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Abstract. We investigate the applicability of symbolic exploration to
the automatic verification of secrecy and authentication properties for
time sensitive cryptographic protocols. Our formal specifications are
given in multiset rewriting over first order atomic formulas enriched with
constraints so as to uniformly model fresh name generation and validity
condition of time stamps. Our verification approach is based on data
structures for symbolically representing sets of configurations of an arbi-
trary number of parallel protocol sessions. As a case study we discuss the
verification of timed authentication for the Wide Mouth Frog protocol.

1 Introduction

Several authentication and key-establishment protocols make use of time-stamps
to avoid possible replay attacks of malicious intruders. However, time-stamps are
often abstracted away in formal models of cryptographic protocols (see e.g. [4,
6,19]). One reason for the use of this abstraction is that all known decidability
results for verification of crypto-protocols are given for untimed models (see e.g.
[14,18]). Powerful theorem provers like Isabelle in [2], Spass in [8], and PVS in
[9] have been applied to verify timed dependent security properties.

In this paper we will present an automatic procedure for proving secrecy and au-
thentication properties of time sensitive cryptographic protocols. Our procedure
is an extension of the symbolic exploration method devised for the specification
language MSR(L) of [5]. By combining multiset rewriting over first order atomic
formulas [7] and linear arithmetic constraints, MSR(L) can be naturally applied
to specify unbounded models of cryptographic protocols with fresh name gener-
ation and validity conditions for time-stamps. Our extension to the technique of
[5] is based on the following points.
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As a first technical contribution, we will define a new data structure for repre-
senting infinite set of configurations of (unbounded) MSR(L) specifications. Our
data structure combines two logics: the existential zones over n-ary predicates
with linear arithmetic constraints of [5], and the first order term language en-
riched with the sup operator of [6]. Since existential zones are given an upward
closed semantics with respect to inclusion of configurations, our data structure
can be used to finitely represent snapshots of executions of an unbounded num-
ber of parallel protocol sessions. In this setting first order terms can be used to
represent structured and partially specified data, whereas the special operator
sup can be used to represent patterns occurring at arbitrary depth in a message.
The term sup(t) represents in fact any term containing t as a subterm. Finally,
linear arithmetic constraints are used to model freshness and validity conditions
for nonces and time-stamps. To exploit the upward closed semantics of our sym-
bolic representation, we incorporate the new data structure within a backward
search scheme. The resulting symbolic backward exploration procedure is based
on effective entailment and pre-image operators. These operators are defined via
unification and subsumption for first order terms extended with the sup opera-
tor, and constraint operations like satisfiability and variable elimination.

Since verification of (control) reachability problems for unbounded cryptographic
protocols is undecidable [7], termination of state exploration cannot be guaran-
teed in general. However, when terminating, our search procedure returns a
symbolic reachability graph that finitely represents an infinite set of protocol
traces. As a second technical contribution, we establish conditions under which
the symbolic reachability graph can be used to verify security properties like
secrecy and authentication in presence of validity conditions for time-stamps.
The conditions we propose here can be verified by using a visit of the graph.
Specifically, in order to verify that secrecy holds, we have to check that the set of
nodes of the constructed graph does not contain initial protocol configurations.
For authentication properties, we have to search for specific pairs of principals
states along paths in the graph starting from an initial protocol configuration.

By using the term manipulation library, the graph package, and the linear con-
straint solver provided by Sicstus Prolog, we have extended the symbolic verifi-
cation procedure defined for verification of parametric data consistency protocols
in [5] to cope with the new class of protocols, properties, and symbolic data
structures we will discuss in the present paper. As a practical contribution, we
present here a detailed analysis of a timed model of the Wide Mouth Frog pro-
tocol of [3]. As shown in Section 5, using our method we have automatically
proved non-injective timed agreement for the fixed version proposed by Lowe in
[11]. Our results are obtained for an unbounded protocol model and for paramet-
ric delays in the validity conditions of time-stamps. In Section 6 we will compare
the results of this analysis with two other methods (based on semi-automated
[9] and finite-state verification [13]) applied to this protocol.

We believe that the main novelty of the resulting method with respect to existing
ones is that it allows us to handle unbound parallelism, complex term structures,
time-stamps, and freshness of names both at the level of specification and analy-
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sis in a uniform and effective way. Furthermore, the symbolic reachability graph
allows us to verify security and authentication properties or to extract poten-
tial attacks (in form of a symbolic trace), a feature often not so easy in other
verification methods based on theorem proving like TAPS [8].

