edge) concretizes to any number

of objects (pointers) in the range[0,∞).

The inclusion of a multiplicity of 0 as a value for bothlinearity values allows us to

compactly represent many possible heap structures. Consider the case of a simple linked

list pointed to by the variablel where the list may be of any length (including empty).

Using thelinearity definitions we can represent this (and similar situations) with a single

abstract graph shown in Figure 3.1.

From thelssgin Figure 3.1 we can concretize all possible (acyclic for thepurposes of

this discussion) concrete linked lists by varying the actual number of concrete objects we

place in each region (in a manner consistent with the linearity property). Figure 3.2 shows

the various concrete heaps we get as we vary the instantiation of the linearity property. In

Figure 3.2(a) we have set the number of objects in both regions to 0 resulting in the empty

list, Figure 3.2(b) shows the concrete heap that results when we allow exactly one object

in the first region and 0 in the second, Figure 3.2(b) is the concrete heap that results from

placing exactly one object in each of the regions and Figure 3.2(d) shows the concrete list

that is created as we placek concrete objects in the second region (fork∈ [2,∞)).

With the linearity property we can update our baselssg approximation of the heap
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(a) Empty: both 0 (b) Single: 1, 0 (c) Two: both 1 (d) Many: 1,k∈ [2,∞)

Figure 3.2: Concretizations of Abstract List with Linearity

Figure 3.3: Labeled SSG Extended With Linearity

to track the number of objects (pointers) each node (edge) represents. This is shown in

Figure 3.3 where we have set thelinearity of the nodes pointed to byy , l , A andp1 /p2

to 1 (indicating that in all concretizations these nodes represent at most one object each).

We can also set thelinearity of the edges with the(f)irst , (s)econd labels and the

(n)ext edge from the firstLN node to1 (indicating that each of these edges represents

at most one reference).
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3.2 Abstract Layout

Based on the existence of self edges we can make some simple inferences about the con-

nectivity of the region abstracted by a given node (if there are no self edges then there is

no internal connectivity). However, as in our example heap we cannot determine if the

nodes with self edges represent acyclic structures or if they represent regions with cycles.

To remove this ambiguity we define a set of structural predicates on the regions of

the concrete heap which track commonly used data structure layouts and that we can map

to shape labels for the nodes in thelssg. Given a regionℜ = (C,P,Rcross) (Section 2.1),

we define several structural predicates on the graph(C′,P′) (whereC′ ⊆C∧P′ ⊆ P) to

indicate what kinds of traversal patterns a program can use to navigate through the data

structures in the region. A region admits a traversal type ifthere exists a subregion that

satisfies the corresponding layout predicate. Note that these structure predicates arenot

mutually exclusive, in particular thatTreestructure⇒ List structure⇒ Singletonstructure.

Definition 3 (Concrete Region Structure Predicates). Given a regionℜ = (C,P,Rcross) and

assuming a,b,c are objects, andφ ,ψ are paths in the concrete heap graph, we define the

structure predicates on the regionℜ as follows:

• Cycle Structure if∃a∈C′,φ ⊆pathP′ s.t. a
φ
; a.

• MultiPath Structure if∃a,b∈C′,φ ,ψ ⊆path P′ s.t. (a 6= b)∧ (φ 6= ψ)∧ (a
φ
; b)∧

(a
ψ
; b) ∧ neitherφ nor ψ is a prefix of the other.

• Tree Structure if∃a,b,c∈C′∧ p, p′ ∈ P′ s.t. a
p
−→ b∧a

p′
−→ c∧b 6= c.

• List Structure if∃a,b∈C′∧ p∈ P′ s.t. a
r
−→ b∧a 6= b.

• Singleton Structure holds for all regions.
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(a) Singleton (b) List (c) Tree

(d) MultiPath (e) Combined

Figure 3.4: Concrete Regions and Structural Predicates

Figure 3.4 shows several concrete regions. Since we are interested in the most gen-

eral way a program could traverse a region of the concrete heap we must assume that a

program variable could begin its traversal of the region at any of the objects in the region.

Thus, the figures omit the program variables. Figure 3.4(a) shows a concrete heap with

the objects(a,b,c,d,e). Since there are no edges connecting these cells the only waya

program can traverse them is by individually referencing each object, thus it only satisfies

the Singletonstructure predicate. Figure 3.4(b) shows a concrete heap that satisfies the

List structure predicate (botha→ d andc→ d). It also satisfies theSingletonstructure

predicate since a program can always treat the object as if they were disconnected. Fig-

ure 3.4(c) shows a concrete heap that satisfies theTreepredicate(a,b,d) as well as the

List and (trivially)Singletonpredicates. Figure 3.4(d) adds a pointer,b→ d, that changes

the region to satisfy theMultiPath predicate(a,b,d) as well. Finally, we note that Fig-

ure 3.4(e) satisfies theTreestructural predicate. This is due to the existential natureof the

structural predicates. Even though the subregion consisting only of a,b does not satisfy

theTreepredicate the subregion consisting ofc,d,edoes satisfy the predicate and thus the

entire regiona,b,c,d,esatisfies theTreestructural predicate.

Based on the structural predicates we define a set of instrumentation properties for the

nodes in the abstract domain.

25



Chapter 3. Extended Storage Shape Graph

Definition 4 (Abstract Layout Properties). For a node n with alayout property label in

{(S)ingleton, (L)ist, (T)ree, (M)ultiPath, (C)ycle} the concreteregionℜ is a consistent

concretization of n provided:

• if n has aSingletonLayout, thenℜ only satisfies theSingletonstructural predicate

but not theList, Tree, MultiPath, or Cyclepredicates.

• if n has aList Layout, thenℜ satisfies theSingletonor List structural predicates but

not theTree, MultiPath, or Cyclepredicates.

• if n has aTreeLayout, thenℜ satisfies theSingleton, List or Treestructural predi-

cates but not theMultiPath, or Cyclepredicates.

• if n has aMultiPathLayout, thenℜ satisfies theSingleton, List, Tree, or MultiPath

structural predicates but not theCyclepredicate.

• if n has anCycleLayout, then any of the structural predicates may hold inℜ.

Using these definitions we can update our abstract domain with the abstractlayout

information (shown asS, L, T, D, Clabels in the nodes). Figure 3.5 shows the resulting

abstract heap graph. In this figure we have labeled the regionrepresenting the first element

of the list as having a(S)ingletonlayout since this node abstracts a single object with no

self pointers. The node abstracting the contents of the array A also has the(S)ingleton

layout since the two objects abstracted by this node do not have any pointers between

them. The nodes in the abstract graph which, respectively, represent the 2nd, 3rd (node 2)

and the 4th, 5th (node 6)LN objects have been given the(L)ist abstractlayout since the

regions abstracted by the nodes all have a single, unique successor and there are no cycles.

On the other hand the node representing the region made up of the twoLN objects at the

tail of the list (node 8) is given the(C)ycleabstractlayoutsince the objects in the region

abstracted by the node both have a unique successor but thereis a cycle in the region.
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Figure 3.5: Labeled SSG Extended With Abstract Layout

An important observation about the formulation of shape/layout on a per node basis

(instead of based on the entire section of the heap reachablefrom a variable) is that it

enables the analysis to be much more precise in the tracking of shape information and

prevents the lack of precise shape information in one part ofthe heap from impacting the

ability to precisely represent the shape of other parts of the heap. In our example even

though the tail of the list is a cyclic structure the model is still able to represent the fact

that the first part of the structure theLNobjects form is indeed a list and that theDNobjects

stored in this list structure are not connected in any way (since the nodes abstracting them

are both(S)ingletonand there are no edges between these nodes). See Chapter 5 formore

examples where tracking the shape on a per region enables improved precision.
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3.3 Connectivity and Interference Properties

In the graph model the edges represent sets of pointers or variable targets and each of these

edges ends at a node which represents some region of the heap consisting of (potentially)

many different objects and data structures. An important pair of questions is then, do any

of these references (pointers/variables) point to the sameobject in the region and do they

potentially point into a connected component in the region?This question can be asked

either about references that are abstracted via different edges (e.g., the query,mayp1 alias

p2) or about references that are abstracted by the same edge (e.g., the query,mayany of

the pointers stored in arrayA alias).

In our running example we have several of these situations. We know that the contents

of arrayA (edge 6) all refer to distinct objects (and further that there is no way that the

object referred to byA[0] is reachable fromA[1] ), that theDNobjects stored in the 2nd

and 3rd LN objects (edge 3) are again distinct but we also know that theypoint to the same

objects as are stored in the arrayA. We also know that the variablesp1 andp2 alias, that

the (f)irst and(s)econd fields of thePNobject do not alias but refer to objects in

the same list data structure and finally that theDNfields of the 4th, 5th LN objects contain

aliasing pointers (edge 7).

None of this information is captured in the basic shape graphmodel as there is no

means to differentiate edges with aliasing references fromedges with non-aliasing refer-

ences. The edge abstracting the pointers stored in theDNfields of the 2nd and 3rd LN

objects (edge 3) has the same label properties as the edge abstracting the pointers in the

data fields in the 4th, 5th LN objects (edge 7) even though the aliasing properties of these

two pointer sets are very different.

To model these properties we introduce two instrumentationproperties on edges, one

to track reachability relations between references that are abstracted by different edges in

the model (connectivity) and one to track reachability relations between references that
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are abstracted by the same edge in the model (interference). As with the definitions of the

shape properties, we define several predicates on the concrete heap regions and then define

the property labels in the abstract domain based on the satisfaction of some set of these

predicates.

Definition 5 (Concrete Reference Relation Predicates). Given a concrete region of the

heapℜ = (C,P,Rcross) and incoming references r, r ′ ∈ P such that r, r ′ refer to objects

o1,o2 ∈C respectively, we define the followingrelationpredicates on the references:

• r, r ′ aliaswith respect toℜ if: o1 = o2.

• r, r ′ are relatedwith respect toℜ if: (o1 6= o2)∧ (o1,o2 are in the sameweakly-

connectedcomponent of(C,P)).

• r, r ′ areunrelatedwith respect toℜ if: o1,o2 are in differentweakly-connectedcom-

ponents of(C,P).

Figure 3.6 has several examples for the concrete reference relations. Each figure shows

a region of the concrete heap, whereC = {a,b,c,d} andP = {a→ b,a→ c}. In the first

example, Figure 3.6(a), we have a concrete heap with two variablesx andy that both point

to the same concrete object (Rcross= {x→ a,y→ a}) thus, according to the definitions

above,alias. In Figure 3.6(b) the variablesx andy point to different objects (Rcross= {x→

a,y→ c}) but there is a path from objecta to objectb, thus they are in the sameweakly-

connected componentof the region, Chapter 2.1, and arerelated. Figure 3.6(c) shows

a sample concrete heap wherex andy refer to the sameweakly-connected component

(Rcross= {x→ b,y→ c}), thus they arerelated according to the above definition even

though there is no path between them. Finally, Figure 3.6(d)shows an example of the

region wherex andy refer to disjoint data structures (Rcross= {x→ a,y→ d}) and thus

areunrelated.

We note that our definitions for references thatalias, arerelatedand areunrelatedare

fairly coarse categories. In particular we might want to further refine the concept ofrelated
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(a) Aliasing (b) Related (c) Related (d) Unrelated

Figure 3.6: Concrete Reference Relations

into multiple predicates, sayreachable fromandsame structure, to separate the cases in our

second and third examples. In our experience the relativelycoarse classification scheme

presented above (along with good heuristics for selecting the regions) produces very good

results. However, as we gain more experience with the analysis this classification may

need to be revisited.

Connectivity. Given the definitions forrelated in the concrete heap we can define a

series ofconnectivityproperties,conn= {share,connected,disjoint}, on the edges in an

abstract graph. Theconnectivityproperty is then a relation on̂E× Ê× N̂×conn.

Definition 6 (Abstract Connectivity Property). For a node n and edges e,e′ the concrete

region ℜ and the sets of references R= { r | Πr(r) = e}, R′ = { r ′ | Πr(r ′) = e′} (where

Πr is part of the concretization relation given in Section 2.3)are consistent with n,e,e′ if:

• if e,e′ are disjoint then 6 ∃r ∈ R, r ′ ∈ R′ s.t. (r, r ′ aliaswith respect toℜ) ∨ (r, r ′ are

relatedwith respect toℜ).

• if e,e′ areconnectedthen 6 ∃r ∈R, r ′ ∈ R′ s.t. r, r ′ aliaswith respect toℜ.

• if e,e′ sharethen any of therelatedpredicates holds for the references r, r ′ where

r ∈R, r ′ ∈R′.

To represent the connectivity relation in ourlabeled storage shape graphwe extend
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the representation tuple(V̂, N̂, Ê, L̂n, L̂e) with a relationconnRwhich contains thecon-

nectivityrelation. This results in an extended domain of labeled graph tuples of the form

(V̂, N̂, Ê, L̂n, L̂e,connR).

To concisely represent theconnectivityproperty in the figures each edge label is ex-

tended with a list of the identifiers of the other edges in the graph that it has a non-trivial

connectivityrelation with. For each edge label in this list, if the identifier is prefixed with

a “!” then the edges are related according to theshareabstract predicate; if there is no

prefix then they are related by theconnectedpredicate; all edges whose identifiers do not

appear in the list are related according to thedisjoint predicate.

Figure 3.7 shows our running example abstract heap with the addition of theconnec-

tivity information. This figure shows how the introduction ofconnectivityinformation

allows the precise modeling of a number of interesting features of the heap. If we look at

the edge representing the contents of the arrayA (edge 6) and the edge representing the

pointers stored in theDNfields of the 2nd and 3rd LNobjects (edge 3), the model now shows

that the pointers represented by these two edgesmaypoint to the same objects (the !3 and

!6 entries in the connectivity lists for the edges). A more interesting situation is between

the node (node 6) that represents the 4th, 5th LN objects where there are several incoming

edges representing the pointers stored in the(f)irst (edge 9) and(s)econd (edge

10) fields of thePN object and the edge representing the(n)ext field of a LN object

(edge 4). Theconnectivityrelation between edges 9, 10 shows that although they point

at the same node the analysis can now determine that theymustnot alias (the lack of the

“!” in the entry for 10/9 in the connectivity lists) but that they maypoint into the same

data structure. If we look at the relation between edge 4 and edges 9, 10 we see that the

analysis is able to represent that edges 4, 9mayrepresent pointers thatalias (the “!” on

the entries 9/4) while correctly determining that the pointers represented by edges 4, 10

maypoint into the same data structure but that theymustnotalias (the lack of a “!” on the

entries 10/4 in the connectivity lists).
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Figure 3.7: Labeled SSG Extended With Abstract Connectivity

Interference. The interfere property is closely related to the concept ofconnectivity.

While the connectivityproperty tracksrelation predicates between references that are

abstracted by different graph edges, theinterfereproperty tracksrelation predicates be-

tween references that are abstracted by the same graph edge.Given the definitions for

relatedin the concrete regions, we can define a series ofinterferenceproperties,interfere

= {aliasing pointers (ap), interfering pointers (ip), non-interfering pointers (np)}, on the

edges.

Definition 7 (Abstract Interference Property). For a node n and edge e, the concrete region

ℜ and the set of references R= { r | Πr(r) = e} (whereΠr is part of the concretization

relation given in Section 2.3) are consistent with n,e if:

• if e has thenon-interfering pointers (np)property then6 ∃r, r ′ ∈R, r 6= r ′ s.t. (r, r ′ alias

with respect toℜ) ∨ (r, r ′ are relatedwith respect toℜ).

• if e has theinterfering pointers (ip)property then6 ∃r, r ′ ∈R, r 6= r ′ s.t. r, r ′ aliaswith
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Figure 3.8: Labeled SSG Extended With Abstract Interference

respect toℜ.

• if e has thealiasing pointers (ap)property then any of therelationpredicates holds

for the references r, r ′ ∈ R.

To represent theinterfere property in the figures, each edge label is extended with

one of theinterferepredicates{ap, ip, np}. Figure 3.8 shows the running abstract heap

extended with theinterfere information. Of particular interest in this figure is how the

addition of theinterfere information allows us to determine that the pointers storedin

array A (abstracted by edge 6) all point to distinctDNobjects (thenp label) while the

pointers stored in thedata fields of the 4th, 5th LN objects (abstracted by edge 7)may

point to the same objects (theap label).
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3.4 Dominance

The final property related to connectivity/reachablility in the heap graph that we present

is dominance. This property subsumes the well-knownmust-aliasrelation but extends the

concept from single references to sets of references. In ourrunning example abstract heap

we know that the variablesp1 andp2 mayrefer to the same object (they are related with

theshareabstract property, the(!13) and(!12) entries in the edge labels) but in the concrete

heap that they abstract we know theymustrefer to the same object. While the use of a

must-aliaspredicate would be sufficient to handle this situation, if welook at the relation

between edges 6 (the contents of arrayA) and 3 (thedata entries of the 2nd and 3rd list

elements) we can see that themust-aliaspredicate is inadequate to precisely express this

sharing. In particular we know that the pointers abstractedby edge 3must-aliaswith the

pointers abstracted by edge 6 but also that for every object that is referred to by a pointer

in the arrayA there exists a pointer stored in the list that also refers to the object. That is,

not onlymustaliasing occur but alsoeveryreference is aliased.

To track this type ofmustsharing between sets of references we introduce a binary

predicate on sets of references in the concrete heap,edge dominance.

Definition 8 (Reference Target Sets). Given a set of incoming references R= {r1, . . . , rk}

to a regionℜ = (C,P,Rcross), where R⊆Rcross, we can define the targets of these reference

sets:

T = {object o∈C | ∃r ∈ R, r points-to o}

Definition 9 (Reference Target Set). Given reference sets R,R′ s.t. R∩R′ = /0 with target

sets T,T ′, respectively, we define three predicates based on the relations between T,T ′:

• R,R′ aredominance equalif T = T ′.

• RdominatesR′ if T ′ ⊆ T.

34



Chapter 3. Extended Storage Shape Graph

• R,R′ aredominance disjointif T ∩T ′ = /0.

If we were to translate these concrete predicates into abstract properties in the abstract

domain in the natural way we would end up with a binary relation over the powerset

of edges in the graph (℘(Ê)), which is computationally expensive to process. Thus we

introduce a simpler pair of properties to use in the abstractdomain. The first is a binary

relation on the edges,domEQ⊆ Ê× Ê which tracks pairs of edges that represent sets

of pointers with the same target sets. The second is a binary relation on the nodes and

the edgesnodeDom⊆ N̂× Ê which tracks for each node which edges represent sets of

pointers whose target set is the same as the set of objects abstracted by the node.

Given the definitions fordominancein the concrete regions, we define thedomEQ

relation over the abstract edges:

Definition 10 (Abstract Edge Dominance Equality). For a node n and edges e,e′, the

concrete regionℜ = (C,P,Rcross) and the sets of references R= { r | Πr(r) = e}, R′ =

{ r ′ | Πr(r ′) = e′} are consistent with n,e,e′ if:

• if e domEQe′ then R,R′ must bedominance equal.

• otherwise any of the relations (dominance equal, dominates, or dominance disjoint)

may hold between R,R′.

Similarly, we use the definitions fordominancein the concrete regions to define the

nodeDomrelation.

Definition 11 (Abstract Node Dominance). For a node n and edge e, the concrete region

ℜ = (C,P,Rcross) and the set of references R= { r | Πr(r) = e} (with target set T ) are

consistent with n,e if:

• if e nodeDomn then T= C.

35



Chapter 3. Extended Storage Shape Graph

• otherwise any of the relations may hold between T and the objects inℜ.

We extend the labels on our graph model tuples (V̂, N̂, Ê, L̂n, L̂e, connR) to represent

the dominance information by extending the node labels inL̂n with a list of edges that

nodeDomthe node and by adding thedomEQrelation to the tuple. The resulting domain

with the dominance properties is the set of labeled graph tuples of the form, (̂V, N̂, Ê, L̂n,

L̂e, connR, domEQ), and we extend the abstraction and concretization operations in the

natural way to respect the dominance labels anddomEQrelation.

In our running abstract heap example we can see several situations where thedomi-

nanceinformation can provide interestingmust-aliasinformation as well as information

on the subset relations between the contents of data structures on the heap. Figure 3.9

shows how the introduction ofdominanceproperties allows us to update the heap with

the fact that edges 12, 13 aredomEQ(marked with a∼ prefix in the connectivity list),

which indicates that variablesp1 andp2 mustalias. For each node we add a list of all

the incident edges that arenodeDomwith the node. In our example we know that every

object in the region abstracted by node 3 has a pointer that refers to it stored in the array

A. A more interesting pair of facts are the conditional existence relations we have for the

variablesA andy . ThenodeDomproperty implies that if the variabley is null, node 7

represents an empty region of the heap. Similarly thenodeDomentry in node 4 indicates

that if the variableA is null, the node represents the empty region (which is redundant in

this case since there is only one edge pointing to node 4).

3.5 Final Labeled Storage Shape Graph

With these properties we are able to precisely describe the information that we need to

support the optimization applications we are interested in(Section 1.2 and 1.1). To support

the precise modeling of collections and some critical numeric properties, later chapters
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Figure 3.9: Labeled SSG Extended With Abstract Dominance

introduce a few specialized properties for collection nodes and a simple numeric domain.

However, the properties introduced in this chapter make up the core of the analysis.

The model introduced here begins with the well knownstorage shape graphfrom [9,

38] which we then augment with a number of additional labels on the nodes and edges to

capture more precise information about the state of the concrete heap than can be repre-

sented via the structural information in the graph. The resulting abstract model orlabeled

storage shape graph(lssg) is composed of the base graph structure, a set of node labels, a

set of edge labels, a connectivity relation, and an edge dominance relation.

The node labels are records of the form[id types linearity shape domset] where id

is a unique identifier,typesis the set of types for the objects thatmaybe abstracted by

the node,linearity indicates the number of objects thatmaybe abstracted by the node,

shapeindicates the possible internal connectivity of the regionabstracted by the node, and

domsetlists all the edges thatmustdominate the region abstracted by the node. In our

figures, the nodes are labeled with these records.
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The edge labels are records of the form[id offset linearity interfere] where id is a

unique identifier,offsetis the storage location of the references abstracted by the edge,lin-

earity indicates the number of references thatmaybe abstracted by the edge, andinterfere

indicates the possiblerelationconfigurations for the references abstracted by the edge. To

compactly represent the figures, we include theconnRanddomEQinformation in the edge

labels using a finalconnlist field in the records. This list contains theid of any other edge

that the given edge has a non-trivialrelation with (it is connectedor sharewith it). If the

two edgesshare, the id is prefixed with a “!” and if the two edges aredomEQthe id is

prefixed with a “∼”.

3.6 Concretization Examples

Throughout this chapter we have been using a sample concreteheap, Figure 2.1 in Sec-

tion 2.2, to motivate the introduction of a number of label properties that allow us to more

precisely model various aspects of this heap in the abstractdomain. The result of this

construction is the final labeled storage shape graph model described above. In this sec-

tion we look at several other feasible and one infeasible concretization of the abstract heap

in Figure 3.9 in order to gain additional intuition into whatthe different instrumentation

properties we introduced actually imply about the concreteheap.

Empty Heap. Figure 3.10 shows the degenerate empty concretization of the abstract

heap. The empty concretization is valid for all heap models since all of the properties we

track are eithermayproperties (e.g.l maybe null), thelinearity property always allows

the empty concretization (1→ [0,1] andω→ [0,∞)) or are universally quantifiedmust(the

dominance properties, where the empty set always satisfies the universal quantification).

Thus, this particular concrete heap is a feasible concretization of our abstract heap.
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Figure 3.10: Empty Heap

Alternative Heap. Figure 3.11 shows another feasible concretization of our abstract

heap graph. In this concretization we note that the tail of the list is acyclic (which is

admissible since the(C)ycleproperty allows any concrete layouts) and there is no edge

connecting the 4th and 5th LN objects (which again is admissible since the(L)ist property

allows singleton structures). The connectivity of the heapis also altered since pointersf

ands are no longerconnectedbut again the abstractconnectedproperty is amayproperty

so a less connected structure is admissible. If we look at the(d)ata pointers from the

4th and 5th LN objects we notice that one is now null. This is fine even thoughthe edge

representing them in the abstract graph has aninterfereproperty ofap and alinearity of

ω, because theω property allows concretizations with a single pointer and theapproperty

allows sets of pointers that arenon-interferingas well as sets thatalias.

Thus, this example provides a sense of how the abstract modelconceptually provides
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Figure 3.11: Alternative Feasible Heap

upper limits on the connectivity of the concrete heap but in general allows concrete heaps

with less connectivity.

Infeasible Heap. Figure 3.12 shows an example of a concrete heap that is not a feasible

concretization of our abstract model. This model violates anumber of the restrictions

present in the abstract model. The most basic is that the pointer stored atA[1] does not

correspond to any edge in the abstract model. Looking at the pointers stored in the 2nd

and 3rd LN objects we see they alias which is not consistent with thenp property of the

edge 3 in the abstract model. We also see that the cyclic structure between the 4th and 5th

LMobjects violates the restrictions from the(L)ist layoutof node 6. Finally, we see that

the variablep2 is null andp1 is non-null, which is inconsistent with the restriction in the

abstract model that edge 12, 13 aredominance equivalentwhich means thatp1 andp2
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Figure 3.12: Infeasible Heap

mustpoint to the same object (or both be null).
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Chapter 4

Specialized Extensions and Scalar

Domain

This chapter introduces a number of specialized instrumentation labels that are useful

when modeling collections (as injava.util ) and a scalar domain that will allow us to

precisely model a number of important types of conditional tests and indexing statements.

4.1 Iteration and Collection Properties

The introduction of the Java collections into the analysis either requires us to analyze the

code that is used to implement the collections (which is computationally expensive, can be

imprecise, and the constant re-analysis is redundant) or todefine higher-level semantics to

model the behavior of collections (and arrays). In this section we introduce a number of

properties designed to model the semantics of collections and are also potentially useful

for optimization applications.

In this section we will use three simple concrete heaps to illustrate the various abstract
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(a) Iterator Initialized (b) Iterator Advanced (c) Empty Collection

Figure 4.1: Concrete Collection Heaps

properties that are introduced. All three of our concrete heaps in Figure 4.1 have a single

Vector object fromjava.util (which we show as a simple sequence of cells each

containing a reference), which is non-empty in the first two figures and empty in the third;

in each case we have anIterator object (also from the packagejava.util ) pointing

into the collection.

Active Iterator/Index Variable. The scheme we present for classifying the pointers in

a collection is a specific case of thepartitioning functionsthat are used in [22] to partition

arrays of scalars. The definition we use is only precise when there is a single iterator that

is active in a collection. In the case of multiple iterators simultaneously indexing through a

collection, our partition must conservatively assume thatany relation could hold between

the positions of the iterators. The use of more flexiblepartitioning functionswould allow

our analysis to partition the pointers in a collection even when multiple iterators are being

used to index through the collection. However, the use of more generalpartition functions

substantially complicates the analysis and we expect that most of the time only a single

iterator will be active in a collection. Based on this assumption we opted for the fixed

partition.

As described in the paragraph onOffsetsin Section 3.1 we introduce four special edge
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labels for edges that abstract the pointers stored in collections and arrays (?, bi, at, ai).

The? field represents a set of arbitrary pointers in the collection while the other offsets

are used when an iterator or integer indexing variable is being used to access the collection.

The offsetat is given to the edge that represents the single pointer stored in the location

currently being accessed by the iterator/index variable. The offsetsbi/ai represent the

pointers that come before/after the current position of theiterator or index variable in the

iteration order specified by the collection.

Given our fixed partition approach we need to track which iterator or index variable the

partition is relative to. To accomplish this we add to each node that represents a collection

a labelactiveIndexer, corresponding to the name of the variable that the current partition

of collection entries is based on.

