
Binary Decision Graphs

Laurent Mauborgne

LIENS – DMI, École Normale Supérieure, 45 rue d’Ulm, 75 230 Paris cedex 05, France
Tel: (+33) 01 44 32 20 66; Email: Laurent.Mauborgne@ens.fr

WWW home page: http://www.dmi.ens.fr/~mauborgn/

Abstract. Binary Decision Graphs are an extension of Binary Deci-
sion Diagrams that can represent some infinite boolean functions. Three
refinements of BDGs corresponding to classes of infinite functions of in-
creasing complexity are presented. The first one is closed by intersection
and union, the second one by intersection, and the last one by all boolean
operations. The first two classes give rise to a canonical representation,
which, when restricted to finite functions, are the classical BDDs. The
paper also gives new insights in to the notion of variable names and the
possibility of sharing variable names that can be of interest in the case
of finite functions.

1 Introduction

Binary Decision Diagrams (BDDs) were first introduced by Randal E. Bryant
in [4]. They turned out to be very useful in many areas where manipulation
of boolean functions was needed. They allowed a real breakthrough of model
checking [7], they have been used successfully in artificial intelligence [14] and in
program analysis [8, 13, 2, 16].

One limitation of BDDs and its variants is that they can only represent
finite functions. Indeed, it induces a well-known and quite annoying restriction
on model checking, and it restrains its use in program analysis. This paper
explores the possibility of extending BDDs so that they can also represent infinite
functions. This extension will allow the model checking of some infinite state
systems or unbounded parametric systems, or the static analysis of the behavior
of infinite systems, where the expression of infinite properties such as fairness is
necessary.

After a presentation of our notations, sections 3 and 4 present the main ideas
that allow this extension: the first idea is the possibility of sharing variable names
for different entries, while preserving a sound elimination of redundant nodes.
The second idea is the possibility of looping in the representation (thus the term
of Binary Decision Graph (BDG) instead of Binary Decision Diagram), while
preserving the uniqueness of the representation. Sections 5 to 8 present three
classes of infinite boolean functions of increasing complexity corresponding to
further refinements of the representation by BDGs. Only the last one is closed
by all boolean operations, but the first two are representable by efficient unique
BDGs, which, when used to represent finite functions, give classical BDDs. Both

classes have results on approximation properties that can easily be exploited in
abstract interpretation [9], a fact that is very promising on their usefulness in
program analysis.

2 Boolean Functions, Vectors and Words

Let B def= {true, false} be the set of boolean values. Bn denotes the set of
boolean vectors of size n. A finite boolean function is a function of Bn → B.
Bω denotes the set of infinite boolean vectors. An infinite boolean function is a
function of Bω→B.

A boolean function f is entirely characterized by a set of vectors, which is
defined as {u | f(u) = true}. Thus, we will sometime write u ∈ f for f(u) =
true. This characterization is interesting to distinguish between the variables
of the functions and their position in the function, which we call its entries.
If f : Bn → B, then the entries of f are the integers between 0 and n − 1. If
f : Bω→B, then the entries of f are IN, the set of all natural numbers. We write
u(i) for the projection of u on its ith value. Given a set I of entries, u(I) denotes
the subvector of u with I as its set of entries. The restriction of f according to
one of its entries i and to the boolean value b is denoted f |i←b and is defined
as the set of vectors:

{
u | ∃v ∈ f, v(i) = b and v({ j | j 6=i}) = u

}
. A special case is

when i = 0. In this case, we simply write f(b). We extend this notation to any
vector whose size is smaller than the vectors in f .

It is sometime convenient to consider a boolean vector as a word over B∗. It
allows the use of concatenation of vectors. If u is a finite vector and v a vector,
the vector u.v corresponds to the concatenation of the words equivalent to the
vectors u and v. The size of a vector u is written |u|. The empty word is denoted
ε. We define formally the notation f(u):

f(u) def= {v | u.v ∈ f} if f : Bω→B or f : Bn→B and |u| < n

So, if for all vectors f is false, we can write f = ∅.
We extend the concatenation to sets of vectors: for example, if f is a set of

vectors and u a vector, u.f def= {u.v | v ∈ f}.
To improve the clarity of the article, we adopt the following conventions:

a, b, c represent boolean values,
e, f, g represent boolean functions,
u, v, w represent vectors. In a context where we have infinite vectors, represent

finite vectors,
α, β, γ represent infinite vectors,
x, y, z represent variables (or entry names),
r, s, t represent binary trees,
i, j, k, n represent natural numbers.

In the description of vectors, to reduce the size of the description, we will
write 0 for false, and 1 for true.

3 Entry Names

In classical BDDs, boolean functions are described by boolean expressions using
variable names corresponding to the different entries of the BDDs. The Binary
Decision Diagrams are ordered, so that the ordering imposed on the variables
follows the order of the entries of the function. The variable name of rank i is
called the name of the entry i. In many cases, the variable names correspond to
some entities related by the boolean function. A consequence is that we can have
the same information while changing the ordering on the variable names and the
boolean functions that bind them (so that a given entry always corresponds to
the same variable name, and the ordering on the variable names is the same as
the entries ordering). Thus the different optimizations depend on the choice of
this ordering [10, 12].