2 Time Sensitive Cryptographic Protocols in MSR(L)

Let us first recall the main definitions of the language MSR(L)[5]. In this paper
we will use ·|· and ε as multiset constructors and ⊕ to denote multiset union.
Furthermore, we will use Fv(t) to denote the set of free variables of a term or
formula t. An MSR(L) specification S is a tuple 〈P, Σ,V, I,R〉, where P is a
set of predicate symbols, Σ a first order signature, V = Vt ∪ Vi, Vt is a set of
term variables, Vt is a set of integer variables, Vt ∩ Vi = ∅, I is a set of initial
configurations, and R is a finite set of labelled rules. A labelled rule has the form
α : M −→ N :ϕ, where α is a label, M and N are two (possibly empty) multisets
of atomic formulas built on P and Σ, and ϕ is a linear arithmetic constraint such
that Fv(ϕ) ⊆ Fv(M ⊕ M′) ∩ Vi. In this paper we will always embed integer
variables within unary casting symbols working as types. For instance, in the
rule α : p(ts(x), h(u)) | q(ts(y), h(z)) → p(ts(y)) | q(ts(y), h(u, z)) : x > y the
template ts(·) is used to encapsulate the integer variables x and y within a term.

The operational semantics of S is defined via the rewriting relation ⇒R defined
over configurations. A configuration is a multiset of ground atomic formulas like
p(ts(3)) | q(ts(4), h(5)). Given two configurations M1 and M2, M1 ⇒R M2 if
and only if there exists a configuration Q s.t. M1 = N1 ⊕ Q, M2 = N2 ⊕ Q,
and N1 −→ N2 is a ground instance of a rule in R. A ground instance of a
rule α : M −→ M′ : ϕ is obtained by extending a substitution in the set of
solutions Sol(ϕ) of the constraint ϕ to a grounding substitution (i.e. with ground
terms in its range) for Fv(M,M′). Given a set of MSR(L) configurations S,
the predecessor operator is defined as

PreR(S) = {M | ∃M′ ∈ S s.t. M ⇒R M′}.

A configuration M is reachable if M0 ∈ Pre∗
R({M}) for some M0 ∈ I. Pre∗

R
represents here the transitive closure of the predecessor relation.

2.1 Time Sensitive Crypto-protocols

In the following we will assume the reader to be familiar with the use of mul-
tiset rewriting for the specification of cryptographic protocols (for more details,
see e.g., [7]). Under the perfect cryptography assumption, time sensitive crypto-
graphic protocols can be specified in MSR(L) as follows. Identifiers of honest
principals are represented as integer numbers greater than zero. The intruder
(Trudy) has the special identifier 0. The current state of honest principals is rep-
resented via atomic formulas like ri(id(n), 〈t1, . . . , tn〉), meaning that the honest
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agent n > 0 has executed the i-th step of the protocol in the role r (and he/she is
ready for next step); t1, . . . , tn are terms representing his/her current knowledge.
Data will be represented here by means of first order terms like id(·) (principal
identifier), sk(·) (secret key), sk(·, ·) (shared key), ts(·) (time-stamp), enc(·, ·)
(encrypted message), and 〈·, . . . , ·〉 (tuple constructor).
The knowledge of the attacker (Trudy) is represented by a collection of atomic
formulas of the shapemem(t) for some term t. Trudy’s behavior can be described
by using a Dolev-Yao model as in [7]. We will come back to this point in Sec-
tion 5. A message sent on a directional channel is represented by means of an
atomic formula net(sender, receiver,message). Encrypted data is represented
as the term enc(key, t), where key is a term like sk(a, b) denoting a key shared
between a and b, and t is a term.
To model time-stamps, we use a global clock whose current value is represented
via an atomic formula clock(·). The value of the clock is non-deterministically
updated via the following rule:

time : clock(ts(now)) −→ clock(ts(next)) : next > now

This rule introduces arbitrary delays between principals actions. Variables shared
between the clock formula and a message can be used to represent generation
of a time-stamp. The behavior of honest principals is defined by rule having the
following shape:

α : clock(ts) | fresh(sk(y)) | r(id(a),k) | net(id(b), id(a),m) −→
clock(ts′) | fresh(sk(y′)) | r′(id(a),k′) | net(id(a), id(b′),m′) : ϕ

This template represents the following transition: at instant ts principal a re-
ceives message m apparently from b, updates his/her state from r to r′ and its
knowledge from k to k′, and, at instant ts′, he/she sends a new message m′.
Freshness of a value k (key, nonce) can be ensured by adding the constraint
y′ > k > y in the constraint ϕ. If we assume that a single principal step re-
quires negligible time, then ts = ts′ = ts(now) for some integer variable now
representing the current instant. Parameters in the validity conditions of time-
stamps (e.g. delays) can be specified by including atomic formulas working as
global memory in the initial protocol configuration as explained in the example
of the next section.

