
Nordic Journal of Computing

An Incremental Unique Representation for Regular Trees

Laurent Mauborgne
École Normale Supérieure

Abstract. In order to deal with infinite regular trees (or other pointed graph
structures) efficiently, we give new algorithms to store such structures. The trees
are stored in such a way that their representation is unique and shares substructures
as much as possible. This maximal sharing allows substantial memory gain and
speed up over previous techniques. For example, equality testing becomes constant
time (instead of O(n log(n))). The algorithms are incremental, and as such allow
good reactive behavior. These new algorithms are then applied in a representation
of sets of trees. The expressive power of this new representation is exactly what is
needed by the original set-based analyses of Heintze and Jaffar [1990], or Heintze
[1994].

CR Classification: See Computing Revues

Key words: Infinite Trees, Sharing, Tree Skeletons, Cartesian Approximation.

1. Introduction

1.1 Motivations

When applying set-based analysis techniques for practical applications, one
is surprised to see that the representation of the sets of trees is not very
efficient. For example, to represent the set b∗a, we can get the following
representation (from the original paper of Heintze and Jaffar [1990]):

X

��⋃
����
��

��
44

4

a b

��

Y

��⋃
��

��
11

1

a b

pp

And this is just one example of possible inefficiencies in the representation.
Even when we use tree automata, we cannot overcome this problem without

Received August 27, 2004.

2 LAURENT MAUBORGNE

performing a minimization of the whole automaton at each step. We propose
a new way of dealing with this kind of structure to get a representation that
is as small as possible during the computation. The example above would
give the following representation:

X, Y

$$I
IIII

©
����
��

��
22

2

a b

rr

After analysis of the problem, it appears that the underlying structures
we want to optimize can be described mathematically as regular infinite
trees. Because tree structures appear everywhere in computer science where
a hierarchy occurs, we found it interesting to present the algorithms in an
independent way. In this way, our technique appears as an extension of an
efficient solution to store finite trees. Another interest of infinite regular
trees is that they are isomorphic to pointed graphs, that is graphs with a
distinguished node (such as word automata e.g.).

1.2 The Choice of the Representation

The efficiency of a representation lies in its compactness and in the com-
plexity of the algorithms using the objects. A first consequence is that we
have to find a balance between those two aspects. A second consequence is
that the choice of the representation depends on the intended use for the
representation, so we cannot entirely abstract from our motivations. If we
are to interpret the regular trees as sets, the algorithms we will have to
perform can benefit from the reuse of intermediate results (the memoizing
of Michie [1968]). So, to keep thing general, the operation we will try to
optimize will be equality testing.

1.3 Incremental Uniqueness

Constant time equality testing can be achieve if the representation is unique.
A representation is said to be unique if during a computation there can be
no duplicate memory location for a given data. To test the equality of two
objects, we just have to compare the memory location of their representa-
tion. For example, if the data are sets of words and their representations
are finite automata, it is not enough to minimize the automata, because we
can still have two equivalent automata at two different memory locations.
We would have to perform minimization over the whole set of automata at
each step, which would be quite costly. So we come to the second idea,
incrementality, which is more difficult to quantify: we will try to do as few
work as possible each time we modify the data. In this way, we hope to
keep a good balance between the compactness of the representation and the
complexity of the algorithms used to ensure the compactness.

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 3

f
0

~~}}
}}

}
1
��
00

00

f
0
��
 1
��
11

1
g

0
��

a a a

is

 ε→ f, 01→ a,
0→ f, 1→ g,
00→ a, 10→ a

Fig. 1: The representation of a tree, and its mathematical definition

There exists an incremental unique representation for finite trees, which
uses just the minimum amount of memory by sharing equivalent subtrees.
This saves a lot of space. It is used, for example, with sets of words rep-
resented as a tree to share common prefixes. It has been the source of the
success of the Binary Decision Diagrams (BDDs) of Bryant [1986], which
are considered one of the best representations for boolean functions so far.

So we tried to extend these techniques to infinite trees. The problem was
that, as soon as a loop occurs somewhere in the data, finite tree techniques
are no longer adequate. The main contribution of this article is to extend
the good results of unique sharing representation from finite trees to infinite
trees. These techniques can be applied to the representation of sets of trees
in set-based analysis (see section 6), but they can also be applied directly to
the representation and manipulation of finite automata, or infinite boolean
functions, as in Mauborgne [1999].

1.4 Roadmap

After a recollection of the classical results over finite trees in section 2, we
present the solutions for the most difficult problems with infinite trees in the
section 3 on cycles. The general problem is then treated in section 4, with
a full example. Complexity issues and algorithms to manipulate infinite
trees are discussed in section 5. The application to sets of trees implies the
description of a new encoding to keep the uniqueness of the representation.
This new contribution is described in section 6.

2. Classical Representation of Trees

2.1 Trees and Graphs

As we deal with the computer representation of data structures, we must
give a clear meaning to the word “representation”, and in particular clearly
distinguish between what is represented and what is the representation. For
this reason, we will give a mathematical definition of what is a tree, and
another one for the way it is usually stored in a computer (see Fig. 1 for an
example of tree and its representation).

4 LAURENT MAUBORGNE

Let N∗ be the set of words over N, ε denoting the empty word. We note ≺
the prefix ordering on words and u.v the concatenation of the words u and
v. The alphabetic ordering on words over N will be denoted ≺α. Let F be
a finite set of labels.

Definition 1. A tree t labeled by F is a function of E → F such that
E ⊂ N∗ and ∀ p∈N∗,∀ i∈N, p.i∈E ⇒ (p∈E and ∀ j <i, p.j ∈ E). We note
pos(t) def= E.

