
On the Strength of Owicki-Gries for Resources

Alexander Malkis and Laurent Mauborgne

IMDEA Software Institute

Abstract. In multithreaded programs data are often separated into lock-protected
resources. Properties of those resources are typically verified by modular, Owicki-
Gries-like methods. The modularity of the Owicki-Gries method has its price:
proving some properties may require manual introduction ofauxiliary variables.
What properties can be proven without the burden of introducing auxiliary vari-
ables? We answer this question in the abstract interpretation framework. On one
hand, we reveal a lattice structure of the method and supply asyntax-based ab-
stract transformer that describes the methodexactly. On the other hand, we bound
the loss of precision fromaboveand below by transition-relation-independent
weakly relational closures. On infinitely many programs theclosures coincide
and describe the precision loss exactly; in general, the bounds are strict. We prove
the absence of a general exact closure-based fixpoint characterization of the accu-
racy of the Owicki-Gries method, both in the collecting semantics and in certain
trace semantics.

1 Introduction

The paper will characterize the accuracy of a popular verification method for proving
safety properties of concurrent programs that operate on resources.

A program operating on resources is a multithreaded programin which threads com-
municate via sequentially consistent shared memory and in which all shared variables
are partitioned into disjoint resources. Each resource maybeavailableor busy. To ac-
cess a variable belonging to a resource, a thread waits untilthe resource gets available
and then starts a critical section for that resource, thus making the resource busy. While
staying in the critical section, the thread can read and write the resource data, and no
other thread can enter a critical section for the same resource, so no other thread can
access the resource data. After the thread finishes accessing the resource, it exits the
corresponding critical section, making the resource available.

Simple safety properties of such programs can be proven modularly. A modular
proof of a program consists of an annotation per control flow location and an annotation
per resource. Roughly, an annotation of a control flow location describes the valuations
of the variables that the thread may access at that location.An annotation of a resource
describes, roughly, the state of the resource when it is available. The annotations of
locations have to be sequentially consistent similarly to the standard Hoare-style asser-
tional logic, but with two changes: when a thread acquires a resource, the proof may
assume that the invariant of the acquired resource holds, and on releasing a resource the
resource invariant should be reestablished.

Such modularity incurs a loss of precision: for many programs, too strong but valid
properties cannot be proven by the method. To prove such properties, the program can



be manually augmented with so-called auxiliary variables.A set of variables is called
auxiliary if, intuitively, projecting the traces of the program to the other variables gives
the same result as removing all the statements involving theauxiliary variables and
projecting afterwards. A modular proof is created for the augmented program, then the
proven property is projected onto the original variables. The ability to use auxiliary vari-
ables makes the proof system complete. So far, auxiliary variables have been introduced
purely manually, while the construction of the remaining proof can be automated.

We will estimate the loss of precision inherent to thecore of the Owicki-Gries
method, which consists of all the proof rules of the Owicki-Gries logic except the ability
to use auxiliary variables, in abstract interpretation.

We will show a rich lattice structure of the Owicki-Gries-core proofs and a syntax-
based abstract transformer describing the Owicki-Gries coreexactly.

We will observe that there is no transition-relation-independent approximation op-
erator that exactly characterizes the loss of precision of the Owicki-Gries core in the
collecting semantics. We will also note the absence of equivalent trace-based character-
izations of certain kinds.

We will find an approximation operator that induces a useful upper bound on this
set, i.e., that will describe how much precision the Owicki-Gries core always loses. This
approximation operator depends only on the syntactic structure of the program, but not
on its exact transition relation. If a property is provable by the Owicki-Gries core, it is
provable by abstract interpretation with this approximation.

We will present an approximation operator inducing a lower bound on the set, i.e.,
describing how much precision the Owicki-Gries core alwaysretains. This approxima-
tion operator also depends only on the syntactic structure of the program, but not on
its exact transition relation. If a property is provable by abstract interpretation with this
approximation, it is provable by the Owicki-Gries core.

In passing, we will demonstrate an infinite class of simple programs for which both
bounds are equal and a program on which both bounds are strict.

In short, the main results and their position are depicted inFig. 1.

Less properties

Coarser

Potentially
cheap

More properties

Finer

Potentially
expensive

Section 7 Section 4 Section 6

Abst. int.
with ρc

Abst. int.
with ρ̄

Owicki-Gries
core

Abst. int.
with ρ

Fig. 1: Precision of analyses. The upper bound isρ , the lower bound is̄ρ. In addition
to ρ̄ , we will consider a simpler lower boundρc, which is coarser than̄ρ, but easier to
understand.

The rigorous formalization, computations, proofs, recommendations for practition-
ers, and comparison to abstract interpretations for general programs are found in the
appendix of the technical report [12].

2



2 Resource-manipulating language and its semantics

2.1 Language RPL

Now we briefly recall the parallel language RPL (Restricted Parallel Language, rigor-
ously defined in [15]) in which shared data are separated intoresources and access to a
resource is granted exclusively.

