
Dynamic Test Input Generation for Database Applications∗

Michael Emmi
UC Los Angeles

mje@cs.ucla.edu

Rupak Majumdar
UC Los Angeles

rupak@cs.ucla.edu

Koushik Sen
UC Berkeley

ksen@cs.berkeley.edu

ABSTRACT
We describe an algorithm for automatic test input genera-
tion for database applications. Given a program in an im-
perative language that interacts with a database through
API calls, our algorithm generates both input data for the
program as well as suitable database records to system-
atically explore all paths of the program, including those
paths whose execution depend on data returned by database
queries. Our algorithm is based on concolic execution, where
the program is run with concrete inputs and simultaneously
also with symbolic inputs for both program variables as well
as the database state. The symbolic constraints generated
along a path enable us to derive new input values and new
database records that can cause execution to hit uncovered
paths. Simultaneously, the concrete execution helps to re-
tain precision in the symbolic computations by allowing dy-
namic values to be used in the symbolic executor. This
allows our algorithm, for example, to identify concrete SQL
queries made by the program, even if these queries are built
dynamically.

The contributions of this paper are the following. We
develop an algorithm that can track symbolic constraints
across language boundaries and use those constraints in con-
junction with a novel constraint solver to generate both pro-
gram inputs and database state. We propose a constraint
solver that can solve symbolic constraints consisting of both
linear arithmetic constraints over variables as well as string
constraints (string equality, disequality, as well as member-
ship in regular languages). Finally, we provide an evaluation
of the algorithm on a Java implementation of MediaWiki, a
popular wiki package that interacts with a database back-
end.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and debugging. D.2.4 [Software En-
gineering]: Software/Program Verification.
General Terms: Verification, Reliability.

∗This research was funded in part by the NSF grants NSF-
CCF-0427202 and NSF-CCF-0546170.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’07, July 9–12, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-734-6/07/0007 ...$5.00.

Keywords: directed random testing, database applica-
tions, automatic test generation, concolic testing.

1. INTRODUCTION
Programs that interact with database back-ends play a

central role in many software systems applications that re-
quire persistent data storage and high-performance data ac-
cess. Such programs include the business logic layer of most
middleware systems. The database management system
(DBMS) —which is usually bought off-the-shelf— ensures
atomic and durable access to large amounts of data, while
relieving the applications programmer of the low-level de-
tails of storage and retrieval. The correctness of database
systems have been the focus of extensive research. The cor-
rectness of business applications, though, depend as much
on the database management system implementation as it
does on the business logic of the application that queries and
manipulates the database. While DBMS systems are usu-
ally developed by major vendors with large software quality
assurance processes, and can be assumed to operate cor-
rectly, one would like to achieve the same level of quality
and reliability to the business critical applications that use
them.

The usual technique of quality assurance is testing: run
the program on many test inputs and check if the results
conform to the program specifications (or pass programmer-
written assertions). The success of testing highly depends on
the quality of the test inputs. A high quality test suite (that
exercises most behaviors of the application under test) may
be generated manually, by considering the specifications as
well as the implementation, and directing test cases to ex-
ercise different program behaviors. Unfortunately, for many
applications, manual and directed test generation is pro-
hibitively expensive, and manual tests must be augmented
with automatically generated tests. Automatic test gen-
eration has received a lot of research attention, and there
are several algorithms and implementations that generate
test suites. For example, white-box testing methods such as
symbolic execution may be used to generate good quality
test inputs. However, such test input generation techniques
run into certain problems when dealing with database-driven
programs. First, the test input generation algorithm has to
treat the database as an external environment. This is be-
cause the behavior of the program depends not just on the
inputs provided to the current run, but also on the set of
records stored in the database. Therefore, if the test in-
puts do not provide suitable values for both the program
inputs and the database state, the amount of test coverage

151

obtained may be low. Second, database applications are
multi-lingual: usually, an imperative program implements
the application logic, and makes declarative SQL queries to
the database. Therefore, the test input generation algorithm
must faithfully model the semantics of both languages and
analyze the mixed code under that model to generate tests
inputs. Such an analysis must cross the boundaries between
the application and the database.

We describe an algorithm and a tool for the automatic
generation of test input data for database applications.
Given a program which makes calls to a database through an
API, we automatically generate test inputs for the program
as well as database states that will attempt to systematically
exercise all executions of the application program, including
those paths whose execution depend on values returned by
database queries. In particular, given a coverage objective
such as branch coverage, our algorithm will attempt to find
test inputs as well as database states such that each branch
of the application is covered.

Our algorithm is based on concolic execution [11,24], that
runs a program under test simultaneously on random con-
crete inputs as well as symbolic inputs. The execution of
the program on symbolic inputs, or the symbolic execution,
is used in conjunction with a constraint solver to generate
concrete inputs for subsequent executions. Our main in-
sight is that during symbolic execution, the database state
can be maintained symbolically by tracking the SQL queries
made along the program execution path, by translating con-
straints in an WHERE clause to appropriate constraints in
linear arithmetic and over strings. At the end of the execu-
tion we get, in addition to a symbolic state giving a path
constraint, a constraint on the database state whose satisfy-
ing assignments are records that, if inserted to the database,
will return positive results for queries along the path.

In more detail, our testing algorithm performs concolic

testing of the source code [11, 24]. This involves running
the program simultaneously on random inputs and some
initial database state as well as on symbolic inputs and a
symbolic database. The symbolic execution generates con-
straints, called path constraints, over the symbolic program
inputs along the execution path as in [11, 24]. In addi-
tion, the algorithm generates constraints over the symbolic
database, called database constraints, by symbolically track-
ing the concrete SQL queries executed along the execution
path. Observe that to track a SQL query symbolically, we
need the concrete string representing the SQL query. Often
such a string cannot be inferred precisely by statically look-
ing at the program [7, 12, 13] or by observing a symbolic
execution. However, since we have the side-by-side concrete
execution, we can get the exact strings representing dynamic
queries made to the database, without requiring static anal-
ysis of strings.

At the end of one execution we consider, for each branch
hit on the path, the path constraints and database con-
straints up to that branch, negate the last path constraint,
and find satisfying assignments to these constraints. The
satisfying assignment either gives new values to the pro-
gram inputs, or suggests records that must be inserted in
the database in order for the new branch direction to be
executed. The program is then run concolically (i.e., both
concretely and symbolically) on these new inputs (or run
after the records have been inserted in the database) to gen-

erate further coverage. This continues until coverage goals
are met.

Technically, satisfying assignments are obtained using a
constraint solver for linear arithmetic together with a con-
straint solver for string constraints. While our constraint
solver is approximate, in that it assumes that arithmetic and
string constraints do not interact, and therefore may fail to
find satisfying assignments, we have found it adequate for a
large number of SQL query examples.

