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Abstract. In this paper, we present an abstract fixpoint checking algorithm with
automatic refinement by backward completion in Moore closed abstract domains.
We study the properties of our algorithm and prove it to be more precise than the
counterexample guided abstract refinement algorithm (CEGAR). Contrary to sev-
eral works in the literature, our algorithm does not require the abstract domains
to be partitions of the state space. We also show that our automatic refinement
technique is compatible with so-called acceleration techniques. Furthermore, the
use of Boolean closed domains does not improve the precision of our algorithm.
The algorithm is illustrated by proving properties of programs with nested loops.

1 Introduction

Techniques for the automatic verification of program’s invariants is an active research
subject since the early days of computer science. Invariant verification for a program
P can be reduced to a fixpoint checking problem: given a monotone function post over
sets of program states, a set of initial states I , and a set S of states, S is an invariant of
P if and only if the reachable states

⋃
i�0 post i(I) from I that is the least fixpoint of

λX. I ∪ post(X) is a subset of S. We call this fixpoint the forward semantics of P .
For fundamental reasons (undecidability of the invariant checking problem for

Turing complete models of computation), or for practical reasons (limitations of the
computing power of computers), the forward semantics is usually not evaluated in the
domain of the function λX. I ∪ post(X), the so-called concrete domain, but in a sim-
pler domain of values, a so-called abstract domain. Abstract interpretation has been
proposed in [1] as a general theory to abstract fixpoint checking problems. The design
of effective abstract interpretation algorithms relies on the definition of useful abstract
domains and semantics. The design of good abstractions for a programming language
is a difficult and time consuming tasks. Recently, research [2,3,4] efforts have been de-
voted to find automatic techniques that are able to discover and refine abstract domains
for a given program. This work proposes new results in this line.
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In this paper, we propose a new abstract algorithm for fixpoint checking with built-
in abstract domain refinements. The automatic refinement of abstract domains is used
to improve the precision of the algorithm when it is inconclusive. Our algorithm has
several properties that distinguishes it from the existing algorithms proposed in the
literature. First, it computes not only overapproximations of least fixpoints but also
overapproximations of greatest fixpoints. The two analyses improve each other: the cur-
rent fixpoint is bound to use values which are more precise than the previous fixpoint.
Second, it is not bound to consider refinements related to spurious abstract counterex-
amples. The refinement principle that we propose is guided by the abstract fixpoint
computations. Our refinement method is more robust and systematic. Third, our refine-
ment principle is compatible with acceleration techniques: acceleration techniques can
be used to discover new interesting abstract values which can be used by subsequent
abstract computations. This is an important characteristic as this allows us to compute
new abstract values that are useful to capture the behavior of loops. This hinders the
application of the CEGAR approach. Fourth, in the abstract interpretation framework
the subset of concrete values given by the abstract domain is a Moore family. Intuitively
it means that the set is closed for the meet operation of the concrete lattice. This prop-
erty is weaker than the property enforced by the use of partitions of the state space as
in so-called predicate abstractions. In the paper we show that requiring the use of par-
titions instead of Moore families does not add power to our algorithm. If it terminates
using partitions then it terminates using Moore families. Fifth we show that whenever
an invariant can be proved using the CEGAR approach then our algorithm is able to
prove the invariant as well. And last we show that the abstract algorithm is guaranteed
to terminate under various conditions like for instance the descending chain condition
on the concrete domain or if the refinement adds a value for which the concrete greatest
fixpoint is computable.

Related works. In the following pages we relate our approach with the CEGAR ap-
proach (see [5]) where the refinement is done by a backward traversal of the abstract
counterexample. Recently new refinement techniques based on the proof of unsatisfi-
ability of the counterexample emerged (see [6] and the references given there). Seen
differently, the refinement picks non deterministically the new values to add to the ab-
stract domain among a set of values defined declaratively. In our case the value is unique
and defined operationally. For this reason we think that an empirical comparison would
make more sense.

The abstract fixpoint checking algorithm we propose is an extension of the classical
combination of forward and backward static analysis in abstract interpretation ([7] as
generalized by [8]) to include abstract domain completion that is the extension of the ab-
stract domain to avoid loss of precision in abstract fixpoints. This abstract domain com-
pletion is a backward completion in the classical sense of abstract interpretation [9] but,
for efficiency, restricted to states reachable within the invariant to be checked. In [10]
the authors define a restricted abstract domain completion. However since we reuse all
the information computed so far our completion is much more finer than theirs. In [11]
the authors consider a set of proof rules to establish invariant properties of the system
and they propose abstractions to show the premises of some rule hold. Moreover they
give a method to exclude spurious counterexamples based on acceleration techniques.
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Structure of the paper. The paper is organized as follows. Sect. 2 introduces some
preliminary results that are useful for the rest of the paper. In Sect. 3, we present our
algorithm and prove its main properties related to correctness and termination, we also
show that our approach can be easily combined with acceleration techniques. Sect. 4
compares our algorithm to the CEGAR approach and predicate abstraction. Sect. 5
concludes the paper and proposes some future works.