Let threads be indexed by the elements of the setTid and, without loss of generality,
start their executions together. Threads operate on data variables from the setDataVar.
A resourceis a set of data variables; the resources are disjoint. LetResbe the set of all
resources.

A statementis either
– an atomic statement, i.e., an assignment or an “assume φ ” (which skips if the ar-

gument expression evaluates totrue and blocks otherwise),
– a sequential composition of two statements, anif-then-else, or awhile loop,
– a critical sectionwith r when φ do C endwith wherer is a resource,φ a formula

over data variables andC some statement. We writewith r do C endwithwhenφ
is true.

A thread executes a statement.
A data variable is calledlocal to threadt if all the assignments to the variable are

syntactically int. If a variable appears in threadt, it should belong to a resource or be
local tot. If a variable belongs to a resourcer, it can appear only inside a critical section
for r, i.e., inside a “with r...” statement.

Each resourcer is associated with a set ofproof variables ProofVar(r), which are
all data variables that are not assigned except maybe in critical sections forr. All our
examples will satisfyProofVar(r) = r (in general,ProofVar(r)⊇ r).

An RPL program is described by a set of threads, a set of resources and an initial
condition on the variables.

2.2 Semantics of RPL

To connect to abstract interpretation, we describe programs in RPL as transition sys-
tems.

For each threadt we introduce a fresh non-data program counter variablepct , which
– is local to threadt, but not to any other thread, and
– doesn’t belong to any resource, and
– takes values from the set of control flow locationsPL (Program Location).

Let PCVarbe the set of all program counter variables andVar= DataVar∪̇PCVar.
We associate each control flow pointp∈ PL with a setrsc(p) of resourcesr such

that p is inside awith r... statement.
We allow the same control flow location, say,p, to occur in different threads.
A state of a program is a map fromVar to the set of valuesVal that includesPL

and the ranges of all data variables. We are going to speak about consistent statesonly:
those are states that

– map program counters to elements ofPL and
– satisfy mutual exclusion: the sets of resources held by different threads are disjoint.

3



A threadt holdsa resourcer in a consistent statev if r ∈ rsc(v(pct)). A resourcer is
busyin a consistent statev if some thread holds it inv, otherwiser is availablein v.

Each statement of threadt induces a set of transitionsv→t v′ wherev,v′ are con-
sistent states. The transitions induced by the non-with statements are straightforward.
The statementwith r when φ do C blocks whenr is busy or whenφ does not hold,
otherwise it changes the control flow location to the initialcontrol flow location ofC;
going out of the critical section is an unconditional changeof the control flow location.

Let init be the set of initial states corresponding to the initial condition and let the
successor map

post(S) = {v′ | ∃ v∈ S, t ∈ Tid: v→t v′}

return the set of all one-step successors of a set of consistent states.
Thesyntactic structureof an RPL program is given by: thread identifiers, control

flow locations, values, resources, locals and program counter variables of the threads,
proof variables, maprsc. A syntactic structure is just a tuple of basic mathematical
objects (sets, variables, maps). It also exists independently of an RPL program.

3 Owicki-Gries-core proofs

3.1 Lattice of Owicki-Gries-core proofs

Now we formalize the core of the Owicki-Gries proof system. We abstract away from
the details of logic, handling sets of variable valuations instead of formulas.

Fix an arbitrary syntactic structure.
A program annotation(I ,M) consists of

– a resource invariantIr for each resourcer, which is a set of valuations of proof
variables ofr,

– a control flow annotationMp,t for each control flow locationp and each thread
t, containing valuations of data variables which are local tot or which are proof
variables of a resource held atp.

We say that a consistent statevsatisfiesIr (resp.Mp,t ), if the projection ofv to ProofVar(r)
(resp. to local data variables oft and all proof variables of all resources inrsc(p)) is in
Ir (resp. inMp,t).

A program annotation(I ,M) denotesthe set of all consistent statesv such that
– for each resourcer which is available inv, the statev satisfiesIr , and
– for each threadt, the statev satisfiesMv(pct ),t .

We defineγOG(I ,M) as the set of all consistent states denoted by(I ,M).
Now fix an arbitrary RPL program obeying the given syntactic structure.
An Owicki-Gries-core proofof the program is a program annotation that satisfies

the following conditions.
– It is sequentially consistent, which means the following: consider any transition

v→t v′ from a control flow locationp to a control flow locationp′ such thatv
satisfiesMp,t . There are three cases.
• The transition does not cross the border of a critical section. Thenv′ should

satisfyMp′,t .

4



• The transition starts a critical section of a resourcer. Additionally, assume that
v satisfiesIr . Thenv′ should satisfyMp′,t .

• The transition finishes a critical section of a resourcer. Thenv′ should satisfy
bothMp′,t andIr .

– It admits the initial states, i.e., denotes a superset ofinit.

These Hoare-style rules treat critical sections specially. First, on entering a critical sec-
tion, we additionally assume the resource invariant. Second, on leaving a critical sec-
tion, we should prove the resource invariant.