The problem of finding appropriate test inputs for
database applications has been studied before, and semi-
automatic user driven techniques to add records to the
database have been proposed [5, 6]. Most of these tech-
niques ask the user to suggest appropriate categories for
the attributes, and then fill up the database using pseudo-
random records chosen from the user-specified attribute
value ranges. In contrast, our test generation technique con-
siders the actual execution of the program, and adds records
to the database as direct responses to actual queries made
by the program on the database. The two techniques are
complementary: user-driven record generation can be used
to initialize the database to some state, and our technique
can be applied on top to target coverage goals that have not
been met by pseudo-random testing.

Our work is orthogonal to techniques that look for well-
formedness errors in SQL querying programs [12, 13], or for
security vulnerabilities in database applications, especially
vulnerabilities exploiting SQL injection attacks [15,26]. We
assume the queries are well-formed, and aim to generate
maximal coverage of the program paths by symbolically
tracking the database state, and automatically generating
appropriate records to be included in the database that (by
being returned as results of database queries) will exercise
specific program paths.

In summary, our contributions are the following.

• A test input generation algorithm for applications
that interact with database management systems, that
extends concolic testing with simultaneous symbolic
tracking of application state as well as database state;

• A constraint solver that can solve symbolic constraints
consisting of both linear arithmetic constraints over
variables as well as string constraints (string equal-
ity, disequality, as well as membership in regular lan-
guages); and

• An implementation of the test input generation algo-
rithm for Java programs using the JDBC interface, and
an evaluation of the algorithm on a Java implementa-
tion of MediaWiki, a popular wiki package.

2. OVERVIEW: AN SQL-QUERYING
APPLICATION

We provide an overview of our approach using a small
Java method making SQL queries. The code, shown in Fig-
ure 1, contains both Java code interfacing with the database
through JDBC and queries written in SQL. The goal of our
test generation approach is to generate sets of both pro-
gram inputs and suitable database records to direct execu-
tion through each feasible syntactic code path. To enable
the generation of such a complete set of test inputs, we need
to address the following challenges:

152

void query(int preferred) {
int inv;

1: DriverManager.registerDriver(...);
2: Statement stmt =

DriverManager.getConnection(...)
.createStatement();

3: if (preferred == 1)
4: inv = 0;
5: else
6: inv = 100;
7: String query =

"SELECT * FROM books WHERE inventory > "
+ inv + " AND subject LIKE ’CS%’";

8: ResultSet results = stmt.executeQuery(query);
9: while (results.next()) {
10: String val = results.getString("publisher");
11: Long isbn = results.getLong("isbn");
12: if (val.equals("ACM"))
13: this.discountSet.add(isbn, 20);
14: else
15: this.discountSet.add(isbn, 10);

}
}

Figure 1: A database-querying Java method

• In addition to the Java code, the dynamically con-
structed SQL queries must be identified and symbol-
ically executed, and symbolic state must be trans-
ferred across the language boundaries from Java to the
database and back.

• The set of constraints generated during symbolic ex-
ecution must be solved so that we can generate both
program inputs and database records.

In our algorithm, we address both these challenges and show
that we can generate test inputs for systematic testing of
database applications. In the example, we consider branch

coverage as the testing target, as opposed to full path cov-
erage. Our techniques can be extended to (bounded depth)
path coverage in a standard way [11].

The code in Figure 1 queries a database of books to figure
out a set of books that will be sold at a discount. Books
will be sold at a discount if they are on CS, and if their
inventory is high. However, preferred customers get the dis-
count irrespective of the inventory. The discount is different
for different publishers: ACM books are discounted 20%, all
others are discounted 10%. The method takes a parame-
ter preferred signifying whether the computation is for a
preferred customer.

The first two lines of the code (lines 1 and 2) open a
database connection and set up a statement. Lines 3 to 6
conditionally set the variable inv to 0 or 100, based on the
input flag preferred which identifies preferred customers.
Line 7 sets up the query as a string: the query looks for all
books whose inventory is more than inv copies, and whose
subject is a string that starts with “CS”. Notice that the
value of inv (0 or 100) depends on the input preferred.
Line 8 executes this query on the database, and constructs
a ResultSet, i.e., a set of records that satisfy the query. The
while loop on lines 9-15 iterates over the records returned
by the query, adding all books satisfying the query to a set
discountSet representing the books that would be sold at a
discount. If the publisher is “ACM” (the test on line 8), the

discount is 20%, otherwise it is 10%. We omit some error
handling code for readability.

In order to obtain full branch coverage for this code, we
have to execute the code for values of the input set to 1 (i.e.,
the user is preferred) or not 1 (the user is not preferred), and
in database contexts that (1) do not contain books with in-
ventory more than inv or books on CS, (2) contain books
with more than inv copies and on CS, (3) contain books
on CS with more than inv copies with publisher “ACM”
as well as books whose publisher is not “ACM.” An usual
symbolic execution based test generator [11, 24, 30, 31] that
ignores the database environment in which the program is
run, or which fixes the database with concrete records and
only executes queries concretely, may not be able to obtain
full coverage if all the different database states are not con-
sidered while testing. For example, if the testing naively
starts with a freshly installed copy of the program and the
database, the query will not return any results, and the body
of the while loop will not be executed. What we need is an
algorithm that treats database queries symbolically, and is
able to modify the database state (by inserting or deleting
records) so that the program is exercised along all the differ-
ent paths, based on the outcome of database queries made
along the execution.

Our test generation algorithm works as follows. It starts
by executing the program on random inputs and with an
initial database state. We shall assume for simplicity that
the database is empty to begin with. While executing the
program, our analysis simultaneously constructs a path con-

straint consisting of symbolic constraints on program vari-
ables that must hold in order to execute the path, as well as
a database constraint consisting of both database metadata
and the actual SQL queries executed.

For the first execution, we choose a random value for
preferred and run the program with an empty database. In
this run, the value of preferred, having been set randomly,
is very likely to be unequal to 1, so the else branch on line
6 will be executed. Since the database is empty, the result
set returned on line 8 is also empty and the while loop is
not entered. The path constraint for this path sets a con-
straint preferred 6= 1, reflecting the else branch of the con-
ditional executed on line 3. Moreover, it treats the variable
results as a symbolic variable, and states that results = ∅
(which is the abstraction for the predicate results.next()
being false). The database constraint contains the set of at-
tributes of the table books, and moreover records that any
record v in the relation results must satisfy the constraint
(obtained from the concrete SQL query):

v.inventory > 0 ∧ v.subject LIKE
′
CS%′ (1)

The first constraint in the above expression is a constraint in
linear arithmetic, and the second one is a string constraint

that stipulates that in any satisfying assignment, the string
variable subject must be assigned a string from the regular
expression CSΣ∗ of all strings starting with the letters CS,
followed by any sequence of 0 or more letters from the al-
phabet Σ. In particular, the branch on line 5 that enters the
body of the loop can be taken only if results is not empty,
i.e., results contains at least one entry satisfying the above
constraint.

