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Abstract. We develop compositional analysis algorithms for detecting non-
termination in multithreaded programs. Our analysis explores fair and ultimately-
periodic executions—i.e., those in which the infinitely-often enabled threads
repeatedly execute the same sequences of actions over and over. By limiting the
number of context-switches each thread is allowed along any repeating action
sequence, our algorithm quickly discovers practically-arising non-terminating ex-
ecutions. Limiting the number of context-switches in each period leads to a com-
positional analysis in which we consider each thread separately, in isolation, and
reduces the search for fair ultimately-periodic executions in multithreaded pro-
grams to state-reachability in sequential programs. We implement our analysis
by a systematic code-to-code translation from multithreaded programs to sequen-
tial programs. By leveraging standard sequential analysis tools, our prototype tool
MUTANT is able to discover fair non-terminating executions in typical mutual ex-
clusion protocols and concurrent data-structure algorithms.

1 Introduction

Multithreaded programming is the predominant style for implementing parallel and
reactive single-processor software. A multithreaded program is composed of several
sequentially-executing threads who share the same memory address space. As a thread’s
operations on shared memory generally do not commute with the operations of others,
each schedule—i.e., each distinct order on the actions of different threads—leads to
distinct program behavior. Generally speaking, the schedule of inter-thread execution
relies on factors external to the program, such as processor utilization and I/O activ-
ity. Though some programming errors are witnessed in many different schedules, and
are thus likely to be discovered by testing, others manifest only in a small number of
rarely-encountered schedules; these Heisenbugs are notoriously difficult to debug.

The correctness criteria for multithreaded programs generally include both safety
and liveness conditions, and ensuring safety can threaten liveness. For instance, to en-
sure linearizability—i.e., the result of concurrently executing operations is equivalent to
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some sequential execution of the same operations—concurrent data structure implemen-
tations often employ a retrying mechanism [9] (see Figure 1c for a simple instance): a
validation phase before the effectuation of each operation ensures concurrent modifica-
tions have not interfered; when validation fails, the operation is simply attempted again.
A priori nothing prevents an operation from being retried forever. Retry is also a mech-
anism used in mutual exclusion protocols. For instance, a common solution to the din-
ing philosophers problem proposes that philosophers drop the fork they first picked up
when they cannot obtain the second fork—presumably because a neighboring philoso-
pher already holds the second. Though this scheme avoids deadlock, it also leads to
non-terminating executions in which no philosophers ever eat; particularly when each
philosopher picks up his first fork, finds his neighbor has the other, and then all re-
lease their first fork, repeatedly; Figure 1b illustrates a simplification of this pattern.
As such retrying raises the possibility that some or all interfering operations are never
completed even under fair schedules—repeatedly failing operations already execute in-
finitely often—one does want to ensure that concurrent operations do always terminate.
Note that unlike in sequential programs, where interesting non-terminating executions
involve ever diverging data values, non-terminating executions in multithreaded pro-
grams also involve repeated inter-thread interference, even over small finite data do-
mains (see Figure 1).

Proving the absence of programming errors such as assertion violations, and unin-
tentional non-termination due to inter-thread interference, in multithreaded programs
is difficult precisely because of the enormous number of possible schedules which
need be considered. Automated approaches based on model checking are highly
complex—e.g., computing state-reachability is PSPACE-complete when threads are fi-
nite state [10], and undecidable when threads are recursive [23]—and are susceptible to
state-explosion; naı̈ve approaches are unlikely to scale to realistic programs. Otherwise,
modular deductive verification techniques may apply, though they require programmer-
supplied invariants, which for multithreaded programs are regarded as difficult to divine.
Furthermore, a failed verification attempt may only prove that the supplied invariants
are insufficient, rather than the existence of a programming error.

Instead of exhaustive program exploration, recent approaches to detecting safety vi-
olations (e.g., assertion violations) have focused on exploring only a representative sub-
set of program behaviors by limiting inter-thread interaction [22, 21, 17, 15, 3]; for in-
stance, Qadeer and Rehof [21] consider only executions with a given number k ∈ N of
context switches between threads. Though techniques like context-bounding are clearly
incomplete for any given k ∈ N, every execution is considered in the limit as k ap-
proaches infinity, and small values of k have proved to provide great coverage [17]
and uncover subtle bugs [13] in practice. The bounded analysis approach is particularly
attractive since it enables compositional reasoning: each thread can be considered sepa-
rately, in isolation, once the number of environmental interactions is fixed. This fact has
been exploited by the so-called “sequentializations” which reduce multithreaded state-
reachability under an interaction bound to state-reachability in a polynomially-sized
sequential program [15, 11, 7, 3], leading to efficient analyses. Conveniently these re-
ductions allow leveraging highly-developed sequential program analysis tools for mul-
tithreaded program analysis.
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1 // One thread
2 // forever
3 // spins
4 var g: B

5

6 proc Thread1 ()
7 g := false;
8 while !g do
9 skip;
10 return
11

12 proc Thread2 ()
13 g := true;
14 return

(a)

1 // Both threads
2 // can retry
3 // forever
4 var g: B

5

6 proc Thread1 ()
7 while g do
8 g := false;
9 return
10

11 proc Thread2 ()
12 while !g do
13 g := true;
14 return

(b)

// The second thread can forever retry

1 var g: T
2 var x: B

3

4 proc Thread1 ()
5 while � do
6 acquire x;
7 g := �;
8 release x;
9 return

10 proc Thread2 ()
11 var gi, gf: T
12 while true do
13 gi := g;
14 gf := ...;
15 acquire x;
16 if g = gi then
17 g := gf;
18 release x;
19 return
20 else
21 release x
22 return

(c)

Fig. 1. Three programs with non-terminating executions. (a) Though the first thread may execute
forever if the second never sets g to true, no such execution is fair. (b) Two threads repeatedly
trying to validate their set values of g will keep retrying forever under a schedule which schedules
each loop head just after the opposing thread’s assignment. (c) As long as the first thread executes
an iteration between each of the second thread’s reads and validations of g, the second thread is
never able to finish its operation.