Figure 4.2 shows the abstraction of our three concrete heaps. In the first heap, Fig-

ure 4.2(a), the iterator was just initialized so it currently refers to before the first element

in the collection and there are no elements that come before it in the iteration order. The

set of pointers that come later in the collection are abstracted by the edge with offsetai .

However, note that the absence of an edge with the labelbi does not always imply that the

iterator is at the beginning of the collection (a feasible concretization of this abstract heap

is a vector with allnull entries before the current iterator position). The second abstract

heap is similar to the first except that it does have an edge with the labelbi which does im-

ply that in any concretization there is at least one entry in the collection before the current

iterator position. Our final Figure 4.2(c), is the result of abstracting the empty collection.

However, note that the lack of any outgoing edges does not imply that in all concretiza-

tions the collection must be empty. A valid concretization is aVector containing only

null entries.

Empty, At-First. To address the issues that arise with the position of the iterators and

the emptiness/non-emptiness of the collections, we introduce two additional abstract pred-
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(a) Iterator Initialized (b) Iterator Advanced

(c) Empty Collection

Figure 4.2: Abstract Collection Heaps

icates for the abstract nodes that represent collection objects. These predicates allow us

to precisely model the emptiness of a collection and if an iterator object refers to the first

element of a collection. These two properties are useful in improving the precision of the

analysis as well as allowing some program transformations (such as loop inversion [45]).

The first abstract property is theemptyenumeration. We treat this predicate as a three-

valued relation with values,true(shown ase in the node),false(shown as∼e in the node)

or unknown(shown as?e in the node) and define it as follows.

Definition 12 (Abstract Empty Property). Given a node n, a possible concretizationℜ =

(C,P,Rcross) of n is consistent if:

• if theemptyproperty istruethen
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C is a singleton set{o}, o is aninstanceof java.util.Collection and

o.empty() istrue.

• if theemptyproperty isfalsethen

C is a singleton set{o}, o is aninstanceof java.util.Collection and

o.empty() isfalse.

• if theemptyproperty isunknownthen there are no additional restrictions onℜ.

The second property is theatFirst enumeration. We treat this property as a two-valued

relation with the values,true (the active iterator entry is postfixed with-B ) or false(no

postfix) and define it as follows.

Definition 13 (Abstract atFirst Property). Given a node n and an iterator variable I that

refers to n a possible concretizationℜ = (C,P,Rcross) of n is consistent if:

• if I is the active iterator for n and theatFirstpredicate istrue then C is a singleton

set{o}, o is aninstanceof java.util.Collection and either o.empty()

is true or I.next() returns the first element in the iteration order of o.

• otherwise there are no additional restrictions onℜ.

With these additional properties we can update our abstractheap models to more pre-

cisely capture the properties of our example concrete heaps. Figure 4.3 shows the extended

abstract heaps. The first Figure 4.3(a) shows how theatFirst property allows the analysis

to determine that the iterator has just been initialized (the atFirst property is true, the-B

postfix of the activeIndexer) and that the call to thenextmethod will always succeed (the

emptypredicate isfalse, the∼e in the node). The next Figure 4.3(b) shows how the model

is able to determine that again the collection is not empty (the∼e in the node) and that

the iterator is at some position in the collection. The final Figure 4.3(c) shows how the

analysis has precisely captured the emptiness of the collection object by marking the node

asmustempty (the,e, entry).
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(a) Iterator Initialized (b) Iterator Advanced

(c) Empty Collection

Figure 4.3: Abstract Collection Heaps with Empty, First

4.2 Scalar Domain

This section introduces a basic scalar domain that we use to track the results of various

boolean expressions, loop guards and simple equality tests. Our main goal for this domain

is to be able to accurately model commonly occurring test conditions and the relative

positions of index variables in arrays and collections in simple loops while minimizing

computational overhead of the analysis.

Representation. Since the properties we are interested in with respect to thescalar val-

ues are relatively modest properties and to ensure that the overhead for modeling them

is minimal, we use a simple abstraction to model the equalityrelations between the
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integer/boolean local variables, the integer/boolean static fields and the special expres-

sioncard(v) (which tracks the cardinality of containers like arrays and collections in the

java.util libraries). The relations between these values (variables, constants, and the

cardinalities of containers) is modeled using the partition of the set (and the special values

0, 1, true, andfalse) based on themust equalrelation.

Given this general outline for the construction and the set of value symbolsS =

LocalScalarVars∪ StaticScalarVars∪ {card(v) | v∈ LocalVars} ∪ {0,1, true, false} the

formal domain for this abstraction isDu = {π | π is a partition ofS} (the set of all equiv-

alence relations onS). This abstraction allows us to easily track which boolean values

must betrue/falseso that we can determine if a given abstract value satisfies a boolean

guard condition (by checking if the boolean variable is in the same equivalence class as

the special symbolstrue/false). We can also precisely determine when two index values

are equal and if an index value is equal to 0 or the length of an array (or collection) again

by simply checking which equivalence classes the variablesbelong to (and if they are in

the same class as the special 0 value).

To support the later uses of this domain we define several simple operations that can be

used to simulate the abstract semantics of the boolean and integer values of interest. The

most important is theforgetScalarValueoperation which given a variable erases it from

any components of the value domain that it appears in (equivalence relations and thecard

values). We also have the functionaddEquality, which is used to assert an equality relation

between two values, combining the equivalence classes thatthey are in. Finally, we have

a mustEqualoperation which returnstrue if two valuesmustbe equal (they appear in the

same equivalence class).

Abstract Domain Operations With the above definition for the abstract scalar domain

we can define the order≤u and join⊔u operations as follows.

Definition 14 (Scalar Domain Order). Given u,u′ ∈Du, the order operation is:
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u≤u u′⇔∀v,v′ ∈S, if v,v′ are in the same partition in u′ then v,v′ are in the same partition

in u (that is, if an equalitymusthold in u′ then it alsomusthold in u).

Definition 15 (Scalar Domain Join). Given u,u′ ∈ Du, the join operation is:

u⊔u u′ = u∩u′ (where∩ is the intersection of equivalence relations).

Abstract Semantics. The semantics of the abstract operations are defined in the ex-

pected way. For an assignment of the formx = y we first forget all the current informa-

tion aboutx using theforgetScalarValueoperation and then use theaddEqualityoperation

to assert that nowx andy mustbe equal. More interesting is the order testb = x < y .

In most situations the domain cannot interpret the precise result of this comparison (since

it does not have a generic representation for order, only equality) and so we must conser-

vatively clear all information forb and cannot infer any new information. However, in an

important class of cases we have information that can allow us to be more precise. In the

case wherex , y , 0 are all in the same equivalence class (this often occurs as one of the

cases when first entering afor loop, e.g., ifx is the index variable andy is equal to the

size of the collection which is known to be empty), we know that this test must fail andb

= false .
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Case Studies

In this chapter we examine in detail the analysis results fora number of interesting pro-

grams and potential optimizations that can be performed using this information. Due to

the space constraints imposed on the size of the figures by a printed medium we focus on

programs from our benchmark suite that produce smaller heapstructures. While many of

the benchmarks we have studied in detail are not impacted by this restriction we refer the

interested reader to our online appendix [48] which has figures showing the heap analysis

results for a number of programs that are too large to discusshere or that while the analysis

produces useful information for optimization the application of this information is similar

to other case studies already presented.

5.1 Intro Tree Example and Model Representation

Our first example comes from a set of simple tree manipulationmicro-benchmarks. We

use this example to explain several conventions used to simplify the figures, to explain how

the figures presented in this paper and the output of the analysis are related, and finally to

discuss a number of interesting properties of the analysis.
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Original Figure. Given a binary tree thecopyTreeShallow method returns a copy

of the tree structure that shares the data elements with the argument tree. Figure 5.1(a)

shows the state of the abstract heap at the exit of the of the call copyTreeShallow .

In this figure we have the variablertn referring to aTreeNode object which is the

root of the copied tree that is returned. The reference with the labelTree::static

main(string[])#t is a special label that is introduced to track the reference from the

variablet in the caller scope. This variable points to the object that is at the root of the

argument tree that was passed into the copy routine. We also show a number of static

variablesSystem.in , System.out and a reference to a random number generator

MathI.ri .

Figure 5.1(a) also illustrates a number of interesting properties that the analysis is

able to identify about the heap in this particular method. Some of the properties that the

analysis captured in this example are the fact that the argument tree and the result tree

have entirely disjoint tree structures although they sharethe data elements in the tree. In

particular the variablertn points to aTreeNode object which hasleft and right

subtree fields, each points into a region of the heap that represents many objects and has a

(T)reelayout (on theleft andright fields). A more interesting piece of information is

the identification of slightly more precise information on the nature of the sharing of the

data objects. The abstract heap state shown in the figure shows that while the argument

tree and the result tree share some data objects the sharing is only on a subtree basis, that

is theleft subtree of the result may only share data objects with theleft subtree of the

argument tree and similarly theright subtree of the result only shares with theright

subtree of the argument.

Simplified Figure. In order to simplify the figures we select default values for several

of the instrumentation properties and modify the representation of the node/edge labels to

omit the components that take on the default values. In thelinearity domain we pick the
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(a) Tree Copy (Full Record)

(b) Tree Copy (Reduced Record)

({TRUE} {FALSE} {0} {1})

System.out

8 PrintStream

{12, (!14)}

System.in

9 DataInputStream [11]

{11}

MathI.ri

10 Random [13]

{13}

this

rtn

2 TreeNode [4]

{4}Tree::static main(String[])#outs

{14, (!12)}

Tree::static main(String[])#t

1 TreeNode [6]

{6}

0 DataNode [3, 5]

{5, TreeNode.data, (~3)}

4 TreeNode # T

{9, TreeNode.left}

7 TreeNode # T

{21, TreeNode.right}{3, TreeNode.data, (~5)}

3 TreeNode # T

{1, TreeNode.left}

6 TreeNode # T

{2, TreeNode.right}

{TreeNode.left, TreeNode.right}

5 DataNode #

{8, TreeNode.data, #, (!7)}

{TreeNode.left, TreeNode.right}

14 DataNode #

{16, TreeNode.data, #, (!15)}

{TreeNode.left, TreeNode.right}

{7, TreeNode.data, #, (!8)}

{TreeNode.left, TreeNode.right}

{15, TreeNode.data, #, (!16)}

(c) Tree Copy (Raw Output)

Figure 5.1: Tree Copy
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default value to be1, the default property for thelayoutsis (S)ingleton, for connectivity

the empty set, forinterferencethe non-interferingproperty (np) and for nodeDomthe

emptyset. We also omit theactiveIterator, emptyCollectionandatFirst properties from

objects that do not abstract collections (or when theatFirst predicate isfalse). We note

that the variable reference edges always have the variable name as theoffsetso we omit

these as well. Finally, when it is irrelevant to the example at hand we will omit or rename

various extraneous references, caller scope references, static variables, etc.

Figure 5.1(b) shows the result of applying these simplifications to the abstract heap

graph shown in Figure 5.1(a). If we look at the simplified version of the node that variable

rtn refers to we see that the explicit denotations for thelinearity of 1 and the(S)ingleton

layout have been removed and are now assumed as implicit while the type information

(which is always present) and thenodeDomset (which is not the default value) are still

present in the label. Similarly for theright edge (21) in which we have omitted the

default values for thelinearity (1), and theinterference(non-interfering, np).

Raw Display Figure. The final Figure 5.1(c) shows the same heap as output by the

analysis tool itself. The analysis uses thedot program from thegraphviz suite to auto-

matically generate pictorial graph representations of theheap atkeypoints in the program

and for output from the interactive analysis debugger. Thisoutput format differs slightly

from the simplified format that we use for the discussions in this paper in order to ensure

that the figures are complete, unambiguous representation of the abstract state. In par-

ticular the field identifiers are extended with the class scope that they are declared in, all

static/caller scope variables are shown, all local variables (including null valued variables

and depending on the program location dead variables) are displayed and as needed the

package scope is appended to the type names.
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5.2 Select Benchmarks

In this section we look at a few of the more interesting JOldenbenchmarks from the

standpoint of using the analysis results to drive the optimization of these benchmarks in

a number of ways (parallelization, static garbage collection, object collocation) that are

generally impractical without the detailed heap information provided by our heap analysis

technique. Of course the more detailed information provided by the heap analysis in this

work will also improve the effectiveness of traditional optimization techniques (schedul-

ing, redundancy elimination, etc.).

5.2.1 TSP

The first benchmark we consider istsp. This benchmark computes an approximation of

the optimaltraveling salesmanpath on a tree of points. This is done using a divide and

conquer approach where atsppath is computed for each sub-tree and then the paths are

merged and the location specified by the current root node is added to the path. The method

uses links (via a fieldnext ) within the nodes to track which node is the next point to visit

in the traversal.

Thus the heap at the entry to this method is always the tree structure shown in Fig-

ure 5.2(a) while the heap at the exit of the method is the cyclic structure that results from

linking the nodes on the path, shown in Figure 5.2(b). This example highlights one of the

major strengths of the approach presented in this work. At the entry to the method the

state of the heap has a well-defined tree structure which the analysis is able to precisely

represent and which allows us to thread-level parallelize the recursive calls to theleft

andright subtrees giving a speedup of 3.16 on our quad-core test machine. Conversely

at the exit of the method the state of the heap is very irregular and has many non-trivial

relations (there is some cyclic path though the objects in addition to the tree structure on
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(a) Enter TSP Rec. Call

(b) Exit TSP Rec. Call

Figure 5.2: TSP Recursive Call

the left andright fields) and the analysis has shifted to a less precise but muchmore

efficient representation. A related and important feature is how the graph-based model

allows the analysis to perform this transition on a region byregion basis (thebh case

study 5.2.5). This allows the analysis to conservatively approximate select regions of the

heap for efficiency while maintaining precise information about the state of the program

in other regions of the heap where possible.
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5.2.2 Power

Thepower benchmark computes the electrical demand of a power grid which is laid out

in a tree pattern. The actual implementation is an array of lists of lists of vectors (none of

which share in any way), thus this program builds and traverses a similar in structure to

the one built by the firewire driver in [3, 68]. TheRoot object is the base of the grid tree

and has an array ofLateral line objects. Each of these lateral line objects is the head

of a list of Lateral objects each of which has a pointer to the head of a list ofBranch

objects and each of these branch objects has aVector of Leaf objects.

The heap analysis normally represents the head of each list as a separate node from

the tail of the list structure but to compact the figure we havecompressed the head of the

list in with the tail, Figure 5.3(a). We also show the raw output from the analysis with the

uncompressed list heads, Figure 5.3(b), which gives a better feel for the shape but due to

the larger number of nodes is harder to read.

In Figure 5.3(a) we see that the analysis has identified theRoot object (node 0) and the

initial array ofLateral objects (node 2). The edge (edge 1) from the array ofLateral

objects to the node representing the actual lists ofLateral objects has theinterfere

propertynon-interfering(the default value) indicating that each of the pointers abstracted

by this edge points to a unique object in a different data structure in the region abstracted

by node 25. This means that each of the pointers refers to the head of a unique list. Each of

theLateral objects in these lists has a pointer to aDemandobject andBranch object.

These pointers are represented by edges 15 and 13 respectively. Again since these edges

have thenon-interferingproperty we know that they refer to uniqueDemandobjects and

disjoint lists ofBranch objects as well. The lists ofBranch objects, represented by

node 14, contain pointers toDemandobjects (again all uniquely referenced) andVector

objects (also uniquely referenced). Finally, we see that each Vector object contains

references to uniqueLeaf objects and each of these contains a reference to a unique

56



Chapter 5. Case Studies

(a) Power (Compressed List)
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(b) Power (Raw Output)

Figure 5.3: Power
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Demandobject.

Thus, the analysis has determined that the heap is an array oflists of lists of vectors

with no sharing between any of the lists/vectors as desired.This is sufficient to introduce

thread-level parallelism to the processing of theLateral andBranch lists which results

in a speedup of 3.25 on a quad-core machine.

5.2.3 Em3d

The em3d program computes electro-magnetic field values in a 3-dimensional space by

constructing a list ofENode objects, each representing an electric field value and a sec-

ond list of ENode objects, which represent magnetic field values. To compute how

the electric/magnetic field value for a givenENode object is updated at each step the

computeNewValue method uses an array ofENode objects from the opposite field and

performs a convolution of these field values and a scaling vector, updating the current field

value with the result. This example demonstrates the importance of precisely resolving the

heap structure so that we can determine that the set of heap locations where thevalue

field is written is distinct from the locations that are read,as shown in Figure 5.4. In partic-

ular we note that even though the overall heap structure is cyclic the analysis has precisely

resolved the bipartite structure and the structures of objects that make up the electric and

magnetic field structures.

Figure 5.4 shows the heap structure computed for thecomputeNewValue method.

Variable g points to a single object of typeBiGrph , which is the data structure that

encapsulates all the objects of interest. TheBiGrph object has 2 fields, thehNodes

field pointing to a linked list ofENode objects that make up the magnetic field and, the

eNodes field pointing to a linked list ofENode objects that make up the electric field.

Looking at the structure of the heap graph in Figure 5.4 it is apparent that the set of

locations read from and written to incomputeNewValue (Figure 5.5) are disjoint and
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static void computeNewValue(ENode n) {
for(int i = 0; i < n.fromCount; i++)

n.value -= n.coeffs[i] * n.fromN[i].value;
}

Figure 5.5:Compute

for(int i = 0; i < this.hNodes.size(); ++i)
computeNewValue((ENode) this.hNodes.get(i));

Figure 5.6: MainEm3d Compute Loop
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thus the loop can be unrolled and aggressively scheduled or can be vectorized.

ThecomputeNewValue method is called from the loop shown in Figure 5.6 where

we iterate through all the entries in theLinkedList updating the node values. Since

we know that each reference in this collection refers to a uniqueENode object (the edges

with identifiers 4 and 5 have the non-interfere property) we know that each iteration of the

loop updates a differentENode object. Thus, we can thread-parallelize the processing of

this loop. Doing so results in a speedup of 3.21 on our quad-core test machine.

Finally, in this example we have two opportunities to improve the use of memory via

static collection and to improve locality via collocation or dynamically updating the layout

at key points. By looking at future reads/writes from fields we can determine that the field

toN is never read from or written to again. Thus, we can collect this part of the heap prior

to the main compute loop saving a substantial amount of memory (an array of size approx.

100+ entries perENode object). Also by examining the later use of the data structures

in the program we can determine that the lifetimes of theENode objects is bounded by

the lifetime of theLinkedList they are stored in. Thus we can either allocate the

ENode objects inline with theLinkedList structure or prior to the compute loop we

can dynamically reallocate the objects contiguously in memory.

5.2.4 Voronoi

Figure 5.7 shows the abstract heap that is computed at the endof thebuildDelaunay

method. This method performs a recursive construction of a voronoi diagram by building

a diagram on theVVertex objects by computing a diagram for the left subtree, the right

subtree and then merging the two diagrams (partial pseudo-code shown in Figure 5.8).

This particular heap example shows how the analysis uses a range of interfere proper-

ties to differentiate how various forms of sharing appear ina program. Figure 5.7 shows
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Figure 5.7:Voronoi
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...
EdgePair delright = getRight().buildDelaunay(extra);
EdgePair delleft = getLeft().buildDelaunay(this);

retval = Edge.doMerge(delleft, delright);
...

Figure 5.8:buildDelaunay Pseudo-code

that at the return from the recursivebuildDelaunay method the heap has a cyclic struc-

ture (based on thenext pointer) of the edges in the triangulation (node 5). Each of these

Edge objects has a reference to anEdge[] which contains pointers back into the set of

Edge objects. Finally eachEdge object has a pointer to aVVertex object which is laid

out in a tree-like structure (the(T)reeproperty of node 9).

In addition to being able to precisely identify each of thesestructures on the heap

and the connectivity relations between them, the analysis is able to compute interesting

sharing information about how the pointers stored in the objects and arrays are related. If

we look at edge 3, which represents the pointers stored in thequadList fields of the

Edge objects, we see it has theinterferepropertyalias pointers (ap)which means that

two Edge objects may point to the same array. Similarly the edge abstracting the pointers

stored in thevertex field (edge 4) also has theinterferepropertyap which indicates

that theVVertex objects may be shared between theEdge objects (or that there may be

pointers into the same tree structure).

More interesting is the edge (edge 5) from the node abstracting theEdge[] objects

back to the node abstracting theEdge objects. This edge is labeled with theinterfere

propertyinterfering pointers (ip)which indicates that the pointers stored in the arrays may

point into connected parts of the cyclic structure but that none of them may alias (thus for

all arraysi 6= j ⇒ Edge[i] 6= Edge[j] ).
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This sharing and structural information provide several opportunities for optimizing

this particular program. ThedoMerge method performs many loop and conditional heavy

modifications ofEdge objects based on loads through theEdge[] arrays. Thus, we

believe that the information that there are no aliasing pointers in these arrays would be very

useful to standard load elimination, redundancy elimination, and scheduling optimizations.

Unfortunately as we do not have these components in our optimization framework as of yet

we are unable to measure the impact. However, we are able to use the structural separation

information about the results of thebuildDelaunay method and the tree recursive call

structure to thread-parallelize the recursive call structure giving us a speedup of 2.43 on

our test machine.

5.2.5 BH (Barnes-Hut)

Figure 5.9 shows the model that the analysis computes for thehackGravity method

of the Barnes-Hutbenchmark. Thebh program performs afast-multipolealgorithm on

the gravitational interaction between a set of bodies (theBody objects) and uses a space

decomposition tree ofCell objects each of which has aVector containing a subtree

or a reference to theBody objects. The program also keeps two vectors for accessing

the bodies,bodyTab andbodyTabRev . Figure 5.9 shows the state of the heap model

after the loop body (Figure 5.10) that contains the majorityof the computation inbh. This

loop takes eachBody object and walks the space decomposition tree (theroot field) to

determine a new acceleration value for theBody object (stored in thenewAcc field).

Our analysis is not able to precisely resolve the construction of the space decomposi-

tion tree and conservatively assumes it may be a cyclic structure (shown by theC in node

17, representing theCell objects). However, the analysis is able to determine that the

Cell objects and theBody objects represent distinct regions in the program. The anal-

ysis is also able to determine a number of useful sharing properties with respect to how
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Figure 5.9:BH
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Iterator b = root.bodyTabRev.iterator();
while(b.hasNext())

((Body) b.next()).hackGravity(rsize, root);

Figure 5.10: Main Update, Gravity Computation

theBody objects (node 14) are stored in the two vectors (bodyTab andbodyTabRev )

and the space decomposition tree. In particular it has assumed that theCell objects in

the space decomposition tree may have aliasing pointers (theap entry in edge 18, marked

in red if color is available) while there are no aliasing pointers stored in theVectors

bodyTab andbodyTabRev , the edges abstracting these pointers (edges 3, 21) have the

interferepropertynp (the omitted default non-interfering value). We also see that the anal-

ysis has determined that the two vectors and the space decomposition tree all point to some

of the sameBody objects (the (!18, !21) in edge 3, (!3, !18) in edge 21 and (!3,!21) in

edge 18 respectively these connectivity relations are marked in blue if color is available).

The sharing information about the pointers stored in each vector, the structural disjoint-

ness of the space decomposition tree and theBody objects combined with the observation

that the space decomposition tree is only read in the loop body and that the only part of the

heap which is modified is never read (thenewAcc field) is sufficient to ensure that there

is no heap-carried dependence in this loop. Thus, we can safely thread-parallelize the loop

body, achieving a factor of 3.09 speedup on our quad-core test machine.

Of interest from a memory management standpoint are theMathVector objects

which are used to represent k-dimensional points in space orvectors (a smallstatic

final int known at compile time). Examining the heap through the entire program

shows that eachMathVector points to a unique array at all times, the edges from

theMathVector objects to the arrays are alwaysnon-interfering (np)(the omitted de-

fault value), and the array nodes never have multiple edges from differentMathVector
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nodes. This allows us to safely inline the elements in the arrays directly into fields in the

MathVector objects (in effect giving the arrays value instead of reference semantics).

This has the beneficial effect of increasing the data locality and replacing several loops

with straight line code, resulting in a 23% reduction in the runtime of the single-threaded

program, as well as reducing the size of theMathVector /Array composite structure ob-

ject by a pointer (and the overhead of an array), resulting ina 37% reduction in memory

usage.
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Normalization

This chapter introduces a normal form for thelabeled storage shape graphs. The normal

form serves two functions in the analysis: it allows for twolabeled storage shape graphs

to be efficiently compared (Chapter 7) and it ensures that there are a bounded number of

labeled storage shape graphsthat are possible at each control flow join point (Chapter 9).

These two properties are needed to ensure the termination (termination of the analysis is

guaranteed for a finite domain) and efficiency of the analysis. We note that the normal form

operation may reduce the precision of the graph model (it acts as a pseudo-widening [17]).

While this potentially reduces the precision of the analysis the result is still a safe approx-

imation of the program.

There are many possibilities for satisfactory normal form definitions and the normal

form need not be unique (and the operation to compute it need not even be a function).

The only requirement is it must ensure the existence of a fixedbound on the number of

nodes/edges that can appear in a graph.

Definition 16 (Normal Form Requirements). The normal form must satisfy:∃Nmax,Emax∈

N s.t.∀g where g is in normal form:
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1. |{node n| n∈ g}| ≤ Nmax.

2. |{edge e| e∈ g}| ≤ Emax.

Since the objective of constructing this finite set is to ensure that the analysis terminates

in a reasonable amount of time, when analyzing a given program Pr we do not need to

construct a universal normal form and bound for all programs, but can instead perform the

construction parametrically with respect to the types usedin the programPr .

6.1 Simple Normal Form Definition

We begin with a simple definition for a normal form operation that satisfies the above

definition. While this normal form operation is surprisingly effective in many cases, there

are a number of problems with the definition that result in excessive losses of accuracy

when using it in practice. We examine the causes of these precision losses and amend the

definitions to avoid them in Section 6.2 and 6.3.

We can identify all the types in a program that may be recursive by looking at the type

graph for the program. Below we define the construction of a type graph for a simple

type system without interfaces or inheritance. This construction can be easily extended to

handle object-oriented language features.

Definition 17 (Static Program Type Graph). For a given program Pr we can use the de-

clared types{τ1, . . . ,τk} in the program to construct a type dependence graph as follows:

1. For eachτi ∈ {τ1, . . . ,τk} we add a node to the graph.

2. If τi has a field of typeτ j we add an edge(τi,τ j) from the node forτi to the node for

τ j .
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Based on this construction we can identify types that are recursive (based on the static

type information) as the types that are contained in the samestrongly connected compo-

nent of the graph or that have self edges in the graph.

Definition 18 (Statically Recursive Types). For a given program we can use the declared

types to compute which objects may be a part of the same recursive structure, given types

τ,τ ′ we use the following terminology:

1. τ,τ ′ are statically recursiveiff in the Static Program Type Graph(τ 6= τ ′ ∧ τ,τ ′ are

in the same strongly connected component)∨ (τ = τ ′ and there is a self edge(τ,τ)).

2. τ is a statically recursivetype iff∃τ ′ s.t. τ,τ ′ arestatically recursive.

Definition 19 (Simple Normal Form). A graph g is in the simple normal form if:

• ∀ nodes n, n is reachable from a variable node.

• ∀ nodes n,n′ s.t.∃ edge e from n to n′ then (6 ∃ τ ∈ n.types, τ ′ ∈ n′.typess.t. τ,τ ′ are

statically recursive).

• ∀ nodes n6 ∃ edges e,e′ both starting at n where e6= e′ ∧ e.offset= e′.offset.

Given the operations to combine nodes/edges in Section 6.5 it is straightforward to

transform an arbitrary heap graph into itssimple normal form. Further it is clear that the

simple normal form satisfies our requirements as (1) the max depth in the graph is bounded

by the size of the largest statically non-recursive structure since all recursive structures are

represented by a single node (no two nodes with an edge connecting them can contain

statically recursivetypes) and (2) the maximum branching factor for any node is limited

by the number of fields declared in the program.
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6.2 Equivalent Edge/Node Identification

To allow us to relax the condition on the outgoing edges for a given node we want to intro-

duce a notion ofequivalenceof two nodes/edges that captures our intuition of when two

nodesn,n′ abstract similar regions of the concrete heap. Since theequivalencepredicate

is used to determine the maximum number of out edges each nodemay have, we can im-

prove efficiency by minimizing the number of equivalence classes created by this relation.

