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Reachability for sequential /concurrent programs

LL1: bit = F;
1f bit ==
goto error;
else
goto L1;
error : print "busted";

s error reachable?
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Reachability for sequential/concurrent programs

Thread t4 Thread t5
L1: bit = F,; L:b1i
1f bit == p g0t
goto error;
else
goto L1;
P crror :|print "busted";
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Reachability for sequential /concurrent programs

Thread t4 Thread t5
L1:bit = F; L:|bi
1f bit == p g0t
goto error;
else
goto L1;
P crror :|print "busted";
T RN SO 11T
bit>—=F bit =T

s error reachable?

Decidability by further restricting SM visited states

*
coverage



Reachability for sequential/concurrent programs

Thread t4 Thread t5
L1:bit = F; L:|bi
1f bit == p g0t
goto error;
else
goto L1;
P crror :|print "busted";
T RN SO 11T
bit>—=F bit =T

s error reachable for & writes to SM 7

k-context switches reachability is decidable, and NPc *

Shaz Qadeer, Jakob Rehof. Context-Bounded Model Checking of Concurrent Software in TACAS '0b



Reachability for sequential /concurrent programs

Thread t4 Thread t5
L1:bit = F; L:|bi
1f bit == p g0t
goto error;
else
goto L1;
P crror :|print "busted";
T RN SO 11T
bit>—=F bit =T

Is error reachable for pattern (bit =F - -bit =T)* ?

Pattern-based reachability is decidable T
.|.

Pierre Ganty, Rupak Majumdar, Benjamin Monmege. Bounded Underapproximations in cav '10



Reachability for sequential/concurrent programs

Thread t4 Thread t5
L1:bit = F; L:|bi
1f bit == p g0t
goto error;
else
goto L1;
P crror :|print "busted";
T RN SO 11T
bit>—=F bit =T

Pattern takes the form w,  w, .. w_’

w. is a word, symbols represent data in SM

Pattern-based reachability is decidable T
.|.

Pierre Ganty, Rupak Majumdar, Benjamin Monmege. Bounded Underapproximations in cav '10



From SM programs to grammars

Shared memory program consist of

— Set of procedures accessing local and global variables
(bounded data)

— Set of threads having initial points

Shared Message

Memory Passing Grammar
Program Program

Message passing program consist of

— Set of threads and procedures accessing local
variables (bounded data), sending/receiving messages



Message passing example

* The example copies 5 items from

void main () the channel chl to ch2
0O int x = 5;
1 while (x>0) {
2 bO); * Semantics
2 } T — receive(ch1,var)
51 * Block until someone calls
send(ch1,data) and all the others call
void b () | receive(chl,var2)

int y; * assign var=data
6 reicv(chl,y); — send(ch1,data)
7 send(ch2,y);  Block until all other threads call

7} receive(ch1,var)



Shared memory as message passing

 Modify SM program:
— All variables are local

— At each program location simulate context switch
* Send the content of ‘global’ data
e Switch to the inactive state
* Wait until someone else sends the content of memory

 Two messages for each context switch
— yield(gmem) — go to inactive state
— go(TID) — go back to the active state



Context switching as msg passing
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Stack changes
No messages produced
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Context switching as msg passing

t, computation &
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Stack changes
No terminals produced

<go,TID>,<yield(g,)>
Per context switch

t, inactive
Other threads can go,
and write whatever value




Context switching as msg passing

t, computation »b@
j’ ~@\/b @\/b
Y &
= -0 . @ OO . O -O1-@—
t, is active t, inactive t, is active again
Stack changes Other threads can go,
No terminals produced and write whatever value
A
t, computation @@
N f\/ @\/b o3
0 Xy $
O—0= .. @ -0O—0 =0
t, inactive t, is active t, inactive




Modification of SM program

bit=F bit=T

)N

0 bit=F; %j. /.
1 if bit==T ‘/ ,
O

2 goto 4;

3 return; ‘

4 print “busted” ‘




Inactive states, communication

TID=0




Inactive states, communication

TID=0

bit=F bit=T Inactive Inactive
bit=F bit=T

®@ o O @
O




Inactive states, communication

TID=0

bit=F bit=T Inactive Inactive

bit=F bit=T
/\
send(yleld bit=F)

