
E U R O P E A N J O I N T C O N F E R E N C E S O N
T H E O R Y A N D P R A C T I C E O F S O F T W A R E

2 6 M A R C H – 0 3 A P R I L , 2 0 11
S A A R B R Ü C K E N , G E R M A N Y

http://www.etaps.org
http://etaps2011.cs.uni-saarland.de

BYTECODE 2011

6TH WORKSHOP ON

BYTECODE SEMANT ICS , VER IF ICAT ION,
ANALYS IS AND TRANSFORMAT ION

P I E R R E GA N T Y A N D MA R K MA R R O N (ED S .)

ByteCode 2011

Complete and Platform-Independent

Calling Context Profiling

for the Java Virtual Machine

Aibek Sarimbekov Philippe Moret Walter Binder1

Faculty of Informatics
University of Lugano
Lugano, Switzerland

Andreas Sewe Mira Mezini2

Software Technology Group
Technische Universität Darmstadt

Darmstadt, Germany

Abstract

Calling context profiling collects statistics separately for each calling context. Complete calling con-
text profiles that faithfully represent overall program execution are important for a sound analysis
of program behavior, which in turn is important for program understanding, reverse engineering,
and workload characterization. Many existing calling context profilers for Java rely on sampling or
on incomplete instrumentation techniques, yielding incomplete profiles; others rely on Java Virtual
Machine (JVM) modifications or work only with one specific JVM, thus compromising portability.
In this paper we present a new calling context profiler for Java that reconciles completeness of the
collected profiles and full compatibility with any standard JVM. In order to reduce measurement
perturbation, our profiler collects platform-independent dynamic metrics, such as the number of
method invocations and the number of executed bytecodes. In contrast to prevailing calling con-
text profilers, our tool is able to distinguish between multiple call sites in a method and supports
selective profiling of (the dynamic extent of) certain methods. We have evaluate the overhead
introduced by our profiler with standard Java and Scala benchmarks on a range of different JVMs.

Keywords: Calling Context Profiling, JP2, Bytecode Instrumentation, Dynamic Metrics

1 Email: firstname.lastname@usi.ch
2 Email: lastname@st.informatik.tu-darmstadt.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:aibek.sarimbekov@usi.ch
mailto:sewe@st.informatik.tu-darmstadt.de

Sarimbekov et al.

1 Introduction

Calling context profiling is a common profiling technique that helps analyse
the dynamic inter-procedural control flow of applications. It is particularly
important for understanding and optimizing object-oriented software, where
polymorphism and dynamic binding hinder static analyses. Calling context
profiling hereby collects statistics separately for each calling context, such as
the number of method invocations or the CPU time spent in a calling context.

Both the dynamic call graph (DCG) and the Calling Context Tree (CCT)
are well-known data structures often used for performance characterization
and optimization [1]. The nodes in the respective data structures are asso-
ciated with profiling information. Such a profile can include a wide range of
dynamic metrics, e.g., execution times or cache misses. Platform-independent
dynamic metrics such as the number of method invocations or executed byte-
codes are of particular interest in the area of performance characterization.
These metrics are reproducible, 3 accurate, portable, and comparable [12,4].

Unlike a context-insensitive DCG, a CCT in principle is capable of captur-
ing the complete context of a call. Still, CCTs generated by state-of-the-art
profilers [17] are missing one key bit of information present in the well-known
labelled variant of DCGs: information about the individual site at which a call
is made. In other words, while keeping track of numerous methods in entire
call chains, many calling context profilers are unable to distinguish between
multiple call sites within a single method.

In this paper, we introduce JP2, a call-site-aware profiler for both platform-
independent and complete calling context profiling. The profiler is based on
portable bytecode instrumentation techniques for generating its profiling data
structures at runtime. Besides two counters for the number of method ex-
ecutions and number of executed bytecodes, each calling context tracks the
current bytecode position; this enables JP to distinguish between the call sites
within a single method.

While several of these features were already present in our earlier JP
tool [6], this paper makes several unique contributions:

• A detailed description of JP2, the first call-site aware profiler to capture
complete CCTs.

• A description of how JP2 can temporary disable profiling for the current
thread without breaking the CCT’s structure, hence collecting only appro-
priate profiles.

• A rigorous evaluation of JP2’s performance on 3 virtual machines and 22
Java and Scala benchmarks [7,21].

3 For deterministic programs with deterministic thread scheduling.

2

Sarimbekov et al.

This paper is structured as follows: Section 2 gives background information
on platform-independent dynamic metrics and CCTs. Section 3 describes the
tool’s design. Section 4 details our performance evaluation on a range of
benchmarks and virtual machines. Section 5 discusses related work, before
Section 6 concludes.

2 Background

In the following we give a brief overview of both platform-independent dynamic
metrics and the Calling Context Tree data structure.

2.1 Platform-independent Dynamic Metrics

Most state-of-the-art profilers rely on dynamic metrics that are highly
platform-dependent. In particular, elapsed CPU or wallclock time are metrics
commonly used by profilers. However, these metrics have several drawbacks:
For the same program and input, the time measured can differ significantly
depending on the hardware, operating system, and virtual machine implemen-
tation. Moreover, measuring execution time accurately may require platform-
specific features (such as special operating system functions), which limits the
portability of the profilers. In addition, it is usually impossible to faithfully
reproduce measurement results.

For these reasons, we follow a different approach that uses only platform-
independent dynamic metrics [12,4], namely the number of method invocations
and the number of executed bytecodes. The benefits of using such metrics are
fourfold:

(i) Measurements are accurate; profiling itself does not affect the generated
profile and will not cause measurement perturbations.

(ii) Profilers can be implemented in a portable way; one can execute them on
different hardware, operating systems, and virtual machines.

(iii) The profiles made in different environments are comparable, as they rely
on the same set of platform-independent metrics.

(iv) For deterministic programs, measurements are reproducible.

Although information on the number of method invocations is a common
metric supported by many available profiling tools, some profilers do not dif-
ferentiate between different calling contexts or keep calling contexts only up
to a pre-defined depth. In contrast, our approach is able to associate both the
number of method invocations and the number of executed bytecodes with
calling contexts of arbitrary depth.

3

Sarimbekov et al.

2.2 The Calling Context Tree (CCT)

The Calling Context Tree (CCT) [1] is a common data structure to repre-
sent calling context profiles at runtime [1,2,25,22,26,9]. Each node in a CCT
corresponds to a calling context and keeps the dynamic metrics measured for
that particular calling context; it also refers to the method in which the met-
rics were collected. The parent of a CCT node represents the caller’s context,
while the children nodes correspond to the callee methods. If the same method
is invoked in distinct calling contexts, the different invocations are thus rep-
resented by distinct nodes in the CCT. In contrast, if the same method is
invoked multiple times in the same calling context and from the same call
site, the dynamic metrics collected during the executions of that method are
kept in the same CCT node. The CCT thus makes it possible to distinguish
dynamic metrics by their calling context. This level of detail is useful in many
areas of software engineering such as profiling [1], debugging [3], testing [20],
and reverse engineering [15].

It should be noted that the data structure itself does not impose any re-
strictions on the number and kind of dynamic metrics kept in the CCT nodes;
in particular, these metrics may be platform-dependent (CPU time, number
of cache misses) or platform-independent (number of method invocations 4 ,
number of executed bytecodes, number of object allocations). In the follow-
ing, we will restrict the discussion to two platform-independent metrics: the
number of method invocations and the number of executed bytecodes. Fig. 1
exemplifies such a CCT data structure, which stores both metrics.

CCTs are most useful if they faithfully represent overall program execution.
We thus require that a complete CCT contains all method invocations made
after an initial JVM bootstrapping phase 5 , where either the caller or the callee
is a Java method, i.e., a method not written in native code. The following
method invocations must therefore be present within the CCT:

(i) A Java method invoking another Java method.

(ii) A Java method invoking a native method.

(iii) Native code invoking a Java method (e.g., callback from native code into
bytecode through the Java Native Interface (JNI), class loading, or class
initialization)

Regarding method invocation through reflection, the above defini-
tion of completeness implies that any method called through reflec-
tion (Method.invoke(...), Constructor.newInstance(...)) must be represented
in the CCT.

4 In this paper we do not distinguish between methods and constructors; ‘method’ denotes
both ‘methods’ and ‘constructors’.
5 At the latest, this phase ends with the invocation of the program’s main(String[]) method.

4

Sarimbekov et al.

void main(String[] args) {
for (int j = 0; j < 20; j++) {

f(j);
g(j);
for (int k = 1; k < j/2; k++)

h(k);
}
}

void f(int n) {
int k = g(n);
k = h(k) ∗ k;
}

int g(int n) {
if (n % 2 == 0)

return h(n / 2);
else

return g(n + 1);
}

void i(int n) {
n = n ∗ n;
}

int h(int n) {
i(n);
return n − 1;
}

(a) Sample code

root

main(String[])11066

f(int)20180

g(int)20180

h(int)1060

i(int)1050

g(int)1090

h(int)1060

i(int)1050

h(int)20120

i(int)20100

g(int)20180

h(int)1060

i(int)1050

h(int)72432

g(int)1090

h(int)1060

i(int)1050

i(int)72360

(b) Generate CCT (conceptual representation)

Fig. 1. Sample Java code and the CCT generated for one execution of method main(String[]). As
dynamic metrics, each CCT node stores the number of method invocations (m) and the number of
executed bytecodes (n) in the corresponding calling context.

There are several variations of the CCT supported by our tool. For in-
stance, calls to the same method from different call sites in a caller may be
represented by the same node or by different nodes in the CCT. Moreover, in
the case of recursion, the depth of the CCT may be unbounded, representing
each recursive call to a method by a separate CCT node, or alternatively re-
cursive calls might be stored in the same node, limiting the depth of the CCT
and introducing back-edges into the CCT [1].

3 Tool Design

In this section we describe the design and the architecture of our tool. First,
Section 3.1 discusses both the design and the weaknesses of a previous version
of the tool. Next, Section 3.2 presents our new design implemented in the JP2
profiler. Finally, Section 3.3 explains how JP2 deals with native methods.

5

Sarimbekov et al.

Java Virtual Machine

JP2 Agent JP2 Transformer

p
re
m
a
in

a
d
d
T
ra
n
sf
o
rm

er

re
tr
a
n
sf
o
rm

C
la
ss
es

tr
a
n
sf
o
rm

Fig. 2. The architecture of JP2.

3.1 Old Design (JP)

Our previous profiler, JP [17,6], is based on the generic bytecode instrumen-
tation framework FERRARI [5], which allows us to statically instrument the
Java class library and apply load-time instrumentation to all other classes. JP
extends method signatures in order to pass a CCT node reference from the
caller to the callee as an argument. Therefore, each method invocation keeps a
reference to its corresponding CCT node in a local variable. Furthermore, for
each method a static field is added to hold the corresponding method identifier
and the class initializer is instrumented to allocate those method identifiers.
For compatibility with native code, wrapper methods with unmodified sig-
natures are added to allow native code, which is not aware of the additional
argument, to invoke the instrumented method through the JNI.

This approach introduces compatibility problems with recent JVMs be-
cause some methods cannot be overloaded in this fashion. Moreover, the
additional stack frames introduced by wrapping methods can break stack in-
trospection. Furthermore, static instrumentation of the Java class library is
time consuming and inconvenient to the user. Finally, JP is unable to distin-
guish between different call sites and one cannot selectively enable or disable
metrics collection for a certain calling context, e.g., for a benchmark’s harness.

3.2 New Design (JP2)

Fig. 2 depicts the architecture of JP2, our revised design which addresses all
of JP’s weaknesses mentioned above. JP2 includes two main components with
the following responsibilities:

(i) The JP2 Agent is a Java programming language agent; it initializes JP2
upon JVM startup.

(ii) The JP2 Transformer, which is based on the ASM bytecode engineering

6

Sarimbekov et al.

BI

5:

7:

void f() {

while (true) {

if (i <= 10) {

h();

g(i);
++i;
} else {

return;
}

}

}

(a) Before Instrumentation

void f() {
int callerBI = JP2Runtime.getBI();
CCTNode caller = JP2Runtime.getCurrentNode();
CCTNode callee = caller.profileCall(”f()”, callerBI);
try {

callee.profileBytecodes(2);
while (true) {

callee.profileBytecodes(3);
if (i <= 10){

callee.profileBytecodes(5);
JP2Runtime.setBI(5);
h();
JP2Runtime.setBI(7);
g(i);
++i;
} else {

callee.profileBytecodes(1);
return;
}

}
} finally {

JP2Runtime.setCurrentNode(caller);
JP2Runtime.setBI(callerBI);
}
}

(b) After Instrumentation

Fig. 3. Example of Java code instrumented by JP2.

libary 6 , is responsible for the necessary bytecode instrumentation.

Upon startup, the JVM invokes the premain() method of the JP2 Agent
before any application code is executed. The agent registers the transformer
using the standard java.lang.instrument API. Through this API, the agent
then triggers retransformation of classes that have already been loaded during
JVM startup. During retransformation, the JVM calls back the transformer,
which instruments the classes. The JP2 Transformer receives transform()
requests both for classes to be retransformed, as well as for newly loaded
classes (see Fig. 2).

In contrast to JP, JP2 does not need to extend any method signatures in
order to pass a CCT node; instead, it uses thread-local variables to store ref-
erences to them. Moreover, instead of adding static fields storing the method
identifiers, JP2 uses string constants which simply reside in the class file’s con-
stant pool; thus, there is no need for extending the class initializer anymore.
Fig. 3 illustrates the instrumentation the JP2 Transformer applies. Depicted
to the left is the method f() before transformation; depicted to the right is

6 See http://asm.ow2.org/.

7

http://asm.ow2.org/

Sarimbekov et al.

public class JP2Runtime {
public static int getBI() {...}
public static void setBI(int callerBI) {...}
public static CCTNode getCurrentNode() {...}
public static void setCurrentNode(CCTNode n) {...}
}

public interface CCTNode {
CCTNode profileCall(String methodID, int callerBI);
void profileBytecodes(int i);
}

Fig. 4. Runtime classes used by JP2.

the corresponding instrumented version. 7 The transformer inserts invocations
to static methods in class JP2Runtime shown in Fig. 4, which are explained
below.

setBI(int callerBI), getBI() Store the caller’s bytecode position in a
thread-local variable, respectively load the stored bytecode position (BI)
from the thread-local variable.

setCurrentNode(CCTNode n), getCurrentNode() Store the current
thread’s current CCT node in a thread-local variable, respectively load the
current CCT node from a thread-local variable.

Hereby, CCTNode is an interface shown in Fig. 4, whose methods perform
the following functions:

profileCall(String methodID, int callerBI) Return the callee of the
method in the CCT; if there is no such node, register it.

profileBytecodes(int) Update the counter keeping the number of executed
bytecodes.

It is crucial to restore the caller’s bytecode position in the finally block
because class loading and class initialization may be triggered between a call
to setBI(int) in a caller and the subsequent method call, which may in turn
update the thread-local variable.

JP2 counts bytecodes per basic block using the same algorithm as JP [6]:
only bytecodes that may change the control flow non-sequentially (i.e., jumps,
branches, return of method or JVM subroutine, exception throwing) end a
basic block. This algorithm creates rather large basic blocks, such that the
number of updates to the bytecode counter is kept low. This reduces runtime
overhead without significantly affecting accuracy [6].

JP2 provides a mechanism to temporarily disable the execution of instru-
mentation code for each thread. Assume that instrumentation code itself uses

7 To improve readability, all transformations are shown in Java-based pseudo code, al-
though JP2 works at the JVM bytecode level.

8

Sarimbekov et al.

native boolean foo(int x);

(a) Before wrapping

boolean foo(int x) {
return wrapped foo(x);
}

native boolean wrapped foo(int x);

(b) After wrapping

Fig. 5. Example of a native method wrapped by JP2.

methods from the Java class library, which has already been instrumented.
This will cause infinite recursions. To sidestep this issue, JP2 uses code dupli-
cation within method bodies in order to keep the non-instrumented bytecode
version together with the instrumented code, and inserts a conditional upon
the method entry in order to select the version to be executed. [16]

JP2 allows to selectively activate and deactivate the collection of dynamic
metrics for each thread without breaking the structure of the CCT. In Sec-
tion 4 we use this feature to collect proper profiles only for the execution of the
benchmarks, excluding the execution in the harness and the JVM’s startup
and shutdown sequences.

3.3 Native Methods

To gather complete profiles, JP2 has to keep track of all native method invo-
cations as well as callbacks from those native methods. Since native methods
do not have any bytecode representation, they cannot be instrumented di-
rectly. As illustrated by Fig. 5, JP2 thus adds simple wrapper methods with
unmodified signatures. Native method prefixing [23], a functionality intro-
duced in Java 6, is used to rename native methods and introduce a bytecode
implementation with the name of the original native method. However, cer-
tain limitations prevent JP2 from applying the transformation at runtime to
classes loaded during JVM bootstrapping. While class redefinition may change
method bodies, the constant pool and attributes, it cannot add, remove or re-
name fields or methods, and change the signatures of methods. Therefore, JP2
is accompanied by a static tool, whose sole purpose is to add those wrappers
to the Java class library.

This is the only circumstance under which JP2 has to resort to static in-
strumentation, which should be done before any dynamic instrumentation.
Later, the wrapped Java class library is added at the beginning of the boot
class path. Since the JVM needs to invoke native methods upon bootstrap-
ping, JP2 has to make it aware of the added prefix. Therefore, a JVMTI
agent, which only informs the JVM about the prefix, needs to be passed as a
command line option to the JVM.

9

Sarimbekov et al.

4 Evaluation

In order for a profiling tool to be universally useful, it has to be stable and
portable. Furthermore, it must not impose prohibitive measurement overhead,
i.e., slow down the application by orders of magnitude. In our evaluation
we show that JP2 has all three properties; when running a diverse selection
of benchmarks on a set of production JVMs it imposes acceptable runtime
overhead.

To this end, we have evaluated the runtime overhead incurred by JP2 using
two different benchmark suites: the DaCapo 9.12-bach benchmark suite [7]
and a DaCapo-based benchmark suite consisting of Scala programs, which
is under active development by one of the authors [21]. In either case, the
measurements exclude the startup and shutdown of both JVM and benchmark
harness. JP2 itself has also been configured to collect dynamic metrics only
for the benchmark proper, of whose iterations it is notified using the callback
mechanisms provided by the benchmark harness (Callback).

To both show that JP2 is portable and to assess the effect a given JVM
can have on the runtime overhead incurred by JP2, we have performed all
measurements using three configurations representative of modern production
JVMs: the HotSpot Server VM 8 , the HotSpot Client VM, 8 and the JRockit
VM 9 . All benchmarks have been run on a 2.33 GHz Core 2 Duo dual core
E6550 processor with 2 GB of main memory, 32 KB L1 data and instruction
caches, and 4096 KB L2 cache; its entire main memory has been available
to the JVM (-Xmx2G). During benchmarking, the computer was operating in
single-user mode under Ubuntu Linux 9.10 (kernel 2.6.31).

Fig. 6 depicts the overhead incurred by JP2 during the first iteration of
the 14 DaCapo 9.12 benchmarks when using the three virtual machines men-
tioned above. As can be seen, on most virtual machines the overhead is
moderate; the slowdown is less than one order of magnitude. The only ex-
ception from this is the HotSpot Client VM. Here, JP2 incurs significantly
higher overheads, as the VM’s client compiler [13] copes less well than the
server compiler [19] with the instrumentation inserted by JP2. But as JP2
produces mostly platform-independent profiles, it is often possible to reduce
overheads to acceptable levels simply by choosing a different virtual machine
that copes better with JP2’s instrumentation; the resulting CCTs will dif-
fer only within the platform-specific part of the given Java class library, not
within the application.

Also, part of the runtime overhead is incurred by JP2 only upon class-
loading, i.e., when newly loaded classes are instrumented. Fig. 7 illustrates
this fact; the absolute overhead diminishes over the course of several iterations

8 JRE build 1.6.0 22-b04, JVM build 17.1-b03
9 JRE build 1.6.0 20-b02, JVM build R28.0.1-21-133393-1.6.0 20-20100512-2126-linux-ia32

10

Sarimbekov et al.

av
ro

ra

bat
ik

ec
lip

se fo
p h2

jyt
hon

lu
in

dex

lu
se

ar
ch

pm
d

su
nflow

to
m

ca
t

tra
deb

ea
ns

tra
des

oap
xa

lan

G
eo

. m
ea

n

10

20

30

40

1

R
u
n
ti

m
e

(n
or

m
al

iz
ed

)

DaCapo 9.12 Benchmarks [7] (default input size)

HotSpot Server VM
HotSpot Client VM
JRockit VM

Fig. 6. Runtime overhead (5 invocations, arithmetic mean ± sample standard deviation) incurred
by JP2 during the first iteration of 14 Java benchmarks on 3 different JVMs.

1 2 3 4 5
0

10

20

30

Iteration

R
u
n
ti

m
e

[s
]

avrora

1 2 3 4 5
0

100

200

Iteration

eclipse

1 2 3 4 5
0

10

20

Iteration

xalan

Fig. 7. Runtime (5 invocations, arithmetic mean ± sample standard deviation) with () and
without () JP2 over serveral iterations of three benchmarks on the HotSpot Server VM.

of a benchmark or during long-running applications. The relative overhead,
however, increases, as the more advanced optimizations performed by the just-
in-time compiler during later iterations are hindered by the instrumentation
inserted by JP2.

Fig. 8 depicts the overhead incurred by JP2 on a set of Scala benchmarks.
As the CCTs generated for several benchmarks (kiama, scalac, and scaladoc)
exceed the heap’s capacity of 2 GB, only the small input size has been used
for those benchmarks. But when compared to the Java benchmarks of Fig. 6,
the overhead incurred by JP2 on the Scala benchmarks is remarkably similar:
For only two benchmarks (scalaxb, tmt), the HotSpot Server VM, which per-

11

Sarimbekov et al.

ac
to

rs

kia
m

a
†

sc
ala

c
†

sc
ala

doc
†

sc
ala

p

sc
ala

xb
sp

ec
s

tm
t

G
eo

. m
ea

n

10

20

30

40

1

R
u
n
ti

m
e

(n
or

m
al

iz
ed

)

Scala Benchmarks [21] (small† / default input sizes)

HotSpot Server VM
HotSpot Client VM
JRockit VM

Fig. 8. Runtime overhead (5 invocations, arithmetic mean ± sample standard deviation) incurred
by JP2 during the first iteration of 8 Scala benchmarks on 3 different JVMs.

forms best with JP2 on the Java benchmarks, experiences more than moderate
performance degradation on the Scala benchmarks.