The tradeoff between precision and performance that we havefound to be acceptable is

determined by the following conditions: (1) are all the types represented by the nodes non-

recursive (or may both nodes represent recursive types) and(2) what variables can reach

the objects in the regions abstracted by the nodes?

Definition 20 (Recursive Similarity). Given nodes n,n′ and thestatically recursivetype

information, n,n′ are recursive similariff either of the following holds:

1. (∃τ ∈ n.types,τ is statically recursive)∧ (∃τ ′ ∈ n′.types,τ ′ is statically recursive)

2. (∀τ ∈ n.types,τ is not statically recursive)∧ (∀τ ′ ∈ n′.types,τ ′ is not statically re-

cursive)

Thus, the nodes arerecursive similarif either they both abstract all non-recursive types

or they both may abstract an object with a recursive type. An example of why this is

important is the common construction of k-ary trees using arrays to hold either a recursive

subtree or a non-recursive leaf object, which is often shared by multiple nodes.

Consider a simple program which has two types,Exp andVar , where the typeVar

is a non-recursive leaf type andExp has a field,exp which either points to aVar object

or anotherExp object. Figure 6.1(a) shows an abstract heap representing asmall abstract

heap structure using these types. If we were to group the recursive and non-recursive

nodes together we get the result in Figure 6.1(b) which has been forced to create a List
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(a) Recursive Similarity (b) Without Recursive Similarity

Figure 6.1: With and Without Recursive Similarity

structure when merging theexp edges. This is a substantially less precise description

of the program state and as the analysis continues will result in the overly conservative

approximation that the structure is a DAG instead of the desired discovery that we have

a recursive list (or tree) with shared leaf objects. Conversely with the use ofrecursive

similarity, the grouping will keep the edges distinct and leave the original heap unchanged.

The BH program discussed in Chapter 5 shows a larger example of where this property

allows the model to represent theBody leaf objects as a distinct region from theCell

objects that make up the space decomposition tree.

Reference Similarity. If we have two nodesn,n′ and the objects abstracted in the region

by n are all stored in an arrayA and all the objects in the region abstracted byn′ are

stored in arrayA and a second arrayB then it is reasonable to assume that the programmer

has partitioned these objects differently for some reason.Thus, we want to preserve this

information by keeping the nodes distinct, we show this situation in Figure 6.2. We can

ensure that the information on which collections and variables refer to which sets of objects

is maintained by using the following definition ofreference similarity.

Definition 21 (Reference Similarity). We say two nodes n,n′ are reference similar if given

the set of in edges to n, Ein = {en
1 . . .en

k}, the set of in edges to n′, E′in = {en′
1 . . .en′

k }, and the
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Figure 6.2: Not Reference Similar (based on variable reachability)

set of variables that can reach node n, Vr = {vn
1 . . .vn

r }, the set of variables that can reach

node n′, V′r = {vn′
1 . . .vn′

s }, the following holds:

{e.offset| e∈ Ein}=
{

e′.offset| e′ ∈ E′in
}
∧Vr = V ′r

This definition ensures that if two nodes are treated differently with respect to the types

of objects they are stored in or the variables that reach themthen they are kept separate.

Definition 22 (Equivalent Nodes/Edges). Given the above definitions we defineedge

equivalence. Given a node n and two out edges e,e′ which start at node n and end at

nodes ne and ne′ respectively we say e,e′ areequivalentif:

(e.offset= e′.offset)∧ (ne,ne′ are recursive similar)∧ (ne,ne′ are reference similar)

6.3 Recursive Components

In this section we define a predicate that takes two nodes (n,n′ wheren 6= n′) with one

or more edges between them and determines if they may be part of the same recursive

component of a data structure.

A Simple Initial Approach. Using the static type information to determine which parts

of the labeled storage shape graphmay represent recursive structures can cause massive
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(a) List Structure

(b) Simple Recursive Identification (c) After Update

Figure 6.3: Result of Simple Recursive, on List Remove

losses in precision during the analysis. Consider the case of removing an element from a

linked list where we have multiple variables pointing into the same list structure, and main-

taining the order relation between them is critical to accurately modeling the final removal

of an element. Using the above approach will result in the loss of all order information

between the variables in the list. Figure 6.3(a) shows one ofthe abstract heap graphs that

arises during the analysis of thelistRemove method. The result of the simplistic recur-

sive component elimination is shown in Figure 6.3(b) and results in the loss of all order

relations betweenx andy . The updatex.next = y then results in the analysis (very

conservatively) assuming that the region may become cyclicas shown in Figure 6.3(c).

Safe Nodes. To avoid this problem we introduce the notion ofsafe nodes. We say a node

is safe if it represents an interesting point in a recursive data structure (a point where the

program is accessing a specific node in the data structure though a variable reference, as

in the above example, or a non-recursive data structure pointing into specific locations in

the recursive structure) and we always keep these nodes separate/distinct from any other

recursive components of a data structure.
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If we have a recursive data structure and we store referencesto important points in

it via another data structure we want to be able to maintain the relations between these

specific points in a data structure for when they are accessedlater in the program. This is

a generalization of maintaining the precise locations of variable references in a recursive

data structure. This particular expansion is important to analyzing situations of the form:

a method returns a pair of nodes in a list and we want to remove all the elements in the

list between thefirst andsecond entries of the pair. If the analysis does not maintain

the order relation between the targets of the two fields in thenon-recursive pair object in

the recursive list structure we cannot accurately model theeffects of the remove operation

(e.g., after normalization we would be forced to conservatively assume that the target of

thesecond field could come before the target of thefirst field).

Definition 23 (Safe Node). A node n issafeif it is a (S)ingletonnode and either of the

following hold:

1. ∃ variable v that refers to n.

2. ∃ edge e s.t. e starts at a node ns where∀τs ∈ ns.types,τ ∈ n.types,τs,τ are not

statically recursive).

Online Computation of Recursive Structures. The detection of potentially recursive

types by examining the type graph of the program can lead to overly aggressive merging

of components of a heap graph. Consider a program with the object typesτ1,τ2,τ3 which

are mutually recursive on then field. If we have the abstract heap graph in Figure 6.4

we can see that the 2nd and 3rd nodes in the list are statically recursive according to the

definitions above but that there is no complete recursive structure present in the program

(no type appears multiple times in the same structure). Thiscan occur frequently with pre

1.5 Java collections as their contents are untyped (they maycontain any type of object)

and are thus statically recursive with all other types.
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Figure 6.4: Recursive Types But No Complete Structure

To avoid this problem we perform an online detection of the recursive structures in a

program so that instead of sayingn,n′ are recursive if there is an edge fromn to n′, neither

n,n′ is safeand∃t ∈ n.types, t ′ ∈ n′.typess.t. t, t ′ are statically recursive, as in our initial

simple approach we use a reachability construction based onthe abstract heap structure.

Definition 24 (Online Recursive Nodes). We definition of n,n′ as being online recursive

if:

∃ an edge from n to n′, neither n,n′ is safeand∃nτ s.t. there is a path (possibly empty)

from n′ to nτ that does not pass through anysafenodes and n.types∩nτ .types6= /0.

This ensures that if we identify two nodes as being recursivethen they are part of a

complete (we have a least one complete cycle from a node of a given type to another node

of the same type) and unbroken (there are nosafenodes in this cycle) recursive structure

in the program.

Recursive vs. Back Pointers. Many programs use back pointers causing the above def-

inition to identify any cyclic structure as recursive (since trivially we can letnτ = n). This

causes the grouping of cycles in the graph into single nodes with thelayout (C)ycle, which

can lead to substantial imprecision. Figure 6.5 shows an example of such a heap. We can

see that even though the heap structure is finite, the back edge will cause our recursive

component definition to group the 2nd and 3rd nodes into the same recursive component.

To address this problem we modify the recursive definition slightly to ignore back
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Figure 6.5: Recursive Cycle

pointers when computing if two nodes are recursive. This gives us the final definition for

recursive nodes.

Definition 25 (Recursive Nodes). Given the functiondepthwhich returns the depth of a

node in the graph, nodes n, n′ (where n6= n′) are recursiveif:

∃ edge e from n to n′, neither of n,n′ is safeand∃nτ s.t. there is a (possibly empty)

pathψr〈(ns
1,n

e
1) . . .(ns

k,n
e
k)〉 from n′ to nτ s.t.∀(ns

i ,n
e
i ) ∈ ψr ,depth(ns

i ) < depth(ne
i ) (where

depthis the depth of the node in the graph),∀(ns
i ,n

e
i ), neither nsi or ne

i is safe and, n.types∩

nτ .types6= /0.

6.4 Focus Operation

The focus operation is a set of rewrite rules for the nodes/edges in a graph that we use

to propagate the implications of the various node/edge properties and the structure of the

graph. Given a noden, a set of incoming edgesEi = {ei
1, . . . ,e

i
m} and a set of outgoing

edgesEo = {eo
1, . . . ,e

o
n} the focusNodeoperator updates the node and edges using the

following rewrite rules:

n.linearity= 1∧∃e∈ Ei ,e.interfere6= ap
e.linearity← 1

This rewrite rule allows us to determine that if a node represents a single object then if an

edge represents a set of pointers that do not alias then the set must only contain a single
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pointer (since all pointers in this set must point to the single object in the region abstracted

by the node).

n.linearity= 1∧∃e∈ Eo,e.offset6∈ {?, bi, ai }

e.linearity← 1∧e.interfere← np

This inference rule allows us to determine that if a node represents a single object then all

the out edges which represent pointers stored in the fields ofthe object (i.e. pointers not

stored in summary containers such as arrays or collections)must represent a single pointer

(and naturally a single pointer cannot share with itself so the edge is non-interfering).

n.layout= S
n.typesonly contains type names consistent with the incoming edge types

This rule states that if there are no internal pointers in theregion abstracted by the node (a

Singleton layout) then each object must be referred to by a reference abstracted by one of

the incoming edges. Thus the set of types that the objects maybe is limited by the types

of the targets of the references abstracted by the incoming edges.

∃e∈ Ei ,e.linearity= 1∧e dominates n
n.linearity← 1

This rule states that if we have an incoming edge which represents a single pointer and

every object in the region abstracted by the target node is referred to by a pointer in this

edge then there is only a single object in the region.

Ei = {e}∧n.layout= S∧ start node ofehaslinearity 1
n.domset= {e}

This rule states that if there is a single incoming edge to a node that abstracts a region

of the heap with no internal pointers then every live object in this region must be pointed

to by one of the references in the incoming edge (and to ensurewe don’t later introduce

spurious dominance information the start node of the edge must represent a single object).

∃ex,ey ∈ Ei s.t.ex dominates n∧ey dominates n

ex domEQ ey
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This inference rule allows us to determine that if every object in a given region are pointed

to by a reference abstracted byex and every object is also pointed to by a reference ab-

stracted byei
y then the set of objects pointed to by references abstracted by ex equals the

set of objects pointed to by references abstracted byey.

Ei = /0
then removen and all the edges inEo from the graph

This rule ensures that if the region represented by the node is unreachable by the program

then we remove the node and all out edges since they are semantically meaningless.

6.5 Normal Form

Given the definitions forequivalent edgesandrecursive nodeswhich provide the required

heuristics for determining which nodes should be grouped into the same recursive com-

ponents and which nodes represent similar regions on the concrete heap, we can define

our improved normalization method. We begin by defining how to compute a summary

node/edge that safely approximates the properties of a given set of nodes/edges. The most

general way to do this would be to compute a single summary node/edge over the entire

set. However, this is a difficult problem in the general case and we opt for the simpler

approach of processing the nodes/edges in a pairwise fashion.

6.5.1 Node Summarization

When summarizing two nodes,na andnb, there are three possibilities. The first is that

there are no edges between the nodes, there are only edges in one direction between nodes

(from na to nb or nb to na, but not both) and when there are edges fromna to nb and from

nb to na.
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If there are no edges between the nodes we use themergeNoEdgemethod to compute

the summary representation. This method is mainly a component-wise operation (in that

we take the max of the properties or union of the relations). The two only non-trivial

details are to set thelinearity of the summary node to the sum (+̃) of the linearity of the

two nodes, which is alwaysω (since the summary node may represent multiple objects)

and to clear the out edges from any dominance relations. The clearing of the dominance

information is key to ensuring that later writes that might make objects abstracted by this

node unreachable (and this potentially affecting the dominance properties) are correctly

handled (by conservatively forgetting the dominance properties of any summary nodes).

ThemergeEdgeOneWayoperation on a pair of nodes that have connecting edges is more

complicated. In particular we need to account for the fact that the edge(s) connecting

nodesna andnb will affect the layout and the internal connectivity of the new summary

node.

Algorithm 1 : mergeOneWay
input : graphg, na,nb nodes,ebt set of edges fromna to nb

na.types← na.types∪ nb.types;

na.linearity← ω;

na.layout← combineLayout(na.layout,nb.layout,ebt);

na.connR← combineConnR(na.connR,nb.connR,ebt);

na.nodeDom← /0;

na.activeIter←⊥;

na.empty← unknown;

na.atFirst← false;

remap all edges incident tonb to be incident tona;

foreach out edge edo
if e.offset∈ {ai,at,bi} then e.offset← ?;

removee from any dominance relations;
deleteNode(g, nb);
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The algorithmcombineLayout(la, lb,ebt) (Algorithm 2), is based on a case analysis of

the internal layout that results from the possible combinations of layouts forna, nb along

with the total number of pointers represented byebtand the potential that any pointers in

the edges represented byebt interfere. We enumerate the possible combinations of theebt

edges and the layout types. Then for each case we use the semantics of the edge and layout

properties to determine the most general layout type that may result from this particular

case. For example if we have two(S)ingletonnodes connected by an edge oflinearity

1 then the most generallayout for a node that summarizes these nodes and the edge is a

(L)ist.

Algorithm 2 : combineLayout
input : la, lb layout types,ebtset of edges fromna to nb

output: the layout of the combined node

mayInterfere←
∨
{e∈ ebt|e.interfere= ip∨ap};

totalPointers← ∑{e∈ ebt|e.linearity};

notSingletons← sa 6= Singleton∧ sb 6= Singleton;

isDAGgraph← totalPointers> 1∧ notSingletons;

lr ←max(la, lb);

case(mayInterfere∨ isDAGgraph) return max(lr , MultiPath);

case(la = List) return max(lr , Tree);

case(la = lb = Singleton)return max(lr , List);

otherwise return lr ;

The combineConnRfunction updates the internal connectivity information inna to

reflect that it now represents the combined regions forna andnb. This involves computing

the binary connectivity relation for all the edges that are incident to the new summary

node based on the connectivity information in the argument nodesna,nb, and the edges

that connect the argument nodes,ebt.

combineConnR(na,nb,ebt) = {(e,e′,n,c)|(e,e′,n,c) ∈ g.connR∧ e 6∈ ebt∧ e′ 6∈ ebt} ∪
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{(e,e′,n, ip)|∃eb ∈ ebt s.t. (e,eb,na, ip|ap) ∈ g.connR∧ (eb,e′,nb, ip|ap) ∈ g.connR}.

To merge two arbitrary nodesn,n′ we use Algorithm 3 which selects the appropriate

method for merging two nodes based on the existence of edges between them.

Algorithm 3 : mergeNode

input : noden,n′, graphg

output: None

if ∃ edges from n to n′ and n′ to n then
replacen,n′ with the top node⊤n;

else if∃ edges from n to n′ then
mergeOneWay(g, n, n′);

else if∃ edges from n′ to n then
mergeOneWay(g, n′, n);

else
mergeNoEdge(g, n′, n);

6.5.2 Edge Summarization

The edgemergemethod is only well defined when two edges start at the same offset in the

same node and end at the same node. The method checks the end connectivity informa-

tion to determine how the component abstraction should be combined. If the edgesshare

then the pointers that these edges represent may alias and weset the summary edge as

ap, similarly if the edges areconnectedthen the pointers that these edges represent may

interfere and we set the summary edge asip, otherwise they arenon-interfering. Once we

have computed the relation property between the pointers inthe two edges we take the

max of this property and theinterfereproperties of the two edges. For the rest of the com-

ponents that are used to represent an edge, we can simply combine them component-wise.

The edge join algorithm uses the functionupdateInternalConnInfoEdgeJoin(ns,ne,ea,eb)

to update the internal connectivity info inns andne to represent the fact thatea now repre-
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sents pointers fromea andeb and thus for each connectivity relation that holds for either

ea or eb should now hold forea.

Algorithm 4 : mergeEdge
input : g graph,ea, eb edges,ns,ne the nodes,ea,eb start and end at

ea.linearity← ω;

if ea,eb sharethen
ea.interfere← ap⊔ea.interfere⊔eb.interfere;

else ifea,eb connectedthen
ea.interfere← ip⊔ea.interfere⊔eb.interfere;

else
ea.interfere← ea.interfere⊔ eb.interfere;

updateInternalConnInfoEdgeJoin(ns, ne, ea, eb);

deleteEdge(g, eb);

6.5.3 Normalization

We begin by giving a definition for when a graph is in normal form. Then we define a

helper method to remove all equivalent edges from a given node and finally present the

full normalization operator.

Definition 26 (Labeled Storage Shape Graph Normal Form). A graph g is in normal form

if:

• ∀ nodes n, n is reachable from a variable node.

• ∀ nodes n, n cannot berefinedinto disjoint nodes, see Section 8.2.

• ∀ nodes n, none of the focus operations can be applied.

• 6 ∃ nodes n,n′ s.t. n,n′ are recursive.

• ∀ nodes n6 ∃ edges e,e′ both starting at n where e6= e′ ∧ e,e′ areequivalent.
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Equivalent Edge Removal. To remove all theequivalent edgesfrom a node we check if

there are two distinct edges that have the sameoffsetand their targets are either the same

node or arenode equivalent.

Algorithm 5 : removeEquivalentEdges
input : noden, graphg

output: None

while ∃ equivalent edges e,e′ do
n← endpoint ofe;

n′← endpoint ofe′;

if n 6= n′ then mergeNode(g,n,n′);

mergeEdge(g,e,e′);

Normalize Graph. The full algorithm for normalizing the heap graph is shown inAl-

gorithm 6. For efficiency we begin by splitting any nodes thatrepresent disjoint regions

into multiple nodes (see Section 8.2), then we apply the refinement rules to all the nodes,

these operations reduce the number of possible normal formsfor a given graph. Next we

find and remove anyequivalent edgesand finally we merge all the recursive nodes in the

graph. This process is repeated until the heap graph is no longer changing.

Example Normalization. In Figure 6.6 we show an abstract heap graph and the resulting

normalization of the graph. The graph shown in Figure 6.6(a)has an array containing

severalDNnodes, one of which is referred to by the variablex , and a list ofLN nodes.

While the list ofLN nodes was the variabley pointing into an interior point in the list.

In Figure 6.6(b) we have applied a number of thefocusrules to propagate information

in the model. For node 3 we have used the third rule to infer that the since thelinearity of

the in edge is 1 then thelinearity of the node is also 1. In node 7 we have used the type

consistency rule to determine that the only valid type for the node isLN. Also for edges 6,
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Algorithm 6 : normalizeGraph
input : graphg

output: None

Remove all unreachable nodes fromg;

while g is changingdo

while ∃ node n s.t. there is a partition of the in edgesdo
g.refineDisjointEdges(n);

while ∃ node n s.t. n can be focuseddo
focus(n);

while ∃ node n s.t. n hasequivalent edgesdo
removeEquavalentEdges(n, g);

while ∃ nodes n,n′ that are recursivedo
mergeNode(g, n, n′);

7 we used the sixth rule to infer that since both edges dominate node 6 then they must be

dominance equal.

Figure 6.6(c) shows the heap model that results from removing all equivalent edges.

Since edges 3, 4 are equivalent (they are at the same offset and the nodes arereferenceand

recursivesimilar) we have replaced them with a single summary node (node 4). This node

represents many objects of typeDNand since the original nodes were both(S)ingletonlay-

out and there were no edges between them the resulting summary node is also a(S)ingleton

layout. Similarly the edges were merged (into edge 4) and since they weredisjoint the re-

sulting summary edge isnon-interfering. Nodes 2 and 5 are not equivalent with node 4

since they are notreferencesimilar and notrecursivesimilar respectively.

The final Figure 6.6(d) shows the result of applying the recursive node elimination (and

is also the final result of the normalization). In this figure we have merged nodes 7, 8 into

a single summary node (7). Since there was a single edge oflinearity 1 connecting them

and they were both(S)ingletonnodes the summarization of the regions the represent is a

region with a(L)ist layout. Node 6 has not been merged into the recursive list structure
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(a) Original Graph (b) Focus

(c) Equivalent Edges (d) Recursive Nodes

Figure 6.6: Normalization

since it issafeaccording to our definition of recursive nodes.
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Domain Order and Combine

Given our abstract heap domain (Ĥ) (labeled storage shape graphsfrom Chapter 3) and the

domain of equivalent values (Ũ) (themust equaldomain from Section 4.2) we are ready to

construct the full domain℘(Ũ × Ĥ) used for program analysis. This construction is done

in several steps. First, in Section 7.1, we construct a partial order on thepropertiesthat

we use to label the nodes/edges of thelabeled storage shape graphsand a way to compute

a safe upper approximation (⊔̃) of two propertyvalues. Then, in Section 7.2, we define a

partial order operation on a subset of thelabeled storage shape graphsand a specialized

upper approximation operator for (under certain conditions) merging twolabeled storage

shape graphs. Finally, in Section 7.3, we define the full domain, a partialorder (≤ f ),

and upper approximation (⊔̃ f ) operations for the domain that is used to do the program

analysis. We conclude with an outline of the proof that the resulting order operation and

abstract domain provide a safe approximation of the concrete program states,σ ≤ f σ ′⇒

γ f (σ)⊆ γ f (σ ′), whereγ f is the concretization operation.

Many of the operations we define is this section are parametrized based on the ex-

istence of a subgraph isomorphismΠ between twolabeled storage shape graphs g,g′

(Π : g 7→ g′). For simplicity we assume this map is composed of multiple submaps that
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relate edges, nodes, theconnRrelation and thedomEQrelation. Thus we can apply it to

the entire graphg or any of the individual subcomponents.

One major concern with this use of subgraph isomorphism in the follow computations

is the computational complexity of the problem (which is known to beNP-Complete).

Fortunately our graph domain provides us with a substantialamount of extra information

that can be used to make the problem nearly linear in practice(although the worst case

runtime is still exponential). First is the existence of a class of root nodes, the local and

static variable names, that can always be directly matched.These initial matches provide a

starting point that we can use to extend the subgraph isomorphism in a breadth-first man-

ner. Secondly we can use the edge labels to quickly discard most infeasible isomorphisms.

That is, in all of the operations described here we are only interested in isomorphisms that

are consistent with the edgeoffsets. Thus we know that for edgee∈ g only edgese′ ∈ g′

s.t. e.offset= e′.offsetare feasible and can discard all other possible matches. Along with

the standard subgraph isomorphism heuristics this additional information from the root

variables and the edge labels allows us to compute the isomorphisms with an average of

less than one backtrack choice point per subgraph isomorphism computation done in our

benchmarks.

7.1 Order and Join on Label Properties

In Chapter 3 we defined a number of instrumentation properties as labels for the labeled

storage shape graphs which filter the possible concretizations for a given abstract heap

graph. The definitions of these properties were designed to induce a natural order on them

(based on implication in terms of the concrete heap predicates that were used to define

them). For each of the instrumentation properties we first defined a number of predicates

in first-order logic and graph reachability and then each of the instrumentation properties

were defined in terms of which of these predicatesmay/musthold. This construction
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induces a natural order on the instrumentation properties based on the sets of concrete

predicates that they admit in a concretization which in turnimplies the abstract domain is

a safe approximation of the concrete domain. We will return to this later after we have

fully defined the order operation in the abstract domain.

For each of the properties we define an order operation≤ and an upper approximation

operator⊔̃. For the order operation to be safe with respect to the concrete program heaps

we must have that for any label valuesp, p′ wherep≤ p′ if we replace an occurrence ofp

in one of the labels of the abstract graphg with p′ to getg′ thenγ(g)⊆ γ(g′). As described

above this property is trivially satisfied by the construction of the label properties based

on satisfaction of subsets of concrete heap properties. In order to ensure that the fixpoint

computation is safe, each pair of definitions must ensure that p≤ p⊔̃p′ and p′ ≤ p⊔̃p′,

wherep, p′ are values from the property set we are defining≤ and⊔̃ on.

Offsets. For the offsets the analysis uses a strict notion of identityso that two edges are

only matched in the subgraph isomorphism if they have the same offsetand we never try

to combine two edges with differentoffsetlabels.

Types. Thetypeandoffsetproperties are handled in the usual manner. For thetypeprop-

erty the order is subset inclusion on the type labels and the upper approximation operation

is set union which is consistent with our definition of the abstract typeproperty where if

a given type name is in the set the concretization of the node may include objects of the

given type.

Definition 27 (Type Property Operations). Given type sets t, t ′:

• t ≤ t ′⇔ t ⊆ t ′.

• t⊔̃t ′ = t ∪ t ′.
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Linearity. The linearity property is associated with both edges and nodes and ranges

over the domain of labels{1,ω}. Based on our definition we know that the value 1 implies

the concretization of the node/edge must produce 0 or 1 objects/references and that the

valueω implies the concretization may contain any number of objects in the range[0,∞).

This implies that the all possible concretizations of a node/edge with the linearity property

1 are also in the set of possible concretizations of the same node/edge when we set the

linearity property toω.

Definition 28 (Linearity Property Operations). Given linearity labels l, l ′:

• ≤: 1≤ ω.

• l ⊔̃l ′ = max(l , l ′).

Layout. The layout property has a similar construction to thelinearity domain where

each abstract property is defined in terms of a set of concreteproperties thatmayhold in

the region of the heap that a given node concretizes to. The domain was constructed in

a way such that there is a base element(S)ingletonthat only admits concrete regions that

satisfy a single structure predicate and each successive abstract property admits regions

satisfying additional predicates up to the(C)ycleproperty which admits concretizations of

the node which can satisfy any of the structure predicates.

Definition 29 (Layout Property Operations). Given layout labels s,s′:

• ≤: (S)ingleton≤ (L)ist≤ (T)ree≤ (D)ag≤ (C)ycle.

• s⊔̃s′ = max(s,s′).

This matches the intuition that if we join a node with the(S)ingletonlabel, which only

admits concretizations that satisfy theSingleton Structureconcrete predicate, and a node

with the(T)reelabel, which admits concretizations that satisfy theTreeor List or Singleton
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Structureconcrete predicates, we get theTreevalue which admits any concretization that

either of the argumentlayout labels admitted.

Connectivity. First we order the individualconnproperties{disjoint, connected, share},

which are again defined in such a way that the set of concretizations of a pair of edges

and a node that is consistent with thedisjoint property is a subset of the concretizations

consistent with the heap graph which has theconnectedinstead, and a similar situation

holds for theconnectedand theshareproperties. Thus, we have the total orderdisjoint≤

connected≤ share. Since theconnectivityproperty is a relation on̂E× Ê× N̂×connRwe

need to define the order/join on this relation and we need to consider the particular relations

between the edges/nodes ing andg′ as given by the subgraph isomorphismΠ : g 7→ g′.

In order to determine if the connectivity relationconnRfor the abstract heapg is less

than the connectivity relationconnR′ of the abstract graphg′ we need to ensure that

any concrete heap that is consistent with the connectivity relation connR is also con-

sistent with the connectivity relationconnR′. In order to accomplish this we need to

determine if every entry in the relation(e1,e2,n,cr) ∈ connRhas a corresponding entry

(Π(e1),Π(e2),Π(n),c′r) ∈ connR′∧cr ≤ c′r).