2.2 The Wide Mouth Frog (WMF) Protocol

The goal of the WMF protocol [3] is to allow two principals to exchange a secret
key via a trusted server. In the first step the initiator A sends to the server S
the message A, {B,K, T1}KAS

containing his/her identity together with a mes-
sage encrypted with the key shared between A and the server S containing the
identity B of the principal the initiator would like to talk to, a secret key K,
and a time-stamp T1. In the second step the server S forwards to principal B
the message {A,K, T2}KBS

containing A’s identity, the secret key K, and an
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createkey :
clock(ts(n)) | fresh(sk(y)) | init1(id(a))

−→
clock(ts(n)) | fresh(sk(y′)) | init2(id(a), 〈id(b), id(s), sk(k), ts(n)〉)
: a > 0, b > 0, y′ > k, k > y

init :
clock(ts(n)) | server(s) | init2(id(a), 〈id(b), id(s), sk(k), ts(n)〉)

−→
clock(ts(n)) | server(s) | init3(id(a), 〈id(b), id(s), sk(k), ts(n)〉) |

| net(a, s, enc(sk(a, s), 〈r(0), id(b), sk(k), ts(n), ts(n)〉))
: a > 0, b > 0

server :
clock(ts(n)) | server(s) | delay(d1, d2) |

| net(a, s, enc(sk(a, s), 〈r(0), id(b), sk(k), ts(t), ts(st)〉))
−→

clock(ts(n)) | server(s) | delay(d1, d2) |
| net(s, b, enc(sk(b, s), 〈r(1), id(a), sk(k), ts(n), ts(st)〉)

: a > 0, b > 0, n− d1 ≤ t, t ≤ n

resp :
clock(ts(n)) | delay(d1, d2) | resp1(id(b)) | server(id(s)) |

| net(s, b, enc(sk(b, s), 〈r(1), id(b), sk(k), ts(t), ts(st)〉))
−→

clock(ts(n)) | delay(d1, d2) | server(id(s)) | resp2(id(b), 〈id(a), sk(k), ts(n), ts(st)〉)
: a > 0, b > 0, n− d2 ≤ t, t ≤ n

Fig. 1. Wide-Mouth Frog: core protocol rules

updated time-stamp T2. The message is encrypted with the key KBS shared
between B and the server. On receipt of a message the server and the responder
have to check the validity of the time-stamps.
This protocol should ensure timed-authentication, i.e., the responder should au-
thenticate a message coming from the initiator with a delay not greater than
the (estimated a priori) network delay. In this protocol messages sent by and
received from the server have the same structure. In [1] Anderson and Needham
have discovered an interesting type of attacks due to this property (see also Sec-
tion 5). Specifically, if Trudy repeatedly replays messages sent by the server, the
server will maintain the time-stamp in the replayed message up-to-date. This
way, Trudy can enforce an arbitrary delay between the time A starts the pro-
tocol and the time B receives the key, thus violating timed authentication. This
attack can be prevented by distinguishing the two messages used in the protocol,
e.g., by inserting an extra field 0/1.

2.3 Formal Specification of WMF

To specify all these aspects in a rigorous way, we specify the protocol in as in
Fig. 1. In our model, at a given instant time t, the initiator a creates a new key



Automatic Verification of Time Sensitive Cryptographic Protocols 347

k (rule createkey) and (non-deterministically) selects a server s and a partner
b. Then, a starts the protocol (rule init) by sending the message containing the
tag r(0), b, k, a time-stamp, and the message creation time (they coincide with
the current time). The message is encrypted with the secret key shared between
a and s represented as sk(a, s). The rules createkey and init are executed
within the same instant. This is achieved by storing the current time in the
initiator knowledge in the former rule and by using it as a precondition in the
latter. This example gives us an example of independence between state- and
time-transitions in MSR(L): we can either specify several transitions within the
same instant or introduce fixed/arbitrary delays within a given state transition.
In rule server the server checks if the time-stamp is recent and then forwards
the message (tagged with r(1)) to b. This test is modelled in a natural way by
using the constraints n− d1 ≤ t, t ≤ n, where d1 represents a parametric delay;
parameters are stored in the atomic formula delay(d1, d2) as part of the initial
configuration. In rule resp b performs a similar validity test for the time-stamp.
Note that the actual creation time of the key is always copied from one message
to the other. Every honest principal is allowed to play the role of both initiator
and responder and to run several role instances in parallel.
In this protocol the responder should authenticate a message coming from the
initiator with a delay of at most d1 + d2 time units (timed-authentication). Our
goal is to show that timed-authentication holds for any d1, d2 ≥ 0.