Though these techniques seem promising for the detection of safety violations, they
have been deemed inapplicable for detecting liveness violations, since, for instance, in
any context-bounded execution, only one thread can execute infinitely often; interesting
concurrency bugs such as unintentional yet coordinated non-termination require the par-
ticipation of multiple infinitely-often executing threads. This limitation has effectively
prevented the application of compositional bounded analyses to detecting liveness vio-
lations in multithreaded programs.

In this work we demonstrate that restricting thread interaction also leads to an effec-
tive technique for detecting liveness violations in recursive multithreaded programs—in
particular we detect the presence of fair non-terminating executions. Though in general
the problem of detecting non-terminating executions is very difficult, we restrict our
attention to the simpler (recursively-enumerable yet still undecidable) case of fair ul-
timately periodic executions, which after a finite execution prefix (called the stem) ul-
timately repeat the same sequence of actions (the lasso) over and over again. Many
interesting non-terminating executions occurring in practice are ultimately periodic.
For instance, in the program of Figure 1b, every non-terminating execution must re-
peat the same sequence of statements on Lines 7, 8, 12, and 13. Similarly, every fair
non-terminating execution of the program in Figure 1c must repeat the statements of
Lines 5–8, 12–15, and 20–21. Thus focusing on periodically repeating executions is
already quite interesting. Furthermore, every ultimately periodic execution is described
with a finite number of thread contexts: those occurring during the stem, and those oc-
curring during each iteration of the lasso; e.g., the non-terminating executions of each
program in Figure 1 require just two contexts per thread: one per stem, and one per
lasso.
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By bounding the number of thread contexts we detect ultimately periodic execu-
tions compositionally, without exposing the local configurations of each thread to one
another. We actually detect ultimately periodic executions that repeatedly encounter,
along some lasso, the same sequence of shared global state valuations at thread context-
switch points. Clearly ultimate state-repeatability is a sufficient condition for ultimate
periodicity. We prove that this condition is necessary when the domain of shared global
state valuations is finite. (This is not trivial in the presence of recursion, where threads
access unbounded procedure stacks). Then, supposing each thread executes within k1

contexts during the stem, and within k2 contexts during each iteration of this lasso,
its execution is summarized by an interface of k = 2(k1 + k2) valuations g1g′1 . . .gkg′k:
the shared global state valuations gi and g′i, resp., encountered at the beginning and
end of each execution context during the stem and lasso. Given the possible bounded
interfaces of each thread, we infer the existence of ultimately periodic executions by
composing thread interfaces. Essentially, two context summaries g1g′1 and g2g′2 com-
pose when g′1 = g2; by composing interfaces so that the valuation reached in the last
context of the lasso match both the valuation reached in the last context of the stem,
and the starting valuation of the first context of the lasso, we deduce the existence of a
periodic computation.

We thus reduce the problem of detecting ultimately periodic computations to that of
computing thread interfaces. Essentially, we must establish two conditions on an inter-
face g1g′1 . . .gkg′k of a thread t: first, the interface describes a valid thread computation,
i.e., beginning from g1, t executing alone reaches g′1, and when resumed from the valu-
ation g2, t executing alone reaches g′2, etc. Second, the interface is repeatable, i.e., each
time t returns to its first lasso context i, t can again repeat the same sequence of global
valuations gig′i . . .gkg′k. Though both conditions reduce to (repeated) state-reachability
for non-recursive programs, ensuring repeatability in recursive programs requires estab-
lishing equivalence of an unbounded number of procedure frames visited along each
period of the lasso. An execution in which the procedure stack incurs a net decrease, for
instance, along the lasso is not repeatable. We avoid explicitly comparing stack frames
simply by noticing that along each period of any repeating execution there exists a
procedure keyframe which is never returned from. By checking whether one keyframe
can reach the same keyframe—perhaps with the first keyframe below on the procedure
stack—in the same context number one period later, we ensure repeatability.

Finally, to ensure that the detected non-terminating executions are fair, we expose
a bounded amount of additional information across thread interfaces. For the case of
strong fairness, we observe that any thread t which does not execute during the lasso
must be blocked, i.e., waiting on a synchronization object x which has not been signaled.
Furthermore, in any fair execution, no concurrently executing thread may signal x, since
otherwise t would become temporarily enabled—thus a violation of strong fairness. In
this way, by ensuring thread interfaces agree on the set X of indefinitely waited-on
synchronization objects, each thread can locally ensure no x ∈ X is signaled during the
lasso, and only threads waiting on some x ∈ X are exempt from participating in the
lasso.

As is the case for finding safety violations, the compositional fair non-termination
analysis we describe in Section 3 has a convenient encoding as sequential program
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analysis. In Section 4 we describe a code-to-code translation from multithreaded pro-
grams to sequential programs which violate an assertion exactly when the source pro-
gram has a fair ultimately periodic execution with given bounds k1 and k2 on the num-
ber of stem and lasso contexts.1 In Section 5 we discuss our implementation MUTANT,
which systematically detects fair non-terminating executions in typical concurrent data
structure and mutual exclusion algorithms.

