
Analyzing Real-Time Event-Driven Programs�

Pierre Ganty1,2 and Rupak Majumdar2

1 CS Department, University of California, Los Angeles, CA, USA
{pganty,rupak}@cs.ucla.edu

2 IMDEA Software, Spain

Abstract. Embedded real-time systems are typically programmed in
low-level languages which provide support for event-driven task process-
ing and real-time interrupts. We show that the model checking problem
for real-time event-driven Boolean programs for safety properties is un-
decidable. In contrast, the model checking problem is decidable for lan-
guages such as Giotto which statically limit the creation of tasks. This
gives a technical reason (static analyzability) to prefer higher-level pro-
gramming models for real-time programming, in addition to the usual
readability and maintainability arguments.

1 Introduction

Real-time event-driven software is the basis of many safety-critical systems, rang-
ing from automotive and avionics control units to large scale supervisory control
and data acquisition (SCADA) systems. These systems are often programmed
in low-level imperative programming languages which offer the programmer an
access to a real-time clock and an interface for posting and executing tasks based
on external or internal events. The basic programming model is as follows. The
program is written as a set P of procedures called handlers that share a finite
global state. In addition to core imperative language constructs, there is a state-
ment future. The future statement takes a pair (p, t) (called an asynchronous
call) in argument, where p ∈ P is a handler, and t ≥ 0 is an integer time step.
Intuitively, future (p, t) schedules, or posts, the task implemented by the handler
p to be executed t time steps from now. The posted asynchronous calls are stored
in a (timed) task buffer for later execution. Each element in the task buffer is
a pair (p, t), where p is a handler, and t is the remaining number of time steps
in the future when p should be executed. Each such call in the buffer is called a
pending call.

Execution of the program is controlled by the ticks of a logical clock. Each
task is assumed to execute in logical zero time. Initially, the task buffer contains
exactly one pending call: (main, 0). In each time step, a scheduler picks and
removes an arbitrary pending call (p, 0) (if one exists) from the task buffer
and executes the code p to completion, in logical zero time. Below we call this

� This research was sponsored by the NSF grants CCF-0546170, CCF-0702743, and
CNS-0720881.

J. Quaknine and F. Vaandrager (Eds.): FORMATS 2009, LNCS 5813, pp. 164–178, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Analyzing Real-Time Event-Driven Programs 165

operation a dispatch. The execution of a handler can cause new asynchronous
calls to be posted to the task buffer (through the execution of future statements
in the code). If there is no pending call of the form (p, 0) in the task buffer,
time advances by one tick. This causes every (p, t) pair in the task buffer to be
replaced by (p, t − 1), and the scheduler runs again.

The future construct is a powerful mechanism to express event-driven and
time-triggered actions in an embedded system, and this style of programming
has been used to implement sophisticated real-time control systems such as au-
tonomous helicopter flight control [7]. However, writing correct real-time event-
driven programs is hard, as the control flow of the program is obscured by the
loose coupling between the handlers provided by future. Therefore, it would be
useful to provide algorithmic tools to check for correctness properties of these
programs. For non-real time event-driven programs, in which every asynchronous
call is of the form future (p, 0) for some p ∈ P , checking safety and liveness prop-
erties is indeed decidable [12,8,3], essentially by reduction to Petri nets. In fact,
the safety verification problem is decidable for more general models, such as
event-driven programs where handlers can be recursive and in which handlers
have priorities [2]. The decidability results are non-trivial as the programs are
not finite-state: the task buffer as well as the call stack can grow unboundedly
large in the course of the execution.

We show in this paper that checking safety properties for real-time event-
driven programs is undecidable. We work in the simplified setting where (1) each
future statement is either future (p, 0), scheduling the handler p to be executed
in this time step, or future (p, 1), scheduling the handler p to be executed one
time step from now and (2) we do not allow recursion. This simplified setting is
powerful enough to show undecidability.

Our undecidability proof for the safety checking problem uses a careful encod-
ing of the execution of a 2-counter machine [10] as a real-time event-driven pro-
gram. Intuitively, there are two handlers h1 and h2 for the two counters c1 and
c2, and the value of counter c1 (resp. c2) is maintained by the number of pending
calls (h1, 0) (resp. (h2, 0)). Increment and decrement of counter ci can be respec-
tively simulated by posting and dispatching (hi, 0) for i = 1, 2. The problem is in
simulating zero tests. This is not possible in the non real-time case.