Fig. 9 shows two key properties of the CCTs generated for various bench-
mark programs: the number of unique methods called and the number of CCT
nodes that result therefrom. As JP2 has to keep the CCT in memory, bench-
marks with millions of CCT nodes (the Java benchmarks eclipse, jython, and
pmd; the Scala benchmarks scalac, specs, and tmt) naturally put additional
pressure on the JVM’s garbage collector, which has to trace a large data struc-
ture that never dies till VM shutdown. Nevertheless, as Fig. 9 shows, JP2 is
able to deal with large programs consisting of tens of thousands of methods.

5 Related Work

Calling context profiling has been explored by many researchers. Existing
approaches that create accurate CCTs [22,1] suffer from considerable over-
head. Sampling-based profiles promise a seemingly simple solution to the
problem of large profiling overheads. However, as Mytkowicz et al. have re-
cently shown [18], implementing sampling-based profilers correctly such that
the resulting profiles are at least “actionable” if not accurate is an intricate
problem which many implementations fail to solve. JP2 sidesteps this issue by
focussing on machine-independent metrics, which it measures both accurately
and with moderate profiling overhead.

12

Sarimbekov et al.

103 104

103

104

105

106

107

avrora

batik

eclipse

foph2

jython

luindex
lusearch

pmd

sunflow

tradebeanstradesoap

tomcat

xalan
actors

kiama†

scalac†

scaladoc†

scalap

scalaxb

specs
tmt

Methods

#
N

o
d
es

DaCapo 9.12 Benchmark
Scala Benchmark

Fig. 9. Number of called methods and number of generated CCT nodes for different bench-
marks. (For some Scala benchmarks, only the small† input size was measured.)

Dufour et al. [11] present a variety of dynamic metrics, including byte-
code metrics, for selected Java programs, such as the SPEC JVM98 bench-
marks [24]. They introduce a tool called *J [12] for the metrics computation.
*J relies on the JVMPI [14], a profiling interface for the JVM, whose use is
known to cause high overhead when recording, e.g., method entry and exit
events like JP2 does 10 . Furthermore, JVMPI is an interface no longer sup-
ported as of the Java 6 release (late 2006).

The NetBeans Profiler 11 integrates Sun’s JFluid profiling technology [10]
into the NetBeans IDE. JFluid exploits dynamic bytecode instrumentation and
code hotswapping in order to turn profiling on and off dynamically, for the
whole application or just a subset of it. However, this tool needs a customized
JVM and is therefore only available for a limited set of environments. In
contrast, JP2 works with any standard JVM without customization.

The Probabilistic Calling Context (PCC) approach due to Bond et al. [9]
continuously maintains a probabilistically unique value representing the cur-
rent calling context. As this value can be efficiently computed, the approach
causes rather low overhead, if supported by a customized virtual machine.
But due to its probabilistic nature PPC does not always produce completely
accurate profiles. Recent research, however, has shown that is often possible
to reconstruct a significant amount of context offline [8].

10 For the fop Java benchmark, e.g., *J increases runtime by a factor of 33.
11 See http://profiler.netbeans.org/.

13

http://profiler.netbeans.org/

Sarimbekov et al.

6 Conclusion

In this paper we presented JP2, a new tool for complete platform-independent
calling context profiling. JP2 is conceived as a software development tool and
is not meant to support profiling of systems in production. JP2 relies on
bytecode transformation technique in order to create CCTs with platform-
independent dynamic metrics, such as the number of method invocations and
the number of executed bytecodes. In contrast to prevailing profilers, JP2
is able to distinguish between multiple call sites in a method and supports
selective profiling of certain methods. We have evaluated the overhead caused
by JP2 with standard Java and Scala benchmarks on a range of different
JVMs.

Acknowledgements

This work has been supported by the Swiss National Science Foundation and
by CASED (www.cased.de).

References

[1] G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance counters with flow and
context sensitive profiling. In PLDI ’97: Proceedings of the ACM SIGPLAN 1997 conference
on Programming language design and implementation, pages 85–96. ACM Press, 1997.

[2] M. Arnold and B. G. Ryder. A framework for reducing the cost of instrumented code. In
SIGPLAN Conference on Programming Language Design and Implementation, pages 168–179,
2001.

[3] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making Software Failures Reproducible by
Preserving Object States. In J. Vitek, editor, ECOOP ’08: Proceedings of the 22th European
Conference on Object-Oriented Programming, volume 5142 of Lecture Notes in Computer
Science, pages 542–565, Paphos, Cyprus, 2008. Springer-Verlag.

[4] W. Binder. A portable and customizable profiling framework for Java based on bytecode
instruction counting. In Third Asian Symposium on Programming Languages and Systems
(APLAS 2005), volume 3780 of Lecture Notes in Computer Science, pages 178–194, Tsukuba,
Japan, Nov. 2005. Springer Verlag.

[5] W. Binder, J. Hulaas, and P. Moret. Advanced java bytecode instrumentation. In PPPJ ’07:
Proceedings of the 5th international symposium on Principles and practice of programming in
Java, pages 135–144, New York, NY, USA, 2007. ACM.

[6] W. Binder, J. Hulaas, P. Moret, and A. Villazón. Platform-independent profiling in a virtual
execution environment. Software: Practice and Experience, 39(1):47–79, 2009.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The dacapo benchmarks: java benchmarking development and analysis. In Proceedings of the
21st annual ACM SIGPLAN conference on Object-oriented programming systems, languages,
and applications, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. ACM.

[8] M. D. Bond, G. Z. Baker, and S. Z. Guyer. Breadcrumbs: efficient context sensitivity for
dynamic bug detection analyses. In Proceedings of the 2010 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’10, pages 13–24, New York, NY,
USA, 2010. ACM.

14

http://www.cased.de/

Sarimbekov et al.

[9] M. D. Bond and K. S. McKinley. Probabilistic calling context. In OOPSLA ’07: Proceedings
of the 22nd annual ACM SIGPLAN conference on Object oriented programming, systems and
applications, pages 97–112, New York, NY, USA, 2007. ACM.

[10] M. Dmitriev. Profiling Java applications using code hotswapping and dynamic call graph
revelation. In WOSP ’04: Proceedings of the Fourth International Workshop on Software and
Performance, pages 139–150. ACM Press, 2004.

[11] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge. Dynamic metrics for Java. ACM
SIGPLAN Notices, 38(11):149–168, Nov. 2003.

[12] B. Dufour, L. Hendren, and C. Verbrugge. *J: A tool for dynamic analysis of Java programs. In
OOPSLA ’03: Companion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 306–307, New York, NY, USA,
2003. ACM Press.

[13] T. Kotzmann, C. Wimmer, H. Mössenböck, T. Rodriguez, K. Russell, and D. Cox. Design of
the Java HotSpotTM client compiler for Java 6. ACM Trans. Archit. Code Optim., 5:7:1–7:32,
May 2008.

[14] S. Liang and D. Viswanathan. Comprehensive profiling support in the Java virtual machine.
In Proceedings of the 5th USENIX Conference on Object-Oriented Technologies and Systems
(COOTS-99), pages 229–240, Berkeley, CA, May 3–7 1999. USENIX Association.

[15] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format reverse engineering through
context-aware monitored execution. In Proceedings of the 15th Annual Network and Distributed
System Security Symposium, San Diego, CA, February 2008.

[16] P. Moret, W. Binder, and E. Tanter. Polymorphic bytecode instrumentation. In International
Conference on Aspect-Oriented Software Development ’11, Porto de Galinhas, Pernambuco,
Brasil, March 21-25 2011. Publication forthcoming.

[17] P. Moret, W. Binder, and A. Villazón. CCCP: Complete calling context profiling in virtual
execution environments. In PEPM ’09: Proceedings of the 2009 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, pages 151–160, Savannah, GA, USA, 2009.
ACM.

[18] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Evaluating the accuracy of Java
profilers. In Proceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation, PLDI ’10, pages 187–197, New York, NY, USA, 2010. ACM.

[19] M. Paleczny, C. Vick, and C. Click. The Java HotSpotTM server compiler. In Proceedings
of the 2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium -
Volume 1, JVM’01, pages 1–1, Berkeley, CA, USA, 2001. USENIX Association.

[20] A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for testing of object interactions in
sequence diagrams. In FASE ’05: Fundamental Approaches to Software Engineering, volume
3442 of Lecture Notes in Computer Science (LNCS), pages 282–297, April 2005.

[21] A. Sewe. Scala
?≡ Java mod JVM. In Proceedings of the Work-in-Progress Session at the 8th

International Conference on the Principles and Practice of Programming in Java (PPPJ 2010),
volume 692 of CEUR Workshop Proceedings, 2010.

[22] J. M. Spivey. Fast, accurate call graph profiling. Software: Practice and Experience, 34(3):249–
264, 2004.

[23] Sun Microsystems, Inc. JVM Tool Interface (JVMTI), Version 1.0. Web pages at http:
//java.sun.com/j2se/1.5.0/docs/guide/jvmti/, 2004.

[24] The Standard Performance Evaluation Corporation. SPEC JVM98 Benchmarks. Web pages
at http://www.spec.org/osg/jvm98/, 1998.

[25] J. Whaley. A portable sampling-based profiler for Java Virtual Machines. In Proceedings of
the ACM 2000 Conference on Java Grande, pages 78–87. ACM Press, June 2000.

[26] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient, and adaptive
calling context profiling. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN conference on
Programming language design and implementation, pages 263–271, New York, NY, USA, 2006.
ACM.

15

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/
http://www.spec.org/osg/jvm98/

ByteCode 2011

Implementing a Language with Flow-Sensitive and
Structural Typing on the JVM

David J. Pearce1

School of Engineering and Computer Science
Victoria University of Wellington, NZ

James Noble2

School of Engineering and Computer Science
Victoria University of Wellington, NZ

Abstract

Dynamically typed languages are flexible and impose few burdens on the programmer. In contrast, static typing
leads to software that is more efficient and has fewer errors. However, static type systems traditionally require
every variable to have one type, and that relationships between types (e.g. subclassing) be declared explicitly.
The Whiley language aims to hit a sweet spot between dynamic and static typing. This is achieved through
structural subtyping and by typing variables in a flow-sensitive fashion. Whiley compiles to the JVM, and this
presents a number of challenges. In this paper, we discuss the implementation of Whiley’s type system on the
JVM.

1 Introduction

Statically typed programming languages (e.g. Java, C#, C++, etc) lead to programs
which are more efficient and have fewer errors [11,2]. Static typing forces some
discipline on the programming process. For example, it ensures at least some doc-
umentation regarding acceptable function inputs is provided. In contrast, dynami-
cally typed languages are more flexible which helps reduce overheads and increase
productivity [37,47,34,7]. Furthermore, in recent times, there has been a significant
shift towards dynamically typed languages [38].

1 Email: djp@ecs.vuw.ac.nz
2 Email: kjx@ecs.vuw.ac.nz

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Pearce, Noble

Numerous attempts have been made to bridge the gap between static and dy-
namic languages. Scala [45], C#3.0 [6], OCaml [43] and, most recently, Java 7 all
employ local type inference (in some form) to reduce syntactic overhead. Tech-
niques such as gradual typing [46,50], soft typing [11] and hybrid typing [20] en-
able a transitory position where some parts of a program are statically typed, and
others are not. Alternatively, type inference can be used (in some situations) to re-
construct types “after the fact” for programs written in dynamic languages [3,23].

Whiley is a statically-typed language which, for the most part, has the look and
feel of a dynamic language. This is achieved with an extremely flexible type system
which utilises the following features:
• Flow-sensitive types, which are adopted from flow-sensitive program analysis

(e.g. [22,30,14]) and allow variables to have different types at different points.
• Structural Subtyping, where subtyping between data types is implict and based

on their structure.

Taken together, these offer several advantages over traditional nominal typing,
where types are named and subtyping relationships explicitly declared.

1.1 Contributions

The contributions of this paper are:

(i) We discuss the flow-sensitive and structural typing system used in the Whiley
language.

(ii) We detail our implementation of these features on the JVM, and identify a
number of challenges.

An open source implementation of the Whiley language is freely available from
http://whiley.org. Finally, a detailed formalisation of Whiley’s type sys-
tem, including some discussion of JVM implementation, can be found here [39].

2 Whiley

In this section, we present a series of examples showing Whiley’s key features. In
the following section, we’ll discuss their implementaiton in the JVM.

2.1 Implicit Declaration

Most contemporary statically typed languages require variables be explicitly de-
clared (FORTRAN is one exception here). Compared with dynamically typed lan-
guages, this is an extra burden for the programmer, particularly when a variable’s
type can be inferred from assigned expression(s). In Whiley, local variables are
declared by assignment:

2

Pearce, Noble

int average([int] items):
v = 0
for i in items:

v = v + items[i]
return v / |items|

Here, items is a list of ints, whilst |items| returns its length. The variable
v is used to accumulate the sum of all elements in the list. Variable v is declared
by the assignment from 0 and, since this has type int, v has type int after the
assignment.

2.2 Union Types

Nullable references have proved a significant source of error in languages such as
Java [29]. The issue is that, in such languages, one can treat nullable references
as though they are non-null references [40]. Many solutions have been proposed
which strictly distinguish these two forms using static type systems [18,17,41,35].

Whiley’s type system lends itself naturally to handling this problem because it
supports union types (see e.g. [5,31]). These allow variables to hold values from
different types, rather than just one type. The following illustrates:

null|int indexOf(string str, char c):
...

[string] split(string str, char c):
idx = indexOf(str,c)
if idx ∼= int:

// matched an occurrence
below = str[0..idx]
above = str[idx..]
return [below,above]

else:
return [str] // no occurrence

Here, indexOf() returns the first index of a character in the string, or null if
there is none. The type null|int is a union type, meaning it is either an int or
null.

In the above example, Whiley’s type system seamlessly ensures that null is
never dereferenced. This is because the type null|int cannot be treated as an
int. Instead, we must first perform a runtime type test to ensure it is an int.
Whiley automatically retypes idx to int when this is known to be true, thereby
avoiding any awkward and unnecessary syntax (e.g. a cast as required in [4,35]).

3

Pearce, Noble

2.3 Flow-Sensitive Typing

The following code shows the definition of a simple hierarchy of Shapes in Whiley,
and a function that returns the area of any of these three types of Shapes.

define Circle as {int x, int y, int radius}
define Square as {int x, int y, int dimension}
define Rectangle as {int x, int y,

int width, int height}

define Shape as Circle | Square | Rectangle

real area(Shape s):
if s ∼= Circle:

return PI * s.radius * s.radius
else if s ∼= Square:

return s.dimension * s.dimension
else:

return s.width * s.height

A Shape is a union type — either a Circle, Square or Rectangle
(which are all themselves record types). The code employs a runtime type test,
“s ∼= Circle”, to distinguish the different kinds of Shapes. This is similar
to Java’s instanceof or Eiffel’s reverse assignment. Unlike Java, Whiley re-
types s to be of type Circle on the true branch of the if statement, so there
is no need to cast s explicitly to Circle before accessing the Circle-specific
field radius. Similary, on the false branch, Whiley retypes s to the union type
Square|Rectangle, and then to Square or Rectangle within the next if.

Implementing these Shapes in most statically-typed languages would be more
cumbersome and more verbose. In modern object-oriented languages, like Java,
expressions must still be explicitly retyped. For example, after a test such as
s instanceof Circle, we must introduce a new variable, say c, with type
Circle as an alias for s, and use c whenever we wanted to access s as a circle.

2.4 Structural Subtyping

Statically typed languages, such as Java, employ nominal typing for recursive data
types. This results in rigid hierarchies which are often difficult to extend. In con-
trast, Whiley employs structural subtyping of records [10] to give greater flexibility.
For example, the following code defines a Border record:

define Border as {int x, int y, int width, int height}

Any instance of Border has identical structure to an instance of Rectangle.
Thus, wherever a Border is required, a Rectangle can be provided and vice-

4

Pearce, Noble

versa — even if the Border definition was written long after the Rectangle,
and even though Rectangle makes no mention of Border.

The focus on structural, rather than nominal, types in Whiley is also evident in
the way instances are created:

bool contains(int x, int y, Border b):
return b.x <= x && x < (b.x + b.width) &&

b.y <= y && y < (b.y + b.height)

bool example(int x, int y):
rect = {x: 1, y: 2, width: 10, height: 3}
return contains(x,y,rect)

Here, function example() creates a record instance with fields x, y, width and
height, and assigns each an initial value. Despite not being associated with a
name, such as Border or Rectangle, it can be freely passed into functions
expecting such types, since they have identical structure.

2.5 Value Semantics

In Whiley, all compound structures (e.g. lists, sets, and records) have value se-
mantics. This means they are passed and returned by-value (as in Pascal, or most
functional languages) — but unlike functional languages (and like Pascal) values
of compound types can be updated in place.

Value semantics implies that updates to the value of a variable can only affect
that variable, and the only way information can flow out of a procedure is through
that procedure’s return value. Furthermore, Whiley has no general, mutable heap
comparable to those found in object-oriented languages. Consider the following:

int f([int] xs):
ys = xs
ys[0] = 1
...

The semantics of Whiley dictate that, having assigned xs to ys as above, the sub-
sequent update to ys does not affect xs. Arguments are also passed by value,
hence xs is updated inside f() and this does not affect f’s caller. That is, changes
can only be communicated out of a function by explictly returning a value.

Whiley also provides strong guarantees regarding subtyping of primitive types
(i.e. integers and reals). In Whiley, ints and reals represent unbounded integers
and rationals, which ensures int ≤ real has true subset semantics (i.e. every
int can be represented by a real). This is not true for e.g. Java, where there
are int (resp. long) values which cannot be represented using float (resp.
double) [26, §5.1.2].

5

Pearce, Noble

2.6 Incremental Construction

A common pattern arises in statically typed languages when a structure is built up
piecemeal. Usually, the pieces are stored in local variables until all are available
and the structure can be finally created. In dynamic languages it is much more
common to assign pieces to the structure as they are created and, thus, at any given
point a partially complete version of the structure is available. This reduces syn-
tactic overhead, and also exposes opportunities for code reuse. For example, the
partial structure can be passed to functions that can operate on what is available. In
languages like Java, doing this requires creating a separate (intermediate) object.

In Whiley, structures can also be constructed piecemeal. For example:

BinOp parseBinaryExpression():
v = {} // empty record
v.lhs = parseExpression()
v.op = parseOperator()
v.rhs = parseExpression()
return v

After the first assignment, v is an empty record. Then, after the second it has type
{Expr lhs}, after the third it has type {Expr lhs, Op op}, and after the
fourth it has type {Expr lhs,Expr rhs,Op op}. This also illustrates the
benefits of Whiley’s value semantics with update: the value semantics ensure that
there can never be any alias to the value contained in v; while updates permit v to
be built imperatively, one update at a time.

2.7 Structural Updates

Static type systems normally require updates to compound types, such as list and
records, to respect the element or field type in question. Whiley’s value seman-
tics also enables flexible updates to structures without the aliasing problems that
typically arise in object-oriented languages. For example, assigning a float to
an element of an int array is not permitted in Java. To work around this, pro-
grammers typically either clone the structure in question, or work around the type
system using casting (or similar).

In Whiley, updates to lists and records are always permitted. For example:

define Point as {int x, int y}
define RealPoint as {real x, real y}

RealPoint normalise(Point p, int w, int h):
p.x = p.x / w
p.y = p.y / h
return p

6

Pearce, Noble

Here, the type of p is updated to {real x,int y} after p.x is assigned, and
{real x,real y} after p.y is assigned. Similarly, for lists we could write:

[real] normalise([int] items, int max):
for i in 0..|items|:

items[i] = items[i] / max
return items

Here, the type of items is updated to [real] by the assignment. Thus, Whiley’s
type system permits an in-place update from integer to real without requiring any
explicit casts, or other type system abuses (e.g. exploiting raw types, such as List,
in Java).

3 Implementation on the JVM

The Whiley language compiles down to Java bytecode, and runs on the JVM. In
this section, we outline how Whiley’s data types are represented on the JVM.

3.1 Numerics

Whiley represents numbers on the JVM in a similar fashion to Clojure [28]. More
specifically, ints and reals are represented using custom BigInteger and
BigRational classes which automatically resize to prevent overflow. Whiley
requires that integers are truly treated as subtypes of reals. For example:

real f(int x):
if x >= 10:

x = 9.99
return x

At the control-flow join after the if statement, x holds either an int or a real.
Since real values are implemented as BigRationals on the JVM, we must
coerce x from a BigInteger on the false branch.

3.2 Records

The implementation of Whiley’s record types must enable structural subtyping.
A simple approach (used in many dynamic languages), is to translate them as
HashMaps which map field names to values. This ensures that record objects
can be passed around freely, provided they have the required fields.

One issue with this approach, is that each field access requires a HashMap
lookup which, although relatively fast, does not compare well with Java (where
field accesses are constant time). Whiley’s semantics enable more efficient imple-
mentations. In particular, the type {int x} is a record containing exactly one

7

Pearce, Noble

field x. Thus, records can have a static layout to give constant time access [40].
For example, records can be implemented on the JVM using arrays of references,
rather than HashMaps. In this approach, every field corresponds to a slot in the
array whose index is determined by a lexicographic ordering of fields.

To implement records using a static layout requires the compiler to insert coer-
cions to support subtyping. Consider the following:

define R1 as {int x, int y}
define R2 as {int y}

R1 r1 = {x: 10, y: 20}
R2 r2 = r1

Let us assume our records are implemented using a static layout where fields are
ordered alphabetically. Thus, in R1, field x occupies the first slot, and field y the
second. Similarly, field y corresponds to the first slot of R2 and, hence, R1 is not
compatible with R2. Instead, we must convert an instance of R1 into an instance
of R2 by constructing a new array consisting of a single field, and populating that
with the second slot (i.e. field y). This conversion is safe because of Whiley’s value
semantics — that is, two variables’ values can never be aliased.