At this point, our algorithm looks for touched but uncov-
ered branch statements. These are branches such that some
test execution has executed the then or the else branch,

153

but no test has executed the else, respectively, the then,
branch. In our example, the then branches at lines 3 and 9
are touched but uncovered. In order to cover the branch at
line 3, we negate the path constraint preferred 6= 1 to de-
rive a constraint preferred = 1 on the input. A satisfying
assignment for this constraint sets preferred to 1, and we
use this new input to execute the program. This time, the
then branch is taken on line 3, but the while loop is still not
entered.

Now we consider the uncovered branch entering the while
loop. We negate the constraint results.next() = ∅, and
find a satisfying assignment for this negated constraint to-
gether with the database constraint. This entails finding
records that satisfy the database constraint from Equa-
tion (1) subject to the database metadata that defines the
structure of the table books. While we assume here that
the constraint only consists of the WHERE clause, we can
conjoin additional database consistency constraints here as
well.

We find a satisfying assignment to the query by using a
constraint solver for strings together with a constraint solver
for linear arithmetic [8,18]. For our example, our constraint
solver can automatically produce a record

isbn 1 publisher ′ABS@E′

inventory 101 subject ′CS′

Notice that the attributes inventory and subject satisfy
the constraint, and the other attributes are given arbitrary
values.

We add this record to the database and run the test again.
This time, the while loop is entered, as the database query
on line 4 yields a result (namely, the record we added to the
database). Since the publisher attribute is not “ACM”, the
else branch of the conditional is taken. The path constraint
records this by storing the constraint

results.get(“publisher”) 6= ′
ACM

′ (2)

The algorithm now considers the remaining touched but
uncovered branch. To cover this branch, we consider the
negation of the constraint in Equation (2) and add that to
Equation (1). The resulting constraint is solved for satisfy-
ing assignments. This time, we get a satisfying assignment

isbn 776 publisher ′ACM′

inventory 122 subject ′CS′

Notice that the constraint from Equation (2) forces the pub-
lisher attribute to take the value “ACM”. This new record is
added to the database, and the program is run again. This
covers the then branch of the conditional.

At this point, we have achieved full branch coverage, and
our algorithm terminates.

As demonstrated, our algorithm performs symbolic ex-
ecution together with symbolic handling of the database
queries. By explicitly tracking the database state, it is able
to provide inputs that ensure higher coverage than standard
test generation techniques that ignore the database. More-
over, since symbolic execution is performed simultaneously
with concrete inputs, we can dynamically generate and trap
concrete queries sent to the database.

SELECT A1, A2, . . . , An
FROM r
WHERE bcond

DELETE FROM r
WHERE bcond

INSERT INTO r
VALUES (v1, . . . , vn)

UPDATE r
SET A = F (A)
WHERE bcond

Figure 2: Syntax of SQL data manipulation opera-
tions

bcond ::= bcond OR bterm

| bterm

bterm ::= bterm AND bfactor

| bfactor

bfactor ::= NOTbcond

| id IS NULL

| arithterm

| stringterm

arithterm ::= value θ value

value ::= id | num

stringterm ::= id LIKE string

| id η string

| id η id

θ ::= =|<|>|<=|>=|! =
η ::= =|! =

Figure 3: Simplified grammar for bcond

3. DATABASE-DRIVEN APPLICATIONS

3.1 Databases
Relational Databases We illustrate our algorithm on pro-
grams written in a simple imperative language that interact
with a set of relational databases. Let int and string de-
note the sorts of integers and finite strings (over some fixed
alphabet), and let ⊥ be a special “null” symbol. We write
int⊥ (respectively, string⊥) for the set int ∪ {⊥} (respec-
tively, string ∪ {⊥}). A relational schema is a finite set of
relation symbols with associated arities. The sorts in the
arities are either int⊥ or string⊥. Each position in an ar-
ity is called an attribute and given an identifying name. A
record is an ordered list of attribute values (the value of at-
tribute A has position pos(A)), and each value is of type int
or string or the null element ⊥. Thus, a finite relation is a
finite set of records.

A relational database R over a relational schema S consists
of a mapping associating to each relation symbol r ∈ S a
finite relation r of the same arity. For a relation r, and a
record v with the same arity as r, we write r ∪ {v} for the
relation with all the records of r together with the additional
record v. For a relational database R over S, relation symbol
r ∈ S, and a relation r, we write R[r ← r] for the database
which maps r to the finite relation r but agrees with R on
every other relation symbol in S.

Data Definition and Manipulation Relations define the
abstract data model. The definition of relational schemas
and the manipulation (insertion, deletion, and querying) of
data are performed by a structured query language (SQL).
We focus here on (a simplified fragment of) the data ma-

154

nipulation language (DML) provided by SQL. Figure 2 de-
scribes simplified syntax for the DML operations SELECT,
INSERT, DELETE, and UPDATE. The SELECT statement
queries a database and returns all records that satisfy some
constraints (for simplicity of exposition, we omit the “join”
operation and restrict the select statement to just one rela-
tion). The INSERT statement inserts a record into a rela-
tion. The DELETE statement removes a set of records satis-
fying a constraint from a relation. The UPDATE statement
modifies a set of records in a relation.

The data manipulation statements include a WHERE

clause which is used to define a predicate that restricts a
relation to a subset of its records that satisfy the predicate.
Figure 3 shows a simplified grammar for the predicate used
in the SQL WHERE clause. A predicate is a boolean combi-
nation of atomic conditions. An atomic condition is either a
nullary constraint of the form id IS NULL, or an arithmetic
or string condition. An arithmetic condition constrains the
values of attributes of type int by performing an arithmetic
comparison between variables and integer constants. String
conditions come in two flavors. The first compares the value
of one string variable to a constant or the value of another
variable by equality. The second checks containment of the
value of a string variable within a regular language, spec-
ified by a regular expression. (For simplicity, our gram-
mar ignores some aspects that can be considered syntactic
sugar; for example, the IN clause, indicating containment
within a numeric range, can be rewritten using disjunctions.)
The semantics of predicates is three-valued: arithmetic or
string comparisons involving ⊥ return UNKNOWN rather
than true or false, otherwise, predicates have the expected
semantics. Moreover, the result of any arithmetic or string
operation where any argument is ⊥ returns ⊥.