2 Recursive Multithreaded Programs

We consider a simple but general multithreaded program model in which each of a
statically-determined collection Tids of threads concurrently execute as recursive se-
quential programs which access a shared global state. For simplicity we suppose each
program declares a single shared global variable g with domain Vals, and each proce-
dure from a finite set Procs declares only a single parameter l, also of domain Vals;
furthermore each program statement is uniquely labeled from a set Locs of program
locations. A (procedure) frame f = 〈�,v〉 is a program location � ∈ Locs along with
a local variable valuation v ∈ Vals, and a configuration c = 〈g,σ〉 is a shared global
state valuation g ∈ Vals along with a local state map σ : Tids→ (Locs×Vals)+ map-

ping each thread t to a procedure frame stack σ(t). The transition relation
t,�
=⇒ between

configurations is labelled by the active program location � ∈ Locs and acting thread
t ∈ Tids. We suppose a standard set of inter-procedural program statements, including
assignment x := e, branching if e then s1 else s2, and looping while e do s statements,
lock acquire e and release e, and procedure call x := p e and return e, where e are
expressions from an unspecified grammar, s are labeled sub-statements, and p ∈ Procs.
The definition of the transition relation is standard, as are the following:

Trace, Reachable: A trace π of a program P from a configuration c is a possibly empty
transition-label sequence a0a1a2 . . . for which there exists a configuration sequence

c0c1c2 . . . such that c0 = c and c j
a j
=⇒P c j+1 for all 0 ≤ j < |π|; each configuration

c j = 〈g,σ〉 (alternatively, the shared global valuation g) is said to be reachable from
c by the finite trace π j = a0a1 . . .a j−1.

Context: A context of thread t is a trace π = a0a1 . . . in which for all 0 ≤ j < |π| there
exists �∈ Locs such that a j = 〈t, �〉; every trace is a context-sequence concatenation.

Enabled, Blocked, Fair: A thread t ∈ Tids is enabled after a finite trace π if and only
if there exists an a labeling a t-transition such that π ·a is also a trace; otherwise t is
blocked. An infinite trace is strongly fair (resp., weakly fair) if each infinitely-often
(resp., continuously) enabled thread makes a transition infinitely often.

Checking typical safety and liveness specifications often reduces to finding whether
certain program configurations are reachable, or determining whether fair infinite traces
are possible. The following two problems are thus fundamental.

Problem 1 (State-Reachability). Given a configuration c of a program P, and a shared
global state valuation g, is g reachable from c in P?

1 Technically, our reduction considers round-robin schedules of thread contexts.
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Problem 2 (Fair Non-Termination). Given a configuration c of a program P, does there
exist an infinite strongly (resp., weakly) fair trace of P from c?

Even for recursive multithreaded programs accessing finite data, both problems are
undecidable [23]. However, while state-reachability is recursively enumerable by ex-
amining all possible concurrent traces in increasing length, detecting non-terminating
traces is more complex; from Yen [24] one deduces that the problem is not even semi-
decidable. A simpler problem is to detect non-terminating traces which eventually re-
peat the same sequence of actions indefinitely. Formally, an infinite trace π is ultimately
periodic when there exists two finite traces µ and ν, called resp., the stem and lasso,
such that π = µ ·νω. Then a key question is the detection of ultimately periodic traces.

Problem 3 (Fair Periodic Non-Termination). Given a configuration c of a program P,
does there exist an ultimately periodic strongly (resp., weakly) fair trace of P from c?

Periodic non-termination is also undecidable, yet still recursively enumerable—by ex-
amining all possible stems and lassos in increasing length. This implies that not all
non-terminating executions are ultimately periodic. In principle, coordinating threads
can construct phased executions in which each phase consists of an increasingly-longer
sequence of actions, using their unbounded procedure stacks to simulate unbounded in-
teger counters. Still, it is unclear whether non-periodic executions arise in practice. Our
goal is to efficiently detect ultimately periodic fair traces where they exist.

3 Bounded Compositional Non-termination Analysis

Rather than incrementally searching for non-terminating executions by bounding the
length of the considered stems and lassos, our discovery strategy bounds the num-
ber of thread contexts in the considered stems and lassos; this strategy is justified by
the hypothesis that many interesting bugs are likely to occur within few contexts per
thread [21, 17]. Notice, for instance, that the non-terminating executions of each of the
programs in Figure 1 require only one context-switch per thread during their repeat-
ing sequences of actions. Formally for k ∈ N, we say a trace π = a0a1 . . . is k context-
bounded when there exist j1, j2, . . . , jk ∈ N and jk+1 = |π| such that π = π1π2 . . .πk

is a sequence of k thread contexts πi = a ji . . .a ji+1−1; we refer to each ji as a context-
switch point. Though we expect many ultimately periodic traces to exhibit few con-
text switches per period, context-bounding is anyhow complete in the limit as context-
bounds approach infinity.

Remark 1. For every ultimately periodic trace µ ·νω there exists k1,k2 ∈ N such that µ
and ν are, resp., k1 and k2 context-bounded.

In what follows, we show that for given stem and lasso context-bounds, resp., k1 ∈ N

and k2 ∈ N, the fair periodic non-termination problem reduces to the state-reachability
problem in sequential programs; the salient feature of this reduction is compositionality:
the resulting sequential program considers each thread independently, without explicitly
representing thread-product states. The general idea is to show that all ultimately peri-
odic executions can be decomposed into stem and lasso such that during each period of
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the given lasso, each thread reencounters the same global valuations at context-switch
points, and reencounters the same topmost stack-frame valuation; since each procedure
stack must be non-decreasing over each lasso iteration, there must be some frame during
each period which is never returned from. We show that detecting these repeated global
valuations and topmost stack frames over a single lasso iteration implies periodicity.