Nondetchoie




Inactive states, communication

TID=0

bit=F bit=T Inactive Inactive

bit=F bit=T
/\
send(yleld bit=F)

‘ ‘ reicv(go,1l)> Q




Inactive states, communication

TID=0
bit=F bit=T Inactive Inactive
bit=F bit=T
/\
send (yield,bit=F) reicv (yield, bit=T)

‘ reicv(go,1l)>




Inactive states, communication

TID=0
bit=F bit=T Inactive Inactive
bit=F bit=T
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Inactive states, communication

TID=0
bit=F bit=T Inactive Inactive
bit=F bit=T
/\
send (yield, bit=F) | T~ reicv(yield,bit=T)

| send (yield,bit=T) | reicv (go,

A

reicv(go,1)>

send (go, 0) rgicv(yield,bit=F)

send (go, 0)




Modification of SM program

TID = 0

0 bit=F;

1 1f bit==T

2 goto 4;

3 return;

4 print “busted”

bit=F bit=T Inactive Inactive

)N

N

bit=F bit=T

° o

yield,bit=..

go, TID=..




Modification of SM program

bit=F bit=T Inactive Inactive
TID = 0

) bit=F bit=T
0 bit=F; %\’jm
1 1f bit==
2 goto 4;
3 return;
4 print “busted”
yield,bit=..

go, TID=..




Msg passing prg. as ctx-free grammar

* t represented by context-free grammar G,
— Non-terminals encode program positions and variables

— Grammar rules simulate program transition
* Context-free grammar needed to support function calls

— Terminals encode communication

* wel(G,) —sequence of t. communications
* we L(G,) NL(G,) — history allowed by both threads

Emptiness of L(G,) NL(G,) is undecidable



Msg passing as grammar

vold main ()

0 1int x = 5;

1 while (x>0) {
2 b();

3 X==7;

4}

o}

void b () {

6 reicv(ch);
7}



Msg passing as grammar

void main () Init -> [x"=5,pc=1]
0 1int x = 5; [(x>0,pc=1] -> [x'=x,pc=2]
1 while (x>0) { [x=0,pc=1] -> [x"=0,pc=5]
2 b(); (x,pc=2] -> [pc=6][x"=x,pc=3]
3 X==; [x,pc=3] -> [x’'=x-1,pc=1]
4} [x,pCc=5] -> ¢
o}

void b () | [pc=6] —-> <ch>

6 reicv(ch);
7}



Msg passing as grammar

void main () Init —-> =2, pcC=
0O 1int x = 5; [x>0,pc=1] -> '=x,pc=2]
1 while (x>0) { [x=0,pc=1] -> [x'"=0,pc=5] Fcn call
2 b(); [x,pc=2] -> [pc=6][x'=x,pc=3]
3 == [x,pc=3] -> [x'=x-1,pc=
4} [x,pCc=5] -> ¢
o}

volid Db () {
6 reicv(ch);
7}




Msg passing as grammar

volid main () Init
0 int x = 5; [x>0,pc=1]
1 while (x>0) { [x=0,pc=1]
2 b(); [x,pc=2]
3 X=—=; [x,pc=3]
i [%, pc=5]
>}
void b ()1 [pc=6] —-> <ch>
6 reicv(ch);
7}

Init 2 * <msg><msg><msg><msg><msg>

The process will reach its final position (5) only if the

cooperating thread can produce 5 messages as well



Decision procedure

* Reachability in concurrent program as a language problem

— Intersection of context-free languages
* Emptiness of L(G,) NL(G,) undecidable

* Context bounded verification
[Shaz Qadeer, Jakob Rehof. Context-Bounded Model Checking of Concurrent Software in Tacas '05]

— At most k context switches
» Emptiness of L(G;) NL(G,) N{go(TID),yield(gmem)}**

e Pattern based verification
[Pierre Ganty, Rupak Majumdar, Benjamin Monmege. Bounded Underapproximations in CAV’10]

— Context switches follow the pattern
* Emptiness of L(G;) " w,"..w," NL(G,)
* w; € {go(TID),yield(gmem)}’
* Example —at most k ctx sw : (go(0)* go(1)* yield(true)* yield(false)*)X