3.3 Collections

Whiley provides first-class lists, sets and maps which are translated on the JVM
into ArrayLists, HashSets and HashMaps respectively. Of course, all these
collection types must have value semantics in Whiley. Recall that, in the following,
updating ys does not update xs:

int f([int] xs):
ys = xs
ys[0] = 1
...

A naive translation of this code to the JVM would clone() the ArrayList
referred to by xs, and assign this to ys. This can result in a lot of unnecessary
copying of data and there are several simple strategies to reduce this cost:

(i) Use a CopyOnWriteArrayList to ensure that a full copy of the data is
only made when it is actually necessary.

(ii) Use an intraprocedural dataflow analysis to determine when a variable is no
longer used. For example, in the above, if xs is not live after the assignment
to ys then cloning it is unnecessary.

(iii) Exploit compiler inferred read-only modifiers for function parameters.
Such modifiers can be embedded into the JVM bytecode, and used to iden-
tify situations when an argument for an invocation does not need to be cloned.

8

Pearce, Noble

Currently, we employ only CopyOnWriteArrayLists to improve performance,
although we would like to further examine the benefits of those other approaches.

3.4 Runtime Type Tests

Implementing runtime type tests on the JVM represents something of a challenge.
Whilst many runtime type tests translate directly using appropriate instanceof
tests, this is not always the case:

int f(real x):
if x ∼= int:

return x
return 0

Although Whiley ints are implemented as Java BigIntegers, this test cannot
be translated to “e instanceof BigInteger”. This is because of Whiley’s
subtyping rules: xwill be implemented by an instance of BigRational on entry,
but because Whiley ints are subtypes of Whiley reals, the subtype check should
succeed if the actual real passed in is actually an integer. The test is therefore trans-
lated into a check to see whether the given BigRational instance corresponds
to an integer or not.

Union types also present a challenge because distinguishing the different cases
is not always straightforward. For example:

define data as [real] | [[int]]

int f(data d):
if d ∼= [[int]]:

return |d[0]|
else:

return |d|

Since variable d is guaranteed to be a list of some sought, its type on entry is
translated to List on the JVM. Thus, Whiley cannot use an instanceof test on
d directly to distinguish the two cases. Instead, we must examine the first element
of the list and test this. Thus, if the first element of the list is itself a list, then the
true branch is taken 3 .

The following example presents another interesting challenge:

int f([real] d):
if d ∼= [int]:

return d[0]
return 0

3 Note that in the case of an empty list, then type test always holds

9

Pearce, Noble

To translate this test, we must loop over every element in the list and check whether
or not it is an integer. Furthermore, if this is the case, we must convert the list into
a list of BigInteger, rather than BigRational.

Finally, records present an interesting issue. Consider the following example:

define Rt as {int x, int y} | {int x, int z}

int unpackSecond(Rt r):
if r ∼= {int x,int y}:

return r.y
return r.z

Since variable r is guaranteed to be a record of some sort, its type on entry is
translated as Object[]. Thus, implementing the type test using instanceof
does not make sense, as this will not distinguish the two different kinds of record.
Instead, we must check whether r has fields x and y, or not. To support this, the
representation of records must also associate the corresponding field name with
each slot in the Object[] array. This is achieved by reserving the first slot of the
array as a reference to an array of field names, each of which identifies the name of
a remaining slot from the outer array.

Distinguishing between different record types can be optimised by reducing the
number of field presence checks. For example, in the above, there is little point
in checking for the presence of field x, since it is guaranteed in both cases. The
Whiley compiler generates the minimal number of field checks to be certain which
of the possible cases is present.

4 Related Work

In this section, we concentrate primarily on work relating to Whiley’s flow-sensitive
type system.

4.1 Dataflow Analysis

Flow-sensitive dataflow analysis has been used to infer various kinds of infor-
mation, including: flow-sensitive type qualifiers [21,22,12,17,27,13,1,41,4,35], in-
formation flow [30,44,36], typestates [49,19,8], bytecode verification [33,32] and
more.

Type qualifiers constrain the possible values a variable may hold. CQual is
a flow-sensitive qualifier inference supporting numerous type qualifiers, including
those for synchronisation and file I/O [21,22]. CQual does not account for the
effects of conditionals and, hence, retyping is impossible. The work of Chin et al.
is similar, but flow-insensitive [12,13] JQual extended these systems to Java, and
considered whole-program (flow-insensitive) inference [27]. AliasJava introduced

10

Pearce, Noble

several qualifiers for reasoning about object ownership [1]. The unique qualifier
indicates a variable holds the only reference to an object; similarly, owned is used
to confine an object to the scope of its enclosing “owner” object.

Fähndrich and Leino discuss a system for checking non-null qualifiers in the
context of C# [18]. Here, variables are annotated with NonNull to indicate they
cannot hold null. Non-null qualifiers are interesting because they require vari-
ables be retyped after conditionals (i.e. retyping v from Nullable to NonNull
after v!=null). Fähndrich and Leino hint at the use of retyping, but focus pri-
marily on issues related to object constructors. Ekman et al. implemented this sys-
tem within the JustAdd compiler, although few details are given regarding variable
retyping [17]. Pominville et al. also briefly discuss a flow-sensitive non-null analy-
sis built using SOOT, which does retype variables after !=null checks [41]. The
JACK tool is similar, but focuses on bytecode verification instead [35]. This extends
the bytecode verifier with an extra level of indirection called type aliasing. This en-
ables the system to retype a variable x as @NonNull in the body a if(x!=null)
conditional. The algorithm is formalised using a flow-sensitive type system oper-
ating on Java bytecode. JavaCOP provides an expressive language for writing type
system extensions, including non-null types [4]. This system is flow-insensitive
and cannot account for the effects of conditionals; as a work around, the tool al-
lows assignment from a nullable variable x to a non-null variable if this is the first
statement after a x!=null conditional.

Information Flow Analysis is the problem is tracking the flow of information,
usually to restrict certain flows based for security reasons. The work of Hunt and
Sands is relevant here, since they adopt a flow-sensitive approach [30]. Their sys-
tem is presented in the context of a simple While language not dissimilar to ours,
although they do not account for the effect of conditionals. Russo et al. use an
extended version of this system to compare dynamic and static approaches [44].
They demonstrate that a purely dynamic system will reject programs that are con-
sidered type-safe under the Hunt and Sands system. JFlow extends Java with stat-
ically checked flow annotations which are flow-insensitive [36]. Finally, Chugh
et al. developed a constraint-based (flow-insensitive) information flow analysis of
JavaScript [15].

Typestate Analysis focuses on flow-sensitive reasoning about the state of ob-
jects, normally to enforce temporal safety properties. Typestates are finite-state au-
tomatons which can encode usage rules for common APIs (e.g. a file is never read
before being opened), and were pioneered by Strom and Yellin [48,49]. Fink et
al. present an interprocedural, flow-sensitive typestate verification system which is
staged to reduce overhead [19]. Bodden et al. develop an interprocedural typestate
analysis which is flow-sensitive at the intra-procedural level [9]. This is a hybrid
system which attempts to eliminate all failure points statically, but uses dynamic
checks when necessary. This was later extended to include a backward propagation
step that improves precision [8].

11

Pearce, Noble

Java Bytecode Verification requires a flow-sensitive typing algorithm [33].
Since locals and stack locations are untyped in Java Bytecode, it must infer their
types to ensure type safety. Like Whiley, the verifier updates the type of a vari-
able after an assignment, and combines types at control-flow join points using a
least upper bound operator. However, it does not update the type of a variable af-
ter an instanceof test. Furthermore, the Java class hierarchy does not form a
join semi-lattice. To deal with this, the bytecode verifier uses a simplified least up-
per bound operator which ignores interfaces altogether, instead relying on runtime
checks to catch type errors (see e.g. [32]). However, several works on formalis-
ing the bytecode verifier have chosen to resolve this issue with intersection types
instead (see e.g. [25,42]).

Gagnon et al. present a technique for converting Java Bytecode into an inter-
mediate representation with a single static type for each variable [24]. Key to this
is the ability to infer static types for the local variables and stack locations used in
the bytecode. Since local variables are untyped in Java bytecode, this is not always
possible as they can — and often do — have different types at different points; in
such situations, a variable is split as necessary into multiple variables each with a
different type.

Dubochet and Odersky [16] describe how structural types are implemented in
Scala in some detail, and compare reflexive and generative approaches to imple-
menting methods calls on structural types. They recognise that structural types
always impose a penalty on current JVMs, but describe how both techniques gen-
erally provide sufficient performance in practice — about seven times slower than
Java interface calls in the worse case.

5 Conclusion

The Whiley language implements a flow-sensitive and structural type system on the
JVM. This permits variables to be declared implicitly, have multiple types within
a function, and be retyped after runtime type tests. The result is a statically-typed
language which, for the most part, has the look and feel of a dynamic language.
In this paper, we have discussed various details relating to Whiley’s implementa-
tion on the JVM. Finally, an open source implementation of the Whiley language
is freely available from http://whiley.org.

References

[1] J. Aldrich, V. Kostadinov, and C. Chambers. Alias Annotations for Program Understanding. In Proc.
OOPSLA, pages 311–330, 2002.

[2] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis. RPython: a step towards reconciling dynamically
and statically typed OO languages. In Proc. DLS, pages 53–64. ACM Press, 2007.

12

Pearce, Noble

[3] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for javascript. In Proc. ECOOP,
volume 3586 of LNCS, pages 428–452. Springer-Verlag, 2005.

[4] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing pluggable type
systems. In Proc. OOPSLA, pages 57–74. ACM Press, 2006.

[5] F. Barbanera and M. Dezani-CianCaglini. Intersection and union types. In Proc. of TACS, volume 526 of
LNCS, pages 651–674, 1991.

[6] G. Bierman, E. Meijer, and M. Torgersen. Lost in translation: formalizing proposed extensions to C#. In
Proc. OOPSLA, pages 479–498, 2007.

[7] B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strnisa, J. Vitek, and T. Wrigstad. Thorn:
robust, concurrent, extensible scripting on the JVM. In Proc. OOPSLA, pages 117–136, 2009.

[8] E. Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent states. In Proc.
ICSE, pages 5–14, 2010.

[9] E. Bodden, P. Lam, and L. J. Hendren. Finding programming errors earlier by evaluating runtime monitors
ahead-of-time. In Proc. ESEC/FSE, pages 36–47. ACM Press, 2008.

[10] L. Cardelli. Structural subtyping and the notion of power type. In Proc. POPL, pages 70–79. ACM Press,
1988.

[11] R. Cartwright and M. Fagan. Soft typing. In Proc. PLDI, pages 278–292. ACM Press, 1991.

[12] B. Chin, S. Markstrum, and T. Millstein. Semantic type qualifiers. In Proc. PLDI, pages 85–95. ACM
Press, 2005.

[13] B. Chin, S. Markstrum, T. Millstein, and J. Palsberg. Inference of user-defined type qualifiers and qualifier
rules. In Proc. ESOP, 2006.

[14] J.-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural computation of pointer-
induced aliases and side effects. In Proc. POPL, pages 232–245. ACM Press, 1993.

[15] R. Chugh, J. A. Meister, R. Jhala, and S. Lerner. Staged information flow for javascript. In Proc. PLDI,
pages 50–62, 2009.

[16] G. Dubochet and M. Odersky. Compiling structural types on the JVM. In ECOOP 2009 Workshop
on Implementation, Compilation, Optimization of Object-Oriented Languages, Programs and Systems
(ICLOOPS), 2009.

[17] T. Ekman and G. Hedin. Pluggable checking and inferencing of non-null types for Java. JOT, 6(9):455–
475, 2007.

[18] M. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an object-oriented language.
In Proc. OOPSLA, pages 302–312. ACM Press, 2003.

[19] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in the presence
of aliasing. ACM TOSEM, 17(2):1–9, 2008.

[20] C. Flanagan. Hybrid type checking. In Proc. POPL, pages 245–256. ACM Press, 2006.

[21] J. S. Foster, M. Fähndrich, and A. Aiken. A theory of type qualifiers. In Proc. PLDI, pages 192–203.
ACM Press, 1999.

[22] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. In Proc. PLDI, pages 1–12. ACM
Press, 2002.

[23] M. Furr, J.-H. An, J. Foster, and M. Hicks. Static type inference for Ruby. In Proc. SAC, pages 1859–
1866. ACM Press, 2009.

[24] E. Gagnon, L. Hendren, and G. Marceau. Efficient inference of static types for java bytecode. In Proc.
SAS, pages 199–219, 2000.

[25] A. Goldberg. A specification of java loading and bytecode verification. In Proc. CCS, pages 49–58, 1998.

[26] J. Gosling, G. S. B. Joy, and G. Bracha. The Java Language Specification, 3rd Edition. Prentice Hall,
2005.

13

Pearce, Noble

[27] D. Greenfieldboyce and J. S. Foster. Type qualifier inference for java. In Proc. OOPSLA, pages 321–336.
ACM Press, 2007.

[28] S. Halloway. Programming Clojure. Pragmatic Programmers, 2009.

[29] T. Hoare. Null references: The billion dollar mistake, presentation at qcon, 2009.

[30] S. Hunt and D. Sands. On flow-sensitive security types. In Proc. POPL, pages 79–90. ACM Press, 2006.

[31] A. Igarashi and H. Nagira. Union types for object-oriented programming. JOT, 6(2), 2007.

[32] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning,
30(3/4):235–269, 2003.

[33] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley, second edition,
1999.

[34] R. P. Loui. In praise of scripting: Real programming pragmatism. IEEE Computer, 41(7):22–26, 2008.

[35] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java bytecode verification for @NonNull types. In
Proc. CC, pages 229–244, 2008.

[36] A. C. Myers. JFlow: Practical mostly-static information flow control. In Proc. POPL, pages 228–241,
1999.

[37] J. K. Ousterhout. Scripting: Higher-level programming for the 21st century. IEEE Computer, 31(3):23–
30, 1998.

[38] L. D. Paulson. Developers shift to dynamic programming languages. IEEE Computer, 40(2):12–15,
2007.

[39] D. J. Pearce and J. Noble. Flow-sensitive types for whiley. Technical Report ECSTR10-23, Victoria
University of Wellington, 2010.

[40] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[41] P. Pominville, F. Qian, R. Vallée-Rai, L. Hendren, and C. Verbrugge. A framework for optimizing Java
using attributes. In Proc. CC, pages 334–554, 2001.

[42] C. Pusch. Proving the soundness of a java bytecode verifier specification in isabelle/hol. In Proc. TACAS,
pages 89–103, 1999.

[43] D. Remy and J. Vouillon. Objective ML: An effective object-oriented extension to ML. Theory and
Practice of Object Systems, 4(1):27–50, 1998.

[44] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive security analysis. In Proc. CSF, pages
186–199, 2010.

[45] The scala programming language. http://lamp.epfl.ch/scala/.

[46] J. Siek and W. Taha. Gradual typing for objects. In Proc. ECOOP, volume 4609 of LNCS, pages 151–175.
Springer-Verlag, 2007.

[47] D. Spinellis. Java makes scripting languages irrelevant? IEEE Software, 22(3):70–71, 2005.

[48] R. Strom and S. Yemini. Typestate: A programming language concept for enhancing software reliability.
IEEE TSE, 12(1):157–171, 1986.

[49] R. E. Strom and D. M. Yellin. Extending typestate checking using conditional liveness analysis.
IEEE TSE, 19(5):478–485, 1993.

[50] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed and untyped code in a
scripting language. In Proc. POPL, pages 377–388. ACM Press, 2010.

14

ByteCode 2011

Treegraph-based instruction scheduling for

stack-based virtual machines

Jiin Parka,2 Jinhyung Parka,1, Wonjoon Songa,1,
Songwook Yoona,1, Bernd Burgstallera,2, Bernhard Scholzb,3

a Department of Computer Science
Yonsei University

Seoul, Korea
b School of Information Technologies

The University of Sydney
Sydney, Australia

Abstract

Given the growing interest in the JVM and Microsoft’s CLI as programming language implemen-
tation targets, code generation techniques for efficient stack-code are required. Compiler infras-
tructures such as LLVM are attractive for their highly optimizing middleend. However, LLVM’s
intermediate representation is register-based, and an LLVM code generator for a stack-based virtual
machine needs to bridge the fundamental differences of the register and stack-based computation
models.
In this paper we investigate how the semantics of a register-based IR can be mapped to stack-code.
We introduce a novel program representation called treegraphs. Treegraph nodes encapsulate
computations that can be represented by DFS trees. Treegraph edges manifest computations
with multiple uses, which is inherently incompatible with the consuming semantics of stack-based
operators. Instead of saving a multiply-used value in a temporary, our method keeps all values
on the stack, which avoids costly store and load instructions. Code-generation then reduces to
scheduling of treegraph nodes in the most cost-effective way.
We implemented a treegraph-based instruction scheduler for the LLVM compiler infrastructure. We
provide experimental results from our implementation of an LLVM backend for TinyVM, which is
an embedded systems virtual machine for C.

Keywords: bytecode instruction scheduling, stack-code, treegraphs, DAGs, LLVM

1 Authors contributed equally.
2 Research partially supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MEST) (No. 2010-0005234), and the OKAWA Foundation
Research Grant (2009).
3 Research partially supported by the Australian Research Council through ARC DP grant
DP1096445.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Park et al.

1 Introduction

Stack-code provides a compact instruction encoding, because instructions only
encode the operation being performed, while its operands are implicitly con-
sumed from the stack. Likewise, result-values of operations are implicitly
produced on the stack. Network computing is facilitated by a compact pro-
gram representation, because smaller programs take less time to transmit.
For this reason the Java virtual machine (JVM, [12]) and various virtual ma-
chines (VMs) for wireless sensor networks, e.g., [14,19,9] employ a stack-based
instruction set. Stack-based VMs are an attractive target for code genera-
tion, because several non-trivial tasks such as register allocation and callstack
management are not required. All-in-all, 58 language implementations target-
ing the JVM and more than 52 programming languages targeting Microsoft’s
.NET’s common language runtime (CLR, [17]) have been reported [24,23].

The renewed interest in stack-machines requires compiler support for the
generation of efficient stack-code. The LLVM [11,10] compiler infrastructure
is attractive for its highly-optimizing middle-end, but LLVM uses static single
assignment form (SSA, [4]) as its intermediate representation (IR). Targeting
LLVM to a stack-machine is complicated by the fact that SSA assumes an
underlying register machine. Operands in registers can be used several times,
whereas stack-based operations consume their operands.

Because the last-in, first-out stack protocol cannot support random
operand access and unlimited operand lifetimes, operands that are not im-
mediately used can be temporarily stored as local variables (temporaries)
instead of keeping them on the stack. Generating bytecode to both mini-
mize code size and improve performance by avoiding temporaries has been
referred to as stack allocation [8,13]. A stack allocation method is required
to provide the operands of each operation on the top of stack (TOS) when
operations need them. If the underlying stack machine provides instructions
to manipulate the stack, operands can be fetched from below the TOS. E.g.,
the JVM provides SWAP and DUP instructions to manipulate the stack. If the
cost of a stack manipulation is less than the costs from stores and loads from
a temporary, keeping a value on the stack is profitable.

In this paper we introduce a novel intermediate representation called tree-
graphs to facilitate stack allocation from register-based IRs. Treegraph nodes
encapsulate computations that are compatible with a stack-based computation
model. Edges between treegraph nodes represent dependencies on operands
that have multiple uses. Multiple operand uses are inherently incompatible
with the consuming semantics of stack-based operators. Instead of saving
multiply-used values in temporaries, our method keeps all values on the stack.
We perform stack allocation for treegraphs through scheduling of treegraph-
nodes such that (1) dependencies between nodes are satisfied, and (2) the

2

Park et al.

number of nodes that don’t require stack manipulation because their operands
are already on the TOS is maximized.

The remainder of this paper is organized as follows. In Section 2 we provide
background information and survey the related work. Section 3 introduces
our treegraph IR and the basic treegraph scheduling algorithm. In Section 4
we discuss the minimization of overall stack manipulation costs. Section 5
contains experimental results. We draw our conclusions in Section 6.

2 Background and Related Work

Generating register-code for arithmetic expressions was first studied by Andrei
Ershov [5]. Sethi and Ullman used Ershov numbers to devise an algorithm that
they prove to generate optimal code for arithmetic expressions [18]. Aho and
Johnson used dynamic programming to generate optimal code for expression
trees on CISC machines [1].

Compiler back-ends for stack machines perform a DFS traversal of expres-
sion trees (the abstract syntax tree or other IR equivalent) and generate code
as a side-effect. Common subexpression elimination finds expressions with
multiple uses. The resulting DAGs complicate stack code generation: unlike
values in registers, operands on the stack are consumed by their first use and
are thus unavailable for subsequent uses. Fraser and Hanson’s LCC [6] com-
piler for C comes with its own backend for a stack-based virtual machine 4 .
LCC converts DAGs to trees by storing multiply-used values in temporaries
and replacing references by references to the corresponding temporaries. This
approach is taken with the LLVM backend for Microsoft .NET MSIL code,
and it can be observed with code produced by Sun’s javac compiler.

A significant amount of research has been conducted to reduce the number
redundant store/load combinations by post-compilation transformations of
bytecode [8,13,21,22]. In [15], dynamic instruction scheduling is performed
to reduce the stack usage of a JVM. These methods are different from our
approach in that they operate on the generated bytecode itself. Our approach
avoids stores to temporaries altogether by keeping all values on the VM’s
evaluation stack.

TinyVM is a stack-based embedded systems VM for C [3]. TinyVM’s
instruction set closely resembles the instruction set of the bytecode backend
of the LCC compiler [6]. TinyVM’s instruction set is given in the appendix.
Examples throughout this paper use the TinyVM instruction set.

4 Different from the JVM

3

Park et al.

3 Treegraph IR and Treegraph Scheduling

Our optimization for the stack allocation problem is a local optimization, i.e.,
it is restricted to single basic blocks (BBs), where a BB is a sequence of
statements with a single entry and a single exit [2].