To begin, we show that the existence of an ultimately periodic trace µ · νω implies
the existence of an ultimately periodic trace µ′ · ν′ω in which the sequence of global
valuations (and topmost procedure-stack frames) of each thread at context-switch points
repeat in each iteration of the lasso ν′.

3.1 Annotated Traces

For a configuration c = 〈g,σ〉 of a program P, we write c[g := g′] to denote the
configuration c = 〈g′,σ〉. An annotated trace π̄ of a program P is a sequence π̄ =
〈gi,τi,πi,g′i,τ′i〉i=1...k—where each gi,g′i ∈ Vals are global valuations, τi,τ′i ∈ Tids →
(Locs×Vals) are thread-to-frame mappings, and πi is a thread context—for which
there exist local-state maps σ1,σ′

1, . . . ,σk,σ′
k : Tids→ (Locs×Vals)+ of configurations

c1,c′1, . . . ,ck,c′k where for each 1 ≤ i ≤ k:

– ci = 〈gi,σi〉 and c′i = 〈g′i,σ′
i〉,

– σi(t) = τi(t) ·wi and σ′
i(t) = τ′i(t) ·w′

i for each thread t ∈ Tids, for some wi,w′
i,

– each c′i is reachable from ci via the trace πi, and
– ci+1 = c′i[g := gi+1] for i < k.

We say the annotated trace π̄ is valid when ci+1 = c′i for 1 ≤ i < k. The definitions
applying to traces are lifted naturally to annotated traces.

Lemma 1. There exists an ultimately periodic trace µ · νω from a configuration c in a
program P iff there exists a valid annotated ultimately periodic trace µ̄ · ν̄ω from c in P.

As we are mainly concerned with annotated traces, we usually drop the bar-notation,
writing, e.g., π to denote an annotated trace π̄, and use “trace” to mean “annotated
trace.”

3.2 Compositional Detection of Periodic Traces

In the following we reduce the detection of valid ultimately periodic traces to the detec-
tion of ultimately periodic traces for each individual thread t ∈ Tids. Let π = µ · νω

be a valid ultimately periodic trace which divides µ and ν, resp., into k1 ∈ N and
k2 ∈ N contexts, indexed by Iµ ⊆ N and Iν ⊆ N, as µ = 〈gi,τi,µi,g′i,τ′i〉i∈Iµ and ν =
〈gi,τi,νi,g′i,τ′i〉i∈Iν . We construct an ultimately periodic trace πt in which only t is ac-
tive. Roughly speaking, the constructed trace πt corresponds to the projection of π on
the set of t-labeled transitions. Given the global values gi and g′i seen at the beginning
and end of each context i of thread t, the trace πt can be computed in complete isolation:
we simply resume the ith context of thread t with the global value gi, and ensure g′i is
encountered at the end of the ith context. Supposing thread t executes in the contexts
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indexed by Iµ
t ⊆ Iµ, along the stem µ, and in the contexts indexed by Iν

t ⊆ Iν along the
lasso ν, we define the thread-periodic trace for t as πt

def
= µt ·νω

t , where

µt =
〈
gi,τi(t),µi,g

′
i,τ

′
i(t)

〉
i∈Iµ

t
νt =

〈
gi,τi(t),νi,g

′
i,τ

′
i(t)

〉
i∈Iν

t

For the thread-periodic trace πt of t, we associate two sequences SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

of global valuation pairs encountered at the beginning and end
of each context, called, resp., the stem and lasso interfaces; the sizes of interfaces are
bounded by the number of contexts: |SI(πt)| ≤ k1 and |LI(πt)| ≤ k2.

We define the shuffle of a sequence set S inductively as shuffle({ε}) = {ε}, and
shuffle(S) =

⋃{s1 · shuffle(S′) : s1s2 . . . s j ∈ S and S \ {s1 . . .s j}∪{s2 . . . s j}= S′}; for
instance, shuffle({s1s2,s3}) = {s1s2s3,s1s3s2,s3s1s2}. We say the thread interface sets
S and L are compatible when there exists s1 . . . sk1 ∈ shuffle(S) and sk1+1 . . . sk1+k2 ∈
shuffle(L) where each si = 〈gi,g′i〉, and g′i = gi+1 for 0 < i < k1+k2, and g′k1+k2

= gk1+1.
Extending this definition, we say a set {πt : t ∈ Tids} of thread-periodic traces is com-
patible if and only if {SI(πt) : t ∈ Tids} and {LI(πt) : t ∈ Tids} are compatible.

Lemma 2. If there exists a compatible set of thread-periodic traces {πt : t ∈ Tids} of a
program P, then there exists a valid ultimately periodic trace π = µ ·νω of P. Moreover,
µ and ν are, resp., ∑t∈Tids |SI(πt)| and ∑t∈Tids |LI(πt)| context-bounded.

Lemma 2 suggests a compositional algorithm to detect ultimately periodic valid
traces. As each trace is constructed from a straight-forward composition of thread-
periodic traces, we need simply to compute a compatible set of thread-periodic
traces. We thus reduce the detection of valid ultimately periodic traces to com-
puting (finite) compatible thread interface sets {St : t ∈ Tids and |St | ≤ k1} and
{Lt : t ∈ Tids and |Lt | ≤ k2}, and ensure the existence of, for each thread t ∈ Tids, a
thread-periodic trace πt such that SI(πt) = St and LI(πt) = Lt .