The semantics of the data manipulation statements are
defined using the following helper functions. Fix a schema
S, a relational database R over S, an n-ary relation symbol
r ∈ S, a relation r = R(r), an attribute A of r, and a boolean
condition ψ with free variables over the attributes of r. We
define the selection σψ(r) as the relation

{v | v ∈ r ∧ v |= ψ}

consisting of records in r that satisfy the condition ψ, and
the projection πA(r) as the set of values indexed by A, or

{vpos(A) | 〈v1 . . . , vn〉 ∈ r}.

Furthermore, for a function F over the sorts of values in-
dexed by A, we define the substitution r[A← F (A)] by

{〈v1, . . . ,vi−1, F (vi), vi+1, . . . , vn〉

| 〈v1, . . . , vn〉 ∈ r and i = pos(A)}.

The data manipulation statements define a transformer
from relational databases to relational databases: from an
input relational database R, they return a pair 〈R′, r〉 of an
updated database R′ and a result relation r [28].

The statement DELETE FROM r WHERE ψ returns the
database and result pair 〈R[r← R(r) \ σψ(R(r))], ∅〉. That
is, the new database maps r to the records in R(r) that do
not satisfy ψ, and the result relation is ignored.

Given a tuple 〈v1, . . . , vn〉 of the same arity as r, the
statement INSERT INTO r VALUES (v1, . . . , vn) returns the
database and result pair 〈R[r← R(r) ∪ {〈v1, . . . , vn〉}], ∅〉.
That is, the new database maps r to the relation that con-

tains all the records from R(r) and in addition contains the
record 〈v1, . . . , vn〉. The returned result is ignored.

The statement UPDATE r SET A =
F (A) WHERE ψ returns the database and result pair
〈R[r← R(r) \ σψ(R(r)) ∪ σψ(R(r))[A← F (A)]], ∅〉. That
is, the relation symbol r is mapped to a new relation where
all records in R(r) that do not satisfy ψ are retained (the
first term in the union), while each record in R(r) satisfying
ψ have their attribute A updated to F (A). Again, the
result relation is ignored.

For a relation symbol r and a set of attributes
{Aj | j ∈ {1, . . . , n}} of the relation symbol, the statement
SELECT A1, A2, . . . , An FROM r WHERE ψ returns the
database and result pair

*

R, σψ

n
Y

i=1

πAi
(R(r))

!+

,

That is, the database state is unchanged, and the returned
result relation is a mapping from attributes 〈A1, . . . , An〉 to
the tuples that satisfy ψ.

3.2 Database Application Program
Syntax We shall focus on imperative programming lan-
guages that embed DML operations in the program syntax.
Let S be a relational database schema. We define an imper-
ative programming language that interacts with a relational
database over the schema S. Our programming language
has integer, string, record, and relation-valued variables and
references to memory. Relation-valued variables are used to
transfer data to and from the database. A relation is log-
ically a set of records. For the purposes of our analysis,
we assume strings, records, and relations are opaque im-
mutable types that are manipulated using an abstract data
type (ADT). The ADT for strings allows creation, compar-
ison, and concatenation of strings. The ADT for relations
has a method size to find the number of records in the rela-
tion, and an accessor get(int n, string attr) to get the value
of the attribute attr of the nth record of the relation.

The operations of the language consist of labeled instruc-
tions ` : s. Intuitively, the label corresponds to an instruc-
tion address. A statement is either (1) the halt statement
halt denoting normal program termination, (2) an input

statement m := input() that updates the lvalue m with a
non-deterministically chosen external input, (3) an assign-
ment m := e where m is an lvalue and e is a side-effect free
expression, (4) a conditional statement if(e)goto ` where e
is a side-effect free expression and ` is a program label, (5)
a database manipulation statement m := query(s) over S

that updates the lvalue m with the result relation of a DML
statement s, and (6) an abort statement signifying program
error. Execution begins at the program label `0. For a la-
beled assignment statement ` : m := e or input statement
` : m := input() we assume ` + 1 is a valid label, and for
a labeled conditional ` : if(e)goto `′ we assume both `′ and
`+1 are valid program labels. Furthermore, we assume that
the relation methods get and size only appear as the primary
expression e of an assignment statement m := e.

A database application consists of a relational schema S

together with an imperative program P containing database
manipulation statement over S.

Semantics The set of data values consists of program mem-
ory addresses (for pointer values) and data values chosen

155

from integers, strings, record, and relation types. We as-
sume the program is type safe. The semantics of the pro-
gram are given w.r.t. a memory consisting of a mapping
from lvalue addresses to values, a relational database pro-
viding the state of the database, and an input map which is
an infinite sequence of values from which inputs are read.

Execution starts from the initial memory M0 which maps
all addresses to some default value in their domain. Given a
memory M , we write M [m 7→ v] for the memory that maps
the address m to the value v and maps all other addresses
m′ to M(m′).

The input map represents a sequence of values that pro-
vide input for the input statements. Whenever the program
reaches an m := input() statement, the next value is read
off the input map and assigned to the address m. We omit
type issues in the description of the input map, assuming
implicitly that every element of the input map is the correct
type. This can be ensured, e.g., by lazily generating the se-
quence, by looking at the type of the receiver at run time,
and generating a value of the correct type as the next mem-
ber of the sequence. For every finite sequence s̄ of values, we
associate an input map by appending a random sequence of
values to s̄. In particular, if s̄ is the empty sequence, this is
equivalent to running the program with random inputs.

Statements update the memory, the database state, and
the input map. The concrete semantics of the program
is given as a relation from program location, memory,
database, and input map to an updated program location
(corresponding to the next instruction to be executed), up-
dated memory which evaluates program expressions in the
context of the current memory, updated relational database
reflecting changes if any to the database, and an updated
input map.

For an assignment statement ` : m := e, this relation cal-
culates, possibly involving address arithmetic, the address
m of the left-hand side, where the result is to be stored.
The expression e is evaluated to a concrete value v in the
context of the current memory M , the memory is updated
to M [m 7→ v], and the new program location is ` + 1. The
database and the input map do not change.

For an input statement ` : m := input(), the lvalue m is
evaluated to its address and the transition relation updates
the memory M to the memory M [m 7→ v] where v is the
head of the input map, and the new input map is the tail of
the old input map. At the same time, the new location is
`+ 1. However, the database does not change.

For a conditional ` : if(e)goto `′, the expression e is eval-
uated in the current memory M , and if the evaluated value
is zero, the new program location is `′ while if the value is
non-zero, the new location is `+ 1. In either case, the new
memory, the database, and the input map are identical to
the old ones.