Let p ∈ pos(t). The subtree of t in p, written t[p] is defined by: pos(t[p])
def=

{q ∈ N∗ | p.q ∈ pos(t)}, and t[p](q)
def= t(p.q). A tree is uniquely determined

by the label of its root, t(ε), and by the children of the root, the different

t[i], i ∈ N. In the sequel, a generic tree will be denoted
f

���� ��
66

t0 tn−1

, where f is

the label of the root, and (ti)i<n are the children of the root.
When representing a tree in a computer, we usually use one computer

location for each position p in pos(t), where we store the label t(p) and the
location of the different children (the p.i’s in pos(p)) of this position. Such
a representation is well modeled by a graph, where each node of the graph
corresponds to a computer location. We do not give the most general defi-
nition of graphs, but the definition that is useful in this article to represent
trees.

Definition 2. A graph G labeled by F is composed of two finite sets, the
node set, GN , and the edge set, GE ⊂ GN ×GN ×N, and every node of the
graph is associated with a label in F .

A path in the graph G is a sequence N0 . . . Nk of nodes in GN , such that
∀l < k, ∃i (Nl, Nl+1, i) ∈ GE . The node Nk is called the end of the path.

We define the notion of path label in a graph: let p ∈ N∗, p is a path label
from the node N if and only if p = ε or p = i.q and there is an M ∈ GN

such that (N,M, i) ∈ GE and q is a path label from M . Note that at
least one path corresponds to such a path label. If there is only one path
corresponding to the path label p from the node N , and O is the node at
the end of the path, we write N.p = O (otherwise, N.p is not defined).

We define G(N) as the graph defined by the nodes which can be reached
from N . We will often identify a node N and the graph G(N).

Definition 3. A node N represents a tree t if and only if the set of path
labels from N is exactly pos(t), and ∀p ∈ pos(t), N.p is well defined, and its
label is t(p).

Because we are interested in tree representation, in the sequel, we will
assume that every node of our graphs represent a tree.

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 5

t =

 (10)∗ → f
(10)∗0 → a
1(01)∗ → g

can be represented by
f

0
��
 1
��
11

1

a g 0

ll

Fig. 2: An infinite regular tree

A finite tree t is a tree such that pos(t) is finite. There is always a possible
representation by a finite graph for finite trees. In the most common use,
one node corresponds to each path of the finite tree.

A regular tree t is a tree such that the number of distinct subtrees of t is
finite. Such a tree can be infinite, but it can still be represented by a finite
graph [Colmerauer 1982], see Fig. 2 for an example.

2.2 Best Graph Representation

The naive representation, which consists in using any graph representing
the tree [Colmerauer 1982], is very easy to deal with and quite widely used
for small problems. But we can do far better if we observe that some nodes
can represent different paths of the tree, as long as the subtrees at these
paths are the same. This is called sharing the subtrees (see e.g. Aho et al.
[1983]). In fact, the best we can do is to have exactly one node for each
distinct subtree. This is what we call the best graph representation of a tree
(which may not be the best possible representation in the sense discussed in
section 1.2). In the case of finite trees, this can save a lot of space, and even
time by memoizing [Michie 1968], and in the case of infinite regular trees,
we avoid the possibility of unbounded representation for a given tree.

When dealing with many trees, we can do even better: considering the
entire computer memory as one graph, we can optimize the representation
for all the trees, and have in effect exactly one memory location for each
distinct tree we need to store. An immediate consequence is that we just
have to compare the location of the roots (the node representing the trees)
to compare entire trees. Such a technique is used e.g. in BDDs [Bryant
1986] to achieve impressive speed up and memory gain.

The technique to obtain the best graph representation of the trees uses
a dictionary mechanism linking keys to nodes of the graph, usually a hash
table. The keys are built incrementally: if the keys for the (ti)i<n are known

and linked to the nodes (Ni)i<n, then the key for
f

���� ��
66

t0 tn−1

is (f, (Ni)i<n).

Each time a key is not present in the dictionary, it is associated with a new
node N , with edges to the Ni’s. If we come to a tree whose key is already
in the dictionary, we use the corresponding node. As the trees are always
built from leaves to root, we have indeed a best graph representation for the
trees.

6 LAURENT MAUBORGNE

share

a 1 //

0

��

b ED

BC
0

@AOO
1

��

a

0

VV

1
// b

0

^^========
1

UU

 = a0
%%

1
((
b

0

hh 1
zz

Fig. 3: Application of the share algorithm.

3. Dealing with Cycles

When representing infinite trees though, we cannot go from the leaves to the
root, so we cannot start the key mechanism which leads to the best graph
representation. The difficulty lies in the infinite paths of the tree, that is the
cycles of the graph representing the tree. Whereas in finite trees there is no
need to see beyond the immediate children of a given node, when dealing
with cycles, we can have reasons to look further, in order to detect the two
causes of cycle unfolding: cycle growth and root unfolding. For example,

consider the cycle a 99 b
zz

. Then
b

a

,,

a

ll

b

MM is an example of cycle growth, and

a // b :: a
yy

is an example of root unfolding. In this very simple example, it
is easy to reduce root unfolding by looking at the key of the root, but it
is much more difficult if the root itself is still in another cycle. In order to
concentrate on the real difficulties, we suppose in this section that we deal
with strongly connected graphs, that is graphs such that there is a path
between any pair of nodes.

3.1 Cycle Growth and Tree Keys

We give ≡tree as the equivalence between nodes representing the same tree.
The goal of cycle growth reduction is to find an equivalent graph with the
minimum number of nodes.

Definition 4. A graph G is said to have a minimal number of nodes if,
whatever the nodes N and M of G, N ≡tree M ⇒ N = M .

