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Abstract. In this paper, we develop and evaluate two new algorithms for check-
ing emptiness of alternating automata. These algorithms build on previous works.
First, they rely on antichains to efficiently manipulate the state-spaces underlying
the analysis of alternating automata. Second, they are abstract algorithms with
built-in refinement operators based on techniques that exploit information com-
puted by abstract fixed points (and not counter-examples as it is usually the case).
The efficiency of our new algorithms is illustrated by experimental results.

1 Introduction

Alternating automata are a generalization of both nondeterministic and universal au-
tomata. In an alternating automaton, the transition relation is defined using positive
Boolean formulas: disjunctions allow for the expression of nondeterministic transitions
and conjunctions allow for the expression of universal transitions. The emptiness prob-
lem for alternating automata being PSPACE-COMPLETE [3], several computationally-
hard automata-theoretic and model-checking problems can be reduced in polynomial
time to the emptiness problem for those automata. It is thus very desirable to design ef-
ficient algorithms for checking emptiness of those automata. In this paper, we propose
new algorithms for efficiently checking the emptiness problem for alternating automata
over finite words. Those new algorithms combine two recent lines of research.

First, we use efficient techniques based on antichains, initially introduced in [6],
to symbolically manipulate the state-spaces underlying the analysis of alternating au-
tomata. Antichain-based techniques have been applied to several problems in automata
theory [6, 8, 9, 1] and for solving games of imperfect information [13]. Those tech-
niques have also been applied with success to the satisfiability and model-checking
of LTL specifications [8]. Our team has implemented these algorithms in a tool called
ALASKA [7], which is available for download3.

Second, to apply this antichain technique to even larger instances of alternating
automata, we instantiate a generic abstract-refinement method that we have proposed
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in [5] and further developed in [11, 12]. This abstract-refinement method does not use
counter-examples to refine inconclusive abstractions contrary to most of the methods
presented and implemented in the literature, see for example [4]. Instead, our algo-
rithm uses the entire information computed by the abstract analysis and combines it
with information obtained by one application of a concrete predicate transformer. The
algorithm presented in [5] is a generic solution that does not lead directly to efficient
implementations. In particular, as shown in [11], in order to obtain an efficient imple-
mentation of this algorithm, we need to define a family of abstract domains on which
abstract analysis can be effectively computed, as well as practical operators to refine the
elements of this family of abstract domains. In this paper, we use the set of partitions
of the locations of an alternating automaton to define the family of abstract domains.
Those abstract domains and their refinement operators can be used both in forward and
backward algorithms for checking emptiness of alternating automata.

To show the practical interest of these new algorithms, we have implemented them
into the ALASKA tool. We illustrate the efficiency of our new algorithms on examples of
alternating automata constructed from LTL specifications interpreted over finite words.
With the help of those examples, we show that our algorithms are able to concentrate
the analysis on important parts of the state-space and abstract away the less interesting
parts automatically. This allows us to treat much larger instances than with the concrete
forward or backward algorithms. We are confident that those new algorithms will allow
us to solve problems of practical relevance that are currently out of reach of automatic
methods.

2 Preliminaries

Alternating Automata. Let S be a set. We denote B+(S) the set of positive Boolean
formulas over S. Formally, B+(S) ::= s | φ1 ∨ φ2 | φ1 ∧ φ2, where s ∈ S. A valuation
for a set of proposition S is encoded as a subset of S. For each formula φ ∈ B+(S) we
write JφK ⊆ 2S the set of valuations that satisfy φ; as usual, c ∈ JφK is interpreted as
the valuation that assigns “true” only to the variables in c. Let Σ be a finite alphabet.
A finite word w is a finite sequence w = σ0σ1 . . . σn−1 of letters from Σ. We write
Σ∗ the set of finite words over Σ. We now recall the definition of alternating automata
over finite words (AFA for short).