3.1 Equivalent Entries

In the case of infinite functions, we cannot assign a different variable name to
all the entries of the boolean function, because we want a finite representation.
The idea is that the set of variable names associated with a given function is
finite and to achieve that, some entries can share the same name. However, not
every entry can share the same name: to share the same name, two entries must
be in a sense equivalent.

A permutation is a bijection of IN → IN. If I ⊂ IN, a permutation of the
entries in I is a permutation σ such that ∀i 6∈ I, σ(i) = i. A permutation σ
defines a function from vectors to vectors, −→σ , defined by : −→σ (u)(i) = u(σ(i)) for
all i entry of u.

Definition 1 (Equivalent entries). Let f be a boolean function. The entries
contained in the set I ⊂ IN are equivalent if and only if whatever the permutation
σ of the entries in I, whatever the vector u ∈ dom(f), f(u) = f(−→σ (u))

There are two ideas underlying the definition of equivalent entries: the re-
striction according to any equivalent entry is the same, so f |x←b, where x is an
entry name, is not ambiguous; and whatever the ordering of the equivalent en-
tries, the function is the same. The following example shows that this property
imposes that we allow infinite permutations.

Example 1. Consider the infinite function that is true on any infinite vector con-
taining two consecutive 0s infinitely many times. This function contains (001)ω

but not (01)ω. If we only considered finite permutations, that is permutations
generated from finite exchange of entries, then all entries of this function are
equivalent. But there is an infinite permutation that transforms (001)ω into
(01)ω:

σ(3× k) = 2× k
σ(3× k + 1) = 4× k + 1
σ(3× k + 2) = 4× k + 3

0 0
0000 1

����
0

0000 0
BBBBB 1

||||| 0
BBBBB 0

KKKKKKKK 1

ssssssss 0

KKKKKKKK 0 1

nnnnnnnnnnn 0 0 . . .

0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

The meaning of this substitution is that, if a function with all entries equivalent
contains (001)ω then there is a way of giving the values of (01)ω such that it is
accepted by the function. Concerning our function, it is consistent to forbid the
equivalence of all entries.

As an immediate consequence, we have the following properties for functions
f where all entries are equivalent:

Proposition 1. Let v be a word, and b a boolean value in v. Then vω ∈ f if
and only if (vb)ω ∈ f .

Proposition 2. Let α be a word where a boolean value b appears infinitely often.
Then α ∈ f if and only if b.α ∈ f .

Proof. In both cases, we have an infinite permutation of the entries that trans-
forms the first vector into the other one. In the second case, we just have to shift
the b’s of b.α to the right, each b going to the entry of the next one. In the first
case, we keep shifting by one more b for each v.b. ut

3.2 Equivalent Vectors of Entries

In order to accept more functions, we extend the notion of equivalent entries to
equivalent vectors of entries. We just consider as one entry a whole set of entries
of the form { i ∈ IN | k ≤ i < k + n}. It will allow the iteration over whole vectors
of entries. The set of equivalent entries is described by a set I of indexes and a
length n such that ∀k ∈ I, ∀i such that k < i < k + n, i 6∈ I. A substitution σ
over such a set is such that ∀k ∈ I, σ(k) ∈ I, and ∀i < n, σ(k + i) = σ(k) + i.
For all other numbers j, σ(j) = j.

Definition 2 (Equivalent Vectors of Entries). Let f be a boolean function.
The vectors of entries contained in the set I with length n are equivalent if
and only if whatever the permutation σ of the entries in I, whatever the vector
u ∈ dom(f), f(u) = f(−→σ (u))

Two entries can have the same name if and only if they are at the same
position in a set of equivalent vectors of entries. We suppose in the sequel that
every boolean function comes with such a naming of the entries. We will write
namef (i) for the name of the entry i of function f . To simplify the presentation
and the proofs, we will only consider simple equivalent entries in the sequel of
the article, but the results extend easily to equivalent vectors of entries.

3.3 Equivalent Entries and Redundant Choices

Redundant choices are used in BDDs to reduce the size of the representation.
The good news is that giving the same name to equivalent entries is compatible
with the elimination of redundant choices. There is a redundant choice at a
subvector u of f if and only if f(u.0) = f(u.1).

Theorem 1. Let f be a boolean function, and u be a vector such that f(u.0) =
f(u.1). Then, whatever v such that namef (|u.v|) = namef (|u|), f(u.v.0) =
f(u.v.1).