Decision Procedure

L(G,) Nw, ..w,NL(G,) =T



Decision procedure
|

* Counting of w matters
w,' wy ... w kel(G) nw, ..w,

* Modify Gto G’

— Accept only words from pattern
* CFL are closed to intersection w/ regular languages

— Produce single terminal a, instead of the word W,

e w,..wk el(G) Nw,.w, <a,..akel(G)



Parikh image

* Fixed linear order over alphabet
— 2={ay, a, ... a,}

e Parikh image of w € X* is a p-dimensions vector
— i-th part is the number of occurrences of i-th symbol in w
— I(w) =<i, i, ..., i,>, II(a,a;a;a,) =<3,1,0,...,0>

e Parikh image of language L c 2*
— set of Parikh images of words from L

— II(L)={m, 3w eL II(w)= t}

e Parikh image omits the order of symbols



Decision procedure

c w,/..wkel(G)nw,.w, <a,..akel(G)
— a, are distinct, fit on their position by construction of G’
— 1 e [1(G’) & a,®V ...a, ™ €L (G")

* Parikh image of a context free language can be
characterized by an existential Presburger formula

— Y (n) = True & © € 11(G’)

e Satisfiability of existential formula is NP-complete
[Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005]

Existential Presburger formula ¢
t:==0|1|x|t, +t,]|t; - t,

d:==t, =t [t, >t A D, | OV, [Tx G,




From Language to Formula

L(G) Nwy, W, oW, N L(G,) =D

N
L(G;) N L(Gy,) = D
e
(G,,) N T1(G,,) = &
e

Y., & Y-, is unsatisfiable



Construction of formula

 Petri-net intuition

— net is simulating the grammar but disregards the ordering
of terminals

* Structure
— Place for each terminal and non-terminal
— Transition for each rule
— One token to the initial non-terminal

X -> aXb




PN example
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X -> ¢
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PN example
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L(X) =a'b’  Configurations corresponding weL(X)
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PN examples

X -> aXb
X -> €
X -> abX
X -> €
X -> Xba
X -> €

Configurations corresponding weL(X)
[1(X) = <i,i> —all tokens in terminal places



Formula

* Petri net is communication-free
— Each transition has one input place

— Context-free grammar (one NT on left-hand side)

e Set of admissible configurations of CF-PN can
be characterized by Presburger formula



Formula

* Formula based on

— Kirchhoff-like rules

* For each place “# of tokens” = “# of input transition applications” - “#
of output transition applications”

— Reachability rules
e Each applied transition is reachable from the initial place
e Variables

— For each place A, x, is number of tokens in the place, z, distance
from initial place

— For each transition y; is the number of applications
Y Y,
XA
Xpa=Y1+Y37Y2Ys

Y3 Ya

Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005
Javier Esparza: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes, 97



Implementation

* |nput
— Control-flow for each thread
— Definition of global and local variables
— Pattern

* Goal

— Transform grammars into formula, run solver



Transformation chain for thread

Pattern
Pattern
grammar
Thread
Symbolic Intersect.
Grammar

Word w, 2 symbol a, [Flellelygleiely

Symbolic
grammar

Petri-net Instantiated
transformation grammar

Instantiation

Formula

Abstract ph.




Transformation chain for thread

Pattern
Pattern
grammar
: . Thread
Tedious to write .
Symbolic Intersect.
manually
Grammar
Word w, 2 symbol a, [Flellelygleiely
Petri-net Instantiated o Symbolic
. Instantiation
transformation grammar grammar

Formula

Abstract ph.




Transformation chain for thread

Pattern
Data Data Pattern

definition grammar grammar

Ctriflow
grammar

Intersect. Restrict Intersect.

Keep only yield/go

Word w, 2 symbol a, [Flellelygleiely

Symbolic
grammar

Petri-net Instantiated
transformation grammar

Instantiation

Formula

Abstract ph.