The problem of finding the equivalent graph with minimum number of
nodes is a partitioning problem. The Partitioning Problem has been solved
in time n log(n) by Hopcroft [1971] for finite automata (which are special
cases of graphs), and in the general case by Cardon and Crochemore [1982].
We call share(N) the algorithm that takes a node N and modifies the
associated graph so that it has the fewest possible nodes (see Fig. 3 for an
example, and Appendix A.1 for a description).

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 7

a
0

%%
1
''
b

0

gg

1

zz
⇒

a

��

��
11

1

ε b

����
�
��
00

0

ε 1

and

b

��

��
11

1

a

����
�
��

22
22

ε

0 ε

Fig. 4: A graph, followed by the tree keys of its two nodes

Cycle growth reduction corresponds to the state of the art in automata
representation. But we want to go further: we need that the represen-
tation be unique whatever the different versions of the same tree. To
perform this, we give a key which distinguishes between non isomorphic
graphs. This key is associated with a given node N of the graph. It is
a finite tree which corresponds to the graph as long as we do not loop,
but as soon as we loop, the label of the node is replaced by its path la-
bel from N . It is described as treeKey(N). See Fig. 4 for an example,
and Appendix A.2 for a description. In order to give a formal defini-
tion of this tree, we first define the set of non looping path labels from
N : NoCycle(N) def= {p | N.p is defined, and 6 ∃q ≺ p, N.q = N.p}. The tree
treeKey(N) is defined by:

pos(treeKey(N)) def= {p.i | p ∈ NoCycle(N) ∧ (N.p,M, i) ∈ G(N)} ∪ {ε}
treeKey(N)(p) def= the label of N.p if p ∈ NoCycle(N)

inf
≺α

{q | N.q = N.p} otherwise

The isomorphism between graphs is not the same thing as ≡tree. In general
it can differentiate two graphs which represent the same tree. The interesting
point is that it is indeed the same relation on graphs with a minimal number
of nodes.

Proposition 1. Whatever M and N , such that G(M) and G(N) are graphs
with minimal number of nodes, treeKey(M) = treeKey(N)⇔M ≡tree N .

Proof. The difficult point is M ≡tree N ⇒ treeKey(M) = treeKey(N).
Suppose there are M and N such that G(M) and G(N) are graphs with
minimal number of nodes, M ≡tree N and treeKey(M) 6= treeKey(N). Let
tM = treeKey(M) and tN = treeKey(N). Because tM 6= tN , there is a
path p such that tM (p) 6= tN (p). But if tM (p) is a label of the graph, tM (p)
is the label of M.p, and the same holds for N . Because M ≡tree N , M.p and
N.p have the same label, so at least one of tM (p) or tN (p) is not a label of
the graphs (and so is in N∗), say tM (p). It means there is a q ≺ p such that
M.q ≡tree M.p. So N.q ≡tree N.p, but by minimality of the number of nodes

8 LAURENT MAUBORGNE

of G(N), N.q and N.p must be the same node, and so tN (p) = q = tM (p).
2

Because we can find an equivalent graph with minimal number of nodes for
strongly connected graphs, we have a valid key mechanism for any strongly
connected graph: we first apply share, then treeKey.

3.2 Root Unfolding and Partial Keys

With just share and treeKey (applied to every node), we can have a unique
representation that shares common subtrees. But as we need to start the
whole process from the beginning for each little modification in the trees,
such a process would be quite slow. Moreover, it is much better to apply
the share algorithm on the smallest possible graphs. As it is not a linear
algorithm, we have better results if we can split the graph and apply the
algorithm to each separate subgraph only.

The finite parts of the tree can always be treated in the classical way,
while the loops will need a special treatment. In order to decompose the
graph and mark those parts of the graph which have been definitely treated,
we introduce partial keys. A partial key looks like a node key for a finite
tree, a label followed by a vector of nodes, except that for some parts of the
vector, there is no node (see section 4.3 for an example). A partial key k has
a name: name(k) ∈ F and is a partial function from N to nodes. A graph
labeled by partial keys is such that for every node N in the graph, if k is
the partial key for N , the edges in the graph correspond to those integers
for which the partial key is not defined. For example, if a node is labeled
by f of arity 3, we can have a partial key which is not defined on 0 and 1
(we write a •), and on 2 its value is the node M4. We write (f, • •M4) for
this partial key. The only edges that can leave from such a node would be
labeled by 0 and 1. The idea is that what is in the partial keys is uniquely
represented. In our example, the node M4 is a unique representation of some
tree. Later on during the computation, it is possible that we have a unique
representation for the first component, say with node M2, and the partial
key becomes (f,M2 •M4). When a partial key is full (defined everywhere),
then the node should be a unique representation.

This new graphs have new equivalence relation, ≡pk which is implied by
≡tree. This new equivalence relation corresponds to ≡tree after the expansion
of the partial keys in the graph. In order to give an exact meaning to the
expansion of partial keys, we start with some notations. If the partial key
label of a node M is (f, (pki)i<kM

), we write pkla(M) = kM for the partial
key label arity of M , and ∀i < pkla(M), pklb(M, i) = pki is the value of
the partial key on i (which we write • if it is undefined). We write also
pkld(M) def= { i < pkla(M) | pklb(M, i) 6= •} the set of indexes on which the
partial key is defined. Given a node N , defining a graph labeled by partial
keys G(N), we define expand(N) as the corresponding node, defining a graph

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 9

a 1 //

0

&&

b
1 //

0

��

b
1 //

0

��

. . . 1 // b
1 //

0

ww

b 1
zz

0

xx

a0
%% 1

((
b

0

hh 1
zz

≡pk a0
%%

1
((
b

0

hh 1
zz

Fig. 5: Root unfolding of a cycle

labeled by F , G(expand(N)). This graph is defined as:

G(expand(N))N def= G(N)N ∪
⋃

M∈G(N)N

⋃
i∈pkld(M)

G(pklb(M, i))N

G(expand(N))E def= G(N)E ∪
⋃

M∈G(N)N ⋃
i∈pkld(M)

{(M,pklb(M, i), i)} ∪ G(pklb(M, i))E

The new labels in the expanded graphs are just the names of the partial keys.
The exact definition of ≡pk is: M ≡pk N if and only if expand(M) ≡tree

expand(N).
But now, with those partial keys, we can have a strongly connected graph

such that, by root unfolding, one of its nodes is equivalent to a node in
a partial key. Fig. 5 shows a case of root unfolding, which can be as big
as we want, even after cycle growth reduction. In this figure, dotted lines
correspond to nodes stored in partial keys. So, we must look for such a
node, even before applying the share algorithm.