Definition 1. An alternating finite automaton is a tuple 〈Loc, Σ, q0, δ, F 〉 where :
Loc = {l1, . . . , ln} is the set of locations; Σ = {σ1, . . . , σm} is the set of alphabet
symbols; q0 ∈ Loc is the initial location; δ : Loc × Σ → B+(Loc) is the transition
function; and F ⊆ Loc is the set of accepting locations.

As we will often manipulate sets of sets of locations in the sequel, we will refer to
the inner sets as cells. Let Cells(S) = 2S . A cell of an AFA with locations Loc is an
element of Cells(Loc). A set of cellsX is⊆-upward-closed (resp.⊆-downward-closed)
if for all c ∈ X and for all c′ ∈ Cells(Loc) s.t. c ⊆ c′ (resp. c′ ⊆ c), we have c′ ∈ X .
Instead of defining the traditional notion of runs for AFA, we define their semantics as
a directed graph, the nodes of which are cells. Each edge in the cell graph is labeled by
an alphabet symbol.

Definition 2. Let A = 〈Loc, Σ, q0, δ, F 〉, JAK = 〈V,E〉 where: V = Cells(Loc) and
〈c, σ, c′〉 ∈ E iff c′ ∈ J

∧
l∈c δ(l, σ)K. A wordw = σ1, . . . , σp is accepted by the automa-

ton A iff there exists a path c0, c1, . . . , cp of cells of V such that q0 ∈ c0, cp ∈ Cells(F )
(the set of accepting cells), and ∀i ∈ [1, . . . , p] : 〈ci−1, σi, ci〉 ∈ E.



In the sequel, we will consider JAK simply as the set of edges E of the cell graph
and leave the set of vertices V implicit.

Predicate Transformers. We have defined the semantics of alternating automata as a
directed graph of cells. To explore this graph, we use predicate transformers.

Definition 3. We consider the following predicate transformers (A is an AFA):
postσ[A](X) = {c2 | ∃〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} post [A](X) =

⋃
σ∈Σ postσ[A](X)

p̃ostσ[A](X) = {c2 | ∀〈c1, σ, c2〉 ∈ JAK : c1 ∈ X} p̃ost [A](X) =
⋂
σ∈Σ p̃ostσ[A](X)

preσ[A](X) = {c1 | ∃〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} pre[A](X) =
⋃
σ∈Σ preσ[A](X)

p̃reσ[A](X) = {c1 | ∀〈c1, σ, c2〉 ∈ JAK : c2 ∈ X} p̃re[A](X) =
⋂
σ∈Σ p̃reσ[A](X)

Theorem 1. Let A = 〈Loc, Σ, q0, δ, F 〉 an AFA, X ≡ Cells(Loc) \X , F = Cells(F ).
L(A) = ∅ iff (µ x · post [A](x) ∪ Jq0K) ⊆ F iff (µ x · pre[A](x) ∪ F) ⊆ Jq0K.

The lattice of partitions. The heart of our abstraction scheme is to partition the set
of locations Loc of an AFA, in order to build a smaller (hopefully more manage-
able) automaton. We recall the notion of partitions and some of their properties. Let
P be a partition of the set S = {l1, . . . , ln} into k classes (called blocks in the se-
quel) P = {b1, . . . , bk}. Partitions are classically ordered as follows: P1 � P2 iff
∀ b1 ∈ P1,∃ b2 ∈ P2 : b1 ⊆ b2. It is well known, see [2], that the set of partitions
together with � form a complete lattice where {{l1}, . . . , {ln}} is the �-minimal el-
ement, {{l1, . . . , ln}} is the �-maximal element and the greatest lower bound of two
partitions P1 and P2, noted P1fP2, is the partition given by {b 6= ∅ | ∃ b1 ∈ P1,∃ b2 ∈
P2 : b = b1 ∩ b2}. The least upper bound of two partitions P1 and P2, noted P1 g P2,
is the finest partition such that given b ∈ P1 ∪ P2, for all li 6= lj : li ∈ b and lj ∈ b we
have: ∃ b′ ∈ P1 g P2 : li ∈ b′ and lj ∈ b′. Also, we shall use P as a function such that
P(l) simply returns the block b to which l belongs in P .