2 Preliminaries

Notations and notions of lattice theory. We use Church’s lambda notation (so that
F is λX. F (X)) and use the composition operator ◦ on functions given by (f ◦ g) =
λX. f(g(X)). Let X be any set and let f ∈ X �→ X be a function on this set. The re-
flexive transitive closure f∗ of a function f such that its domain and co-domain coincide
is given by

⋃
i≥0 f i where f0 is the identity and f i+1 = f i ◦ f . The reflexive transitive

closure R∗ of a relation R is defined in the same way. A function f on a complete lattice
is said to be additive (resp. coadditive) if f distributes the join (resp. the meet) opera-
tor. Given two functions f, g on a poset (L, ⊆), we define the pointwise comparison ⊆̇
between functions as follows: λx. f(x) ⊆̇ λx. g(x) iff ∀y ∈ L : f(y) ⊆ g(y). Given
a set S, ℘(S) denote the set of all subsets of S. Sometimes we write s instead of the
singleton {s}.

We denote by lfp(f) and gfp(f), respectively, the least and greatest fixpoint, when
they exist, of a function f on a poset. The well-known Knaster-Tarski’s theorem states
that any monotone function f ∈ L �→ L on a complete lattice 〈L, �, ∧, ∨, �, ⊥〉 admits
a least fixpoint and the following characterization holds: lfp(f) =

∧
{x ∈ L | f(x) �

x}. Dually, f also admits a greatest fixpoint and the following characterization holds:
gfp(f) =

∨
{x ∈ L | x � f(x)}.

Transition systems and predicate transformers. A transition system is a 3-tuple T =
(C, I, T ) where C is the set of states, I ⊆ C is the subset of initial states, and T ⊆
C × C is the transition relation. Often, we write s → s′ if (s, s′) ∈ T , s →∗ s′ if
(s, s′) ∈ T ∗ and s →k s′ if (s, s′) ∈ T k for k ∈ IN.

To manipulate sets of states, we use predicate transformers. The forward image op-
erator is a function that given a relation T ′ ⊆ C ×C and a set of states C′ ⊆ C, returns
the set post [T ′](C′) = {c′ ∈ C | ∃c ∈ C′ : (c, c′) ∈ T ′}. When the forward image
is used with the transition relation T , it is called the post operator and it returns, given
a set of states C′ all its one step successors in the transition system, we simply write it
post(C′). The backward image operator is a function given a relation T ′ ⊆ C × C and
set of states C′ ⊆ C, returns the set p̃re[T ′](C′) = ¬pre[T ′](¬C′) = ¬post [T ′−1](¬C′)
= {c ∈ C | ∀c′ : (c, c′) ∈ T ′ ⇒ c′ ∈ C′}. When the backward image operator is used
with the transition relation T , it is called the unavoidable operator and it returns, given
a set of states C′ all the states which have all their successors in the set C′, we simply
write it p̃re(C′).

Given a set I of states the set of reachable states is given by the following least
fixpoint lfp⊆λX. I ∪ post [T ](X). As shown in [12], this fixpoint coincides with
post [T ∗](I) also written post∗(I) when the transition relation is clear from the con-
text. So a state s is said to be reachable if s ∈ post∗(I). Dually, given a set S of states,
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the set of states that are stuck in S (or also that cannot escape from S) is given by the
following greatest fixpoint gfp⊆λX. S ∩ p̃re[T ](X). As shown in [12], this fixpoint co-
incides with p̃re[T ∗](S) also written p̃re∗(S) when the transition relation is clear from
the context.

Given two sets I, Z of states we call lfp⊆λX. (I ∪post(X))∩Z the set of reachable
states within Z . Finally given a set S of states, the set of states that cannot escape from
S in less than 1 steps is given by S ∩ p̃re(S).

Abstract interpretation. We use abstract interpretation to abstract the semantics of
transition systems. We assume standard abstract interpretation where, concrete and
abstract domains, L given by ℘(C) and A, are Boolean complete lattice 〈L, ⊆,
∩, ∪, C, ∅, ¬〉 and complete lattice 〈A, �, �, �, �, ⊥〉, respectively. The two lattices
are related by abstraction and concretization maps α and γ forming a Galois connec-
tion ∀c ∈ L : ∀a ∈ A : α(c) � a ⇔ c ⊆ γ(a) [7]. We write this fact as fol-
lows: 〈L, ⊆〉 −−→←−−

α

γ
〈A, �〉, or simply −−→←−−

α

γ
when the concrete and abstract domains

are clear from the context. We recall here a well-known (see [13] for instance) Ga-
lois connection that will be used later on: given a transition system (C, I, T ) we have

〈C, ⊆〉 −−−−−−−−−−−→←−−−−−−−−−−−
λX.post [T ](X)

λX.p̃re[T ](X)
〈C, ⊆〉. In this paper, we use a family of finite abstract do-

mains that are subset of A.

Definition 1 (Family of abstract domains). Let {Ai}i∈I be a family of finite sets such

that: (i) A =
⋃

i∈I Ai, (ii) 〈Ai, �〉 is a complete lattice, and (iii) ∃αi : 〈L, ⊆〉 −−−→←−−−
αi

γ

〈Ai, �〉.

Given an abstract domain Ai, we write γ(Ai) for the subset of concrete sets X ∈ L that
can be represented by abstract values in Ai.

The set γ(Ai) ⊆ L of concrete values that the abstract domain represents must be
closed by intersection if there is a Galois connection between Ai and L. Our abstract
domains are thus Moore closed. This notion, and the stronger notion of Boolean closure
are defined as follows.

Definition 2 (Moore and Boolean closure). A finite subset X ⊆ L is said to be:

– Moore closed iff ∀x1, x2 ∈ X : x1 ∧ x2 ∈ X and X contains the topmost element
of L. We define the function λX. M(X) which returns the Moore closure of its
argument, i.e. the smallest set M ⊆ L such that X ⊆ M and M is Moore closed1.