The relational database is updated by the database ma-
nipulation statements. For a database manipulation state-
ment ` : m := query(s), the expression s is evaluated in
the memory M to yield a string that represents a DML
statement. The new database state is obtained from the old
database state by executing this DML statement. Moreover,
the memory M is updated to M [m 7→ r] where r is the re-
turn relation of the DML statement, and m is assumed to
be a relation-typed lvalue. Notice that the return relation
is empty except for a SELECT statement. The input map
remains unaffected by these statements.

Constraint ϕ ::= α | β | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
Arithmetic α ::=

P

i ciδi ≤ c
String β := δ = δ | δ 6= δ | δ = s | δ 6= s | δ LIKE s
Atom δ ::= x | r.get(c, s) | r.size()

Figure 4: Constraint language. The variables x, y
ranges over integer or string-valued symbolic vari-
ables, r ranges over relation-valued symbolic vari-
ables, c over integer constants, and s over string (or
regular expression) constants.

Execution terminates normally (resp. abnormally) if the
current statement is halt (resp. abort).

4. CONCOLIC TESTING OF DATABASE
APPLICATIONS

Concolic Execution Concolic execution [3,11,24] extends
the concrete semantics of the program by carrying along a
symbolic state and simultaneously performing symbolic ex-
ecution of the path that is concretely being executed. In
addition to the memory, database, and input map, it main-
tains a symbolic memory map µ, a symbolic path constraint

ξ, and a symbolic database state Γ. These are filled in dur-
ing the course of execution. The symbolic memory map is
a mapping from concrete memory addresses to symbolic ex-
pressions, while the symbolic database state is a mapping
from symbolic expressions, of type relation, to logical for-
mulas over symbolic values. The symbolic path constraint
is a logical formula over symbolic values. At the beginning
of a symbolic execution, µ and Γ are initialized to empty
maps and ξ is initialized to true .

We use the constraint language shown in Figure 4 to rep-
resent path and database constraints. A constraint ϕ is a
boolean combination of arithmetic or string constraints. An
arithmetic constraint α is a linear inequality on symbolic
atoms, and a string constraint β is either equality (or dise-
quality) comparison or an inclusion constraint δ LIKE ρ for
a symbolic atom δ and regular expression ρ. A symbolic
atom δ is either a symbolic value x or a function get (with
constant arguments c and s for a number c and a string s)
or size applied to a symbolic value r. In the latter case, we
assume r is of type relation.

The details of the construction and update of the sym-
bolic memory and path constraint is standard [11, 24, 30].
At every statement ` : m := input(), the symbolic mem-
ory map µ introduces a mapping m 7→ x from the concrete
address m to a fresh symbolic value x, and at every assign-
ment ` : m := e, the symbolic memory map updates the
mapping of m to µ(e), the symbolic expression obtained by
evaluating e in the current symbolic memory. The concrete
values of the variables (available from the memory map M)
are used to simplify µ(e) by substituting concrete values for
symbolic ones whenever the symbolic expressions go beyond
the constraint language.

At every conditional statement ` : if(e) goto `′, if the ex-
ecution takes the then branch, the symbolic path constraint
ξ is updated to ξ ∧ (µ(e) 6= 0) and if the execution takes
the else branch, the symbolic path constraint ξ is updated
to ξ∧ (µ(e) = 0). Thus, ξ denotes a logical formula over the
symbolic input values that the concrete inputs are required
to satisfy to execute the path executed so far.

156

Both the symbolic memory µ and the symbolic database
state Γ are updated by the execution of a statement of the
form ` : m := query(s). For example, if s is of the form
SELECT A1, A2, . . . , AnFROM r1 WHERE bcond , then we
create a fresh symbolic value r, which denotes the relation
returned by the query, update µ with µ[m 7→ r], and up-
date Γ with Γ[r 7→ (∀x)bcond ′], where bcond ′ is obtained
from bcond by replacing each occurrence of id by r.get(x, id).
Thus, the map Γ(r) gives constraints on each record in the
relation r.

The symbolic execution of a statement of the form
` : m := m′.get(m′′,m′′′) updates µ to µ[m 7→
µ(m′).get(M(m′′),M(m′′′))]. Notice that the arguments to
get are concrete values. Similarly, the symbolic execution
of a statement of the form ` : m := m′.size() updates µ to
µ[m 7→ µ(m′).size()].

Testing Algorithm Given a concolic program execution,
concolic testing generates a new test input in the follow-
ing way. It selects a conditional ` : if(e)goto `′ along the
path that was executed such that (1) the current execution
took the “then” (respectively, “else”) branch of the condi-
tional, and (2) the “else” (respectively, “then”) branch of
this conditional is uncovered. Let ξ` be the path constraint
corresponding to the current program path up to the loca-
tion ` just before executing the conditional and let ξe be
the constraint generated by the execution of the conditional
(i.e., ξe is either µ(e) 6= 0 if the then branch was executed
or µ(e) = 0 if the else branch was executed). Using a deci-
sion procedure (described in the next section), our algorithm
finds a satisfying assignment for the constraint

ξ` ∧ ¬ξe ∧
^

r∈dom(Γ)

Γ(r)

A satisfying assignment λ for the constraint is a map from
symbolic atoms to concrete values. The assignments to sym-
bolic atoms of the form x that were created during the execu-
tion of ` : m := input() statements are used to populate the
input map. The assignments to symbolic atoms of the form
r.get(c, s) are used to create λ(r.size()) many new database
records and the records are inserted into the database.

The newly created input map and the database are used
for the next concolic execution. Because we create the input
map and the database by solving symbolic constraints, the
next execution will follow the old execution up to the loca-
tion `, but then take the conditional branch opposite to the
one taken by the old execution, thus ensuring that the other
branch gets covered. We iterate this process of concolic ex-
ecution along with new input and database generation until
the required coverage is achieved.

5. CONSTRAINT SOLVING
Given the constraints generated by a concolic execution,

the constraint solving algorithm generates satisfying assign-
ments to the constraints, which are used to update both the
input map and the database for a subsequent run. Thus, in
addition to generating new program inputs (as in symbolic
execution based test generation), we generate records that
get inserted into the database. Together, the inputs ensure
that coverage goals are satisfied.

Our constraint satisfaction algorithm takes as input a for-
mula ϕ in the constraint language and returns either a sat-
isfying assignment to ϕ, or failure. Our procedure is sound,

in that satisfying assignments are guaranteed to satisfy ϕ,
but approximate, in that it may fail to find an assignment
even if one exists.

5.1 Constraint Satisfaction Algorithm
We show the algorithm in the case that ϕ is a conjunc-

tion of atomic formulas or their negations. If it is a general
boolean formula, we can either write it out in disjunctive
normal form or search for cubes using a propositional SAT
solver [8, 10, 25]. First, for each atomic formula of the form
x IS NULL we set the variable x to NULL, and then propagate
NULL values through the formula. If the formula evaluates
to UNKNOWN, we treat the evaluation as unsatisfiable to be
consistent with the SQL semantics (which says no results are
returned on UNKNOWN). At this point, any negated atomic
formula ¬(x IS NULL) is dropped.