3 Deciding AFA Emptiness Using Antichains

A fundamental problem regarding AFA is the emptiness problem; i.e., to decide if there
exists at least one word accepted by an AFA. Since nondeterministic automata (NFA,
for short) emptiness can be solved in linear-time, a natural solution is to first perform an
AFA→ NFA translation and then check for emptiness. The translation is simple (albeit
computationally difficult), as it amounts to a subset construction, similar to that of NFA
determinization. Notice that the cell-graph semantics of AFA defined in the previous
section is essentially an NFA obtained by subset construction. In earlier works [6, 8,
9], we have designed new efficient algorithms for AFA emptiness. Those algorithms
are based on efficient manipulations of ⊆-upward- or downward-closed sets of cells
using antichains. In our context, an antichain is the unique set of ⊆-minimal (resp.
⊆-maximal) cells of an upward-closed (resp. downward-closed) set of cells X , which
we denote by bXc (resp. dXe). The crucial properties of antichains are that (i) they
are canonical representations of ⊆-closed sets of cells, (ii) the predicate transformers
on AFA evaluate to ⊆-closed sets (they can thus be canonically represented with an-
tichains) and, (iii) evaluating a predicate transformer on any set of cells is equivalent to
evaluating it on the ⊆-closure of that set (we can thus evaluate predicate transformers
directly on antichains, without losing any information). Due to lack of space, we do not
recall the framework of antichains in this work (it can be found in [6]). In the sequel, we
will assume that all the computations on sets of cells are performed using antichains.



4 Abstraction of Alternating Automata

4.1 Abstract domain

In this section, we present an original algorithmic framework for the analysis of AFA,
using antichains along with abstract interpretation. Given an AFA with locations Loc,
our algorithm will use a family of abstract domains defined by the set of partitions P
of Loc. The concrete domain is the complete lattice 2Cells(Loc), and each partition P
defines the abstract domain as 2Cells(P). We refer to elements of Cells(Loc) as concrete
cells and elements of Cells(P) as abstract cells. An abstract cell is thus a set of blocks
of the partition P and it represents all the concrete cells which can be constructed by
choosing at least one location from each block. To capture this representation role of
abstract cells, we define the following predicate.

Definition 4. The predicate Covers : Cells(P) × Cells(Loc) → {>,⊥} is defined as
follows: Covers(cα, c) iff cα = {P(l) | l ∈ c}.

Example 1. Let Loc = {1, . . . , 5}, P = {a : {1}, b : {2, 3}, c : {4, 5}}. We have that
Covers({a, c}, {1, 3}) = ⊥, Covers({a, c}, {1, 4}) = >, and Covers({a, c}, {1}) = ⊥.

To make proper use of the theory of abstract interpretation, we define an abstraction
and a concretization functions, and show that they form a Galois connection between
the concrete domain and each of our abstract domains.

Definition 5. Let P be a partition of the set Loc, we define the functions
αP : 2Cells(Loc) → 2Cells(P) and γP : 2Cells(P) → 2Cells(Loc) as follows :
αP(X) = {cα | ∃ c ∈ X : Covers(cα, c)}, γP(X) = {c | ∃ cα ∈ X : Covers(cα, c)}.

Lemma 1. For any partition P of Loc : (2Cells(Loc),⊆) −−→←−−α
γ

(2Cells(P),⊆).

In the sequel, we will omit the P subscript of α and γ when the partition is clear from
the context. Additionaly, we define µP = γP ◦ αP .