– Boolean closed iff ∀x1, x2 ∈ X: (i) x1 ∧ x2 ∈ X , (ii) x1 ∨ x2 ∈ X , and (iii)
C \ x ∈ X . We define the function λX. B(X) which returns the Boolean closure of
its argument, i.e. the smallest set B such that X ⊆ B and B is Boolean closed.

Let P = {p1, p2, . . . , pn} be a set of predicates and let �pi� ⊆ C be the subset of states
that satisfy the predicate pi. The set of predicates P implicitly defines a Boolean closed
abstract domain, noted AP , such that γ(AP ) ⊆ L is the smallest set which is Boolean
closed and contains the sets {�p� | p ∈ P}, i.e. γ(AP ) = B({�p� | p ∈ P}). The
elements of AP are equivalent to propositional formulas built from the predicates in P .

1 A Moore closed set is also called a Moore family.
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Elements of AP can also be viewed as union of equivalence classes of states: two states
c1, c2 ∈ C are equivalent whenever they satisfy exactly the same subset of predicates
in P .

The following Lemma contains well-known results of abstract interpretation that we
recall here so that the paper is self contained. We refer the interested reader to [14] and
the references given there for more details.

Lemma 1. Let I, S, Z ∈ L be sets of states. Given an abstract domain Ai, we define R,
resp. S, to be the abstract forward, resp. backward, semantics on Ai as lfp�λX. αi((I∪
post(γ(X))) ∩ Z), resp. gfp�λX. αi(S ∩ p̃re(γ(X))).

lfp⊆λX. (I ∪ post(X)) ∩ Z ⊆ γ(R)

gfp⊆λX. S ∩ p̃re(X) ⊆ γ(S)

}
We call this inclusion the overapprox-
imation of the abstract semantics.

The Fixpoint Checking Problem.
Instance: a transition system (C, I, T ) and a set of states S ⊆ C.
Question: Does the inclusion lfp⊆λX. I ∪ post(X) ⊆ S holds ?

3 Abstract Fixpoint Checking Algorithm

Alg. 1 has been inspired and is a generalization of what we have done previously in
[15,16,17]. We review here its main characteristics.

It computes overapproximations of least and greatest fixpoints. Line 3 computes an
abstract least fixpoint. As we will see in Prop. 1, when executed on a positive instance of
the fixpoint checking problem, every set γ(Ri) overapproximates the reachable states
of the transition system. Line 7 computes an abstract greatest fixpoint. As we will see in
Lem. 2, and Lem. 3, γ(Si) underapproximates the set of states that cannot escape from
S in less than i + 1 steps. As we can see from line 3 and line 7, the two fixpoints share
all the information that has been computed so far. In fact the abstract least fixpoint of
line 3 overapproximates the reachable states within Zi which gathers all the information
computed so far. Similarly, the abstract greatest fixpoint of line 7 starts with the least
fixpoint computed previously. Parts of the state space that have already been proved
unreachable within S or stuck in S are not explored during the next iterations.

The refinement that we propose is applied on the entire abstract fixpoint and is not
bound to individual counterexamples. The value Zi contains states that cannot escape
from γ(Si) in one step, all concrete states that are stuck within S have this property.
So, this set is interesting as it adds information about concrete states in the abstract
domain, this information will be used by subsequent abstract fixpoint computation. We
will see later in the paper that line 9 can be modified in a way to incorporate informa-
tion computed by acceleration techniques. The results that we first prove with line 9 are
still valid when accelerations are used. The possibility of combining our algorithm with
acceleration techniques is very interesting as accelerations may allow to discover inter-
esting abstract values related to loops in programs. Loops usually hinder the application
of the CEGAR approach.

In line 10 we see that the new value Zi+1 computed at line 9 is added to the set
of values the current abstract domain Ai can represent (this set is γ(Ai)). The new



338 P. Cousot, P. Ganty, and J.-F. Raskin

Algorithm 1. The abstract fixpoint checking algorithm
Data: An instance of the fixpoint checking problem such that I ⊆ S and an

abstract domain A0 such that S ∈ γ(A0)
Z0 = S1

for i = 0, 1, 2, 3, . . . do2

Compute Ri given by lfp�λX. αi

(
(I ∪ post(γ(X))) ∩ Zi

)

3

if αi(I ∪ post(γ(Ri))) � αi(Zi) then4

return OK5

else6

Compute Si given by gfp�λX. αi

(
γ(Ri) ∩ p̃re(γ(X))

)

7

if αi(I) � Si then8

Let Zi+1 = γ(Si) ∩ p̃re(γ(Si))9

Let Ai+1 be s.t. γ(Ai+1) = M
(
{Zi+1} ∪ γ(Ai)

)
10

else11

return KO12

end13

end14

end15

abstract domain is given by Ai+1. It is worth pointing that we actually add more than
the single value Zi+1 to the abstract domain since working in the framework of abstract
interpretation requires that γ(Ai+1) is a Moore family. We will see later that Moore
closure is sufficiently powerful in the following precise sense: considering the Boolean
closure instead does not improve the precision of our algorithm. This interesting result
is established in Th. 2. This contrasts with several approaches in the literature that use
predicate abstraction which induce more complex Boolean closed domains. The most
precise abstract post operation is usually more difficult to compute on Boolean closed
domains.

