On the Strength of Owicki-Gries for Resources

Alexander Malkis and Laurent Mauborgne

IMDEA Software Institute

Abstract. In multithreaded programs data are often separated inkefdoatected
resources. Properties of those resources are typicalfieeely modular, Owicki-
Gries-like methods. The modularity of the Owicki-Gries hwt has its price:
proving some properties may require manual introductioawdliary variables.
What properties can be proven without the burden of introdpauxiliary vari-
ables? We answer this question in the abstract interpsatétimework. On one
hand, we reveal a lattice structure of the method and suppintax-based ab-
stract transformer that describes the metexakctly On the other hand, we bound
the loss of precision fronaboveand below by transition-relation-independent
weakly relational closures. On infinitely many programs thesures coincide
and describe the precision loss exactly; in general, thad®are strict. We prove
the absence of a general exact closure-based fixpoint ¢beration of the accu-
racy of the Owicki-Gries method, both in the collecting seties and in certain
trace semantics.

1 Introduction

The paper will characterize the accuracy of a popular vetifica method for proving
safety properties of concurrent programs that operatesourees.

A program operating on resources is a multithreaded progravhich threads com-
municate via sequentially consistent shared memory anchiohnall shared variables
are partitioned into disjoint resources. Each resource Ineavailableor busy To ac-
cess a variable belonging to a resource, a thread waitsthatiesource gets available
and then starts a critical section for that resource, thusmgahe resource busy. While
staying in the critical section, the thread can read andevthié resource data, and no
other thread can enter a critical section for the same respsp no other thread can
access the resource data. After the thread finishes acgedhsimesource, it exits the
corresponding critical section, making the resource atésl

Simple safety properties of such programs can be proven adguA modular
proof of a program consists of an annotation per control floeation and an annotation
per resource. Roughly, an annotation of a control flow lacatiescribes the valuations
of the variables that the thread may access at that locatioannotation of a resource
describes, roughly, the state of the resource when it idadblai The annotations of
locations have to be sequentially consistent similarhhtostandard Hoare-style asser-
tional logic, but with two changes: when a thread acquiressaurce, the proof may
assume that the invariant of the acquired resource holdg@releasing a resource the
resource invariant should be reestablished.

Such modularity incurs a loss of precision: for many progatmo strong but valid
properties cannot be proven by the method. To prove suctepiep, the program can

be manually augmented with so-called auxiliary variabfeset of variables is called
auxiliary if, intuitively, projecting the traces of the gymam to the other variables gives
the same result as removing all the statements involvingathdliary variables and
projecting afterwards. A modular proof is created for thgraented program, then the
proven property is projected onto the original variabldee &bility to use auxiliary vari-
ables makes the proof system complete. So far, auxiliafgkes have been introduced
purely manually, while the construction of the remaininggfrcan be automated.

We will estimate the loss of precision inherent to ttmre of the Owicki-Gries
method, which consists of all the proof rules of the Owicki&s logic except the ability
to use auxiliary variables, in abstract interpretation.

We will show a rich lattice structure of the Owicki-Griesre@roofs and a syntax-
based abstract transformer describing the Owicki-Gries exactly

We will observe that there is no transition-relation-indegent approximation op-
erator that exactly characterizes the loss of precisiomefQwicki-Gries core in the
collecting semantics. We will also note the absence of edei trace-based character-
izations of certain kinds.

We will find an approximation operator that induces a usefigar bound on this
set, i.e., that will describe how much precision the OwiGkies core always loses. This
approximation operator depends only on the syntactic stre®f the program, but not
on its exact transition relation. If a property is provabjethe Owicki-Gries core, it is
provable by abstract interpretation with this approxirmati

We will present an approximation operator inducing a lowaurd on the set, i.e.,
describing how much precision the Owicki-Gries core alwagfains. This approxima-
tion operator also depends only on the syntactic structbitbeoprogram, but not on
its exact transition relation. If a property is provable ipgtact interpretation with this
approximation, it is provable by the Owicki-Gries core.

In passing, we will demonstrate an infinite class of simptegpams for which both
bounds are equal and a program on which both bounds are strict

In short, the main results and their position are depictdednl.

. Section 7 Section 4 Section 6 .
Less properties : : More properties
Coarser ; ; i i Finer
Potentiall Abst. int. Abst. int. Owicki-Gries Abst. int. Potentiall
cheap Yo iith pe with p core it p expensiv%

Fig. 1: Precision of analyses. The upper boungd,ishe lower bound i. In addition
to p, we will consider a simpler lower boung}, which is coarser thap, but easier to
understand.

The rigorous formalization, computations, proofs, recandations for practition-
ers, and comparison to abstract interpretations for gépesgrams are found in the
appendix of the technical report [12].