Definition 30 (Connectivity Relation Operations). Given connectivity relationsconnRfor

g, connR′ for g′ andΠ : g 7→ g′:

• connR≤ connR′ ⇔ ∀(e1,e2,n,cr) ∈ connR (∃(Π(e1),Π(e2),Π(n),c′r) ∈ connR′

∧cr ≤ c′r)

• connR̃⊔connR′ = {(e′1,e
′
2,n
′,max(cr ,c′r) | (∃e1,e2,n s.t.Π(e1) = e′1∧Π(e2) = e′2∧

Π(n) = n′ ∧ (e1,e2,n,cr) ∈ connR) ∨ ((e′1,e
′
2,n
′,c′r) ∈ connR′)}.

Interference. The interferenceproperty is a unary property and like thelinearity and

layout properties we can define a linear order for it based on the definitions, which are
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structured to ensure that any concretization of an edge withthe non-interferinglabel is

also a valid concretization of the edge with theinterfering(or aliasing) label.

Definition 31 (Interference Property Operations). Given interfere labels i, i′:

• ≤: non-interfereing≤ interfereing≤ aliasing.

• i⊔̃i′ = max(i, i′).

Edge Dominance. Similar to theconnectivityproperties,edge dominance, is a relation

on the graph. However, unlike theconnectivityproperty it is a simple binary relation on

Ê× Ê. The reason that we treat this property independently from theconnectivityrelations

is that it is amustproperty (it holds for all states) where as theconnectivityis a may

property (there may or may not be a state in which the propertyholds). Thus conceptually,

the domain orders are reversed (i.e. the join of the connectivity relation is theor of the

relations while the join in the dominance will be theand of the relations and similarly

for the order relation). We want to ensure that if a concrete heap which is consistent with

theedge dominanceproperties (thedomEQrelation) in the abstract heap graphg then the

concrete heap is also consistent with theedge dominanceproperties (thedomEQ′ relation)

in g′, which implies that if a given relation is indomEQ′ then is must also be indomEQ

and thus the relation is reversed from theconnectivityrelation.

Definition 32 (Edge Dominance Relation Operations). Given edge dominance relations

domEQfor g, domEQ′ for g′ andΠ : g 7→ g′:

• domEQ≤ domEQ′ ⇔ ∀(e′1,e
′
2) ∈ domEQ′ (e′1,e

′
2 are not in the range ofΠ) ∨

(∃(e1,e2) ∈ domEQ∧Π(e1) = e′1∧Π(e2) = e′2)

• domEQ̃⊔domEQ′ = {(e′1,e
′
2) | (e′1,e

′
2 are not in the range ofΠ) ∨ (∃e1,e2 s.t.

Π(e1) = e′1∧Π(e2) = e′2 ∧ (e1,e2) ∈ domEQ) ∧ (e′1,e
′
2) ∈ domEQ′)}.
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Node Dominance. A similar situation holds for thenode dominanceproperty which is

also amustproperty. The order definition represents the idea that the only way for the

dominance property ofn′ to admit more concrete states thann is for the set to have fewer

restrictions on which reference sets must point to every object in the region (which is

equivalent to having fewer dominating edges).

Definition 33 (Node Dominance Operations). Given node dominance sets{e1, . . . ,ek} for

n∈ g, {e′1, . . . ,e
′
j} for n′ ∈ g′ andΠ : g 7→ g′:

• {e1, . . . ,ek} ≤ {e′1, . . . ,e
′
j} ⇔ {e

′
1, . . . ,e

′
j} ⊆ {Π(e) | e∈ {e1, . . . ,ek}}.

• {e1, . . . ,ek}⊔̃{e′1, . . . ,e
′
j} = {Π(e) | e∈ {e1, . . . ,ek}}∩{e′1, . . . ,e

′
j}.

Active Iterator/Indexer. TheactiveIterproperty is much like theoffsetproperty in the

sense that we assume all variable names are incomparable. However, we do allow the join

of two activeIterproperties,ai⊔̃ai′ by keeping theactiveIterproperty ifai = ai′.

Empty, At-First. The empty and at first properties are the instrumentation properties

that allow us to track if a given collection is empty and if thecurrent active iterator must

be at the start iterator position for the collection.

Definition 34 (Empty Property Operations). Given empty labelsev,ev′:

• ≤: empty= true≤ empty= unknown∧ empty= false≤ empty= unknown.

• ev⊔̃ev′ = if ev= ev′ thenev elseunknown.

Definition 35 (atFirst Property Operations). Given atFirst labelsaf,af′:

• ≤: atFirst= true≤ atFirst= false(they are comparable here since the false value

admits all concretizations of the iterator position).

• af⊔̃af′ = af∧af′.
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7.2 Order and Upper Approximation of Labeled Storage

Shape Graphs

In this section we define the order≤g relation and a partial function for computing the

upper approximatioñ⊔g of two labeled storage shape graphs. For the remainder of this

section we will assume without loss of generality that we arecomparingg≤g g′ or merging

g⊔̃gg′ and the mapΠ : g 7→ g′ is a subgraph isomorphism fromg into g′.

Order. Given a method for computing a subgraph isomorphism fromg 7→ g′ (if it exists)

and the order relations on abstract heap properties we can define the order by first seeing

if there is a map fromΠ : g 7→ g′ and if there is then ensuring that under this map all the

property labels for the nodes/edges inΠ(g) are less than or equal to the values ing′.

Given the definition of the labeled storage shape graph from Chapter 3 we can writeg

as (V̂, N̂, Ê, L̂n, L̂e, connR, domEQ) whereL̂n : N̂ 7→ (types, linearity, layout, nodeDom,

activeIter, empty, atFirst) andL̂e : Ê 7→ (offset, linearity, interfere), and similarly forg′.

Definition 36 (Labeled Storage Shape Graph Order (≤g)). Given labeled storage shape

graphsg≤ g′ iff ∃ subgraph isomorphismΠ : g 7→ g′ s.t.

1. ∀v∈ V̂,Π(v) ∈ V̂ ′.

2. ∀n∈ N̂, L̂n(n)≤ L̂n
′
(Π(n)).

3. ∀e∈ Ê, L̂e(e)≤ L̂e
′
(Π(e)).

4. connR≤ connR′ underΠ.

5. domEQ≤ domEQ′ underΠ.

In order to ensure the safety of the analysis we must have the property that in the

abstract domaing≤g g′ implies that the set of concrete states thatg concretizes to is a
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subset of the states thatg′ concretizes to (g≤g g′⇒ γ(g) ⊆ γ(g′)). Since there is a copy

of g in g′, given byΠ, we know that any concrete heap that is consistent with the graph

connectivity properties ofg is also consistent with the graph connectivity properties of g′.

We also know that the≤g operation ensures that any valid concretizations of a node/edge in

g (based on the node/edge property labels) is also a valid concretization of that node/edge

(with respect to the property labels) ing′ under the mapΠ. Thusg≤g g′ ⇒ γ(g)⊆ γ(g′)

for the labeled storage shape graphs.

Figure 7.1 contains several simple abstract states that we use to demonstrate the com-

parison operation. In Figure 7.1(a) we show the model that wecompare with the other

models. Figure 7.1(b) shows an abstract graph that is less than our comparison model.

There is a trivial subgraph isomorphism between the two (even though they do not have

identical structures) and all of the instrumentation properties appropriately ordered under

the isomorphism. For example in the mapping the node labeled5 maps to the node la-

beled 2, thetypesare equal and both thelinearity, and layout properties are consistent

with their≤ operations. On the other hand in Figure 7.1(c) we have a case where there

is no subgraph isomorphism and so it is not less than the abstract heap in Figure 7.1(a).

Figure 7.1(d) shows a graph where there is a subgraph isomorphism but under the mapping

node 9 which maps to node 2 are not entirely consistent with the instrumentation proper-

ties. In particular the node 9 has thelayout (C)ycle6≤ (L)ist and thus is not less than or

equal.

Upper Approximation. During program analysis with power domains, the possible con-

crete states of a program are represented as a set of abstractmodels. In many cases it is

possible to have several models in this set that are very similar, differing only in small

and often ways that do not affect the precision of the final result (for instance if we have

one model that says variablex refers to a(C)yclestructure then a model sayingx refers

to a (L)ist structure is redundant as this possibility is already entailed by the first model).
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(a) State Compare With (b) State Less Than

(c) State No Isomorph (d) State Property Mismatch

Figure 7.1: Abstract State Comparisons

Carrying these redundant (or only marginally useful) models around is a substantial com-

putational cost. Thus we introduce an upper approximation operator which takes two

similar abstract heap graphs (we definesimilar to be the existence of a subgraph isomor-

phism that respects variables and edgeoffsets) and produces a new heap that is an upper

approximation of these heaps.

The upper approximation operator (⊔̃g) takes three arguments, graphsg,g′ and a sub-

graph isomorphismΠ : g 7→ g′. The upper approximation is then computed by computing

a pairwise upper approximation of the property labels and relations under the mapping.

Thus the result is structurally identical tog′ but the labels have been replaced with label

values that are larger or equal to the original values.

Definition 37 (Labeled Storage Shape Graph Upper Approximation (⊔̃g)). Givenlabeled

storage shape graphsg,g′ and a subgraph isomorphismΠ : g 7→ g′:

⊔̃(g,g′,Π) = (V̂ ′, N̂′, Ê′, Π(L̂n) ⊔̃ L̂n
′
, Π(L̂e) ⊔̃ L̂e

′
, Π(connR) ⊔̃ connR′, Π(domEQ) ⊔̃

domEQ′).
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This particular join operation allows us to reduce the number of distinct states we must

carry in our final power domain while still allowing for (1) important structural differences

to be maintained in a fully disjunctive manner and (2) to still use a rich set of instrumenta-

tion properties so that if all the heaps in the disjunction satisfy the same property (e.g. the

variablex always aliasesx and they both point to a list shaped structure) we can precisely

model these properties.

To show that the resulting upper approximationg′′ = ⊔̃(g,g′,Π) is larger than both

g and g′ we note that there is a subgraph isomorphism from each of them(Π and the

identity) to g′′ and by construction each instrumentation property label ing or g′ is less

than the value that is matched up via the subgraph isomorphism in g′′. Thusg≤ g′′ and

g′ ≤ g′′

7.3 Full Domain Definition

Given the order operations and the upper approximation operation for the abstract heap

graph domain (̃H,≤g, ⊔̃g) along with the definitions for our domain of equivalent values,

(Ũ) Section 4.2, we can construct the complete abstract domainwhich is used to analyze

the programs,̃D = ℘(Ũ × H̃). This is a simple power domain over the cross-product of

the two base domains. However, to improve the computationalperformance of the domain

we will use a disjunctive join operation and ordering (instead of the usual union and subset

operations). We useσ to denote the abstract states inD̃ and each abstract stateσ is a set

of modelsθ each of which is a pair(θ .u,θ .h). We use the notationθ .u, θ .h to access the

scalar domain and heap domain components of the tuples.

Definition 38 (Domain Order (≤ f )). Given the order operations defined on the two base

domains (̃U andH̃) we define the ordering oñD,≤ f where given two statesσ ,σ ′ ∈ D̃:

σ ≤ f σ ′⇔∀(θ .u,θ .h) ∈ σ ,∃(θ ′.u,θ ′.h) ∈ σ ′ s.t. θ .u≤ θ ′.u∧θ .h≤ θ ′.h
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Definition 39 (Incomparable Model Set (∆(σ))). Given the order operation≤ f on the

modelsθ we define the set of incomparable values:

∆(σ) = {θ ∈ σ | 6 ∃θ ′ ∈ σ \{θ} s.t. θ ≤ f θ ′}.

Definition 40 (Upper Normal Form (Γ(σ))). To compute the upper approximation of an

abstract stateσ = {θ1, . . . ,θk} we apply the following rewrite rule until the set of models

is no longer changing:

∃θ ,θ ′ ∈ σ s.t. (θ .u = θ ′.u)∧ (∃ subgraph isomorphismΠ : θ .h 7→ θ ′.h)

σ ∪{(θ .u,θ .h⊔̃gθ ′.h)}

We define the upper approximation operationσ ⊔̃ f σ ′ to be the minimal set of

(θ ′′.u,θ ′′.h) such that theθ ′′.u values are incomparable or theθ ′′.h values cannot be com-

bined via the⊔̃g operator. This particular definition allows the analysis todifferentiate the

scalar values in each state precisely, which is critical to modeling integer indexing in ar-

rays and the results of boolean tests, while combining the heap values which is important

to minimizing the number of states that are in each state.

Definition 41 (Domain Upper Approximation (̃⊔ f )). Given abstract stateσ and σ ′, the

upper approximation operator is defined as:

σ ⊔̃ f σ ′ = ∆(Γ(σ ∪σ ′)).

Example. Figure 7.2 shows the result of performing the disjunctive join operation of

one abstract state consisting of two models which are shown in Figures 7.2(a) and 7.2(b)

and another abstract state which consists of a single model,shown in Figure 7.2(c). The

resulting state consists of the two models shown in Figures 7.2(d) and 7.2(e).

We can see that there are subgraph isomorphisms from the model in Figure 7.2(c) to

the two models in Figures 7.2(a) and 7.2(b) however there is no isomorphism between

the model in Figures 7.2(a) and the model in Figure 7.2(b). Once we have found the iso-

morphisms we can use the disjunctive join operation to produce the two models shown in
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(a) 1st State, Model 1 (b) 1st State, Model 2 (c) 2nd State, Model 1

(d) Result State, Model 1 (e) Result State, Model 2

Figure 7.2: Disjunctive Join

Figures 7.2(d) and 7.2(e). In our mappings node 2 and node 9 are matched. Since these two

nodes have thelayoutproperties(L)ist and(C)yclerespectively the resulting node (2) has

the layout property(C)ycle= L⊔̃C and similarly for the other instrumentation properties

in this join and the properties in the second join. The modelsin Figures 7.2(d) and 7.2(e)

are the only 2 incomparable items in the set and also the final state that is produced by the

upper approximation.

Concretization (γ f ) and Safety

Definition 42 (Domain Concretization (γ f )). Given the concretization operations defined

for theŨ and Ĥ domains we can define the concretization operator of the full abstract

domain:

γ f (σ) = {concrete program state c| c∈ γ(θ .u)∧c∈ γ(θ .h)}.

Given the order and concretization operations on the domainwe have constructed

D̃ we want to show that they are has the required safety properties with respect

to the concrete program states, in particular thatσ ≤ f σ ′ ⇒ γ f (σ) ⊆ γ f (σ ′). We
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have already shown that for the labeled storage shape graphsg ≤g g′ then γ(g) ⊆

γ(g′). We also know that the relationu ≤ u′ then γ(u) ⊆ γ(u′) holds in our do-

main of equivalent values. Given the definition ofγ f above, if σ ≤ f σ ′ then cr ∈

γ f (σ) = {concrete program statec | c∈ γ(θ .u)∧c∈ γ(θ .h)} which givescr ∈ γ(θ ′.u)∧

c∈ γ(θ ′.h) which with the safety properties from the component value and heap models

impliescr ∈ γ f (σ ′) thusγ f (σ)⊆ γ f (σ ′) as desired.
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Semantics of Primitive Operations

In this chapter we look at the semantics of the primitive language operations in the heap

model. In particular we look at the load, store, and pointer comparison operations, which

are the backbone of the shape analysis technique. We also look at a number of more spe-

cialized, although important, program operations such as type tests and casting, and we

look at how array indexing is handled. A key factor in achieving accurate results is the use

of a novel technique for partially undoing thesummarizationof information (in Chapter 6

we introduce a bounded representation to summarize unbounded recursive structures and

the contents of containers). For efficiency, it is importantto make the summary represen-

tations as compact as possible. However, this summarization obscures information which

is needed to accurately simulate the effect of program statements on the heap model and

in order to precisely model the effects of various program operations we perform mate-

rialization to make the needed information explicit. Whileit is possible to perform full

materialization (produce an explicit model for each possible configuration represented by

the summarized region) on the summarized regions this quickly leads to computational

intractability. Thus, the approach presented here is designed to tradeoff some level of ac-

curacy in less common cases to ensure that the worst case, exponential time is avoided and

that the method is fast (and accurate) in practice.
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8.1 Safety and Precision

In order to ensure that the analysis is sound we must ensure that each of the abstract

operations safely approximates the effects of the concreteoperation on all of the possible

concrete states. Since the MIL language is a subset of Java 1.4 the expression semantics

described in this chapter are, except for one minor simplification, the same as described

in [23] and more formally defined in [1]. The simplification that we make is to assume

that all runtime exceptions (null pointer, array out of bounds, out of memory, etc.) cause

immediate program termination.

Definition 43 (Safety of Abstract Semantics). Given the concretization (γ f ) operator the

abstract semantics,S J f K, for a concrete program operation f are safe if for all abstract

statesσ the following holds:

{
f (sc) | sc ∈ γ f (σ)

}
⊆ γ f (S J f Kσ)

That is, the application of the abstract operator results inall the states that can occur

in practice and possible more. The relation required is shown as a diagram in Figure 8.1.

Since the abstract operations we discuss are all constructive, and use local modifications

to the graph structure and enumerative casewise modification to the instrumentation prop-

erties, the proofs that these operations are safe approximations of the concrete semantics

are simple casewise enumerations of possibilities that follow closely the case analysis in

the algorithms. Thus, we limit the discussion to a few non-trivial high-level aspects and

otherwise omit proofs.

In general we attempt to define the abstract semantics to be asprecise as possible (to

minimize the difference between the results of applying an operation in the concrete do-

main and the abstract domain). However, in many cases in thischapter we heuristically

decide, based on our experience with the benchmarks in Chapter 13, to intentionally model

an operation in an imprecise manner. Further, we make no general claims about the pre-
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Figure 8.1: Safety Relation Between Concrete and Abstract Operations

cision of the abstract semantics relative to the concrete semantics. Thus, the operations in

this section and the associated heuristics for trading precision for performance are topics

for further evaluation as we analyze more (and larger programs) and our experience with

the analysis increases.

8.2 Materialization

The materialization operation is used to transform single summary nodes into more ex-

plicit subgraph representations. In this section we define the materialization operations

that (for the most common cases encountered) allow us to undothe summarization by

transforming a summary node into a number of nodes (and edges) so that relationships be-

tween variables and regions of the heap can be more accurately modeled. The operation is

defined for nodes with(T)ree, (L)ist, or (S)ingletonlayouts and is further restricted based

on the number of incoming edges to the node and the connectivity relations of these edges.

Singleton Materialization. Our materialization operation onSingletonnodes is re-

stricted to handle the following cases and otherwise conservatively leave the summary

region as it is:
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• If the incoming edges can be partitioned into 2 or more equivalence classes based

on theconnRrelation.

• If there is a single edgeec that isconnectedto every other edge and all other edges

are pairwisedisjoint.

The first case is simply when a node represents several disjoint regions of the concrete

heap. In this case we use therefineDisjointEdgesto expand each sub-region into a separate

node in the abstract graph. The second is a node where all but one of the edges are disjoint

from every other edge. This is handled using therefineSingleConnmethod. In this case we

create a new node for each of the edges except the edgeec, which may be related under the

connRrelation to the other edges, and then splitsec so that it points to each of the newly

created nodes (and thus the possibility that it is connectedto any one of the other edges is

preserved).

These two operations are a special case of a more general expansion that can be done

where we materialize a new node for each possible subset of connected edges based on the

connRrelation. However, in our experience this powerset expansion leads to very small

increases in precision at a substantial computational cost(exponential number of cases as

opposed to the linear number produced by our heuristics).

In both cases of the singleton materialization we need to split the outgoing edges from

the original node into multiple edges (one for each newly created node). This involves two

steps, first we create a copy of the edge for each newly creatednode, and second we need

to figure out theconnectivityrelations between these newly created edges. We know that

each of these split edges has the sameconnected/alias relation with all the other edges

as the edge that we are splitting. However theconnectivityrelation with the other newly

created split edges depends on theinterfereproperty of the original edge. If the original

edge wassharethen the split edgesalias, if the edge wasinterfering then the split edges

areconnectedand if the edge wasnon-interferingthen the split edges aredisjoint. We use
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(a) Summarized Singleton (b) Partition Var Edges (c) Partition Pointer Edges

Figure 8.2: Refinement of a region with disjoint sub-regions

thesplitEdgemethod to perform this splitting.

Consider the case in Figure 8.2(a) where the variablesp, q point to the same node and

the edges 1, 2 are notconnected(the two connectivity lists are empty, the default omitted

value). Partitioning results in Figure 8.2(b) where the summary node has been partitioned

based on theconnRrelation from the variables. The focus operation has been applied,

allowing the model to determine that the split nodes 3, 4 bothhave the defaultlinearity

value of 1 and are dominated by edges 1, 2 respectively). ThesplitEdgeoperation has split

edge 3 into two new edges (4, 5). Since edge 3 represents non-interfering pointers (which

is the defaultinterferevalue) the two split edges incident to the node representingtheDN

objects must bedisjoint. This allows us to apply refinement (and the focus operation)

again–the results are shown in Figure 8.2(c).

Figure 8.3 shows a how therefineSingleConnmethod splits a node that has a single

shared incoming edge (edge 3). In Figure 8.3(a) we show an abstract heap graph where the

two edges (edge 1, 2) do not share but that they bothmayalias with the pointers abstracted

by edge 3 (the !3 entries in the connectivity lists). Thus, this model abstracts several

concrete heaps, one where all three edges abstract references which do not alias at all, a

heap where the references abstracted by edges 1, 3 alias and aheap where the references

abstracted by edges 2, 3 alias. However, it excludes a heap where the references abstracted

by edges 1, 2 alias (and thus we know that the variablesp andq never alias).
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(a) Shared Reference (b) Partition pointer Edges

Figure 8.3: Refinement of a region with shared sub-regions

Figure 8.3(b) shows the heap after materialization. We havecreated two nodes (3, 4)

which represent the objects pointed to by edges (1, 2) respectively. We have also created

two new edges, edge 4, which represents the possibility thatsome pointers abstracted by

edge 3 alias with the references abstracted by edge 1, and edge 5, which represents the

case that some pointers abstracted by edge 3 alias with the references abstracted by edge

2. Thus the materialized figure still represents all the concrete heaps that the original heap

abstracted but now the disjoint sets of objects have been made explicit (represented by 2

distinct nodes) instead of implicit (represented by the same node).

List, Tree Materialization. Since our analysis (by construction) will always apply dis-

joint region materialization before list or tree refinementwe know that all the incoming

edges to the given list node may be connected. If there are multiple incoming edges to

the list or tree we cannot, in general, determine an orderingfor them (that is if the edges

areconnectedwe may not know if they point to the same object or if the targetof one

is reachable from the other), so we conservatively only consider lists/trees with a single

incoming edge and alinearity of 1 as candidates for materialization.

In this scenario we make explicit the unique memory locationthat single incoming

reference targets in the list/tree. Since we know that thereis a single reference into this

data structure it is always the case that this reference targets the head of the list or the root

of the tree (any other part of the list/tree is unreachable).

Figure 8.4(a) shows a list with one incoming variable. Figure 8.4(b) shows the most
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(a) Summarized List (b) Most General Materialization

(c) Final Materialization

Figure 8.4: Refinement of a node with a list layout

general way in which a list can be referred to by a single program variable; there is a single

object that the variable points to, the section of the list that appears before the object the

variable points to and a section of the list after this object. We can safely ignore the section

of the list before the object that the variable refers to since it is unreachable and therefore

cannot affect the program in any way. After we drop this semantically irrelevant portion

of the model we have the final result of the materialization, shown in Figure 8.4(c).

Note that in Figure 8.4(c) we have split the edge that summarized the(d)ata pointers

of all the elements in the linked list into two new edges, one (edge 5) representing the

single(d)ata pointer that is stored in the head element of the list and an edge (edge 6)

representing all the pointers stored in the tail of the list.We perform the materialization of

theDNnode lazily waiting until we need to normalize the graph or until we encounter a

load operation on the(d)ata field.

The tree materialization operation is nearly identical to the list materialization except

that for a k-ary tree we must create k summary sub-trees and a single parent node (instead

of a single summary tail and the single head node). Thus, we omit further description.
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Full Materialization For Loads. Algorithm 7 shows the code for the materialization

operation that fully materializes a target node when we are performing the load operations

(before we do the load we want to fully materialize the node that is the target of the load).

In this algorithm we first try to split all the disjoint partitions. Then we attempt to apply the

secondSingletonsplitting rule to the partition. Finally, if possible, we apply theList/Tree

refinement operations.

Algorithm 7 : Refine Load
input : graphg, noden

Ep← partition of the incoming edges ton;

if Ep has 2 or more partitionsthen
g.refineDisjointEdges(n, Ep);

for each newly created node n′ do
g.focus(n′);

allcp←∃e′ s.t. all edgesconnectedor alias to e′;

owdisjoint← all edges excepte′ are pairwisedisjoint;

if allcp∧ owdisjointthen
g.refineSingleConn(n, e′);

for each newly created node n′ do
g.focus(n′);

if n.layoutList or Treeand single in edge of size 1then
g.refineListTree(n);

for each newly created node n′ do
g.focus(n′);

8.3 Assign, Load and Store

Variable Assignment. The variable assignment operation (x = y ) does not need to

perform any complex manipulations of the heap and can simplyclear all the targets ofx

and for each target ofy create an edge that points to the same node, has thealias sharing
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property and isdomEQto the edge that represents the target ofy .

Load. The load operation (x = y.f ) is more interesting as we may need to deal with

ambiguous targets ofy.f (there may be multiple targets ofy and each of these targets

may have multiple outgoing edges with the labelf ) and we may need to materialize the

summary node, referred to byy.f , into a more explicit representation, Algorithm 7, be-

fore we actually update the target of the variablex . The other potential complication is

self edges.

To get maximal precision we resolve the problem of ambiguousedges by creating a

new copy of the model for each possible target and assuming that each of the other edges

must have an empty concretization (or in the case of array loads ignoring them). Although

this results in potentially exponential growth in the number of models we have found

that in practice the problem is minimal (in combination withour disjunctive domain the

number of models is usually between 1-4). Our experience indicates that small increase in

runtime is much less problematic than the precision that is lost by removing the ambiguity

by simply merging all of the edge targets, which ensures thatno additional models are

created in the load but that often also merges very distinct parts of the heap, resulting in

severe losses of information. In Algorithm 8 we assume that the base variable (y ) and the

target of the load (fieldf ) have been uniqueified as needed (either by creating multiple

models or by merging edges/nodes).

Figure 8.5 shows an example of a model where we may need to resolve the ambiguous

edges when performing a load operation. In particular assume we want to simulate the

effects of the statementr.data == null on the abstract model shown in Figure 8.5(a).

Since we do not have a unique target for the variabler (it has two outgoing edges 4, 5)

we need to resolve the ambiguity by creating two new models (one for each edge). This

results in two new models shown in Figures 8.5(b) and 8.5(c) which together represent the

same set of states as the model in Figure 8.5(a) but now the target ofr is unique allowing
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(a) Ambiguous Var (r )

(b) Model 1 (c) Model 2

Figure 8.5: Resolution of Ambiguous Target Edges

for simpler (and potentially more precise) simulation of the load and comparison.

This is particularly important when we come to the store operation which can be pre-

cisely simulated if the store is into a unique location (the model isstrongly updatable).

In this case we can remove the edge representing the old valuestored in this location and

replace it with the new value, otherwise we must conservatively assume the either value

could be stored in any of the (non-unique) locations, which can have a major impact on

the precision of the analysis.

Definition 44 (Strongly Updateable). A memory location represented by a node n is

strongly updatable if n.linearity= 1.