3 Verification via Symbolic Exploration

In order to define a symbolic representation of sets of configurations of multiple
parallel protocol sessions we proceed in two steps. Following [6], we first introduce
a special term constructor sup(t) that can be used to finitely represent all terms
containing t as a subterm. Then, we incorporate the resulting extended terms in
a symbolic representation of collections of protocol sessions.

3.1 Symbolic Data Structure

The set of extended terms over the variables V and the signature Σ is built by
induction as follows: constants in Σ and variables in V are extended terms; if t
is an extended term, sup(t) is an extended term; if t is a list of extended terms
and f is in Σ then f(t) is an extended term. Given a ground extended term t,
its denotation is defined by induction as follows:

[[c]] = {c} if c is a constant;
[[sup(t)]] = {s | s is a ground term, t occurs in s};
[[f(t1, . . . , tn)]] = {f(s1, . . . , sn) | s1 ∈ [[t1]], . . . , sn ∈ [[tn]]}.

A symbolic configuration is defined then as a formula p1(t1) | . . . | pn(tn) : ϕ,
where p1, . . . , pn are predicate symbols, ti is a tuple of extended terms for any
i : 1, . . . n, and the satisfiable constraint ϕ is such that Fv(ϕ) ⊆ Fv(t1, . . . , tn).
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In the rest of the paper we will use M,N, . . . to indicate symbolic configurations.
The ground denotation of M .= A1 | . . . | An : ϕ is defined as follows:

[[M ]] = { B1 | . . . | Bn s.t. ∃ σ grounding for A1 | . . . | An

Bi ∈ [[Aiσ]], i : 1, . . . , n, and σ|Fv(ϕ) ∈ Sol(ϕ) }
This definition is extended to sets of symbolic configurations in the natural way.
Finally, in order to reason about configurations consisting of an arbitrary number
of parallel protocol sessions, we define the upward closed denotation of a set of
symbolic configurations as follows

〈〈S〉〉 = {N | there exists M ∈ [[S]] s.t. M is contained in N}

This extended semantics is particularly useful for locally representing violations
to properties like secrecy, where, independently from the number of sessions and
principals, disclosed secrets are shared between the intruder and a finite number
of agents. The use of extended terms gives us a further level of parameterization,
e.g., we can locally require that a piece of data occurs at some depth inside a
message. As an example the upward closed denotation of the singleton with

p(ts(x)) | r(ts(y), sup(f(ts(z), sup(ts(x))))) : x > y, y > z

contains all configurations p(ts(v1)) | r(ts(v2),T1[f(ts(v3),T2[ts(v1)])]) ⊕ Q
for some v1 > v2 > v3, two ground terms with a hole T1[·] and T2[·], and some
configuration Q.
The previous semantics is well-suited for a backward analysis of a protocol model
in which we do not impose restrictions on the number of parallel sessions, range
of time-stamps and generated nonces.

3.2 Symbolic Operations

Contrary to ordinary unification, given two extended terms t and t′ the ex-
tended unification algorithm of [6] computes the set of maximal general unifiers
max.g.u.(t, t′). The interesting case in the extension of the unification algorithm
occurs when a term like sup(t) must be unified with t′: we have to search for
a subterm of t′ that can be unified with t. E.g. x �→ sup(a) is a max.g.u. for
g(sup(a)) and sup(g(x)). We can avoid bindings between integer variables and
terms by restricting the unification algorithm in such a way that it cannot de-
scend the term structure of casting terms like ts(·). E.g., σ = {x �→ a} is a
max.g.u. for sup(a) and ts(x) only if ts is not a casting symbol. If ts is a casting
symbol, we are forced to unify a with ts(x) (we cannot select other subterms),
and, thus, unification fails. When combined with constraint satisfiability and
simplification, the previous operations can be used to extend the unification
algorithm to symbolic configurations (i.e. multisets of atomic formulas defined
over extended terms annotated with constraints). Specifically, we call the pair
〈σ, γ〉 a maximal constrained unifier m.c.u. for M : ϕ and N : ψ, whenever
σ ∈ max.g.u.(M,N), and, assuming that σ′ is the maximal sub-constraint of σ
involving only integer variables, γ ≡ ϕ,ψ, σ′ is satisfiable.



Automatic Verification of Time Sensitive Cryptographic Protocols 349

Let L be a global variable, initially = ∅
subst(x, t, t) if x is a variable and (x �→ t) ∈ L;

subst(x, t, t) if x is a variable and � ∃s. (x �→ s) ∈ L; (x �→ t) is added to L

subst(a, a, a) if a is a constant;

subst(sup(t), sup(s), sup(s′)) if subst(sup(t), s, s′);

subst(sup(t), s, sup(s′′)) if subst(t, s′, s′′) for some subterm s′ of s;

subst(f(t1, . . . , tn), f(t′1, . . . , t′n), f(s1, . . . , sn)) if subst(t1, t′1, s1), . . . , subst(tn, t′n, sn).