Every Owicki-Gries-core proof denotes an inductive invariant. A set of consistent
statesS is Owicki-Gries-core provableif there is an Owicki-Gries-core proof that de-
notes a subset ofS.

Interestingly, the set of program annotations of a fixed program forms a complete
lattice with respect to componentwise inclusion order. Restricting this order to the
set of Owicki-Gries-core proofs gives a complete lattice ofOwicki-Gries-core proofs,
even a Moore family. So each program has a unique smallest Owicki-Gries-core proof.
This proof denotes the strongest Owicki-Gries-core-provable property. To investigate
the power of the method, we will look at the smallest Owicki-Gries-core proofs and
strongest Owicki-Gries-core-provable properties.

3.2 Examples

Now we will look at examples of programs with their smallest Owicki-Gries-core
proofs. On Readers-Writers, as well as for a whole class of similarly simple programs,
all proof methods will have the same precision, on Upper all proof methods will have
different precision and on the class SepThreads no precision loss will be observed at
all.

We’ll use Owicki-style notation. In particular, “resourcecontrol(ww,ar,aw)” means
that the resource namedcontrolcontains exactlyww, ar andaw.

Example 1 (Readers-Writers).A number of threads share a file simultaneously:n> 1
need reading access andm> 1 writing access. Any number of readers may access
the file simultaneously, but a writer must have exclusive access. In Fig. 2, all the data
variables range over nonnegative integers by default, subtracting a positive value from
0 blocks.

5



initially ww= ar = aw= 0
resource control(ww,ar,aw)

reader1 ‖ ... ‖ readern ‖ writer1 ‖ ... ‖ writerm

// readeri: // writer j:

while true do while true do

startreadA: {true} askwriteA: {true}
with control with control do
when ww= 0 do askwriteB: {aw≤ 1}

startreadB: {ww= 0∧aw≤ 1} ww:= ww+1
ar := ar+1 askwriteC: {aw≤ 1≤ ww}

startreadC: {ww= 0∧aw≤ 1≤ ar} endwith;

endwith; startwriteA: {true}
read: {true} with control

; when ar = aw= 0 do

finishreadA: {true} startwriteB: {ar = aw= 0}
with control do aw:= aw+1

finishreadB: {aw≤ 1} startwriteC: {ar = 0∧aw= 1}
ar := ar−1 endwith;

finishreadC: {aw≤ 1} write: {true}
endwith ;

endwhile finishwriteA: {true}
with control do

finishwriteB: {aw≤ 1}(
aw
ww

)
:=

(
aw−1
ww−1

)

finishwriteC: {aw= 0}
endwith

endwhile

Icontrol = {aw≤ 1}

Fig. 2: Program Readers-Writers and its smallest Owicki-Gries-core proof.

The strongest Owicki-Gries-core-provable property is

{v∈ ConsState| v(ww),v(ar) ∈N0 ∧ v(aw) ∈ {0,1}
∧ ∀ i ∈ {1, . . . ,n} :

(v(pc
readeri

) ∈ {xready,read | x∈ {start,finish}
∧ y∈ {A,B,C}})

∧(v(pc
readeri

) = startreadB⇒ v(ww) = 0)
∧(v(pc

readeri
) = startreadC⇒ v(ww) = 0< v(ar))

∧ ∀ j ∈ {1, . . . ,m} :
(v(pc

writer j
) ∈ {xwritey,write | x∈ {ask,start,finish}

∧ y∈ {A,B,C}})
∧(v(pc

writer j
) = askwriteC⇒ v(ww)> 0)

∧(v(pc
writer j

) = startwriteB⇒ v(ar) = v(aw) = 0)
∧(v(pc

writer j
) = startwriteC⇒ v(ar) = 0< v(aw))

∧(v(pc
writer j

) = finishwriteC⇒ v(aw) = 0)} .

6



There are states in this set in which more than one writer is atwrite. Thus no Owicki-
Gries-core proof can show that a writer has exclusive access. The smallest Owicki-
Gries-core proof can prove a slightly weaker property, namely that the value ofaw,
which tracks the number of writers, never exceeds 1.

Example 2 (progUpper).The program Upper in Fig. 3 will be used for showing dif-
ferences between the Owicki-Gries-core proofs and the upper bound later. The range
of the data variables is{0,1}. The computation is trivial: no thread can make a step.
The majority of the program text serves to create a particular distribution of vari-
ables into locals and resources. There are exactly two reachable states, namely the

initially u 6= z= x= y= l
resource r(u,z), r ′(x,y)

// Thread 1 // Thread 2

A: {l = x} O: {y= z}
with r when l = u do assume false;

B: {l = x= u 6= z} P: with r ′ do

with r ′ do Q: y := 0
C: {y≥ l = x= u 6= z} R: endwith;

x := 0 S: with r do

D: {y≥ l = u 6= z∧x= 0} T: u := 0;
endwith; U: z:= 0

E: {l = u 6= z∧x= 0} V: endwith;

assume false W:

F: endwith;

G: with r ′ do

H: x := 0
I: endwith;

J: with r do

K: u := 0
L: endwith;

M: l := 0
N:

Ir = {u 6= z}, Ir ′ = {x≤ y}

Fig. 3: Program Upper and its smallest Owicki-Gries-core proof. Control flow locations
following “assume false” are annotated by{false} by default.

initial ones. The smallest Owicki-Gries-core proof denotes many more states, e.g.,
[u 7→ 0,z 7→ 1,x 7→ 0,y 7→ 1, l 7→ 0,pc1 7→ A,pc2 7→ O].