The technical part of our proof is to use the ability to “postpone” tasks to
the next time step to simulate zero tests. In order to simulate a zero test for
ci, we guess the outcome of the test. If ci is guessed to be zero, then the state
of the machine (its control location as well as the value of the other counter)
is copied to the next time step (i.e., dispatching the pending call (hi, 0) posts
(hi, 1)). However, if during this process, a pending call (hi, 0) is found, then the
guess is incorrect, and the current branch of the simulation “dies” by setting an
error bit.

Additional book-keeping is performed to separate machine simulation steps
from checking steps. Overall, the effect is that each run of the 2-counter machine
can be simulated by a run of the real-time event-driven program (where in each
time step, the program simulates machine instructions up to the next zero test

166 P. Ganty and R. Majumdar

guessed positive), and conversely, any run of the real-time event-driven program
which does not set the error bit corresponds to a run of the 2-counter machine.

While our result is negative, we consider a more positive interpretation. The
E-machine was proposed in [6] as a low-level virtual machine with a clean logical
model for real-time programming. It is intended as a target language for a real-
time compiler, and direct programming at the E-machine level was discouraged.
Instead, they proposed the use of higher-level languages such as Giotto [5] or
xGiotto [4] to write code at the programmer level. (More recently, languages like
Virgil [13] has been proposed with similar intent.) By restricting the ability to
post tasks arbitrarily, these higher-level languages ensure that for any Giotto or
xGiotto program, at any point of the execution, there is at most a bounded, stat-
ically determined, number of pending calls. In this case, just by finiteness of the
state space, all verification problems are decidable. Our result can be interpreted
as an argument for using higher-level programming languages: programs writ-
ten in the higher-level languages can come with tool support for precise model
checking, programs written in lower-level languages can not.

2 The Computational Models

We start with some preliminary definitions. Let Σ be a finite and non-empty set. A
multiset M : Σ �→ N over Σ is a function that maps each symbol of Σ to a natural
value (N denotes the set of all natural numbers). Let us denote by M[Σ] the set of
all multisets overΣ. Given two multisets M, M ′ ∈ M[Σ] we define M⊕M ′ ∈ M[Σ]
to be multiset such that ∀a ∈ Σ : (M ⊕ M ′)(a) = M(a) + M ′(a). We sometimes
use the following notation for multisets M = �q1, (q2)c, q3� (where c ∈ N) for the
multiset M ∈ M[{q1, q2, q3, q4}] such that M(q1) = 1, M(q2) = c, M(q3) = 1,
and M(q4) = 0. Also as for sets we use the symbol ∅ to denote an empty multiset.
We now define a formal model for real-time event-driven programs.

2.1 Programming Model

We represent imperative programs using a generalization of control flow graphs
[1], that includes special edges corresponding to asynchronous calls. Let P be a
finite set of procedure names (or handler) and X a finite set of Boolean variables.
An asynchronous control flow graph (ACFG) Gp for a procedure p ∈ P is a pair
(Vp, Ep) where Vp is the set of control nodes of the procedure p, including a
unique start node vs

p and a unique exit node ve
p, and Ep is a set of directed edges

between the control nodes Vp. The edges in Ep are partitioned as follows:

– the operation edges corresponding to an assignment of variables in X , or a
conditional predicate over X ;

– the post edges to a procedure q ∈ P labelled by a statement future (q, 0) or
future (q, 1).

A program G�� comprises a set of pairwise disjoint ACFGs Gp for each proce-
dure in p ∈ P . The control nodes of G�� are given by V �� =

⋃
p∈P Vp: the union

Analyzing Real-Time Event-Driven Programs 167

of the control nodes of the individual procedures. The edges of G�� are given by
E�� =

⋃
p∈P Ep, the union of the edges of the individual procedures. A real-time

asynchronous program, or RTAP for short, A = (P, X, G��, main) consists of a
set of procedure names P , a set of variables X , a program G��, and an initial
procedure main ∈ P that is not referenced by any post edge.

Semantics. Fix a RTAP A = (P, X, G��, main). A valuation is a mapping that
associates a Boolean value to each variable in X . For each operation edge
(v, v′), we assume a binary update relation Up(v,v′) on valuations such that
(d, d′) ∈ Up(v,v′) if d′ is the valuation obtained by executing the operation on
edge (v, v′). This is defined in the usual way (see, e.g., [11]) for assignments
(which updates the valuation to the assigned variable) and conditionals (which
ensures the conditional is true at d and d′ = d).

We now define the abstract semantics of A. The abstract semantics of A is
given by a transition system where each state ((v, d), M1, M2) consists in: the
abstract state (v, d) given by a control node v ∈ V �� and a valuation d of X ; and
two multisets M1, M2 ∈ M[P \ {main}] called the multisets of current and next
pending calls that stores pending calls of the form (p, 0) and (p, 1), respectively.