Our algorithm also enjoys nice termination properties. Prop. 6 shows that our algo-
rithm terminates whenever the concrete domain enjoys the descending chain condition.
This result allows us to conclude that our algorithm will always terminate for the im-
portant class of Well-structured transition systems [18,19], see [16,17] for the details.
Th. 1 of Sect. 4 also shows that whenever CEGAR terminates, then our algorithm termi-
nates. We also establish in Prop. 5 that whenever our algorithm is submitted a negative
instance, it always terminates.

Finally it is worth pointing out that all the operations in the algorithm, with the
exception of the refinement operation of line 9, are abstract operations, and the only
concrete operation is used outside of any of the fixpoint computations.

Before giving a formal characterization of Alg. 1, let us give more insights by run-
ning the algorithm on a toy example.

Example 1. The toy example is a finite state system given at Fig. 1. The set of states
given by the initial abstract domain are given by the boxes. We submit to our algorithm
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B1

B2

�

�

�1 �3

B3

�4�2

�0

R0 = B3 line 3

α0(I ∪ post(γ(B3))) �� Z0 (so not “OK”) line 4

S0 = B3 line 7

α0(I) � S0 (cannot say “KO”) line 8

Z1 = γ(B3) ∩ p̃re(γ(B3)) line 9

= {�0, �1, �2}
The new domain is A1 = A0 ∪ {B4, B5} line 10

with γ(B4) = Z1 and γ(B5) = Z1 ∩ γ(B2)
= {�0, �1}

R1 = B4 line 3

α1(I ∪ post(γ(B4))) � Z1 line 4

Alg. 1 terminates saying “OK”

Fig. 1. A finite state system and the result of evaluating Alg. 1 on it

the following positive instance of the fixpoint checking problem where A0 =
{B1, B2, B3, �}, I = {�0}, and S = γ(B3). So note that Z0 = γ(B3) = S. In the
right side of Fig. 1 the algorithm is executed step by step. Since the fixpoints converge
in very few steps we invite the interested reader to verify them by hand.

3.1 Correctness of the Algorithm

In what follows we assume that Alg. 1 reaches enough iteration to compute the sets
appearing in the statements. For instance, if γ(Ri) appears in the statement then the
algorithm has not yet concluded at iteration i − 1 or if Zi+1 appears in the statement
then the algorithm has not yet concluded at iteration i.

We start with a technical lemma that states that our algorithm computes sets of states
that are decreasing.

Lemma 2. In Alg. 1 we have

Zi+1 ⊆ γ(Si) ⊆ γ(Ri) ⊆ Zi ⊆ · · · ⊆ Z1 ⊆ γ(S0) ⊆ γ(R0) ⊆ Z0 ⊆ S.

The next proposition characterizes the sets of states that are computed by the algorithm
in the presence of positive instances.

Proposition 1. In Alg. 1, if post∗(I) ⊆ S then post∗(I) ⊆ γ(Ri) for any i ∈ IN.

Proof. Our proof is by induction on i.

Base case. Lem. 1 tells us that γ(R0) overapproximates the following least fix-
point lfp⊆λX. (I ∪ post(X)) ∩ S. Provided the system respects the invariant S (i.e.
post∗(I) ⊆ S), this fixpoint is equal to lfp⊆λX. (I∪post(X)). So, post∗(I) ⊆ γ(R0).

Inductive case. For the inductive case we prove the contrapositive. Suppose that there
exists s ∈ post∗(I) and s �∈ γ(Ri). We recall Lem. 2 which shows that γ(Ri−1) ⊇
γ(Si−1) ⊇ Zi ⊇ γ(Ri). We now consider several cases.
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1. s /∈ γ(Ri−1). Then by induction hypothesis, post∗(I) �⊆ S and we are done.
2. s ∈ γ(Ri−1) and s �∈ γ(Si−1). We conclude from Lem. 1 that γ(Si−1) overap-

proximates the states stuck in γ(Ri−1). Since s /∈ γ(Si−1) there exists a state s′

such that s →∗ s′ and s′ /∈ γ(Ri−1). First, note that as s ∈ post∗(I), we conclude
that s′ ∈ post∗(I). But as s′ /∈ γ(Ri−1), we know that post∗(I) �⊆ γ(Ri−1) and
by induction hypothesis we conclude that post∗(I) � S.

3. s ∈ γ(Ri−1), s ∈ γ(Si−1) and s /∈ Zi. We conclude from the definition of Zi

which is given by γ(Si−1) ∩ p̃re(γ(Si−1)) that there exists s′ /∈ γ(Si−1) such
that s → s′. Either s′ /∈ γ(Ri−1) or s′ ∈ γ(Ri−1) and by the previous case,
we know that s′ →∗ s′′ and s′′ /∈ γ(Ri−1). In the two cases, we conclude that
post∗(I) �⊆ γ(Ri−1) and by induction hypothesis that post∗(I) � S.

4. s ∈ γ(Ri−1), s ∈ γ(Si−1), s ∈ Zi, and s /∈ γ(Ri). By overapproximation of the
abstract semantics, we know that s is not reachable from I within Zi. Otherwise
stated, all paths starting form I and ending in s leaves Zi. As s is reachable from I ,
we know that there exists some s′ /∈ Zi which is reachable form I . We can apply
the same reasoning as above and conclude that post∗(I) � S. ��

We are now in position to prove that, when the algorithm terminates and returns OK, it
has been submitted a positive instance of the fixpoint checking problem, and when the
algorithm terminates and returns KO, it has been submitted a negative instance of the
fixpoint checking problem.