Fig. 2. Subsumption relation over symbolic configurations and extended terms.

Similarly to unification we can define a subsumption relation subst over ex-
tended terms such that subst(t, t′) implies [[t′]] ⊆ [[t]]. The algorithm is described
in Fig. 2. Actually, we use a ternary relation subst(t, t′, s) that also computes
a witness extended term s that is built by taking the extended subterms of t′
that are needed to establish subsumption. When combined with constraint en-
tailment, extended term subsumption allows us to define a comparison relation
� between symbolic configurations such that M � N implies 〈〈N〉〉 ⊆ 〈〈M〉〉. The
procedure for testing M � N is defined as follows:

(M : ϕ) 
 (N : ψ) iff






subst(M′,N ,S) for some M′ = M ⊕ Q for some Q,
σ = m.g.u.(M′,S), σ′ = σ|Vi

,
∃x. (ψ, σ′) entails ϕ, where x = Fv(ψ, σ′) \ Fv(Sσ)

Intuitively, we first select a submultiset M′ of M that is subsumed by N with
witness S. Then, we unify S with M′ (using ordinary term unification consider-
ing the symbol sup as any other symbol in Σ) in order to have formulas defined
over the same set of variables (variables in N but not in S are projected away us-
ing existential quantification). Finally, we check entailment of the corresponding
constraints.

Example 1. Consider the following symbolic configurations:

M1 = p(ts(x)) | r(ts(y), sup(f(ts(z), sup(ts(x))))) : x > y, y > z
M2 = p(ts(u)) | r(ts(v), f(ts(w), h(g(ts(u))) | p(ts(m)) : u > v, v > w,w > m

Given σ = {u �→ x, v �→ y, w �→ z} and γ ≡ x > y, y > z, x = u, y = v, z = w,
〈σ, γ〉 is an m.c.u for M1 and the submultiset obtained by removing p(ts(m))
fromM2. Furthermore, by applying the definition, we have that subst(M1,M2, S)
holds with witness S = p(ts(u)) | r(ts(v), sup(f(ts(w), sup(ts(u))))). The
most general unifier (using ordinary first order unification) for S and M1 is
θ = {x �→ u, y �→ v, z �→ w}. Thus, since ∃u, v, w,m.u > v, v > w,w > m, x =
u, y = v, z = w is equivalent to x > y, y > z, it follows that M1 � M2.

3.3 Symbolic Predecessor Operator

Let S be a set of symbolic configurations with distinct variables each other. Sym-
bolic backward exploration is based on the pre-image operator PreR defined over



350 G. Delzanno and P. Ganty

a rule R, and to its natural extension PreR to a set R of rules. These opera-
tors take into account the upward closed semantics of symbolic configurations
by applying rewriting rules as follows: submultisets of symbolic configurations
are matched against submultisets of right-hand side of rules (we reason modulo
any possible context). Namely, given R = α : A −→ B : ψ, the operator PreR

is defined as follows

PreR(S) =





Aσ ⊕Qσ : ξ

∣
∣
∣
∣
∣
∣

∃ (M : ϕ) in S, M = M ′ ⊕Q, B = B′ ⊕ D
s.t. 〈σ, γ〉 is an m.c.u. for M ′ : ϕ and B′ : ψ
ξ ≡ ∃x.γ where x = Fv(γ) \ Fv(Aσ ⊕Qσ)






The following property holds.

Proposition 1. Let R be a set of MSR(L) rules and S a set of symbolic con-
figurations, then 〈〈PreR(S)〉〉 = PreR(〈〈S〉〉).

3.4 Symbolic Backward Reachability Graph

Let U be a set of symbolic configurations. Our symbolic operations can be used
to build a symbolic backward reachability graph G = 〈N,E〉 as follows. The set of
nodes N is initially set to U. At each step, for any M ∈ N and Q ∈ PreR({M})
if there exists a visited symbolic configurations O ∈ N such that O � Q, then
we discharge Q and add an edge O � M to E. If there are no visited symbolic
configurations that subsumes Q (i.e. Q brings new information), then Q is added
to the set of nodes N, and an edge Q�M is added to the graph. If PreR({M})
is empty, then the node M has no incoming edges. Also note that if M � N ,
then there exists R such that either M = PreR({N}) or M � PreR({N}).

4 Verification of Secrecy and Authentication

Violations of secrecy properties can often be generated by only looking at one
honest principal and at part of the knowledge of Trudy, they are denoted by
(according to the upward closed semantics) of symbolic configurations like

mem(secret) | r(id(a), 〈. . . , secret, . . .〉) : true

Under this assumption, the following property holds.