This is based on the observation that if we write to a memory location represented by

a node oflinearity 1 through a variablex , in a statement such asx.f = y then there are

two possibilities. One is thatx refers to the unique object and thus the fieldf must have

its old value overwritten, and thus we know the location is updated. Or alternatively thatx

does not refer to the unique object and thus must be null. However, this implies that a null

pointer exception will be raised and the program terminates, thus we may safely assume

any properties hold after the statement. In either case the removal of the old value and

replacement with the new one is safe.
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Algorithm 8 : Load External, Unique Edge (x = y.f )
input : graphg, varx, vary, offset f

nullify x;

if y. f is non-null valuethen
nullify x;

g.materializeAndLoad(the unique target ofy. f );

e← the unique edge aty. f ;

assignx to refer to the target ofy, and mark asaliaswith e;

if the storage location of y. f is strongly updateablethen
setx dominance equal toe;

if e dominates the target nodethen setx dominates target node;

For a load (x = y.f ) on a self edge we need to update the internal connectivity

relationship (connR) to reflect the new connectivity relations betweenx andy . Similar

to the what is done for the connectivity properties in [20], we update the connectivity

relation ofx to be identical tomayshare with any edgey is related with. We then add

the connectivity information forx and y keeping in mind the fact that if the layout is

non-cyclic thenx andy cannot alias.

Figure 8.6 shows the interplay between the load and the materialization operations. In

Figure 8.6(a) we start with a linked list (the node with the self edge has a(L)ist layout)

where eachLNnode contains a pointer to a uniqueDNobject (edge 3 has allnon-interfering

pointers the default omitted value).

Figure 8.6(b) shows the heap that results from loading off the l.n field. In this figure

we have split the summary list node (node 2) into a single noderepresenting the exact

target of the pointer (node 3) and the remaining tail of the list (node 4). The operation has

also split the summary(d)ata edge (edge 3) into an edge representing the single pointer

stored at the(d)ata field of the object abstracted by node 3 and the set of pointersstored

at the(d)ata fields in the objects stored in the tail of the list (edge 6). Since the original
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edge that was split (edge 3) contained allnon-interferingpointers we know that the new

edges must bedisjoint. We also note that since we know that the target of variablex is the

same object as the pointer stored atl.n we marked the edges 2, 7 asdomEQ.

In Figure 8.6 we have the result of loading fromx.d . To simulate the effects of this

operation the analysis has split node 5 into two new nodes (viasingleton materialization),

node 6 which represents the single object pointed to byx.d and node 7 which represents

all the DNobjects stored in the tail of the list. Since we know that edge5 and edge 6

aredisjoint the analysis knows that these sets of objects must be disjoint as well and can

create two distinct nodes to represent the sets of objects. Since edge 5 represents at most

1 pointer (thelinearity is the default value 1) and node 6 has no other incoming references

we know it must represent at most one object as well (and thus has the default omitted

linearity value of 1). Finally we note that since we know that the targetof variabley is the

same object as the pointer stored atx.d we marked the edges 5, 9 asdomEQ.

Store. The store operation (x.f = y ) begins by ensuring that there is a unique target

node thatx refers to (using the same techniques as for the load operation). The analysis

then determines if the location atx.f can be strongly updated or results in an internal

store (x andy refer to the same node).

If the node (n) is strongly updateable then we can remove the edge stored inthe target

offset. Once we have completed the testing and removal of anyedges stored at the fieldf

we create a new edge for each possible target ofy . Just as in the case of the loads these

new edges are each dominance equal to the edge representing the target ofy and if the

edge representing the target ofy dominates a node then so does the newly created edge.

If the node is not strongly updatable we can simply add a new edge to represent the

newly created pointer. However, we also have to consider theeffect of the store on the

dominance information. In particular we cannot accuratelydetermine if a pointer value

that was critical to one of the dominance properties was overwritten by this store. To
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(a) Initial List

(b) List Load (x = l.n )

(c) Data Load (y = x.d )

Figure 8.6: Loads on With Materialization, Recursive and Summary Regions

handle this safely we must remove any edges that start at thisnode (with the same offset

as the store is at) and remove them from any node or edge dominance relations that they

are in.

We have a similar situation for the internal stores as we did for the internal loads.

We update the internal connectivity relation for any variables connected tox and y to

now be connected to each other (but unless they may have aliased before they cannot
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alias after the store). We must also update theinterfereproperty of any incoming edge

which is connected to bothx andy to be interferebecause this store may have created

a path between two of the references abstracted by the given incoming edge. Finally we

conservatively update the shape of the node to(C)ycle.

8.4 Reference Variable Comparison

When performing equality tests we generate one version of the abstract heap for each

possible outcome. For a nullity test of a variable we create one model in which the variable

mustbenull and one model in which the variable isnon-null. In the case where the variable

is assumed to benull we are asserting that the concretization of the edge that represents

the variable target is empty. Thus, if the variable dominates a node we infer that the node

does not represent any live objects and all the other incoming/outgoing edges must also

have empty concretizations. Similarly any edge that isdomEQto the variable must also

have an empty concretization (and can be removed from the graph). Algorithm 9 gives the

code for the case where we assume the variablemustbenull.

Algorithm 9 : Assume Var Null (v == null is true)
input : graphg, varv

Es← all edges that represent the targets ofv;

Enull← /0;

for edge e∈ ES do
Enull← Enull∪{e′|e′ domEQ e};

n← the target node ofe;

if edominatesn then Enull← Enull∪{all incoming edges ton};

for edge e∈ Enull do
g.removeEdge(e);

In the case of an equality comparison between two variables which maybe non-null
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x == y we can strengthen the information we have in the models that represent the true

and false branches. For both thetrue andfalsecases we begin by ensuring thatx andy

have unique targets. In the case where we assume this test returns true, ifx andy refer

to different nodes in the graph then the only way they can be equal is if both variables

arenull . If not, we add the fact thatx domEQy to the model. In the case where we

assume this test must be false then we can check if the relation x domEQy holds and if

it does we can rule this path out as being infeasible. Also as special case, we know that

if x dominates the node and in the connectivity relationx andy cannot alias theny must

be null (otherwisey refers to an object in the region abstracted by the node and sincex

dominates this region it also must refer to this object but the model tells us that they do not

alias, which is infeasible). Thus,we can safely assume thaty is null.

Nullity Example With Dominance. Figure 8.7 shows an example of how the domi-

nance information plays an important role in accurately simulating the effects of the nullity

tests. In Figure 8.7(a) we show the abstract heap that represents the state of the program

during a loop that is iteratively traversing the list pointed to by l and nullifying each of

the(d)ata fields. We see the singleLN node referred to byl a (L)ist shaped section of

the heap of unknown length (node 3), all of which have had the(d)ata field nullified,

followed by node 5 which represents the single objectx points to and then the tail of the

list. These last two nodes represent the objects in the list that have not been processed

and still may havenon-null fields. Note that during the list traversal the load operation

x = x.next gives the dominance equality relation between the edge thatrepresents the

reference fromx (edge 7) and the edge representing the pointer from the previous list node

(edge 3).

When we encounter the exit test for the loopx == null we produce one model in

which the condition is assumed to be false and the loop is executed again and one model in

which the condition is assumed to be true and the loop is exited. Figures 8.7(b) and 8.7(c)
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show the result of assuming that the condition is true (i.e.x mustbenull ) without and

with the use of the dominance information. Figure 8.7(b) shows the heap that results when

the dominance information present in the model is not used (e.g. we simply remove all the

edges that represent possible reference targets of the variablex ). In this case we have sim-

ply removed edge 7 from the model and the analysis has (overly) conservatively assumed

that there may be entries in the list withnon-nullpointers. However, the dominance in-

formation captures the conditional dependence between thepointer value of the previous

load and the current target of the variablex by encoding that they have identical reference

targets. Thus the analysis can use this dominance equality to infer that if x is null then

the previously loaded pointer is alsonull. The result is shown in Figure 8.7(c) where the

analysis has removed edge 3 as well as edge 7 and then since thetail of the list is unreach-

able it has been removed as well. Thus the analysis can correctly identify that all of the

elements in the list have had the(d)ata field nullified.

8.5 Array Operations

Array Load/Store. When dealing with arrays we can use the same approach as for the

load/store of fields in objects but we must also deal with the complication that each array

may be partitioned into multiple summary regions by an indexing variable, the pointers

stored in indecies that are less that the index variable the pointer stored at the index given

by the variable and the pointers stored in the indecies greater than the index variable.

The variable that this partitioning is done on in may either the same variable the load is

being performed on or a different one. For the load on an arraywe first define a method

that initializes a new partition based on a given indexing variable (i.e. it forgets the old

partition and repartitions on the new index variable).

Algorithm 10 takes an array and forgets the current indexingvariable partition. This

is done by replacing the special partition offsets (ai, at, bi) in any edges with the generic
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(a) Initial State

(b) No Dom Use

(c) With Dom Use

Figure 8.7: Equality Test With Null (x == null is true)

position offset (?). After this replacement has been done we re-normalize the array by

removing anyequivalentedges (this in effect merges each set of three partitioned edges

ai, at, bi into a single edge?).

Once we have forgotten the old indexing information we can the split the (potentially

multiple) summary edges based on their order relation to thenew indexing variable. This

assumes the node representing the array haslinearity 1, if not we conservatively do not
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Algorithm 10 : clearIndexer
input : g a heap graph,n a node

if n has an active iteratorthen
n.activeIter←⊥;

foreach out edge edo
if e.offset∈ {ai,at,bi} then e.offset← ?;

g.removeEquivalentEdges(n);

split any edges, and simply load using Algorithm 8, replacing the fieldf with the offset?

and references toy.f with y[j] . Thus for the remainder of this section we assume the

target node haslinearity 1.

Since an array may have multiple outgoing summary edges (edges with the offset?, see

Section 6.2) each of which represent pointers stored in the array, we must ensure that the

load operation covers the possibility that indexj could refer to a pointer in each of these

edges. Thus we create a new model for each summary edge and split all the summary

edges into partitioned edges accordingly (i.e. we create a new model for each out edge

and assume that indexj refers to a pointer represented by that edge).

For the ith splitting we assume that theith summary edge contains the pointer that

will be loaded. For this edge we split it into three new edges,the single element that the

index variable refers to, all the elements that come before the index location and the set of

elements that come after the index location. For the rest of the summary edges we simply

split them into two new edges, one representing all elementsthat come before the index

location and one representing all the elements that come after the index location. The edge

splitting is done via thesplitEdgemethod from Section 8.2

We have a special case that we want to handle in this operationwhen j = 0, the load

is from the first index in the array. In this case we set thefirst flag toyesand we do not

create split out any edges with the offsetbi since we know there are no indecies that are

less than the current index variable (j ).

118



Chapter 8. Semantics of Primitive Operations

Algorithm 11 : splitIthSummary
input : m model,n node, j index var,i edge to split,first flag (yes if j = 0)

eith← ith summary edge;

if first = yesthen
in m split eith into 2 edges,at, ai;

else
in m split eith into 3 edges,bi, at, ai;

setat edge tolinearity 1;

for all other summary edges es do

if first = yesthen
in m transformes from a? summary edge to anai edge;

else
in m split es into 2 edges,bi, ai;

n.activeIndexer =j;

Once we have the algorithms to remove and introduce index variable partitions into the

arrays we can define the array load operation, again we assumethat the array target (given

by variableA) is a node oflinearity 1, if it is not we just use the base load algorithm on the

? offset). The pseudo-code to do this load is shown in Algorithm 12. In this algorithm we

first make sure the node that represents the array we are loading from is partitioned on the

indexing variable we want to use. If the indexing variable isalready correct we continue on

otherwise we forget the current indexing variable and for each summary edge we create

a new model assuming that the element we are going to load is inthat summary set of

pointers. Once we have done this (using thesplitIthSummarymethod) we can simulate the

load operation much as we did in the field load (only now we use the special field nameat

to identify the edge that represents the pointer we are loading).

Figure 8.8 shows the array load algorithm (y = A[j] ) applied to an array with two

summary edges. The array in Figure 8.8(a) has 2 summary edges(one containing non-

recursiveDNobjects and the other containing recursiveLN objects). Figures 8.8(b) and

8.8(c) show the two heap models created by the load. In the first one, Figure 8.8(b) we
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Algorithm 12 : Load Array (x = A[j] )
input : modelm, targetx, arrayA, index j

output: model[] r

n←m.target(A);

if n.activeIndexer = jthen
r ← new model[1];

r[0] ←m;

else
n.clearIndexer();

r ← new model[n.summaryCount()];

f ←m.mustEqual(0, j) ? yes : no;

for k∈ 0. . . r.Length−1 do
r[k] ←m.copy().splitIthSummary(k, r[k].target(A), j, f );

for i ∈ 0. . . r.Length−1 do
m′← r[i];

m′.materializeAndLoad(the unique target ofA[ j]);

e← the unique edge out ofn with the offsetat;

assignx to refer to the target of, and mark asaliaswith e;

if the storage location of A[ j] (theat edge) is strongly updateablethen
setx dominance equal toe;

if e dominates the target nodethen setx dominates target node;

assume that the variablej refers to an array index that contains a reference to one of the

DNobjects and have loaded and performed materialization on the target. Figure 8.8(c)

shows the other possibility where we assume that the variable j refers to an array index

that contains a reference to one of theLN objects.

Index Var Increment and Test. The abstract semantics of the variable increment op-

eration and the order tests need to be updated to account for the possibility that the vari-

able is being used to index through an array or a sequence based collection (ArrayList ,
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(a) Multiple Summary Edges

(b) Load Model 1

(c) Load Model 2

Figure 8.8: Load Array (x = A[j] )
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Vector , etc.). Thus we must provide abstract semantics for the increment operator (i++ )

and the common case of comparing against an array length (i < A.Length ). While

there are many other possible forms of indexing and comparison that can be used in a

program these two are by far the most common that appear and the semantics for the other

constructs can be computed in a similar way.

We also note that there is an important difference in how we update the partitions of

the summary regions in the array from the approach taken in [22]. While our approach

uses the length test to determine when the end of the array is reached, updating the state of

the model and separating states wherei < A.Length is true from the states where it is

false, while the approach in [22] creates additional modelsduring the increment step (one

where there are many elements left in the array, one where there is exactly one element

left in the array and one where there are no elements left in the array) and then filters them

at the test. This particular approach makes it easy to model algorithms that treat the last

element in the array differently (while our approach requires some additional implementa-

tion effort) but it also imposes a non-trivial computational cost for the most common case

of simple incrementing from 0 to the length of the array. Thisdifference is fundamentally

based on our approach of lazily generating states whenever possible instead of an eager

state generation approach.

The var increment operation (i++ ) is structured similarly to the first part of the array

load algorithm. To simulate the semantics of the array indexoperation on a collection that

has a number of summary after edges (edges with the offsetai , which represent pointers

stored in indecies larger than the current index) we need to assume that the increment

operation could cause the current index to refer to a pointerin any of these edges. We use

the methodafterCountwhich returns the number of edges with theai label to compute the

number of new models that need to be generated to cover all possibilities. The algorithm

first sets the current index location to before the current index location (at edge goes tobi)

and then splits theith after index edge (ai) into a new current index location edge (at) and
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(a) Index Var Equal 0 (b) Increment First

(c) Increment Second (d) Normalize

Figure 8.9: Increment of an Array Index Variable

the remaining index locationsai. This is accomplished using thesplitIthAfterIndexwhich

is defined in the same was as thesplitIthSummarymethod.

Algorithm 13 : incrementIndex
input : modelm, array varA (refers to collection of linearity 1), index varj

output: model[] r

m.forgetScalarValue( j);

n←m.target(A);

r ← new model[n.afterCount()];

foreach out edge e in ndo
if e.offset= at then e.offset← bi;

for k∈ 0. . . r.Length−1 do
m′← m.copy();

n′←m′.target(A);

r[k] ←m′.splitIthAfterIndex(k, n′, j);

Figure 8.9 shows the array increment algorithm applied to anarray with one summary
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(a) Base Array (b) j < A.Length is false

Figure 8.10: Compare Index Var with Length (falsemodel)

after edge. The array in Figure 8.9(a) has a single summary partition that is being indexed

by the variablej . In this particular figure shows the state whenj == 0, thus there are

only theat edge representing the single object thatj refers to (is atA[0] ) and the (ai)

edge representing all the elements after the locationj refers to (the entries in indecies

1. . .A.Length−1). Figure 8.9(b) shows the model that results from incrementing j (j++ ).

In this figure we have renamed the oldat edge tobi since it represent the entry at index

0 and now j = 1 and we have split out a new edge from theai edge to represent the

new entryj refers to. Figure 8.9(c) shows the heap after a second increment operation

(j++ ) where we now have 2bi edges representing the two entries that come before the

current position referred to byj in the array. Finally, in Figure 8.9(d) we show the result

of normalizingthe heap where we have joined the twoequivalentedges (edges 2 and 4)

into a new summary edge. This figure shows the most general state when processing the

array incrementally, when we have some unknown number of entries that come beforej

(bi ) the single entry thatj refers to (at ) and some number of entries that come afterj

(ai ).

The comparison operation for indexing variables and array lengthsi < A.Length

performs the lazy splitting of the model into a model wherei ≥ A.Lengthis true and a

model wherei < A.Lengthis true. If i ≥ A.Lengthis true then the current element referred

to in the arrayA is non-existent and the set of entries that come after the index i in the
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arrayA is empty. Thus we can remove the edges with theoffsetsat andai and any nodes

theydominatealong with any edges that they aredominance equalwith (just like in the

pointer comparison operations).

Figure 8.10 shows the comparison algorithm (j < A.Length ) applied to the array

in Figure 8.10(a) which represents the state of our abstractheap model after many passes

through a loop wherej is incremented. In this model the variable Figure 8.10(b) shows

the heap model created for thefalsepossibility (thetrue possibility leaves the model un-

changed). This figure shows how the analysis uses the fact that the index variable now

points off the end of the array to update the model to remove the possibility wherej refers

to and entry in the array or there are any entries in later indecies in the array, theat and

ai edges respectively.

8.6 InstanceOf and Cast

In this section we look at two operations that are commonly used in object-oriented pro-

grams for determining the types of objects at runtime. Precisely modeling these operations

is critical to modeling many programs. In particular in manyJava programs the lack of

template collections prior to the Java 1.5 specification results in many object casts when

retrieving elements from collections.

To simulate the semantics of theinstanceof operation in the abstract domain we

again create two models to represent the true and false results of the test. The first model

represents the state of the heap if the test returns true. In this case we know that the

object pointed to must be of a subtype of the type specified by the instance of test. If the

node pointed to by the test variable is strongly updateable,Section 8.3, we can set the

typeproperty to the intersection of the originaltypeset and the set of all subtypes of the

type given in the test. Otherwise we must conservatively assume that thetypeproperty is
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unchanged (since the node represents many objects the otherobjects in the region could be

of any type). The second model represents the case where the object is of any type other

than a subtype of the type given in the test. The algorithm forthe full instanceof test

is shown in Figure 14.

Algorithm 14 : instanceof
input : modelm, varx type,t

output: model[] r

r ← new model[2];

ts← all subtypes oft;

mt ← m.copy();

r[0] ← mt ;

nt ←mt .target(x);

if nt .linearity = 1 then
nt .types← nt .types∩ ts;

focus(nt);
mf ← m.copy();

r[1] ← mf ;

nf ←mf .target(x);

if nt .linearity = 1 then
nf .types← nf .types\ ts;

focus(nf );

The abstract semantics for the cast operation are similar instructure to the instance of

operation. However for the cast operation we can assume thatthe cast always succeeds

(if it does not we have an exception which we handle separately). Thus the cast operation

only produces a single model that is identical to the true model in the instanceof test.
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Dataflow Analysis

In this chapter we examine how the dataflow analysis of a MIL program is done. The

general approach we take is to use as much structural information from the program as

possible to improve the performance of the analysis. Thus wesplit the analysis into two

components, a local phase, which uses a fairly standard structured dataflow analysis, and

an interprocedural component which uses a hybrid exploration approach to traverse the

call graph and employs a novel method to manage the state explosion issues that arise

when performing a context-sensitive program analysis.

9.1 Local Flow

In Chapter 8 we defined the primitive semantics for the basic program operations (assign,

load, store, compare, type test, etc.). Given an abstract stateσ (as defined in Section 7.3)

and an expressionewe use the notationS JeKσ to denote the semantics of the expression

in the abstract stateσ and similarly for statements, the abstract semantics are denoted

by S JsKσ . In this section we show how to compose the semantics of theseprimitive

operations using the control flow primitives in the language(if-elseandwhile).
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Abstract Conditional Semantics. Using the equivalent values information (from Sec-

tion 4.2) and a boolean conditionb (a literal or a variable), we can filter an abstract state

σ = {θ1, . . . ,θk} into two new abstract states based on the possible truth ofb.

Definition 45 (Partitionσ based on truth value ofb). Given an abstract stateσ and a

boolean variableb define:

σtrue= S JbKtrue(σ) = {θ ∈ σ | b maybe true inθ .u}

σfalse= S JbK f alse(σ) = {θ ∈ σ | b maybe false inθ .u}

Using the above definitions we can write the standard definition for theif statement,

S Ji f (b) blockt else blockf Kσ = S JblocktK(σtrue)∪S Jblockf K(σfalse). However, using

this definition of the semantics can result in exponential growth in the number of states

that the analysis must deal with (since for most cases at the union of the abstract states

that result from analyzingtrue andfalsebranches will have many models that are nearly

identical).

To avoid this we use the upper approximation operator⊔̃ instead of a simple set union

at the control flow join. This allows the analysis work with a substantially smaller set of

models at a small loss of precision, as shown in Figure 7.2 in Section 7.3.

Definition 46 (Semantics ofif-else ). Given the conditional control flow statement

if(b) blockt else blockf the abstract semantics are:

S Ji f (b) blockt elseblockf Kσ = S JblocktK(σtrue)⊔̃S Jblockf K(σfalse)

Abstract Loop Semantics. The semantics of a looping statementwhile can be ex-

pressed in terms of accumulating all possible exit states.

Definition 47 (Semantics ofith loop iteration). Given a loop statement,while(b) block,

the abstract state of the heap at the loop test for the ith iteration of the loop is:
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σi =





σ if i = 0

S JblockK(S JbKtrue(σi−1)) otherwise

Then we can define the semantics of the loop analysis as the upper approximation

(Section 7.3) of all the possible exits from the loop.

Definition 48 (Semantics loop statement (while )). Given the loopwhile(b) block, and

the upper normal formoperator,Γ, and incomparable model setoperator,∆, from Sec-

tion 7.3, the abstract state of the heap at the loop exit is:

S Jwhile(b) blockKσ =
⊔̃{

∆(Γ(S JbK f alse(σi)))
∣∣ i ∈N

}

Since the abstract domain is finite (via the normalization form of Chapter 6) this set

can easily be computed by iteratively processing the loop body until we reach a state that

has already been seen (i.e. reach a fixpoint staring from bottom). At this point in time we

know we have generated all the possible states that can appear in the loop body or at the

exit of the loop.

9.2 Interprocedural Flow Algorithm

To efficiently analyze non-trivial programs we need to address several issues in the inter-

procedural analysis. Of particular concern are how recursive calls are handled and how the

call graph is explored, how the analysis should deal with library calls (and other simple

methods), and finally how to deal with the state size and exponential growth in the number

of times each method is analyzed when performing a context-sensitive analysis.
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9.2.1 Call Graph Exploration

The order in which methods are analyzed has a substantial impact on the efficiency of

the program analysis [5, 44] and thus we use a hybrid approachto exploration that varies

the order based on structural information about the call graph and the method bodies. In

particular we distinguish between calls that are in a recursive cycle (a strongly connected

component in the call graph) and calls that are non-recursive. In the non-recursive case

we also want to account for the differences between builtin methods, small leaf (orget-

ter/setter type methods) and more complex methods.

In the frontend analysis we identify small leaf methods and simple methods that either

just access fields or call though to other methods. The frontend also computes a call graph

using the declared type information which is used to drive the interprocedural analysis. As

the efficiency of the interprocedural analysis is dependenton the precision of the call graph

we are investigating alternative methods for the call graphcomputation. Once we have

computed these properties of the program we use Algorithm 15to analyze the program.

In the descriptions that follow, we omit memoization support so that we can focus on the

structure of the analysis algorithm. However, in practice,memoization of the analysis

results needs to be performed to ensure acceptable performance.

Analyze Builtin. If the method that is being called is a builtin library methodthat has

specialized semantics and these semantics apply (there arenodependentmethods) then we

can directly apply the specialized semantics (viaanalyzeBuiltin). Thedependentmethod

qualification allows specialized semantics for methods like contains , which depends

on the definition of theequals method of the receiver argument. In many cases the

equals method is the default reference equality definition from theObject class and

we can precisely define the abstract semantics for the operation, but for other calls where

theequals method is overridden we must analyze the implementation of thecontains

method body directly using the other analysis methods.
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Algorithm 15 : Analyze Interprocedural, (analyzemto when called frommfrom in

abstract stateσ )
input : programp, callermfrom, calleemto, abstract stateσ

if mto is a builtin method of p and nodependentmethodsthen
p.analyzeBuiltin(mto, σ );

else ifmfrom, mto in same recursive cycle of pthen
(σr ,σu)← project(σ );

σ f ← p.analyzeRecSame(mto, stateMerge(σr ));

σ ← extend(stateMerge(σ f ), σu);

else ifmto in a recursive cycle of pthen
(σr ,σu)← project(σ );

σ f ← p.analyzeRecNew(mto, stateMerge(σr ));

σ ← extend(stateMerge(σ f ), σu);

else ifmto is a small methodthen
p.analyzeDirect(mto, σ );

else
(σr ,σu)← project(σ );

σ f ← p.analyzeDAGCall(mto, stateMerge(σr ));

σ ← extend(stateMerge(σ f ), σu);

Analyze Recursive. TheanalyzeRecSamemethod is used to analyze calls that are within

the same recursive component of the call graph. For these calls we want the analysis to

explore the call graph in a breadth first manner as opposed to the depth first exploration

used for non-recursive calls. This avoids the problem of full path exploration in densely

connected recursive call structures (a depth first exploration of all possible call paths in

a strongly connected component of a call graph requires exponential time). Thus Algo-

rithm 16 simply checks for the current approximate abstractsemantics of the given abstract

state (creating a new entry if needed) and returns this approximate result.

TheanalyzeRecNewalgorithm is used for the first call into a recursive component of
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Algorithm 16 : analyzeRecSame
input : programp, calleemto, abstract stateσ

if mto has an approximation for the semantics ofσ then
return current approximate semantics forσ in mto

else
Add mto to worklist;

σout← base case semantics forσ in mto;

add(σ ,σout) as approximate semantics pair tomto ;

return σout

the call graph. It sets up the worklists and then preforms theanalysis of the methods and

approximate abstract semantics until the fixed point is reached (thus safely approximating

the result of the call). Algorithm 17 initializes a worklistwith the called method and then

proceeds to process the methods in this list in a breadth firstfashion (methods are taken

from the front of the worklist and added at the back in Algorithm 16 and in the conditional

statement). While this simple worklist approach is reasonably effective it appears that the

performance of the analysis can be improved significantly byaltering the order in which

the entries in the worklist are processed (although we have not been able to explore this

topic in detail yet).

Analyze Direct. The analyze direct method allows the analysis to avoid the cost of

project/extend (Section 9.3) and memoization for small calls where the cost of analyzing

the method body is less than the cost of these operations. Thesimplest way to accomplish

this is to inline these methods in the front end (which is whatis currently done in the

analysis). However this technique is limited by the abilityto identify statically inlineable

methods (i.e. they must have a single static target so dynamic methods cannot be handled)

and extensive inlining can cause undesirable expansion of the code. To avoid this we pro-

pose using the front end to identify and uniquely rename the references in these methods

so that the analysis can dynamically decide if the method body should be analyzed directly
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Algorithm 17 : analyzeRecNew
input : programp, calleemto, abstract stateσ

add(σ ,⊥) as approximate semantics pair tomto ;

worklist w← [mto];

while w 6= /0 do
m← w.popFront();

foreach (σin,σout)sp in approximate semantics list of mdo
σ ′out← m.analyze(σin);

if σ ′out 6= σout then
w.addAll({methodsm′ | m′ callsmto});

sp.second← σ ′out;
return abstract semantics ofσ in approximate semantics table of mto

as if it was inlined or to use the full set of calling operations as given inanalyzeDAGCall.