ADDRG x

MUL

CNST 5INDIR

ASGN

1 ADDRG x
2 ADDRG x
3 INDIR
4 CNST 5
5 MUL
6 ASGN

1 ADDRL t0
2 ADDRG x
3 ASGN
4 ADDRL t0
5 ADDRL t0
6 INDIR
7 CNST 5
8 MUL
9 ASGN

1 ADDRG x
2 DUP
3 INDIR
4 CNST 5
5 MUL
6 ASGN

(a) (b) (c) (d)

Fig. 1. Dependence-graph and instruction schedules for assignment statement x = 5 * x

An acyclic dependence graph G(V, E, L, a) consists of a set of vertices
V that represent instances of operations, and a set of edges E ⊆ V × V
representing data dependencies among operations in V . Each each operation
o ∈ O has an arity 5 a : O → N0. The mapping L : V → O assigns an
operation to a vertex. In abuse of notation, we will refer to node u and L(u)
synonymously. A data dependency (u, v) ∈ E is defined as a dependency
between operation u and v such that operation u depends on operation v.
The set of successors Su = {w : (u, w) ∈ E} of vertex u constitutes the
operands of u, and they are totally ordered by relation ≺u⊆ Su × Su, i.e.,
v1 ≺u . . . ≺u vk for successors {v1, . . . , vk}. Note that the total order is given
by the expected order of the operands on the stack. A dependence graph V
is well-formed if |Su| = a(L(u)), for all u ∈ V . The set Pu that denotes the
predecessors of vertex u is defined similarly. We refer to operations u whose
set of predecessors Pu is empty as result nodes of G. Figure 1(a) depicts a
dependence graph for assignment statement x=5*x.

A stack machine can execute a sequence of instructions 〈i1, . . . , il〉 where
an instruction belongs to one of the following instruction classes:

• Instruction opo is an instruction that performs operation o ∈ O and has the
signature Ea(o) → E. The instruction pops a(o) elements from the stack,
generates one element as result, and pushes the result on top of the stack.
If there are less than a(o) elements on the stack, the stack machine will go
into the error state and will terminate the execution.

• Instruction DUP k duplicates the top of stack element k times. Omitting
argument k is equivalent to DUP 1. If there are no elements on the stack, the

5 The arity is the number of operands of an operation.

4

Park et al.

stack machine will go into the error state and will terminate the execution.

• Instruction FETCH k duplicates element k (counted from the top) and pushes
the duplicate onto the TOS. The stack size is incremented by one. If there
are less than k elements on the stack, the machine will go into the error
state and will terminate the execution.

A sequence of instructions 〈i1, . . . , il〉 is admissible, if for an empty stack none
of the statements make the machine go into the error state and terminate the
execution. Graph G is computed by the sequence of instructions 〈i1, . . . , il〉
iff the resulting stack contains the correct result.

Problem statement

Input: An acyclic dependence graph G(V, E, L, a).
Output: code for a stack machine that performs the computations of G
at minimum cost, i.e., with the minimum number of DUP and FETCH stack
reordering instructions.

3.1 Special Case: G is a Tree

If G forms a tree, there exists only a single result node r ∈ V which represents
the root node of the tree. We can perform a depth-first search (DFS) as
shown in Algorithm 1 where operand(u, i) gives the i-th element of the total
order ≺u.

Algorithm 1: DFS (G, u)

1 foreach i ∈ {1, . . . , |Su|} do
2 DFS (G, operand(u, i))

3 emit opL(u)

Proposition 3.1 Sequence DFS (G, r) is admissible and code optimal.

Proof. The sequence is optimal because for each vertex a single instruction
is emitted and this is a lower bound on the number of computations. The
generated sequence is admissible and correct: This can be shown by structural
induction, i.e., for each sub-tree it is shown that it is admissible and correct.
The induction start are leaves of the tree. 2

Note that the DFS sequence is unique in the absence of commutative op-
erators. For a commutative operator like addition or multiplication, we get
two unique trees, depending on which subtree of the commutative operator is
traversed first by Algorithm 1.

Theorem 3.2 No other instruction sequence for G is code optimal.

Proof. The other sequence is either longer or destroys correctness. 2

5

Park et al.

3.2 Code Generation for DAGs

If G is a DAG, there are no cycles but there exists a vertex v that has more
than one predecessor in G.

Definition 3.3 Cut set C ⊆ E is the set of all in-coming edges of nodes v
which have more than one predecessor, i.e., C = {(u, v) ∈ E : |Pv| > 1}.

Lemma 3.4 Graph G(V, E − C) is a forest F .

Proof. By definition every node in a forest has at most one predecessor.
Hence, the lemma follows. 2

The resulting forest is not well-formed in the sense that some of the oper-
ations depend on computations that are not performed inside their tree. To
generate code for a DAG, we find the roots r1, . . . , rm for all trees T1, . . . , Tm

in F , i.e., this is the set of all nodes which have more than one predecessor
in G or have no predecessors in G. We construct a tree-graph H(F, A) whose
set of vertices F = {T1, . . . , Tm} are the trees of the forest and whose arcs
A ⊆ F × F denote data dependencies between the trees, i.e., (Ti, Tj) ∈ A iff
there exists an edge (u, v) ∈ E such that u ∈ Ti and v ∈ Tj.

Lemma 3.5 The tree-graph is a DAG.

Proof. The properties of DAG G can only be destroyed by adding an edge
that introduces a cycle. Condensating DAG G to a tree-graph H(F, A) does
not introduce additional edges, because every tree of forest F becomes a sin-
gle node representing the root of the tree. The edges of the tree-graph A
correspond to the cut-set C. 2

For a tree Ti ∈ F the set of successors are denoted by S̃Ti
. The successors

are ordered by the depth-first-search order of Ti considering the root nodes of
the successors in the order as well.

Lemma 3.6 All trees Ti ∈ F have either no predecessor or more than one
predecessor in H.

Proof. By construction of H. 2

Algorithm 2 generates code for a treegraph H given a topological order R
of H. The treegraph is traversed in reverse topological order. For every
treegraph node Ti, the operands are fetched onto the TOS in reverse DFS
order (lines 2–4) 6 . Then code for the tree represented by Ti is generated.
The tree represented by Ti is a sub-graph of G and hence DFS gives the

6 Fetching a value onto the TOS does not increase stack space requirements compared to
storing values in temporaries, because at any one time at most one copy of a stack value
is fetched to the top. Misplaced operands are popped after a treegraph has been executed,
using a POP k instruction provided for this purpose.

6

Park et al.

Algorithm 2: Treegraph scheduler

1 foreach Ti ∈ F in reverse topological order R of H do

2 foreach Tj ∈ S̃Ti
in reverse DFS order of S̃Ti

do
3 if result value of Tj not in correct stack slot then
4 emit FETCH xj

5 DFS (G, ri);
6 if |Pri

| > 0 then
7 N =Oracle (Ti, H,R)− 1;
8 if N > 0 then
9 emit DUP N

optimal code (line 5). Note that execution of the code generated from Ti will
produce exactly one value ν on the stack unless Ti is a result node. If node Ti

has predecessors (i.e., it is not a result node), then Pri
> 1, i.e., node Ti has

at least 2 predecessors (by the definition of treegraphs).

For all but the last predecessor v for which the value ν computed by Ti

is in the correct stack slot, we duplicate ν (line 9). The last predecessor will
consume ν itself. All other predecessors will have to fetch a copy of ν to the
TOS before they are scheduled (line 4 for each of those predecessors). Clearly,
the number of predecessors for which the value ν is in the correct stack slot
depends on (1) the treegraph H, (2) the topological order R of H, and (3) the
treenode Ti ∈ H. Algorithm 2 receives this number via an oracle (line 7). In
Section 4, we will discuss our realization of this oracle via a symbolic execution
of the stack state for given Ti, H,R.

As an example, consider the dependence graph of Figure 1(a). The corre-
sponding treegraph consists of two nodes, one representing ADDRG x, and one
representing the remaining dependence graph nodes. The reverse topological
sorting for this example schedules ADDRG x first. The value ν produced by this
treegraph node constitutes the memory address of global variable x (see the
instruction set specification of TinyVM in the appendix). Value ν is already
in the correct place for both uses of ν, so we duplicate once. The resulting
TinyVM bytecode is depicted in Figure 1(d).

Figures 1(b) shows the bytecode where the multiply-used value is recom-
puted, and Figure 1(c) shows the approach where the multiply-used value is
stored/loaded from a temporary variable t0 (this is the approach chosen e.g.,
by the LCC compiler).

Theorem 3.7 There exists a topological sort order R∗ of H, that generates
an admissible and code optimal instruction sequence.

Proof. Local property: trees can only be generated code optimal by DFS ,

7

Park et al.

i.e., for any re-ordering of instructions inside trees we can find an instruction
sequence that does better (the DFS search), in which case the solution can be
improved locally. 2

Optimality will be achieved by a topological sort order where the number
of values computed in the correct stack slot will be maximized. Section 4 will
present an enumeration algorithm over all topological sortings of a treegraph.

4 Minimizing Stack Manipulation Costs

To enumerate all topological sorts of a given basic block’s treegraph H, we
use Knuth and Szwarcfiter’s algorithm from [7]. For each topological sort,
Algorithm 3 is invoked. This algorithm computes the number of DUP and
FETCH instructions induced by a topological sort. The sum of the number
of DUP and FETCH instructions (line 31) constitutes the cost of a topological
sort. The second piece of information computed by Algorithm 3 is the oracle
that tells for each treegraph node how many times the value ν computed by
this node must be duplicated on the stack (the oracle was introduced with
Algorithm 2).

Algorithm 3 maintains the state of the stack in variable Stack. When
a treegraph node is about to get scheduled, the stack is consulted to check
the positions of the treegraph’s operands. We distinguish operations with
one and two operands. Operands that are on the TOS are consumed (lines
4–5 for the two-operand case, and lines 6 and 10 for the one-operand case.
For each operand not in the required position on the TOS we increase the
overall counter for the required number of FETCH instructions by one (lines 7,
12 and 21).

To maintain the oracle-function that tells the number of times a treegraph
node’s result ν needs to be duplicated on the stack, the algorithm optimisti-
cally pushes one copy of ν on the stack for each predecessor. This number
is saved with the oracle (lines 24–27). Every time we encounter an operand
value which is not in the correct stack position, we decrement this operand’s
duplication counter in the oracle (lines 9, 15–16 and 23). The superfluous
copy is then removed from the stack (lines 8, 13–14 and 22).

The topological sort R of minimum cost and the associated oracle are then
used in Algorithm 2 to schedule treegraph nodes and emit bytecode.

We used a timeout to stop enumeration for basic blocks with too many
topological sorts. For those cases the solution of minimum cost seen so far
was used.

8

Park et al.

Algorithm 3: computeBasicBlockCosts

Input: topsort sequence Seq of treegraph nodes
Output: cost of Seq, Oracle[. . .] for number of dupped values

1 Oracle [. . .]← {}; Dup← 0; Fetch← 0; Stack← empty;
2 foreach treegraph node SU in reverse Seq do
3 if NumberOfOperands(SU) = 2 then
4 if Stack.top() = SU.op[1] and Stack.second() = SU.op[0] then
5 Stack.pop(); Stack.pop()
6 else if Stack.top() = SU.op[0] then
7 Fetch = Fetch + 1;
8 Stack.eraseOne(SU.op[1]);
9 Oracle[SU.op[1]]−−;

10 Stack.pop();

11 else
12 Fetch = Fetch + 2;
13 Stack.eraseOne(SU.op[0]);
14 Stack.eraseOne(SU.op[1]);
15 Oracle[SU.op[0]]−−;
16 Oracle[SU.op[1]]−−;

17 else if NumberOfOperands(SU) = 1 then
18 if Stack.top() = SU.op[0] then
19 Stack.pop();
20 else
21 Fetch = Fetch + 1;
22 Stack.eraseOne(SU.op[0]);
23 Oracle[SU.op[0]]−−;

24 if SU computes result ν then
25 for 1 to SU.NumberOfPreds do
26 Stack.push(SU)

27 Oracle[SU] = SU.NumberOfPreds;

28 foreach treegraph node SU in Seq do
29 if Oracle[SU] > 1 then
30 Dup = Dup + 1;

31 return Dup + Fetch, Oracle[. . .];

5 Experimental Results

Figure 2 shows our experimental setup. C source code was compiled to LLVM
IR by llvm-gcc (”Frontend-end”). LLVM’s optimizing middle-end was by-

9

Park et al.

C-Language TinyVM
Bytecode

TinyVM

X86, ARM,
AVR

Front-end Middle-end Back-end

Fig. 2. Overview of the experimental setup

passed for this experiment. We implemented an LLVM backend for the gener-
ation of TinyVM bytecode from LLVM IR, based on LLVM version 2.5. The
generated bytecode was then benchmarked on TinyVM.

Disk Disk

LLVM Backend for TinyVM Bytecode

SelectionDAG
build

Instruction
Selection

Instruction
Scheduling

StackificationRegister
Allocation

Fig. 3. LLVM Backend Structure

Figure 3 depicts the structure of our TinyVM bytecode backend. We im-
plemented the ”Instruction Selection” pass to lower LLVM IR to TinyVM
bytecode instructions 7 . These bytecode instructions use pseudo-registers to
accommodate SSA virtual registers. At this stage, the IR consists of DAGs
where each DAG-node corresponds to one scheduable unit of bytecode in-
structions (i.e., a sequence of instructions that should be scheduled together).
”Instruction Scheduling” denotes our treegraph instruction scheduler. For
each basic block DAG we create the corresponding treegraph and run our
treegraph scheduling algorithm. We use LLVM’s ’local’ register allocator to
ensure that there are no live ranges between basic blocks. (Our optimization
works on a per basic block basis; we did not consider global stack allocation
yet.) Our ”Stackification” pass converts pseudoregister code to stack code.
This is a straight-forward conversion where operands that correspond to stack
slots are dropped. For example, ADDRG R1 x would become ADDRG x. For
further details we refer to [16].

All experiments were performed on an Intel Xeon 5120 server running
Linux CentOS 5.4 with kernel version 2.6.18. We selected 24 C benchmark
programs from the testsuite that comes with the LLVM compiler infrastruc-

7 “Lowering” denotes the change of abstraction-level by converting LLVM IR to TinyVM
bytecode.

10

Park et al.

-40

-20

0

20

40

60

80

Si
ze

 r
ed

uc
tio

n
(%

)

ST/LD over LCC
Treegraph scheduling over ST/LD

di
vi

de
s

cc
c

di
v

C
as

tT
es

t3
N

ot
T

es
t

D
iv

T
es

t
A

rr
ay

R
es

ol
ut

io
n

Sh
or

ts
C

as
tT

oB
oo

l
In

tO
ve

rf
lo

w
B

itO
ps

T
es

t
L

oa
dS

ho
rt

s
Si

gn
C

on
ve

rs
io

ns
B

itF
ie

ld
T

es
t

Sw
itc

hT
es

t
Sc

al
ar

R
ep

lB
ug

St
at

ic
B

itf
ie

ld
In

it
L

on
gS

w
itc

h
Si

m
pl

eI
nd

ir
ec

tC
al

l
D

iv
R

em
T

es
tL

oo
p

L
oc

al
T

yp
eT

es
t

V
ar

Si
ze

A
rr

ay
A

rr
gr

eg
at

eC
op

y-30

-20

-10

0

10

20

30

40

50

60

70

80

90

Sp
ee

du
p

(%
)

ST/LD over LCC
Treegraph scheduling over ST/LD

Fig. 4. Speedup and size reductions for ST/LD over LCC, and for treegraph scheduling over
ST/LD. No bar with ST/LD over LCC means that the corresponding benchmark was not ANSI C
and thus could not be compiled with LCC.

ture [20]. Our TinyVM backend cannot handle floats and struct args yet,
which is reflected in our selection of benchmarks.

Figure 4 contains the size reductions and the speedups obtained for our
benchmarks programs. Size reductions where computed as 1− newsize

oldsize
.

As a yardstick for our comparison, we implemented the store/load mech-
anism to temporaries for our LLVM backend (i.e., every multiply-used value
is written to a temporary and loaded from there when the value is required).
Figure 4 depicts the improvements of our store/load mechanism over the LCC
bytecode. It should be noted that LCC also applies store/load of temporaries
and that the improvements are largely due to the superior code quality achiev-

11

Park et al.

able with LLVM. Note also that benchmarks with 0 improvement for ST/LD
denote cases where a benchmark was not ANSI C and thus not compilable by
LCC. The ”Treegraph scheduling” data in Figure 4 denotes the improvement
of our treegraph scheduling technique over ST/LD.

For 93% of all basic blocks our treegraph scheduler could derive the opti-
mal solution, for the remaining 7% the enumeration of topological sorts hit the
2 second timeout. For 86% of basic blocks the solve-time was below 0.08 sec-
onds.

6 Conclusions

In this paper we investigated how the semantics of a register-based IR can be
mapped to stack-code. We introduced a novel program representation called
treegraphs. Treegraph nodes encapsulate computations that can be repre-
sented by DFS trees. Treegraph edges manifest computations with multiple
uses. Instead of saving a multiply-used value in a temporary, our method
keeps all values on the stack, which avoids costly store and load instructions.
Values that are in the correct stack slot for (some of) their users are duplicated
so that they can be consumed without stack manipulation. All other values
are lifted to the top of stack via a FETCH instruction. We implemented our
treegraph scheduler with the LLVM compiler infrastructure for TinyVM, a
stack-based embedded systems VM for C.

References

[1] Aho, A. V. and S. C. Johnson, Optimal code generation for expression trees, in: STOC ’75:
Proceedings of seventh annual ACM symposium on Theory of computing (1975), pp. 207–217.

[2] Aho, A. V., M. S. Lam, R. Sethi and J. D. Ullman, “Compilers: principles, techniques, and
tools,” Addison-Wesley, 2007, second edition.

[3] Burgstaller, B., B. Scholz and M. A. Ertl, An Embedded Systems Programming Environment
for C, in: Proc. Euro-Par’06 (2006), pp. 1204–1216.

[4] Cytron, R., J. Ferrante, B. K. Rosen, M. N. Wegman and F. K. Zadeck, Efficiently computing
static single assignment form and the control dependence graph, ACM Trans. Program. Lang.
Syst. 13 (1991), pp. 451–490.

[5] Ershov, A. P., On programming of arithmetic expressions, Communications of the ACM 1
(1958).

[6] Hanson, D. R. and C. W. Fraser, “A Retargetable C Compiler: Design and Implementation,”
Addison Wesley, 1995.

[7] Kalvin, A. D. and Y. L. Varol, On the generation of all topological sortings, Journal of
Algorithms 4 (1983), pp. 150 – 162.

[8] Koopman, P. J., A preliminary exploration of optimized stack code generation, Journal of Forth
Applications and Research 6 (1994).

[9] Koshy, J. and R. Pandey, VMSTAR: Synthesizing Scalable Runtime Environments for Sensor
Networks, in: SenSys ’05: Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems (2005), pp. 243–254.

12

Park et al.

[10] Lattner, C. and V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis &
Transformation, in: Proc. CGO’04 (2004).

[11] Lattner, C. A., LLVM: an infrastructure for multi-stage optimization, Master’s thesis,
Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec (2002).

[12] Lindholm, T. and F. Yellin, “The Java Virtual Machine Specification,” The Java Series,
Addison Wesley Longman, Inc., 1999, second edition.

[13] Maierhofer, M. and M. Ertl, Local stack allocation, in: Compiler Construction, 1998 pp. 189–
203.
URL http://dx.doi.org/10.1007/BFb0026432

[14] Müller, R., G. Alonso and D. Kossmann, SwissQM: Next Generation Data Processing in
Sensor Networks, in: CIDR ’07: Proceedings of the 3rd Biennial Conference on Innovative
Data Systems Research (2007), pp. 1–9.

[15] Munsil, W. and C.-J. Wang, Reducing stack usage in Java bytecode execution, SIGARCH
Comput. Archit. News 26 (1998), pp. 7–11.

[16] Park, J., “Optimization of TinyVM Bytecode Using the LLVM Compiler Infrastructure,”
Master’s thesis, Department of Computer Science, Yonsei University, Korea (2011).

[17] Richter, J., “CLR Via C#,” Microsoft Press, 2010, third edition.

[18] Sethi, R. and J. D. Ullman, The generation of optimal code for arithmetic expressions, J. ACM
17 (1970), pp. 715–728.

[19] Simon, D., C. Cifuentes, D. Cleal, J. Daniels and D. White, Java™ on the bare metal of
wireless sensor devices: the squawk java virtual machine, in: VEE ’06: Proceedings of the 2nd
international conference on Virtual execution environments (2006), pp. 78–88.

[20] The LLVM Project, http: // llvm. org/ , retrieved 2010.

[21] Valle-Rai, R., E. Gagnon, L. Hendren, P. Lam, P. Pominville and V. Sundaresan, Optimizing
Java bytecode using the Soot framework: Is it feasible?, in: Compiler Construction, LNCS 1781
(2000).

[22] Vandrunen, T., A. L. Hosking and J. Palsberg, Reducing loads and stores in stack architectures
(2000).
URL www.cs.ucla.edu/∼palsberg/draft/vandrunen-hosking-palsberg00.pdf

[23] Wikipedia, List of CLI Languages, http: // en. wikipedia. org/ wiki/ List of CLI
languages , retrieved Oct. 2010.

[24] Wikipedia, List of JVM Languages, http: // en. wikipedia. org/ wiki/ List of JVM
languages , retrieved Oct. 2010.

13

http://dx.doi.org/10.1007/BFb0026432
http://llvm.org/
www.cs.ucla.edu/~palsberg/draft/vandrunen-hosking-palsberg00.pdf
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/List_of_CLI_languages
http://en.wikipedia.org/wiki/List_of_JVM_languages
http://en.wikipedia.org/wiki/List_of_JVM_languages

Park et al.