4.2 Efficient abstract analysis

In the sequel, we will need to evaluate fixpoint-expressions over the abstract domain. In
theory, we could simply surround every predicate transformer occuring in the fixpoint-
expressions by α◦·◦γ to obtain an abstract fixpoint. However, for obvious performance
concerns, we want to avoid as many concretization and abstraction steps as possible, and
ideally make all the computations directly over the abstract domain. Furthermore, we
would like that these abstract predicate transformers enjoy the same useful properties
w.r.t. antichains so that we can reuse the results of the previous section. To achieve this
goal, we proceed as follows. Given a partition P of the set of locations of an alternating
automaton, we use a syntactic transformation θ that builds an abstract AFA which over-
approximates the behavior of the original automaton. Later in this section we will show
that the pre and post predicate transformers can be directly evaluated on this abstract
automaton to obtain the same result (but much faster) than the α ◦ · ◦ γ computation
on the original automaton. To express this syntactic transformation, we define syntactic
variants of the abstraction and concretization functions.



Definition 6. Let P be a partition of the set Loc. We define the following syntactic ab-
straction and concretization functions over positive Boolean formulas: α̂ : B+(Loc)→
B+(P) and γ̂ : B+(P) → B+(Loc), such that α̂(l) = P(l), α̂(φ1 ∨ φ2) =
α̂(φ1)∨α̂(φ2), and α̂(φ1∧φ2) = α̂(φ1)∧α̂(φ2). Likewise, γ̂(b) =

∨
l∈b l, γ̂(φ1∨φ2) =

γ̂(φ1) ∨ γ̂(φ2), and γ̂(φ1 ∧ φ2) = γ̂(φ1) ∧ γ̂(φ2).

Lemma 2. For every φ ∈ B+(Loc) we have that Jα̂(φ)K = α(JφK), and for every
φ ∈ B+(P) we have that Jγ̂(φ)K = γ(JφK).

Definition 7. Let A = 〈Loc, Σ, q0, δ, F 〉 and P a partition of Loc. θ(A,P) =
〈Locα, Σ, b0, δ

α, Fα〉 where: Locα = P , b0 = P(q0), δα(b, σ) = α̂(
∨
l∈b δ(l, σ)),

and Fα = {b ∈ P | b ∩ F 6= ∅}.

Theorem 2. Let A be an AFA, P a partition of its locations and Aα = θ(A,P), α ◦
post [A] ◦ γ = post [Aα] and α ◦ pre[A] ◦ γ = pre[Aα].

This theorem is crucial for the practical efficiency of our algorithms. In our framework,
the evaluation of an abstract fixpoint on a large automaton amounts to compute a con-
crete fixpoint on a smaller automaton that is easy to obtain (the θ transformation can be
done in linear time).

4.3 Precision of the abstract domain

We now present some results about precision and representability in our family of
abstract domains. In particular, for the automatic refinement of abstract domains, we
will need an effective way of computing the coarsest partition which can represent an
upward- or downward closed set of cells without loss of precision.

Definition 8. A set of cells X ⊆ Cells(Loc) is representable in the abstract domain
2Cells(P) iff µP(X) = X (recall that µP = γP ◦ αP ).

Lemma 3. Let X ⊆ Cells(Loc), let P1 and P2 be two partitions of Loc. If X is repre-
sentable with P1 and representable with P2, then X is representable with P1 g P2.

As the lattice of partition is a complete lattice, we have the following corollary.

Corollary 1. For all X ⊆ Cells(Loc), there exists a coarsest partition P = g{P ′ |
µP′(X) = X} such that µP(X) = X .

For upward- and downward-closed sets, we have an efficient way to compute this coars-
est partition. We start with upward-closed sets. To obtain an algorithm, we use the no-
tion of neighbour list. The neighbour list of a location lwith respect to an upward-closed
set X , which we writeNX(l) is the set of subsets of Loc along which l appears in bXc.

Definition 9. Let X ⊆ Cells(Loc) be an upward-closed set. The neighbour list of a
location l ∈ Loc w.r.t. X is the set NX(l) = {c \ {l} | c ∈ bXc, l ∈ c}.

The following lemma states that if two locations share the same neighbour lists w.r.t.
an upward-closed set X , then they can be put in the same partition block and preserve
the representability of X . Conversely, X cannot be exactly represented by any partition
which puts into the same block two locations that have different neighbour lists.