2 Resource-manipulating language and its semantics

2.1 Language RPL

Now we briefly recall the parallel language RPLe¥ricted Rrallel Language, rigor-
ously defined in [15]) in which shared data are separated-@sources and access to a
resource is granted exclusively.

Let threads be indexed by the elements of th&gkand, without loss of generality,
start their executions together. Threads operate on datbles from the seDatavar.

A resourceis a set of data variables; the resources are disjointRiesbe the set of all
resources.

A statements either

— an atomic statement, i.e., an assignment orastime ¢ (which skips if the ar-
gument expression evaluatedtioe and blocks otherwise),

— a sequential composition of two statementsjffthen-else, Oor awhile loop,

— acritical sectionwith r when @ do C endwith wherer is a resourcep a formula
over data variables ar@@some statement. We writeith r do C endwith wheng

is true.

A thread executes a statement.

A data variable is calletbcal to threact if all the assignments to the variable are
syntactically int. If a variable appears in threagdit should belong to a resource or be
local tot. If a variable belongs to a resouncdt can appear only inside a critical section
forr,i.e., inside attith r...” statement.

Each resource is associated with a set pfoof variables ProofVair), which are
all data variables that are not assigned except maybe inatriections forr. All our
examples will satisfyProofVar(r) =r (in generalProofVar(r) D).

An RPL program is described by a set of threads, a set of ress@nd an initial
condition on the variables.

2.2 Semantics of RPL

To connect to abstract interpretation, we describe progranRPL as transition sys-
tems.

For each threatlwe introduce a fresh non-data program counter varipglevhich

— is local to thread, but not to any other thread, and

— doesn’t belong to any resource, and

— takes values from the set of control flow locatidts(Program Location).
Let PCVarbe the set of all program counter variables &ad= DatavarJPCVar.

We associate each control flow pointe PL with a setrsc(p) of resources such
thatpisinside awithr... statement.

We allow the same control flow location, sgy,to occur in different threads.

A state of a program is a map frokar to the set of value¥al that includesPL
and the ranges of all data variables. We are going to speak abosistent statesnly:
those are states that

— map program counters to elementdhfand
— satisfy mutual exclusion: the sets of resources held beidifft threads are disjoint.

A threadt holdsa resource in a consistent stateif r € rsc(v(pg)). A resource is
busyin a consistent stateif some thread holds it if, otherwiser is availablein v.

Each statement of threadnduces a set of transitions—; V' wherev,V' are con-
sistent states. The transitions induced by the wbtk statements are straightforward.
The statementiith r when ¢ do C blocks wherr is busy or whenp does not hold,
otherwise it changes the control flow location to the initiahtrol flow location ofC;
going out of the critical section is an unconditional chanfjthe control flow location.

Letinit be the set of initial states corresponding to the initialdibon and let the
successor map

pos(S) = {V |IveSteTd: vV}

return the set of all one-step successors of a set of consgttaes.

The syntactic structureof an RPL program is given by: thread identifiers, control
flow locations, values, resources, locals and program eowatiables of the threads,
proof variables, mapsc. A syntactic structure is just a tuple of basic mathematical
objects (sets, variables, maps). It also exists indepelydsHiran RPL program.

3 Owicki-Gries-core proofs

3.1 Lattice of Owicki-Gries-core proofs

Now we formalize the core of the Owicki-Gries proof systeme #bstract away from
the details of logic, handling sets of variable valuatiorstéad of formulas.

Fix an arbitrary syntactic structure.

A program annotatior{l, M) consists of

— a resource invariant for each resource, which is a set of valuations of proof
variables of,

— a control flow annotatioM; for each control flow locatiorp and each thread
t, containing valuations of data variables which are locél é@ which are proof
variables of a resource held at

We say that a consistent stateatisfied, (respMp;), if the projection of/ to ProofVar(r)
(resp. to local data variables band all proof variables of all resourcesrst(p)) is in
Ir (resp. inMpy).
A program annotatiofll, M) denoteghe set of all consistent statesuch that
— for each resourcewhich is available irv, the statev satisfied,, and
— for each thread, the states satisfiesMypq) ¢-
We defineyos(l,M) as the set of all consistent states denoted by1).
Now fix an arbitrary RPL program obeying the given syntadtiacture.
An Owicki-Gries-core proofof the program is a program annotation that satisfies
the following conditions.

— It is sequentially consistentvhich means the following: consider any transition
v—t V from a control flow locationp to a control flow locationp’ such thatv
satisfiesMp;. There are three cases.

e The transition does not cross the border of a critical sacfllhenv should
satisfyMy ;.

e The transition starts a critical section of a resourckdditionally, assume that
v satisfied,. Thenv should satisfiMy ;.
e The transition finishes a critical section of a resourcgéhenv’ should satisfy
bothMp andl,.
— It admits the initial states, i.e., denotes a superséatitof

These Hoare-style rules treat critical sections specigilgt, on entering a critical sec-
tion, we additionally assume the resource invariant. Seécon leaving a critical sec-
tion, we should prove the resource invariant.