A TinyVM Instruction Set

Instruction IS-Op. Suffixes Description

ADD SUB — FIUP.. integer addition, subtraction

MUL DIV — FIU... integer multiplication, division

NEG — FI.... negation

BAND BOR BXOR — .IU... bitwise and, or, xor

BCOM — .IU... bitwise complement

LSH RSH MOD — .IU... bit shifts and remainder

CNST a .IUP.. push literal a

ADDRG p ...P.. push address p of global

ADDRF l ...P.. push address of formal parameter, offset l

ADDRL l ...P.. push address of local variable, offset l

BADDRG index ...P.. push address of mc entity at index

INDIR — FIUP.. pop p; push ∗p
ASGN — FIUP.. pop arg; pop p; ∗p = arg

ASGN B aB
pop q, pop p; copy the

block of length a at ∗q to p

CVI — FIU... convert from signed integer

CVU — .IUP.. convert from unsigned integer

CVF — FI.... convert from float

CVP — ..U... convert from pointer

LABEL —V. label definition

JUMP targetV. unconditional jump to target

IJUMP —V. indirect jump

EQ GE GT LE LT NE target FIU... compare and jump to target

ARG — FIUP.. top of stack is next outgoing argument

CALL targetV. vm procedure call to target

ICALL —V. pop p; call procedure at p

INIT lV. allocate l stack cells for local variables

BCALL — FIUPVB mc procedure call

RET — FIUPVB return from procedure call

HALT —V. exit the vm interpreter

POP kV. pop k values from the TOS

Table A.1
TinyVM bytecode instruction set

Table A.1 depicts the TinyVM bytecode instruction set. The TinyVM
instruction set is closely related to the bytecode interface that comes with
LCC [6]. Instruction opcodes cover the leftmost column whereas the col-
umn headed “IS-Op.” lists operands derived from the instruction stream
(all other instruction operands come from the stack). The column entitled
“Suffixes” denotes the valid type suffixes for an operand (F=float, I=signed

14

Park et al.

integer, U=unsigned integer, P=pointer, V=void, B=struct). 8 In this way in-
struction ADDRG receives its pointer argument p from the instruction stream
and pushes it onto the stack. Instructions ADDRF and ADDRL receive an in-
teger argument literal from the instruction stream; this literal is then used
as an offset to the stack framepointer to compute the address of a formal or
local variable. Unlike the JVM, TinyVM uses an ADDR* / INDIR instruction
sequence to load a value onto the stack. To store a value, TinyVM uses the
ASGN instruction.

8 Operators contain byte size modifiers (i.e., 1, 2, 4, 8), which we have omitted for reasons
of brevity.

15

ByteCode 2011

Handling non-linear operations in the value

analysis of COSTA

Diego Alonso a Puri Arenasa Samir Genaima

a DSIC, Complutense University of Madrid (UCM), Spain

Abstract

Inferring precise relations between (the values of) program variables at different program points is essential
for termination and resource usage analysis. In both cases, this information is used to synthesize ranking
functions that imply the program’s termination and bound the number of iterations of its loops. For
efficiency, it is common to base value analysis on non-disjunctive abstract domains such as Polyhedra,
Octagon, etc. While these domains are efficient and able to infer complex relations for a wide class of
programs, they are often not sufficient for modeling the effect of non-linear and bit arithmetic operations.
Modeling such operations precisely can be done by using more sophisticated abstract domains, at the price
of performance overhead. In this paper we report on the value analysis of COSTA that is based on the
idea of encoding the disjunctive nature of non-linear operations into the (abstract) program itself, instead
of using more sophisticated abstract domains. Our experiments demonstrate that COSTA is able to prove
termination and infer bounds on resource consumption for programs that could not be handled before.

1 Introduction

Termination and resource usage analysis of imperative languages have received a

considerable attention [3,22,20,8,19,13,14]. Most of these analyses rely on a value (or

size) analysis component, which infers relations between the values of the program

variables (or the sizes of the corresponding data structures) at different program

points. This information is then used to bound the number of iterations of the

program’s loops. Thus, the precision of value analysis directly affects the class of

(terminating) programs for which the corresponding tool is able prove termination

or infer lower and upper bounds on their resource consumption. Moreover, in the

case of resource consumption, it also affects the quality of the inferred bounds (i.e.,

how tight there are).

Typically, for efficiency, the underlying abstract domains used in value analysis

are based on conjunctions of linear constraints, e.g., Polyhedra [10], Octagons [18],

etc. While in practice these abstract domains are precise enough for bounding the

loops of many programs, they are often not sufficient when the considered program

involves non-linear arithmetic operations (multiplication, division, bit arithmetics,

etc). This is because the semantics of such operations cannot be modeled precisely

with only conjunctions of linear constraints. In order to overcome this limitation,

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Alonso, Arenas, Genaim

one can use abstract domains that support non-linear constraints, however, these

domain typically impose a significant performance overhead. Another alternative

is to use disjunctive abstract domains, i.e., disjunctions of (conjunctions of) linear

constraints. This allows splitting the behavior of the corresponding non-linear op-

eration into several mutually exclusive cases, such that each one can be precisely

described using only conjunctions of linear constraints. This alternative also imposes

performance overhead, since the operations of such disjunctive abstract domains are

usually more expensive.

In this paper, we develop a value analysis that handles non-linear arithmetic

operations using disjunctions of (conjunctions of) linear constraints. However, sim-

ilarly to [21], instead of directly using disjunctive abstract domains, we encode the

disjunctive nature of the non-linear operations directly in the (abstract) program.

This allows using non-disjunctive domains like Polyhedra, Octagons, etc., and still

benefit from the disjunctive information in order to infer more precise relations for

programs with non-linear arithmetic operations. We have implemented a prototype

of our analysis in costa, a COSt and Termination Analyser for Java bytecode. Ex-

periments on typical examples from the literature demonstrate that costa is able

to handle programs with non-linear arithmetics that could not be handled before.

The rest of this paper is organized as follows: Section 2 briefly describes the

intermediate language on which we develop our analysis (Java bytecode programs

are automatically translated to this language); Section 3 motivates the techniques we

use for handling non-linear arithmetic operations; Section 4 describes the different

components of our value analysis; Section 5 presents a preliminary experimental

evaluation using costa; and, finally, we conclude in Section 6.

2 A Simple Imperative Intermediate Language

We present our analysis on a simple rule-based imperative language [1] which is

similar in nature to other representations of bytecode [23,16]. For simplicity, we

consider a subset of the language presented in [1], which deals only with methods and

arithmetic operations over integers. In the implementation we handle full sequential

Java bytecode. A rule-based program P consists of a set of procedures. A procedure

p with k input arguments x̄ = x1, . . . , xk and m output arguments ȳ = y1, . . . , ym
is defined by one or more guarded rules. Rules adhere to this grammar:

rule ::= p(x̄, ȳ) ← g, b1, . . . , bn
g ::= true | e1 op e2 | g1 ∧ g2
b ::= x:=e | x:=e− e | x:=e+ e | q(x̄, ȳ)

x:=e ∗ e | x:=e / e | x:=e rem e
x:=e ⊗ e | x:=e⊕ e | x:=e ⊲ e | x:=e ⊳ e

e ::= x | n
op ::= >|<|≤|≥|=

where p(x̄, ȳ) is the head of the rule; g its guard, which specifies conditions for

the rule to be applicable; b1, . . . , bn the body of the rule; n an integer; x and y

variables and q(x̄, ȳ) a procedure call by value. The arithmetic operations / and

rem refer respectively to integer division and remainder. They have the semantics

2

Alonso, Arenas, Genaim

int m(int x , int b) {
int y=1;

int z=0;

i f (b > 1) {
while (y < x) {

z=z+1;

y=y∗b ;
}

}
return z ;

}

m(〈x, b〉, 〈r〉)←
y:=1,

z:=0,

m1(〈x, b, y, z〉, 〈r〉).
m1(〈x, b, y, z〉, 〈r〉)←

b ≤ 1,

r:=z.

m1(〈x, b, y, z〉, 〈r〉)←
b > 1,

m2(〈x, b, y, z〉, 〈y1, z1〉),
r:=z1.

m2(〈x, b, y, z〉, 〈y, z〉)←
y ≥ x.

m2(〈x, b, y, z〉, 〈y2, z2〉)←
y < x,

z1:=z + 1,
1© y1:=y ∗ b,

m2(〈x, b, y1, z1〉, 〈y2, z2〉).

Fig. 1. A Java program and its intermediate representation. Method m computes ⌈logb(x)⌉.

of the bytecode instructions idiv and irem [17]. Operations ⊗, ⊕, ⊳ and ⊲ refer

respectively to bitwise AND, bitwise OR, left shift and right shift. They have the

semantics of the bytecode instructions iand, ior, ishl, and ishr [17]. We ignore

the overflow behavior of these instruction, supporting them is left for future work.

The key features of this language which facilitate the formalization of the anal-

ysis are: (1) recursion is the only iterative mechanism, (2) guards are the only

form of conditional, (3) there is no operand stack, and (4) rules may have multiple

output parameters which is useful for our transformation. The translation from

Java bytecode programs to rule-based programs is performed in two steps. First,

a control flow graph (CFG) is built. Second, a procedure is defined for each basic

block in the CFG and the operand stack is flattened by considering its elements as

additional local variables. The execution of rule-based programs mimics standard

bytecode [17]. Multiple output arguments in procedures come from the extraction

of loops into separated procedure (see Example 2.1). For simplicity, we assume that

each rule in the program is given in static single assignment (SSA) form [5].

Example 2.1 Figure 1 depicts the Java code (left) and the corresponding interme-

diate representation (right) of our running example. Note that our analysis starts

from the bytecode, the Java code is shown here just for clarity. Procedure m is

defined by one rule, it receives x and b as input, and returns r as output, i.e., r

corresponds to the return value of the Java method. Rule m corresponds to the

first two instructions of the Java method, it initializes local variables y and z, and

then passes the control to m1. Procedure m1 corresponds to the if statement, and

is defined by two mutually exclusive rules. The first one is applied when b ≤ 1, and

simply returns the value of z in the output variable r. The second one is applied

when b > 1, it calls procedure m2 (the loop), and upon exit from m2 it returns the

value of z1 in the output variable r. Note that z1 refers to the value of z upon exit

from procedure m2 (the loop), it is generated by the SSA transformation. Proce-

dure m2 corresponds to the while loop, and is defined by two mutually exclusive

rules. The first one is applied when the loop condition is evaluated to false, and the

second one when it is evaluated to true. Note that m2 has two output variables,

they correspond to the values of y and z upon exit from the loop.

3

Alonso, Arenas, Genaim

m(〈x , b〉, 〈r〉)←
{y = 1},
{z = 0},
m1 (〈x , b, y , z 〉, 〈r〉).

m1 (〈x , b, y , z 〉, 〈r〉)←
{b ≤ 1},
{r = z}.

m1 (〈x , b, y , z 〉, 〈r〉)←
{b > 1},
m2 (〈x , b, y , z 〉, 〈y1 , z1 〉),
{r = z1}.

m2 (〈x , b, y , z 〉, 〈y , z 〉)←
{y ≥ x}.

m2 (〈x , b, y , z 〉, 〈y2 , z2 〉)←
{y < x},
{z1 = z + 1},

1© {y1 = ⊤},
m2 (〈x , b, y1 , z1 〉, 〈y2 , z2 〉).

Fig. 2. Abstract compilation of the program of Figure 1

3 Motivating Example

Proving that the program of Figure 1 terminates, or inferring lower and upper

bounds on its resource consumption (e.g., number of execution steps), requires

bounding the number of iterations that its loop can make. Bounding the num-

ber of iterations of a loop is usually done by finding a function f from the program

states to a well-founded domain, such that if s and s′ are two states that corre-

spond to two consecutive iterations, then f(s) > f(s′). Traditionally, this function

is called ranking function [11]. Note that for termination, it is enough to prove that

such function exists, while inferring bounds on the resource consumption requires

synthesizing such ranking function. For the program of Figure 1, if the program

state is represented by the tuple 〈x, b, y, z〉, then f(〈x, b, y, z〉) = nat(x− y), where
nat(v) = max(v, 0), is a ranking function for the while loop. Moreover, this func-

tion can be further refined to f(〈x, b, y, z〉) = log2(nat(x − y) + 1), which is more

accurate for the sake of inferring bounds on the loop’s resource consumption.

In this paper we follow the analysis approach used in [1], which divides the value

analysis into several steps: (1) an abstract compilation [15] step that generates an

abstract version of the program, replacing each instruction by an abstract descrip-

tion (e.g., conjunction of linear constraints) that over-approximates its behavior; (2)

a fixpoint computation step that computes an abstract semantics of the program;

and (3) in the last, we prove termination or infer bounds on resource consumption

using the abstract program of point 1 and the abstract semantics of point 2.

Applying the first step on the program of Figure 1 results in the abstract program

of Figure 2. It can be observed that linear arithmetic instructions are precisely

described by their corresponding abstract versions. For example, z1:=z+1 updates

z1 to hold the value of z + 1, and its corresponding abstract version {z1 = z + 1}
is a denotation which states that the value of z1 is equal to the value of z plus 1.

However, in the case of non-linear arithmetic instructions, the abstract description

often loses valuable information. This is the case of the instruction y1:=y ∗ b which

is annotated with 1© in both Figures 1 and 2. While the instruction updates y1 to

hold the value of y ∗ b, its abstract description {y1 = ⊤} states that y1 can take

any value. Here ⊤ should be interpreted as any integer value. This abstraction

4

Alonso, Arenas, Genaim

makes it impossible to bound the number of iterations of the loop, since in the

abstract program the function f(〈x, b, y, z〉) = nat(x− y) does not decrease in each

two consecutive iterations.

Without any knowledge on the values of y and b, the constraint {y1 = ⊤} is

indeed the best description for y1:=y∗b when only conjunctions of linear constraints

are allowed. However, in the program of Figure 1 it is guaranteed that the value

of y is positive and that of b is greater than 1. Using this context information the

abstraction of y1:=y ∗ b can be improved to {y1 ≥ 2 ∗ y}, which in turn allows

synthesizing the ranking function f(〈x, b, y, z〉) = nat(x − y) and its refinement

f(〈x, b, y, z〉) = log2(nat(x − y) + 1). This suggests that the abstract compilation

can benefit from context information when only conjunctions of linear constraints

are allowed. However, the essence of abstract compilation is to use only syntactic

information, and clearly context information cannot be obtained always by syntactic

analysis of the program.

One way to solve the loss of precision when abstracting non-linear arithmetic

instructions is to allow the use of disjunctions of linear constraints. For example,

the instruction y1:=y ∗ b could be abstracted to ϕ1 ∨ · · · ∨ ϕn where each ϕi is a

conjunction of linear constraints that describes a possible scenario. E.g., we could

have ϕj = {y ≥ 1 , b ≥ 2 , y1 ≥ 2 ∗b} in order to handle the case in which y ≥ 1 and

b ≥ 2 . Then, during the fixpoint computation, when the context becomes available,

the appropriate ϕi will be automatically selected. However, for efficiency reasons,

we restrict our value analysis to use only conjunctions of linear constraints. In order

to avoid the use of disjunctive constraints, similarly to [21], we follow an approach

that encodes the disjunctive information into the (abstract) program itself. For

example, the second rule of m2 would be abstracted to:

m2 (〈x , b, y , z 〉, 〈y2 , z2 〉)←
{y < x},
{z1 = z + 1},

1© op
∗
(〈y , b〉, 〈y1 〉),

m2 (〈x , b, y1 , z1 〉, 〈y2 , z2 〉).

op
∗
(〈a, b〉, 〈c〉)← {a = 0 , c = 0}.

op
∗
(〈a, b〉, 〈c〉)← {a = 1 , c = b}.

...

op
∗
(〈a, b〉, 〈c〉)← {a ≥ 2 , b ≥ 2 , c ≥ 2 ∗ a}.

Here, the instruction y1:=y ∗ b was abstracted to op
∗
(〈y , b〉, 〈y1 〉) which is a call

to an auxiliary abstract rule that defines possible abstract scenarios for different

inputs. During the fixpoint computation, since op
∗
is called in a context in which

y ≥ 1 and b ≥ 2 , only the second and last rules of op
∗
will be selected. Then, these

two rules propagate the constraint y1 ≥ 2∗y back, which is required for synthesizing

the expected ranking functions, without using disjunctive abstract domains.

4 Value Analysis

In this section we describe the value analysis of costa, which is based on the ideas

presented in Section 3. The analysis receives as input a program in the intermediate

language and a set of initial entries, and, for each (abstract) procedure p(x̄, ȳ) it

infers: (1) A pre-condition (over x̄) that holds whenever p is called; and (2) a post-

condition (over x̄ and ȳ) that holds upon exit from p. The pre- and post-conditions

5

Alonso, Arenas, Genaim

are conjunction of linear constraints over the domain of Polyhedra [10]. Later, they

can be composed in order to obtain invariants for some program points of interest.

In Section 4.1 we describe the abstract compilation step which translates the

program P into an abstract version Pα. In Section 4.2 we describe a standard

fixpoint algorithm that is used to infer the pre- and post-conditions. Finally, in

Section 4.3 we explain how this information is used for bounding the number of

iterations of the program’s loops.

4.1 Abstract Compilation

This section describes how to transform a given program P into an abstract program

Pα. In the implementation, we support also the abstraction of data-structures using

the path-length measure [22] (the depth of a data-structure) and the abstraction

of arrays to their length. However, in this paper we omit these features since they

do not benefit from the techniques we use for abstracting non-linear arithmetic

operations. Given a rule r ≡ p(x̄, ȳ) ← g, b1, . . . , bn, the abstract compilation of r

is rα ≡ p(x̄, ȳ)← gα, bα1 , . . . , b
α
n, where:

(i) the abstract guard gα is equal to the (linear) guard g ;

(ii) if bi ≡ q(z̄, w̄), then bαi ≡ q(z̄, w̄);

(iii) if bi ≡ x:=e13e2 and 3 ∈ {+,−}, then bαi ≡ {x = e13e2}; and

(iv) if bi ≡ x:=e13e2 and 3 6∈ {+,−}, then bαi ≡ op3(〈e1, e2〉, 〈x〉)

Then, Pα = {rα | r ∈ P}. Note that we use the same names for constraint variables

as those of the program variables (but in italic font for clarity). This is possible

since we have assumed that the rules of P are given in SSA form. In the above

abstraction, linear guards (point i) and linear arithmetic instructions (point iii) are

simply replaced by a corresponding constraint that accurately model their behavior.

Note that x:=e13e2 is an assignment while {x = e13e2} is an equality constraint.

In point ii, calls to procedures are simply replaced by calls to abstract procedures.

In what follows we explain the handling of non-linear arithmetic (point iv).

If the elements of the underlying abstract domain consist only in conjunctions

of linear constraints, then non-linear operations are typically abstracted to ⊤. As

we have seen in Section 3, this results in a significant loss of precision that pre-

vents bounding the loop’s iterations. A well-know solution is to use disjunctions

of linear constraints which allow splitting the input domain into special cases that

can be abstracted in a more accurate way. This can be done by directly using

disjunctive abstract domains, however, this comes on the price of performance over-

head. The solution we use in our implementation, inspired by [21], is to encode the

disjunctions in the (abstract) program itself, without the need for using disjunctive

abstract domains. In practice, this amounts to abstracting the non-linear arithmetic

instruction x:=e13e2 into a call op
3
(〈e1, e2〉, 〈x〉) to an auxiliary abstract procedure

op
3
, which is defined by several rules that cover all possible inputs and simulate

the corresponding disjunction. The rules of op
3
are designed by partitioning its

input domain and, for each input class, define the strongest possible post-condition.

Clearly, the more partitions there are, the more precise are the post-conditions,

but the more expensive is the analysis too. Therefore, when designing the rules of

6

Alonso, Arenas, Genaim

op
3
this performance and precision trade-off should be taken into account. For the

purposes of termination and resource usage analyzes, the partitioning of the input

domain aims at propagating accurate information about constancy, equality and

progression (e.g, multiplication by a constant), with the least possible number of

rules. In what follows, we explain the auxiliary abstract procedures associated to

the non-linear arithmetic operations of our language.

Integer division. The auxiliary abstract rule oprem and op/ are defined in terms of

opdr which stands for x = y ∗ q + r:

opdr(〈x, y〉, 〈q, r〉) ← {x = 0, q = 0, r = 0}.
opdr(〈x, y〉, 〈q, r〉) ← {y = 1, q = x, r = 0}.
opdr(〈x, y〉, 〈q, r〉) ← {y = −1, q = −x, r = 0}.
opdr(〈x, y〉, 〈q, r〉) ← {x = y, q = 1, r = 0}.
opdr(〈x, y〉, 〈q, r〉) ← {x = −y, q = −1, r = 0}.
opdr(〈x, y〉, 〈q, r〉) ← {x > y > 1, 0 < q ≤ x

2 , 0 ≤ r < y}.
opdr(〈x, y〉, 〈q, r〉) ← {−x > y > 1, x2 ≤ q < 0,−y < r ≤ 0}.
opdr(〈x, y〉, 〈q, r〉) ← {x > −y > 1,−x

2 ≤ q < 0, 0 ≤ r < −y}.
opdr(〈x, y〉, 〈q, r〉) ← {−x > −y > 1, 0 < q ≤ −x

2 , y < r ≤ 0}.
opdr(〈x, y〉, 〈q, r〉) ← {|y| > |x|, q = 0, r = x}.

op
/
(〈x, y〉, 〈q〉) ← opdr(〈x, y〉, 〈q, 〉).

oprem(〈x, y〉, 〈r〉) ← opdr(〈x, y〉, 〈 , r〉).

Note that, in practice, abstract rules that involve | · | are folded into several cases.

The sixth rule, for example, states that if x > y > 1 then x/y is a positive number

smaller than or equal to x
2 , and x rem y is a non-negative number smaller than

y. This rule is also essential for synthesizing logarithmic ranking functions, when

the input value is reduced at least by half in every iteration. Note that we ignore

the special cases when x = MIN VALUE and y = −1, since it is a kind of overflow

behavior.

Multiplication. The auxiliary abstract procedure op
∗
is defined as follows:

op
∗
(〈x, y〉, 〈z〉)← {x = 0, z = 0}.

op
∗
(〈x, y〉, 〈z〉)← {x = 1, z = y}.

op
∗
(〈x, y〉, 〈z〉)← {x = −1, z = −y}.

op
∗
(〈x, y〉, 〈z〉)← {x ≥ 2, y ≥ 2, z ≥ 2 ∗ x, z ≥ 2 ∗ y}.

op
∗
(〈x, y〉, 〈z〉)← {x ≤ −2, y ≥ 2, z ≤ 2 ∗ x, z ≤ −2 ∗ y}.

op
∗
(〈x, y〉, 〈z〉)← {x ≤ −2, y ≤ −2, z ≥ −2 ∗ x, z ≥ −2 ∗ y}.