The initial state is ((vs
main, d0), ∅, ∅) in which the multisets of pending calls are

empty and the abstract state (vs
main, d0) consists in the starting node of the main

procedure together with an initial valuation of the program’s Boolean variables.
The transitions are defined as follows.

Internal operation. There is a transition from a state ((v, d), M1, M2) to the
state ((v′, d′), M1, M2) if there is an operation edge (v, v′) and (d, d′) ∈ Up(v,v′).

Asynchronous call. There is a transition from ((v, d), M1, M2) to ((v′, d), M1⊕
�q�, M2) (resp. ((v′, d), M1, M2 ⊕ �q�)) if there is a post edge (v, v′) la-
beled future (q, 0) (resp. labeled future (q, 1)). There is a transition from
((ve

main, d), M1 ⊕ �q�, M2) to ((vs
q , d), M1, M2) which we refer to as a dispatch.

Also, there is a transition from ((ve
q , d), M1, M2) to ((ve

main, d), M1, M2) provided
q ∈ P \ {main}.
Time transition. There is a transition from ((ve

main, d), ∅, M2) to
((ve

main, d), M2, ∅).
We now give some intuition about the control node ve

main which plays a special
role in the above semantics. If the current state is such that the control node
is ve

main (i.e., ((ve
main, d), M1, M2) for some multisets M1, M2 and valuation d),

then a pending call from M1, if any, is dispatched. Otherwise, if M1 is empty,
we go to the next time step (following a time transition). After firing the time
transition the multiset of current pending calls is now given by M2. Thus ve

main

models a special “dispatch loop”. Our programming model and semantics is a
generalization (with timed asynchronous calls) of the asynchronous programs
studied in [12,8].

A run in the transition system of a RTAP is a finite path in the transition
system that starts with the initial state. A state s is reachable in a RTAP if there
exists a run whose last state is s.

168 P. Ganty and R. Majumdar

Abstract state reachability. Given a RTAP A = (P, X, G��, main) and an
abstract state (v, d) of A, the abstract state reachability problem asks if there
exists two multisets M1, M2 ∈ M[P \{main}] such that the state ((v, d), M1, M2)
is reachable in A. If so we say the abstract state (v, d) is reachable in A.

In this paper, we will show that abstract state reachability is undecidable.
Our proof shows that if we can solve the above problem then we can solve the
reachability problem for two counter machines, a Turing powerful model. The
next section recalls the definition of two counter machines and the associated
reachability problem.

2.2 Two Counter Machines

A 2-counter machine C (2CM for short), is a tuple 〈{c1, c2}, L, Instr〉 where:

– c1, c2 are counters taking values in N;
– L = {l1, . . . , lu} is a finite non-empty set of u locations;
– Instr is a function that labels each location l ∈ L with an instruction that

has one of the following forms:

• l : cj := cj + 1; goto l′ where j ∈ {1, 2} and l′ ∈ L, this is called an
increment, and we define TypeInst(l) = incj ;

• l : cj := cj − 1; goto l′ where j ∈ {1, 2} and l′ ∈ L, this is called a
decrement, and we define TypeInst(l) = decj ;

• l : if cj = 0 then goto l′ else goto l′′ where j ∈ {1, 2} and l′, l′′ ∈
L, this is called a zero-test, and we define TypeInst(l) = zerotestj ;

Semantics. The instructions have their usual obvious semantics, in particular,
decrement can only be done if the value of the counter is positive.

A configuration of a 2CM 〈{c1, c2}, L, Instr〉 is a tuple 〈loc, n1, n2〉 where loc ∈
L is the value of the program counter and n1, n2 ∈ N give the values of counters
c1 and c2, respectively.

A computation γ of a 2CM 〈{c1, c2}, L, Instr〉 is a finite non-empty sequence of
configurations 〈loc1, n

1
1, n

2
1〉, 〈loc2, n

1
2, n

2
2〉, . . . , 〈locr, n

1
r, n

2
r〉 such that (i) “initial-

ization”: loc1 = l1, n1
1 = 0, and n2

1 = 0, i.e., a computation starts in l1 and the
two counters are set initially to 0; (ii) “consecution”: for each i ∈ {1, . . . , r − 1}
we have that 〈loci+1, n

1
i+1, n

2
i+1〉 is the configuration obtained from 〈loci, n

1
i , n

2
i 〉

by applying instruction Instr(loci).