Second, for each r, we instantiate the universally quanti-
fied predicates Γ(r) arising from the symbolic database state
for each constant i for which there is some s with r.get(i, s)
occurring in Γ(r). Then, we partition the resulting formula
with the instantiations into ϕ1 and ϕ2, where ϕ1 is a string
formula and ϕ2 is an arithmetic formula. Third, we use
a decision procedure for linear arithmetic to find a satisfy-
ing assignment for ϕ2. Finally, we use the automaton based
procedure in Subsection 5.2 below to find a satisfying assign-
ment for ϕ1. Together, these give a satisfying assignment for
ϕ.

Given a satisfying assignment λ mapping atomic variables
to values, we create an input map and database state as
follows. For each δ in the domain of λ, if δ is of the form
x where x is a symbolic value created during the execution
of a ` : m := input() statement, then λ(δ) is used to update
the input map. In particular, if x is the ith-read symbolic
input value, then the ith position in the input map is set to
λ(δ).

Similarly for each symbolic relation value r, we create
λ(r.size()) records that are inserted into the database. For
1 ≤ c ≤ λ(r.size()) we construct the set Rcr of all δ in
the domain of λ such that δ is of the form r.get(c, s).
Then, we use the constraints {δ = λ(δ) | δ ∈ Rcr} ∪
{bcond [c/x] | Γ(r) = ∀x.bcond} to generate a record and in-
sert it in the database. We fill the unconstrained attributes
of the record with arbitrary (random) data. The above
procedure ensures that the inserted records satisfy the con-
straints imposed by the symbolic database state as well as
any additional constraints imposed by the path constraint.
For example, the constraint r.size() = 2 ∧ r.get(x, ′dept′) =
′CS′ ∧ r.get(1, ′name′) = ′Bush′ could lead to the insertion
of 〈′Bush′, ′CS′〉 and 〈′SHDNK4S′, ′CS′〉 into a database table
with fields “name” and “dept”.

In order to find out multiple satisfying assignments to
a constraint, e.g., to generate multiple tuples satisfying a
database constraint, we use the following standard trick.
Let ϕ be a constraint with free variables x1, . . . , xn. For a
satisfying assignment s̄ mapping variables xi to constants si
for i ∈ {1, . . . , n}, we define the constraint [s̄] as:

[s̄] ≡
n̂

i=1

xi = si

Given the formula ϕ, we iteratively ask the constraint solver
for a satisfying assignment s̄1 of ϕ, then a satisfying assign-
ment s̄2 for ϕ∧¬[s̄1], then for ϕ∧¬[s̄1]∧¬[s̄2], etc. Iterating

157

this procedure k times gives k distinct satisfying assignments
to ϕ (as long as k distinct satisfying assignments exist).

We note that our algorithm is approximate for the en-
tire SQL language, in that our satisfiability procedure is
not guaranteed to find a satisfying assignment in all cases
even if one exists. For example, it may not be possible to
partition a boolean condition into a pure linear arithmetic
formula and a pure string formula (since one can take the
length of strings). Even if such a partition is possible, the
string constraints may not fall into our constraint language
(since we do not handle concatenation) and in the presence
of operators such as AVG (the SQL average operator) or ex-
ponentiation, the arithmetic constraints need not be linear.
In general, the satisfiability problem for the theory of strings
together with a length function is a long standing open prob-
lem [1, 9]. However, since we have the concrete values, we
can specialize non-linear constraints to linear ones by sub-
stituting the concrete constants for the variables (again, this
may lose generality). In practice, we have found our approx-
imate routine adequate for most SQL-querying applications.

5.2 Satisfiability Procedure for Strings
We now outline a decision procedure to check satisfiabil-

ity of string constraints. Again, we assume we are given a
conjunction of atomic string constraints. We begin by nor-
malizing our constraints to be of the form δ1 = δ2, δ1 6= δ2,
or δ LIKE ρ, for atoms δ1 and δ2, and regular expressions
ρ. To do this normalization, we replace constraints of the
form δ = s (respectively δ 6= s), for variable δ and string
constant s, with δ LIKE s (resp., δ LIKE s̄), where s̄ is a
regular expression matching all strings except s.

Let C denote the set of normalized constraints and X the
set of variables appearing among those constraints. We then
define an equivalence relation ≡ over X by δ1 ≡ δ2 if and
only if either (1) δ1 and δ2 are syntactically identical, or
(2) there is a δ ∈ X such that either δ1 = δ or δ = δ1 is a
constraint in C and δ ≡ δ2. The equivalence relation ≡ is the
reflexive transitive closure of the equality relation, and can
be computed efficiently using a union find algorithm [27].

Once we create the set of equivalence classes of ≡, we
check for trivial unsatisfiability by disequality constraints
between equivalent variables, that is, we return unsatisfiable
if there are two variables δ1 and δ2 such that δ1 ≡ δ2, but
there is a disequality constraint δ1 6= δ2 in C.

Let P = {p1, . . . , pk} be the set of equivalence classes of
the relation ≡. In the second step, we build regular lan-
guages Lp, one for each partition p ∈ P . The regular lan-
guage Lp is obtained by conjoining the regular languages
ρ, such that some δ ∈ p has a constraint δ LIKE ρ in C.
Formally,

Lp =
\

δ∈p,δ LIKE ρ∈C

ρ

Finally, the constraints are satisfiable iff there exist words
w1 ∈ Lp1 , w2 ∈ Lp2 , . . ., wk ∈ Lpk

such that for every
constraint δ1 6= δ2 in C with δ1 ∈ pi and δ2 ∈ pj , we have
wi 6= wj . These words can be chosen from the k shortest
words in each language by a systematic enumeration and
search.

The above procedure shows that the decision problem for
string constraints is in PSPACE. The satisfiability problem
is also PSPACE-hard, since the problem of checking if the
intersection of k regular expressions is empty is PSPACE-

Article getRandomArticle() {
1: Article art = new Article();
2: String sql;
3: int noa = getNumberOfArticles() - 1;
4: results.content.clear();

5: do {
6: int x = (int) ((double) noa * Math.random());
7: sql = "SELECT * FROM cur WHERE "

+ "cur_namespace=0 LIMIT 1 OFFSET ";
8: sql += x;
9: query(sql);

10: } while (results.content.size() == 1
&& results.get(0,"cur_is_redirect")

.equals("1"));

11: if (results.content.size() == 1) {
12: String s = results.get(0,"cur_text");
13: s = filterBackslashes(s);
14: art.setSource(s);
15: art.setTitle(

new Title(results.get(0,"cur_title")));
}

16: return art;
}

Figure 5: The method getRandomArticle—a Java
adaptation of code from MediaWiki

hard [17], and this can be encoded as the satisfiability ques-
tion x1 LIKE r1 ∧ . . . ∧ xk LIKE rk ∧ x1 = x2 ∧ x2 =
x3 ∧ . . . ∧ xk−1 = xk. While we do not use it here, the
PSPACE upper bound also follows from a much deeper deci-
sion procedure for the theory of word equations with regular
constraints [9].