The name of the algorithm performing this task is shareWithDone(N). It
returns N if and only if no other node in the partial keys is equivalent to N .
Otherwise, it returns the node in the partial keys that is equivalent to N .
This algorithm uses some properties of the graph to reduce the complexity
of the computation. Let G be the graph associated with N . As always in
this section, we suppose that G is strongly connected. We call H the graph
already computed and that is reachable from the partial keys of G. The
algorithm determines whether a node of G is equivalent to a node of H. If
it is the case, then there is root unfolding. If not, there is no root unfolding.
We show that it is enough to verify this property for one node to treat the
entire graph G because G is strongly connected. Suppose N is equivalent
to M in H. Then, whatever the path label from N , p, N.p is equivalent to
M.p. Because H has been treated already, any M.p is in H, and because G
is strongly connected, any node of G is an N.p.

10 LAURENT MAUBORGNE

There is a kind of reciprocal property that is exploited too: for some
subsets of HN , if no node of the subset is equivalent to a particular node of
G, then they are not equivalent to any node of G. A subset of HN is said
to be closed if and only if, for every path label p from every node N in the
subset, N.p is in the subset.

Proposition 2. ∀H ′ ⊂ HN such that H ′ is closed, if ∃N ∈ GN such that
∀M ∈ H ′, N 6≡pk M , then this holds for every N ∈ GN .

Proof. Let H ′ be such a subset and N a node of G. If N is not equivalent
to any node in H ′, then, suppose there is an M ∈ GN and an O ∈ H ′ such
that M is equivalent to O. As G is strongly connected, there is a p such
thatM.p = N . So, N would be equivalent to O.p, which is in H ′. This
proves that no element of GN is equivalent to any element of H ′. 2

Because of these properties, we can use the following algorithm (see Ap-
pendix A.3) for shareWithDone: we just compare every nodes of G with the
nodes that are reachable from their partial keys and not already encoun-
tered. This comparison can be quite efficient by exploiting the fact that the
nodes in the partial keys are unique representations of trees, although we
have a quadratic worst case complexity.

We will show in the next section, that by applying first shareWithDone,
then share and then treeKey, we can indeed represent uniquely (and with
the least possible number of nodes) any strongly connected graph, in an
incremental process.

4. The Best Graph Representation for Infinite Trees

As we defined it page 5, the best graph representation for an infinite tree is
a graph with minimal number of nodes.

4.1 Informal Presentation

In order to show how we can produce the best graph representation for an
infinite tree, we solve the following generic problem: considering a graph
representing a tree t, return an equivalent graph with a minimal number of
nodes. Such a problem is generic, because whatever the way we build a tree,
we can simulate the history of the construction of the tree while keeping the
graph minimal by the incremental minimization of a bigger graph. That is
the reason why we can derive many algorithms on trees from this problem.
Suppose for example that we want to compute the tree t computed in the
following way:

t2 =

f0
%%

1

��

2

��
==

==
==

==

g

0

II

1
yy

a

, t5 =
g

0
����
�

1
yy

x
, t1 = f(t2, t5, a)

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 11

and t is t1 where x is replaced by a loop to the root (t). Then we can
simulate this way of computing t by the graph of Fig. 6, which is bigger
than the best graph representation. The way this graph is transformed in
an incremental way is described section 4.3.

In order to produce the minimal graph in an incremental way, we use
two dictionary mechanisms and a decomposition of the graph. First, we
apply the classical algorithm, using the dictionary D, on the finite subtrees
of the tree. When a finite subtree is entirely treated, it is incorporated
in the graph through partial keys. Second, when there is no more finite
subtree, there is a subtree represented by a strongly connected graph. The
dictionary DG stores the tree keys of such graphs, and after shareWithDone
and if necessary, share, we can decide whether another equivalent graph has
already been encountered, and if not, use new nodes. When the strongly
connected graph is treated, it is considered as just a node, and so we can
iterate on our algorithm until we give the representation of the root.

4.2 The Algorithm

The algorithm maps a node representing the tree t into the node of a new
graph representing t with minimal number of nodes, and in an incremental
way.

We suppose given a dictionary D which maps full keys to nodes corre-
sponding to a unique representation of the associated tree, and a dictionary
DG which maps tree keys (in fact keys of these finite trees) to nodes cor-
responding to a unique representation of the associated strongly connected
graph.

The algorithm uses local dictionaries too, which we assume to be empty
when the process starts on a tree. The dictionary encountered contains the
nodes of the original representation already encountered, associated with
their computed nodes (so that we do not loop). The set returnNodes is
used to detect the roots of the loops.

A node is considered “treated” when it is in the dictionary D (and so it
represents uniquely a tree). To decide whether a node is “treated”, we just
have to look at its key: it is “treated” if the key is full.

representation(N)
Step 1 if N ∈ dom(encountered) then

if encountered(N) is not treated add it in returnNodes
return encountered(N)

Step 2 M is a new node labeled by the empty partial key k of name
the label of N . Add N→M to encountered.