Lemma 4. For any partition P of Loc, for any upward-closed set X , the set X is
representable in 2Cells(P) iff ∀ l, l′ ∈ Loc · P(l) = P(l′)→ NX(l) = NX(l′).

Corollary 2. For all upward-closed sets X ⊆ Cells(Loc), the partition P induced by
the equivalence relation l ∼ l′ iffNX(l) = NX(l′) is the coarsest partition that is able
to represent X . Assuming that bXc has been computed, this partition is computable in
O(n log n) set comparisons, where n is the size of bXc.

5 Abstraction Refinement Algorithm

Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅
P0 ← {F, Loc \ F}1

Z0 ← Cells(F )2
for i in 0, 1, 2, . . . do3

Aαi ← θ(A,Pi)4
Aαi = 〈Locα, Σ, b0, δ

α, Fα〉5
Ii ← Jb0K6
Ri ← µx ·(Ii∪post [Aαi ](x))∩αPi(Zi)7
if post [Aαi ](Ri) ⊆ αPi(Zi) then8

return True9

if Jq0K 6⊆ Zi then10
return False11

Zi+1 ← γPi(Ri) ∩ fpre[A](γPi(Ri))12
Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Input: A = 〈Loc, Σ, q0, δ, F 〉
Output: True iff L(A) = ∅
P0 ← {{q0}, Loc \ {q0}}1

Z0 ← Jq0K2
for i in 0, 1, 2, . . . do3

Aαi ← θ(A,Pi)4
Aαi = 〈Locα, Σ, b0, δ

α, Fα〉5
Bi ← Cells(Fα)6
Ri ← µx · (Bi∪pre[Aαi ](x))∩αPi(Zi)7
if pre[Aαi ](Ri) ⊆ αPi(Zi) then8

return True9

if Cells(F ) 6⊆ Zi then10
return False11

Zi+1 ← γPi(Ri) ∩ gpost [A](γPi(Ri))12
Pi+1 ← g{P | µP(Zi+1) = Zi+1}13

Fig. 1. The abstract-forward (left) and abstract-backward (right) FGAR algorithms.

This section presents two fixpoint-guided abstraction refinement algorithms for AFA.
These algorithms share several ideas with the generic algorithm presented in [5] but
they are formally different, so we provide arguments showing their correctness. We
concentrate here on explanations related to the abstract forward algorithm. The abstract
backward algorithm is the dual of this algorithm and its correctness can be established
in a very similar way. We first give an informal presentation of the ideas underlying the
algorithm and then we expose formal arguments for its soundness and completeness.

Description of the forward abstract algorithm. The most important information com-
puted in the algorithm is Zi, which is an over-approximation of the set of reachable
cells which cannot reach an accepting cell in i steps or less. In other words, all the
cells outside Zi are either unreachable, or can lead to an accepting cell in i steps or
less (or both). Our algorithm always uses the coarsest partition Pi that allows Zi to be
represented in the corresponding abstract domain. The algorithm begins by initializing
Z0 with the set of non-accepting cells and by initializing P0 accordingly (lines 1 and
2). The main loop proceeds as follows. First, we compute the abstract reachable cells
Ri which are within Zi, which is done by applying the θ transformation using Pi (line
4), and by computing a forward abstract fixpoint (line 7). If Ri does not contain a cell
which can leave Zi, we know (as we will formally prove later in this section) that the



automaton is empty (line 8). If on the other hand, an initial cell (i.e., a cell containing
q0) is no longer in Zi then we know that it can lead to an accepting cell in i steps or
less (as it is obviously reachable) and we conclude that the automaton is non-empty
(line 11). In the case where both tests failed, we refine the information contained in Zi
by removing all the cells which can leave Ri in one step, as we know that these cells
are either surely unreachable or can lead to an accepting cell in i + 1 steps or less.
Finally, the current abstract domain is changed to be able to represent the new Zi (line
13), using the neighbour list algorithm of Corollary 2. It is important to note that this
refinement operation is not the traditional refinement used in counter-example guided
abstraction refinement. Note also that our algorithm does not necessarily choose a new
abstract domain that is strictly more precise than the previous one as in [5]. Instead, the
algorithm uses the most abstract domain possible at all times. As we cannot rely on the
termination proof from [5], we provide a new one at the end of this section.