Every Owicki-Gries-core proof denotes an inductive ingati A set of consistent
statesS is Owicki-Gries-core provablé there is an Owicki-Gries-core proof that de-
notes a subset @

Interestingly, the set of program annotations of a fixed pogforms a complete
lattice with respect to componentwise inclusion order.tResg this order to the
set of Owicki-Gries-core proofs gives a complete lattic®wficki-Gries-core proofs,
even a Moore family. So each program has a unique smallestk®®ries-core proof.
This proof denotes the strongest Owicki-Gries-core-potev@roperty. To investigate
the power of the method, we will look at the smallest OwickigS-core proofs and
strongest Owicki-Gries-core-provable properties.

3.2 Examples

Now we will look at examples of programs with their smalleswi€ki-Gries-core

proofs. On Readers-Writers, as well as for a whole classwifaily simple programs,
all proof methods will have the same precision, on Upper imbpmethods will have
different precision and on the class SepThreads no precisgs will be observed at
all.

We'll use Owicki-style notation. In particularrésource control(ww, ar, aw)” means
that the resource namedntrol contains exactlyw, ar andaw.

Example 1 (Readers-Writers). A number of threads share a file simultaneousty: 1
need reading access antd> 1 writing access. Any number of readers may access
the file simultaneously, but a writer must have exclusiveeascin Fig. 2, all the data
variables range over nonnegative integers by defaultractirig a positive value from

0 blocks.

initially ww=ar=aw=0
resource control(ww,ar,aw)

reader; || ... || readerp writer; || || writerm
// reader;: // writerj:
while true do while true do
startreadA: {true} askwriteA: {true}
with control with control do
when ww=0 do askwriteB: {aw< 1}
startreadB: {ww=0naw< 1} ww:=ww+ 1
ar:=ar+1 askwriteC: {aw< 1 <ww}
startreadC: {ww=0Aaw< 1<ar} endwith;
endwith; startwriteA: {true}
read: {true} with control
; when ar=aw=0 do
finishreadA: {true} startwriteB: {ar=aw=0}
with control do aw:=aw+1
finishreadB: {aw< 1} startwriteC: {ar=0naw=1}
ar=ar—1 endwith;
finishreadC: {aw< 1} write: {true}
endwith ;
endwhile finishwriteA: {true}
with control do
finishwriteB: {aw< 1}
aw) _ faw—1
o) = ()
finishwriteC: {aw=0}
endwith
endwhile

lcontrol = {aw < 1}

Fig. 2: Program Readers-Writers and its smallest Owickésscore proof.

The strongest Owicki-Gries-core-provable property is

{v € ConsStaté v(ww),v(ar) € Ng A v(aw) € {0,1}
AVie{l,...,n}:
(V(PCreader;) € {Xready,read | X € {start,finish}
Aye€{A,B,C}})
A(V(PCpeager;) = StartreadB = v(ww) = 0)
A(V(PCpeager;) = startreadC = v(ww) =0 < v(ar))
AVje{l,...,m}:
(V(pcwriterj) € {xwritey,write | x € {ask,start,finish}
Aye€{A,B,C}})

A(V(PCyriter;) = askwriteC = v(ww) > 0)
/\(v(pcwriterj) = startwriteB = v(ar) = v(aw) = 0)
/\(v(pcwriterj) = startwriteC=- v(ar) = 0 < v(aw))
AV(PC,riter;) = finishuriteC= v(aw) =0)}.

6

There are states in this set in which more than one writervg ate. Thus no Owicki-
Gries-core proof can show that a writer has exclusive acddss smallest Owicki-
Gries-core proof can prove a slightly weaker property, ngrtreat the value ofaw,
which tracks the number of writers, never exceeds 1.

Example 2 (progUpper).The program Upper in Fig. 3 will be used for showing dif-
ferences between the Owicki-Gries-core proofs and the rupmend later. The range
of the data variables i§0,1}. The computation is trivial: no thread can make a step.
The majority of the program text serves to create a particdistribution of vari-
ables into locals and resources. There are exactly two adelstates, namely the

initially u#z=x=y=I
resource r(U,2), r'(xy)

// Thread 1 // Thread 2
A: {I=x} 0: {y=2z}
with r when | =u do assume false;

B: {l=x=u#7z} P: with r’ do
with r’ do Q: y:=0

C: {y2l=x=u#z} R: endwith;

x:=0 S: with r do

D: {y>l=u#zAx=0} || T: u:=0;
endwith; U: z:=0

E: {l=u#zAx=0} V: endwith;
assume false W:

F: endwith;

G: with r’ do

H: x:=0

I: endwith;

J: with r do

K: u:=0

L: endwith;

M: I:=0

N:

h={u#z}, Ip={x<y}

Fig. 3: Program Upper and its smallest Owicki-Gries-comofirControl flow locations
following “assume fals€’ are annotated byfalse} by default.

initial ones. The smallest Owicki-Gries-core proof deisoteany more states, e.g.,
[U—0,z— 1,x+—0,y+— 11+ 0,pc; — A,pc, — 0].