Step 3 for each child Ni of N do
3a Mi ←←← representation(Ni)
3b if Mi is treated, then add it to k

else M.i ←←← Mi

Step 4 if k is full then

12 LAURENT MAUBORGNE

f1

0

����
��

��
�

1

		

2

��
@@

@@
@@

@@

f20
''

1

��

2

AA

AA
AA

AA
g5

0

II

1
ww

a6

g3

0

II

1
ww

a4

Fig. 6: Example

if k ∈ D then encountered(N) ←←← D(k) and return D(k)
else add k→M to D and return M

Step 5 remove M from returnNodes
Step 6 if returnNodes = ∅ then return representCycle(M)
Step 7 return M

representCycle(N)
Step 1 if shareWithDone(N) 6= N then return shareWithDone(N)
Step 2 share(N)
Step 3 if treeKey(N) ∈ DG then

update encountered and return DG(treeKey(N))
Step 4 for each node M in the graph defined by N do

4a add treeKey(M)→M to DG

4b add the children of M to its partial key m
4c add m→M to D

Step 5 return N

4.3 Example

We present the algorithm to represent regular trees on an example, the graph
of Fig. 6, where each node is assigned a number. We will write Ni for the
node number i of the initial representation, and Mi for the node created at
step 2 of representation(Ni).
representation(N1) calls representation for N2, N5 and N6. The call

to representation on N2 will return the node M2. It will also store various
nodes in D, and in particular (a)→M4. The call on N5 will just return an
untreated node M5, with nothing added in the dictionaries. The call on N6

will recognize on step 4 that a is in D and so it will return M4.
Thus, at step 5, returnNodes = {M1} becomes empty, and we call re-

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 13

presentCycle with the graph1

(f,M2 •M4)

1
		

(g, ••)
0

II

1
XX

. A call to shareWithDone

returns the node M2. So the return value of representation on N1 is

M2, the node labeled by f in the graph

f20
''

1

��

2

AA

AA
AA

AA

g3

0

II

1
ww

a4

. Moreover, the

dictionaries will be:

D = {(a)→M4, (g,M3M2)→M3, (f,M2M3M4)→M2}

DG =

(f, • •M4)

||yyy
yyy

��

ε (g, ••)

{{wwwww
##G

GGGG

ε 1

→M2,

(g, ••)
��

""E
EEE

EE

(f, • •M4)

{{wwwww
##G

GGGG
ε

1 ε

→M3

4.4 Proof of the Algorithm

The algorithm returns the node of a graph. We must prove that this graph
represents the same tree as the original graph, and that it is a graph of
maximal sharing.

First, notice that the algorithm terminates, because of the dictionary en-
countered which implies that each node of the original graph is treated only
once.

The correctness of the algorithm is derived from the fact that we return
the same graph as the original, except when we recognize that an equivalent
node had already been encountered (through the node keys or the tree keys),
in which case we replace one node by the other. It is the case step 4 of
representation, and steps 1, 2 and 3 of representCycle

The fact that the resulting graph has the minimal number of nodes lies
in the use of the dictionaries D and DG to ensure that we never duplicate
any node. The dictionary D contains the node keys of every node encoun-
tered, and the dictionary DG contains the tree key of every node of every
strongly connected graph with minimal number of nodes we encounter. We
can prove that each time we definitely introduce new nodes, there is no
duplication. Definitive introduction is performed in two points: step 4 of
representation, and step 4 of representCycle.

Step 4 of representation, we know that the key k is not in D. Moreover,
each one of the Mi composing the key is unique because nodes in partial keys
1 Remember that (f, M2 • M4) is the partial key which is not defined on its second
component.

14 LAURENT MAUBORGNE

have already been treated. So if a tree
f

���� ��
66

t0 tn−1

had already been encountered,

the key (f, (Mi)i<n) would already have been encountered.
Step 4 of representCycle, we know that the key treeKey(share(N))

has never been encountered before. Because such a key is valid for strongly
connected graphs, it means that no other node M such that M ≡tree N
have been encountered before. The problem is that we have a partial key
semantics on these graphs, and ≡tree⊂≡pk, so we could have M 6≡tree N but
M ≡pk N in effect representing the same tree. Because M 6≡tree N , there
is a path label p such that M.p and N.p do not have the same label, kM

and kN . But as N and M represent the same tree, kM and kN must have
the same name, so their only possible difference is in the partial function. It
means there is an i such that one of the keys is defined on i and not the other
key (if both of them were defined on i, their value would be the same on i,
as the nodes in partial keys are unique representations). By construction,
the nodes M and N are in strongly connected graphs. So if one of the keys
is not defined on i, there is a q such that M.piq = M or N.piq = N . If t is
the tree represented by both nodes, it means that t[piq] = t. Suppose kM is
defined on i, then there is a node reachable from kM (i) which represents the
same tree as M , and as such it would have been found by shareWithDone.
So the graph defined by M would never have gone beyond the step 1 of
representCycle. It means that another representative is stored for the
cycle (we go on like this until we find one which is equivalent to N , which
means that the test step 3 could not have been false). If kN is defined on i,
by the same argument, we could not have been beyond the step 1, and so
no new node is created.

If no node equivalent to N has been encountered, it is the same for every
other node M in the graph represented by N . It is due to the strong connec-
tivity of the graph which implies that if M has already been encountered,
N has already been encountered.