Proof. v = a.w. We have f(u.a.w.0) = f(u.0.w.a) because of the equivalence of
the entries. f(u.0.w.a) = f(u.1.w.a) by redundancy of the choice, and f(u.1.w.a)
= f(u.a.w.1) by equivalence of the entries. Thus f(u.v.0) = f(u.v.1). ut

3.4 Periodicity of the Entries

In order to be finitely representable, we impose some regularity to the entry
names. The entry names are said to be periodic if and only if there is a period k
on the entry names, that is, for all i, the name of i+ k is the same as the name
i. The entry names are said to be ultimately periodic if, after some point, they
are periodic. Throughout the paper, we will assume that the entry names are
ultimately periodic.

4 Decision Trees

4.1 Finite Decision Trees

BDDs are based on decision trees. A decision tree is a structured representation
based on Shannon’s expansion theorem: f = 0.f(0)∪ 1.f(1). This observation is
the basis of a decision procedure: to know whether a given vector is in a function,
we look at its first value. If it is a 0, we iterate the process on the rest of the
vector and f(0), and if it is a 1, we iterate on the rest of the vector and f(1).
This procedure can be represented by a binary tree labeled by the entry names,
and with either true or false at the leaves.

We define a labeled binary tree t as a partial function of {0, 1}∗→L where
L is the set of labels, and such that whatever u.v ∈ dom(t), u ∈ dom(t). The
subtree of t rooted at u is the tree denoted t[u] of domain {v | u.v ∈ dom(t)},
and defined as t[u](v) def= t(u.v). The decision tree defined by a boolean function
f : Bn→B is the binary tree of domain

⋃
k≤n{0, 1}k, such that if |v| = n, then

t(v) = f(v), and if |v| < n, t(v) = namef (|v|).

Example 2. Let f = {000, 011, 111}. If we associate the variable names x to
entry 0, y to entry 1 and z to entry 2, then f can be described by the formula:
(y ∧ z) ∨ (¬x ∧ ¬y ∧ ¬z). The decision tree for f is displayed in Fig. 1.

4.2 Semantics of the Decision Trees

The decision tree of a boolean function is used as a guide for a decision process
that decides the value of the function on a given vector. If t is the decision tree
associated with the function f , then to decide whether the vector u is in f , we
“read” the first value of u. Say u = b.v. If b is a 0, we iterate on v, t[0], and

x
0

wwoooooooo 1

((PPPPPPPP

y
0

~~}}}} 1

BBBB y

0

~~}}}} 1

BBBB

z
0
����� 1
��

111 z
0
�� 1
��

... z
0
�� 1
��

111 z
0
�� 1
��

...

true false false true false false false true

x
0
����� 1

��
:::

y
0

����� 1

��
777 y

1

����� 0

��
999

z
0
��

777

1

<<

z
1
����� 0

��
::: z0

1
~~

true false

x
0
����� 1

��
:::

y
0

����� 1

��
777 y

1

�����

0

��

z
0
��

777

1

<<

z
1
����� 0

��
:::

true false

Fig. 1. The decision tree, the decision tree with shared subtrees, and the BDD.

if it is a 1, we iterate on v, t[1]. The entire decision process goes through the
tree, following the path defined by u, and the result of the decision process is
the value of the leaf, t(u). Binary Decision Diagrams are based on two remarks:
first we can represent any tree in a form where equivalent subtrees are shared (a
directed acyclic graph), and second if a choice is redundant, then we can jump it.
The second remark modifies slightly the decision process: we must have separate
information on the entries of a function. For example, we can have the sequence
of the entry names, or equivalently if all entry names are different, an ordering
on the entry names. In this way, we can keep track of the current entry that is
read from u. If it is “before” the entry named t(ε), we can skip the first value of
u and iterate on v, t.

Example 2 (continued). The two steps of sharing equivalent subtrees and elim-
inating redundant nodes are shown in Fig. 1. The decision process on the vector
101 can reach false after reading the first 1 and the first 0. The entry names
of the BDD are represented by x < y < z, or equivalently by xyz. If we realize
that the entry 1 and the entry 2 are equivalent, we can give the same name y to
both entries. Then the BDD becomes:

x
0
������ 1

@@@@

y
0
������ 1

��
<<<< y

1

������

0

		

y
0
��

<<<<

1

::

y
1

������ 0

��
????

true false

with entry names described as xyy. It is easy to see that this description will
lead to a more efficient algorithm to compute f |2←0 which correspond to f |z←0

with the entry names xyz, and to f |y←0 with the entry names xyy.
It is an established fact [4], that given a boolean function and a naming of

the entries with all names different, such a representation is unique, leading to
tautological equivalence testing. From Theorem 1, we can add that this repre-
sentation is still unique if the naming of the entries respect the equivalences of
the entries.

4.3 Infinite Trees

To extend this definition to infinite boolean functions, there are two problems: for
all α ∈ f , α 6∈ dom(t), because binary trees domains are limited to finite words.
This is the problem of the infinite behavior of the function. We can represent
t(v) for all v prefix of a vector in f , but then the tree is infinite. This is the
second problem, treated in this section: how to represent an infinite tree.