Example 3 (Simple).A program belongs to the classSimpleif it has at most one re-
source, and if the resource exists, then it contains no localvariables and all its proof
variables belong to the resource. Readers-Writers is a family of programs from Simple.

Example 4 (SepThreads).The classSepThreads(Separate Threads) consists of all
programs that have no resources and whose initial states areexactly those that satisfy

7



the initial conditions of all the threads (a proper subset ofsuch states is disallowed). For
such programs the smallest Owicki-Gries-core proof denotes the set of reachable states.

4 Owicki-Gries core as abstract interpretation

4.1 Owicki-Gries-core proofs are the post-fixpoints of a sound abstract successor
map

Our first step to try to give a measure of the precision of the Owicki-Gries core will
be to cast it in the abstract interpretation framework. An Owicki-Gries-core proof is
clearly an abstraction of the set of reachable states of a program. So we will give a
characterization of Owicki-Gries core as a post-fixpoint ofa sound abstraction of the
successor mappostof an RPL program. The map mimics the application of the Owicki-
Gries-core proof conditions.

For a program annotation(I ,M), we define thesound Owicki-Gries-core abstract
successor map post#

OG(I ,M) = (I ′,M′), which applies the sequential consistency once:
– I ′r is the smallest superset ofIr that contains all valuationsw of proof variables ofr

such that there is a transitionv→t v′ (for some threadt) that exits a critical section
for r, v satisfiesMv(pct ),t andw equals the projection ofv′ on the proof variables of
r;

– M′
p′,t is the smallest superset ofMp′,t that contains all valuationsw of local data

variables of threadt and proof variables of resources held at locationp′ such that
there is a transitionv→tv′ such thatv satisfiesMv(pct),t , v satisfiesIr if the transition
starts a critical section forr, v′(pct)=p′, andw equals the projection ofv′ to local
data variables oft and to the proof variables of resources held atp′.

This operator is, as the name says, sound with respect to the successor map.
Let (I init ,Minit) be the annotation describing the initial states only:

– I init
r is the set of all valuations of proof variables ofr in the initial states;

– Minit
p,t is the set of valuations of local data variables of threadt in the initial states.

TheOwicki-Gries-core abstract transformer F#
OG(I ,M) is constructed as the pointwise

union of(I init ,Minit) andpost#OG(I ,M). The set of post-fixpoints ofF#
OG coincides with

the set of Owicki-Gries-core proofs; thus the following theorem holds.

Theorem 5 (Equivalence).The least fixpoint of F#OG is the smallest Owicki-Gries-core
proof.

4.2 Characteristic closures for Owicki-Gries core?

An elegant way of describing the precision of an approximation of a semantics given in
fixpoint form is through the use ofclosures. A closureρ is a monotone operator that is
idempotent (ρ(ρ(x)) = ρ(x)) and extensive (ρ(x)≥ x). Given a concrete domain(D,≤)
and a monotone functionF : D→D, the closureρ onD defines an approximation of the
concrete semanticslfp(F) in the sense thatlfp(F)≤ lfp(ρ ◦F). Such a description shows
the actual loss of information, as the fixpoints of the closure are exactly the abstract
elements that describe the approximation, and applying theclosure to one concrete
element exactly shows what information is lost for that element.

8



In our case, we have a concrete domain of sets of consistent states ordered by in-
clusion, and the semantics is given as the least fixpoint of the successor mappostover
the initial states. Then we exhibited an approximationpost#OG of that successor map. In
order to describe its precision, it would be nice to find a closureρ such thatpost#OG is
exactly the best transformer forρ ◦post. Finding one closure for each program is not
difficult (just take the closure with two fixpoints, one beingthe strongest Owicki-Gries-
core-provable property and the other the set of all consistent states), but this would not
be very informative. Instead, because the concrete domain is entirely fixed by the syn-
tactic structure of the program, we would like to find aρ that would be fixed for a given
syntactic structure. Alas, the next section shows that it isnot possible in general.

5 Absence of equivalent characterizations by closures

The main result of this section is unfortunately negative: assuming we start from a
reachable state semantics, there is no way to describe the strongest Owicki-Gries-core
proof for a given syntactic structure using closures.