5. Complexity Issues

Algorithms on shared trees can be more difficult than standard algorithms
on trees, because we must keep the uniqueness of the representation, and
for efficiency, we must do it incrementally. Comparing complexities of al-
gorithms on the two representations (the naive and the sharing ones) is
difficult, though. The complexity is measured with respect to the size of the
inputs of the algorithms, which can be reduced to the number of nodes of
the inputs in our case. In the case of shared regular trees, the number of
nodes is exactly the number of distinct subtrees of the tree, but when the
tree is not shared, the number of nodes can be of any value greater than the
number of distinct subtrees. In the sequel, we denote by n this number of
nodes, but we must keep in mind that this n can be much bigger in the case
of non-shared trees.

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 15

Table I: Summary of worst case time complexities

sharing representation naive representation
testing t1 = t2 O(1) O ((n1 + n2) log(n1 + n2))
testing t1 subtree of t2 O(n2) O ((n1 + n2) log(n1 + n2))
building t[p] O(|p|) O(|p|)
root construction O(1) O(1)
recursive construction O(n2) O(n)

The basic property of shared trees is the uniqueness of the representation.
Thus, testing tree equality is really immediate: we just compare the memory
location of the root. In the classical case, the best method uses a partitioning
algorithm. Another case where we can avoid such a computation with shared
trees is testing if a tree is a subtree of another one. In the shared case, we
just have to compare the root of the first tree with all the nodes of the
second one. Not only is it linear, but the second tree is very likely to have
very less nodes in the shared case than in the classical representation.

When building finite trees, we need only one operation, which we call
root construction: we give a label f and the nodes (Ni)i<n, and we build

f

���� ��
99

N0 Nn−1

. Such an operation is constant time in the naive representation

and in the sharing representation for finite trees (assuming hashing is con-
stant time, see Knuth [1973] and Cai and Paige [1994] for a discussion). It
is indeed also constant time for infinite trees, but this operation does not
suffice to build every regular tree. We need also some loop building mech-
anism. We call this second operation recursive construction. Considering
a tree t and a label x, it consists in replacing every edge going to x by an
edge to the root, and then apply representCycle to maintain the unique-
ness of the representation. This can be done efficiently by adapting the
representation algorithm. Concerning the complexity of this algorithm,
it seems that the prevailing operation is the final (and unique) call to share,
which is applied on the smallest possible subgraph, but in the worst case,
the quadratic complexity of shareWithDone will take precedence.

As we announced earlier, many other operations can be adapted to shared
trees while preserving the uniqueness of the representation by derivation
from the representation algorithm. For example, tree substitution is ob-
tained by using an initial encountered containing the substitution, plus a
few optimizations. We believe the reader will easily create his own adapta-
tions to fit his needs.

The summary of Table I suggests that if we are to perform equality testing,
it can be beneficial to perform sharing during the calculus. What we show
here is worst case complexity, though, and the difficult cases are quite patho-

16 LAURENT MAUBORGNE

logical, and thanks to some simple optimizations, they are quite rare. The
situation is very similar to the complexity of operations on BDDs [Bryant
1986] compared to the operations on boolean formulas. The size of the
formula representing a given boolean function is unbounded, but the basic
operations, like conjunctions, are linear in the size of one of the formulas
whereas they are quadratic for the BDDs. Nevertheless, in practice BDDs
are far more efficient.

6. Application: Set-Based Analysis

We propose to use these techniques to improve the representation of sets
of trees. The expressive power of this improved representation is exactly
what is needed in set-based analysis [Heintze 1992], where sets of trees are
approximated by ignoring the dependencies between variables (an idea which
was already present in Reynolds [1969] and Jones and Muchnick [1979]).
This approximation is called the “cartesian approximation”.

Although this approximation can be quite crude, it has been introduced to
obtain more tractable analyzes. The problem is that the representation used
in tools based on set-based analysis is not always optimal. For example, in
Heintze and Jaffar [1990], a new variable is introduced for each union, and
intersection requires an exponential number of variables. For better results,
some authors propose the use of tree automata (Devienne et al. [1997] and
Charatonik and Podelski [1998]).

6.1 Tree Skeletons

In order to represent the sets of set-based analysis as trees, we propose the
use of a new label in the trees, which will be treated in a special way. This
label, which we call a choice label corresponds to a possible union in the
interpretation of the infinite tree. We denote this label ©. We call the
infinite trees with this extra label tree skeletons (see Fig. 8 for examples of
tree skeletons). The set of trees represented by a tree skeleton is defined by:

Set

(
f

���� ��
66

t0 tn−1

)
def=

{
f

���� ��
99

u0 un−1

∣∣∣∣∣ ∀i < n, ui ∈ Set (ti)

}

Set

(
©
���� ��

99

t0 tn−1

)
def=

⋃
i<n

Set (ti)

As this is a fixpoint equation, we need to define what fixpoint we mean.
In this article, Set is defined as the least fixpoint of this set of equations.
The ordering is the pointwise ordering of the inclusion of the images. If we
wanted to include infinite trees (as in Charatonik and Podelski [1998]), we
would take the greatest fixpoint.

In order to have a unique representation of the sets of trees (and so keep
the constant time equality testing and memoizing properties), we make some

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 17

©
��

t

−→ t,

©
��		
		
�� ��

77
77

t0 ©
����
��

��
99

99
tn

u0 um

−→
©

{{vvv
vvv
����
��

��
88

88

%%JJ
JJJ

JJ

t0 u0 um tn

,

f

��

�� ��

55
55

t0 © tn

−→©

©
��		

	
��

55
5

t0 tn

⇒ all ti(ε) are in strict order.

Fig. 7: Rules to obtain a valid tree skeleton

restrictions on what infinite trees are considered valid tree skeletons. First
we eliminate unnecessary choices: if a choice node has only one child, it is
replaced by its child. If a choice node is the child of a choice node, it is
replaced by its children. We perform the cartesian approximation: if two
children of a choice node have the same label, they are merged (replaced by
their cartesian upper approximation). Finally, the children of a choice node
are ordered according to their labels. See the summary of Fig. 7.