As we have seen, a BDD is a decision tree on which we have performed two
operations: first the sharing of equivalent subtrees, second the elimination of
redundant choices. In fact, following this process would be too inefficient, and
when manipulating BDDs, these operation are performed incrementally: each

time we build a tree
x
		�� ��**
t t

, we return t, and each time we build another tree
x
���� ��..

t0 t1
,

we first look if the tree has already been encountered, through a hash table for
example, and if it is the case, we return the tree already encountered, if not we
add it in the table.

The same operations, albeit a little more complex, can be performed to repre-
sent an infinite tree with maximal sharing of its subtrees. First we only represent
regular trees, that is trees with a finite number of distinct subtrees. The only
difference with finite trees, which are represented by directed acyclic graphs,
is that infinite trees are represented by directed graphs that do contain cycles.
The added complexity introduced by the cycles is not intractable, and efficient
incremental algorithms can be devised. The ideas are the following: when we are
not in a cycle, the algorithm is the same as in the finite case. When we isolate
a strongly connected subgraph (a “cycle”), we first see if this cycle is not the
unfolding of another cycle that is reachable from the subgraph. If it is the case,
we return this other cycle (we fold the subgraph on the cycle). If not, we reduce
the subgraph to an equivalent one with maximal sharing, and then we compute
unique keys for the subgraph, so that we can see if it had already been encoun-
tered, or so that we can recognize it in the future. We have one key for each
node of the subgraph. The detailed algorithms and their proofs can be found in
[17].

Examples of infinite trees represented this way will be displayed in the next
sections. The trees will be progressively enriched so that the BDGs represent
wider classes of infinite functions.

5 Basic BDGs: Open Infinite Functions

If we just extend BDDs with the possibility of sharing entry names and the
possibility of using infinite trees, we can already represent open infinite functions.
Our first restriction though, is that the decision tree is representable, that is, it
is regular.

Definition 3. Let f be a boolean function. f is said to be prefix regular if and
only if the number of distinct f(u) is finite.

Because we will have only one possible representation for a given function, and
f(u) corresponds to t(u) if t represents f , it means that t is regular.

5.1 Open Functions and Closed Functions

Definition 4 (Open Function). Let f : Bω→B. f is said to be open if and
only if f is prefix regular and:

∀α ∈ f, ∃u such that α = u.β and f(u) = Bω

Recall that f(u) = Bω means that whatever γ, f(u.γ) = true. This definition
corresponds to a choice on the meaning of an infinite decision tree labeled by
entry names and with true and false as leaves. If during the decision process
of a vector, we reach a false, then the result of f on the vector must be false.
If we read a true, then the result of f on the vector must be true. If u is the
beginning of the vector that lead to true, then every infinite vector beginning
with u will be in f , so f(u) = Bω. The last case is when we never reach true
nor false. The choice is that such vectors are not in the function. By choosing
that such vectors are in the function, we would have represented dually the
closed functions. So, the dual of the properties on open functions apply to closed
functions.

Because we chose that cycling in the decision process is rejecting, there is
one new source of non-uniqueness that is not taken care of by simply sharing
every subtree of the decision tree. We must also replace by false every cycle
from which no true is reachable. This is easily performed while treating cycles
in the representation of regular trees. With this treatment, we still have a unique
representation for open functions.

Example 2 (continued). The function f can be extended to the function g :
Bω → B, defined as: g(u.α) = true if u ∈ f . Then g is represented with the
same diagram as f , with an additional entry name z′, and the entry names are
xyy(z′)ω.

Example 3. Let f be true on α if and only if α contains at least one 1. Every
entry of f is equivalent, so its entry names can be described as xω. Since f is
open, it can be represented by the following graph:

x0
%%

1
��

====

true

5.2 Boolean Operators

Theorem 2. Let f and g be two open functions. Then the functions f ∧ g and
f ∨ g are open. Moreover, if (fi)i∈IN is a family of open functions, then

∨
i∈IN fi

is an open function.

f ∧ g(α) def= f(α) ∧ g(α), and f ∨ g(α) def= f(α) ∨ g(α). So, if we consider f and g
as sets of vectors, f ∧ g is the intersection of f and g, and f ∨ g is the union of
f and g.

Proof. Let α ∈ f ∨ g. There is a u such that α = u.β, and either f(u) = Bω or
g(u) = Bω. In any case, f ∨ g(u) = Bω. If α ∈ f ∧ g, there is u and v such that
α = u.β, α = v.γ, and f(u) = Bω and g(v) = Bω. If |u| ≤ |v|, then v = u.w. So
f(v) = Bω. So, f ∧ g(v) = Bω. If α ∈

∨
i∈IN fi, then there is a least u prefix of α

such that there is a i, fi(u) = Bω. We have
∨
i∈IN fi(u) = Bω. ut

Dually, the finite union of closed functions is a closed function, and the infinite
intersection of closed functions is a closed function.

Corollary 1. Whatever the boolean function f , there is a greatest open function
contained in f , and there is a least closed function containing f .