Proposition 2 (Correctness – positive instances). If Alg. 1 says “OK” then we have
post∗(I) ⊆ S.

Proof.

Algorithm says “OK”

⇔ αi(I ∪ post(γ(Ri))) � αi(Zi) line 4

⇔ αi(I) � αi(Zi) � αi ◦ post ◦ γ(Ri) � αi(Zi) αi additivity

⇔ I � γ ◦ αi(Zi) � post(γ(Ri)) � γ ◦ αi(Zi) −−−→←−−−
αi

γ

⇔ I ⊆ Zi � post(γ(Ri)) ⊆ Zi Zi ∈ γ(Ai) line 10

Then,

αi((I ∪ post(γ(Ri))) ∩ Zi) � Ri def. of Ri, prop. of lfp

⇔ (I ∪ post(γ(Ri))) ∩ Zi ⊆ γ(Ri) −−−→←−−−
αi

γ

⇒ I ∪ post(γ(Ri)) ⊆ γ(Ri) I ⊆ Zi � post(γ(Ri)) ⊆ Zi

⇒ lfp⊆λX. I ∪ post(X) ⊆ γ(Ri) prop. of lfp
⇒ post∗(I) ⊆ S γ(Ri) ⊆ S by Lem. 2 ��

Proposition 3 (Correctness – negative instances). If Alg. 1 says “KO” then we have
post∗(I) � S.
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Proof. If at iteration i the algorithm says “KO” then we find that αi(I) �� Si (line 8)
which is equivalent to I � γ(Si) by −−−→←−−−

αi

γ
. We conclude from Lem. 2 that γ(Ri+1) ⊆

γ(Si), hence that I � γ(Ri+1) and finally that post∗(I) � S using the contrapositive
of Prop. 1. ��

Remark 1. The proofs of the above results remain correct if in line 9 of Alg. 1 instead
of λX. p̃re[T ](X) we take λX. p̃re[R](X) where R ⊆ T ∗. In fact for correction to
hold Zi+1 must be such that p̃re[T ∗](γ(Si)) ⊆ Zi+1 ⊆ γ(Si). Later we will see
how we can benefit from acceleration techniques which build a relation R such that
T ⊆ R ⊆ T ∗. This alternative refinement using R including T yields to stronger
termination properties of the algorithm.

3.2 Termination of the Algorithm

To reason about the termination of the algorithm, we need the following technical
proposition and its corollary.

Proposition 4. In Alg. 1 the following holds:

1. if Zi+1 = Zi then post(Zi) ⊆ Zi;
2. if I � Zi then the algorithm terminates at iteration i and returns “KO”;
3. if I ∪ post(Zi) ⊆ Zi then the algorithm terminates at iteration i and return “OK”.

Corollary 1. In Alg. 1, if Zi = Zi+1 then the algorithm terminates.

Alg. 1 terminates when submitted a negative instance as proved below in Lem. 3 and
Prop. 5.

Lemma 3. In Alg. 1, γ(Ri) underapproximates the set p̃re[
⋃i

j=0 T j](S) of states
which cannot escape from S in less than i + 1 steps.

Proof. The result is shown by induction on the number i of steps. For the base case,
Lem. 2 shows that γ(R0) ⊆ S = p̃re[T 0](S). For the inductive case,

p̃re[
i+1⋃

j=0

T j](S) = p̃re[
i⋃

j=0

T j ∪
i+1⋃

j=1

T j](S) def. ∪

= p̃re[
i⋃

j=0

T j](S) ∩ p̃re[T ](p̃re[
i⋃

j=0

T j](S)) def. p̃re

⊇ γ(Ri) ∩ p̃re[T ](γ(Ri)) ind. hyp.

⊇ γ(Si) ∩ p̃re[T ](γ(Si)) by Lem. 2

= Zi+1 by line 9

⊇ γ(Ri+1) by Lem. 2 ��

Proposition 5. If post∗(I) � S then Alg. 1 terminates.
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Proof. Hypothesis shows that there exists states s, s′ and a value k ∈ IN such that s ∈ I ,
s′ /∈ S and s →k s′. Lem. 3 shows that γ(Rk−1) ⊆

⋂k
j=0 p̃re[T j](S). So we conclude

from above that I �
⋂k

j=0 p̃re[T j](S), hence that I � γ(Rk−1) by transitivity and
finally that I � Zk by Lem. 2. The last step uses Prop. 4.2 to show that the algorithm
terminates. ��

The following proposition states that our algorithm terminates under the descending
chain condition in the concrete domain.

Proposition 6. If there exists a poset Y ⊆ L such that the descending chain condition
holds on 〈Y, ⊆〉 and Zi ∈ Y for all i ∈ IN then Alg. 1 terminates.

Proof. We prove the contrapositive. Assume the algorithm does not terminate. We thus
obtain that Z0 ⊃ Z1 ⊃ · · · ⊃ Zn ⊃ · · · by Cor. 1 and Lem. 2 which contradicts the
existence of a poset satisfying the above hypothesis. ��

Below Prop. 7 establishes a stronger termination result of our algorithm which states
that if the algorithm computes a value Zi from which the evaluation of the greatest
fixpoint gfp⊆λX. Zi ∩ p̃re(X) terminates after a finite number of iterations then our
algorithm terminates. We use classical fixpoint evaluation techniques to compute the
set gfp⊆λX. Zi ∩ p̃re(X). First we start with the set Zi and then we remove the states
that escape from Zi in 1 step. The set obtained is formally given by Zi ∩ p̃re(Zi). Then
we iterate this process until no state is removed.