3.3 From Thread-Periodic Traces to Sequential Reachability

Section 3.2 reduced the problem of finding periodic executions to that of computing
thread interfaces. Now we demonstrate that thread interfaces can be computed by state-
reachability in sequential programs. For the remainder of this section we fix an initial
configuration c0 of a program P, and a thread-periodic trace πt = µt ·νω

t of a thread t.
We know that the thread period trace πt repeats the same sequence of actions per

period over and over indefinitely. It follows that although during each period the size
of t’s frame stack may increase and decrease due to procedure calling and returning,
the net size of t’s frame stack must not be decreasing—otherwise t cannot repeat νt

indefinitely. This implies that there exists a sequence f1 f2 . . . of t’s procedure frames—
each fi ∈ (Locs×Vals) encountered in the ith period—which are never returned from;
we call these frames the keyframes of t. Since we repeat the same sequence of calls
and returns along each period, we can assume w.l.o.g. that each keyframe fi is the
procedure frame encountered at the beginning of the same context shift in νt with
0 ≤ shift < |LI(πt)|. Furthermore, we know that these keyframes correspond to the
same procedure frame f (from definition of value annotated traces).
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In order to check that f is a keyframe (i.e., never removed from the stack), we check
that from a configuration where the stack contains only the frame f , we can reach a
configuration with topmost frame f after executing the trace νt (modulo rotation). We
know also that executing the trace µt followed by the first shift contexts in νt will
result in a configuration with topmost frame f . This is exactly what is defined below:

Feasibility: Let SI(πt) = 〈gi,g′i〉i∈Iµ
t

and LI(πt) = 〈gi,g′i〉i∈Iν
t

be the given stem and
lasso interfaces. We say that 〈SI(πt),LI(πt)〉 is feasible if there are a frame f ,
a natural number shift with 0 ≤ shift < k1, and a sequence of configurations
c1,c′1, . . .cm,c′m with m = (k1 + k2 +shift) such that, for every 1 ≤ j ≤ m:

– c′j is reachable from c j via a trace of the thread t.
– The global valuation in c j and c′j are gi and g′i with i = j(mod k1+k2)+k2+1.
– The stack in c′j−1 and c j are the same when j �= (k2 +shift+1) with c′0 = c0.
– The stack in ck2+shift+1 contains only the frame f . Moreover, the topmost

frame in c′k2+shift and c′m is precisely f .

Lemma 3. If the thread trace πt is periodic, then 〈SI(πt),LI(πt)〉 is feasible.

Now, we can show if there is a thread trace π′
t of t from a configuration containing the

keyframe f , satisfying the interface Lt , and reaching a configuration whose topmost
frame is precisely f , then this thread trace can be executed infinity often. This means
that π′

t can be considered as a lasso trace of t whose lasso interface is precisely Lt . On
the other hand, if there is a thread trace π′′

t of t from the initial configuration to a con-
figuration whose topmost keyframe is precisely f while respecting the stem interface S′t
(which is the concatenation of St and the first (shift)-elements of Lt ) then π′′

t ·π′
t can

be considered as a stem trace for the lasso trace π′
t .

Lemma 4. Given a compatible interface sets {St : t ∈ Tids} and {Lt : t ∈ Tids} such
that 〈St ,Lt〉 is feasible for each t ∈ Tids, we can construct compatible thread-periodic
traces {πt : t ∈ Tids} such that |SI(πt)|= |St |+ |Lt | and |LI(πt)|= |Lt | for each t ∈Tids.

The lemmata above suggest the following procedure: first, guess compatible interfaces
{St ,Lt : t ∈ Tids}, then check feasibility of each 〈St ,Lt〉. Observe that checking the fea-
sibility of each given pair 〈St ,Lt〉 boilds down to solving reachability problems in the
sequential program describing the behavior of the thread t. Section 4 concretizes this
algorithm in a code-to-code reduction to sequential program analysis.

3.4 Encoding Fairness

By our definitions in Section 2 any blocked thread must be waiting to acquire a held
lock. This leads to the following characterization of strongly fair ultimately periodic
traces: for each thread t ∈ Tids, either

Case 1. The lasso contains at least one transition of t, or
Case 2. The thread t is blocked throughout the lasso, waiting to acquire some lock

x ∈ Locks; this further implies that
Cond. 1 the lock x may not be released during the lasso by any thread,
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Cond. 2 the lock x must be held by another thread at the beginning of the lasso,
and

Cond. 3 t remains at the control location of the acquire of x throughout the lasso.

These conditions characterize strongly fair ultimately periodic computations. We ensure
these conditions are met by extending the notion of interfaces to include the set X ⊆
Locks of locks which are held throughout the lasso. Then, we must ensure locally per
thread that any x ∈ X is not released during the lasso (Cond. 1), and that some thread
holds x when entering the lasso (Cond. 2); additionally, we allow any thread attempting
to acquire some x∈ X to execute no further action. (Observe that if the lock x is released
during the lasso by any thread (see Cond. 1 of Case 2) then the resulting ultimately
periodic computation is not strongly-fair since the thread t is infinitely often enabled
and does not infinity often fire a transition.) Weak fairness can be similarly characterized
using a set Y ⊆ Locks of locks which are held at some point during the lasso; we then
ensure that each y ∈ Y is either held at the beginning of the lasso, or acquired at some
point during the lasso.