Completeness and correctness of the forward abstract algorithm. Correctness and com-
pleteness relies on the properties formalized in the following lemma.

Lemma 5. Let Reach = µx · Jq0K∪post [A](x) be the reachable cells of A, let Badk =
∪j=kj=0pre

j [A](Cells(F )) be the cells that can reach an accepting cell in k steps or less,
and let us note Safek = Cells(Loc) \ Badk, i.e. the set of cells that cannot reach an
accepting cell in k steps or less. The following four properties hold:

1. ∀i ≥ 0: µPi(Zi) = Zi, i.e. Zi is representable in the successive abstract domains;
2. ∀i ≥ 0: Zi+1 ⊆ Zi, i.e. the sets Zi are decreasing;
3. ∀i ≥ 0: Reach ∩ Safei ⊆ Zi, i.e. Zi over-approximates the reachable cells that

cannot reach an accepting cell in i steps or less;
4. if Zi = Zi+1 then post [Aαi ](Ri) ⊆ αPi

(Zi).

Theorem 3. The forward abstract algorithm with refinement is sound and complete to
decide the emptiness of AFA.

6 Experimental Evaluation

In this section, we evaluate the practical performance of our techniques with three series
of benchmarks. Each benchmark is composed of a pair of LTL formulas 〈ψ, φ〉 inter-
preted on finite words, and for which we want to know if φ is a logical consequence
of ψ, i.e. if ψ |= φ holds. To solve this problem, we translate the formula ψ ∧ ¬φ into
an AFA and check that the language of the AFA is empty. This translation is linear in
the size of the formula and creates a location in the AFA for each subformula. As we
will see, our ψ formulas are constructed as large conjunctions of constraints and model
the behavior of finite-state systems, while the φ formulas model properties of those sys-
tems. We defined properties with varying degrees of locality. Intuitively, a property φ
is local when only a small number of subformulas of ψ are needed to establish ψ |= φ.
This is not a formal notion but it will be clear from the examples. We will show in
this section that our abstract algorithms are able to automatically identify subformulas
which are not needed to establish the property. Due to lack of space, we only report
results where ψ |= φ holds. We now present each benchmark in turn.



Benchmark 1. The first benchmark takes 2 parameters n > 0 and 0 < k ≤ n :
Bench1(n, k) = 〈

∧n−1
i=0 G(pi → (F (¬pi) ∧ F (pi+1))), Fp0 → Fpk〉. Clearly we

have that ψ |= φ holds for all values of k and also that the subformulas of ψ for i > k
are not needed to establish ψ |= φ.

Benchmark 2. This second benchmark is used to demonstrate how our algorithms can
automatically detect less obvious versions of locality than for Bench1. It uses 2 parame-
ters k and nwith 0 < k ≤ n and is built using the following recursive nesting definition:
Sub(n, 1) = Fpn; for odd values of k > 1 Sub(n, k) = F (pn ∧ X(Sub(n, k − 1)));
and for even values of k > 1 Sub(n, k) = F (¬pn ∧ X(Sub(n, k − 1))). Our second
benchmark is : Bench2(n, k) = 〈

∧n−1
i=0 G(pi → Sub(i + 1, k)), Fp0 → Fpn〉. It is

relatively easy to see that ψ |= φ holds for any value of k, and that for odd values of k,
the nested subformulas beyond the first level are not needed to establish the property.