Example 3 (Simple).A program belongs to the clasmpleif it has at most one re-
source, and if the resource exists, then it contains no Mem@bles and all its proof
variables belong to the resource. Readers-Writers is dyfariyporograms from Simple.

Example 4 (SepThreads).The classSepThread¢Separate_Treads) consists of all
programs that have no resources and whose initial statesxao#ly those that satisfy

the initial conditions of all the threads (a proper subseiLwh states is disallowed). For
such programs the smallest Owicki-Gries-core proof desihie set of reachable states.

4 Owicki-Gries core as abstract interpretation

4.1 Owicki-Gries-core proofs are the post-fixpoints of a saad abstract successor
map

Ouir first step to try to give a measure of the precision of theédmGries core will
be to cast it in the abstract interpretation framework. Ani€bwGries-core proof is
clearly an abstraction of the set of reachable states of grano. So we will give a
characterization of Owicki-Gries core as a post-fixpoinacgfound abstraction of the
successor mapostof an RPL program. The map mimics the application of the Owick
Gries-core proof conditions.

For a program annotatiofi, M), we define thesound Owicki-Gries-core abstract
successor map pdst(1,M) = (I',M’), which applies the sequential consistency once:

— I/ is the smallest superset pfthat contains all valuations of proof variables of

such that there is a transition-¢V (for some thread) that exits a critical section
for r, v satisfiesM,) andw equals the projection of on the proof variables of
r
- Mr’)(,t is the smallest superset My, that contains all valuations of local data

variables of threatl and proof variables of resources held at locajpbisuch that
there is a transition—V such thaw satisfiesi\/l\,(pq)’t, v satisfied, if the transition
starts a critical section far, V(pg)=p', andw equals the projection of to local
data variables df and to the proof variables of resources helg'at

This operator is, as the name says, sound with respect tatisessor map.

Let (1"t M) pe the annotation describing the initial states only:

— 1Nt js the set of all valuations of proof variablesraih the initial states;

- Mir;j{‘ is the set of valuations of local data variables of thremdthe initial states.
The Owicki-Gries-core abstract transformegg(1, M) is constructed as the pointwise
union of (1", M"t) andpost,5(1,M). The set of post-fixpoints &5 coincides with
the set of Owicki-Gries-core proofs; thus the followingdhem holds.

Theorem 5 (Equivalence)The least fixpoint of &; is the smallest Owicki-Gries-core
proof.

4.2 Characteristic closures for Owicki-Gries core?

An elegant way of describing the precision of an approxioratif a semantics given in
fixpoint form is through the use @losures A closurep is a monotone operator that is
idempotentf(p(x)) = p(x)) and extensived(X) > X). Given a concrete domai, <)
and a monotone functidh: D— D, the closurep onD defines an approximation of the
concrete semantid®(F) in the sense thédfip(F) <Ifp(poF). Such a description shows
the actual loss of information, as the fixpoints of the clesare exactly the abstract
elements that describe the approximation, and applyingckb&ure to one concrete
element exactly shows what information is lost for that edain

In our case, we have a concrete domain of sets of consisartsirdered by in-
clusion, and the semantics is given as the least fixpointeétitcessor mapostover
the initial states. Then we exhibited an approximapoa%G of that successor map. In
order to describe its precision, it would be nice to find awte® such thapost,g is
exactly the best transformer fpro post Finding one closure for each program is not
difficult (just take the closure with two fixpoints, one beithg strongest Owicki-Gries-
core-provable property and the other the set of all condistates), but this would not
be very informative. Instead, because the concrete dommaintirely fixed by the syn-
tactic structure of the program, we would like to fing ¢hat would be fixed for a given
syntactic structure. Alas, the next section shows thatribipossible in general.

5 Absence of equivalent characterizations by closures

The main result of this section is unfortunately negativasuaing we start from a
reachable state semantics, there is no way to describertimgest Owicki-Gries-core
proof for a given syntactic structure using closures.

Theorem 6 (No Equivalence).There is a syntactic structure such that for consistent
states defined through the syntactic structure and the ed@ctomain being the pow-
erset of consistent states, there is no cloguon the powerset of consistent states such
that for any multithreaded program having the given syntastructure and for any
property S of consistent states we have

S is Owicki-Gries-core provable < Ifp(Ax. p(initUpos(x))) C S.

One such syntactic structure is given by program Upper fraantple 2.