6.2 Tree Automata and Tree Skeletons

Because the cartesian approximation eliminates any dependencies between
children of a tree, we can use deterministic top-down tree automata in set-
based analysis. The idea we use here is that deterministic top-down tree
automata can be seen as graphs, where the only properties that matter are
path properties, and so they can be represented efficiently as special regular
infinite tree: tree skeletons.

A deterministic top-down tree automaton (Thatcher and Wright [1968],
and Gécseg and Steinby [1984]) is a tuple (Q, I, δ, F) where Q is a finite
set of states, I ∈ Q is the initial state, F ⊂ Q is a set of final states, and
δ : A×Q→Q× . . .×Q is the transition function which takes a label in A
and a state, and returns a sequence of states (as many as the arity of the
label). The corresponding graph G is such that GN = Q, GE = {(q, q′, ai) |
δ(a, q) = (. . . , q′, . . .) and q′ in ith position }. This connection means that
we can represent the sets used in set-based analysis without any variable
name in the representation, and in a shared way.

Any deterministic top-down tree automaton can be represented by a valid
tree skeleton. Consider an automaton (Q, I, δ, F). We first build the infinite
tree labeled by Q and A, such that the root is labeled by I, the children of a
given state q are the different a such that δ(q, a) is defined, and the children
of such an a are the δ(q, a). This tree is regular because there is at most
one subtree labeled by a given q ∈ Q, and at most |Q| subtrees labeled by

18 LAURENT MAUBORGNE

g

��

©
����
��

��
22

2

a b

f

~~||
||

|
 B

BB
BB

©
����
��

��
33

33
©
����
�
��

33
3

a c b d
{ga, gb} {f(a, b), f(a, d), f(c, b), f(c, d)}

©
����
��

��
22

2

a

11

b

f

�� 		

©
����
��

��
22

2

a

11

b
S = {b, ab, aab, . . .} {f(t, u)|t ∈ S and u ∈ S}

Fig. 8: Examples of tree skeletons

a given a ∈ A. The second step consists in removing every label of arity 0
which does not come from a state in F , and in replacing every state by ©.
Then we derive the valid tree skeleton.

6.3 Using Tree Skeletons in Analysis

Manipulation of tree skeletons uses basic algorithms on shared infinite regu-
lar trees. Once we can keep the maximal sharing property, it is easy to keep
track of the other rules for tree skeletons. See Mauborgne [1999, chapter 6]
for an extensive description of the algorithms manipulating tree skeletons.

Then tree skeletons can be used everywhere we consider a set of trees in
the analysis. It can replace some of the tree automata of Devienne et al.
[1997] (if we keep the original restrictions of set-based analysis), or the tree
grammars of Liu [1998], as the approximation on union corresponds indeed
to cartesian approximation. In practice, all you have to do is use a toolbox
implementing the operations on tree skeletons. Such a toolbox will soon be
available at http://www.di.ens.fr/~mauborgn/.

7. Conclusion

While trying to improve the representation of sets of trees in set-based anal-
ysis, we presented generic algorithms to manipulate efficiently any structure
encoded as infinite regular trees. These algorithms allow a very compact
representation of such structures and a constant time equality testing. One
of their advantages is their incrementality which allows their use on dynamic
structures. The complexity analysis cannot describe the potential benefit of
this new representation, but it suggests the same gain as for Binary Decision
Diagrams which use similar techniques.

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 19

We also described a new way of representing sets of trees using infinite
regular trees. This new representation is sharing, incremental and unique.
Current work includes the integration of the representation in an actual
analyzer to show experimentally its benefits.

Acknowledgements

I would like to thank Neil Jones for his useful comments and his faithful
support.

Appendix A. Ancillary Algorithms

Appendix A.1 The Partitioning Algorithm

This algorithm is a simplified and specialized version of Cardon and Croche-
more [1982]. It modifies the graph reachable from the node G into another
graph reachable from G, representing the same tree, and with minimal num-
ber of nodes.

share(G):
Blocks is a function which associates an empty set with every integer
BCount ←←← 0
D ←←← ∅
initiateBlocks(G)
MaxArity is the maximal arity of the labels in the graph
for i ←←← 0 to MaxArity− 1 do

a ←←← the block with the greatest number of incoming edges labeled by i
ToTest(i) ←←← [BCount]\{a}

while ∃ i such that ToTest(i) 6= ∅ do
take a a out of ToTest(i)
k ←←← BCount− 1
for b ←←← 0 to k do
Blocks(BCount) ←←←

{
N ∈ Blocks(b) | ∃M ∈ Blocks(a), N →i M

}
if Blocks(BCount) 6= ∅ and Blocks(BCount) 6= Blocks(b) then

for j ←←← 0 to MaxArity− 1 do
if the number of nodes leading (labeled by j) to the block b is

greater than the number of nodes leading to the block BCount
and b 6∈ ToTest(j) then add b to ToTest(j)

else add BCount to ToTest(j)
BCount ←←← BCount + 1

for a ←←← 0 to BCount− 1 do
if |Blocks(a)| > 1 then

if G ∈ Blocks(a) then N ←←← G
else N is any node in Blocks(a)
∀M ∈ Blocks(a), M 6= N do

20 LAURENT MAUBORGNE

every edge O →i M is replaced by O →i N
remove M from GN

initiateBlocks(N):
if N 6∈ D then

add N to D

N is labeled by
f

���� ��
99

N0 Nn−1

if ∃ i < BCount such that Blocks(i) contains a node labeled by f then
add N to Blocks(i)

else
Blocks(BCount) ←←← {N}
BCount ←←← BCount + 1

for i ←←← 0 to n− 1 do initiateBlocks(Ni)

The algorithm first creates a partition (represented by Blocks) according
to the labels of the nodes, and then progressively refines it until we get the
coarsest congruence which refines the initial partition.