Theorem 6 (No Equivalence).There is a syntactic structure such that for consistent
states defined through the syntactic structure and the concrete domain being the pow-
erset of consistent states, there is no closureρ on the powerset of consistent states such
that for any multithreaded program having the given syntactic structure and for any
property S of consistent states we have

S is Owicki-Gries-core provable ⇔ lfp(λx.ρ(init ∪post(x)))⊆ S.

One such syntactic structure is given by program Upper from Example 2.
In fact, we can prove an even stronger property, as the proof requires only thatρ

is monotone. Even more, the same proof holds even if we restrict the validity of the
equivalence to a given transition relation:

Theorem 7. Under the same syntactic structure as in Thm. 6, there is no family of
monotone mapsΞ indexed by transition relations, such thatΞ preserves least fixpoints
(∀ transition relationsτ1,τ2 : lfp(τ1) = lfp(τ2) ⇒ lfp(Ξτ1) = lfp(Ξτ2)), and for any
property S of consistent states we have

S is Owicki-Gries-core provable ⇔ lfp(Ξλ x.init∪post(x))⊆ S.

Theorem 6 shows that if we start by approximating traces by states and wish to de-
scribe the Owicki-Gries-core proof system using closures,we can only hope for bounds
framing the proof system. We will provide such bounds in the next two sections. If we
are willing to work with closures on sets of traces instead ofsets of states, it might be
possible to find some equivalence. But such an equivalence cannot be obtained directly
by collecting the states of traces obtained from abstract interpretation with a closure.
Let α̃ be the abstraction which associates to a set of traces the setof consistent states
appearing in the traces.

9



Theorem 8. Under the same syntactic structure as in Thm. 6, there is no monotone
operatorρ̃ on the powerset of traces of consistent states such that for any multithreaded
program having the given syntactic structure, set of initial traces ĩnit and the trace
extension operator̃post and for any property S of consistent states we have

S is Owicki-Gries-core provable ⇔ α̃(lfp(λx. ρ̃(ĩnit ∪ p̃ost(x)))) ⊆ S.

6 Upper bound on precision

Now we will show a closure operator such that the best abstract interpretation of the
program with this approximation allows proving a larger setof properties than those
provable by the Owicki-Gries core. The approximation will depend only on the syntac-
tic structure, but not on the exact transition relation of a program.

Definition 9 (Owicki-Gries-core annotation closure).For a given syntactic structure,
let ρ(Q) be the approximation defined as the set of consistent states vsuch that:

– if a resource r is available in v, then there is some other state in Q
• that coincides with v on the proof variables of r and
• in which r is available;

– and for any thread t there is a state in Q that coincides with v on local variables
(including the program counter) of t and on the proof variables of the resources
held by t in v.

Thenρ is a closure on the powerset of consistent states. We call itthe Owicki-Gries-
core annotation closure.

The reason why we call this closure an Owicki-Gries-core annotation closure is
because it is the closure corresponding to the Galois connection defined byγOG (which
gives the set of consistent states denoted by a program annotation).

Now fix an arbitrary program and letρ be defined by its syntactic structure.

Theorem 10 (Upper bound).Abstract interpretation withρ is at least as strong as the
Owicki-Gries core. Formally:

lfp(λx.ρ(init ∪post(x))) ⊆ the strongest Owicki-Gries-core-provable property.

From the high-level view, the best transformer using this closure is capable of taking
into accountglobalcomputation instead oflocal successor computation in the Owicki-
Gries core. It is as if before checking sequential consistency we take into account anno-
tations not only of one thread, but of all the threads, gaining precision.

Furthermore, the Owicki-Gries-core annotation closure shows where the informa-
tion is always lost. For instance, if a syntactic structure says that locals are disjoint
among themselves and from all the proof variables of the resources, and if two states
outside of critical sections are given, then any combination of the locals and resource
variables of those states is in the approximation of those two states.

10



Example 11 (Readers-Writers).For the program Readers-Writers from Example 1
the least fixpoint oflfp(λx.ρ(init∪post(x))) coincides with the strongest Owicki-Gries-
core-provable property. This property is coarser than the set of reachable states. For ex-
ample, in one executionwriter1 can reachwrite, in another executionwriter2 can
reachwrite, and the initial state satisfiesww = ar = aw= 0, soρ produces a com-
bined state where both writers are atwrite, other threads are at their initial locations
and all data variables have value 0. Thus, no Owicki-Gries-core proof can restore the
dependency between the threads and prove mutual exclusion between the writers.

Example 12 (Upper). For the program Upper from Example 2 abstract interpreta-
tion with ρ produces the set of reachable states, which is properly included into every
Owicki-Gries-core-provable property. The reason for thisdiscrepancy is that locals of
one thread and resources held by a different thread overlap.Such an overlap constrains
the output ofρ , but not an Owicki-Gries-core proof. Considering such overlaps actually
improves precision!

Example 13 (Simple).For the programs of the class Simple abstract interpretation
with ρ produces the same result as the smallest Owicki-Gries-coreproof. The reason,
as we will see, is that abstract interpretation with the lower bound will produce the same
result as abstract interpretation with the upper bound.