We have omitted those rules that can be obtained by swapping the arguments x and

y. In this abstraction, we distinguish the cases in which x = 0 (constancy), x = ±1
(equality) and those in which |x| > 1 and |y| > 1 (progress). Note that, for example,

the post-condition z ≥ 2 ∗ x is essential for finding a logarithmic ranking function

for loops like that of Figure 2. For example, it is not be possible to synthesize such

ranking function if we use a weaker, yet sound, post-condition z > x.

7

Alonso, Arenas, Genaim

The bitwise ⊗ and ⊕. The auxiliary abstract rules op
⊗
and op

⊕
are defined in

terms of opao as follows:

opao(〈x , y〉, 〈a, o〉) ← {x = 0, a = 0, o = y}.
opao(〈x , y〉, 〈a, o〉) ← {x = −1, a = y, o = −1}.
opao(〈x , y〉, 〈a, o〉) ← {x = y, a = x, o = x}.
opao(〈x , y〉, 〈a, o〉) ← {x > y > 0, 0 ≤ a ≤ y, o ≥ x}.
opao(〈x , y〉, 〈a, o〉) ← {x > 0, y < −1, 0 ≤ a ≤ x, y ≤ o ≤ −1}.
opao(〈x , y〉, 〈a, o〉) ← {x < y < −1, a ≤ x, y ≤ o ≤ −1}.

op
⊗
(〈x, y〉, 〈a〉) ← opao(〈x , y〉, 〈a, 〉).

op
⊕
(〈x, y〉, 〈o〉) ← opao(〈x , y〉, 〈 , o〉).

Since these operations are commutative we omit rules derivable by swapping the

input arguments. The first two rules describe the cases x = 0 and x = −1, i.e.,
vectors in which all bits are respectively 0 or 1. The third rule handles the case

x = y. The rest of rules are based on that the result of x ⊗ y has less 1-bits than

either x or y, whereas the result of x⊕ y has more 1-bits than either x or y.

Shift left and right. Although shift operations in Java bytecode accept any integer

value as the shift operand, the number of shifted positions is determined only by

the five least significant bits, i.e., it is a value between 0 and 25 − 1 (for type long

it is determined by the six least significant bits). For the shift left operation ⊳, the

auxiliary abstract procedure op⊳ is defined as follows:

op⊳(〈x, s〉, 〈z〉)← {x = 0, z = 0}.
op⊳(〈x, s〉, 〈z〉)← {s = 0, z = x}.
op⊳(〈x, s〉, 〈z〉)← {x > 0, 0 < |s| < 25, z ≥ 2x}.
op⊳(〈x, s〉, 〈z〉)← {x < 0, 0 < |s| < 25, z ≤ 2x}.
op⊳(〈x, s〉, 〈z〉)← {x > 0, |s| ≥ 25, z ≥ x}.
op⊳(〈x, s〉, 〈z〉)← {x < 0, |s| ≥ 25, z ≤ x}.

The above rules provide an accurate post-condition when the shift operand s satisfies

0 ≤ |s| < 25. In the last two abstract rules, the post-conditions are respectively

z ≥ x and z ≤ x since we cannot observe the value of the first five bits of s when

|s| ≥ 25. Similarly, for the shift right operation ⊲, the auxiliary abstract rule op⊲ is

defined as follows:

op⊲(〈x, s〉, 〈z〉)← {x = 0, z = 0}.
op⊲(〈x, s〉, 〈z〉)← {x = −1, z = −1}.
op⊲(〈x, s〉, 〈z〉)← {s = 0, z = x}.
op⊲(〈x, s〉, 〈z〉)← {x > 0, 0 < |s| < 25, x > z, x ≥ 2z, z ≥ 0}.
op⊲(〈x, s〉, 〈z〉)← {x < −1, 0 < |s| < 25, x− 1 ≤ 2z, z < 0}.
op⊳(〈x, s〉, 〈z〉)← {x > 0, |s| ≥ 25, 0 ≤ z ≤ x}
op⊳(〈x, s〉, 〈z〉)← {x < 0, |s| ≥ 25, x ≤ z ≤ −1}}.

Note that when the program includes several non-linear instructions for the

same operations, then it might be useful to generate different auxiliary abstract

8

Alonso, Arenas, Genaim

procedures for them, e.g, op1
∗
, op2

∗
, etc. This is required mainly when the calling

contexts of these instructions are disjoint, and therefore separating their auxiliary

abstract procedures avoids merging the calling contexts, which usually results in a

loss of precision. In addition, non-linear arithmetic instructions that do not affect

the termination of the program can be abstracted as before, i.e., to {x = ⊤}, and
thus avoid the performance overhead caused by unnecessary auxiliary abstract pro-

cedures. These instructions can be identified using dependency analysis, similar to

what have been done in [4] for identifying program variables that affect termination.

4.2 Fixpoint algorithm

Algorithm 1 implements the value analysis using a top-down strategy in the style

of [7]. It receives as input an abstract program Pα and a set of initial pre-conditions

E, and computes pre- and post-conditions for each procedure in P (stored in tables

PRE and POST respectively). The meaning of a pre-condition PRE[q(x̄)] ≡ ϕ, is

that ϕ holds when calling q, and of a post-condition POST[q(x̄, ȳ)] ≡ ϕ is that ϕ

holds upon exit from q.

Procedure fixpoint initializes the event queue Q to ∅ (L2), initializes the el-

ements of tables PRE and POST to false (L4 and L5), processes the initial pre-

conditions E by calling add pre for each one (L6) which in turn adds the corre-

sponding event to Q, and then in the while loop it processes the events of Q until

no more events are available. In each iteration, an event q (a procedure name) is

removed from Q (L8) and processed as follows: the current pre-condition ψ of q

is retrieved (L9), each of the rules of q is evaluated in order to generate a post-

condition for that specific rule w.r.t. ψ (L11), all post-conditions are joint into a

single element δ (using the least upper-bound ⊔ of the underlying abstract domain),

and finally δ is added as a post-condition for q by calling add post. Note that the

call to add post might add more events to Q. The evaluation of a rule (procedure

evaluate) w.r.t. a pre-condition ψ processes each bαi in the rule’s body B as follows:

if bαi is a call q′(w̄, z̄), then it registers the corresponding pre-condition by calling

add pre (L16) and adds the current post-condition of q to ψ (L17); otherwise, bαi
is a constraint and it simply adds it to ψ (L18).

Procedure add pre adds a new pre-condition for q if it does not imply the

current one, and adds the corresponding event to Q. Procedure add post adds a

new post-condition for q if it does not imply the current one, and adds events for

all procedures that call q since they might have to be re-analyzed. Note that both

procedures use the least upper bound ⊔ of the underlying abstract domain in order

to join the new pre- or post-conditions with the current one. Note also that since we

use abstract domains with infinite ascending chains, in practice, these procedures

incorporate a widening operator in order to ensure termination.

Example 4.1 Consider again the abstract program of Figure 2, where the second

abstract rule of m2 is replaced by

m2(〈x, b, y, z〉, 〈y2, z2〉)←
{y < x}, {z1 = z + 1}, op

∗
(〈b, y〉, 〈y1〉), m2(〈x, b, y1, z1〉, 〈y2, z2〉).

and the initial set of entries E = {〈m(〈x, b〉), true〉} . Then, the fixpoint algorithm

9

Alonso, Arenas, Genaim

Algorithm 1 The fixpoint algorithm

1: procedure fixpoint(Pα, E)

2: Q = ∅;
3: for all q(x̄, ȳ) ∈ P do

4: PRE[q(x̄)] = false;

5: POST[q(x̄, ȳ)] = false;

6: for all 〈p(x̄), ϕ〉 ∈ E do add pre(p(x̄), ϕ);

7: while Q.notempty() do

8: q = Q.poll();
9: ψ = PRE[q(x̄)];

10: δ = false;

11: for all q(x̄, ȳ)← Bα ∈ Pα do δ = δ ⊔ evaluate(q(x̄, ȳ)← Bα, ψ);

12: add post(q(x̄, ȳ), δ);

13: function evaluate(q(x̄, ȳ)← Bα, ψ)

14: for all bαi ∈ B
α do

15: if bαi ≡ q′(w̄, z̄) then

16: add pre(q′(w̄), ∃̄w̄.ψ);
17: ψ = ψ ⊓ POST[q′(w̄, z̄)];

18: else ψ = ψ ⊓ bαi ;

19: return ∃̄x̄ ∪ ȳ.ψ;

20: procedure add pre(q(x̄), ϕ)

21: ψ = PRE[q(x̄)];

22: if ϕ 6|= ψ then

23: PRE[q(x̄)] = ψ ⊔ ϕ;
24: Q.add(q);

25: procedure add post(q(x̄, ȳ), ϕ)

26: δ = POST[q(x̄, ȳ)];

27: if δ 6|= ϕ then

28: POST[q(x̄, ȳ)] = δ ⊔ ϕ;
29: for all p ∈ P do

30: if p calls q then Q.add(p);

infers PRE[m2(〈x, b, y, z〉)] = {z ≥ 0, y ≥ 1, b ≥ 2}, PRE[op
∗
(〈b, y〉)] = {b > 1, y ≥

1}, and POST[op
∗
(〈b, y〉, 〈y1〉)] = {y1 ≥ 2 ∗ y}.

4.3 Bounding the loops

In this section we describe how the abstract program and the pre- and post-

conditions are used in order to bound the program’s loops, as done in [1]. Briefly,

for each abstract rule p(x̄, ȳ)← gα, bα1 , . . . , b
α
n ∈ P

α, we generate a set of transitions

{

〈p(x̄)→ q(w̄), ∃̄x̄ ∪ w̄.ϕ〉

∣

∣

∣

∣

i ∈ [1, . . . , n], bαi = q(w̄, z̄),

ϕ = PRE[q(x̄)] ∧ gα ∧ φ(bα1) · · · ∧ φ(b
α
i−1)

}

where ∃̄x̄ ∪ w̄.ϕ is the projection of ϕ on the variables x̄ ∪ w̄; φ(bαi) = bαi if bαi is

a constraint; and φ(bαi) = POST[bαi] if b
α
i is a call. Then, the set of all transitions

10

Alonso, Arenas, Genaim

is passed to, for example, the tool of [2], which in turn infers ranking functions for

the corresponding loops.

Example 4.2 Using the abstract rule and the pre- and post-conditions of Exam-

ple 4.1, we generate the transition relation 〈m2(〈x, b, y, z〉)→ m2(〈x, b, y1, z1〉), ϕ〉,
where ϕ = {z ≥ 0, y ≥ 1, b ≥ 2, x < y, z1 = z+1, y1 ≥ 2 ∗ y}. Then, the solver of [2]
infers the expected ranking functions as explained in Section 3.

5 Experimental Evaluation

We have implemented, in the context of costa [3], a prototype of the value analysis

described in Section 4. We have performed some experiments on typical examples

from the literature that use non-linear and bit arithmetic operations. The bench-

marks are available at http://costa.ls.fi.upm.es/papers/bytecode2011. Un-

fortunately, the implementation cannot be tried out via costa’s web-interface since

it has not been integrated in the main branch yet.

costa, with the new value analysis, was able to prove termination of all bench-

marks. Note that without this value analysis costa could not handle any of these

benchmarks. We have also analyzed the benchmarks using other termination ana-

lyzers for Java bytecode. Julia 1 [22] was not able to prove termination of any of

these benchmarks. AProVE 2 [12] could not prove termination of programs with

bit arithmetic operations, but could handle programs with non-linear arithmetic

operations such as multiplication and integer division, except for the program of

Figure 1 for which it could not complete the proof in a time limit of 5 minutes. In

what follows we explain the results of our analysis on some of the benchmarks.

EX1: We start with an example borrowed from [9]:

void and (int x){
while (x > 0)

x = x & x−1;
}

and(〈x〉, 〈〉)← and1(〈x〉, 〈〉).
and1(〈x〉, 〈〉)← {x ≤ 0}.
and1(〈x〉, 〈〉)← {x > 0},
{y = x− 1},
op

⊗
(〈x, y〉, 〈x1〉),

and1(〈x1〉, 〈〉).

The code on the right is the abstract compilation of the corresponding intermediate

representation of the Java method. In order to bound the number of iterations

of the while loop, it is essential to infer that the value of x decreases in each it-

eration. This cannot be guaranteed when considering the instruction x=x & x−1
separately, since, for example, it does not decrease when x=0. Our analysis infers

the pre-condition PRE[op
⊗
(x, y)] = {y = x−1, x > 0}, i.e., the context x > 0 is avail-

able when calling op
⊗
, which in turn makes it possible to infer the post-condition

POST[op
⊗
(〈x, y〉, 〈x1〉)] = {y = x − 1, x > 0, 0 ≤ x1 ≤ x − 1}. Using this informa-

tion we generate the transition 〈and1(〈x〉)→ and1(〈x1〉), {x > 0, 0 ≤ x1 ≤ x− 1}〉
for which we synthesize the ranking function f(〈x〉) = nat(x).

1 using the online version http://julia.scienze.univr.it/
2 using the online version http://aprove.informatik.rwth-aachen.de/

11

http://costa.ls.fi.upm.es/papers/bytecode2011
http://julia.scienze.univr.it/
http://aprove.informatik.rwth-aachen.de/

Alonso, Arenas, Genaim

EX2: The next example implements the Euclidean algorithm for computing the

greatest common divisor of two natural numbers. It is taken from the Java bytecode

termination competition database 3 :

int gcd (int a , int b){
int tmp ;

while (b>0 && a>0){
tmp = b ;

b = a % b ;

a = tmp ;

}
return a ;

}

gcd(〈a, b〉, 〈r〉)← gcd1(〈a, b〉, 〈r〉).
gcd1(〈a, b〉, 〈a〉)← {a ≤ 0}.
gcd1(〈a, b〉, 〈a〉)← {b ≤ 0}.
gcd1(〈a, b〉, 〈r〉)←
{a > 0, b > 0},
{tmp = b},
oprem(〈a, b〉, 〈b1〉),
{a1 = tmp},
gcd1(〈a1, b1〉, 〈r〉).

costa was not able to prove termination of this program in the competition of

July 2010, mainly because it ignores the calling context when abstracting b=a % b,

and therefore it cannot infer that b decreases. Our analysis infers the pre-condition

PRE[oprem(〈a, b〉)] = {a > 0, b > 0}, which in turn makes it possible to infer the post-

condition POST[oprem(〈a, b〉, 〈b1〉)] = {a > 0, b > 0, b > b1}. Using this information

we generate the transition 〈gcd1(〈a, b〉)→ gcd1(〈a1, b2〉), {a > 0, b > 0, b > b1}〉 for
which we synthesize the ranking function f(〈a, b〉) = nat(b).

EX3: The next example is taken from the method toString(int i, int radix)

of class java.lang.Integer. It is used for writing a number in any numeric base.

For simplicity, we have removed code that does not affect the termination, and

annotated the loop with a pre-condition that is inferred by our analysis:

// { i <= 0 , 2 <= rad ix <= 32}
while (i <= −rad ix) {

i = i / rad ix ;

}

p(〈i, radix 〉, 〈〉)← {i > −radix}.
p(〈i, radix 〉, 〈〉)←
{i ≤ −radix},
op

/
(〈i, radix 〉, 〈i1〉),

p(〈i1, radix 〉, 〈〉).

Due to the pre-condition PRE[op
/
(〈i, radix 〉, 〈i1〉)] = {2 ≤ radix ≤ 32, i ≤ −radix},

our analysis infers the post-condition POST[op
/
(〈i, radix 〉, 〈i1〉)] = {2 ≤ radix ≤

32, i ≤ −radix , i2 ≤ i1 < 0}. Using this post-condition we generate the transition

〈p(〈i, radix 〉)→ p(〈i1, radix 〉), {2 ≤ radix ≤ 32, i ≤ −radix , i2 ≤ i1 < 0}〉 for which we

synthesize the ranking function f(〈i, radix 〉) = log2(nat(−i) + 1).

EX4: The next example is a variation of a loop from method toUnsignedString(int

i, int shift) of class java.lang.Integer, which is used for writing a number in

binary, octal or hexadecimal form:

3 http://termcomp.uibk.ac.at

12

http://termcomp.uibk.ac.at

Alonso, Arenas, Genaim

// { 1 <= s h i f t <= 4 }
while (i > 0) {

i >>= s h i f t ;

}

p(〈i, shift〉, 〈〉)← {i ≤ 0}.
p(〈i, shift〉, 〈〉)←
{i > 0},
op⊲(〈i, shift〉, 〈i1〉),
p(〈i1, shift〉, 〈〉).

Due to the pre-condition PRE[op⊲(〈i, shift〉] = {i > 0, 1 ≤ shift ≤ 4}, our anal-

ysis is able to infer the post-condition POST[op⊲(〈i, shift〉, 〈i1〉)] = {i > 0, 1 ≤
shift ≤ 4, i ≥ 2 ∗ i1, i1 ≥ 0}. Using this post-condition we generate the transi-

tion 〈p(〈i, shift〉)→ p(〈i1, shift〉), {i > 0, 1 ≤ shift ≤ 4, i ≥ 2 ∗ i1, i1 ≥ 0}〉 for which

we synthesize the ranking function f(〈i, shift〉) = log2(nat(i) + 1).

6 Conclusions

In this paper we have described how we handle non-linear arithmetic instructions

in the value analysis of costa. It is well-know that handling such operations is

problematic when the underlying abstract domain allows only the use of conjunc-

tions of linear constraints. It is also well-know that the use of disjunctive abstract

domains is a possible solution to this problem, however, on the price of performance

overhead. In this paper, instead of using disjunctive abstract domains, we encoded

the disjunctive nature of non-linear arithmetic instructions into the abstract pro-

gram itself. This encoding, when combined with a value analysis that is based on

non-disjunctive abstract domains such as Polyhedra or Octagons, makes it possible

to dynamically select the best abstraction depending on the context from which the

code that correspond to the encoding was reached. Our experiments demonstrate

that costa is now able to prove termination and infer bound on resource consump-

tion for programs that it could not handle before. For future work, we plan to

improve the scalability of the analyzer, support overflow in arithmetic operations,

and support floating point arithmetic. Note that, given the latest developments in

the Parma Polyhedra Library [6], supporting overflow and floating point arithmetic

is relatively straightforward.

Acknowledgement

This work was funded in part by the Information & Communication Technologies

program of the European Commission, Future and Emerging Technologies (FET),

under the ICT-231620 HATS project, by the Spanish Ministry of Science and In-

novation (MICINN) under the TIN-2008-05624 DOVES project, the HI2008-0153

(Acción Integrada) project, the UCM-BSCH-GR58/08-910502 Research Group and

by the Madrid Regional Government under the S2009TIC-1465 PROMETIDOS

project. Diego Alonso is partially supported by the UCM PhD scholarship pro-

gram.

References

[1] E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termination Analysis of
Java Bytecode. In Gilles Barthe and Frank de Boer, editors, IFIP International Conference on Formal

13

Alonso, Arenas, Genaim

Methods for Open Object-based Distributed Systems (FMOODS’08), volume 5051 of Lecture Notes in
Computer Science, pages 2–18, Oslo, Norway, June 2008. Springer-Verlag, Berlin.

[2] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static Cost Analysis.
Journal of Automated Reasoning, 46(2):161–203, 2011.

[3] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design and Implementation
of a Cost and Termination Analyzer for Java Bytecode. In 6th International Symposioum on Formal
Methods for Components and Objects (FMCO’08), number 5382 in Lecture Notes in Computer Science,
pages 113–133. Springer, 2007.

[4] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Removing Useless Variables in Cost
Analysis of Java Bytecode. In ACM Symposium on Applied Computing (SAC) - Software Verification
Track (SV08), pages 368–375, Fortaleza, Brasil, March 2008. ACM Press, New York.

[5] A. W. Appel. Ssa is Functional Programming. SIGPLAN Notices, 33(4):17–20, 1998.

[6] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a Complete Set
of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems.
Quaderno 457, Dipartimento di Matematica, Università di Parma, Italy, 2006. Available at
http://www.cs.unipr.it/Publications/. Also published as arXiv:cs.MS/0612085, available from
http://arxiv.org/.

[7] Michael Codish. Efficient goal directed bottom-up evaluation of logic programs. J. Log. Program.,
38(3):355–370, 1999.

[8] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In Proc. ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 415–
426, Tucson, Arizona, USA, 2006.

[9] Byron Cook, Daniel Kroening, Philipp Rümmer, and Christoph M. Wintersteiger. Ranking function
synthesis for bit-vector relations. In Javier Esparza and Rupak Majumdar, editors, TACAS, volume
6015 of Lecture Notes in Computer Science, pages 236–250. Springer, 2010.

[10] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Restraints among Variables of a Program.
In ACM Symposium on Principles of Programming Languages (POPL’78). ACM Press, 1978.

[11] R. W. Floyd. Assigning Meanings to Programs. In J.T Schwartz, editor, Proceedings of Symposium in
Applied Mathematics, volume 19, Mathematical Aspects of Computer Science, pages 19–32. American
Mathematical Society, Providence, RI, 1967.

[12] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated Termination Proofs with AProVE.
In Proc. of 15th International Conference on Rewriting Techniques and Applications (RTA’04), volume
LNCS 3091, pages 210–220. Springer-Verlag, 2004.

[13] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: Precise and Efficient Static Estimation of Program
Computational Complexity. In Symposium on Principles of Programming Languages (POPL’09), pages
127–139. ACM, 2009.

[14] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Benjamin G. Zorn and
Alexander Aiken, editors, PLDI, pages 292–304. ACM, 2010.

[15] M. Hermenegildo, R. Warren, and S. K. Debray. Global Flow Analysis as a Practical Compilation Tool.
Journal of Logic Programming, 13(4):349–367, August 1992.

[16] H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL. In 2nd Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (Bytecode’07), Electronic Notes in Theoretical
Computer Science, pages 35–50. Elsevier, 2007.

[17] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley, 1996.

[18] A. Miné. The octagon abstract domain. Higher-Order and Symbolic Computation, 19(1):31–100, 2006.