Algorithmically, it is easy to compute the and or the or of two open func-
tions. The algorithms are the same as in the finite case [5], with the possibility
of memoizing [18], except that we must take care of cycles. When a cycle is en-
countered, that is when we recognize that we already have been through a pair
of subtrees (s, t), we build a loop in the resulting tree.

Open functions are not closed by negation: the negation of the function that
is true on all vectors containing at least one 1 is the function containing only 0ω.
Such a function is not open, because the only infinite behavior that is possible
for an open function is trivial. In order to be more expressive, we introduce more
infinite behaviors.

6 More Infinite Behaviors

To allow more infinite behaviors, we need to have more than one kind of loop, so
that in some loop it is forbidden to stay forever, and in some others, we can. We
introduce a new kind of loop: loops over open functions. This new kind of loop
defines a new set of infinite behaviors, defining what we call iterative functions.
Iterative functions are functions that start over again and again infinitely often.
Thus entry names will have to be periodic.

Definition 5 (Iterative Function). Let f : Bω→B. f is said to be iterative
if and only if the entry names of f are periodic, and there is an open function g
such that for all α in f , there is an infinite sequence of vectors (ui)i∈IN, such that
α = u0.u1 . . . ui . . . and each ui has the minimum length such that g(ui) = Bω
and namef (|ui|) = namef (0). We write f = Ω (g).

Hence an iterative function is represented by an open function. We will use
the decision tree of the open function to represent the iterative function. But in
the context of iterative functions, the decision tree will have a different meaning,
corresponding to a slightly different decision process. The decision process is the
following: we follow the decision tree in the path corresponding to the vector,
but when we reach a true, we start again at the root of the tree. To be a success,
the decision process must start again an infinite number of times.

Example 4 (Safety).
x

0
������ 1

AAAA

true false
represents the function that is true on 0ω only.

Example 5 (Liveness).
x

0
������

1

nn

true

represents the function that is false only on those vectors
that end with 1ω. That is, the function is true on any
vector containing an infinite number of 0’s.

Example 6 (Fairness).
x

0

������ 1

��
>>>>

x0
%%

1
��

==== x
0
������

1
yy

true

represents the function that is true on any vector con-
taining an infinite number of 0’s and 1’s.

These examples show that iterative functions can be used to represent a
wide variety of infinite behaviors. Note that ∅ and Bω are at the same time open
and iterative. Another remark: the equivalence of the entries restraining the use
of shared entry names is only applied to the iterative function, not the open
function that represents the iterative function.

Theorem 3. An iterative function is prefix regular.

Proof. If f = Ω (g), g is open, so prefix regular. If g(u) = g(v), then f(u) = f(v).
So the set of distinct f(u) is smaller than the set of distinct g(u). Thus, f is
prefix regular. ut

Many possible open functions can represent the same iterative function:

Example 6 (continued). The function that is true on every vector with an infinite
number of 0’s and 1’s could also be represented by the following open function:

x
0

������
1

yy

x0
%%

1
��

====

true

x0
%%

1
��

333

x
0
�����

1
yy

x
0
������

1
yy

true

In fact, there is a “best” open function representing a given iterative function. If
we always choose this best open function, as the representation of open function
is unique, the representation of iterative function is unique too.

Theorem 4. Let f be an iterative function. The function g which is true on the
set {u.α|uω ∈ f and f(u) = f} is the greatest (for set inclusion) open function
such that f = Ω (g)

In order to simplify the proofs, we will suppose that all entries of f are equivalent,
so that there is only one entry name, and we can get rid of the test namef (|u|) =
namef (0). To reduce the problem to this case, we can use a function over larger
finite sets described by Bk, where k is a period of the entry names of f .

Lemma 1. Let u be a vector such that g(u) = Bω and for all v prefix of u,
g(v) 6= Bω. Then uω ∈ f and f(u) = f .

Proof (Lemma 1). Whatever α, u.α ∈ g. Because of the minimality of u with
respect to the property g(u) = Bω, for each α, there is a v prefix of α such that
(u.v)ω ∈ f and f(u.v) = f . Let b be a boolean value in u. We choose α = bω.
There is an l such that (v.al)ω ∈ f . Because all entries of f are equivalent, by
Proposition 1, vω ∈ f . Let α ∈ f . α is infinite, so there is a boolean value a
that is repeated infinitely often in α. But there is an l such that f(v.al) = f . So
v.al.α ∈ f , and by the equivalence of all entries (Proposition 2), v.α ∈ f , which
means that α ∈ f(v). Conversely, if α ∈ f(v), v.al.α ∈ f , and so α ∈ R. Thus
f = f(v).

Proof (Theorem 4). g is an open function, because whatever the element α of
g, there is a u prefix of α such that ∀β, u.β ∈ g. f is iterative, so there is an
open function g′ such that f = Ω (g′). ∀α ∈ g′, there is a u prefix of α such that
g′(u) = Bω. Let u0 be the least such u. Because f = Ω (g′), u0

ω is in f , and
f(α) = f . So α ∈ g, which means that g′ ⊂ g. To prove the theorem, we just
have to prove that f = Ω (g). We will start by f ⊂ Ω (g), then prove Ω (g) ⊂ f .