Proposition 7. If in Alg. 1 there is a value for i such that gfp⊆λX. Zi ∩ p̃re(X) stabi-
lizes after a finite number of steps, then Alg. 1 terminates.

3.3 Termination of the Algorithm Enhanced by Acceleration Techniques

In this section we will study an enhancement of Alg. 1 which relies on acceleration tech-
niques (we refer the interested reader to [20] and the references given there). Roughly
speaking, acceleration techniques allow us to compute underapproximations of the tran-
sitive closure of some binary relation as, for instance the transition relation.

Assume we are given some binary relation R such that T ⊆ R ⊆ T ∗. The en-
hancement we propose replaces line 9 (viz. Zi+1 = γ(Si) ∩ p̃re[T ](γ(Si))) by the
following: Zi+1 = γ(Si) ∩ p̃re[R](γ(Si)). The definition of R suggests that the value
added using R should be at least as precise as the one given using T . A very favorable
situation is when R equals T ∗ but Prop. 7 is not applicable at any iteration. We conclude

from Z1 = gfp⊆λX. γ(S0) ∩ p̃re(X) that post(Z1) ⊆ Z1 by −−−−→←−−−−
post

p̃re
, hence that the

enhanced algorithm terminates at iteration where i = 1 by Prop. 4 while the normal
algorithm might not since Prop. 7 is never applicable. Below we illustrate this situation
using a toy example.

Example 2. Fig. 2 shows a two counters automaton and its associated semantics. The
domain of the counters is the set of integers. In the automaton x, y refer to the current
value of the counters while x′, y′ refer to the next value (namely the value after firing
the transition). Transition t1 is given by a simultaneous assignment. Discs depicts some
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reachable states, which are given by {(x, y) | y � x � 0 � x}. We will submit to
Alg. 1 a positive instance of the fixpoint checking problem such that I and S are given
by {(0, 0)} and {(x, y) | y �= x + 1} respectively. Our initial abstract domain A0 is
such that γ(A0) = M(S).

It is routine to check R0, computed at line 3, is such that γ(R0) = S, hence that
the test of line 4 fails. It follows that we have to compute S0 given at line 7. Let Xδ, δ
be the sequence of iterates for λX. α0(γ(R0) ∩ p̃re[T ](γ(X))) which converges to S0.
First let us compute

S ∩ p̃re[t2](S)
= S ∩ ¬ ◦ pre[t2] ◦ ¬(S) def. of p̃re
= S ∩ ¬ ◦ pre[t2]({(x, y) | y = x + 1}) def. of ¬, S

= S ∩ ¬({(x, y) | y = x + 2}) see Fig. 2

= S ∩ {(x, y) | y �= x + 2}
= {(x, y) | y �= x + 1} ∩ {(x, y) | y �= x + 2} def. of S

We now turn to the evaluation of the gfp.

X0 = �
X1 = α0(γ(R0) ∩ p̃re[T ](γ(X0)))

= α0(S) γ(R0) = S,� ⊆ p̃re[T ](�)
= S S ∈ γ(A0)

X2 = α0(S ∩ p̃re[T ](γ(X1)))

= α0
(
S ∩ p̃re[t1](γ(X1)) ∩ p̃re[t2](γ(X1))

)
def. p̃re

= α0
(
S ∩ p̃re[t2](γ(X1))

)
S ∩ p̃re[t1](S) = S

By above we find that α0(S ∩ p̃re[t2](S)) = S, hence that γ(S0) = S. Since the test
of line 8 succeeds the next step (line 9) is to compute Z1. We use acceleration techniques
to compute Z1 for otherwise the algorithm does not converge. Without resorting to
acceleration techniques each Zi escapes from S in i+1 steps by firing transition t2. This
clearly indicates that the CEGAR approach considers counterexamples of increasing
length and thus fails on this toy example. By considering the limit instead of the Zi’s we
obtain a value that is stuck in S. That value stuck in S can be obtained using acceleration
techniques as shown below.

x = 0, y = 0

t1 : y = 0 → 〈x′, y′〉 = 〈x + 1, x + 1〉;

t2 : y′ = y − 1;
q0

Fig. 2. A two counters automata and its associated semantics
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Our candidate relation to show termination is given by t1 ∪ t∗2 which is computable
using acceleration technique. It is routine to check that T ⊆ t1 ∪ t∗2 ⊆ T ∗. Let us
compute Z1 which is given by S ∩ p̃re[t1 ∪ t∗2](S).

S ∩ p̃re[t1 ∪ t∗2](S) = def. p̃re
S ∩ p̃re[t1](S) ∩ p̃re[t∗2](S) = S ∩ p̃re[t1](S) = S

p̃re[t∗2](S) =

gfp⊆λX. S ∩ p̃re[t2](X)

The latter fixpoint evaluates to {(x, y) | y � x} and so the new abstract domain A1 is
such that γ(A1) = M(γ(A0) ∪ Z1). At iteration 1, we find at line 3 that γ(R1) = Z1,
hence that the test of line 4 succeeds since there is no outgoing transition of Z1 (see
Fig. 2), and finally that Alg. 1 terminates with the right answer.