Example 14 (SepThreads).For the programs of the class SepThreads of Example 4
abstract interpretation withρ produces the same result as the smallest Owicki-Gries-
core proof. The reason is that the smallest Owicki-Gries-core proof already denotes the
set of reachable states.

7 Lower bound on precision

Now we will show a nontrivial Cartesian-like closure such that abstract interpretation
with this closure can prove only properties weaker than or equal to the strongest Owicki-
Gries-core-provable property. In fact, we will even show two such closures. One closure
(namelyρ̄) will describe a better lower bound, while the other one (namely ρc) is easier
to comprehend.

The definitions of both bounds require some preparation.
For a family of setsX = {X1, . . . ,Xn}, let Part(X ), calledpartition of X , be the

set of all nonemptyY1∩ . . .∩Yn where eachYi is eitherXi or its complement(
⋃

X )\Xi

(1≤ i ≤ n). Elements of a partition are calledblocks.
Let us fix an arbitrary syntactic structure. Our lower boundswill depend on the

syntactic structure but be the same for all the programs thatobey this syntactic structure.
Let RL be the family of sets containing all resourcesr and all sets of localsLocalt for
all threadst as elements. Let̃RL be the partition ofRL.

For example, for the syntactic structure of Upper the setRL has exactly four ele-
ments: the locals of the first thread{l ,x,pc1}, the locals of the second thread{y,z,pc2},
the resourcer = {u,z}, and the resourcer ′ = {x,y}. The corresponding partition has
exactly six blocks:{u}, {x}, {y}, {z}, {l ,pc1}, {pc2}.

11



7.1 Simple cartesian closure

The simpler approximation is defined as follows.

Definition 15 (Cartesian closure).Given a set of consistent states Q, theCartesian
approximationρc returns all the consistent states from the product of projections of Q
onto the blocks iñRL.
In other words,ρc(Q) contains exactly those consistent states v such that for each block
there is a statẽv in Q that agrees with v on the variables of the block.

As the name says,ρc is a closure.
This approximation breaks all the dependencies between theblocks and retains all

dependencies inside a block.
For example, for the syntactic structure of the program Upper the variablesl and

pc1 belong to the same block. Thus, if in a set of states every state at some fixed control
flow location satisfiesl = 0, each state from the Cartesian approximation of this set will
also satisfyl = 0 for that control flow location.

Abstract interpretation withρc generates a property which is always weaker than or
equal to the strongest Owicki-Gries-core-provable property.

7.2 More precise lower bound closure

The following definition strengthensρc in two ways. Firstly, we impose restrictions on
ṽ from the definition ofρc. Such restrictions will depend on the block. Secondly, we
look at the prophecy variables: those are variables which are never written and which
don’t belong to a resource. Prophecy variables form a separate block; now we restore all
the dependencies between this block and those locals of any thread that are not resource
variables.

Definition 16 (Lower Bound closure).Given a set of consistent states Q, its approx-
imation ρ̄(Q) contains exactly those consistent states v such that both ofthe following
conditions are satisfied.

– For every block iñRL that is contained in a resource,
• if the resource is available in v, then there is someṽ∈ Q

∗ in which the resource is also available
∗ and which coincides with v on the block;

• if some thread holds the resource in v, then there is someṽ∈ Q which coincides
with v on all the variables
∗ that are local to this thread but do not belong to any resource, or
∗ that belong to the block.

– For every thread there is a state in Q that coincides with v on each variable
• that is a local variable of the thread but
• does not belong to any resource.

As the name says,̄ρ is a closure. It is at least as precise asρc. Both closures do
not depend on the exact transition relation of a program. Theclosureρ̄ induces the
tightest lower bound we could prove. It shows the dependencies that are always retained,

12



creating a basis for the construction of future refinement algorithms (possibly following
[11]).

Now fix an arbitrary RPL program that has the assumed syntactic structure.
The proof of the lower bound relies on several claims about the strongest property

provable by abstract interpretation with̄ρ . The following claim is the most important
one.

Lemma 17. Let Q be the strongest property provable by abstract interpretation withρ̄.
Consider a transition of a thread t from a consistent state v to a consistent state v′, let
the transition start a critical section. Let̃v∈ Q such that v agrees with̃v on the locals
of t and on the variables of the resources held by t before the transition. Letv̂∈ Q such
that v agrees witĥv on the variables of the resource being acquired. Then thereis a state
in Q that agrees with v′ on the locals of thread t and on the variables of the resources
held by the thread after the transition.

The lower bound theorem follows from the lemma.

Theorem 18 (Lower bound).The core of Owicki-Gries can prove at least as many
properties as abstract interpretation with̄ρ or ρc. Formally:
the strongest Owicki-Gries-core–provable property⊆ lfp(λx. ρ̄(init ∪post(x)))
⊆ lfp(λx.ρc(init ∪post(x))) .