Theorem 1 (Secrecy). Let S be an MSR(L) protocol and attacker specifica-
tion, and U be the set of symbolic configurations representing violations to a
secrecy property. If the symbolic backward reachability terminates when invoked
on S and U, and the set N of nodes of the resulting graph does not contain initial
configurations, then the protocol is not subject to secrecy attacks. The property
holds for any number of nonces, principals, and parallel sessions.

Since we work on a concrete protocol model and a symbolic semantics without
approximations (unless we apply widening operators during search), our pro-
cedure with an on-the-fly check for the initial configurations can be also used
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for falsification, i.e, to extract finite-length symbolic trajectories that represent
attacks.

Let us now consider authentication properties. In this section we will focus our
attention on (non-injective) agreement [12]. A protocol guarantees non-injective
agreement, e.g., for a responder B and for certain data d (e.g. keys/nonces), if
each time the principal B completes a run of the protocol as a responder using
data d, apparently with A, then there exists a run of the protocol with the prin-
cipal A as an initiator with data d, apparently with B. Agreement requires a
one-to-one correspondence between the runs of A and those of B. It can proved
after proving non-injective agreement if freshness of part of the data in d ensures
that there cannot be two different sessions with the same data.

Violations of agreement properties cannot be represented as upward closed sets
of configurations. They are sets of bad traces. However, we can still exploit our
symbolic search by using the following idea. We first define the two symbolic
configurations

MI
.= ri(id(a), 〈. . . , id(b), . . .〉) : ϕ MR

.= r′
f (id(b), 〈. . . , id(a), . . .〉) : ψ

MI represents all configurations containing at least the initial state of the ini-
tiator a in a session, apparently with b, and MR represents all configurations
containing at least the final state of the responder b in a session, apparently with
a. We select two generic values a and b for the identifiers of Alice and Bob, and
generic nonces and keys for the data we want to observe (we will show how this
can be done in practice in Section 5). Data may appear in MI and MR; ϕ and
ψ can be used to define constraints over them. Our verification method is based
then on the following property (formulated for the responder).

Theorem 2 (Non-injective agreement ). Let S be an MSR(L) protocol
and attacker specification, MI and MR be as described before. Suppose that
the symbolic backward search terminates when invoked on U = {MR} and S.
Then, if for every path M0 � . . .�Mk �MR in the resulting graph going from
an initial (symbolic) configuration M0 to MR, there exists i such that MI � Mi,
then non-injective agreement property holds for any number of parallel sessions,
principals, and nonces.

The previous property can be verified by checking that every acyclic path π going
from an initial symbolic configuration to MR contains at least a node Nπ such
that MI � Nπ. Being formulated over a time sensitive specification logic, the
previous properties can be used to verify time-dependent secrecy and authenti-
cation properties. In other words, we reason about time inside our specification
logic. We will illustrate this point in Section 5.

Symbolic configurations can be used in other interesting ways. As an example, we
might be interested in checking whether a key k stored in the state ri of a princi-
pal will or will not be used to encrypt messages. This property can be used to for-
mally justify the use of specialized theories for the intruder. We can then search
for traces leading to net(a, b, sup(enc(sk(k),msg))) | rj(x, sup(sk(k))) : true
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Prop Model Description Seed Steps Time True
P1 CoreWMF Generated keys are never used U1 6 260s Yes
P2 CoreWMF Nested encryption is never used U2 1 0.1s Yes
P3 WMF+Trudy Non-injective agreement U3 6 24s Yes
P4 WMF+Trudy Non-injective timed agreement U4 7 41s Yes
P5 WMF+Trudy Uniqueness of gen. keys (init.) U5 2 0.4s Yes
P6 WMF+Trudy Uniqueness of gen. keys (resp.) U6 11 3093s No
P7 OrigWMF+Trudy Non-injective timed agreement U4 11 88s No

Fig. 3. List of properties, and results of the analysis: Seeds are described in Fig. 4.

for some j ≥ i. Furthermore, following [6], when dealing with attacker theories in
which we allow arbitrary use of rules like decryption with Trudy’s key it is often
possible to apply dynamic widening operators that approximate sets of terms
like enc(sk(0), . . . , enc(sk(0),msg) . . .) with enc(sk(0), sup(msg)). This kind of
accelerations may return overapproximations.