[19] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. User-Definable Resource Usage Bounds Analysis for
Java Bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification, Analysis and
Transformation (BYTECODE’09), volume 253 of Electronic Notes in Theoretical Computer Science,
pages 6–86. Elsevier - North Holland, March 2009.

[20] Carsten Otto, Marc Brockschmidt, Christian von Essen, and Jürgen Giesl. Automated termination
analysis of java bytecode by term rewriting. In Christopher Lynch, editor, RTA, volume 6 of LIPIcs,
pages 259–276. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

[21] S. Sankaranarayanan, F. Ivancic, I. Shlyakhter, and A. Gupta. Static Analysis in Disjunctive Numerical
Domains. In Static Analysis, 13th International Symposium, (SAS’06), volume 4134 of Lecture Notes
in Computer Science, pages 3–17. Springer, 2006.

[22] Fausto Spoto, Fred Mesnard, and Étienne Payet. A termination analyzer for java bytecode based on
path-length. ACM Trans. Program. Lang. Syst., 32(3), 2010.

[23] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot - a Java Optimization
Framework. In CASCON, pages 125–135. IBM, 1999.

14

http://www.cs.unipr.it/Publications/
http://arxiv.org/

ByteCode 2011

Static Resource Analysis for Java Bytecode

Using Amortisation and Separation Logic

Damon Fenacci1 Kenneth MacKenzie2

School of Informatics
The University of Edinburgh

Edinburgh, UK

Abstract

In this paper we describe a static analyser for Java bytecode which uses a combination of amortised
analysis and Separation Logic due to Robert Atkey. With the help of Java annotations we are able
to give precise resource utilisation constraints for Java methods which manipulate various heap-
based data structures.

Keywords: Java, JVM, Bytecode, Resource analysis, Amortisation, Separation Logic

1 Introduction

In [4], Robert Atkey shows how methods from amortised complexity analysis
can be combined with Separation Logic to obtain a technique for resource
analysis of imperative programs which manipulate heap-based data-structures
such as trees and linked lists. He shows how to apply this method to a small
stack-based virtual machine, similar to the JVM. In this paper we describe an
analyser which applies this analysis to real JVM bytecode, using specifications
obtained from programmer-supplied annotations in Java source code.

Outline

We begin with an outline of the ideas involved in the analysis. This is followed
by a detailed description of the Java annotations used to communicate the

1 Email: D.Fenacci@sms.ed.ac.uk
2 Email: kwxm@inf.ed.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:D.Fenacci@sms.ed.ac.uk
mailto:kwxm@inf.ed.ac.uk

Fenacci, MacKenzie

specifications to our analyser, together with examples of the analyser in action.
We also describe some of the methods used in the implementation of the
analyser.

Acknowledgments

The work described in this paper was carried out in the RESA project (EP-
SRC Follow-on Fund grant number EP/G006032/1) at the University of Edin-
burgh. 3 More information can be found in [3]. We would like to thank Robert
Atkey for extensive discussions.

2 Specifying resource consumption

Much of this paper is based on previous work of Robert Atkey [4]. This work is
somewhat technical from the point of view of non-experts, and in this section
we will attempt to give a non-technical overview. We present a fairly simple
example here, but we hope to make an online demonstration available on the
RESA webpages including more complex examples.

Specifying heap behaviour

Consider the following Java code:

class IntList {
int head;
IntList tail;

IntList concat (IntList p, IntList q) {
if (p == null) return q;
else {

IntList t = p;
while (t.next != null)

t = t.next;
t.next = q;
return p;

}

...
}

}

This defines a simple class of linked lists with integer entries and a method
which concatenates two lists p and q. If p is empty then append returns q,
otherwise a pointer t traverses p until it reaches the final cell, then adjusts its
next field to point to q and returns p.

Suppose that we want to describe the behaviour of concat. Let us in-
troduce an assertion lseg(a,b) which states that there is a well-formed list
segment in the heap for which a points to the first cell and b points to the final

3 http://groups.inf.ed.ac.uk/resa/

2

http://groups.inf.ed.ac.uk/resa/

Fenacci, MacKenzie

cell. Intuitively, in the heap we have a picture of the form shown in Figure 1,
with all cells distinct.

Fig. 1. List segment lseg(a,b).

A first attempt at a specification for the concat method as might be as fol-
lows 4 :

@Requires (lseg(@arg p,null), lseg(@arg q,null)) // precondition
@Ensures (lseg (@ret, null)) // postcondition
IntList concat (IntList p, IntList q) { ... }

The intended meaning of this specification is that if when we enter the
method, the arguments p and q point to well-defined list segments, then when
we reach the end of the method, the return value will also point to a well-
defined list segment. The specification may be regarded as a contract with the
user: if the inputs to the method satisfy the precondition, then the output is
guaranteed to satisfy the postcondition. Ideally, we will be able to prove that
the implementation of the method does actually guarantee this behaviour.

Unfortunately, there is a problem with the above specification. If p and
q are pointers to the same location in memory (in other words, they are just
different names for the same list), then we will end up with a circular structure:
we will iterate along to the end of the list pointed to by p and then adjust the
next pointer to point back to the head of the list: see Figure 2.

Fig. 2. concat result in case of two pointers (p and q) pointing to the same list segment.

This violates the intended meaning of our lseg predicate, and hence the post-
condition is false. One might attempt to deal with this by modifying the
method to check whether p==q, but that would still not work since if the lists
pointed to by p and q share any cells we will still end up with heap structures
containing loops (Figure 3). Modifying the method to detect such situations
would make it unnecessarily complicated; a better strategy is to amend the
assertions to exclude problematic inputs from the outset. The key to this is

4 For clarity, we have used an idealised annotation syntax here. Restrictions on the syn-
tax of Java annotations mean that the specifications used in practice are somewhat more
complex; these will be described in detail in Section 3.

3

Fenacci, MacKenzie

Fig. 3. concat result in case of a pointer q pointing to an internal element of a list segment pointed
by p.

to base the assertions on Separation Logic [22], a logic which is designed for
arguing about non-overlapping structures and has proved very useful in the
analysis of heap-allocated data structures in recent years.

Separation Logic has a number of novel logical connectives for arguing
about non-overlapping objects. For example, in addition to the usual logical
conjunction ∧ (A ∧ B means that A is true and B is true), Separation Logic
has the separating conjunction *: A ∗B is true if A is true and B is separately
true. In the context of heap-allocated structures A ∗ B will be interpreted
as meaning that A and B are both true, but on disjoint regions of the heap.
See [22] for full details of Separation Logic.

If we use the separating conjunction to rewrite our original specification
as

@Requires (lseg(@arg p,null) * lseg(@arg q,null))
@Ensures (lseg (@ret, null))

then it becomes valid: if the user supplies two well-formed lists which share
no memory cells then the return value is also a well-formed list.

Amortised analysis with Separation Logic

The techniques of the previous section allow us to specify functional properties
of methods which manipulate heap-allocated structures. However, our main
interest is in the resource consumption of methods, where “resource” refers
to some quantity which is consumed by the method: for example, we might
consider the number of heap objects allocated by a method, the number of
bytecode instructions executed, or the number of network packets sent. In this
paper, we will consider the problem of finding the number of times a special
method called consume is executed, but this can easily be replaced by other
methods or bytecode instructions in order to deal with other resources.

In [4], it is shown that assertions in Separation Logic can be neatly ex-
tended to include information about resource consumption, and that it is
possible both to verify annotations and to infer resource usage for methods
where iteration is driven by the processing of heap allocated data structures.

This is based on the idea of amortised analysis [25] of algorithms involving
data structures. The approach we will take here is to imagine that each node
of a data structure is equipped with a number of tokens, and that one of these

4

Fenacci, MacKenzie

is consumed each time the node is processed. Consider our previous example,
with some calls to consume added:

IntList concat (IntList p, IntList q) {
consume();
consume();

if (p == null) return q;
else {

IntList t = p;
while (t.next != null) {

t = t.next;
consume();

}
t.next = q;
return p;

}

We see that consume is called twice at the start of the method and then once
for each node in the list p. We can express this by extending our Separation
Logic specifications to include costs:

@Requires (lseg(1, @arg p,null) * lseg(0, @arg q,null), 2)
@Ensures (lseg (0, @ret, null), 0)

The extra numeric annotations are interpreted as saying that if we enter the
method with one token for each node of p plus two extra tokens then the
method can successfully execute and we are left with no tokens at the end;
since each call to consume requires one token, we see that consume is called
at most length(p)+2 times.

We do not require that the annotations specify the minimal number of
tokens required, only a number which is sufficient to allow the method to
complete. For example

@Requires (lseg(7, @arg p,null) * lseg(2, @arg q,null), 5)

would also be a valid precondition: if we have the specified number of tokens
then the method is still able to complete, but this time we will have some
tokens left over which would enable further processing of the result at a later
stage. The left-over tokens can be included in the postcondition. For example

@Requires (lseg(7, @arg p,null) * lseg(2, @arg q,null), 5)
@Ensures (lseg(2, @ret, null), 3)

is also a valid (albeit non-optimal) specification.

Atkey shows that it is possible to use a linear programming technique
based on ideas of Hofmann and Jost [15] to verify that resource annotations
such as those above are valid; in fact, he shows that it is actually possible to
infer minimal resource annotations and thus the resource consumption of a
method. We will see examples of this later.

5

Fenacci, MacKenzie

3 Amortised Analysis for Java bytecode

We have developed an analyser which implements the ideas of the previous
section. Source programs are equipped with Java annotations giving precon-
ditions and postconditions of the type described above; the current version
also requires annotations giving loop invariants.

Our analyser works on compiled class files. The Java compiler stores source
annotations in the class file, and the analyser retrieves these and uses them
to perform the analysis on JVM bytecode.

The technique of analysing the bytecode rather than the source code has
several advantages:

• The bytecode is what is actually executed. We do not need any knowledge
of the inner workings of a particular compiler, and indeed the analyser is
independent of the compiler used.

• This approach extends the JVM verification paradigm. Many Java appli-
cations are supplied in the form of compiled classfiles with no source code,
and a bytecode analyser can be used to check the behaviour of the class
prior to execution. There is no requirement for the user of the code to trust
the supplier.

• The analysis is not restricted to bytecode obtained from Java source; in
principle our analysis could be made work on bytecode obtained from other
languages targeting the JVM (Scala 5 , for example), or even on handwritten
bytecode.

Java annotations for amortised analysis

We use Java annotations to equip methods with resource-usage specifications.
In this section we will expand on the informal description given in earlier
sections.

Java annotations are a specific form of metadata that can be added to
Java source code. They can be associated with Java classes, fields, methods
and method parameters, and are embedded in classfiles when compiling Java
code. They are defined using class-like structures in files named after the
annotation.

In order to be able to provide amortised analysis on methods we have
defined three annotations. These allow user to specify method preconditions
and postconditions together with loop invariants which are required by the
analyser.

• @Requires(assertions) for preconditions

5 http://www.scala-lang.org/

6

http://www.scala-lang.org/

Fenacci, MacKenzie

assertions = [exvars] assertion (’||’ assertion)* ;
assertion = ’{’ data-assertions ’|’

heap-assertions ’|’
resource-assertion ’}’ ;

exvars = ’exists’ typedvar + ’.’ ;
typedvar = id ’:’ type ;

(* id is a Java identifier: [A-Za-z_][A-Za-z0-9_]* *)
type = ’int’ | ’long’ | ’float’ | ’double’ | ’ref’ ;

data-assertions = data-assertion (’,’ data-assertion)* ;
data-assertion =

term ’==’ term
| term ’!=’ term ;

heap-assertions = heap-assertion (’,’ heap-assertion)* ;
heap-assertion =

’[’ field ’->’ location ’]’
| ’lseg (’ resource-assertion ’,’ term ’,’ term ’)’
| ’tree (’ resource-assertion ’,’ term ’)’ ;

term =
id (* existential variable *)

| ’@arg’ id (* only @arg variables allowed in preconditions *)
| ’@var’ id
| ’null’
| ’@ret’ ; (* @ret only allowed in postcondition *)

field = ’(’ term ’)’ ’.’ id ’:’ type ;

location = var | ’?’ ;

resource-assertion = linear-expression ;

Fig. 4. Assertion EBNF

• @Ensures(assertions) for postconditions

• @Invariant(assertions) for loop invariants

All of them are given in the form of a Java String containing assertions. A
shortened version of the assertion syntax in EBNF is shown in Fig. 4.

Data assertions consist of comma-separated lists of assertions of the form
term == term or term != term and are used to provide the analyser with
information about when references point to the same or different Java objects.
These are mostly required in loop invariants. It would be possible to use
dataflow analysis to deduce this information, but we have not done this yet.

There are two types of heap assertion, which are Separation Logic pred-
icates enriched with indications of field content. The first type of heap as-
sertion indicates that part of the heap forms either a list segment or a tree
(e.g. lseg(r1, @arg x, null), tree(r1, @arg x)); both of these expand
to more complex assertions built from Separation Logic primitives. The sec-
ond type of heap assertion indicates to the analyser that a particular field
points to a particular heap location or to some undetermined location; these
are mostly required in preconditions and postconditions, where they facilitate

7

Fenacci, MacKenzie

interprocedural analysis by exposing information about heap structure for use
in reasoning with Separation Logic.

Finally, resource assertions are linear expressions such as 3*r1 + 5*r2

+ r3 + 7 which specify constants and variables which we want the analyser
to use to infer the resources associated with the method before and after
execution (ie, in the precondition and postcondition); they are also used in
list and tree predicates to indicate resources associated with each node of the
structure.

We have also introduced a dummy method called consume which does
nothing except tell the static analyser that at the point where it is introduced,
a unit of resource is being used. We can imagine such a dummy method being
hidden inside library code in the future, stating the amount of resource used
by each method defined in each class, so that programmers will not need
to add it explicitly but rather implicitly use it by invoking library methods.
In the present implementation though, libraries have not been modified and
developers have to specify resource consumption explicitly in their code.

Invariant localisation in Java code

Loop invariants have to be given for each loop for the amortised analysis to
be effective but the Java language does not allow the inclusion of annotations
inside the code. This is problematic if the method being analysed contains two
or more loops, since we need a way to decide which invariant refers to which
loop. We could simply give invariants in the same order as the loops appear in
the code, but it is possible that a compiler might produce bytecode in which
the order in which the loops appear in the bytecode does not correspond
to the order in the source code. Our way to obviate this limitation was to
identify each loop with an integer identifier. Each loop invariant is given a
identifier (@Invariant(id, assertion)) and the same identifier has to match
the argument of a dummy method Loop.invariant(id) placed just before
the loop in the code. Thus by searching the code, the analyser can associate
the declared invariants with the corresponding loop.

4 Examples and output interpretation

We illustrate the operation of the analyser by returning to our earlier list
concatenation example.

$ cat examples/IntList.java

import uk.ac.ed.inf.resa.*;

public class IntList {

private int data;
private IntList next;

8

Fenacci, MacKenzie

...

@Requires("{ | lseg(1, @arg p, null) * lseg (0, @arg q, null)| 2 }")
@Ensures("{ | lseg(0, @ret, null) | 0 }")
@Invariant("{ @var t != null | lseg (0, @var p, @var t) *"

+ "lseg (1, @var t, null) * lseg (0, @var q, null) | 0}")
public static IntList concat (IntList p, IntList q) {
Amortised.consume();
Amortised.consume();
if (p==null) return q;

IntList t = p;
Loop.invariant (0);
while (t.next != null) {
t = t.next;
Amortised.consume();

}
t.next = q;

return p;
}
...

}

We have supplied a loop invariant which describes the state of resource usage
as the program progresses. Whenever we reach the head of the while loop,
we have used up the resources associated with the part of the first input list
p which has already been processed (between p and t), we still have one
unit of resource available in the remaining part of p (between t and null),
and we do not require any resources to process q. Note the @arg and @var

annotations attached to variable names. These are used to distinguish between
the current value of a variable (@var) and the value of a method argument at
entry to the method (@arg); they are not strictly necessary in this example, but
are required in more complex examples where variables representing method
arguments are modified. The @ret annotation refers to the method return
value.

If we compile IntList.java and invoke the analyser then the output is as
follows.

$ resa -amortised examples/IntList concat
...
Solved VCs
Verification successful

This shows that the analyser has succeeded in proving that the precondition
and postcondition are satisfied. However, if we amend the precondition to say

@Requires("{ | lseg(1, @arg p, null) * lseg (0, @arg q, null)| 1 }")

then the verification fails because there is only one “constant” unit of resource
available, and two are required by the calls to consume at the start of the
method:

LP is infeasible

More interestingly, we can supply generic annotations and the analyser will
infer suitable values for them.

9

Fenacci, MacKenzie

@Requires("{ | lseg(x1, @arg p, null) * lseg (x2, @arg q, null)| x3 }")
@Ensures("{ | lseg(y1, @ret, null) | y2 }")
@Invariant("{ @var t != null | lseg (z1, @var p, @var t) *"

+ "lseg (z2, @var t, null) * lseg (z3, @var q, null) | z4}")

With these annotations the analyser outputs

Optimal solution for resource variables:
x1 = 1, x2 = 0, x3 = 2
y1 = 0, y2 = 0
z1 = 0, z2 = 1, z3 = 0, z4 = 0

We can also specify the amount of resource which we require when the method
returns: if we replace the postcondition with @Ensures("{ | lseg(3, @ret,

null) | 7 }") then we get x1 = 4, x2 = 3, x3 = 9, so that if the post-
condition is to be satisfied then we must have 4 units of resource for each
element of p, 3 for each element of q, and 9 extra units before the method is
called.

In addition to this example we have been able to successfully analyse a
number of other standard operations on lists, such as reversal, iteration, and
deleting and inserting elements, together with similar operations for trees.

5 Implementation details

Our analyser is implemented in OCaml, and Java class files are represented
by a collection of datatypes. For program analysis, the most important part
of this is the representation of method bytecode. Our design is intended to be
fairly general-purpose since we intend to support multiple analysis techniques,
including the amortised analysis described earlier.

Java classfiles are initially converted into a low-level OCaml representation
which is a fairly faithful representation of structure of the class as described
in the JVM specification [19]. This is then converted into a higher-level rep-
resentation which is more suited to analysis. We will give an outline of this
representation here, but space limitations preclude a detailed description.

Bytecode instructions are decompiled into a form where the JVM stack
has been eliminated. We keep track of which constants and local variables
have been loaded onto the stack, and these are represented by a datatype
called value, which has constructors for constants of type int, long, float,
double, String and class, together with variables. Variables are represented
by integer identifiers which are tagged with the type of the corresponding
value: this is one of I, L, F, D, or A (representing integers, long integers,
floats, doubles, and addresses). We do not have special types for boolean,
byte, char and short since the JVM treats all of these as 32-bit integers for
most purposes. We also tag all references with the single type A, and make
no attempt to keep track of the most specific class or interface to which the
variable belongs; it would be possible to infer this information, but so far we
have not required this.

10

Fenacci, MacKenzie

There are two kinds of variables: local variables and stack variables. The
former represent values loaded onto the stack from JVM local variables by
means of instructions such as iload, and the latter represent intermediate
values which have been created on the stack by arithmetic operations, method
calls and so on. Each variable is marked with an integer which for local
variables represents the number of the associated JVM local variable, and for
stack variables is simply a counter which is incremented every time a new value
is created on the stack and decremented when that value is consumed. Some
care is required here since stack operations can duplicate values on the stack.
The decompilation process handles this by creating new copies of variables
using a special pseudo-instruction called Copy. Another complication is that
one can load a local variable r onto the stack and then modify the contents
of r before the earlier value (still on the stack) has been consumed; again, the
Copy operation is used to avoid confusion by creating a new variable which
represents the earlier value

Instructions which act on the stack are represented by a datatype of oper-
ations which take values as arguments. This has 19 constructors which suffice
to represent all of the JVM operations (putfield, getfield, invokevirtual
and so on) except for those which involve control-flow transfer. Basic blocks
are represented by a list of pairs consisting of operations together with the
local variable or stack location where the result (if any) of the operation is to
be stored. At the end of a basic block we have a member of a continuation

datatype: this represents various types of jump, comparison, switch, and re-
turn operation, together with information specifying which blocks control can
flow to after leaving the current block. We do not provide any representa-
tion for the jsr and ret instructions used by exception handlers, since these
complicate analysis and are supposedly deprecated in current Java releases
(although we have encountered them in a few of the standard API classes in
rt.jar). If one of these instructions is encountered during decompilation then
an exception is thrown and the class is rejected.

The bytecode for an entire method is represented by an array of blocks,
stored in preorder. This can be regarded as a graph, and we have a module
which computes useful information such as successors, predecessors, and dom-
inators, and can also provide other views of the graph, such as postorder and
reverse postorder, which can be useful in some analyses.

Proof search

The most important part of the amortised analysis is the proof search pro-
cedure which is used to verify that the precondition of a method implies its
postcondition, and also to check or infer the associated resource annotations.

This uses the method described by Atkey in [4], and indeed our implemen-

11

Fenacci, MacKenzie

tation uses an adapted version of code from a prototype implementation by
Atkey, which analysed a textual form of a subset of JVM bytecode. The basic
idea is to visit the code in postorder, working backwards from the postcon-
dition to infer weakest preconditions for each instruction, and then to prove
that the weakest precondition for the first instruction is implied by the (user-
supplied) precondition for the method.

Visiting the nodes of the CFG in postorder ensures that when we visit a
given node n, the preconditions for all of its successors are already known,
and can thus be combined (by logical conjunction) to obtain a postcondition
for n. However, this strategy fails when we encounter a back-edge s → t (ie,
when t is at the head of a loop). In this case we will not have visited t when
we arrive at s, and it is for this reason that we require annotations for loop
invariants: the annotation will provide a precondition for t, and hence will be
available to contribute to the postcondition for t.

The proof search procedure also collects linear constraints describing the
resource usage of the bytecode instructions, as described in [4]; once the anal-
ysis has been completed and the basic Separation Logic annotations have been
checked to make sure that the precondition implies the postcondition, the re-
source constraints are converted into a linear programming problem which is
then solved using the Parma Polyhedra Library [5].

6 Conclusions and Further Research

We have shown that it is possible to apply Atkey’s amortised analysis tech-
nique to realistic JVM bytecode. However, there are a number of issues that
would merit further research.