Control location reachability. Given a 2CM C = 〈{c1, c2}, L, Instr〉 and a
control location l ∈ L, the control location reachability problem asks if there
exists a computation γ whose last configuration is 〈l, n1, n2〉 for some n1, n2 ∈ N.
If so we say that control location l is reachable in C.

Theorem 1 ([10]). The control location reachability problem for 2CM is unde-
cidable.

Analyzing Real-Time Event-Driven Programs 169

global error, timer, Oc1, Oc2, c_1_eq_0, c_2_eq_0, cloc, dest;

main() {

error = false;

timer = off;

Oc1 = Oc2 = false;

c_1_eq_0 = c_2_eq_0 = false;

cloc = dest = l_1;

future (timeron,0);

}

Fig. 1. main(), and Boolean variables declaration

3 The Reduction

We are given an instance of the control location reachability problem: a 2CM C =
〈{c1, c2}, L, Instr〉 and a control location lx ∈ L. We will show the abstract state
reachability for real-time asynchronous programs is undecidable by encoding a
2CM as a real-time asynchronous program.

In what follows, we use a C-like notation to represent RTAP for readability,
and we also use variables that range over a finite set of values instead of only
Booleans. Each piece of handler code can be converted to our formal model using
standard compiler algorithms [1].

Precisely, we reduce the 2CM control location reachability to the following
abstract state reachability on real-time asynchronous program. Let the RTAP
given by the code of Fig. 1–6, is there an abstract state (ve

main, d) where d maps
cloc to lx, error to false that is reachable? Also in the above reachable state,
d maps Oc1, Oc2 c1 eq 0 and c2 eq 0 to false, and timer to on.

The procedures. Besides main, which starts the simulation, the program has
5 procedures: c 1, c 2, machine, timeron, timeroff whose details are given
below.
c 1, c 2: implements operations on counters c 1 and c 2, respectively, as well as
book-keeping to ensure the simulation is valid. The number of pending calls to
each of these procedures reflects the value of the corresponding counter;
machine: simulates the instructions of the counter machine.

The following procedures implement book-keeping operations that ensure the
simulation is valid.
timeron: starts a time step for simulation;
timeroff: terminates a time step, resetting all the “book-keeping” state, and
spawns the next one by posting timeron for the next time step.

The variables
Oc1, Oc2: read Oc1 as “next c 1” (like in the LTL notation). This variable is
such that if Oc1 is true, the next dispatch yields error is set to true unless this
dispatch is c 1(); (same for Oc2)

170 P. Ganty and R. Majumdar

c1 eq 0, c2 eq 0: c1 eq 0 is set to true whenever a zerotest1 has been simulated
and the if branch has been followed (that should happen whenever there are no
pending call to c 1()) (same for c2 eq 0);
error: is set to true whenever the simulation is unfaithful. Once set, error
remains set forever. This forces every subsequent reachable state to be such that
error valuates to true;
timer: it is supposed to be switched from off to on at the beginning of a time
step and from on to off at the end of a time step. A faithful simulation of the
machine occurs while timer is on, and any attempt to simulate the machine
while timer is off results in error being set;
cloc: points to the current location of the 2CM;
dest: is used in some cases to store a location of the 2CM such that if the 2CM
is faithfully simulated cloc will be assigned to that location.

Let us now get more intuition on the behavior of the RTAP given at Fig. 1–
6 by studying a possible execution that is graphically depicted at Fig. 2 and
discussed below.

The diagram gives, for the first time step, the sequence of procedures that are
executed in a valid simulation (the double arrows above the dashed and dotted
line) and for each of those the calls it posts (the dots underneath each running
procedure).

The program starts with the execution of main. It will initialize the variables
and post a call to timeron. So the multiset of current pending calls is �timeron�.
Now timeron gets dispatched and posts a call to machine and timeroff (yield-
ing �machine, timeroff�). Then comes the dispatch of machine which performs
the actual simulation of the 2CM. First instruction increments counter 1. The
dispatch of machine posts a call to c 1 (to simulate the actual increment) and
repost itself to continue the simulation (�machine, timeroff, c 1�). Second in-
struction is an increment to c 2 which is simulated by the dispatch of machine
as given above (�machine, timeroff, c 1, c 2�).

The dispatch of c 2 does not modify the state of the RTAP. To do so the
dispatch of c 2 posts one call to c 2.

The next instruction is a decrement of counter 1. The dispatch of machine will
set Oc1 to true (�timeroff, c 1, c 2�). If the next dispatch is not c 1 the variable
error is set; otherwise the dispatch of c 1 simulates the actual decrement. It
also posts machine to resume the simulation (�timeroff, c 2, machine�).