5 Detailed Analysis of Wide Mouth Frog

In Fig. 3 we show the list of properties of WMF we have checked using our
method. The seed Ui of symbolic exploration id described in Fig. 4, Steps de-
notes the number of iterations before reaching a fixpoint/error trace, Time de-
notes the execution time. The initial configurations of the WMF model of Fig. 1
are those containing (any number of) initial states of honest principals, servers,
and auxiliary information like fresh and delay. The first two properties are re-
lated to the structure of the core protocol rules (without attacker): generated
keys are never used to encrypt messages, and nested encryption is never used.
We proved these two properties automatically by checking that the set of states
described by the violations U1 and U2 are never reached via the core protocol
rules. This preliminary step allows us to consider the simplified attacker theory
defined in Fig. 5: we do not need rules to handle nested encryption, we assume
that Trudy only uses the key she shared with the server, and that Trudy never
learns new keys. This is the theory typically used for the analysis of WMF [9,
13]. In our protocol the data exchanged by the honest principals are typed by
casting symbols. Thus, the intruder has only to deal with messages of the shape
enc(sk(a, b), 〈m1, . . . ,mn〉) where mi is built using one of sk, id, ts, r. Among
the typical attacker’s capabilities like interception and duplication, we add the
capability of guessing any time-stamp. This can be refined depending on the
assumption taken on the intruder (e.g. guess only in the past, etc.).
Our next task is to prove timed non-injective agreement, i.e., non injective agree-
ment within the maximal allowed delay of d1 + d2 time units for any value of
the parameters d1 and d2. To prove this property, we first check non-injective
agreement forgetting about time (property P3), and then prove that there can-
not be violations of the time-conditions (property P4). We prove automatically
P3 starting symbolic search from the seed U3 of Fig. 3. The atomic formula
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Seed Symbolic configurations

U1
init2(x1, 〈x2, sk(k), x3, x4〉) | net(x5, x6, sup(enc(sk(k, x7), x8))) : true,
init2(x1, 〈x2, sk(k), x3, x4〉) | net(x5, x6, sup(enc(sk(x7, k), x8))) : true

U2 net(x1, x2, sup(enc(x3, sup(enc(x4, x5))))) : true

U3
par(id(a), id(b), sk(k)) | resp2(id(b), 〈id(a), sk(k), ts(e), ts(s)〉) |

| delay(ts(d1), ts(d2)) : e, s, d1, d2 ≥ 0

U4
par(id(a), id(b), sk(k)) | resp2(id(b), 〈id(a), sk(k), ts(e), ts(s)〉) |

| delay(ts(d1), ts(d2)) : e > s+ d1 + d2

U5 init2(x, sup(sk(k))) | init2(y, sup(sk(k))) : true
U6 resp2(id(a), sup(sk(k))) | resp2(id(b), sup(sk(k))) : true

Fig. 4. Violations/seed of symbolic exploration.

par(id(a), id(b), sk(k)) is used here to make the analysis parametric on princi-
pals id’s (a, b, k are all variables). In the resulting fixpoint we detect only a single
initial configuration. Furthermore, all paths going to the seed configuration pass
through a symbolic configuration containing

init2(id(a), 〈id(b), id(s), sk(k), ts(t)〉) | par(id(a), id(b), sk(k))
that represents the state of the initiator right after the creation of the key. The
binding of variables a, b, and k with the parameters par(id(a), id(b), sk(k)) main-
tains the proof independent from specific identifiers and keys.
In order to check property P4, we start our search from the violations specified
by means of U4 (the responder terminates its part of the protocol outside the
window s + d1 + d2). In the resulting fixpoint there are no initial (symbolic)
configurations. Thus, there exist no path reaching the previously described vi-
olations. This proves non-injective timed-agreement for any number of parallel
protocol sessions and principals, and values of d1 and d2.
To check agreement, we still have to check that there is a one-to-one correspon-
dence between runs of responder and initiator. We first check if different initiators
can share the same secret key. When invoked on the seed U5 of Fig. 3, the pro-
cedure stops without detecting error traces. Then, we try to check whether the
responder can receive multiple copies of the same key by selecting the violations
U6 of Fig. 3. Our procedure returns the following counterexample trace: Alice
creates a key, starts the protocol, the server forwards the message, Trudy inter-
cepts it, Bob receives the message, Trudy forges a copy, Bob accepts the second
copy. Thus, the protocol still suffers from possible replay attacks. As suggested
by Lowe in [12], this flaw can be corrected by adding an handshaking part at
the end the protocol in which the principals exchange a nonce encrypted with
the shared key.
Finally, in order to compare the use of our method for falsification with [9,13], we
have considered a model (called OrigWMF in Fig 3) in which we have removed
the tags distinguishing the two messages, thus going back to the original WMF
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remove : net(x, y,m) −→ ε : true