In fact, we can prove an even stronger property, as the peapfires only thap
is monotone. Even more, the same proof holds even if we cesiré validity of the
equivalence to a given transition relation:

Theorem 7. Under the same syntactic structure as in Thm. 6, there is nulyaof
monotone maps indexed by transition relations, such thatpreserves least fixpoints
(V transition relationsty, 72: Ifp(11) = Ifp(12) = Ifp(=7,) = Ifp(=y,)), and for any
property S of consistent states we have

S is Owicki-Gries-core provable < Ifp(=)yinitupostx)) € S.

Theorem 6 shows that if we start by approximating traces égstand wish to de-
scribe the Owicki-Gries-core proof system using closusescan only hope for bounds
framing the proof system. We will provide such bounds in tegtrwo sections. If we
are willing to work with closures on sets of traces insteaded$ of states, it might be
possible to find some equivalence. But such an equivalenoetée obtained directly
by collecting the states of traces obtained from abstrdetpnetation with a closure.
Let a be the abstraction which associates to a set of traces thd senhsistent states
appearing in the traces.

Theorem 8. Under the same syntactic structure as in Thm. 6, there is nootone
operatorp on the powerset of traces of consistent states such thanfomailtithreaded
program having the given syntactic structure, set of ihitraces init and the trace
extension operatgpost and for any property S of consistent states we have

S is Owicki-Gries-core provable < @ (Ifp(Ax. p(init Upostx)))) C S

6 Upper bound on precision

Now we will show a closure operator such that the best alisimgarpretation of the
program with this approximation allows proving a larger seproperties than those
provable by the Owicki-Gries core. The approximation wédpeénd only on the syntac-
tic structure, but not on the exact transition relation of@gpam.

Definition 9 (Owicki-Gries-core annotation closure).For a given syntactic structure,
let p(Q) be the approximation defined as the set of consistent statashvthat:

— if aresource r is available in v, then there is some otherestatQ

o that coincides with v on the proof variables of r and
e in which r is available;

— and for any thread t there is a state in Q that coincides witmvaxal variables
(including the program counter) of t and on the proof varedblof the resources
held by t in v.

Thenp is a closure on the powerset of consistent states. We ddléiDwicki-Gries-
core annotation closure

The reason why we call this closure an Owicki-Gries-coreosaion closure is
because it is the closure corresponding to the Galois ctionetefined byyos (which
gives the set of consistent states denoted by a programatiomt

Now fix an arbitrary program and Igtbe defined by its syntactic structure.

Theorem 10 (Upper bound).Abstract interpretation witlp is at least as strong as the
Owicki-Gries core. Formally:

Ifp(Ax. p(init Upostx))) C the strongest Owicki-Gries-core-provable property

From the high-level view, the best transformer using thissate is capable of taking
into accounglobal computation instead décal successor computation in the Owicki-
Gries core. ltis as if before checking sequential conststere take into account anno-
tations not only of one thread, but of all the threads, ga@pirecision.

Furthermore, the Owicki-Gries-core annotation closuaghwhere the informa-
tion is always lost. For instance, if a syntactic structuagssthat locals are disjoint
among themselves and from all the proof variables of theuress, and if two states
outside of critical sections are given, then any combimatibthe locals and resource
variables of those states is in the approximation of thogsestates.

10

Example 11 (Readers-Writers).For the program Readers-Writers from Example 1
the least fixpoint offp(Ax. p(initupos{x))) coincides with the strongest Owicki-Gries-
core-provable property. This property is coarser than ¢hefsreachable states. For ex-
ample, in one executiofriter; can reactwrite, in another executionriter; can
reachwrite, and the initial state satisfiegw = ar = aw = 0, sop produces a com-
bined state where both writers arevatite, other threads are at their initial locations
and all data variables have value 0. Thus, no Owicki-Gra®e-@roof can restore the
dependency between the threads and prove mutual exclusiaedn the writers.

Example 12 (Upper). For the program Upper from Example 2 abstract interpreta-
tion with p produces the set of reachable states, which is properlyded into every
Owicki-Gries-core-provable property. The reason for thigrepancy is that locals of
one thread and resources held by a different thread ove&lagh an overlap constrains
the output ofp, but not an Owicki-Gries-core proof. Considering such s actually
improves precision!

Example 13 (Simple).For the programs of the class Simple abstract interpretatio
with p produces the same result as the smallest Owicki-Griespro. The reason,
as we will see, is that abstract interpretation with the lobaund will produce the same
result as abstract interpretation with the upper bound.

Example 14 (SepThreads)For the programs of the class SepThreads of Example 4
abstract interpretation with produces the same result as the smallest Owicki-Gries-
core proof. The reason is that the smallest Owicki-Grigg-pooof already denotes the
set of reachable states.