Input — Ctriflow

* |n form of context-free grammar
— Non-terminals — program locations
— Terminals — data access
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LO bit=F;

L1l if bit==T
L2 goto 4;
L3 return;

L4 print “busted”



Input — Ctriflow

* |n form of context-free grammar
— Non-terminals — program locations
— Terminals — data test/operations

LO Dbit=F; LO -> <bit=F> L1

L1 1f bit==T L1 —> <bit==T> L2
L1 -> <bit==F> L3

L2 goto 4; L2 -> 14

L3 return; L3 -> ¢

L4 print “busted” L4 print “busted”



Input — data definition

* Used to generate data grammar

* Data grammar
— Non-terminals — data value

— Terminals — data access
* The same terminals are in control flow grammar

— Regular rules, symbolic
[x=C, y=D] -> <x==C>[x=C, y=D]

* Generated language ~ valid memory behavior
— <x=4> can be followed by <x==4> but not <x==5>

— Intersected with the control flow grammar to provide
semantics



Input - pattern

* Pattern expression
— List of words (yield/go)
— Transformed into regular grammar



Transformation chain for thread

Pattern
Mem > Data Pattern

definition grammar grammar

Ctriflow
grammar

Intersect. Restrict Intersect.

Keep only yield/go

Word w, 2 symbol a, [Flellelygleiely

’_________ \

Symbolic
grammar

Instantiated
grammar

Petri-net

. Instantiation
transformation

Formula

Abstract ph.

am e e s

’___§

\___________/



Instantiation

* Non-terminals in symbolic rules use variables
— One symbolic rule stands for number of ‘ground’ rules

o~ [pc=1,x=0] -> [pc=2,x’=1]

[pc=1,x=1] -> [pc=2,x"=2]
[pc=1,x=7?] -> [pc=2,x"=x+1] <

. [pc=1,x=254] -> [pc=2,x'=255]

* Petri-net transformation can not process symbolic rules

— Formula needs to have fixed number of variables
(~nonterminals,rules)



Instantiation

 Goal —Provide the set of grounded rules used by the grammar
— Omit unreachable combinations of program positions and variables
e Algorithm

— Find all non-terms reachable (from initial non-terminal) and
generating (can be rewriten to sequence of terminals)

— Transitive closure
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Instantiation

 Goal —Provide the set of grounded rules used by the grammar
— Omit unreachable combinations of program positions and variables
e Algorithm

— Find all non-terms reachable (from initial non-terminal) and
generating (can be rewriten to sequence of terminals)

— Transitive closure

Generat,'ng




Instantiation

* Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

e Abstraction phase
— Omit the local variables

— Run the instantiation to get legal combinations of global variables and
program locations A.

— Run the instantiation on the original grammar, use A as superset of the result

A-Generating

=
,—H O
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— Run the instantiation to get legal combinations of global variables and
program locations A.
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Instantiation

* Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

e Abstraction phase
— Omit the local variables

— Run the instantiation to get legal combinations of global variables and
program locations A.

— Run the instantiation on the original grammar, use A as superset of the result

. e




Transformation chain

Data

definition

Pattern

T,Ctriflow

— N -

T, Ctriflow

— N -

T, Ctriflow

T, formula

T,formula

> w Formula

=2

T, formula

Satisfiable = point is reachable
Trace given by solution




Validation

 Windows NT bluetooth driver example

— Several variants, race conditions reported in

Suwimonteerabuth, Esparza, Schwoon: Symbolic Context-Bounded
Analysis of Multithreaded Java Programs, SPIN '08

— We can detect them all, given the proper pattern

 Still toy example
— Input simplified to preserve essence of the bug

oot e Tl

1074
bt2 6664 1003 1
bt2 2924 816 1
cavpp 5840 12 236

The size of data bothers the transformation, length of trace bothers yices



Abstraction phase helps

Thread A-Gener Gener Reach Total Time
ELSML [abst NT] [NT] [NT] [s]

btl/add skip skip 465822

btl/add 46005 251 2394 326 26
bt3/add 150022 922 7445 787 280
bt3/stop 294773 520 3557 48 257

* Two variants of BT example runs out of
memory if the abstraction phase is off



Conclusion

* Theory works
— Bluetooth example is small, but real

 Tool runs
— Lots of technical details solved
— Provides result for all toy examples we have

 Future directions
— More, larger, examples

— Instantiation phase
e Skip it — push the instantiation phase into formula
* Smarter approximation (e.g. abstract interpretation)



Thank you