4 Reduction to Sequential Program Analysis

The compositional analysis outlined in Section 3 reduces (context-bounded) fair peri-
odic non-termination to state-reachability in sequential programs. Given thread stem
and lasso interfaces, and the set of locks held throughout the lasso, the feasibility of
each interface is computed separately, per thread. In this section we describe how to
implement this reduction by a code-to-code translation to sequential programs with an
assertion which fails exactly when the source program has a strongly fair ultimately
periodic execution whose stem and lasso satisfy a given context bound.2 Figure 2 lists
our translation in full.

Essentially, we introduce a Main procedure for the target program which executes
each thread one-by-one using an initially-guessed sequence of global valuations stored
in Stem0 and Lasso0. For each thread t, we guess the number—stored in shift—of
contexts following the k1st context until t’s keyframe is encountered on Line 18, and
begin executing t’s main procedure Main[t] on Line 21. Initially, the values stored in
Stem and Lasso are the values seen at the beginning of each context of the first thread
during, resp., the stem and repeating lasso. After execution of the ith thread, the values
of Stem and Lasso are the values seen at the end of each context of the ith thread, and
at the beginning of each context of the (i+1)st thread. Accordingly, after the execution
of the final thread, the values seen at the end of each context must match the values
guessed at the beginning of the following contexts of the first thread, according to the
round-robin order; the assumptions on Lines 22–27 ensure these values match.

The execution of each thread thus acts simply to compute its interface. As the
keyframes of different threads may be encountered at different points along the lasso,

2 Technically we consider bounded round-robin thread schedules rather than bounded context
switch. Though in principle the two notions are equivalent for a fixed number of threads—
i.e., any k-context execution takes place within k rounds, and any k-round n-thread execution
takes place in kn contexts [15]—ensuring interface compatibility is simpler assuming round-
robin.
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the length of each thread’s stem varies. Our translation computes for each thread a
stem long enough (at most k1 + k2 − 1 contexts) to cover the stem of any thread. Since
each thread’s repeating sequence may begin as soon as the k1st context, the stem and
lasso computation may overlap. Our translation maintains the invariant that the Stem

(resp., Lasso) values are active exactly when k1 �=⊥ (resp., k2 �=⊥). Reads and writes
to shared variables (on Lines 47–57) read and write to both Stem and Lasso as they are
active.

Our translation also adds code at every potential context switch point (Lines 71–
96). Initially, the context counters k1 and k2 are incremented nondeterministically and
synchronously (the block starting at Line 74). Then, at Line 78, we check whether the
thread’s keyframe has been encountered for the first time, and if so make a snapshot of
the local valuation and program location, and activate the lasso; later along, at Line 90,
we validate the snapshot when returning to the same keyframe (perhaps with a larger
procedure stack). At some point in between, at Line 86, the stem becomes inactive.
We ensure using the local variable bottom that the keyframe in which a thread begins
repeating is never returned from.

We ensure strong fairness using an auxiliary vector of Boolean constants waited,
one per lock x ∈ Locks, indicating the set of locks which are held throughout the lasso.
According to Section 3.4, we ensure each waited lock is held at the beginning of the
lasso (Lines 28–30) and not released during the lasso (Line 68), and allow attempted
acquires to abort (Line 63).

Lemma 5. The program ((P))k1,k2 violates its assertion if P has a strongly-fair ulti-
mately periodic round-robin execution with k1 ∈ N and k2 ∈ N, resp., stem and lasso
rounds; if ((P))k1,k2 violates its assertion then P has a strongly-fair ultimately periodic
round-robin execution with k1 + k2 and k2, resp., stem and lasso rounds.

5 Experimental Evaluation

We have implemented our analysis, based on the code-to-code translation presented
in Section 4. Our prototype tool, called MUTANT3, takes as input a program writ-
ten in the BOOGIE intermediate verification language [2]. Though normally a rich se-
quential language with recursive procedures, integers, maps, and algebraic datatypes,
we have extended BOOGIE with thread-creation and atomic blocks, which we use to
model shared-memory multithreaded programs with synchronization operations. Given
a bound K ∈ N (where K = k1 + k2), MUTANT outputs an assertion-annotated sequen-
tial BOOGIE program. We feed the resulting program to our SMT-based bounded model
checker CORRAL [14]. MUTANT has support for strong fairness, and does not falsely
detect nonterminating executions in the program of Figure 1a, for instance.

As an initial example to demonstrate MUTANT’s effectiveness, we consider a try-
lock based algorithm for the dining philosophers problem. This program involves N
locks and N threads, each of which executes the code shown in Figure 3a. Each philoso-
pher tries to acquire two locks. TryLock is a non-blocking synchronization operation
that returns true when the lock is successfully acquired, otherwise it returns false. If

3 MUTANT stands for MUltiThreAded Non Termination.
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// translation of
// var g: T
var Stem[k1+k2-1]: T
var Lasso[k2]: T

5 var Local: T
var Location: Locs

var shift: N
<k2 ∪{⊥}

const waited[Locks]: B

var k1: N∪{⊥}
10 var k2: N∪{⊥}

proc Main ()
const Stem0 := �;
const Lasso0 := �;

15 Stem := Stem0;
Lasso := Lasso0;
foreach t in Tids do

shift := �;
k1 := 0;

20 k2 := ⊥;
call Main[t] ();

assume
Stem[0..k1+k2-3]
= Stem0[1..k1+k2-2];

25 assume
Lasso[0..k2-2]
= Lasso0[1..k2-1];

assume ∀x ∈ Locks·
x(Lasso[0])