Analyze DAG Call. TheanalyzeDAGCallmethod is used to analyze the larger methods

that encapsulate significant functionality. TheanalyzeDAGCallsimply passes the state

into the local analysis method and returns the result. Analyzing of the callee before re-

turning to the analysis of the caller results in the exploration of the call graph in a depth

first order for non-recursive calls, which is an optimal order or these calls.

9.2.2 Call Entry/Exit Merge

ThestateMergeoperation allows the analysis to aggressively control the size of the states

by computing a single model that is the summary of all the models in a state. The use of

this operation as the regular join (or upper approximation)would result in unacceptable

losses. However, we can take advantage of natural abstraction points to merge all of the

elements in the projected set (after the project operation the models only refer to the frag-

ment of the heap visible in the callee scope) into a single heap model. Intuitively methods
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(particularly with non-trivial bodies or that are virtual)have strong abstractions for the

portion of the heap that is passed in and properties that are important to the behavior of

the method body either (a) hold for all possible program states at the call site, thus the

property holds for the join or (b) the property only holds forsome of the states but because

of the weak assumptions made for the inputs to the method mustexplicitly test for this

property before using it (e.g. the nullity test in a recursive list traversal). This assumption

is confirmed by our experimental results which indicate thatlittle or no information is lost

by aggressively merging the input and return states from theanalysis of method calls (also

referred to asmultivariance[44,47]).

Algorithm 18 shows the pseudo-code for merging two abstractheap graphs. The full

stateMergealgorithm can be constructed by pairwise applying this to the graph compo-

nents and the scalar domain join to the scalar components of the models in the state. The

graph merge algorithm is simply the union of the two graphs, assuming that two variable

nodes with the same name are equal but all non-variable nodesare not, followed by the

normalization of the resulting graph.

In practice it is possible to improve the precision of this operation by updating the

node/edge merge operations to be more precise when joining nodes/edges that originate in

different states. The two cases that we have found to be important are:

• When merging two nodes (edges) from two different models andboth nodes (edges)

have alinearity of 1 then the resulting node (edge) represents at most one object

(reference) and should have alinearity of 1, notω.

• When merging two edges, with thenon-interferingproperty, from different mod-

els we know the pointers abstracted by the edges cannot beconnected(since the

two edges represent possibilities from two distinct models) and thus the resulting

summary edge is alsonon-interfering.
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Algorithm 18 : stateMergeGraph

input : graphg, graphg′,

output: graphgm

gm← g∪g′;

normalizeGraph(gm);

return gm

9.3 Project/Extend

A significant component of the analysis runtime is due to the need to perform a context-

sensitive interprocedural analysis, where each procedurebody may be analyzed multiple

times (once for each different calling context).

The practice of using a memo-table to avoid recomputing analysis results and the use

of a projectoperation to remove portions of the heap that cannot affect or be affected by

the called procedure are standard techniques for minimizing the number of times each

function needs to be analyzed during interprocedural dataflow [5, 6, 46, 47, 51]. The two

major goals of theprojectoperation are improving the effectiveness of memoizing analysis

results by removing portions of the heap that could cause spurious inequalities between

calling contexts and preventing the loss of precision that occurs when recursive procedures

use a summary representation for multiple out-of-scope references (e.g. local reference

variables with the same name but that exist in different callframes).

9.3.1 Abstract Call Stack

Our concrete model for thecall stackis a functionSm : (V×N) 7→O, whereV is the set of

local variable names andN represents the depth in the call sequence (main is at depth 1)

andO is the set of all live objects. Thus, the pair(v ,4) refers to the value of the variable

v in the scope of the 4th call frame.

135



Chapter 9. Dataflow Analysis

To represent the concrete call stack we introducestack variableswhich represent the

values of local variables on the stack (for a variation on this approach see [57]). In our

extension eachstack variablesummarizes all the possible targets (in a given graph) for

a given variable name on the stack. Given a variable namev and a heap graphg we

define a variable namev’ for use in the abstract domain (we will select a better naming

scheme in Section 9.4) where:v’ is the abstraction of all the variables in the call stack,

∃i ∈N, noden∈ g, objecton s.t.on ∈ γ f (n)∧Sm(v , i) = on.

By associating the set of stack locations that are abstracted with the set of targets in

a given abstract heap graph, we can naturally partition thestack variablesalong with the

heap graphs. Since eachstack variableis associated with only the values on the stack that

point into a region of the heap represented by the given heap graph, it is straightforward to

partition and join them when partitioning the heap graphs, Algorithms 19 and 21.

Thus, during the local analysis the heap graph represents the portion of the program

heap that is visible from the local variables and is augmented with some number ofstack

variablesandcutpoint variableswhich relate variable values and the heap in the caller

scope to the portions of the heap reachable from callee scopelocal variables.

For efficiency and in order to ensure analysis termination the naming scheme we

choose will result in situations where multiple cutpoint (or stack) edges are given the same

name. This may result in some amount of information loss (particularly with respect to

reachability and aliasing). To minimize the loss that occurs we introduce an instrumenta-

tion domain for the stack/cutpoint variable edges,nameColl= {pdj, pua, pa}. Wherepdj

indicates a cutpoint/stack name representing (a single edge) or edges where the edges do

not represent any pairwiseconnectedreferences,pua indicates a name representing mul-

tiple edges where there are no pairwisealiases, while pa indicates a name representing

edges that they may have pairwisealiasing. Thus, the cutpoint variable and stack edges

are represented with records{id , linearity , interfere , connto , nameColl }.
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9.4 Stack Variables, Cutpoint Labels

When performing the project operation in heaps with cutpoints we need to name thestack

variablesas well as thecutpoint edges. We use a simple technique for the stack vari-

ables: given a variable namev defined in the caller functionfcaller we use the name

$fcaller * v to represent this variable in the callee scope. This naming scheme can

create false dependencies on the local scope names unless the variable information is

anonymized during the comparisons of entries in the memo-table.

Naming edges that cross the cutpoints is more complex since we need to balance the ac-

curacy of the analysis with the potential of introducing spurious differences resulting from

isomorphic (or nearly so) cutpoint edges being given different names. For the renaming

of the cutpoint edges we assume that special names for the arguments to the function have

been introduced. The first pointer parameter is referred to by the special variable namep1

and theith pointer argument is referred to by the variablepi .

For each cutpoint edge we generate a pair of names: one is usedin the unreachable

section of the heap graph and one in the reachable section, which allows an abstract heap

model to represent both incoming and outgoing cutpoint edges that are identical and exist

in the same abstract heap component without loss of precision.

If we are adding a cutpoint for the method callfcaller and the edgee, which is a

cutpoint, starting atn and ending atn′, and has edge labelfe . We can find the shortest

path (f1 . . . fk ) from any of thepi variables ton′ (using lexographic comparison on

the path names to break ties). Using thepi argument variable and the path (f1 . . . fk )

we derive the cutpointbasename = fcaller * pi * f1 * . . .* fk * fe We compute a pair

of static names (unreachN, reachN) whereunreachN= $basename- and reachN =

$basename+ .
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9.4.1 Project and Extend Algorithms

Project. We assume that before theprojectHeapfunction is invoked all of the special

argument variable names have been added to the heap model. This allowsprojectHeap

(Algorithm 19 below) to easily compute the section of the heap model that is reachable

in the callee procedure and then compute the set of nodes thatcomprise the unreachable

portion of the heap model.

Algorithm 19 : projectHeap
input : g: the heap model to be partitioned

output: gr , gu: the reachable and unreachable partitions,snu, ncs: the static names

used and newly created

reachNodes← set of nodes reachable from args;

unreachNodes← set of nodes unreachable from args;

crossEdges← set of edges that start inunreachNodesand end inreachNodes;

snu← /0;

ncs← /0;

foreach edgee in crossEdgesdo
(sn, isnew)← procCrossEdge(g, e, reachNodes);

snu.add(sn);

if isnewthen ncs.add(sn);
hu← subgraph ofg on the nodesunreachNodes∪ {dummy nodes from

procCrossEdge};

hr ← subgraph ofg on the nodesreachNodes;

return (gr , gu, snu, ncs);

For each edge that crosses from the unreachable section intothe reachable section we

add a pair of static names to represent the edge (Algorithm 20). Since the heap model

stores a number of domain properties in each edge, we create adummy node and remap

the edge to end at this node. Then, theunreachNstatic name is set to refer to this dummy

138



Chapter 9. Dataflow Analysis

node. In the reachable portion of the heap graph we simply setthereachNstatic name to

refer to the target of the cross edge.

When adding thereachNstatic name to the reachable section of the heap graph the

name may or may not already be present in the heap graph. If thename is not present

then we add it to the static name map and for later use we note that this is the call where

the name is introduced. Otherwise a name collision has occurred and we must mark the

edges representing the possible cutpoints appropriately (for simplicity we mark all the

edges). If there may be aliasing we note that the cutpoints from different frames may have

aliasing targets (pa) and similarly if the new cutpoint edge may be connected withan ex-

isting cutpoint edge we mark them as being pairwise connected (pua). The functionsma-

keEdgeForUnreachCutpointandmakeEdgeForReachCutpointare used to produce edges

to represent the cutpoint (based on the static name and the cutpoint edge properties) in the

unreachable and reachable portions of the heap.

Once all of the cutpoint edges have been replaced by the required static names, the

heap can be transformed into the unreachable version (whereall the nodes in the reachable

section and all the variables/static names that only refer to reachable nodes have been

removed) and the reachable version (where the nodes in the unreachable section and the

associated names have been removed).

Extend. After the call return we need to rejoin the unreachable portion of the heap that

we extracted before the procedure call entry with the resultwe obtained from analyzing

the callee procedure. This is done by looking at each of the static names that was used to

represent a cutpoint edge and reconnecting as required. Then, each of the newly introduced

cutpoint names can be removed from the heap model. The pseudo-code to do this is shown

in Algorithm 21.

This algorithm merges all edges with the same reachable cutpoint name so that there

is at most one target edge for a given cutpoint name in the reachable heap graphgr (this
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Algorithm 20 : procCrossEdge
input : g: the heap,e: the cross edge,reachNodes: set of reachable nodes

output: rsn: the name used,isnew: true if rsn a new name

ne← the nodeeends at;

ni ← new dummy node;

(ursn, rsn)← genStaticNamePairForEdge(h, e);

eu←makeEdgeForUnreachCutpoint(e,ursn);

set endpoint ofeu to ni ;

addeu as an edge forursn;

er ← makeEdgeForReachCutpoint(e,rsn);

set endpoint ofer to ne;

remap the endpoint ofe to ni;

if the namersnexists and has edges pointing to a node inreachNodesthen
rsnes← {e′|e′ is an edge for the cutpoint varrsn};

adder as an edge forrsn;

if er is connected with an edge inrsnesthen set edges inrsnesander to pua;

if er may alias with an edge inrsnesthen set edges inrsnesander to pa;

return (rsn, false);

else
add the namersn to h;

adder as an edge forrsn;

return (rsn, true);

simplifies the algorithm and is in our experience is quite accurate). The algorithm then

pairs up the two cutpoint names and remaps the edge we saved inthe unreachable section

to the target node in the reachable section subject to a number of tests to propagate sharing

information (the nullity information is propagated due to the fact that the dummy node and

all incoming edges are always removed but the foreach loop onthe targets ofursn does

not execute since the target set is empty). Theer .nameColl= pua test is true if this edge
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represents sets of pointers that do not have pairwise aliases. Thus, we mark the newly

remapped edge ander as pairwise unaliased. Similarly, theer .nameColl= pdj test is true

if this edge represents cutpoint/stack edges that are pairwise disjoint. Thus, we mark the

newly remapped edge ander as pairwise disjoint.

Algorithm 21 : extendHeap
input : gr , gu: the reachable and unreachable partitions,snu, ncs: the static names

used and newly created

output: g: the joined heap model

g← newheap();

g.heapGraph←mergeGraphs(gr .heapGraph,gu.heapGraph);

foreach static namesn in snudo
ursn← reachNameToUnreachName(sn);

nr ← the target ofsn in gr .nameMap;

foreach nodenu that is a target ofursn in gu.nameMapdo
er ← the single incoming edge tonu;

remaper to end at the target ofnr ;

er .interfere =er .interfere⊔ nr .interfere;

if er .nameColl= pua then seter andnr as unaliased;

if er .nameColl= pdj then seter andnr as disjoint;
hu.removeNodeAllEdges(target ofursn);

hu.unmapStaticName(ursn);

if sn in ncsthen hr .unmapStaticName(sn);
g.nameMap← mergeNameMaps(gr .nameMap,gu.nameMap);

return g

The major components of this algorithm are the separation ofthemergeGraphsaction

from themergeNameMapsaction and the elimination of the static cutpoint edge names

that were introduced for this call.

ThemergeGraphsfunction computes the union of the graph structures that represent
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the abstract heap objects, while themergeNameMapsfunction computes the union of the

name maps (which are maps from the stack/variable/cutpointnames to the nodes in the

graph structure that represent them). This separation allows the algorithm to nullify the

names created for this call which prevents the propagation of unneeded cutpoint edge

targets to the caller scope. The functionunmapStaticNameis used to eliminate a given

static name from the abstract heap model name map.

9.5 Example Project/Extend.

In Figure 9.1 we show an example of how the project operation functions, how it reduces

the size of the abstract models that need to be processed and reduces the number of times

each method needs to be analyzed. In Figure 9.1(a) we show a simplified version of the

state of the program heap at the call to thecomputeNewValue method in theem3d

benchmark. The call takes aNode object referred to by the variablen and computes a

new electric/magnetic field value for it.

By using the project operation we can partition the heap intothe section of the heap

that is used by thecomputeNewValue method from the section that cannot affect (or be

affected) by the method. This partitioning is shown in Figure 9.1(b) (we use the dashed,

blue if color is available, line to show the partition). We have added the special cutpoint

variablesn* ?- , n* ?+ andn* fromN * ?- , n* fromN * ?+ to the unreachable and reach-

able sections of the heap to represent the edges that are cut during this partition. These

names will allow the analysis to correctly reconnect these edges on return from the method.

The result of this transformation is that we have reduced thenumber of non-variable

nodes by 3 (a 30% reduction in the size of the heap model). We have also eliminated

spurious calling context information which will allow the analysis to avoid reanalyzing

the procedure later. In this example thecomputeNewValue method is also called
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on Node objects from the electric field. Without the project operation the differences

that arise from the field nameshNodes vs eNodes will force the re-analysis of the

computeNewValue method. However, the project operation results in identical models

(the heap graph on the right hand side of Figure 9.1(b)) beingpassed to the local analysis

procedure for both call sites. Since the program states are equivalent at both call sites the

analysis can use the memoized results produced from analyzing previously.
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(a) Call tocomputeNewValue

(b) After Project

Figure 9.1: Project/Extend forcomputeNewValue in em3d
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Semantics of Collections and Libraries

Library-based collections are a fundamental component of modern programming lan-

guages and are used extensively in almost any non-trivial program. Substantial work has

gone into developing heap analysis tools that can accurately and efficiently analyze simple

data structures, mainly lists, trees, and simple cyclic structures. Unfortunately, most exist-

ing heap analysis techniques have aspects that make their use in analyzing large programs

that use standard libraries impractical. This is either dueto the inability to model the com-

plex data structures (red-black trees, doubly-linked lists with tail pointers, etc.) used in the

library code or due to the computational complexity of performing the analysis of these

complex library data structures. An alternative to directly analyzing the code that imple-

ments the collection objects is to use the semantics of the collection objects to simulate

the effect of each collection operation as an atomic programoperation.

In addition to the performance issues that arise when directly analyzing the collection

library implementations, the semantics based approach allows the modeling of properties

specific to each collection type (e.g. sets never contain duplicate elements).

This chapter presents a method for representing the semantics of collection libraries

and iterators over the collections in our shape analysis framework. The representation that
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we present for the collection semantics enables the shape analysis to identify individual

elements in the collection, allowing them to be strongly updated. The iterator semantics

provide a representation for the notion of progress in the processing of the elements in

the collections, which allows the shape analysis to accurately model the processing of the

collections.

For this chapter we are going to use a simplified set of collections and iterator opera-

tions to simplify the discussion and to separate out the semantics of theadvanceandget

operations (as they are combined in the semantics of thenext operation in the Java stan-

dard library which advances the iterator and fetches the argument as an atomic operation).

This simplification allows us to focus on the semantics of theindividual components and

can be easily adapted to the semantics of the collections in the standard Java libraries.

10.1 Example Programs

To gain some insight into how our extensions work and interact with the base heap analysis

we use the examples in Figure 10.1. The examples use objects of types,t1 andt2 . The

t1 type has a single fieldval that points to objects of typet2 . Thet2 type is a simple

object with no pointer fields. The first code segment is a loop that fills aset with objects

of type t1 (all of which have a pointer to the same object in theval field). The second

example takes the resultingset and updates each element to point to thet2 object that

the variabler points to.

We are using thet1 andt2 types to keep the examples simple. However, the methods

presented here can handle similar programs, with the same level of accuracy, wheret1

and/ort2 are replaced by simple finite structures, lists, trees, or other library collections.

The analysis algorithm is also able to analyze our examples when t1 and/ort2 are re-

placed with DAG shaped or cyclic structures, although potentially with reduced accuracy.
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Initialize a Set Update all the elements in the set

set p = new set()
t1 q
t2 s = new t2()
for(int i = 0; i < M; ++i)

q = new t1()
q.val = s
p.insert(q)

t2 r = new t2()
iterator i = p.begin()
while(i.isValid())

(i.get()).val = r
i.advance()

Figure 10.1: Example Code

In both examples the analysis should determine that every element in theset is unique

(although the elements may reference the same object in theval field). In the second

example the analysis should capture the fact that on each iteration of the loop the element

that the iterator refers to has itsval offset updated and after the loop all the elements in

theset have been updated. Thus, there are no longer any objects in the set with pointers

in theval field that refer to the same object as the variables .

10.2 Domain Extensions For Collections

The fundamental idea for modeling the collections and iterators is to classify the pointers

that are stored in a collection into four categories based ontheir relation to any iterators

that are acting on the collection. Based on this classification we create a specialoffsetfor

each category, just as was done for arrays.

• Pointers that have an unknown relation to the active iterator or when there is no

active iterator for this collection. Edges representing pointers in this category are

given the label?.

• The single pointer that the iterator is currently at in the collection. The edge repre-
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senting this pointer is given the labelat.

• Pointers that come before (in whatever iterator order is specified by the collection)

the location that the iterator is at. Edges representing pointers from this class are

given the labelbi.

• Pointers that come after (in whatever iterator order is specified by the collection) the

location that the iterator is at. Edges representing pointers from this class are given

the labelai.

This scheme for classifying the pointers in a collection is aspecific case of thepar-

titioning functionsthat are used in [22] to partition arrays of scalars. The definition we

use is only precise when there is a single iterator that is active in a collection. In the

case of multiple iterators simultaneously indexing through a collection our partition must

conservatively assume that any relation could hold betweenthe positions of the iterators.

The use of more flexiblepartitioning functionswould allow our analysis to partition the

pointers in a collection even when multiple iterators are being used to index through the

collection. However, the use of more generalpartition functionssubstantially complicates

the analysis and we expect that most of the time only a single iterator will be active in a

collection. Based on this assumption we opted for the fixed partition.

Modifications to the Dataflow Operators. Our modifications have only a minimal im-

pact on the algorithms for the abstract semantics and we onlyneed to modify the node

merge algorithm. First, we define a simple function that takes a node and if it is currently

partitioned on an iterator forgets all the partition and iterator information. The procedure

to forget this information is shown in Alg. 22.
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Algorithm 22 : clearIndexer
input : g a heap graph,n a node

if n has an active iteratorthen
n.activeIter←⊥;

n.empty← unknown;

n.atFirst← false;

foreach out edge edo
if e.offset∈ {bi,at,ai} then e.offset← ?;

g.removeEquivalentEdges(n);

10.3 Modeling Iterator and Collection Operations

In this section we look at how the various collection methodsare implemented. Even

our simplified collection library has a non-trivial number of methods to manipulate the

various collection objects and the associated iterators. Thus, we focus on describing the

most interesting methods. For simplicity we assume that allof the collection nodes have

a linearity of the 1. If the linearity isω the default action is usually simply set theempty

property tounknownand no-op, in the cases where the action is more interesting we will

explicitly mention it.

Insertion and Deletion. For the insert operation we first call theclearIteratormethod.

Next we add an edge from the collection to the object that we want to add to the collection

and we set the label of this edge as? and if thelinearity property is 1 then we also know

that the collection has at least one element and can set theemptyproperty tofalse. If the

node haslinearity of ω we do not know which of the many collection objects may have

been added to so we conservatively assume that any of them mayhave been inserted into

and set theemptyproperty tounknown.

The deleteoperation for our collection library takes an iterator and removes the ele-

ment referred to by that iterator from the collection. To model this we remove the edge
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with at label (which strongly deletes the iterator target from the collection). This opera-

tion may or may not make the collection empty so we must conservatively set theempty

property tounknownand theatFirst property tofalse.

Clear, Empty and Size. The abstract semantics for theclear , empty andsize op-

erations are all relatively straight forward. For theclear operation we simply remove

all outgoing edges (thus simulating the removal of all the references in the container) and

set theemptyproperty totrue. For thesize operation on a given collection (supposex

= y.size() ) we add the equality relationx = card(y) to the domain of uninterpreted

function symbols and if we know that the collectiony refers to has theemptyproperty is

true then we have the stronger conditionx = card(y) = 0.

The semantics for theempty method are slightly more complex as we want to generate

one model for then the method returnstrue and one model for when the method returns

false. If we can determine that the collectionmustbe empty/non-empty then we can just

return (if theemptyproperty is eithertrue or false). In the case where the collection

mayor may notbe empty we create a model for each case. The code to do this is shown in

Algorithm 23, we assume that the methodcopycreates a copy of the given program model,

while getTargetreturns the node that a variable refers to in the model andaddEquality

updates the abstract domain of equalities with the new equality information.

Iterator Initialization and Get. The most common way to initialize an iterator is to

get an iterator to the first element (with respect to the collection’s iteration order) of a

collection. Thebegin method in our collection library is used to do this. To simulate the

effect of this operation in the heap graph (Algorithm 24) we use theclearIteratormethod to

forget the partitioning of any other iterators on the collection. Then we split each possible

summary edge (?) into two new edges (accomplished by thesplitIthSummarymethod from

Chapter 8): one is used to represent the element in the collection that the iterator refers
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Algorithm 23 : Empty/Non-empty Materialization
input : m model,c variable referring to (collection) node of linearity 1

output: me empty model,mn non-empty model

me← m.copy();

me.getTarget(c).clearOutEdges();

me.getTarget(c).empty← true;

me.addEquality(card(c) = 0);

foreach variable v, refers to ndo
addEquality(card(v) = 0);

mn← m.copy();

mn.getTarget(c).empty← false;

return (me,mn)

to (at), the other edge is used to represent all the elements that come after the element

referred to by the iterator (ai). Since the iterator must refer to the first element in the

collection (with respect to iteration order) we do not need an edge to represent elements

that come before the iterator. Depending on theinterfereproperty of the? edge we set

the split edges as beingdisjoint (if the edges wasnp), connected(if the edges wasip) or

aliasing(if the edges wasap). We also know that the iterator is at the first element in the

collection so we set theatFirst value totrue.

Theget operator can be treated as a simple field load off the special field at. Using

this approach passes all the work onto the existing abstractheap graph load framework

which performs the appropriate operation. After a call to the get operation we can also

infer information about the emptiness of the collection object. The get operation only

succeeds if the collection is non-empty and thus we can update theemptyproperty to the

falsevalue.
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Algorithm 24 : iteratorBegin
input : modelm, varc (refers to collection of linearity 1), iterator vari

output: model[] r

n←m.target(c);

n.clearIndexer();

r ← new model[n.summaryCount()];

for k∈ 0. . . r.Length−1 do
m′← m.copy();

n′←m′.target(c);

r[k] ←m′.splitIthSummary(k, c, yes );

n′.atFirst← true;

Iterator Advance. After initializing an iterator we often want to advance it through the

collection (theadvance method) and use theisValid test to check if the iterator still

refers to a valid point in the collection.

The advance method needs to re-label the existing edge with theat label to have thebi

label and create a new edge with theat label that is parallel to the edge with theai label if

such an edge exists (accomplished by thesplitIthAfterIndexmethod from Chapter 8). This

is shown in Algorithm 25, which assumes that the given iterator is valid and is the current

active iterator for the collection. We also update theatFirst value tofalse. Further, we can

infer that since theadvance method succeeded that they collection has at least 1 element

in it and is thus non-empty (which allows the analysis to set theemptyproperty tofalse).

IsValid. In the isValid method we want to (when possible) propagate the knowledge

that on a given pathisValid returnedtrue or falseand update the model to represent

this information. If we take a branch that can only be executed when a given iterator is

invalid then we want to update our model to reflect this information (Algorithm 26). To do

this we have two cases. If the given iterator is not the activeiterator we do nothing. If the
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Algorithm 25 : iteratorAdvance
input : modelm, varc (refers to collection of linearity 1), iterator varj

output: model[] r

r ← new model[n.afterCount()];

for k∈ 0. . . r.Length−1 do
m′← m.copy();

n′←m′.target(c);

r[k] ←m′.splitIthAfterIndex(k, c, j);

n′.atFirst← false;

n′.empty← false;

(a) Added First Entry (b) Added Second Entry (c) Normalize

Figure 10.2: Add Elements to a Set Container

given iterator is the active iterator we delete the edges with theat label and the edges with

theai label. Further, ifatFirst if true and isValid returns false then we know that the

collection must beemptyand can update theemptyproperty totrue (and the cardinality

properties with an equivalence to 0). TheeraseEdgeWithOffsetremoves the edge with a

given offset from the abstract heap graph and any nodes the edge dominatesalong with

any other edges that aredominance equal(just like in the pointer comparison operations).

Our current abstraction has no way to represent that an iterator must be valid so in the case

that isValid only updates theemptyproperty tofalse(since if the iteratorisValid there

must be at least 1 entry in the collection) and returnstrue.
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Algorithm 26 : isValidf alse

input : i an iterator

n← the target ofi;

if i is not the active iterator for nthen return;

n.eraseEdgeWithOffset(at);

n.eraseEdgeWithOffset(ai);

if n.atFirst then
n.empty← true;

foreach variable v, refers to ndo
addEquality(card(v) = 0);

10.4 Examples

Initialize the Set Figure 10.2(a) shows the abstract domain at the end of the first loop

iteration. The variablep points to theset object and the variables points to the object of

typet2 that all the elements in the set will reference. The first of the t1 objects has been

allocated and has had theval field set. Since we just allocated the object that the node

represents we know it has alinearity of 1 and a(S)ingletonlayout.

We also created an edge from theset object to thet1 object. Since this edge was

just created (by a store to an unknown location in the collection) it must represent a single

pointer stored in the collection (linearity= 1, interfere= npandoffset= ?). Finally, since

we know that the set contains at least one element we have marked it as beingnon-empty

(∼e).

Figure 10.2(b) shows the state of the heap model at the end of the second iteration.

Another element has been allocated and inserted into the set. Theval offset of this object

has been set to refer to the same node thats points to. Since there are now two incoming

edges that may be connected and from the assignment statements we know they are both

equal tos all three edges are pairwisedomEQand alldominatethe node.
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Since the abstract heap in Figure 10.2(b) is not in normal form (theset node has

equivalentedges) it needs to be normalized (Chapter 6). This results inthe abstract heap

in Figure 10.2(c).