Theorem 1. The satisfiability problem for string con-

straints is PSPACE-complete.

In practice, we have found that the string constraints aris-
ing in SQL queries are very simple and the procedure is fast.

6. CASE STUDY
We have implemented the test generation algorithm for

Java code interacting with databases. Our implementation
is built on top of the JCute testing framework [23], which
uses the Soot [29] Java optimization framework, and the lp-
solve [18] linear program solver. The primary modifications
that were necessary included discovering database meta-
data, parsing SQL query strings, augmenting JCute’s sym-
bolic state space for SQL data, tracking input values origi-
nating from a database, and modifying database tables for
directed testing. Our implementation parses SQL SELECT

statements by using the ANTLR [21] parser generator with
a derivative grammar of [22]. Our target programs are writ-
ten using Java’s databases API (package java.sql). We
use a MySQL database, accessed through a JDBC/MySQL
driver, though our implementation is, in theory, portable
across differing database and driver configurations.

We ran our program on a Java reimplementation of Me-
diaWiki [19], a popular wiki package. Figures 5 and 6
show the getRandomArticle method and support method
query of a Java package adapted from MediaWiki. The
relation cur used in the queries above contains two in-
teger fields cur_namespace and cur_is_redirect, and

158

void query(String q) {

1: results.clean();
2: try {
3: DriverManager.registerDriver(...);
4: Statement stmt =

DriverManager.getConnection(...)
.createStatement();

5: stmt.execute(q);
6: ResultSet rs = stmt.getResultSet();

7: if (rs != null) {
8: ResultSetMetaData md = rs.getMetaData();

9: for (i=1; i<=md.getColumnCount(); i++)
10: results.field.add(md.getColumnName(i));

11: while (rs.next()) {
12: Vector<String> row =

new Vector<String>(md.getColumnCount());
13: for (i=1; i<=md.getColumnCount(); i++)
14: row.add(rs.getString(i));
15: results.content.add(row);

}
}

} catch (Exception e) {
...

}
}

Figure 6: The method query—an auxiliary method
to getRandomArticle

two string fields cur_title and cur_text. We label
the branch predicates results.content.size() == 1 and
results.get(0,"cur_is_redirect").equals("1") with p1

and p2, respectively. The field results is an instance of the
class SQLResult of Figure 7. Existing directed testing tools
will be unable to direct execution through this code, since
they cannot reason about the interaction with the database.
Assuming, for example, that the table cur is initially empty,
p1 will never be satisfied, and p2 will never be tested.

On the other hand, a run of our tool under the same ini-
tial conditions proceeds as follows. The method calls to
getConnection and createStatement on line 4 of query

create symbolic values which store some structure of the
table cur. The call to execute on line 5 then adds the con-
crete query (string) to the symbolic value of stmt. When
getResultSet on line 6 is called, a symbolic value is created
for rs which keeps a cursor which is modified by subsequent
calls to next and prev. When a value is actually read (e.g.,
during getString on line 14) from rs, that cursor is used to
index the result set—the column is given by the row name
or number passed as an argument to the accessor method
(e.g., getString). At this point a symbolic input value is
created for a particular position in the result set, which will
be propagated through the program’s execution as a usual
symbolic input value.

Ideally, the calls to results.content.size

and results.get in lines 10 and 11 of the
method getRandomArticle would have symbolic val-
ues, but this relies on symbolically reasoning about
Vectors, the data-structure backing results. A symbolic
procedure for Vectors could propagate the symbolic values
read from the database through to predicates p1 and p2,

class SQLResult {
Vector<String> field =

new Vector<String>();
Vector<Vector<String>> content =

new Vector<Vector<String>>();

void clean() {
field.clear();
content.clear();

}
String get(int row, int col) {

return content.get(row).get(col);
}
String get(int row, String s)

throws IndexOutOfBoundsException {

for (int col=0; col<field.size(); col++)
if (field.get(col).equalsIgnoreCase(s))

return get(row,col);
throw new IndexOutOfBoundsException();

}
}

Figure 7: The class SQLResult of the field results

and directed testing would be able to accurately predict
the trajectory through getRandomArticle. Unfortunately,
our version of JCute did not have a built-in symbolic
interpretation for Vectors, and any symbolic information
associated with data stored in a vector would be replaced
with concrete data.

However, it turns out, even in the absence of symbolic
reasoning about vectors, our algorithm still provides more
thorough testing through getRandomArticle (we cover 75%
of branches reached from getRandomArticle, as opposed to
the 50% which JCute-alone covers—the remaining 25% is
accounted for by the absence of symbolic execution for vec-
tors, and branches which are infeasible). Line 11 of the
method query tests the predicate rs.next() (which we’ll
label p3) in order to fill the result data with query results.
Since the symbolic state for rs keeps a cursor into the result
set, we can reason about p3. For example, if the execution
of this method fails a test of p3, then the relevant result
set must contain an additional row in order to satisfy p3

on the next execution. Thus, given an initially empty ta-
ble cur, the symbolic expression for this predicate effectively
becomes num_rows(rs) > 0, which our solver must consider
as a constraint to direct execution though the corresponding
loop. However, this constraint combined with the query con-
straint LIMIT 1 of line 7 of getRandomArticle will also trig-
ger success of the predicate p1, effectively exploring the pre-
viously unexplored paths through getRandomArticle. We
believe that this situation is not a peculiarity of our par-
ticular program, but a common idiom in these programs.
Moreover, symbolic reasoning about container data struc-
tures will significantly improve the precision and coverage
of our implementation in these cases.

7. RELATED WORK
Despite their importance in many business-critical appli-

cations, research on testing application programs interacting
with databases has been somewhat limited. The Agenda
framework for testing database-driven applications [5, 6]
uses user-provided data ranges to randomly populate the

159

database with typles that satisfy the schema constraints.
Similar user-directed random generation subject to schema
constraints have been considered in [20, 32]. While in many
cases, the test data and database state can be comprehen-
sive, by ignoring the data and control flow through the pro-
gram, these techniques may achieve lower coverage. Instead,
our techniques are likely to provide better coverage by ex-
plicitly considering the program structure and the actual
queries made to the database. Of course, the techniques are
complementary and can be used together for better testing
of database-driven applications, e.g., by starting with an
initial database that has been filled with records using the
above techniques, and then incrementally adding or deleting
records as dictated by the concolic execution.