Let α ∈ f . We suppose α 6∈ Ω (g). If there is a u prefix of α such that
g(u) = Bω, let u0 be the least such u. α = u0.β. Then β 6∈ Ω (g), but f(u0) = f ,
so β ∈ f . So we can iterate on β. This iteration is finite because α 6∈ Ω (g), so we
come to a point where there is no u prefix of α such that g(u) = Bω. But α ∈ f ,
so there is a u0 prefix of α such that g′(u0) = Bω, and uω0 ∈ f and f(u0) = f ,
and so g(u0) = Bω, which contradicts the hypothesis. Thus f ⊂ Ω (g).

Let α ∈ Ω (g). Let (ui)i∈IN be the sequence of words such that g(ui) = Bω,
α = u0.u1 . . . ui . . . and ui minimum. Some ui appear infinitely often in α, and
some other ui appear only finitely often in α. Hence there is a permutation of
the entries such that the result of the permutation on α is v.β, where v is the
concatenation of all ui that appear finitely in α (times the number of times they
appear), and β is composed of those ui that appear infinitely in α. By definition
of Ω (g), β ∈ Ω (g), and because all entries of f are equivalent, v.β is in f if and
only if α is in f . But whatever ui, f(ui) = f (see the lemma). So f(v) = f . And
so α is in f if and only if β is in f . Either β contains a finite number of distinct
ui, or an infinite one.

If β contains a finite number of distinct ui, we call them (vi)i≤m. Then there
is a permutation of the indexes such that the result of the permutation on β is
(v0.v1 . . . vm)ω. We know that vmω ∈ f (see the lemma), and for all i, f(vi) = f ,
so v0.v1 . . . vm−1.(vm)ω ∈ f . We call γ = v0.v1 . . . vm−1.(vm)ω. Because γ ∈ f ,
there is a sequence (u′i)i∈IN such that g′(u′i) = Bω, γ = u′0.u

′
1 . . . u

′
i . . . and u′i

minimum. So there is a j such that u′0.u
′
1 . . . u

′
j = v0.v1 . . . vm−1.vm

n.w with

w prefix of vm. Whatever i, (u′0.u
′
1 . . . u

′
i)
ω ∈ f , because f = Ω (g′). So, by

Proposition 1, (v0.v1 . . . vm)ω ∈ f . This in turn means that β ∈ f .
If β contains infinitely many distinct ui, we call them (vi)i∈IN. Necessarily,

there is infinitely many 0’s and 1’s in β. So we have two vi, w0 and w1 such that
w0 contains a 0 and w1 contains a 1. As β is composed of 0 and 1, there is a
permutation of the entries that transforms β in (w0.w1)ω. So we are back to the
problem with β containing a finite number of ui.

Thus, β ∈ f whatever the case, which proves that α ∈ f . We started from
α ∈ Ω (g), so Ω (g) ⊂ f . Because we already proved f ⊂ Ω (g), we have f =
Ω (g). ut

7 BDGs with rec nodes: ω-deterministic Functions

We combine a finite behavior with infinite behaviors to express a wide variety
of infinite functions. We call these functions ω-deterministic because we restrict
the number of possible infinite behaviors at a given u to at most one iterative
function.

Definition 6. Let f : Bω → B. f is ω-deterministic if and only if f is prefix
regular and ∀u, Ω ({v.α | u.vω ∈ f and f(u.v) = f(u)}) ⊂ f(u).

7.1 The Decision Tree

If the set {v | u.vω ∈ f and f(u.v) = f(u)} is not empty, then it is possible, in
the decision process, that we enter an infinite behavior. It must be signaled in the
decision tree. To this end, we introduce a new kind of node in the decision tree,
the rec node. The rec node signals that we must start a new infinite behavior,
because before this node, we were in fact in the finite part of the function. The
rec node has only one child. In the graphical representation, we will sometimes

write
x

_��
t

for

x
��

rec
��
t

. After a rec node, we start the decision tree representing the it-

erative function. We know that when this decision tree comes to a true, we must
start again just after the previous rec node. false nodes in the decision tree
are replaced by the sequel of the description of the ω-deterministic function. As
iterative functions of the ω-deterministic function are uniquely determined, and
their representation is unique, the decision tree of the ω-deterministic function
is unique.

Note that open functions are ω-deterministic. Their representation as an ω-
deterministic function is the same as in the previous section, but with a rec
preceding every true. It means also that the restriction of this representation to
finite functions give the classical BDD, except for the rec preceding the true.