30 ⇔ waited[x];
assert false;
return

// translation of
// proc p (var l: T) s

35 proc p (var l: T,
bottom: B) s

// translation of
// call x := p e

40 call x := p (e,�)

// translation of
// return e
assume !bottom;

45 return e

// translation of shared
// variable read x := g
assume Stem[k1]

50 = Lasso[k2];
x := Stem[k1]
x := Lasso[k2];

// translation of shared
55 // variable write g := e
Stem[k1] := e;
Lasso[k2] := e

// translation of
60 // acquire x

if shift = ⊥ ∧ �
∧ waited[x] then
abort;

acquire x

65

// translation of
// release x
assume k2 ⇒ !waited[x];
release x

70

// translation of
// (implicit) yield
// at location ‘loc’
while � do

75 k1 := k1 + 1;
k2 := (k2+1) mod k2;

if k1 = k1+shift
∧ k2 = ⊥ then

80 // begin the lasso
assume bottom;
k2 := shift;
Local := l;
Location := loc;

85

if k1 ≥ k1+k2-1 then
// end the stem
k1 := ⊥;

90 if k2 = shift
∧ k1 = ⊥ then
// end the lasso
assume Local = l;
assume Location = loc;

95 // exit to main
abort;

Fig. 2. The sequential translation ((P))k1,k2 of a multithreaded program P. We assume that state-
ments which evaluate undefined expressions (i.e., using ⊥ in arithmetic or array indexing) are
simply skipped, and that no statement both reads and writes to g. The expression � nondetermin-
istically evaluates to any well-typed value, and the assume e statement proceeds only when e
evaluates to true. The abort statement discards the procedure stack and returns control to Main.

a philosopher acquires the left lock but is not able to acquire the right lock, then he
releases the left lock and tries again. A philosopher terminates when he is able to ac-
quire both locks (Line 10). This program has a fair non-terminating execution for each
N ≥ 2, namely where each philosopher first acquires their left lock, then upon seeing
their right lock unavailable, they release their left lock. MUTANT is able to automat-
ically detect this execution for each value of N with K = 2; we report running times
in Figure 3d. Note that while this execution requires all N threads to participate, each
thread only uses a fixed number of context switches in each period of the lasso. Though
the state-space of the program grows exponentially with N, Figure 3d demonstrates
that MUTANT scales sub-exponentially. Though the program has unfair non-terminating
executions—e.g., where one philosopher acquires a lock and ceases to participate fur-
ther, while the others continuously spin waiting to acquire both their locks—MUTANT

correctly does not report any such unfair non-terminating executions.
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1 // An array of N locks
2 var Lock[N]: mutex
3

4 proc Philosopher(n: int)
5 var left := Lock[n];
6 var right := Lock[(n+1)%N];
7 while true do
8 if TryLock(left)
9 if TryLock(right)
10 break
11 else
12 ReleaseLock(left);
13 ReleaseLock(right);
14 ReleaseLock(left);
15 return

(a)

1 proc Thread1()
2 var v1 := �;
3 add(v1);
4 flag := false;
5 return
6

7 proc Thread2()
8 while flag do
9 var v2 := �;
10 if � then
11 add(v2)
12 else
13 remove(v2);
14 return

(b)

1 while e1 do
2 timeout := false;
3 if � and e2 then
4 timeout := true;
5 break

(c)

N=2 3 4 5 6
2.1s 3.43s 6.13s 8.94s 21.91s

N=7 8 9 10
15.79s 30.77s 31.66s 43.54s

(d)

Fig. 3. (a) TryLock based dining phisophers. (b) A concurrent client operating on an Optimisti-
cList. (c) Modeling timeout. (d) Running time of MUTANT on the dining philosophers example.
As our verifier is based on the Z3 SMT solver, running times may increase non-uniformly with
N due to Z3’s internal heuristics, which may vary widely across different instances.

As a second example we consider the concurrent OptimisticList algorithm from
Section 9.6 of Herlihy and Shavit [9], supporting concurrent insertions and deletions on
sorted lists using optimistic concurrency control. Our BOOGIE encoding spans roughly
250 lines. In order to determine whether each operation is guaranteed to terminate in
the presence of an environment performing arbitrary list operations, we wrote the two-
thread driver of Figure 3b. While the first thread tries to insert an element, the second
thread continuously fires add and remove operations with arbitrary arguments. The
shared variable flag ensures that the second thread terminates when the first thread
does. Though not shown, the driver also initializes the list with a few arbitrary elements.

This program has the following fair non-terminating execution, similar in spirit to
that in Figure 1c: first, the add operation of Thread1 selects a position in the (sorted) list
where to insert a value v1, say between consecutive nodes with values a and b (i.e., such
that a < v1 < b). Then the second thread picks a value v2, such that a < v2 < b, and
inserts. When the first thread then sees that list has been modified at the position it was
about to insert, it retries the add operation. Meanwhile, the second thread fires a remove
operation and deletes v2. This program then reencounters the initial configuration, and
the add operation has not succeeded. MUTANT finds this execution with three contexts
per thread in 44 seconds. Interesting to note is that even though this program may use
infinite-domain data values, there remains nevertheless an execution that loops back
exactly to the configuration. One slightly tricky aspect of this example is modeling
memory allocation: because the second thread allocates and removes a list node in each
period, we must explicitly free the removed node in order to reencounter the same
configuration at the end of the lasso. As future work, using a more abstract notion of
heap equality could simplify this aspect.