Now follows a dispatch to c 2 that does not modify the state of the RTAP as
described above.

timeron c 2main timeron machine machinemachine c 1 c 2 machine c 2 timeroff

timeron timeroff
machine machine

c 1 c 2

machinec 2 c 2
machine

c 2

inc 1 inc 2 dec 1 zerotest 1/if
dispatch

future (,0)

future (,1)

time

start of time step 0 end of time step 0

Fig. 2. An execution of the RTAP

Analyzing Real-Time Event-Driven Programs 171

timeron () {

if error == true || timer == on || (Oc1||Oc2) == true {

error = true;

return;

}

timer = on;

future (timeroff,0);

future (machine,0);

}

Fig. 3. timeron()

timeroff () {

if error == true || timer == off || (Oc1||Oc2) == true {

error = true;

return;

}

future (timeron,1);

timer=off;

c_1_eq_0=c_2_eq_0=false;

}

Fig. 4. timeroff()

The fourth instruction is a zerotest1. Since counter one equals 0 (we incre-
mented and decremented it starting from value 0) the zero test should follow the
then branch. Doing so in the RTAP, the dispatch of machine will set the variable
c1 eq 0 to true (�timeroff, c 2�).

Hence, the dispatch of c 2 will post a call to c 2 in the next time step. So we
have �timeroff� and �c 2� for the current and next pending calls, respectively.

The dispatch of timeroff will post timeron in the next time step. Now a time
transition takes place. The pending calls in the new time step are now given by
�c 2, timeron�.

4 The Proof of Correctness

First, we start with a series of facts about the program given at Fig. 1–6.

1. error is initialized to false by main(), if it is ever set to true, its value
never changes back to false. Whenever error is set to true, the dispatch of
c 1(), c 2(), machine(), timeron(), timeroff() does not modify the current
valuation and does not post any further call.

2. every current pending call will be dispatched before moving to the next time
step (i.e., before taking a time transition). This fact holds by semantics of
real-time asynchronous programs.

172 P. Ganty and R. Majumdar

c_i () {

if error == true || timer == off || Ocj == true || c_i_eq_0 == true {

error=true;

return;

}

if Oci == true {

Oci = false;

if typeinst(cloc) != dec_i

future (c_i,0);

cloc=dest;

future (machine,0);

}

else if c_j_eq_0 == true

future (c_i,1);

else

future (c_i,0);

}

Fig. 5. c 1() and c 2() where i ∈ {1, 2} and j = (3 − i)

machine() {

if error == true || timer == off || (Oc1||Oc2) == true {

error=true;

return;

}

switch(typeinst(cloc)) {

case inc_i: // instr(cloc) is c_i:=c_i+1 goto l’

future (c_i,0);

cloc=l’;

future (machine,0);

break;

case zerotest_i: // instr(cloc) is if c_i=0 then goto l’ else goto l’’

if (*) { // non deterministic choice

c_i_eq_0=true;

cloc=l’;

} else {

Oci=true;

dest=l’’;

}

break;

case dec_i: // inst(cloc) is c_i:=c_i-1 goto l’

Oci=true;

dest=l’;

break;

}

}

Fig. 6. machine()

Analyzing Real-Time Event-Driven Programs 173

3. timer is modified by timeron() and timeroff() only and is initialized by
main() to off.

4. only timeroff() can switch c1 eq 0 or c2 eq 0 from true to false and only
machine() can switch c1 eq 0 or c2 eq 0 from false to true.

5. in a time step there is at most one post to timeron() and timeroff().

Proof. main(), which is executed only once, posts one call to timeron() in
the same time step. When timeron() is executed, it posts at most one call
to timeroff() in same time step, which whenever executed, posts at most
one call to timeron() in the next time step. Also we have that only main()
and timeroff() post timeron(), only timeron() posts timeroff(). ��

6. in step i > 0 if the first dispatch is not timeron() or the last dispatch is not
timeroff() then error is set to true in i. The exception is time step 0, in
which main() is followed by timeron at the beginning.

Proof. (1) In every time step i > 0, if the first dispatch is different from
timeron() then error is set to true. This is so because the value of timer
is off by Fact 3, main() and induction hypothesis (the last dispatch of step
i− 1 is timeroff()) and the first line of c 1(), c 2(), machine(), timeroff()
which set error to true when timer is off.
(2) In every time step i, if the last dispatch (before the time transition) is
different from timeroff() then error is set to true. This is so because, after
executing timeroff(), the value of timer is off and by the first line of c 1(),
c 2(), machine(), timeroff() we find that error is set to true. For the case
of timeron(), we find that it cannot run after timeroff() in the same time
step because we have shown above in (1) that the first dispatch of every step
is timeron() for otherwise error is set to true. ��

7. the number of pending calls to machine(), at any point in time, is at most
one.