Benchmark 3. This third and final benchmark aims to demonstrate the usefulness
of our abstraction algorithms in a more realistic setting. We specified the behav-
ior of a lift with n floors with a parametric LTL formula.For n floors, Prop =
{f1, . . . , fn, b1, . . . , bn, open}. The fi propositions represent the current floor. Only
one of the fi’s can be true at any time, which is initially f1. The bi propositions repre-
sent the state (lit or unlit) of the call-buttons of each floor and there is only one button
per floor. The additional open proposition is true when the doors of the lift are open.
The constraints on the dynamics of this system are as follows : (i) initially the lift is at
the first floor and the doors are open, (ii) the lift must close its doors when changing
floors, (iii) the lift must go through floors in the correct order, (iv) when a button is
lit, the lift eventually reaches the corresponding floor and opens its doors, and finally
(v) when the lift reaches a floor, the corresponding button becomes unlit. Let n be the
number of floors. We apply our algorithms to check two properties which depend on a
parameter k with 1 < k ≤ n, namely Spec1(k) = G((f1 ∧ bk) → (¬fkUfk−1)), and
Spec2(k) = G((f1 ∧ bk ∧ bk−1)→ (bkU¬bk−1)).

Experimental results. All the results of our experiments are found in Fig. 2, and were
performed on a quad-core 3,2 Ghz Intel CPU with 12 Gb of memory. Due to lack of
space, we only report results for the concrete forward and abstract backward algorithms
which were the fastest (by a large factor) in all our experiments. The columns of the
table are as follows. ATC is the size of the largest antichain encountered, iters is the
number of iterations of the fixpoint in the concrete case and the maximal number of
iterations of all the abstract fixpoints in the abstract case, ATCα and ATC γ are respec-
tively the sizes of the largest abstract and concrete antichains encountered, steps is the
number of execution of the refinement steps and |P| is the maximum number of blocks
in the partitions.
Benchmark 1. The partition sizes of the first benchmark illustrate how our algorithm
exploits the locality of the property to abstract away the irrelevant parts of the system.
For local properties, i.e. for small values of k, |P| is small compared to |Loc| mean-
ing that the algorithm automatically ignores many subformulas which are irrelevant to
the property. For larger values of k, the abstraction overhead becomes larger, but that
overhead becomes less important as the system grows.
Benchmark 2. On the second benchmark, our abstract algorithm largely outperforms the
concrete algorithm. Notice how for k ≥ 3 the partition sizes do not continue to grow (it
also holds for values of k beyond 5). This means that contrary to the concrete algorithm,
FGAR does not get trapped in the intricate nesting of the F modalities (which are not



necessary to prove the property) and abstracts it completely with a constant number of
partition blocks. The speed improvement is considerable.
Benchmark 3. On this final benchmark, the abstract algorithm outperforms the concrete
algorithm when the locality of the property spans less than 5 floors. Beyond that value,
the abstract algorithm starts to take longer than the concrete version. From the ATC col-
umn, the antichain sizes remain constant in the concrete algorithm, when the number of
floors increases. This indicates that the difficulty of this benchmark comes mainly from
the exponential size of the alphabet rather than the state-space itself. As our algorithms
only abstracts the locations and not the alphabet, these results are not surprising.

7 Discussion

We have proposed in this paper two new abstract algorithms with refinement for decid-
ing language emptiness for AFA. Our algorithm is based on an abstraction-refinement
scheme inspired from [5], which is different from the usual refinement techniques based
on counter-example elimination [4]. Our algorithm also builds on the successful tech-
nique of antichains, that we have introduced in [6], to symbolically manipulate closed
sets of cells (sets of sets of locations). We have demonstrated with a set of benchmarks
that our algorithm is able to find coarse abstractions for complex automata constructed
from large LTL formulas. For a large number of instances of those benchmarks, the
abstract algorithms outperform by several order of magnitude the concrete algorithms.
We believe that this clearly shows the interest of our new algorithms and their potential
future developments.

Acknowledgments The authors would like to thank Gilles Geeraerts for some fruitful
discussions on the abstraction scheme.