Appendix A.2 Keys of Strongly Connected Graphs

This algorithm returns a finite tree identifying uniquely a node in a cyclic
graph.

treeKey(N):
S is a partial function from GN to N∗ and dom(S) = ∅
return (treeKeyRec(ε, N))

treeKeyRec(p, N):
if N ∈ dom(S) then return (S(N))
add N → p to S

N is labeled by
f

���� ��
99

N0 Nn−1

for i ←←← 0 to n− 1 do ti ←←← treeKeyRec(p.i, Ni)

return

(
f

���� ��
66

t0 tn−1

)

Appendix A.3 Finding Equivalent Nodes in Partial Keys

This program uses two sets of nodes, which are supposed to be empty at
the initial call: the set encount of encountered nodes of the graph with
partial keys we have to test, and the set done of encountered nodes in the
graphs reachable through the partial keys. The dictionary DC contains the
mapping between the nodes of the graph we have to test and the equivalent
nodes reachable through partial keys. The result of shareWithDone(N) is
N if no other node is equivalent, and the equivalent node otherwise.

AN INCREMENTAL UNIQUE REPRESENTATION FOR REGULAR TREES 21

shareWithDone(N)
if N ∈ encount then return (N)
add N to encount

N is labeled by
k
�� ��

::

N0 Nn−1

∀i ∈ dom(k) do if tryShare(N, k(i), i, k(i)) then return (DC(N))
for i ←←← 0 to n− 1 do if shareWithDone(Ni) 6= Ni then return (DC(N))
return (N)

tryShare(N,M, i,O)
if M ∈ done then return (false)
add M to done
if N and M have the same label and M.i = O then

DC is an empty node dictionary
if compareWithDone(N,M) then return (true)

M is labeled by
f

�� ��
::

M0 Mn−1

return
(∨

j<n tryShare(N,Mj , i, O)
)

compareWithDone(N,M)
if N ∈ dom(DC) then

if DC(N) = M then return (true) else return (false)

N is labeled by
f

���� ��
99

N0 Nn−1

by extending the partial key k labeling N

M is labeled by
g

���� ��
==

M0 Mm−1

if f = g then
add N→M to DC

for i ←←← 0 to n− 1 do
if i ∈ dom(k) then if Ni 6= Mi then return (false)
else if compareWithDone(Ni,Mi) = false then return (false)

return (true)
else return (false)

References

Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. 1983. Data Struc-
tures and Algorithms. Addison-Wesley.

Bryant, Randal E. 1986. Graph Based Algorithms for Boolean Function Manipulation.
IEEE Transactions on Computers C-35, (August), 677–691.

Cai, Jiazhen and Paige, Robert. 1994. Using multiset discrimination to solve language
processing without hashing. Theoretical Computer Science ?, , ?–?

Cardon, A. and Crochemore, M. 1982. Partitioning a graph in O(|A| log2 |V |). The-
oretical Computer Science 19, 85–98.

22 LAURENT MAUBORGNE

Charatonik, Witold and Podelski, Andreas. 1998. Co-definite Set Constraints.
In 9th International Conference on Rewriting Techniques and Applications, Volume
1379 of Lecture Notes in Computer Science. Springer-Verlag, 211–225.

Colmerauer, Alain. 1982. PROLOG and Infinite Trees. In Logic Programming , Vol-
ume 16 of APIC Studies in Data Processing . Academic Press, 231–251.

Devienne, P., Talbot, JM., and Tison, Sophie. 1997. Solving classes of set constraints
with tree automata. In 3th International Conference on Principles and Practice
of Constraint Programming, Volume 1330 of Lecture Notes in Computer Science.
Springer-Verlag, 62–76.

Gécseg, F. and Steinby, M. 1984. Tree Automata. Akadémia Kiadó.
Heintze, Nevin. 1992. Set Based Program Analysis. PhD thesis, School of Computer

Science, Carnegie Mellon University.
Heintze, Nevin. 1994. Set-Based Analysis of ML Programs. In LFP ’94.
Heintze, Nevin and Jaffar, Joxan. 1990. A Finite Presentation Theorem for Ap-

proximating Logic Programs. In ACM Symposium on Principles of Programming
Languages (POPL’90), 197–209.

Hopcroft, John. 1971. An n log n algorithm for minimizing states in a finite automaton.
In Theory of machines and computations. Academic Press, 189–196.

Jones, N. D. and Muchnick, S. S. 1979. Flow analysis and optimization of LISP-like
structures. In 6th POPL. ACM Press, 244–256.

Knuth, Donald E. 1973. Sorting and Searching. Volume 3 of The Art of Computer
Programming. Addison-Wesley.

Liu, Yanhong A. 1998. Dependence Analysis for Recursive Data. In IEEE International
Conference on Computer Languages, 206–215.

Mauborgne, Laurent. 1999. Binary Decision Graphs. In Static Analyis Symposium
(SAS’99), Volume 1694 of Lecture Notes in Computer Science. Springer-Verlag, 101–
116.

Mauborgne, Laurent. 1999. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, École Polytechnique.

Michie, D. 1968. “Memo” functions and machine learning. Nature 218, (April), 19–22.
Reynolds, J. 1969. Automatic computation of data set definitions. In Information

Processing ’68. Elsevier Science Publisher, 456–461.
Thatcher, J. W. and Wright, J. B. 1968. Generalized finite automata with an appli-

cation to a decision problem of second-order logic. Mathematical Systems Theory 2,
57–82.