Proof. machine() is posted once by timeron(), by itself, c 1() or c 2(). Fact
5 shows that timeron() posts at most one call to machine(). c 1() (resp.
c 2()) posts machine() whenever Oc1 (resp. Oc2) is true. Whenever Oc1 and
Oc2 are set to true by the dispatch of machine(), it also posts no call to
machine(). ��

8. if Oc1 (resp. Oc2) is true, the next dispatch sets error to true unless this
dispatch is c 1() (resp. c 2()).

Proof. it follows from the conditional of the first line of timeron(),
timeroff(), c 2() (resp. c 1()) and machine(). ��

4.1 Proof

The 2CM reaches the state (lx, n1, n2) iff the associated RTAP A reaches a state
((ve

main, d), M1, M2) where d maps cloc to lx, error to false, and M1, M2 are
such that:

174 P. Ganty and R. Majumdar

– M1(machine) = 1, we are “between” the simulation of two instructions of
2CM,

– M1(c 1) = n1, M1(c 2) = n2, we want counters to coincide with n1, n2.

In our proof, we will consider each instruction in turn and show how the RTAP
simulates it. We will also show that if the RTAP does not faithfully simulate the
2CM then it will set error to true.

Initialization: let 〈l1, 0, 0〉 be the initial state of the 2CM and let
((ve

main, d), M1, M2) be the state of the RTAP after the execution of main() fol-
lowed by timeron(). Fact 6 shows that if the first dispatch immediately after
executing main() is different from timeron() then error is set to true. So the
above state is such that M1 = �machine, timeroff�, M2 = ∅ and d maps error,
timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to false, on, false, false, false, false and
l1, respectively.

Consecution: let 〈lx, n1, n2〉 be a state of the 2CM and ((ve
main, d), M1, M2) a

state of the RTAP where M1 = �machine, timeroff, (c 1)n1 , (c 2)n2�, M2 = ∅
and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to false, on, false,
false, false, false and lx, respectively. This relationship will serve as our induction
hypothesis.

Fact 6 says that if the dispatch of machine() or c 1() or c 2() occurs after the
dispatch of timeroff() then error is set to true. Since error, timer, Oc1, Oc2,
c1 eq 0, c2 eq 0 valuate to false, on, false, false, false, false, respectively, we find
that the dispatch of c 1() or c 2() leaves the state unchanged. As we will see below,
the update of the current state is given by the dispatch of machine(). So, in the
explanations below, machine() is assumed to be the dispatch to take place.

The rest of the proof naturally falls into three parts according to the instruc-
tion at lx:
•TypeInst(lx) = inc1 and is of the form lx : c1 := c1 + 1; goto l′. In that case
the state of the 2CM is updated to 〈l′, n1 + 1, n2〉. In the RTAP, the execution
of machine() goes as follows: the conditional of first line fails and the piece of
code for the inc1 case is executed. The state is updated to ((ve

main, d), M1, M2)
where M1 = �machine, timeroff, (c 1)n1+1, (c 2)n2� (machine() posted c 1()
and itself), M2 = ∅ and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc
to false, on, false, false, false, false and l′ (because cloc is updated), respectively.
(the same holds for inc2)
•TypeInst(lx) = dec1 and is of the form lx : c1 := c1−1; goto l′. First, we assume
that n1 > 0. In that case, the state of the 2CM will be updated to 〈l′, n1 − 1, n2〉.
In the RTAP, the execution of machine() goes as follows: the conditional of the
first line fails and the piece of code for the dec1 case is executed. The valuation is
updated such that Oc1 is set to true and dest is set to l′. A dispatch now takes
place. Fact 8 shows that any dispatch but c 1() yields error to be set to true.
We conclude from n1 > 0, that M1(c 1) > 0, hence that there is a pending call
to c 1(). So the dispatch of c 1() updates the state to ((ve

main, d), M1, M2) where
M1 = �machine, timeroff, (c 1)n1−1, (c 2)n2� (machine() has been posted dur-
ing the dispatch of c 1()), M2 = ∅ and d maps error, timer, Oc1, Oc2, c1 eq 0,
c2 eq 0, cloc to false, on, false, false, false, false and l′ (because cloc has been

Analyzing Real-Time Event-Driven Programs 175

assigned to dest that has been updated to l′ during the dispatch of machine()),
respectively.