7 Lower bound on precision

Now we will show a nontrivial Cartesian-like closure suchtthbstract interpretation
with this closure can prove only properties weaker than aeétp the strongest Owicki-
Gries-core-provable property. In fact, we will even show such closures. One closure
(namelyp) will describe a better lower bound, while the other one (abm.) is easier
to comprehend.

The definitions of both bounds require some preparation.

For a family of setsZ” = {Xy,...,Xn}, let Part(.2"), calledpartition of 2", be the
set of all nonempty; N...NY, where each; is eitherX; or its complement . 2")\ Xi
(1 <i<n). Elements of a partition are callédbcks

Let us fix an arbitrary syntactic structure. Our lower bound$ depend on the
syntactic structure but be the same for all the program®they this syntactic structure.
Let RL be the family of sets containing all resoureesnd all sets of localkocat for
all threadg as elements. L&RL be the partition oRL

For example, for the syntactic structure of Upper theRietas exactly four ele-
ments: the locals of the first thregt x, pc, }, the locals of the second threég z pc, },
the resource = {u,z}, and the resource = {x,y}. The corresponding partition has

exactly six blocks{u}, {x}, {v}, {z}, {l.pc.}, {pc}.

11

7.1 Simple cartesian closure
The simpler approximation is defined as follows.

Definition 15 (Cartesian closure).Given a set of consistent states Q, thartesian
approximationp. returns all the consistent states from the product of priges of Q
onto the blocks iiRL.

In other words pc(Q) contains exactly those consistent states v such that fdrlglack
there is a stat& in Q that agrees with v on the variables of the block.

As the name sayg is a closure.

This approximation breaks all the dependencies betweebltiois and retains all
dependencies inside a block.

For example, for the syntactic structure of the program Wpipe variables and
pc; belong to the same block. Thus, if in a set of states everg atatome fixed control
flow location satisfiet= 0, each state from the Cartesian approximation of this det wi
also satisfyt = 0 for that control flow location.

Abstract interpretation witpp. generates a property which is always weaker than or
equal to the strongest Owicki-Gries-core-provable priyper

7.2 More precise lower bound closure

The following definition strengthens; in two ways. Firstly, we impose restrictions on
V from the definition ofp;. Such restrictions will depend on the block. Secondly, we
look at the prophecy variables: those are variables whiemaver written and which
don’tbelong to a resource. Prophecy variables form a sephlack; now we restore all
the dependencies between this block and those locals ohesgd that are not resource
variables.

Definition 16 (Lower Bound closure).Given a set of consistent states Q, its approx-
imation p(Q) contains exactly those consistent states v such that bdtredbllowing
conditions are satisfied.
— For every block irRL that is contained in a resource,
o if the resource is available in v, then there is soireQ
x In which the resource is also available
+ and which coincides with v on the block;
o if some thread holds the resource in v, then there is sba® which coincides
with v on all the variables
x that are local to this thread but do not belong to any resouare
x that belong to the block.
— For every thread there is a state in Q that coincides with v achevariable
o thatis a local variable of the thread but
e does not belong to any resource.

As the name say9q is a closure. It is at least as precise@ms Both closures do
not depend on the exact transition relation of a program. dbsurep induces the
tightest lower bound we could prove. It shows the dependsiibat are always retained,

12

creating a basis for the construction of future refinemegur@hms (possibly following
[11]).

Now fix an arbitrary RPL program that has the assumed syntsitticture.

The proof of the lower bound relies on several claims aboaistiongest property
provable by abstract interpretation with The following claim is the most important
one.

Lemma 17. Let Q be the strongest property provable by abstract inketqtion withp.
Consider a transition of a thread t from a consistent state & tonsistent state Met

the transition start a critical section. Léte Q such that v agrees with on the locals
of t and on the variables of the resources held by t beforertiresition. Letv € Q such
that v agrees with¥ on the variables of the resource being acquired. Then tisaaestate

in Q that agrees withvon the locals of thread t and on the variables of the resources
held by the thread after the transition.

The lower bound theorem follows from the lemma.

Theorem 18 (Lower bound).The core of Owicki-Gries can prove at least as many
properties as abstract interpretation wifhor p.. Formally:

the strongest Owicki-Gries-core—provable propeftylfp(Ax. p(init Upostx)))

C Ifp(Ax. pe(init Upostx))).

Example 19 (Readers-Writers).For the program Readers-Writers from Example 1
abstract interpretation with; produces the set of all consistent states where readers are
at...read..., writers are at..write..., andww, ar, aware nonnegative. The Owicki-
Gries core and abstract interpretation witltan prove stronger properties, e.g., that at
locationaskwriteC the value ofww is positive. Intuitively, when a resource is busy,
Cartesian abstraction always breaks the dependency betheessource variables and
the control flow, whilgo and the Owicki-Gries core sometimes retain the dependency.