7.2 The Semantics of the Decision Tree

The semantics of the decision tree is defined in terms of a pseudo-decision process
(it is not an actual decision process because it is infinite). The decision process
reads a vector and uses a stack S and a current iterative tree, r. At the beginning,
the stack is empty and r is the decision tree. When we come to a true node, we

stack it and start again at r. When we come to a
rec
��
t

node, r becomes t and we

empty the stack. If we come to a false node, we stop the process. The process
is a success if it doesn’t stop and the stack is infinite.

Example 7.

x
0

@������ 1

�
BBBB

x
0
��

1

''OOOOOOO x1

wwooooooo
0��

true false

when we read a 0, the current iterative tree becomes
x
���� ��

;;
true false

.

If we read a 1 after that, we stop on a failure, and if we read
a 0, we stack a true and start again with the same iterative
tree. So, after a 0, we can only have 0ω. After a 1, the iterative

tree becomes
x
���� ��

77
false true

, and this time, we can only have 1ω.

So this function is {0ω, 1ω}.
Example 8.

x
0
������

1

�nn

true

during the decision process, the iterative tree never changes.
When we read a 0, we stack a true and start again. But each
time we read a 1, we empty the stack. So the only vectors that
stack an infinite number of true are the vectors ending by 0ω.

7.3 Boolean Operators

Theorem 5. Let f and g be two ω-deterministic functions. Then f ∧ g is ω-
deterministic.

The algorithm building the decision tree representing f ∧ g identifies the loops,
that is we come from a (t, u), which are subtrees of the decision trees representing
f and g, and return to a (t, u). If in such a loop, we have not encountered any new
true in any decision tree, we build a loop, if one decision process has progressed,
we keep building the decision tree, and when both have been through a true,
we add a true in the intersection.

ω-deterministic functions are not closed by union. As they are closed by
intersection, it means that they are not closed by negation either.

Example 9 (Impossible Union). Let f1 be the set of all vectors with a finite
number of 1’s, and f2 the set of all vectors with a finite number of 0’s. f1 and
f2 are represented by:

x
0
������

1

4yy

true
and

x0

%%

1
��

====

true

Let f = f1∨f2. The set Ω ({u.α | uω ∈ f and f(u) = f}) is the set of all vectors,
but (01)ω 6∈ f , so f is not ω-deterministic.

7.4 Approximation

Theorem 6. Whatever f prefix regular function, there is a least (for set inclu-
sion) ω-deterministic function containing f .

The process of building the best ω-deterministic function approximating a prefix
regular function consists in adding the iterative functions defined by {v.α|u.vω ∈
f and f(u.v) = f(u)} to f(u). This process starts at ε and keeps going for each
false node in the representation of the iterative function, augmenting f at this
point. The process is finite because f is prefix regular.

8 BDGs with Subscripts: Regular Functions

Regular functions are the closure of ω-deterministic functions by union. The idea
is to allow a finite set of iterative functions to describe the infinite behavior at
a given point in the function.

Definition 7. Let f : Bω→B. f is said to be regular if and only if f is prefix
regular and there is a finite set of non-empty iterative functions iter(f) such that
∀α ∈ f , ∃u, ∃g ∈ iter(f), α ∈ u.g and g ⊂ f(u).

Such functions are called regular because of the analogy with ω-regular sets
of words of Büchi [6]. The only restriction imposed by the fact that we consider
functions lies in the entry names, namely the entry names must be ultimately
periodic to be finitely representable.

Theorem 7. A function f is regular if and only if its entry names are ultimately
periodic and the set of words in f is ω-regular in the sense of Büchi.

The idea is that open functions define regular languages. If U is the regular
language defined by an open function, then the associated iterative function is
Uω. The idea of the proof of the theorem is that an ω-regular language can be
characterized as a finite union of U.V ω, with U and V regular languages.

Corollary 2. If f and g are regular functions, then f ∧ g, f ∨ g and ¬f are
regular functions.

It is an immediate consequence of the theorem, the closure properties of ω-
regular languages, and the closure properties of the fact that the set of entry
names is ultimately periodic.

Note that the set of regular functions is strictly smaller than the set of ω-
regular languages:

Example 10. The set {0, 11}ω is an ω-regular language, but not a regular func-
tion. Suppose two entries i < j are equivalent. Then 0j−1110ω is in the function,
so 0i−110j−i10ω is in the function too, because of the equivalence of entries i
and j.

It is possible to define a decision tree that represents a regular function by
subscripting some labels with a set of indexes corresponding to the iterative
functions associated with the regular function. The meaning of this subscript is
that we stack a true for each iterative function in the set of indexes. The problem
is that this representation depends on the indexing of the iterative functions, and
there is no canonical way of determining the set of iterative function that should
be associated with a given regular function.

9 Conclusion

To achieve the representation of infinite functions, we presented a new insight
on variable names which allows the sharing of some variable names. This sharing
is compatible with every operation on classical BDDs, at no additional cost. It
is even an improvement for classical BDDs, as it speeds up one of the basic
operations on BDDs, the restriction operation.