The two nodes with typet1 have been combined into a new summary node. The

edges with the labels? have been joined and are represented by an edge labeled[?,ω, np]

since the edge represents more than one pointer and the pointers cannot interfere. Finally,

the edges with the labelsval have been joined and are represented by an edge that is

labeled[val , ω, ap] since the edge represents more than one pointer and the pointers may

alias (the edges that were joined had thesharerelation). Running through the loop again

produces the same result, thus we have covered all possible iterations of the loop and are

done.

Update the Set The second example from Figure 10.1 traverses all elements in theset

(from the first example) and updates theval field of each object to refer to the same

object asr . Figure 10.3(a) shows the state of the abstract heap after allocating a second

object of typet2 and initializing the iterator. We have set the iteratori to point to the

set object, created a new edge to represent the single entry the iterator refers to (the edge

with labelat) and a new edge to represent the entries that come later in theiteration order

(the edge with the labelai). Since we just initialized the iterator we know it refers tothe

first element in the collection and thus mark it as being at thebeginning-B in the node

label. When initializing the iterator the unknown edge? is npwhich means that the newly

created edges (at andai) can not beconnected. Thus, the refinement method can split the

node that represents thet1 objects into two nodes (one representing the heap reachable

from theat edge and one representing the heap reachable from theai edge). Additionally,

the at edge hasmaxCutof size 1 and points to a(S)ingletonnode, thus the refinement

algorithm can safely assume that the target haslinearity 1 as well.

This allows the node to be strongly updated when the assignment is done. The result is
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shown in Figure 10.3(b). When the iterator is advanced we setthe currentat edge to have

the labelbi and split a new out edge from the currentai edge. The result of this is shown

in Figure 10.3(c), which is the state of the abstract heap at the end of the first abstract loop

iteration.

The state of the heap model at the end of the second iteration is shown in Fig-

ure 10.3(d). The assignment was able to strongly update the target of theval field of

the object referred to by the iterator. The iterator advancehas indexed the current iterator

position, splitting out a newat edge and resulting in two edges with the labelbi. Thus, we

need to combine their targets into a summary node and join theedges. This results in the

abstract heap shown in Figure 10.3(e).

In Figure 10.3(e) we have some unknown number of pointers before the current iterator

which all point to unique objects of typet1 (the edge isnp) and each of these objects has a

reference stored in theirval field, which (may) point to the same object as the variabler .

Then we have the single element currently referred to by the iterator and some number of

pointers that come after the iterator, which refer to the objects that have not been updated.

The state shown in Figure 10.3(e) is also the repeated state of the abstract loop execution

so we are done processing the loop body.

If we apply the exit test condition,isValid , which erases the edges with labelsat

andai, to the state shown in Figure 10.3(e), we get the result shownin Figure 10.3(f).

Note that there are no longer any references from the objectsin theset to the region of

the heap pointed to bys : each element in the set was strongly updated and by modeling

the progress of the iterator we determined that the contentsof the collection have been

strongly updated.
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10.5 Extensible Modeling of Library Code

In order to efficiently and precisely analyze the rich and extensive standard libraries that

appear in Java and other modern programming languages we want to build a high level

facility for describing the semantics of a given builtin module that enables us to easily

add new modules and minimizes the number of semantic operations we need to hard code

into the analysis. Thus we extended the Java language with a set of special builtin annota-

tions to support specifying which methods belong to a builtin class and how each of these

methods should be processed.

The annotations appear after the standard Java method signature definition. We first

have a specifier that allows us to determine if we want to provide a direct implementation

of the method in Java that the analysis will process directlyor if we want to specify a

particular hard coded semantic operation (semop) in the analysis that should be used to

determine the effect of the method on the abstract state. This allows us to support precise

and efficient operations for commonly used and semanticallynuanced operations without

requiring us to implement the semantics of every library operation directly in the analysis

(which is a time consuming and error prone task).

Many of the collection libraries that we are interested in modeling implicitly make

use to other fundamental operations (in particularequal , compareTo , hash ) that for

most invocations use the default values from their definitions in theObject class but

sometimes use overridden definitions of these operations. Thus, we need to ensure that

this is handled by our builtin semantic definitions. One option is to support calls from the

builtin semantics back out to the analysis semantics (similar to programming languages

allowing calls both from interpreted code to compiled code and compiled to interpreted).

This however can be difficult to implement and has many opportunities for introducing

errors into the analysis. Instead we add another specifier (overrideop) field that allows us

to use a builtin semantic operation when the default values of a given operation are used
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(i.e. when the receiver argument has the default semantics for theequal operation we

use the builtin semantics for thecontains method) and then to directly analyze a simple

Java implementation of the method if the default semantics of the operation are overridden

(i.e. if the object overrides theequal operation to analyze a simple loop that implements

the semantics of thecontains method).

Our extended Java grammar then supports the additional annotations as follows on each

method definition (wheresemop, overrideopare optional and if asemopis given thenbody

is optional as well:

javadecl@semop& overrideop1 . . .overrideopk body
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Read/Write Dependencies

The concept of data dependence between program statements is a fundamental tool for the

reordering of program statements and the determination of invariant values in basic blocks,

loops, or methods. Knowledge of data dependence allows the introduction of instruction-

level parallelism and thread-level parallelism (both in loops and method invocations). In

past work effective techniques for computing data dependence between scalar variables

have been developed. However, the extension of this work to tracking memory-carried

data dependence has been much less successful, in large partdue to the lack of suitable

heap analysis techniques to support them.

Previous work focused broadly on two approaches for identifying heap-carried data

dependence, shape analysis as a proxy for data dependence [21, 29, 58] wherein the iden-

tification of various acyclic structures is used to infer which expressions cannot access

the same portion of the heap, and the explicit tracking of modified locations [14, 34, 35]

which model the set of locations that may be read/written at each program point. This

early work introduced several fundamental concepts involved in explicitly modeling heap-

carried data dependence. However experimental work with these approaches was limited

to small numbers of micro-benchmarks. Thus, they do not address several important tech-
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nical problems that arise when attempting to analyze the heap-carried data dependence

problem for non-trivial programs.

Our analysis technique uses an explicit store model for the heap objects which allows

us to easily track the identity of objects between program statements. This differs from

some recent work on shape analysis, which uses logical models with implicit store repre-

sentations [25, 59] that cannot be efficiently extended to track the properties of arbitrary

heap locations. It also differs from approaches based on separation logic which restrict

the program to regular recursive structures and limited sharing of objects on the heap in

order to ensure termination [3,4,26]. These features preclude the use of these approaches

on many realistic application programs including theem3d andbh benchmarks, which we

analyze as detailed case studies here.

11.1 Running Examples

The running example creates 2Data objects, each of which has a single integer fieldval ,

and puts them in aPair object. If the conditional holds thefirst element of the pair

is modified and then the swap method is called to interchange the first andsecond

elements of the pair. This example is simple but relevant since in order to determine

that the asserted property always holds the analysis needs to be able to track how pointer

stores affect reachability relations in the heap, to identify where each heap location may

be written, and do so across method invocations.

11.2 Data Dependence Extensions

To track the read/write histories of objects on the heap we extend the model presented in

Chapter 3 with information to track the identity of the objects represented by a given node,
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m1 void main() {
m2 Pair p = new Pair(new Data(5), new Data(10));
m3 if( * )
m4 p.first.val = 0;
m5 swap(p);
m6 assert(p.first.val != 0);
m7 }

s1 void swap(Pair p) {
s2 Data temp = p.first;
s3 p.first = p.second;
s4 p.second = temp;
s5 }

Figure 11.1: Conditional Modify and Swap

and for each field in the object we track themost recentprogram location (statement or

control flow structure) where a read/write of that fieldmayhave occurred.

In order to ensure that the initial shape analysis when augmented with the read/write

domain remains efficient it is critical to minimize the amount of additional information that

is added to the heap model. The key observation is that for most optimization applications

the shape analysis only needs to provide precise information about themost recentprogram

location at which each fieldmayhave been read or written. Thus, the analysis does not

need to track every possible program location where a field may have been read/written,

and this significantly reduces the computational requirements. For the remainder of this

chapter we assume that each statement and each control flow structure in the MIL program

(Chapter 2) we are analyzing has a program locationℓ associated with it.
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11.2.1 Extended Domain

Read-Write Locations. Each node may represent a number of objects of different types

(τ1 . . .τm) and each type may have many fields (f 1
τi

. . . f n
τi

). For each of these fields we keep

two program locations (ℓ), the last time the fieldmayhave been read (ℓr) and the last time

the fieldmayhave been written (ℓw).

Node Identity. In order to efficiently analyze method invocations we memoize the input

and return abstract states and reuse them as possible. In order to prevent spurious inequal-

ities between the read/write program locations (that referto the locations in the caller

scope) in the memoized models we replace them with a genericmodified outsidevalue. To

allow us to match the identities of the objects in the input state with their position in the

output state we add a unique identity tag (a value inN) to each node that is passed into a

method call.

In our extended domain each node in the heap is now represented as a tuple[type ,

linearity , layout , scalar-fields , identity] . The entriestype , layout

and count are as described in Section 3. Thescalar-fields entry is a list of

field-readloc-writeloc entries, one for each scalar field, wherereadloc and

writeloc are either a program locationℓ or the special entry 0 (modified outside). The

identity entry is asetof identity tags or is omitted entirely if the node does not have

an identity tag associated with it (or for clarity if it is notrelevant to the example).

To track the read/write information for the pointer fields weextend each edge label to

[offset , linearity , interfere , readloc-writeloc] wherereadloc and

writeloc are defined the same as for the scalar fields in the nodes. Again, for clarity,

we omitreadloc-writeloc information if it is irrelevant to the example.

Figure 11.2 shows the (simplified) model that is computed as the result of executing the

pair constructor in the first example program. The pair is marked as having read and writ-

ten the two pointer fields at initialization (them2-m2 entries on thefirst andsecond
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Figure 11.2: Simplified Model ofPair with use-mod

edges) and the identity tag is omitted (since this object wasallocated in the current scope).

The twoData objects which had theirval fields initialized at program locationm2have

the entrym2-m2 in theirscalar-fieldsread/write entry.

11.2.2 Local Data Dependence

Now that we have extended the model with the required instrumentation properties we

can define a set of dataflow operations to model the effects of program operations on

the read/write information. The changes for load and store operations are simple, only

requiring an update of the last read/write value for the target object to the current program

location. Thus we omit a detailed description of these operations.

Abstract Conditional Semantics. To avoid tracking multiple models that differ only

from minor differences in thereadloc-writeloc locations we replace all thereadloc-

writeloc entries that refer to program locations in thetrue or falsebranches of the con-

ditional with the program location of the conditional before the union operation. Thus

any differences that are solely due toreadloc-writelocentries are removed and expo-

nential growth is avoided. Givenσ = {θ1, . . . ,θk} and ablock which contains state-

ments/control structures at program locationspl = {ν1, . . . ,νi}, we define the operator

♣(σ ,block,µ) =
{

θi |
µ
pl

∣∣∣ θi ∈ σ
}

, which performs the required replacements in the heap
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graph models. With this definition the improved semantics for the conditional operation

(at program locationκ) are:

S Ji f (b) blockt else blockf Kσ =

♣(S JblocktK(σtrue),blockt ,κ)∪♣(S Jblockf K(σfalse),blockf ,κ)

Disjunctive Domain. To speed up program analysis we employ apartially disjunctive

domain7 which we use to discard elements in the abstract states (θi) that contain redundant

read/write information. This is done by defining an order on the program locations based

on their control-flow order. In general this order is not total (e.g. statement locations in the

trueandfalsebranches of anif statement). However, our replacement of locations inside

nested control-flow structures with the program location ofthe structure that contains them

ensures that we can always compare the program locations that appear in thereadloc-

writelocentries.

Analyze Conditional Example. Figure 11.3(a) is the abstract heap that approximates

the state of the program after thetrue branch (S JblocktK(σtrue)), where the first ele-

ment of the pair had theval field written. In the node that represents theData ob-

ject that was written we updated thewriteloc entry to program locationm4 (where the

write occurred, marked in red if color is available). Figure11.3(b) shows the result of

♣(S JblocktK(σtrue),blockt ,m3), where we replaced thereadloc-writeloclocations that

appear in thetruebranch with the program location of theif statement (program location

m3, shown in blue).

Figure 11.3(c) shows the abstract heap from thefalsebranch where no write occurred

(S Jblockf K(σfalse)). The most recentmod location is unchanged (program locationm2,

where the object was initialized) in♣(S Jblockf K(σfalse),blockf ,m3) since program loca-

tion m2 is not nested in the conditional.
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(a) True Branch (b) True, After Mod Location Update

(c) False, After Mod Location Update (d) Discard Subsumed False Branch

Figure 11.3: Updating Read/Write Locations At Control FlowJoin

Given our order relation on theuse-modsites we can simplify the models resulting

from thetrue andfalsebranches into a single model shown in Figure 11.3(d). Intuitively

themay use-modinformation from thetrue branch indicates that the memory location at

p.first.val mayhave been written at locationm3(the if statement) or at some pre-

vious point in the program, while the result of thefalsebranch indicates that the memory

location atp.first.val mayhave been written at locationm2. Since the possibility

that the object may be written at or before program locationm2is implied by the statement

that the objectmaybe written at or before program locationm3we can safely discard the

model from thefalsebranch.

Abstract Loop Semantics. The semantics of a looping statementwhile at program

locationκ can be expressed in terms of accumulating all possible exit states. To do this

we define the state of the heap at the loop test for theith iteration of the loop as:

σi =





σ if i = 0

S JblockK(S JbKtrue(σi−1)) otherwise
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Then we can define the semantics of the loop analysis as the union of all the possible

exits from the loop with the read/write program locations that occur within the loop body

replaced by the program location of the loop (κ). Formally:

S Jwhile(b) blockKσ =
⋃{
♣(S JbK f alse(σi),block,κ)

∣∣ i ∈ N
}

11.2.3 Read Write Locations in Interprocedural Analysis

In order to efficiently handle large programs we memoize the results of analyzing each

method. At method call sites, if we were to naively compare the memoized heap mod-

els with the current call state the method specificreadloc-writelocentries we embed in

the model would create many spurious inequalities. As an example consider theswap

function from our running example. Theswap method could be called from multiple

locations in a program and at each of these call sites thePair object may have a differ-

entreadloc-writelocentries for thefirst andsecond fields. If comparison is done in a

naive manner these differences will result in spurious mismatches with memoized analysis

values, forcing the method to be re-analyzed for each call.

To avoid this problem we anonymize thereadloc-writeloclocations before attempting

to find a match in the memo table. However, when doing this anonymization we need to

ensure that we can figure out which locations in the result heap mayhave been read/written

in the call and whichmustnot have been read/written (and thus have the samereadloc-

writelocentry as before the call).

Call Example. The anonymization and remapping operations are conceptually simple

but without some intuition into how they function the definitions are difficult to follow.

Thus, we first examine how theswap call is handled in the pair example. Figure 11.4

shows the steps that are taken to analyze the call at program locationm5assuming that the

memo table contains Subfigures 11.4(a) and 11.4(b) as a memoized result.

167



Chapter 11. Read/Write Dependencies

Figures 11.4(a) and 11.4(b) show that during the analysis ofthe swap method the

analysis has determined thefirst andsecond fields have been read and written (the

readlocandwritelocentries refer to program locations within theswap method,s2, s3and

s4) but that theval fields are neither read nor written. Thereadlocandwriteloc entries

are themodified-outsidevalue 0. Further, based on the identity tag sets we know that the

object which was stored in thefirst field at the method entry (Figure 11.4(a)) and was

given the identity tag 2 is stored in thesecond field at the method exit (Figure 11.4(b)).

A similar situation holds for the object stored in thesecond field at the method entry,

which was assigned the identity tag 3.

Figure 11.4(c) shows the state of the heap model at the call site (locationm5) after

we have added fresh tags (7, 8, and 9) to uniquely identify thenodes. After anonymizing

the locations of thereadloc-writelocentries to themodified-outsidevalue (0) we have the

model shown in Figure 11.4(d), which is isomorphic (up to identity tags) to the model in

our memo table, Figure 11.4(a).

During the anonymization we construct a map from the identity tags we added and the

field identifiers to thereadloc-writelocentries in the caller scope that we are anonymiz-

ing. This gives us the mapModM= {(7, first )→ (m2,m2), (7,second )→ (m2,m2),

(8,val )→ (m2,m3), (9,val )→ (m2,m2)}. Using the isomorphism fromσin 7→ σcall

we have a mapΠ = {1→ 7,2→ 8,3→ 9}.

Using these maps we transfer the read/write information from the call input to the

memoized output, replacing anyreadloc-writelocentries that refer to program locations

in the callee body (swap) with the program location of the call site (program location

m5) and replacing any occurrences of themodified outsidevalue with the appropriate en-

try from modM. In Figure 11.4(b) the node with identify tag 2 has themodified outside

value for thereadloc/writelocof theval field (val-0-0 ). To place the correctreadloc-

writeloc values into this node we look up the node that it maps to in the caller scope (via

theΠ map), which gives us the identity tag 8. Then we look up the caller scopereadloc-
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(a) Memo In (b) Memo Out

(c) Call In (d) Anonymized (e) Call Out

Figure 11.4: Mapping Through Memoization

writeloc information in themodMmap, which gives us the read/write information for the

field, m2-m3.

This remapping gives us the result in Figure 11.4(e), which shows that the object stored

in the second field of thePair object may have been written at program locationm3

but that the object stored in thefirst field has not been modified since initialization

at program locationm2. Thus, we can determine that the read fromp.first.val is

non-zero and the assertion will always succeed.

Dataflow Operations. For a method invocation at call siteℓcall we give each node in the

call stateσcall a unique tagκ ∈N, set the read/write location to themodified outsidevalue

and build a mapModM : N×field 7→ (ℓr , ℓw).

We then compare the anonymized version ofσcall with the entries in the memo table

ignoring the read/write information. If a match(σin,σout) is found then there is a graph

isomorphismΦ : σin 7→ σcall. This isomorphism and the fact that the set of location tags

in σin andσout are the same implicitly defines a map,Π : {κ | κ a location tag∈ σout} 7→

{κ ′ | κ ′ a location tag∈ σcall}. Using this map we can then compute the result of the call
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by replacing anyreadloc-writelocvalues (ℓx) for the fields in each noden with:

(ℓ′x) =





ℓcall, if ℓ′x is a location in the callee method

max({n′.ℓx | κ ∈ n.identity∧n′ ∈ σcall∧Π(κ) ∈ n′.identity}), otherwise

11.3 Case Studies with Data Dependence:

Em3d. The first application of the read/write dependence information we look at is per-

forming thread-level parallelization of theem3d benchmark. In Figure 11.6 we show the

code for updating thevalue field of a singleENode object. By applying our read/write

analysis we obtain the model in Figure 11.5 at the end of the method body. We see that

some object from the list of magnetic field nodes has had thevalue field both read and

written in the loop,readloc= c2 andwriteloc= c2 (marked in red if color is available),

while there have been reads from thecoeffs and fromN pointer fields,readloc= c2

(marked in green),writeloc= 0. The pointers in thefromN array have also been read in

order to access thevalue fields in theENode objects in the opposite field, which have

been read but not written (readloc= c2, writeloc= 0).

Using this information, the fact that each reference in the linked list (LinkList ) of

ENode objects refers to a unique object (the edge isnp, the omitted default interference

value) and the linear loop iteration, allows us to determinethat each magneticENode

object is written on a single iteration of the main update loop, program locatione2, in

Figure 11.7, which callscomputeNewValue . Given this information it is valid to

thread parallelize this loop (and to vectorize the loop incomputeNewValue ). Doing so

results in a speedup of 3.21 on our quad-core test machine.

BH. Figure 11.8 shows the model that the analysis computes for the heap-based read/write

information in thehackGravity method of theBarnes-Hutbenchmark. For clarity we
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Figure 11.5:Em3d With Read/Write Info

c1 static void computeNewValue(ENode n) {
c2 for(int i = 0; i < n.fromCount; i++)
c3 n.value -= n.coeffs[i] * n.fromN[i].value;
c4 }

Figure 11.6:Compute (Fromem3d)

have simplified the heap structure in areas that are not relevant to this example.

The bh program performs afast-multipolealgorithm on the gravitational interaction

between a set of bodies (theBody objects) and uses a space decomposition tree ofCell

objects each of which has aVector containing a subtree or a reference to theBody

objects. The program also keeps two vectors for accessing the bodies,bodyTab and

bodyTabRev . Figure 11.8 shows the state of the heap model after the loop body (Fig-

ure 11.9) that contains the majority of the computation inbh. This loop takes eachBody
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e1 for(int i = 0; i < this.hNodes.size(); ++i)
e2 computeNewValue((ENode) this.hNodes.get(i));

Figure 11.7: MainEm3d Compute Loop

Figure 11.8:BH With Read/Write Info

object and walks the space decomposition tree (theroot field) to determine a new accel-

eration value for theBody object (stored in thenewAcc field).

Our analysis is not able to precisely resolve the construction of the space decomposi-

tion tree and conservatively assumes it may be a cyclic structure (shown by theC in the

node representing theCell objects). However, the analysis is able to determine that the

Cell objects and theBody objects represent distinct regions in the program. This piece

of information combined with the observation that the spacedecomposition tree is only

read in the loop body (all thereadlocentries set toh2, marked in green, and thewrite-
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h1 Iterator b = this.bodyTabRev.iterator();
h2 while(b.hasNext())
h3 ((Body) b.next()).hackGravity(rsize, root);

Figure 11.9: Main Update, Gravity Computation

loc entries set to 0), that the only part of the heap which is modified is never read (the

double[] stored in thenewAcc field, writeloc= h2, set to red), and that the collection

being indexed over (theVector referred to by thebodyTabRev field) does not have

multiple references to the same object (the? edge isnp, the omitted default interference

value), is sufficient to ensure that there are no heap-carried dependence in this loop. Thus,

we can safely thread-parallelize the loop body, achieving afactor of 2.98 speedup on our

test machine.
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Related Work

In this chapter we look at the most relevant previous work on the heap analysis problems

that we are interested in. In particular we focus on the work on shape analysis and only

briefly cover analysis techniques that are limited to computing points-to information. A

comprehensive survey of the early work on pointer analysis can be found in [30]. We be-

gin by briefly reviewing some of the work onpoints-toanalysis as it is the most commonly

used heap analysis technique despite the lack of precision in the results. We then examine

the related work on more powerful shape analysis techniques. As all of the shape analysis

approaches are fundamentally attempting to capture the same set of properties we catego-

rize them based on how the properties of interest are represented: using a logical language

with reachability predicates, model based approaches using graphs, or separation logic.

12.1 Points-to

Early work on analyzing the program heap focused on identifying points-tosets (set of

variables that may point to the same location in memory). Themost prominent of these

papers are from Anderson [2] and Steensgaard [63]. These papers utilize either equiva-
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lence or subset relations on the sets of program variables tocompute a global points-to

relation for the entire program.

While these methods are very efficient and produce acceptable results for some appli-

cations, the fact that they compute a single points-to relation for the entire program results

in a very conservative approximation of the heap state. Somework has been done on

computing similar points-to sets in a flow-sensitive manner[32] but experimental results

indicate that the crude base domain makes the improvements from the more precise data

flow minimal. In particular an experimental comparison of the results from Steensgaard’s

analysis and the results of flow-sensitive analysis demonstrates that there is little improve-

ment in accuracy in points-to set metrics and no improvementin the results of the analysis

clients (mod/ref, reaching definitions, and interprocedural constant propagation) [31].

The accuracy issues with these approaches arise from three areas. The first is obviously

the use of a single program-wide points-to set, which forcesa very conservative approx-

imation. However, even when points-to sets are computed on astatement by statement

basis, the results are still quite conservative. This is of course due to the imprecision in

what the domain can represent (only points-to relations between variables) but also due

to the inability of the domain to precisely simulate the effects of the program statements.

For instance, in a linked list manipulation, statements of the formx = y.next often

appear. If we understand that the heap object thaty refers to is alist then it is clear thatx

andy cannot point to the same object after the assignment. However, the simple points-to

set representation cannot express this connectivity information and so the analysis must

conservatively assume (since there is no way to distinguishbetween a list and a cycle) that

x andy may alias after the statement.
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12.2 Logic Formula Based Approaches

12.2.1 Shape Predicate Analysis

A simple technique for using reachability predicates to model the shape and structure of

the heap is presented in [20]. This work looked at using interference and connectivity

via binary predicates over the set of variables in the program to model theshapeof the

portion of a heap reachable from each variable by using unaryshape predicates. Given a

variablev the unary shape predicates (Tree(v), DAG(v), andCycle(v)) enabled the analysis

to model how the program could traverse the sections of the heap reachable from each

program variable. Binary relations on pairs of variables tracked the possibility that there

was a path from the target of one variable to the target of the other variable (reachability),

and if there was an object on the heap such that there was a pathfrom both variables to

this object (interference).

While this approach provides useful information for programs that build simple recur-

sive structures, the connectivity predicates and shape properties are not sufficient to handle

programs where regions would be temporarily transformed into more complex shapes (a

DAG or cycle) before being returned to their original simpler shape. In particular when

analyzing a program that performs a child swap in a binary tree, the tree is turned into a

DAG during the intermediate steps before being restored to the tree shape. This approach

is unable to capture this temporary transformation and cannot determine that the tree prop-

erty is restored. The problem arises since the heap model hasdetermined that there is a

DAG-like structure but cannot determine what objects are involved in this DAG shape,

thus the analysis cannot be certain that the DAG was broken after the swap.

The other major problem that arises with this approach is that the shapes are defined

over very coarse sections of the heap (the portion of the heapreachable from a given

variable). Thus, if a singleton design pattern is used, the analysis will determine that some
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structure may have a DAG layout while a more sophisticated analysis could determine that

there is a tree where the leaves may be shared singleton objects. The shape analysis in this

thesis avoids these problems by giving each node in the heap graph a shape, which allows

the analysis to model a tree of shared leaf objects precisely.

12.2.2 Path-Based Approaches

A variation of the shape-based approach is to track the connectivity properties of access

paths in the heap instead of just tracking the connectivity of the variables. Tracking the

connectivity of entire access paths avoids the need to trackthe shape of the heap reachable

from each variable since the required connectivity information is explicitly tracked in the

model.

A paper by Deutsch [18] introduced the idea of representing paths as regular expres-

sions over the field identifiers in the program. As with Ghiya’s approach, this work uses a

binary relation to track the connectivity and interferencerelations between objects reach-

able from variables. However, instead of just tracking if these paths exist, Deutsch’s ap-

proach also tracks the paths (via regular expressions over the fields in the program) that

are taken from the source variables to the shared objects. This enables the analysis to track

at what point in the heap the connections occur. However, like Ghiya’s approach it cannot

accurately model situations where the heap is temporarily transformed into adagor cycle

and then back into alist or tree.

In more recent work [25] Gulwani built on the ideas in [18]. Inparticular he utilized

a much more powerful domain for modeling the access paths in the program. This allows

the analysis to avoid many of the accuracy problems encountered by Deutsch. However,

the approach still requires the modeling of several binary relations over the set of access

paths in the heap (which can be a very large number) and a substantial number of tuples

in the relation may need to be updated for each program operation. Thus, there are serious
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questions about the performance of these approaches (and the preliminary results reported

in the literature indicate that these techniques do indeed have substantial performance

problems).