Example 20 (Upper).For the program Upper from Example 2 abstract interpratatio
using eithep or p produces the same result: the set of all states such thatdtifead

is at any location betweenandE, the second thread is @tand all data variables take
arbitrary values fromr{0,1}. The Owicki-Gries core can prove stronger properties; for
instance, it can show that at locatiBthe value of is zero. Intuitively, the dependency
between resource variables and control flow is always brak&artesian abstraction
but is sometimes retained in the Owicki-Gries core.

Example 21 (Simple).For the programs from the class Simple from Example 3 the
approximationgp and p are so close to each other that abstract interpretatiors wit
both produce the same property. Since they define the lowkupper bounds on the
precision of the Owicki-Gries core, the Owicki-Gries coen@rove exactly the same
properties as those provable by abstract interpretatitim aviy of the two approxima-
tions. If a program from Simple does not have the empty resgtinerp andp coincide
exactly, approximating a set of sta@by the set of all consistent statesuch that both
of the following conditions hold.

— If there is a resource and it is availablevrthere is some state @ that coincides

with v on the resource and in which the resource is available.

13

— For each thread there is a statedrnwhich coincides withv on the variables of the
thread and, if the resource is present and is held, on thables of the resource.

Example 22 (SepThreads)For the programs from the class SepThreads from Ex-
ample 4 the approximations andp coincide. Since they define the lower and upper
bounds on the precision of the Owicki-Gries core, the OwiBkies core can prove ex-
actly the same properties as those provable by abstracpietation with any of the
two approximations. Due to the absence of any thread irtierecand independence
of initial states of the threads, the mentioned methods cavethe strongest inductive
property, namely the set of states reachable from thelioiias. Informally spoken, all
dependencies between the locals of each thread are retained

8 Related work

Historically, conditional critical regions were introceatin [8]. The thesis [15] of Ow-
icki and her paper with Gries [16] describe the original groethod for RPL. Modular
reasoning about RPL has not been characterized in termsthabinterpretation via
closures [5] so far.

For general multithreaded programs (i.e. without sepamaif data into resources),
Owicki-Gries-style reasoning without auxiliary variabls equivalent to multithreaded
Cartesian abstraction. The result was first mentioned withmof in [6], and the proof
appears in [11].

Clarke [3] has considered a subset of integer RPL programhsomiy one resource,
where, roughly, only additions of constants inside théaaitsections are allowed, and
the property to be checked is either mutual exclusion of &viaphores or deadlock
freedom. With a predefined choice of integer auxiliary Valga, the least fixpoint of
a particular functional is a resource invariant that pregisells whether the property
holds or not. Two overapproximations are given: a fixed-falarresource invariant
and an invariant computed by a polyhedral analysis with wiidg2 Our work, on the
contrary, does not impose any restrictions on the program.f@ur results hold for
even more programs than the RPL ones, e.g., where the taéctons are not well-
nested.

The work of Owicki on RPL is the basis of a variety of modulaogramming
languages equipped with proof methods of different degoéesmpleteness and au-
tomation.

Concurrent separation logic (CSL) [14] equips RPL with sapian logic as a for-
mula language. CSL is also incomplete without the rule ofilary variables, so the
question of precision arises. Removing secondly impoftattires of CSL for the sake
of clarity (as in [2]) and considering variables in the heagkes our lower bound also
apply to such CSL versions.

Chalice [10] is a language for verification of object-oreshttoncurrent programs
with heap, equipped with an RPL-like proof system. Due togbeerful permission
system, the proof system is in general stronger than thata¢kd, so our lower bound
on precision carries over to Chalice for programs that caditeetly represented both
in RPL and in Chalice.

14

VCC [13] is a verifier for multithreaded C. When accessingi&tires in a lock-
based manner, VCC requires the user to provide invariants structs. On ob-
taining ownership of atructure, the resource invariant is assumed; on relinquish-
ing ownership, the resource invariant has to be reestaoligBhost contracts of lock-
manipulating functions control the ownership transfen wer bound applies to VCC
as well.

9 Discussion

9.1 Challenges

Discussing the precision loss reveals several open prablem

Example 20 shows a gap between the accuracy of the Owickis@are and the
lower bound. Can the lower bound closure be strengthened?

The main inequivalence result assumes that the concretaidasthe powerset of
consistent states. For the powerset of traces, we only kneguiivalence for a subclass
of abstract interpretations. Is there an exact charaeti#iz of the Owicki-Gries core
by abstract interpretation on the powerset of traces?

We have shown what variable dependencies does the Owidgs Gore break. Can
these dependencies be restored on demand? Is there an ttitoousmterexample-
guided abstraction refinement of the Owicki-Gries corehpps based on auxiliary
variables [4], unions of Cartesian products [11], or alestitareads [9]?

Can one characterize the precision loss of the Owicki-Grags by completeness
notions of [7]?

Can one formalize CSL in abstract interpretation in a way thauld reveal the
involved approximation?