References
1. A. Bouajjani, P. Habermehl, L. Holı́k, T. Touili, and T. Vojnar. Antichain-based universality

and inclusion testing over nondeterministic finite tree automata. In CIAA, pages 57–67, 2008.
2. S. Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer, 1981.
3. A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.
4. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction

refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.
5. P. Cousot, P. Ganty, and J.-F. Raskin. Fixpoint-guided abstraction refinements. In SAS,

volume 4634 of LNCS, pages 333–348. Springer, 2007.
6. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A new algorithm for

checking universality of finite automata. In CAV, volume 4144 of LNCS, pages 17–30, 2006.
7. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Alaska. In ATVA, pages 240–245, 2008.
8. M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin. Antichains: Alternative algorithms for

LTL satisfiability and model-checking. In TACAS, volume 4963 of LNCS, 2008.
9. L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach to model-

checking. In TACAS, volume 4424 of LNCS, pages 451–465. Springer, 2007.
10. S. Fogarty and M. Vardi. Buechi complementation and size-change termination. In TACAS,

volume 5505 of LNCS, pages 16–30, 2009.
11. P. Ganty. The Fixpoint Checking Problem: An Abstraction Refinement Perspective. PhD
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concrete forward abstract backward
n k |Loc| |Prop| time ATC iters time ATCα ATCγ iters steps |P|

B
en

ch
1

11 5 50 12 0,10 6 3 0,23 55 2 5 3 27
15 5 66 16 1,60 6 3 0,56 55 2 5 3 31
19 5 82 20 76,62 6 3 8,64 55 2 5 3 35
11 7 50 12 0,13 8 3 0,87 201 2 5 3 31
15 7 66 16 2,04 8 3 1,21 201 2 5 3 35
19 7 82 20 95,79 8 3 9,99 201 2 5 3 39
11 9 50 12 0,16 10 3 12,60 779 2 5 3 35
15 9 66 16 2,69 10 3 13,42 779 2 5 3 39
19 9 82 20 125,85 10 3 46,47 779 2 5 3 43

B
en

ch
2

7 1 19 8 0,06 8 2 0,10 11 2 4 3 14
10 1 25 11 0,06 10 2 0,10 14 2 4 3 17
13 1 31 14 0,08 14 2 0,12 17 2 4 3 20
7 3 33 8 0,78 201 14 0,13 11 2 4 3 26

10 3 45 11 802,17 4339 20 0,30 14 2 4 3 35
13 3 57 14 > 1000 - - 1,26 17 2 4 3 44
7 5 47 8 88,15 2122 26 0,14 11 2 4 3 26

10 5 65 11 > 1000 - - 0,37 14 2 4 3 35
13 5 83 14 > 1000 - - 1,47 17 2 4 3 44

L
if

t:
S
p
ec

1

8 3 84 17 0,30 10 17 0,51 23 40 7 4 21
12 3 116 25 17,45 10 25 1,63 23 40 7 4 21
16 3 148 33 498,65 10 33 26,65 23 40 7 4 21
8 4 84 17 0,26 10 17 1,29 37 72 10 6 24

12 4 116 25 17,81 10 25 5,02 37 72 10 6 24
16 4 148 33 555,44 10 33 78,75 37 72 10 6 24
8 5 84 17 0,32 10 17 3,70 42 141 12 8 27

12 5 116 25 20,24 10 25 47,45 42 141 12 8 27
16 5 148 33 543,27 10 33 > 1000 - - - - -

L
if

t:
S
p
ec

2

8 3 84 17 0,46 10 17 1,18 58 72 8 4 22
12 3 116 25 17,98 10 25 3,64 58 72 8 4 22
16 3 148 33 557,75 10 33 48,90 58 72 8 4 22
8 4 84 17 0,29 10 17 3,04 124 126 11 6 25

12 4 116 25 19,29 10 25 10,63 124 126 11 6 25
16 4 148 33 576,56 10 33 128,40 124 126 11 6 25
8 5 84 17 0,31 10 17 15,88 131 266 14 8 28

12 5 116 25 19,47 10 25 283,90 131 266 14 8 28
16 5 148 33 568,83 10 33 > 1000 - - - - -

Fig. 2. Experimental results. Times are in seconds.