12.2.3 TVLA (Three-Valued Logic Analysis)

The Three-Valued Logic Analysis system (TVLA) [59, 60, 66] is based on a parametric

framework for evaluating predicates in three-valued logic(truth values may betrue, false,

andunknown). This work provides an extensible parametric framework for adding addi-

tional predicates to the standard set of reachability predicates used in other work. This

provides a much richer language for describing the heap. In addition to the construction

of a parametric framework that can be extended via the introduction of new predicates

as needed, the TVLA analysis system also introduced a numberof novel and powerful

concepts for analyzing the heap. The most important concepts are materialization and the

focus operator, both of which we have translated in Chapters8 and 6 into versions that

are suitable for use in a graph-based model. These two ideas enable the shape analysis to

transform summarized regions of the heap into a more explicit representation that can be

modeled more accurately. This transformation enables the analysis to successfully model

events like the tree child swap since the analysis can isolate the specific portion of the tree

that temporarily violates the tree property and can thus identify the later operation that

restores the tree property.

The TVLA model uses sets of unary and binary instrumentationpredicates over pro-

gram variables (and primed variables, which are introducedas needed to name specific

locations in the heap) to track the interference and reachability of each variable pair. How-

ever, unlike previous analysis approaches, the TVLA analysis updates the set of locations

that it tracks (the primed variables) to ensure that the targets of reads and writes can be

explicitly identified and tracked. Thus, in the child swap example the TVLA analysis
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generates a unique name for the node that is having its children swapped. By explicitly

giving a name to this location the relation between it and itschildren can be explicitly and

precisely tracked though all of the steps of the swap operation. This allows the analysis to

identify that this object and one of its children temporarily create aDAG that is returned

to a tree structure later in the swap operation. That is, since the locations of the objects

involved in theDAG are explicitly identified and known to be unique, the TVLA analysis

can safely infer that after the final write, thetree shape was restored since the analysis

knows that the write must break theDAG and that this was the onlyDAG structure in the

given section of the heap.

While this work introduced and explored a number of fundamental issues in modeling

the program heap, the way that these properties was represented and the implementation

of the analysis have severely limited the applicability of the results. From the standpoint

of expressive power the particular set of predicates used inthe TVLA work has limited the

analysis to programs that only manipulate homogeneous recursive structures such as lists

or trees. Thus, all of the programs discussed in the case studies section are beyond the

capabilities of the TVLA analysis as presented in the published results. Further, the para-

metric construction of the analysis system provides significant flexibility to this analysis

system, however this flexibility when coupled with the relational approach (the extensive

use of binary relations) results in a computationally expensive analysis. Thus, the exper-

imental results are limited to small benchmarks on the orderof a few hundred lines of

code and even then the analysis times are in the 10s–100s of seconds, making the analysis

impractical for use in an optimizing compiler.

Significant Extensions. The TVLA research has also investigated important aspects of

heap analysis techniques when dealing with function calls and container objects. We have

again built on and adapted these concepts to work with our heap-based analysis, see Chap-

ters 9 and 10.
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The most prominent of the papers on interprocedural analysis focus on the concept of

using cutpoints [55, 56], which split the heap into the portion that can be affected by the

local call and the portion that cannot be modified, to performmore efficient interprocedural

analysis. The concept of partitioning the abstract model, via a project operation, into a

component that is visible in the callee method and a component that is out of the scope of

the callee method is commonly used in abstract interpretation based approaches to improve

the efficiency of the program analysis [5,6,46,47,51]. The ability to discard the irrelevant

portions of the heap makes the use of memoization of analysisresults significantly more

effective and reduces the size of the model that the local analysis must deal with. These

two features are of substantial importance to ensuring thatthe heap analysis is scalable. In

particular, without the use of the improvements to the memoization results interprocedural

heap analysis is intractable on even moderate-sized programs.

In [22] the idea of refining a summary representation into a more explicit representation

was used to model scalar arrays. In this work the array is partitioned into multiple sections

based on the integer indexing that the program is using to traverse the array. Each of these

sections can then be modeled independently of the others. Thus, the analysis is capable of

understanding programs that iteratively process arrays since it can maintain information

separately for each segment of the array that is being processed (the portion that has been

processed, the single element that is being modified, and thesection that remains to be

processed).

12.3 Model-Based Approaches with Graphs

A natural way to model how objects in the heap are connected isto use a graph. This has a

natural relation to the structure of the concrete heap, which is often thought of as a graph.

In particular this model allows the analysis to handle situations like the analysis of thex

= y.next statement. In this case the graph based analysis (hopefully) will be able to
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determine that the node representing the objecty refers to and the node representing the

object referred to byy.next are different and thus the analysis can conclude thatx and

y do not alias after the statement.

Although, intuitively, using a graph-based model seems like an ideal base for analyzing

the heap, in practice there are a number of issues that prevented early work on using this

model from being effective. The two most prominent papers onusing a graph structure

to model the heap are [9, 38], which we use as the basis for our model in Chapter 2.

These papers outline the basic concepts of how a graph-basedheap model works and

provide examples of the issues that prevent their application in practice (issues that we have

addressed in this thesis). Despite the introduction of someadditional instrumentation to the

graphs these papers, surprisingly, do not make the connection between these properties and

the ability to parametrically extend the model with additional label properties as needed to

address the problems (as we do in Chapter 3).

The most obvious problem is how these systems deal with recursive data structures and

deciding which objects should be represented by each node inthe graph. In particular [9]

explained the difficulty in determining if a given node with aself edge(s) represents a list, a

tree, or some cyclic structure. Although they presented a technique to differentiate between

cyclic and acyclic structures, it was inadequate to deal with more general problems, such

as differentiating lists from trees. This issue is resolvedby the introduction ofshape

properties in Section 3.2, which allow us to precisely resolve all of these structures.

The difficulty in determining which objects should be grouped together is discussed

in some detail in [9]. The first approach presented in the paper relies on using the al-

location site to decide which node abstracts a newly allocated object. This results in all

of the objects allocated at a given static site being represented by the same node even if

dynamically they are in distinct data structures. For example if all ListNode objects

are allocated from a single constructor method then all lists will be represented by the

same node (even though there may be many distinct lists used in the program). Other ap-
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proaches outlined in the paper create a new node for each allocation and then at join points

use some heuristics to determine anoptimalgrouping of the nodes based on connectivity.

The approach in this thesis, Chapter 6, presents a much more precise characterization of

which nodes representlogically relatedsections of the heap, allowing the analysis to both

identify and group similar objects together, while keepingthe representations of unrelated

data structures distinct in the model.

Even when the analysis in [9] was able to successfully identify a recursive data struc-

ture it was then unable to precisely model how this structurewas updated during the exe-

cution of the program. In particular, if we remove an elementfrom a list, the single-node

representation of the list does not contain any informationabout the relative orders of the

head of the list, the variable traversing the list, and the element to be removed. Thus, the

destructive assignment removing the list element must be conservatively assumed to create

a cycle. This particular problem was addressed in later work[59,60] using logical formula

based models and we adapted these solutions to the graph based model in Section 8.2.

While this early work on using graphs to model the heap had many issues that pre-

vented its use in practice, it serves as an excellent basis tobuild on. In particular the

research provides an excellent evaluation of the approach including analysis of the issues

we described above, which greatly assisted in the construction of the model in this thesis.

12.4 Separation Logic

Separation logic was introduced by Reynolds, Ishtiaq, and O’Hearn [36,54] as a variation

on the logic of bunched implications [50]. The major advantage that separation logic has

over using first order logic or simple predicates to model theprogram heap is the notion

of the separating conjunction (∗). This conjunction enables the logic to compositionally

reason about the heap using frame rules which are driven by the separating conjunction.
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The ∗ operator is used to denote that two regions of the heap are disjoint and thus the

modifications to one of these regions cannot affect the other. This allows the logic to avoid

the frame problem, thus significantly reducing the amount of work needed in simulating

the effects of program statements on the heap model.

Recent work on using separation logic for analyzing the heaphas looked at limited

fragments of the full logic (to keep the analysis tractable), focusing on developing induc-

tive predicates that can be used to model recursive structures [3,24,26,68] and how these

regions are assembled into composite structures [3, 68]. However, this work assumes that

more complex sharing, such as an array that contains aliasing pointers, does not occur in

the program. Thus, these techniques are limited in the rangeof programs that can be an-

alyzed. Thus, again they cannot be used to analyze the majority of the programs that are

included in the case studies from Chapter 5.

Thus, this work has a number of interesting applications where the restrictions placed

on sharing and the types of data structures that are used are acceptable, in particular [3,68]

have focused on device driver verification. However, these types of restrictions are not ac-

ceptable when attempting to support a general purpose compilation system and attempting

to use the full logic is too computationally expensive to be feasible. Thus, we see the work

on separation logic and the analysis presented in this paperas complementary branches of

work (both in optimization and verification applications) where the analysis in this thesis

can be used as a forward pass to identify the major themes of the programs behavior, fol-

lowed by an on-demand separation logic based approach to improve the precision where

needed.
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Conclusion and Future Work

This thesis introduced a heap analysis technique that is designed to provide information on

a range of properties (connectivity, aliasing, collectionemptiness, data dependence, etc.)

that are useful for program optimization and to do so in an efficient manner.

In order to accomplish this we began by introducing a parametric graph-based abstract

heap model. Based on our experimentation with this model andthe examination of the

program properties we want to capture, we identified a numberof properties, described

in Chapter 3, that we used to augment the model. In Chapter 8 weshowed how these

properties can be used to ensure that the effects of the program operations on the state

of the heap are simulated efficiently and precisely. Finally, in Chapter 6 we presented a

normal form that allows us to identify recursive heap structures and to identify relations

between the various data structures on the heap.

With these techniques providing a base framework for the heap analysis, we looked

at how to efficiently perform interprocedural analysis in object-oriented programs (Chap-

ter 9). In Chapter 10 we presented a novel technique for analyzing the collection libraries

that are extensively used in modern Java programs. Then in Chapter 11 we showed how

to extend the analysis to enable the explicit computation ofheap-carried data dependence
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information.

While each of these constructions is an interesting contribution on its own, the primary

motivation for the development of each of them was to producean analysis technique that

is capable of precisely and efficiently analyzing real-world Java programs. To evaluate the

suitability of the approach presented in this thesis for achieving this objective we devoted

a substantial amount of effort to producing a Java front-endinfrastructure and implement-

ing the analysis itself. The result is an analysis system that can handle the majority of

the Java 1.4 language and the most commonly used standard libraries in java.lang ,

java.util , andjava.io .

In Chapter 5 we examined a number of case studies which demonstrate the precision

and utility of the information produced by the analysis for optimizing a number of pro-

grams. In this chapter we present an empirical evaluation ofthe cost of analyzing these

programs and look in more detail at using the information provided by the analysis to

thread-level parallelize the benchmark programs. We then conclude with a look at the

planned future work.

13.1 Evaluation

Benchmarks. To evaluate the efficiency and precision of the analysis we have collected

a number of benchmarks that cover a broad range of heap structures and algorithms to

ensure that the results reflect the utility of the analysis asa general purpose tool for op-

timizing Java programs. In particular we have selected several of the programs from the

SPECjvm98 [62] suite, and the entire non-trivial JOlden [7]suite.

Our selections from SPECjvm98 are the benchmarksraytrace, a raytracer, modified to

be single threaded,compress, aLempel-Zivtext compression program, anddb, an in mem-

ory database. These benchmarks are realistic applicationsfrom a standard Java benchmark
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suite that build and use a number of interesting heap structures. Neitherdb nor raytrace

have been successfully analyzed by any existing shape analysis techniques.

The JOlden suite contains pointer-intensive kernels (derived from the Olden bench-

marks [8]) that make use of recursive procedures, inheritance, and virtual methods. We

further modified the benchmarks taken from the JOlden suite to use modern Java program-

ming idioms and addressed major concerns raised in the literature [69] about some of their

deficiencies. The Olden benchmark suite was introduced in 1995 as a set of challenge

problems to assess the effectiveness of parallelizing compilers and parallel architectures

on programs that make extensive use of dynamically allocated data structures. In the in-

tervening years a substantial number of papers have used benchmarks from this suite to

evaluate various analysis and parallelization techniques. Despite the wide availability (and

use of these benchmarks for evaluating compiler optimizations) a number of the more in-

teresting programs (em3d, health, voronoi, andbh) have not been successfully analyzed

by any other existing shape analysis techniques.

Results. The analysis algorithm was written in C++ and compiled usingMSVC 8.0. The

analysis as well as the parallelization benchmarks were runon a 2.6 GHz Intel quad-core

machine (although the analysis is single-threaded) with 4 GB of RAM (although memory

consumption never exceeded 160 MB). The benchmark code and the tool can be down-

loaded from [48].

The shape and sharing information from our analysis was usedto identify loops and

recursive calls that read from/write to disjoint sections of the heap (as described for several

of the case studies in Chapter 5). This allowed us to parallelize the benchmarks to use

multiple threads in loops and calls [21,29] to exploit the four cores of the test machine. The

Speedupcolumn in Table 13.1 shows the results. Some of the benchmarks (mst, compress,

db) do not use any algorithms that can be parallelized using thesimple techniques we

are using for parallelization; we mark these withNA. In all but one of the remaining
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benchmarks, we are able to achieve a significant performanceimprovement (up to 3.25×

onpower).

For each of the benchmarks we provide a brief description of some of the major struc-

tures/features that are in the program. We mention the majordata structures used (Trees,

Lists of Lists, Cycles, etc.) and if the program heavily modifies the data structures (w/

Mod). Some of the benchmarks have slightly more nuanced structures —mst andvoronoi

which build globally cyclic structures that have significant local structure,bh which has

a complex space-decomposition tree and relations with theBody objects, andraytrace

which builds a large multi-component structure which has cyclic structures, tree struc-

tures, and substantial sharing throughout. We also note that tsp, mst, andvoronoi all begin

with tree structures and process them building up a final cyclic structure during the pro-

gram. Thus, these benchmarks exercise a wide range of features in the analysis based on

the types of structures built, modification of these structures, sharing of the structures, use

of multi-component structures, and the use of arrays/collections.1

To assess the accuracy of the analysis independently of the utility of the information for

parallelization, we report, in theShapecolumn of Table 13.1, the results of the analysis

technique. We use three categories for the accuracy of the analysis. Y(es) means the

analysis was able to provide shape and sharing information for all of the relevant heap

structures in the program. P(artial) means the analysis wasable to determine the precise

shape and sharing for some of the data structures but that some important properties were

missed. N(o) means the analysis failed to precisely identify the shape/sharing information

for a substantial portion of the heap data structures.

Our experiments demonstrate that the analysis method presented in this thesis can be

used to efficiently and precisely analyze common programming idioms that build, share,

and modify non-trivial data structures. While accurate, the techniques also scales to real

1Analysis results for the input/output states for a number ofkey methods in these benchmarks
can be obtained athttp://www.cs.unm.edu/˜marron/software/software.htm l .
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Benchmark LOC Description Time Shape Speedup
bisort 560 Tree w/ Mod 0.26s Y 2.38
mst 668 Cycle w/ Struct. 0.12s Y NA
tsp 910 Tree to Cycle 0.15s Y 3.16
em3d 1103 Bipartite Graph 0.31s Y 2.85
perimeter 1114 Cycle 0.91s P 1.00
health 1269 Tree w/ Mod 1.25s Y 3.21
voronoi 1324 Cycle w/ Struct. 1.80s Y 2.43
power 1752 Lists of Lists 0.36s Y 3.25
bh 2304 N-Body Sim. w/ Mod 1.84s P 3.09
compress 1722 Arrays 0.29s Y NA
db 1985 Shared/Mod Arrays 1.42s Y NA
raytrace 5809 Shared/Cycle/Tree 37.09s Y 2.74

Figure 13.1: LOC is the size of the program after transformation to MIL (including library
stub code that must be analyzed), Shape reports if the heap information is correctly iden-
tified and Speedup reports if the Shape/Sharing informationis useful, we report NA if the
benchmark inherently has no useful thread-level parallelism.

programs, not just suitably chosen tricky program fragments.

Based on these results and the case studies in Chapter 5, the proposed approach pro-

vides a basis for an analysis technique that can be used in practice to provide detailed heap

information for a range of optimization applications. In particular we have produced a

(fairly robust) implementation of the analysis described in this thesis, which can support

nearly the full Java language including many non-trivial features such as full support for

the built-in collection classes, and verified that it can indeed produce the information that

can be used in a range of optimization applications. Thus this work is a step in address-

ing the open problem of producing accurate and useful information about the shape and

connectivity of the program heap and provides a solid foundation for continued work.
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13.2 Future Work

While the work to date has produced a preliminary implementation of a heap analysis

system that can handle the majority of the Java 1.4 language (and core libraries), our

experimental results are currently limited to smaller programs (up to 6000 LOC). The pri-

mary cause of this limitation appears to be a combination of the immaturity of the analysis

infrastructure (in particular the Java front end) and some of the engineering choices we

made in the analysis implementation (in several cases we chose a simple implementation

that does not scale well).

Thus, our first task in the future work is to improve the robustness of the analysis in-

frastructure so that we can perform a more complete evaluation of the analysis. This work

focuses mainly on engineering efforts to improve the quality of the current implementa-

tion, removing inefficiencies in the analysis, more extensive testing, and improving the

Java front end. Once completed we intend to implement a number of well-known opti-

mization passes (common subexpression elimination, loop invariant code motion, method

purity, and the identification of const-ness properties) toprovide an empirical measure for

the precision of the analysis (as opposed to the evaluation of the results by hand inspec-

tion).

The availability of a robust and scalable analysis tool and an automated system for

evaluating the utility of the resulting information provides the basis needed to address the

final objective of producing a practical heap analysis. In particular, this platform will allow

us to identify (by allowing us to run the analysis on more and larger programs) remaining

precision and scalability issues. If, as I believe, there are few if any major remaining

fundamental issues with the precision or scalability (at least up to 20-30KLOC) the focus

of the future work on the heap analysis will shift to evaluating a range of variations on the

domain and analysis algorithm (such as improved support forarray indexing or modeling

the size of collections).

189



Chapter 13. Conclusion and Future Work

In this thesis we also mention modeling the values in storagelocations and in Chap-

ter 11 we provided an example of how the explicit store heap model allows properties of

heap locations to be tracked. We intend to examine how similar techniques can be used

to model object allocation sites/lifetimes and scalar values stored in memory. In partic-

ular, once we are able to track the allocation sites for the objects abstracted by a given

node, we can, in conjunction with the identity information used to track read/write depen-

dence information, precisely track the flow of objects from allocation until they become

garbage. With this ability we plan to investigate the potential to use queries intemporal

logics[15,16,61] to understand the behavior of the program.

One open problem that we have not looked at in this thesis and that remains a challenge

is how to precisely model threads. While the analysis can be extended to handle multi-

threading in a simple but safe manner it is not clear how much of an impact it will have on

the precision of the results.

Thus, while we have not achieved our final goal of a producing afully general analysis

(as the analysis framework is still immature and there are open questions about scalability

to large programs), we believe that this thesis represents asubstantial advance in the state

of the art for analyzing the heap and has successfully met (and in many cases exceeded)

the major objectives we had for this work. We have succeeded in developing a heap

analysis method that is able to precisely model a wide range of heap properties that are

useful for program optimization. We can support nearly the full Java language including

many non-trivial features, such as full support for the standard Java collection classes.

We have produced a (fairly robust) full implementation of this tool and verified that it

can indeed produce information (in a computationally tractable manner) that is useful in

optimization applications. Thus, this work addresses (at least for smaller programs) the

long-standing open problem of producing accurate and useful information about the shape

and connectivity of the program heap and provides a solid foundation for continued work

to scale this solution up to much larger programs.
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User’s Guide For MTSA

This chapter contains a brief user guide for the MSTA analysis tool demonstration that

can be obtained at [48]. We cover the installation and structure of the files contained in

the demonstration in Section A.1. Section A.2 provides an overview of how to run the

analysis demonstration and what can be done with it. FinallySection A.3 outlines how the

stepwise analysis can be used to explore the information computed by and the working of

the analysis. As the analysis is a work in progress we appreciate any comments and bug

reports, and would be very interested in suggestions for other benchmarks to add to our

suite (email:marron@cs.unm.edu ).

A.1 Install and Included Files

The zip file “mtsademo.zip” contains all the files that are needed to run the analysis.

Inside themtsa demodirectory is the “analyze” program which is the analysis executable

for linux and a directory,data , which contains the source files and directories that the

output of the analysis will be put into.
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In the data directory are the subdirectoriesfms graphs which is where the analysis

will place the labeled storage shape graphs,ir output which contains the MIL files

that the analysis works on, thejava output directory which is used for the executable

versions of the MIL programs, and the directorysrc which contains the original source

for the benchmarks.

The directoryfms graphs contains two subdirectoriesdot files which is where

the analysis places the “.dot” files before runninggraphvizon them. The resulting “.png”

files are placed in thejpegs directory. Thejpegs directory is where you will find

the interestingheaps that are computed when the demo is run (the heaps at entry/exit to

methods that are of particular interest in a given benchmark) as well as thedisplayfigures

that are output by the user from thestep analysis, Section A.3.

Thejava output directory is where the demo writes the MIL files as Java programs

which are executable and the call graph that is computed for the program. The call graph

is rendered usinggraphvizwhere each node is labeled with a method name and there is an

edge to any others methods that may be called. We color the graph with green nodes/edges

if the call is to a builtin library method and blue nodes/edges if they are part of a strongly

connected call component. Currently due to some simplifications in the library stub codes

the targets of the builtin calls are not precise. In particular when the semantics of an

overridden method are identical to the parent implementation we did not implement the

method in our builtin library (theadd operation for theList andVector classes both

result in calls to the method implemented in theAbstractList class). This issues does

not affect the correctness of the shape analysis but makes itunsafe to currently use the call

graph information for optimization and thus we plan to address this problem shortly.

Finally thesrc directory contains the Java 1.4 source files that are passed to our fron-

tend compiler (not included in this demo) to produce the MIL files that the analysis pro-

cesses. We divide them into three groups: the list/tree microbenchmarks inmicroBench ,

the modified Jolden benchmarks inmyOlden and the two other benchmarksdb/raytrace
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in otherBench .

A.2 Running the Demo

The demo binary is statically linked to minimize any external dependencies. To ren-

der the graphs we make calls to thedot program from thegraphviz suite and use

gthumb as an external display tool to visualize them. If these programs are not on

your path the analysis will function correctly but you will need to convert the “.dot”

files placed indata/fms graphs/dot files and/or display the figures placed in

data/fms graphs/jpegs in some other way.

The demo is run by executing “analyze.exe” from themtsa demo directory. This

brings up the first of the benchmarks, “TList”, and we are given the option of analyzing

this benchmark (y ) to do so or (n) to skip it and proceed to the next benchmark. If you

select to analyze this benchmark the code will be loaded and you will be presented with the

command prompt for thestep analysis, Section A.3 describes this in detail. Typing “run”

(or r) instructs the analysis to run to completion (displaying the call stack of the analysis)

and will then print some statistics on the runtime and a note that the approximation heaps

written for the input/output of the methods are the result ofjoining all call states (thus

potentially producing suprious imprecision that is not present in the analysis) and that the

output set is being filtered to only include select heaps frominteresting methods. You

will also be prompted to see if you want to have the Java version of the MIL code and

call graph written todata/java output (w to write, n to skip). The demo will then

prompt you for analyzing the next benchmark and will continue this way though the entire

set of benchmarks. The benchmarks that can be analyzed are:

TList: a micro-benchmark for analyzing singly linked lists. It includes appending, both

shallow and deep copies of the lists, insertion, removal andreversal.
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Tree: a micro-benchmark for analyzing trees. It includes shallow and deep copies, as well

as a recursive child swap.

BH: theBarnes-Hutn-body simulation as discussed in Chapter 5.

BiSort: a bitonic sort of a tree of values, heavily exercising the ability of the analysis to

model destructive updates on recursive structures.

Em3d: an electro-magnetic simulation as discussed in Chapter 5 that requires the analysis

to model non-recursive cyclic structures, Java collections and arrays.

Health: a health care simulation that involves the manipulation (insertion, removal and pro-

cessing) of the data entries in a number of linked lists whichare stored in a non-

trivially recursive structure (there are objects of several types in the structure).

MST: computes a minimum spanning tree and requires the analysis to model hashtables as

well as complex cyclic structures.

Power: a simulation of a power grid as discussed in Chapter 5.

TSP: an approximation of the traveling salesman shortest path as discussed in Chapter 5

which requires the analysis to precisely model a tree structure while also handling

an unstructured cyclic structure efficiently.

Voronoi: computes the voronoi diagram for a given set of points as described in Chapter 5.

DB: an in memory Java database that performs extensive manipulation of objects stored

in multiple arrays.

Raytrace: a raytracing program that uses a complex space decomposition tree along with a

range of shape objects, material objects and light sources that are combined into a

large data structure.
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A.3 Step Analysis Controls

The step analysis interface allows us to examine the state ofthe analysis at any given pro-

gram point and to see how the abstract state is impacted by a given statement. The anal-

ysis processes the statements in a given method in pseudo-program order (inner loops are

completed before returning to the outer loop, both branchesof a conditional are analyzed

before processing any statements after the conditional, etc.). This makes understanding

the analysis though the step interface very intuitive. At any time “help” [h] will bring up a

list of all commands.

Before each command the analysis prints the current abstract call stack (which method

it is currently analyzing and which methods are pending on the result of analyzing this

method) and the current statement that is about to be analyzed (this may be an atomic

statement or an entire control flow structure such as a conditional). If we launch the

analyzer and opt to analyze the “TList” program the analyzertells us we are in themain

routine at line 280. To show more of the method type “print” [p] which prints the entire

body of the method (in the equivalent Java source). We can setbreakpoints for the analysis

using the “break” command. If we type “b 288” at the prompt we set a break point at the

first call to themakeListSize method. To then run to this point we use the “run” [r]

command.

While running to the breakpoint the analysis first executes the static initialization rou-

tines (indicated by displaying the names of the methods as itanalyzes them and indenting

the calls according to their depth in the abstract call stack). When we hit the breakpoint

control is returned to the step analysis and we can step into themakeListSize method

using the “stepinto” [si] command. The analyzer responds byprinting the call into the

method and then halts at the first statement of the called method body.

We can then proceed to the interior of the loop that constructs our linked list by set-

ting the breakpoint at line 224, “b 224” and then running to that point “r”. Once there
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we can display the current state of the abstract heap by usingthe “display” [d] com-

mand. This opens a new viewer window (in gthumb) displaying the current state of the

heap (which is not too interesting right now). The current line is another method call

to makeRandomDataNode which we would rather not step into so we use the regular

“step” [s] command which runs the analysis to the next statement regardless of calls (a

number of calls will be shown). If we use the “step” command a few more times until we

are at line 229 we can then use the “display” command to show the state of the abstract

heap after the first iteration of the loop. The current state has the start of a linked list

consisting of a single list object pointing to a single data object. If we continue stepping

though line 230 the analysis will return to the first statement in the loop body (line 223).

We can continue stepping though the loop body watching the analysis model the construc-

tion of the list until after a few iterations it has a model with a node representing the head

of the list and a node with a list layout which represents the tail of the list.

After one more iteration the analysis will conclude that forthe given state at entry to

the loop it has covered all possible states that can occur in the loop body and will proceed

to the statement after the loop (line 233). If we display the abstract state here we will see a

single state of a single head node and a tail with aList layout which is a safe approximation

of all possible lists built in the loop. Using the “step” command again will bring us to back

to the main method.

At this point we can set a breakpoint at line 251 (inside the append method). This

particular location allows us to demonstrate the power domain that is used. After setting

the breakpoint “b 251” and running to the line “r” we can printthe method body “p” and

display the abstract state of the heap “d”. In this case we have 3 possible states depending

on the relations between the heads of the listl and the temp variable,y which depend

on the length ofl . The analysis uses 3 states to track the possibilities and thus there are

3 figures (display0.png , display1.png anddisplay2.png ) displayed to cover

the cases.
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At this point we leave you to continue exploring the program by returning to the main

method (“b 301” followed by “r”) We encourage you to explore some of the other methods

in the TList micro-benchmark. Of particular interest are the list shallow/deep copies

(lines 307, 308), the insertion/deletion operations (line344, 360) and list reverse (line

376).
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