Let us now assume that n1 = 0. In that case the instruction is not enabled
and the 2CM is “stuck” in the state 〈lx, n1, n2〉. In the RTAP, the execution of
machine() will set Oc1 to true. Fact 8 shows that any dispatch but c 1() yields
error to be set to true which will happen since n1 = 0, hence M1(c 1) = 0
(there is no pending call to c 1()). (the same holds for dec2)

•TypeInst(lx) = zerotest1 and is of the form lx : c1 =
0 then goto l′ else goto l′′. We consider two cases: n1 = 0 and n1 = 0.

If n1 = 0 then the 2CM updates its state to 〈l′, n1, n2〉.
In the RTAP, the execution of machine() goes as follows: the conditional of

the first line fails and the piece of code for the zerotest1 case is executed.

– the then branch is taken. (this is a faithful simulation). The dispatch of
machine() sets c1 eq 0 to true and sets cloc to l′. We show that a time
transition will eventually take place.
We conclude from n1 = 0, that M1(c 1) = 0, hence, at this point, the state of
the RTAP is of the form ((ve

main, d), M1, M2) where M1 = �timeroff, (c 2)n2�
and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to false, on,
false, true, false, false and l′ (because cloc has been assigned to l′ and
c1 eq 0 has been set to true during the dispatch of machine()). By Fact 6
we find that each pending call to c 2(), if any, should be dispatched before
timeroff() for otherwise error is set to true. The valuation d given above
shows the dispatch of a pending call to c 2 yields the statement future(c 2, 1)
to be executed. Eventually, whenever the multiset of current pending calls is
�timeroff� then the dispatch of timeroff() occurs and it resets the c1 eq 0
to false. A time transition now takes place since the multiset of current
pending calls is empty. As seen in Fact 6, the first dispatch immediately after
the time transition should be timeron() which post machine() and updates
the state to ((ve

main, d), M1, M2) where M1 = �machine, timeroff, (c 2)n2�
(machine() is reposted by timeron() and M1(c 1) = n1 = 0 because no
c 1() has been copied to the new time step, M1(c 2) = n2 because each
call has been copied from the previous step); M2 = ∅ (because of the time
transition) and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc to
false, on, false, false, false, false and l′ (because cloc has been assigned to
l′), respectively.

– the else branch is taken. (this is an unfaithful simulation) We conclude from
n1 = 0, that M1(c 1) = 0, hence that there is no pending call to c 1(). The
dispatch of machine() sets Oc1 to true and sets dest to l′′. The next dispatch
to occur cannot be c 1() (because there is none to dispatch) and so error
is set to true by Fact 8.

If n1 = 0 then the 2CM updates its state to 〈l′′, n1, n2〉.
In the RTAP, the execution of machine() goes as follows: the conditional of

the first line fails and the piece of code for the zerotest1 case is executed.

176 P. Ganty and R. Majumdar

– the then branch is taken. (this is an unfaithful simulation) The dispatch of
machine() sets c1 eq 0 to true and sets cloc to l′. Fact 4 shows that the
only procedure that can change the value of c1 eq 0 is timeroff() and Fact
6 shows it yields an error if timeroff() is not dispatched last in the current
time step. We conclude from n1 = 0, that M1(c 1) = 0, hence that there is
a pending call to c 1(). Its dispatch yields error to be set to true because
the valuation at the time of dispatch is such that c1 eq 0 is true.

– the else branch is taken. (this is a faithful simulation). We conclude from
n1 = 0, that M1(c 1) = 0, hence that there is a pending call to c 1().
The dispatch of machine() sets Oc1 to true and sets dest to l′′. Fact 8
shows that if the next dispatch to occur is not c 1() then error is set to
true. The dispatch of c 1() updates the state to ((ve

main, d), M1, M2) where
M1 = �machine, timeroff, (c 1)n1 , (c 2)n2� (machine() and c 1() are posted
in c 1()); M2 = ∅ and d maps error, timer, Oc1, Oc2, c1 eq 0, c2 eq 0, cloc
to false, on, false, false, false, false and l′′ (because cloc has been assigned
to dest that has been updated to l′′ during the dispatch of machine()),
respectively. Our simulation is based on a guess the outcome of the test.
Above, the dispatch of c 1() is required to validate the guess was correct.
Otherwise error is set to true.