As a third example we consider a algorithm developed by our colleagues [20] that en-
ables programmers to write assertions which are checked continuously and concurrently
with the actual program, in similar spirit to asynchronous assertions [1]. One salient
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feature of this algorithm is that it is non-blocking, i.e., the evaluation of the asserted ex-
pressions does not block other threads from making progress. We coded the algorithm,
and two variations with possible non-termination bugs, in roughly 230 lines of BOOGIE

code. In each of the potentially-buggy variations we found a non-terminating execution
where incorrect assertion evaluations led to livelock. To our surprise, we also found a
non-terminating execution in our supposedly-correct variation. After consulting with
the developers, the problem turned out to be in our modeling. To understand the prob-
lem, consider the code in Fig. 3c. MUTANT detected non-termination by skipping the
then-branch in each iteration of the lasso. (The actual non-termination found by MU-
TANT required concurrent reasoning, even though the lasso only involved one thread.)
However, the intention of the designers was that this branch represents an actual time
out reflecting a timer running down to zero. We corrected this modeling by ensuring that
the above choice must evaluate to true at least once within the lasso. This is similar to
enforcing Condition 1, Case 2 of strong fairness in Section 3. Nonetheless, MUTANT’s
output is still valuable: it says that if the time out is not implemented correctly, then the
program may enter a livelock.

MUTANT is able to determine the absence of periodic nontermination bugs in the
corrected variation with up to 3 contexts per thread in 402 seconds. MUTANT also de-
tects nonterminating executions in the three buggy variations in 11, 21, and 36 seconds.
These experiments demonstrate that MUTANT is effective on real-world algorithms.

6 Related Work

Our work follows the line of research on compositional reductions from concurrent
to sequential programs. The initial so-called “sequentialization” [22] explored multi-
threaded programs up to one context-switch between threads. Following Qadeer and
Rehof [21]’s generalization of context-bounding to an arbitrary number of context
switches, Lal and Reps [15] later proposed a sequentialization to handle a parameter-
ized amount of context-switches between a statically-determined set of threads execut-
ing in round-robin order. La Torre et al. [12] extended the approach to handle programs
parameterized by an unbounded number of statically-determined threads, and shortly
after, Emmi et al. [6] further extended these results to handle an unbounded amount of
dynamically-created tasks. Bouajjani et al. [3] pushed these results even further to a se-
quentialization which attempts to explore as many behaviors as possible within a given
analysis budget. The compositional analyses resulting from each of these sequential-
izations however only consider finite executions, and are thus incapable of establishing
liveness properties.

Although much previous work has been done for proving termination and detecting
non-termination in sequential programs—for instance, Cook et al. [4] discover ranking
functions to prove termination of sequential programs, and Gupta et al. [8] use concolic
execution to detect non-terminating executions in sequential programs—relatively little
attention has been paid to multithreaded programs, where interesting non-terminating
executions often have little to do with possible divergence of data values. Though Cook
et al. [5] have extended TERMINATOR to multithreaded programs, their analysis is ori-
ented to proving termination; failure to prove termination does not generally indicate the
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existence of a non-terminating execution. More recently Popeea and Rybalchenko [19]
have developed compositional techniques to prove termination in multithreaded pro-
grams, though again, their approach does not certify the existence of non-terminating
executions. Because both of these techniques focus on establishing a proof of termina-
tion, they necessarily consider over-approximations of concurrent programs, whereas
our technique looks at an under-approximation to find counterexamples faster.

Musuvathi and Qadeer [18] consider liveness properties in multithreaded programs,
but their approach is based on systematic testing, and thus behavioral coverage is lim-
ited by test harnesses and concrete input values. Moreover, their approach is stateless
(i.e., they never store states during the execution of the program), hence they can only
detect possible non-termination by identifying lengthy executions.

In the most closely related work of which we are aware, Morse et al. [16] pro-
pose a compositional LTL model checking technique for multithreaded programs based
on context-bounding. As far as we can tell, their technique (a) does not ensure non-
terminating executions are fair, (b) does not consider lassos in which multiple recursive
threads interfere, and (c) requires very high context-bounds to capture synchronized
interaction between the program and a monitor Büchi automaton.

7 Conclusion
We have developed a compositional algorithm for detecting fair ultimately periodic
executions in recursive multithreaded programs by bounding the number of context-
switches in each repeating period. Our approach reveals a simple-to-implement code-to-
code translation, which reduces the problem to finding assertion violations in recursive
sequential programs; consequently we leverage existing sequential analysis algorithms.

Our approach can be used to encode other linear temporal logic conditions besides
non-termination, e.g., response properties. Though for specific classes of formulae/prop-
erties efficient encodings are possible, a sequentialization parameterized by arbitrary
linear temporal logic formulae must essentially construct the product of the input pro-
gram with an arbitrary Büchi automaton; the encoding of this (synchronous) product as
a sequential program may not be as succinct.

In this work, discovering ultimately periodic executions is done by detecting repeated
state valuations. This notion of repeatability is complete for programs manipulating fi-
nite data, but is not complete in general. Still, this notion is actually relevant in many
practical cases, since non-termination bugs in concurrent programs are often due to
non-state-changing retry mechanisms. In the case of infinite data domains periodic ex-
ecutions may exhibit, for instance, ever increasing counter values; there a notion of
repeatability more relaxed than state-equality may be necessary. This notion however,
contrary to the one we consider here, would have to account for the actions encountered
during the lasso. Ensuring repeatability may be complex to define and check, depending
on the data domains and the nature of program operations.
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