intercept : net(x, y,m) −→ mem(m) : true

fresh : fresh(sk(x)) −→ fresh(sk(y)) | mem(sk(n)) : y > n, n > x

guess : ε −→ mem(ts(t)) : t ≥ 0

replay : net(x, y,m) −→ net(y, x,m) : true

dup : mem(m) −→ mem(m) | mem(m) : true

forge : mem(m) −→ net(id(a), id(b),m) : a ≥ 0, b ≥ 0

dec : mem(enc(sk(0, s), 〈f1(m1), . . . , fn(mn)〉)) −→
mem(f1(m1)) | . . . | mem(fn(mn)) : s ≥ 0

comp : mem(f1(m1)) | . . . | mem(fn(mn)) −→
mem(enc(sk(0, s), 〈f1(m1), . . . , fn(mn)〉)) : s ≥ 0

where fi ∈ {sk/1, id/1, ts/1, r/1} for i : 1, . . . , n, n ≤ 5

Fig. 5. Restricted theory of the intruder.

protocol. In this model we impose that server, initiator, and responder have dif-
ferent identifiers by adding constraints like s > a, a > b in the core protocol
rules, and we set d1 = d2. Starting from the violation U4, we have automati-
cally computed the following error trace: Alice sends M to the Server, the Server
forwards M to Bob, time advances, Trudy impersonates Bob and replays M, the
Server forwards M to Alice, time advances, Trudy impersonate Alice and replays
M, the Server forwards M to Bob, time advances, Bob receives M. This trace
falls in the class of attacks discovered by [1].

6 Related Work

The use of constraint programming combined with symbolic exploration over
unbounded models distinguishes our approach from other methods based on
theorem proving or model checking used for the analysis of protocols with time-
stamps like [2,8,9,13]. In [9] Evans and Schneider perform a semi-automated
analysis of a CSP model (with event-based time) of WMF. PVS is used to dis-
charge proof obligations needed to find an invariant property (a rank function
according to Schneider’s verification method). During this process the attack
with parametric validity period arises in form of a contradiction to the proof
of an obligation. In [13] Lowe applies finite-state model checking to find the
timed-authentication attack on finite protocol instances (an initiator, a respon-
der, and a server), discrete time, fixed values for the validity period (namely
d1 = d2 = 1) and with an upper bound on the time window observed during
the state exploration. Differently from [9,13], our method can be used for both
automatic verification and falsification in presence of parallel multiple sessions,
without need of upper bounds on the time window considered during execution,
and with parametric delays.
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Time-stamps can be handled by the TAPS verifier [8]. The TAPS verifier gener-
ates state-dependent invariants from a protocol model. The first order theorem
prover SPASS is used then to discharge the proof obligations produced by a
proof system used to simplify the invariants according to the capability of the
intruder. While TAPS is very fast and effective, it does not always produce read-
able counterexamples, an advantage of symbolic exploration methods like ours.
The uniform treatment of time-stamps and fresh name generation via constraint
programming also distinguishes our method from other symbolic methods like
NRLPA [16], Athena [19], and the methods of Blanchet [4], Bozga, Lakhnech and
Périn [6], and Genet and Klay [10]. Furthermore, our use of the sup operator
differs from [6]. In [6] sup is used to build a widening operator for computing
secrecy invariants for abstract protocol models. On the contrary, our use of sup
is within a symbolic representation of infinite collection of configurations of con-
crete protocol specifications. When terminating, our procedure returns accurate
results that are useful for obtaining error traces. Widening operators similar to
that of [6] can be included in our setting and applied to compute conservative
approximations.
Our symbolic exploration method is complementary to approached based on
model checking where abstractions or data independence techniques are used to
extract a finite model from the original specification [13,15,18].
Finally, differently from constraint-based approaches used foruntimed falsifica-
tion of bounded number of protocol sessions [17], where ad hoc constraints relate
a message expected by a principal to the current intruder knowledge, we use con-
straints for designing a symbolic verification method.

7 Conclusions

In this paper we have studied the applicability of symbolic exploration for the
automatic verification of time sensitive cryptographic protocols. Our verification
method is based on the combination of constraint solving technology and first
order term manipulation. This combination provides a uniform framework for
the specification of an arbitrary number of protocol sessions with fresh name
generation and time-stamps.
In this paper we have described the main ideas behind this technology and
discussed the analysis of the Wide Mouth Frog protocol. We have performed
several other experiments on timed and untimed models (e.g. secrecy and agree-
ment properties for Lowe’s fix to the Needham-Schroeder public key protocol).
The prototype procedure and the experimental results (with execution times)
we obtained so far are available on the web page [20].
The verification approach presented in this paper can be coupled with a symbolic
forward exploration method for a fixed number of sessions suitable to discover
potential attacks (see [20]). Forward exploration often finds attacks faster than
backward exploration. Currently, we are studying an extension of forward explo-
ration with the lazy intruder technique of [17] to cope with MSR(L) specification
and unrestricted attacker models.
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