Example 19 (Readers-Writers).For the program Readers-Writers from Example 1
abstract interpretation withρc produces the set of all consistent states where readers are
at . . .read . . ., writers are at. . .write . . ., andww, ar, aware nonnegative. The Owicki-
Gries core and abstract interpretation withρ̄ can prove stronger properties, e.g., that at
locationaskwriteC the value ofww is positive. Intuitively, when a resource is busy,
Cartesian abstraction always breaks the dependency between the resource variables and
the control flow, whileρ̄ and the Owicki-Gries core sometimes retain the dependency.

Example 20 (Upper).For the program Upper from Example 2 abstract interpretation
using eitherρc or ρ̄ produces the same result: the set of all states such that the first thread
is at any location betweenA andE, the second thread is atO and all data variables take
arbitrary values from{0,1}. The Owicki-Gries core can prove stronger properties; for
instance, it can show that at locationE the value ofx is zero. Intuitively, the dependency
between resource variables and control flow is always brokenin Cartesian abstraction
but is sometimes retained in the Owicki-Gries core.

Example 21 (Simple).For the programs from the class Simple from Example 3 the
approximationsρ̄ and ρ are so close to each other that abstract interpretations with
both produce the same property. Since they define the lower and upper bounds on the
precision of the Owicki-Gries core, the Owicki-Gries core can prove exactly the same
properties as those provable by abstract interpretation with any of the two approxima-
tions. If a program from Simple does not have the empty resource, thenρ̄ andρ coincide
exactly, approximating a set of statesQ by the set of all consistent statesv such that both
of the following conditions hold.

– If there is a resource and it is available inv, there is some state inQ that coincides
with v on the resource and in which the resource is available.

13



– For each thread there is a state inQ which coincides withv on the variables of the
thread and, if the resource is present and is held, on the variables of the resource.

Example 22 (SepThreads).For the programs from the class SepThreads from Ex-
ample 4 the approximations̄ρ andρ coincide. Since they define the lower and upper
bounds on the precision of the Owicki-Gries core, the Owicki-Gries core can prove ex-
actly the same properties as those provable by abstract interpretation with any of the
two approximations. Due to the absence of any thread interactions and independence
of initial states of the threads, the mentioned methods can prove the strongest inductive
property, namely the set of states reachable from the initial ones. Informally spoken, all
dependencies between the locals of each thread are retained.

8 Related work

Historically, conditional critical regions were introduced in [8]. The thesis [15] of Ow-
icki and her paper with Gries [16] describe the original proof method for RPL. Modular
reasoning about RPL has not been characterized in terms of abstract interpretation via
closures [5] so far.

For general multithreaded programs (i.e. without separation of data into resources),
Owicki-Gries-style reasoning without auxiliary variables is equivalent to multithreaded
Cartesian abstraction. The result was first mentioned without proof in [6], and the proof
appears in [11].

Clarke [3] has considered a subset of integer RPL programs with only one resource,
where, roughly, only additions of constants inside the critical sections are allowed, and
the property to be checked is either mutual exclusion of PV-semaphores or deadlock
freedom. With a predefined choice of integer auxiliary variables, the least fixpoint of
a particular functional is a resource invariant that precisely tells whether the property
holds or not. Two overapproximations are given: a fixed-formula resource invariant
and an invariant computed by a polyhedral analysis with widening. Our work, on the
contrary, does not impose any restrictions on the program form. Our results hold for
even more programs than the RPL ones, e.g., where the critical sections are not well-
nested.

The work of Owicki on RPL is the basis of a variety of modular programming
languages equipped with proof methods of different degreesof completeness and au-
tomation.

Concurrent separation logic (CSL) [14] equips RPL with separation logic as a for-
mula language. CSL is also incomplete without the rule of auxiliary variables, so the
question of precision arises. Removing secondly importantfeatures of CSL for the sake
of clarity (as in [2]) and considering variables in the heap makes our lower bound also
apply to such CSL versions.

Chalice [10] is a language for verification of object-oriented concurrent programs
with heap, equipped with an RPL-like proof system. Due to thepowerful permission
system, the proof system is in general stronger than that of Owicki, so our lower bound
on precision carries over to Chalice for programs that can bedirectly represented both
in RPL and in Chalice.

14



VCC [13] is a verifier for multithreaded C. When accessing structures in a lock-
based manner, VCC requires the user to provide invariants ofC structs. On ob-
taining ownership of astructure, the resource invariant is assumed; on relinquish-
ing ownership, the resource invariant has to be reestablished. Ghost contracts of lock-
manipulating functions control the ownership transfer. Our lower bound applies to VCC
as well.

9 Discussion

9.1 Challenges

Discussing the precision loss reveals several open problems.
Example 20 shows a gap between the accuracy of the Owicki-Gries core and the

lower bound. Can the lower bound closure be strengthened?
The main inequivalence result assumes that the concrete domain is the powerset of

consistent states. For the powerset of traces, we only know inequivalence for a subclass
of abstract interpretations. Is there an exact characterization of the Owicki-Gries core
by abstract interpretation on the powerset of traces?