We presented three classes of infinite functions which can be represented by
extensions of BDDs. So far, the only extension that allowed the representation
of infinite function was presented by Gupta and Fisher in [11] to allow inductive
reasoning in circuit representation. Their extension corresponds to the first class
(open functions), but without the uniqueness of the representation, because the
loops have a name, which is arbitrary (and so there is no guarantee that the
same loop encountered twice will be shared).

Our representation for open functions and ω-deterministic function have been
tested in a prototype implementation in Java. Of course, this implementation
cannot compete with the most involved ones on BDDs. It is, however, one of the
advantages of using an extension of BDDs: many useful optimizations developed
for BDDs could be useful, such as complement edges [3] or differential BDDs [1].
This is a direction for future work. Another direction for future work concerns
the investigation over regular functions. These functions are closed by boolean
operations, but we did not find a satisfactory unique representation with a de-
cision tree yet. We believe the first two classes will already be quite useful. For
example the first class (open function) is already an improvement over [11], and
the second class (ω-deterministic) can express many useful properties of tempo-
ral logic [15]. This work is a step towards model checking and static analysis of
the behavior of infinite systems, where properties depending on fairness can be
expressed and manipulated efficiently using BDGs.

Acknowledgments: Many thanks to Patrick Cousot for reading this work
carefully and for many useful comments. Ian Mackie corrected many English
mistakes in the paper.

References

[1] Anuchitanakul, A., Manna, Z., and Uribe, T. E. Differential BDDs. In
Computer Science Today (September 1995), J. van Leeuwen, Ed., vol. 1000 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 218–233.

[2] Bagnara, R. A reactive implementation of pos using ROBDDs. In 8th In-
ternational Symposium on Programming Languages, Implementation, Logic and
Programs (September 1996), H. Kuchen and S. D. Swierstra, Eds., vol. 1140 of
Lecture Notes in Computer Science, Springer-Verlag, pp. 107–121.

[3] Billon, J. P. Perfect normal form for discrete programs. Tech. Rep. 87039,
BULL, 1987.

[4] Bryant, R. E. Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers C-35 (August 1986), 677–691.

[5] Bryant, R. E. Symbolic boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys 24, 3 (September 1992), 293–318.

[6] Büchi, J. R. On a decision method in restricted second order arithmetics. In
International Congress on Logic, Methodology and Philosophy of Science (1960),
E. Nagel et al., Eds., Stanford University Press.

[7] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., and Hwang, J.

Symbolic modek checking: 1020 states and beyond. In Fifth Annual Symposium
on Logic in Computer Science (June 1990).

[8] Corsini, M.-M., Musumbi, K., and Rauzy, A. The µ-calculus over finite
domains as an abstract semantics of Prolog. In Workshop on Static Analysis
(September 1992), M. Billaud, P. Castran, M.-M. Corsini, K. Musumbu, and
A. Rauzy, Eds., no. 81–82 in Bigre.

[9] Cousot, P., and Cousot, R. Abstract interpretation; a unified lattice model for
static analysis of programs by construction of approximation of fixpoints. In 4th
ACM Symposium on Principles of Programming Languages (POPL ’77) (1977),
pp. 238–252.

[10] Fujita, M., Fujisawa, H., and Kawato, N. Evaluation and improvements of
boolean comparison method based on binary decision diagram. In International
Conference on Computer-Aided Design (November 1988), IEEE, pp. 3–5.

[11] Gupta, A., and Fisher, A. L. Parametric circuit representation using inductive
boolean functions. In Computer Aided Verification (1993), C. Courcoubetis, Ed.,
vol. 697 of Lecture Notes in Computer Science, Springer-Verlag, pp. 15–28.

[12] Jeong, S.-W., Plessier, B., Hachtel, G. D., and Somenzi, F. Variable or-
dering and selection for FSM traversal. In International Conference on Computer-
Aided Design (November 1991), IEEE, pp. 476–479.

[13] Le Charlier, B., and van Hentenryck, P. Groundness analysis for Prolog:
Implementation and evaluation of the domain prop. In PEPM’93 (1993).

[14] Madre, J.-C., and Coudert, O. A logically complete reasoning maintenance
system based on a logical constraint solver. In 12th International Joint Conference
on Artificial Intelligence (1991), pp. 294–299.

[15] Manna, Z., and Pnueli, A. The anchored version of the temporal framework. In
Linear Time, Branching Time, and Partial Order in Logics and Models for Con-
currency (May/June 1988), J. W. de Bakker, W. P. de Roever, and G. Rozenberg,
Eds., vol. 354 of Lecture Notes in Computer Science, Springer-Verlag, pp. 201–284.

[16] Mauborgne, L. Abstract interpretation using typed decision graphs. Science of
Computer Programming 31, 1 (May 1998), 91–112.

[17] Mauborgne, L. Representation of Sets of Trees for Abstract Interpretation. PhD
thesis, École Polytechnique, 1999.

[18] Michie, D. “memo” functions and machine learning. Nature 218 (April 1968),
19–22.