It is worth pointing that the forward abstract semantics is conclusive. However al-
gorithms using acceleration techniques to compute the forward concrete semantics do
not terminate. Basically acceleration techniques identify regular expressions over the
transition alphabet and then compute underapproximation of the transitive closure of
the transition relation. For the automaton of Fig. 2 acceleration techniques fail because
there is no finite regular expression that describes all the possible executions of the
counter automaton. �

The rest of this section is devoted to establish some termination properties of the en-
hanced algorithm. In fact, as we said in Rem. 1 our correctness proofs remains valid for
the enhancement. Thus below we focus on termination properties.

By definition of R it is routine to check that

λX. p̃re[T ∗](X) ⊆̇ λX. p̃re[R](X) ⊆̇ λX. p̃re[T ](X) . (1)

Proposition 8. Let R2 such that T ⊆ R2 ⊆ T ∗ and gfp⊆λX. S ∩ p̃re[R2](X)
stabilizes after a finite number of step, then Alg. 1 when using any R1 such that
R2 ⊆ R1 ⊆ T ∗ at line 9 terminates as well.

Remark 2. In Alg. 1, the fixpoint Ri and Si have their iterated function given by
λX. αi(I ∪ post(γ(X)) ∩ Zi) and λX. αi(γ(Ri) ∩ p̃re(γ(X))), respectively. For var-
ious reasons we may be constrained to use a less precise approximations f, g that is to
say λX. αi(I ∪ post(γ(X)) ∩ Zi) ⊆̇ λX. f(X) and λX. αi(γ(Ri) ∩ p̃re(γ(X))) ⊆̇
λX. g(X). In this context provided the additional mild requirements λX. f(X) ⊆̇
λX. Zi and λX. g(X) ⊆̇ λX. γ(Ri) hold we find that all the results of Sect. 3.1,
Sect. 3.2 and Sect. 3.3 remain valid.

4 Relationships with Other Approaches

4.1 Counterexample Guided Abstraction Refinement

We first recall here the main ingredients of the CEGAR approach [21, §4.2]. Given a
transition system T = (C, T, I), called the concrete transition system, and a partition of
C into a finite number of equivalence classes C = {C1, . . . Ck}, the abstract transition
system is a transition system T α = (Cα, T α, Iα) where:
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– Cα = C, i.e. abstract states are the equivalence classes;
– T α = {(Ci, Cj) | ∃c ∈ Ci, c

′ ∈ Cj : (c, c′) ∈ T }, i.e. there is a transition from
an equivalence class Ci to an equivalence class Cj whenever there is a state of Ci

which has a successor in Cj by the transition relation;
– Iα = {Ci ∈ C | Ci ∩ I �= ∅}, i.e. a class is initial whenever it contains an initial

state.

A path in the abstract transition system is a finite sequence of abstract states related by
T α that starts in an initial state. An abstract state Ci is reachable if there exists a path in
T α that ends in Ci. The set of states within the equivalence classes that are reachable
in the abstract transition system, is an overapproximation of the reachable states in the
concrete transition system.

An abstract counterexample to S ⊆ C is a path Ci1 , Ci2 , . . . , Cin in the abstract
transition system such that Cin �⊆ S. An abstract counterexample is spurious if it does
not match a concrete path in T . We define this formally as follows. To an abstract
counterexample Ci1 , . . . , Cin , we associate a sequence t1, t2, . . . , tn−1 of subsets of T
(the transition relation of T ) such that tj = T ∩ (Cij × Cij+1 ) (the projection of T on
successive classes).

An abstract counterexample is an error trace, only if I � p̃re[t1 ◦ . . . ◦ tn−1](S)
(by monotonicity we have I � p̃re[T ∗](S)), otherwise it is called spurious and, so
I ⊆ p̃re[t1 ◦ . . . ◦ tn−1](S). Eliminating a spurious counterexample is done by splitting
a class Cj where 1 � j � n. The class Cj contains bad states (written bad) that can
reach ¬S but which are not reachable from Cj−1; or which are not initial if j = 0.
Accordingly the class Cj split in Cj∩bad and Cj∩¬bad. From the above definition, we
can deduce that bad = pre[tj ◦ . . . ◦ tn−1](¬S), hence that ¬bad = ¬ ◦ pre[tj ◦ . . . ◦
tn−1] ◦ ¬(S), and, finally that ¬bad = p̃re[tj ◦ . . . ◦ tn−1](S). Hence the splitting of
Cj is given by Cj ∩ p̃re[tj ◦ . . . ◦ tn−1](S) and Cj ∩¬ ◦ p̃re[tj ◦ . . . ◦ tn−1](S). When
the spurious counterexample has been removed, by splitting an equivalence class, a new
abstract transition system, based on the refined partition, is considered and the method
is iterated.

CEGAR approach concludes when it either finds an error trace (identifying a nega-
tive instance of the fixpoint checking problem) or when it does not find any new abstract
counterexample (identifying a positive instance of the fixpoint problem).

We now relate the abstract model used by CEGAR with the abstract interpretation
of the system. The initial abstract domain A0, that our algorithm uses, is such that for
all equivalence classes Ci in the initial partition used by the CEGAR algorithm, there
exists an abstract value a ∈ A0 such that γ(a) = Ci.

Lemma 4. Assume that CEGAR terminates on a positive instance of the fixpoint check-
ing problem. So CEGAR produced a finite set {wi}i∈I of counterexamples such that the
following holds:

∃A ∈ γ(A0) : I ⊆ gfp⊆λX. A ∩ p̃re(X)
︸ ︷︷ ︸

V

⊆ S � V = A ∩
⋂

i∈I

p̃re[wi](S) .