9.2 Conclusion

We have examined a modular method (Owicki-Gries core) fovipg safety properties
of a widely-used class of multithreaded programs.

The considered class contains structured programs in wdiiahed data are par-
titioned into resources and are accessed only in criticgtiges that ensure mutually
exclusive access to resources. The method provides a césis for other more so-
phisticated proof methods like Concurrent Separation ¢,0Ghalice, or VCC. The
Owicki-Gries core is polynomial in the number of threadg,Wwithout manually adding
auxiliary variables it cannot prove many properties of eonent programs.

The Owicki-Gries core is, intuitively, expected to succémtproperties whose de-
pendence on thread coupling is low, and is expected to fadrifiplicated thread inter-
actions have to be analyzed. We have made this notion precsading a characteriza-
tion of the set of Owicki-Gries-core-provable propertid& have demonstrated an ab-
stract transformer corresponding to the Owicki-Gries ctire least fixpoint of the ab-
stract transformer denotes exactly the strongest Owicldg=core-provable property.
To quantify the loss of precision inherent to modularity, asve provided a superset
and a subset of Owicki-Gries-core-provable propertiescdieed by abstract interpreta-
tions with closure operators that depend on the syntactictsire of the program only.

15

These bounds coincide for a class of simple programs. We d&ageshown a principal
inability to provide an exact characterization of the sgiroperties in terms of closures
that depend only on the syntactic structure.

10 Acknowledgements

We thank Byron Cook and Microsoft Research Cambridge fopstipin the initial
stages of the work. The work was also partially supportedhey\erisoft project of
the German science foundation DFG. We thank Josh Berdin&/iktat Vafeiadis for
helpful comments and discussions.

References

1.

10.

11.

12.

13.

14.

15.

16.

G. Barthe and M. V. Hermenegildo, editor¥erification, Model Checking, and Abstract
Interpretation, 11th International Conference, VMCAI PQMadrid, Spain, January 17-19,
2010. Proceedingsrolume 5944 oL NCS Springer, 2010.

. C. Calcagno, P. W. O’'Hearn, and H. Yang. Local action argfrabt separation logic. In

LICS pages 366—-378. IEEE Computer Society, 2007.

. E. M. Clarke. Synthesis of resource invariants for corentrprograms. ACM Trans. Pro-

gram. Lang. Syst2(3):338-358, 1980.

. A. Cohen and K. S. Namjoshi. Local proofs for global safatyperties. In W. Damm and

H. Hermanns, editors$AV, volume 4590 of NCS 4590pages 55-67. Springer, 2007.

. P. Cousot and R. Cousot. Abstract interpretation: a uhifigtice model for static analysis

of programs by construction or approximation of fixpoints PIOPL, pages 238-252, 1977.

. R. Cousot.Fondements des méthodes de preuve d'invariance et dééadel programmes

paralléles PhD thesis, Institut national polytechnique de Lorralt@85.

. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making atistreerpretations completdour-

nal of the ACM 47(2):361-416, 2000.

. C. A. R. Hoare. Towards a theory of parallel programming.Cl A. R. Hoare and R. H.

Perrott, editorsQperating System Techniqugsges 61-71. Academic Press, 1972.

. S. K. Lahiri, A. Malkis, and S. Qadeer. Abstract threadsBarthe and Hermenegildo [1],

pages 231-246.

K. R. M. Leino. Verifying concurrent programs with Chei In Barthe and Hermenegildo
[1], page 2.

A. Malkis. Cartesian Abstraction and Verification of MultithreadedBrams PhD thesis,
Albert-Ludwigs-Universitat Freiburg, Feb. 2010.

A. Malkis and L. Mauborgne. On the strength of Owicki-&3rifor resources. Technical
report, IMDEA Software Institute, 201http://software. imdea.org/~alexmalkis/
onTheStrengthOfOwickiGriesForResources_techrep.ps.

M. Moskal, W. Schulte, E. Cohen, M. A. Hillebrand, and 8biEs. Verifying C programs:
A VCC tutorial, 2011. MSR Redmond, EMIC Aachen.

P. W. O'Hearn. Resources, concurrency, and local régagoiheor. Comput. Sgi375(1-
3):271-307, 2007.

S. S. Owicki. Axiomatic Proof Techniques For Parallel Program$?hD thesis, Cornell
University, Department of Computer Science, TR 75-251y 1aI75.

S. S. Owicki and D. Gries. Verifying properties of pagbfirograms: an axiomatic approach.
Commun. ACM19(5):279-285, 1976.

16

http://software.imdea.org/~alexmalkis/onTheStrengthOfOwickiGriesForResources_techrep.ps
http://software.imdea.org/~alexmalkis/onTheStrengthOfOwickiGriesForResources_techrep.ps

	On the Strength of Owicki-Gries for Resources