We have shown what variable dependencies does the Owicki-Gries core break. Can
these dependencies be restored on demand? Is there an automatic counterexample-
guided abstraction refinement of the Owicki-Gries core, perhaps based on auxiliary
variables [4], unions of Cartesian products [11], or abstract threads [9]?

Can one characterize the precision loss of the Owicki-Griescore by completeness
notions of [7]?

Can one formalize CSL in abstract interpretation in a way that would reveal the
involved approximation?

9.2 Conclusion

We have examined a modular method (Owicki-Gries core) for proving safety properties
of a widely-used class of multithreaded programs.

The considered class contains structured programs in whichshared data are par-
titioned into resources and are accessed only in critical sections that ensure mutually
exclusive access to resources. The method provides a clean basis for other more so-
phisticated proof methods like Concurrent Separation Logic, Chalice, or VCC. The
Owicki-Gries core is polynomial in the number of threads, but without manually adding
auxiliary variables it cannot prove many properties of concurrent programs.

The Owicki-Gries core is, intuitively, expected to succeedfor properties whose de-
pendence on thread coupling is low, and is expected to fail ifcomplicated thread inter-
actions have to be analyzed. We have made this notion precise, providing a characteriza-
tion of the set of Owicki-Gries-core-provable properties.We have demonstrated an ab-
stract transformer corresponding to the Owicki-Gries core: the least fixpoint of the ab-
stract transformer denotes exactly the strongest Owicki-Gries-core-provable property.
To quantify the loss of precision inherent to modularity, wehave provided a superset
and a subset of Owicki-Gries-core-provableproperties, described by abstract interpreta-
tions with closure operators that depend on the syntactic structure of the program only.

15



These bounds coincide for a class of simple programs. We havealso shown a principal
inability to provide an exact characterization of the set ofproperties in terms of closures
that depend only on the syntactic structure.

10 Acknowledgements

We thank Byron Cook and Microsoft Research Cambridge for support in the initial
stages of the work. The work was also partially supported by the Verisoft project of
the German science foundation DFG. We thank Josh Berdine andViktor Vafeiadis for
helpful comments and discussions.

References

1. G. Barthe and M. V. Hermenegildo, editors.Verification, Model Checking, and Abstract
Interpretation, 11th International Conference, VMCAI 2010, Madrid, Spain, January 17-19,
2010. Proceedings, volume 5944 ofLNCS. Springer, 2010.

2. C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract separation logic. In
LICS, pages 366–378. IEEE Computer Society, 2007.

3. E. M. Clarke. Synthesis of resource invariants for concurrent programs.ACM Trans. Pro-
gram. Lang. Syst., 2(3):338–358, 1980.

4. A. Cohen and K. S. Namjoshi. Local proofs for global safetyproperties. In W. Damm and
H. Hermanns, editors,CAV, volume 4590 ofLNCS 4590, pages 55–67. Springer, 2007.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, pages 238–252, 1977.

6. R. Cousot.Fondements des méthodes de preuve d’invariance et de fatalité de programmes
parallèles. PhD thesis, Institut national polytechnique de Lorraine,1985.

7. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations complete.Jour-
nal of the ACM, 47(2):361–416, 2000.

8. C. A. R. Hoare. Towards a theory of parallel programming. In C. A. R. Hoare and R. H.
Perrott, editors,Operating System Techniques, pages 61–71. Academic Press, 1972.

9. S. K. Lahiri, A. Malkis, and S. Qadeer. Abstract threads. In Barthe and Hermenegildo [1],
pages 231–246.

10. K. R. M. Leino. Verifying concurrent programs with Chalice. In Barthe and Hermenegildo
[1], page 2.

11. A. Malkis. Cartesian Abstraction and Verification of Multithreaded Programs. PhD thesis,
Albert-Ludwigs-Universität Freiburg, Feb. 2010.

12. A. Malkis and L. Mauborgne. On the strength of Owicki-Gries for resources. Technical
report, IMDEA Software Institute, 2011.http://software.imdea.org/~alexmalkis/
onTheStrengthOfOwickiGriesForResources_techrep.ps.

13. M. Moskal, W. Schulte, E. Cohen, M. A. Hillebrand, and S. Tobies. Verifying C programs:
A VCC tutorial, 2011. MSR Redmond, EMIC Aachen.

14. P. W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-
3):271–307, 2007.

15. S. S. Owicki. Axiomatic Proof Techniques For Parallel Programs. PhD thesis, Cornell
University, Department of Computer Science, TR 75-251, July 1975.

16. S. S. Owicki and D. Gries. Verifying properties of parallel programs: an axiomatic approach.
Commun. ACM, 19(5):279–285, 1976.

16

http://software.imdea.org/~alexmalkis/onTheStrengthOfOwickiGriesForResources_techrep.ps
http://software.imdea.org/~alexmalkis/onTheStrengthOfOwickiGriesForResources_techrep.ps

	On the Strength of Owicki-Gries for Resources