We need one more auxiliary result before presenting Th. 1.
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Proposition 9. In Alg. 1, ∀k ∈ IN if post∗(γ(Rk)) ⊆ S then post(γ(Rk)) ⊆ Zk.

Theorem 1. Assume a positive instance of the fixpoint checking problem, if CEGAR
terminates so does Alg. 1.

Proof. Let k be the size of the longest wi for i ∈ I . Lem. 3 shows that γ(Rk+1) is an
underapproximation of the states that cannot escape S in less than k steps. Formally,
we have γ(Rk+1) ⊆

⋂k
j=0 p̃re[T j](S). This implies that

γ(Rk+1) ⊆
⋂

i∈I

p̃re[wi](S) . (2)

Our next step will be to show that post [T ∗](γ(Rk+1)) ⊆ S which intuitively says that
γ(Rk+1) cannot escape S. First, note that if γ(Rk+1) can escape from S then it cannot
be with the counterexamples produced by CEGAR since γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S)

which is equivalent to
⋃

i∈I post [wi](γ(Rk+1)) ⊆ S by −−−−→←−−−−
post

p̃re
. Let A be defined as

in Lem. 4. Our proof falls into two parts:

1. γ(Rk+1)∩A cannot escape from S, i.e. post [T ∗](γ(Rk+1)∩A) ⊆ S, as shown as
follows. From (2), we know that γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S), and by definition

of V , we have that γ(Rk+1) ∩ A ⊆ V . As V is inductive for post and V ⊆ S, we
conclude that post [T ∗](γ(Rk+1) ∩ A) ⊆ S.

2. γ(Rk+1) ∩ ¬A cannot escape from S. For that, we show that γ(Rk+1) ∩ ¬A = ∅.
Prop. 1 and definition of A show that I ⊆ γ(Rk+1) ∩ A and so γ(Rk+1) ∩ A �= ∅.
We also know that in any state s ∈ γ(Rk+1) ∩ A for post [T ∗]({s}) ∩ ¬A �= ∅
to hold s has to be such that s /∈

⋂
i∈I p̃re[wi](S). However since γ(Rk+1) ⊆

⋂
i∈I p̃re[wi](S) and since Rk+1 is given by lfp⊆λX. αk+1(I ∪ post(γ(X)) ∩

Zk+1) over Ak+1 (with γ(Ak+1) ⊆ γ(A0)) we find that γ(Rk+1) ∩ ¬A = ∅. It
follows that post [T ∗](γ(Rk+1)) ⊆ S.

We conclude from Prop. 9 that post(γ(Rk+1)) ⊆ Zk+1, hence that the test of
line 4 succeeds by αk+1 monotonicity and I ⊆ γ(Rk+1), and finally that Alg. 1
terminates. ��

If we consider the converse result, namely that CEGAR terminates if Alg. 1 terminates
we find that this does not hold for the enhanced algorithm as shown in Ex. 2.

4.2 Predicate Abstraction Versus Moore Closed Abstract Domains

Below we prove that Alg. 1 does not take any advantage maintaining a Boolean closed
abstract domain instead of a Moore closed one: Moore closure is as strong as Boolean
closure.

The following Lemma shows that every “interesting” value added by the Boolean
closure is added by the Moore closure as well. By extension we obtain that (see Th. 2)
if Alg. 1 extended with the Boolean closure terminates then Alg. 1 terminates. Our result
holds basically because both Ri and Si are such that γ(Ri) ⊆ Zi and γ(Si) ⊆ Zi by
Lem. 2.
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Lemma 5. Let A be a finite subset of L such that B(A) = A and let Z0, Z1, . . . , Zk

be elements of L such that Zk ⊆ · · · ⊆ Z1 ⊆ Z0. Given e ∈ B(A ∪ {Z0, Z1, . . . , Zk})
such that e ⊆ Zk we have e ∈ M(A ∪ {Z0, Z1, . . . , Zk}).

Theorem 2. Provided B(γ(A0)) = γ(A0), if Alg. 1 with the Moore closure (viz. M)
replaced by the Boolean closure (viz B) terminates then Alg. 1 terminates as well.

In the context of predicate abstraction, there is no polynomial algorithm to compute the
best approximation. In fact the result of applying α to value V is given by the strongest
Boolean combination of predicates approximating V . Moreover the computation of the
best approximation is required at each iterate of each fixpoint computation. So in the
worst case the time to compute a fixpoint is given by the height of the abstract lattice
times an exponential in the number of predicates. It is generally admitted that this cost is
not affordable and this is why approximations in time linear in the number of predicates
are preferred instead. For our algorithm the situation is pretty much better: as shown
in Lem. 5 we can compute the best approximation in time linear in the number of
predicates. However we need the initial set of predicates to be Boolean closed.

5 Conclusion and Future Works

We have presented a new abstract fixpoint refinement algorithm for the fixpoint check-
ing problem. Our systematic refinement uses the information computed so far which
is given by two fixpoints computed in the abstract domain. As a future work, we can
consider two variants of this algorithm. First, the dual algorithm for the inverted tran-
sition system T−1 can be used to discover necessary correct termination conditions. A
second dual algorithm where we use the inverted inclusion order ⊇ on states leading to
underapproximation of fixpoints. In this settings the lfp allows to conclude on negative
instances and the gfp on positive instances. Also the refinement step uses the post pred-
icate transformer instead of p̃re . Finally we will consider more complicated properties
like properties defined by nested fixpoint expressions.
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