• The annotations are somewhat complex, and it would be desirable to sim-
plify them. A first step would be to dispense with the data equality and
non-equality annotations, and we believe that it would be possible to do
this using dataflow techniques. A more difficult problem would be to re-
move the loop invariants, which are generally the most difficult part of the
specification. Techniques for automatically inferring loop invariants have
been studied, and one possible avenue of attack for the kind of loop invari-
ants used here would be the methods described in [10].

• A minor inconvenience is that assertion syntax is only checked during analy-
sis, and not at compilation time. The Sun javac compiler supports plugins
for annotation processing 6 , and it would be very helpful to use this feature
to detect errors in assertion syntax during compilation.

• Amortisation techniques are useful for analysing the resource consumption
of loops which process heap-allocated structures, but may be less useful for

6 See JSR 269: Pluggable Annotation Processing API.

12

Fenacci, MacKenzie

loops which are controlled by numeric quantities. Our analyser can attack
such loops by using combinatorial techniques for the enumeration of lattice
points in polyhedra (see [6], and [9] for an application of related techniques
to resource analysis for Java programs); a preliminary description of this
appears in [3], and we will give more details in a subsequent paper. An in-
teresting problem would be to automatically combine the two techniques, so
that the analyser can deal with complex methods with minimal intervention
from the user.

• The amortised analysis can only handle bounds on resource usage which are
linear in the size of the data structures involved. The experience of other
authors [8] suggests that this is sufficient in many (but by no means all) prac-
tical situations. The linear-programming-based inference technique we use
here is intrinsically tied to linear bounds; nevertheless, recent work [14,13]
has shown how it can be extended to deduce non-linear bounds in certain
specialised cases. There are other inference techniques which can deal with
non-linear bounds, and we will discuss some of these later.

• The analyser currently only supports linked lists and trees, and the proof-
search implementation depends quite strongly on this. It would be desirable
to find more generic annotation and analysis techniques, for example for
dealing with data structures in the standard Java API which are accessed
via interfaces. One method here might be to attach annotations to existing
library classes in order to enable the analysis of client code.

Related work: resource inference

There has been a considerable amount of work on resource inference in recent
years, and we now attempt to describe some of this.

The linear-programming-based inference technique used here originated
with Hofmann and Jost in [15], and has subsequently been applied to an
OCaml-style language [23] and the Hume language for embedded systems [8].
Jost’s thesis [17] contains a useful overview of this area of research, and recasts
much of the existing work in a consistent and systematic framework. Some
more recent developments appear in [14,13].

A number of other resource-inference techniques have been proposed and
implemented, for Java and also for other languages. The COSTA system of
Albert et al. [1,2] converts JVM bytecode into a collection of “cost equations”
which are then solved to obtain a symbolic (and possibly non-linear) bound
for resource usage. In contrast with our method, COSTA is fully automatic
and does not require the user to supply annotations.

The SPEED project of Gulwani et al. [11,12] uses a number of techniques
(including abstract interpretation and SMT solving) to obtain (non-linear and
symbolic) bounds for the number of times a program location is visited, and

13

Fenacci, MacKenzie

has been applied to the complexity analysis of C# programs.

Type-theoretic methods for resource usage inference are described in [21]
(inference of symbolic bounds for recursive functional programs) and [20]
(heap usage for object-oriented programs).

Related work: static analysis of bytecode

A number of representations for JVM bytecode have appeared in the liter-
ature. Many of these ([18], [7], and [2] for example) utilise the technique
of introducing new variables to represent values on the JVM operand stack.
The Soot framework (see [26] for example) contains a number of intermediate
representations for JVM bytecode and has been applied to many problems
in optimisation and analysis; a large list of related publications can be found
at http://www.sable.mcgill.ca/. Another framework for JVM bytecode
analysis is Julia, which is described in [24]. Finally, another OCaml represen-
tation for JVM classfiles is described in [16]; this has much in common with
our representation.

References

[1] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. Cost
Analysis of Java Bytecode. In Rocco De Nicola, editor, 16th European Symposium on
Programming, ESOP’07, volume 4421 of Lecture Notes in Computer Science, pages 157–172.
Springer-Verlag, March 2007.

[2] Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Damiano Zanardini. COSTA:
Design and implementation of a cost and termination analyzer for Java bytecode. In Formal
Methods for Components and Objects, 6th International Symposium, FMCO 2007, Amsterdam,
The Netherlands, October 24-26, 2007, Revised Lectures, volume 5382 of Lecture Notes in
Computer Science, pages 113–132. Springer, 2008.

[3] David Aspinall, Robert Atkey, Kenneth MacKenzie, and Donald Sannella. Symbolic and
analytic techniques for resource analysis of Java bytecode. In Proceedings of the 5th
international conference on Trustworthly Global Computing, TGC’10, pages 1–22, Berlin,
Heidelberg, 2010. Springer-Verlag.

[4] Robert Atkey. Amortised resource analysis with separation logic. In ESOP, pages 85–103,
2010.

[5] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a complete
set of numerical abstractions for the analysis and verification of hardware and software systems.
Science of Computer Programming, 72(1–2):3–21, 2008.

[6] Alexander Barvinok and James E. Pommersheim. An algorithmic theory of lattice points in
polyhedra. In New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97), volume 38
of Math. Sci. Res. Inst. Publ., pages 91–147. Cambridge Univ. Press, Cambridge, 1999.

[7] Lennert Beringer, Kenneth MacKenzie, and Ian Stark. Grail: a functional form for imperative
mobile code. In Foundations of Global Computing: Proceedings of the 2nd EATCS Workshop,
number 85.1 in Electronic Notes in Theoretical Computer Science. Elsevier, June 2003.

[8] Armelle Bonenfant, Christian Ferdinand, Kevin Hammond, and Reinhold Heckmann. Worst-
case execution times for a purely functional language. In Proc. Implementation of Functional
Languages (IFL 2006), volume 4449 of Lecture Notes in Computer Science, 2007. To appear.

14

http://www.sable.mcgill.ca/

Fenacci, MacKenzie

[9] Victor Braberman, Diego Garbervetsky, and Sergio Yovine. A static analysis for synthesizing
parametric specifications of dynamic memory consumption. Journal of Object Technology,
5(5):31–58, Jun 2006.

[10] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. In POPL, pages 289–300, 2009.

[11] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: precise and efficient
static estimation of program computational complexity. In POPL, pages 127–139, 2009.

[12] Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In Proceedings of the
2010 ACM SIGPLAN conference on Programming language design and implementation, PLDI
’10, pages 292–304, New York, NY, USA, 2010. ACM.

[13] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource Analysis.
In 38th Symp. on Principles of Prog. Langs. (POPL’11), 2011. To appear.

[14] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial Potential
- A Static Inference of Polynomial Bounds for Functional Programs. In In Proceedings of
the 19th European Symposium on Programming (ESOP’10), volume 6012 of Lecture Notes in
Computer Science, pages 287–306. Springer, 2010.

[15] Martin Hofmann and Steffen Jost. Static prediction of heap space usage for first-order
functional programs. In POPL, pages 185–197, 2003.

[16] Laurent Hubert, Nicolas Barré, Frédéric Besson, Delphine Demange, Thomas P. Jensen,
Vincent Monfort, David Pichardie, and Tiphaine Turpin. Sawja: Static analysis workshop
for Java. CoRR, abs/1007.3353, 2010.

[17] Steffen Jost. Automated Amortised Analysis. PhD thesis, Ludwig-Maximilians-Universität,
München, August 2010.

[18] Christopher League, Valery Trifonov, and Zhong Shao. Functional Java bytecode. In Proc. 5th
World Conf. on Systemics, Cybernetics, and Informatics, July 2001. Workshop on Intermediate
Representation Engineering for the Java Virtual Machine.

[19] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[20] Wei ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin Rinard. Memory usage
verification for oo programs. In In SAS 05, pages 70–86. Springer, 2005.

[21] Álvaro J. Rebón Portillo, Kevin Hammond, Hans-Wolfgang Loidl, and Pedro Vasconcelos.
Cost analysis using automatic size and time inference. In Proceedings of the 14th
international conference on Implementation of functional languages, IFL’02, pages 232–247,
Berlin, Heidelberg, 2003. Springer-Verlag.

[22] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Proceedings
of 17th Annual IEEE Symposium on Logic in Computer Science, 2002.

[23] Donald Sannella, Martin Hofmann, David Aspinall, Stephen Gilmore, Ian Stark, Lennart
Beringer, Hans-Wolfgang Loidl, Kenneth MacKenzie, Alberto Momigliano, and Olha
Shkaravska. Mobile Resource Guarantees (project evaluation paper). In Trends in Functional
Programming, pages 211–226, 2005.

[24] Fausto Spoto. JULIA: A generic static analyser for the Java bytecode. Proceedings of
FTfjP’2005, Glasgow, 2005.

[25] Robert Endre Tarjan. Amortized computational complexity. SIAM Journal on Algebraic and
Discrete Methods, 6(2):306–318, 1985.

[26] Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong
Co. Soot - a Java optimization framework. In Proceedings of CASCON 1999, pages 125–135,
1999.

15

ByteCode 2011

LCT: An Open Source Concolic Testing Tool

for Java Programs 1

Kari Kähkönen, Tuomas Launiainen, Olli Saarikivi,
Janne Kauttio, Keijo Heljanko and Ilkka Niemelä

Department of Information and Computer Science
School of Science
Aalto University

PO Box 15400, FI-00076 AALTO, Finland
{Kari.Kahkonen,Tuomas.Launiainen,Janne.Kauttio,Keijo.Heljanko,

Ilkka.Niemela}@tkk.fi, Olli.Saarikivi@iki.fi

Abstract

LCT (LIME Concolic Tester) is an open source concolic testing tool for sequential Java programs.
In concolic testing the behavior of the tested program is explored by executing it both concretely
and symbolically at the same time. LCT instruments the bytecode of the program under test
to enable symbolic execution and collects constraints on input values that can be used to guide
the testing to previously unexplored execution paths. The tool also supports distributing the test
generation and execution to multiple processes that can be run on a single workstation or even on
a network of workstations. This paper describes the architecture behind LCT and demonstrates
through benchmarks how the distributed nature of the tool makes testing more scalable.

Keywords: Symbolic execution, concolic testing, constraint solving, bytecode instrumentation.

1 Introduction

Automated testing has the potential to improve reliability and reduce costs
when compared to manually written test cases. One such technique that
has recently received interest is concolic testing which combines concrete and
symbolic execution. Based on this technique, we have developed an open

1 Work financially supported by Tekes - Finnish Agency for Technology and Innovation,
Conformiq Software, Elektrobit, Nokia, Space Systems Finland, and Academy of Finland
(projects 126860, 128050 and 139402).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Kähkönen et al

source tool called LCT (LIME Concolic Tester) that can automatically explore
different execution paths and generate test cases for sequential Java programs.

In this paper we give an overview of LCT and also demonstrate the dis-
tributed nature of the tool with benchmarks where several Java programs are
tested in a way that multiple instances of the program under test are concur-
rently taking part in the testing process.

The main improvements in LCT over existing Java concolic testing systems
such as jCUTE [10] are the following: (i) the use of bitvector SMT solver
Boolector [1] makes the symbolic execution of Java more precise as integers
are not considered unbounded, (ii) the twin class hierarchy [4] instrumentation
approach of LCT allows the Java core classes to be instrumented, (iii) the tool
architecture supports distributed testing; and (iv) the tool is freely available as
open source. Distributed constraint solving has been previously employed by
the Microsoft fuzzing tool SAGE [6] that uses a distributed constraint solver
Disolver while LCT uses a non-distributed constraint solver but can work on
several branches of the symbolic execution tree in parallel.

The rest of the paper is structured as follows. Section 2 briefly describes
the algorithm behind concolic testing, Section 3 gives an overview of LCT and
Sect. 4 discusses the experiments that have been done with the tool.

2 Concolic Testing

Concolic testing [5,11,2] is a method where a given program is executed both
concretely and symbolically at the same time in order to explore the differ-
ent behaviors of the program. The main idea behind this approach is to, at
runtime, collect symbolic constraints on inputs to the system that specify the
possible input values that force the program to follow a specific execution path.
Symbolic execution of programs is typically made possible by instrumenting
the system under test with additional code that collects the constraints with-
out disrupting the concrete execution. For a different approach that uses a
non-standard interpreter of bytecode instead of instrumentation, see Symbolic
Java PathFinder [9].

Concolic testing starts by first executing a program under test with any
concrete input values. The execution of the program can branch into different
execution paths at branching statements that depend on input values. When
executing such statements, concolic testing constructs a symbolic constraint
that describes the possible input values causing the program to take the true
or false branch at the statement in question. A path constraint is a conjunc-
tion of these symbolic constraints and new test inputs for the subsequent test
runs are generated by solving them. Typically this is done by using SMT
(Satisfiability-Modulo-Theories) solvers with integer arithmetic or bit-vectors
as the underlying theory. By continuing this process, concolic testing can

2

Kähkönen et al

Fig. 1. The architecture of LCT

attempt to explore all distinct execution paths of the given program. These
execution paths can be expressed as a symbolic execution tree which is a struc-
ture where each path from root to a leaf node represents an execution path
and each leaf node has a path constraint describing the input values that force
the program to follow that specific path.

The concrete execution in concolic testing provides the benefit that it
makes available accurate information about the program state which might
not be easily accessible when using only static analysis and allows the program
to contain calls to uninstrumented native code libraries as symbolic values can
always be approximated with concrete ones. Furthermore, as each test is run
concretely, concolic testing reports only real bugs.

3 Tool Details

The architecture of LCT is shown in Figure 1 and it can be seen as consisting
of three main parts: the instrumenter, the test selector and the test execu-
tors. To test a given program, the input locations are first marked in the code
using methods provided by LCT. For example, int x = LCT.getInteger()

generates an int type input value for x. After the input variables have been
marked in the program, it is given to the instrumenter that enables symbolic
execution by instrumenting the program using a tool called Soot [12]. The
resulting program is called test executor. The test selector constructs a sym-
bolic execution tree based on the constraints collected by the test executors
and selects which path in the symbolic execution tree is explored next. The
communication between the test selector and test executors is implemented
using TCP sockets. This way it is easy to distribute the testing process. LCT
reports uncaught exceptions as defects and the executed tests can also be

3

Kähkönen et al

archived as a test suite for offline testing.

LCT provides the option to use Yices [3] or Boolector [1] as a constraint
solver. LCT uses linear integer arithmetic to encode the constraints when
Yices is used and bit-vectors are used with Boolector. LCT has support for
all primitive data types in Java as symbolic inputs with the exception of float
and double data types as there is no native support for floating point variables
in the used constraint solvers. LCT can also generate input objects that have
their fields initialized as new input values in a similar fashion to [10].

3.1 Performing Symbolic Execution

To form symbolic constraints, it is necessary to know for each variable its
symbolic value in addition to the concrete value. To track the symbolic values,
LCT maintains a mapping from variables to their symbolic values. To update
these memory maps and to construct path constraints, LCT follows closely
the approach described in [5,10]. Every assignment statement in the program
is instrumented with symbolic statements to update the symbolic memory
maps. Every branching statement must also be instrumented with statements
that create the symbolic constraints for both resulting branches so that the
necessary path constraints can be constructed. A more detailed description of
the instrumentation process can be found in [7].

The test selector maintains a symbolic execution tree based on the sym-
bolic constraints generated by the test executors. LCT supports multiple
strategies such as depth-first, breadth-first and randomized searches to ex-
plore the tree. For each test run, the test selector chooses an unexplored path
from the symbolic execution tree. To explore this path, the test server sends
the path constraint to a text executor that solves the constraint and uses the
resulting values for a new test run. This way constraint solving is not done in
a single centralized place which could cause a performance bottleneck.

3.2 Limitations

LCT has been designed for sequential Java programs. Multi-threading sup-
port is currently under development and will be released soon in version 2.0.
There are also some cases where LCT can not obtain full path coverage for
supported Java programs. LCT is not able to do any symbolic reasoning if the
control flow of the program goes to a library that has not been instrumented
(e.g., calling a library that has been implemented in a different programming
language). Instrumenting Java core classes can also be problematic, therefore
we have implemented custom versions of some of the most often required core
classes to alleviate this problem. The program under test is then automat-
ically modified to use the custom versions of these classes instead of their
original counterparts. This approach can be seen as an instance of the twin

4

Kähkönen et al

Runtimes / Speedups

Benchmark Paths 1 test executor 10 test executors 20 test executors

AVL tree 3840 16m 57s 2m 6s / 8.1 1m 8s / 15.0

Quicksort (5 elements) 541 3m 11s 21s / 5.2 13s / 8.4

Quicksort (6 elements) 4683 28m 22s 3m 29s / 8.1 1m 39s / 17.2

Greatest common divisor 2070 11m 12s 1m 13s / 9.2 38s / 17.7

Table 1
Results of the experimental evaluation of the distributed architecture of LCT.

class hierarchy approach presented in [4].

LCT also does a similar non-aliasing assumption as the jCUTE tool. The
code “a[i] = 0; a[j] = 1; if (a[i] != 0) ERROR;” is an example of this.
LCT assumes that the two writes do not alias and, thus, does not generate
constraint i = j required to reach the ERROR label.

4 Experiments

We have evaluated LCT (version 1.1.0) and its distributed architecture by
testing multiple Java programs so that varying number of test executors were
running concurrently. The tests included: AVL tree (http://cs-people.bu.
edu/mullally/cs112/code/GraphicalAvlTree.java), Quick sort (http://
users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/) and Great-
est common divisor (GCD) (http://commons.apache.org/). For AVL tree a
test driver was used that called either add or remove methods nondeterminis-
tically with an integer marked as the input to the methods for five times. For
Quick sort the test driver used the algorithm to sort a fixed size array of in-
put integers and checked afterwards that the array had been sorted correctly.
Finally, for GCD the test driver called the algorithm with integer inputs that
were limited to be between 0 and 50.

The results of our experimental evaluation are shown in Table 4 that shows
the number of execution paths explored, total run-times and speedups com-
pared to running only one test executor. The computers used in the experi-
ments had Intel Core 2 Duo processors running at 1.8 GHz together with 2 GB
of RAM. For single test executor cases, the test selector and executor were run
on the same machine. In our test environment, it made negligible difference
whether this single test executor was run on the same or different machine as
the test selector. For cases with multiple test executors, each computer was
used to run two test executors at the same time while the test server was run
on a separate computer (i.e., the test selector was able to utilize two cores).
As the results show, LCT is able to take advantage of the increased resources
efficiently with speedups ranging from 8.4 to 17.7 in the 20 test executor case.
This is because individual test runs are highly independent. We have also

5

http://cs-people.bu.edu/mullally/cs112/code/GraphicalAvlTree.java
http://cs-people.bu.edu/mullally/cs112/code/GraphicalAvlTree.java
http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/
http://users.cis.fiu.edu/~weiss/dsaajava/code/DataStructures/
http://commons.apache.org/

Kähkönen et al

used LCT to compare it with random testing in the context of Java Card ap-
plets. In this experiment LCT was used on a large number of mutants of the
program under test. Further details of this experiment can be found in [8].

5 Conclusions

This paper introduces the LCT tool that is available together with source code
and user guide from: http://www.tcs.hut.fi/Software/lime/ as part of
the LIME Interface Test Bench. We have demonstrated how the distributed
nature of the tool makes concolic testing more scalable. We are currently
adding support for the C language and multi-threaded Java programs to LCT.

References

[1] Brummayer, R. and A. Biere, Boolector: An efficient SMT solver for bit-vectors and arrays, in:
Proceedings of the 15th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2009), Lecture Notes in Computer Science 5505 (2009), pp.
174–177.

[2] Cadar, C., V. Ganesh, P. M. Pawlowski, D. L. Dill and D. R. Engler, EXE: automatically
generating inputs of death, in: Proceedings of the 13th ACM conference on Computer and
communications security (CCS 2006) (2006), pp. 322–335.

[3] Dutertre, B. and L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T), in: Proceedings
of the 18th International Conference on Computer Aided Verification (CAV 2006), Lecture
Notes in Computer Science 4144 (2006), pp. 81–94.

[4] Factor, M., A. Schuster and K. Shagin, Instrumentation of standard libraries in object-
oriented languages: The twin class hierarchy approach, in: Proceedings of the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2004) (2004), pp. 288–300.

[5] Godefroid, P., N. Klarlund and K. Sen, DART: Directed automated random testing, in:
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation (PLDI 2005) (2005), pp. 213–223.

[6] Godefroid, P., M. Y. Levin and D. A. Molnar, Automated whitebox fuzz testing, in: Proceedings
of the Network and Distributed System Security Symposium, NDSS 2008 (2008), pp. 151–166.

[7] Kähkönen, K., Automated test generation for software components, Technical Report TKK-
ICS-R26, Helsinki University of Technology, Department of Information and Computer Science,
Espoo, Finland (2009).

[8] Kähkönen, K., R. Kindermann, K. Heljanko and I. Niemelä, Experimental comparison of
concolic and random testing for Java Card applets, in: J. van de Pol and M. W. 0002, editors,
SPIN, Lecture Notes in Computer Science 6349 (2010), pp. 22–39.

[9] Pasareanu, C. S., P. C. Mehlitz, D. H. Bushnell, K. Gundy-burlet, M. Lowry, S. Person
and M. Pape, Combining unit-level symbolic execution and system-level concrete execution
for testing NASA software, in: ISSTA, 2008, pp. 179–180.

[10] Sen, K., “Scalable automated methods for dynamic program analysis,” Doctoral thesis,
University of Illinois (2006).

[11] Sen, K. and G. Agha, CUTE and jCUTE: Concolic unit testing and explicit path model-checking
tools, in: Proceedings of the 18th International Conference on Computer Aided Verification
(CAV 2006), Lecture Notes in Computer Science 4144 (2006), pp. 419–423, (Tool Paper).

[12] Vallée-Rai, R., P. Co, E. Gagnon, L. J. Hendren, P. Lam and V. Sundaresan, Soot - a Java
bytecode optimization framework, in: Proceedings of the 1999 conference of the Centre for
Advanced Studies on Collaborative Research (CASCON 1999) (1999), p. 13.

6

http://www.tcs.hut.fi/Software/lime/