(the same holds for zerotest2)
Notice that the “temporary” location dest is required to hold the next loca-

tion in cases that require validation through running of c 1 or c 2. This concludes
the simulation of the 2CM by the RTAP.

Theorem 2. The abstract state reachability for RTAP is undecidable.

As an immediate consequence of the above encoding we also find that the bound-
edness checking problem that asks, given a RTAP, if there exists a finite value
that bounds the size of the multisets of pending calls at every point in time is
undecidable. It also naturally follows that liveness properties are undecidable for
this model.

Corollary 1. The boundedness and the liveness checking problem for RTAP are
undecidable.

5 Discussion

In the standard “untimed” model for event-driven systems [12,8], timers are ab-
stracted away. This can lead to false alarms in the analysis, as we demonstrate
through the example at Fig. 7. The procedure timeout (present in event-driven
programming APIs such as libevent [9]) has the following intended semantics: if a
particular event occurs before the timer reaches the timeout value (given by the
last parameter) then the handler given by the first argument is executed, otherwise
if the event does not occur and the timer reaches the timeout value, the handler
given by the second argument is posted. The procedures untimed_timeout and

Analyzing Real-Time Event-Driven Programs 177

global b;

main() {

b=0;

timeout(h1,h2,1);

timeout(h1,h3,2);

}

h1() {}

h2() { assert(b==0); }

h3() { b=1; }

untimed_timeout(task h, task h’, int ts) {

if(*)

future(h,0);

else

future(h’,0);

}

timed_timeout(task h, task h’, int ts) {

if (*)

choose i in {0,...,ts-1}

future(h,i);

else

future(h’,ts);

}

Fig. 7. The assertion does not fail if timed timeout implements timeout but can fail
if untimed timeout implements timeout

timed_timeout give implementations of timeout in the untimed and timed set-
tings, respectively. We abstract the occurence of the event by a non-deterministic
choice (* in the conditional). For this program, there is no assertion violation when
timed timeout implements timeout, because there is no execution in which h2
is executed after h3. However, this timing behavior is lost in the implementation
untimed timeout, where the scheduler could dispatch h2 before h3 and the asser-
tion can fail. Unfortunately, Theorem 2 shows that safety verification is undecid-
able if we assign timing constraints to posted calls.

Acknowledgments. We thank Tom Henzinger for suggesting this problem.

References

1. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley, Reading (1986)

2. Atig, M.F., Bouajjani, A., Touili, T.: Analyzing asynchronous programs with pre-
emption. In: FSTTCS 2008: Proc. 28th Int. Conf. on Fondation of Software Tech-
nology and Theoretical Computer Science (2008)

3. Ganty, P., Majumdar, R., Rybalchenko, A.: Verifying liveness for asynchronous
programs. In: POPL 2009: Proc. 36th ACM SIGACT-SIGPLAN Symp. on Princi-
ples of Programming Languages, pp. 102–113. ACM Press, New York (2009)

4. Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven pro-
gramming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

5. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001)

6. Henzinger, T.A., Kirsch, C.M.: The embedded machine: predictable, portable real-
time code. In: PLDI 2002: Proc. 23rd Conf. on Programming Language Design and
Implementation, pp. 315–326. ACM Press, New York (2002)

178 P. Ganty and R. Majumdar

7. Henzinger, T.A., Kirsch, C.M., Majumdar, R., Matic, S.: Time safety checking for
embedded programs. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT
2002. LNCS, vol. 2491, pp. 76–92. Springer, Heidelberg (2002)

8. Jhala, R., Majumdar, R.: Interprocedural analysis of asynchronous programs. In:
POPL 2007: Proc. 34th ACM SIGACT-SIGPLAN Symp. on Principles of Pro-
gramming Languages, pp. 339–350. ACM Press, New York (2007)

9. Libevent, http://www.monkey.org/~provos/libevent/
10. Minsky, M.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
11. Mitchell, J.: Foundations for Programming Languages. MIT Press, Cambridge

(1996)
12. Sen, K., Viswanathan, M.: Model checking multithreaded programs with asyn-

chronous atomic methods. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 300–314. Springer, Heidelberg (2006)

13. Titzer, B.L.: Virgil: objects on the head of a pin. In: OOPSLA 2006: Proc. 21st
ACM-SIGPLAN conference on Object-oriented programming systems, languages,
and applications, pp. 191–208. ACM Press, New York (2006)

http://www.monkey.org/~provos/libevent/

	Analyzing Real-Time Event-Driven Programs
	Introduction
	The Computational Models
	Programming Model
	Two Counter Machines

	The Reduction
	The Proof of Correctness
	Proof

	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