Orthogonal to our work, the problem of defining appro-
priate coverage criteria for database driven applications that
tracks flow of data through the database has been considered
before [2, 14, 16]. Our test generation algorithm is param-
eterized by the desired coverage goals and can directly use
these more refined coverage criteria without change in the
test generation algorithm.

Previous attempts [4] have embedded SQL statements
into the imperative program, and applied white box test-
ing techniques on the resulting program where the database
has been abstracted away in the translation. This provides
an alternate approach. We provide an explicit symbolic-
execution based automatic test generation strategy as well
as a constraint solving algorithm that can handle common
constraints on strings and integers arising in the queries.
In contrast, the onus of finding tests in [4] was on the user.
More importantly, their compilation algorithm assumes that
all SQL queries are available statically. This is seldom true
in practice, as query strings are dynamically constructed
based on control flow. Since concolic execution generates
queries dynamically, we do not face this problem.

As mentioned before, our testing algorithm is not geared
towards checking syntactic soundness of queries, or for secu-
rity vulnerabilities in the presence of dynamic queries. Both
these aspects have received a lot of attention [13, 15, 26]. In
contrast, we aim to test for functional requirements of the
software.

8. CONCLUSION
Enterprise applications that interact with database sys-

tems are ubiquitous, and there is a need for better validation
techniques for these systems. We have presented a novel test
input generation algorithm that tracks not only the program
state but also the environment (the state of the database).
While our early results are encouraging, we have identified
some limitations of the presented approach.

First, our implementation assumes a view of the world
with two participants: Java programs and the database. In
reality, most enterprise applications are built in several dif-
ferent layers, including JavaScript code, browser forms, and
a server such as tomcat that mediates data flow. While con-
ceptually the algorithm remains the same, we admit that
scaling our implementation to a real enterprise system is a
significant engineering effort.

Second, symbolic execution based test generation is ulti-
mately limited by the expressibility of the constraint lan-
guage and the capacity of the constraint solver. We be-
lieve our constraint solver presents a compromise between

fast constraint solving and the ability to capture many con-
straints of practical interest.

Despite these limitations of our current implementation,
we believe that context-aware concolic execution presents a
powerful tool for automatic test generation and validation
of database-driven applications.

9. REFERENCES
[1] J. R. Büchi and S. Senger. Definability in the existential

theory of concatenation and undecidable extensions of this
theory. Zeitschrift fur Mathematische Logik und
Grundlagen der Mathematik, 22, 1987.

[2] M. J. S. Cabal and J. Tuya. Using an SQL coverage
measurement for testing database applications. In
SIGSOFT FSE, 2004.

[3] C. Cadar and D. R. Engler. Execution generated test cases:
How to make systems code crash itself. In SPIN, 2005.

[4] M. Chan and S.-C. Cheung. Testing database applications
with SQL semantics. In CODAS, 1999.

[5] D. Chays, S. Dan, P. G. Frankl, F. I. Vokolos, and E. J.
Weber. A framework for testing database applications. In
ISSTA, 2000.

[6] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and
E. J. Weyuker. AGENDA: a test generator for relational
database applications. Technical Report TR-CIS-2002-04,
Polytechnic University, 2002.
http://cis.poly.edu/tr/tr-cis-2002-04.shtml.

[7] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise analysis of string expressions. In SAS 03: Static
Analysis Symposium, volume 2694 of LNCS, pages 1–18.
Springer-Verlag, 2003.

[8] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a theorem
prover for program checking. J. ACM, 52(3), 2005.

[9] V. Diekert. Makanin’s algorithm. In Algebraic
Combinatorics on Words, volume 90 of Encyclopedia of
Mathematics and its Applications. Cambridge University
Press, 2002.

[10] J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS:
Integrated canonizer and solver. In CAV, 2001.

[11] P. Godefroid, N. Klarlund, and K. Sen. DART: directed
automated random testing. In PLDI, 2005.

[12] C. Gould, Z. Su, and P. T. Devanbu. JDBC checker: A
static analysis tool for SQL/JDBC applications. In ICSE,
2004.

[13] C. Gould, Z. Su, and P. T. Devanbu. Static checking of
dynamically generated queries in database applications. In
ICSE, 2004.

[14] W. G. J. Halfond and A. Orso. Command-form coverage
for testing database applications. In ASE, 2006.

[15] W. G. J. Halfond, A. Orso, and P. Manolios. Using positive
tainting and syntax-aware evaluation to counter SQL
injection attacks. In SIGSOFT FSE, 2006.

[16] G. M. Kapfhammer and M. L. Soffa. A family of test
adequacy criteria for database-driven applications. In
ESEC / SIGSOFT FSE, 2003.

[17] D. Kozen. Lower bounds for natural proof systems. In
FOCS, 1977.

[18] lp solve. http://groups.yahoo.com/group/lp_solve/.
[19] MediaWiki. http://www.mediawiki.org/wiki/MediaWiki.
[20] A. Neufeld, G. Moerkotte, and P. C. Lockemann.

Generating consistent test data for a variable set of general
consistency constraints. VLDB J., 2(2), 1993.

[21] T. J. Parr and R. W. Quong. ANTLR: A predicated-LL(k)
parser generator. Softw., Pract. Exper., 25(7), 1995.

[22] MS SQL Server 2000 SELECT statement grammar.
http://www.antlr.org/grammar/1062280680642/MS_SQL_
SELECT.html.

[23] K. Sen and G. Agha. CUTE and jCUTE: Concolic unit
testing and explicit path model-checking tools. In CAV,
2006.

160

[24] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ESEC/SIGSOFT FSE, 2005.

[25] A. Stump, C. W. Barrett, and D. L. Dill. CVC: A
cooperating validity checker. In CAV, 2002.

[26] Z. Su and G. Wassermann. The essence of command
injection attacks in web applications. In POPL, 2006.

[27] R. E. Tarjan. Efficiency of a good but not linear set union
algorithm. J. ACM, 22(2), 1975.

[28] J. D. Ullman, H. Garcia-Molina, and J. Widom. Database
Systems: The Complete Book. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2001.

[29] R. Vallée-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam,
and V. Sundaresan. Soot - a Java bytecode optimization
framework. In CASCON, 1999.

[30] W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In ISSTA, 2004.

[31] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In TACAS, 2005.

[32] J. Zhang, C. Xu, and S.-C. Cheung. Automatic generation
of database instances for white-box testing. In COMPSAC,
2001.

161

