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Pattern takes the form  w1
* w2

* … wn
*  

 wi is a word, symbols represent data in SM 



From SM programs to grammars 

Shared memory program consist of  
– Set of procedures accessing local and global variables 

(bounded data) 

– Set of threads having initial points 

Shared 
Memory 
Program 

Message 
Passing 

Program 
Grammar 

Message passing program consist of  

– Set of threads and procedures accessing local 
variables (bounded data), sending/receiving messages 



Message passing example 

  void main() 

0  int x = 5; 

1  while (x>0) { 

2    b(); 

3    x--;   

4  } 

5} 

 

 void b(){ 

   int y; 

6 reicv(ch1,y); 

7 send(ch2,y); 

7} 

• The example copies 5 items from 
the channel ch1 to ch2 
 

• Semantics 
– receive(ch1,var) 

• Block until someone calls 
send(ch1,data) and all the others call 
receive(ch1,var2) 

• assign var=data 

– send(ch1,data) 
• Block until all other threads call 

receive(ch1,var) 



Shared memory as message passing 

• Modify SM program: 
– All variables are local 

– At each program location simulate context switch 
• Send the content of ‘global’ data 

• Switch to the inactive state 

• Wait until someone else sends the content of memory 

 

• Two messages for each context switch 
– yield(gmem) – go to inactive state 

– go(TID) – go back to the active state 
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t1 computation 
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Context switching as msg passing 

… 

t1 is active 
Stack changes 

No terminals produced 

… 

t1 inactive 
Other threads can go, 

 and write whatever value 

t1 is active again 

… 

t2 is active 

… … 

t2 inactive 

… … 

t2 inactive 

t2 computation 

t1 computation 



Modification of SM program  

  

 

0  bit=F; 

 

1  if bit==T 

 

2    goto 4; 

 

3  return; 

 

4  print “busted” 

bit=F bit=T 
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send(yield,bit=F) 
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Inactive 

bit=T 

Nondet-choice 
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reicv(go,1)> 

Inactive states, communication 

bit=F bit=T Inactive 

bit=F 

send(yield,bit=F) 

send(go,0) 

TID=0 

reicv(yield,bit=T) 

Inactive 

bit=T 

send(go,0) 

reicv(yield,bit=F) 

reicv(go,1) send(yield,bit=T) 



Modification of SM program  
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Modification of SM program  

TID = 0 

 

0  bit=F; 

 

1  if bit==T 

 

2    goto 4; 

 

3  return; 
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Msg passing prg. as ctx-free grammar 

• ti represented by context-free grammar Gi 

– Non-terminals encode program positions and variables 
– Grammar rules simulate program transition 

• Context-free grammar needed to support function calls 

– Terminals encode communication 
 
 
 

• wL(Gi) – sequence of ti communications 
• w L(G1) L(G2) – history allowed by both threads 

 
Emptiness of L(G1) L(G2) is undecidable 
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Msg passing as grammar 

  void main() 

0  int x = 5; 

1  while (x>0) { 

2    b(); 

3    x--;   

4  } 

5} 

 

 void b(){ 

6  reicv(ch); 

7} 

Init       -> [x’=5,pc=1] 

[x>0,pc=1] -> [x’=x,pc=2] 

[x=0,pc=1] -> [x’=0,pc=5] 

[x,pc=2] -> [pc=6][x’=x,pc=3] 

[x,pc=3] -> [x’=x-1,pc=1] 

[x,pc=5] ->  

 

[pc=6] -> <ch> 

 
Init * <msg><msg><msg><msg><msg> 

 
The process will reach its final position (5) only if the 
cooperating thread can produce 5 messages as well 



Decision procedure 

• Reachability in concurrent program as a language problem 
– Intersection of context-free languages 

• Emptiness of L(G1) L(G2) undecidable   
 

• Context bounded verification  
[Shaz Qadeer, Jakob Rehof. Context-Bounded Model Checking of Concurrent Software in Tacas ’05+ 

– At most k context switches  
• Emptiness of L(G1) L(G2) {go(TID),yield(gmem)}2k 

 

• Pattern based verification 
[Pierre Ganty, Rupak Majumdar, Benjamin Monmege. Bounded Underapproximations in CAV’10] 

– Context switches follow the pattern 
• Emptiness of L(G1)  w1

*…wn
* L(G2) 

• wi  {go(TID),yield(gmem)}*  
• Example – at most k ctx sw : (go(0)* go(1)* yield(true)* yield(false)*)K 



Decision Procedure 

L(G1)  w1
*…wn

*L(G2) =  



Decision procedure 

• Counting of w matters 
w1

i w2
j … wn

kL(G)  w1
*…wn

* 

 

• Modify G to G’ 
– Accept only words from pattern 

• CFL are closed to intersection w/ regular languages 

– Produce single terminal ap instead of the word wp 

 

• w1
i … wn

kL(G)  w1
*…wn

*  a1
i … an

kL(G’) 
 



Parikh image 

• Fixed linear order over alphabet 
– ={a1, a2 … ap} 

 

• Parikh image of w  * is a p-dimensions vector 
– i-th part is the number of occurrences of i-th symbol in w 
– (w) =<i1, i2, …, ip>, (a1a1a1a2) =<3,1,0,…,0> 

 

• Parikh image of language L  * 
– set of Parikh images of words from L 
– (L)={, w L (w)= } 

 
• Parikh image omits the order of symbols 



Decision procedure 

• w1
i … wn

kL(G)  w1
*…wn

*  a1
i … an

kL(G’) 
– ap are distinct, fit on their position by construction of G’ 
–   (G’)  a1

(1) … an
 (k) L(G’) 

 

• Parikh image of a context free language can be 
characterized by an existential Presburger formula 
– G’() = True    (G’) 

 

• Satisfiability of existential formula is NP-complete 
[Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005] 

 
 
 

 
 

Existential Presburger formula  
t:== 0|1|x|t1 + t2|t1 - t2 
:== t1 = t2|t1 > t2| 1  2 | 1  2 |x 1 



From Language to Formula 

L(GT1)  w1
* w2

* … wn
*  L(GT2) =  

 

L(GT1’)  L(GT2’) =  

 

(GT1’)  (GT2’) =  

 

T1’ & T2’ is unsatisfiable  

 



Construction of formula 

• Petri-net intuition 
– net is simulating the grammar but disregards the ordering 

of terminals 
 

• Structure 
– Place for each terminal and non-terminal 
– Transition for each rule 
– One token to the initial non-terminal 

 
 

 
X -> aXb 

X 

a b 
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PN example 

X -> aXb 

X ->  

X 

a b  

L(X) = aibi 
(X) = <i,i> 

Configurations corresponding wL(X)  
 all tokens in terminal places 



PN examples 

X -> aXb 

X ->  
X 

a b  

(X) = <i,i> 

X -> abX 

X ->  

X -> Xba 

X ->  

Configurations corresponding wL(X)  
 all tokens in terminal places 



Formula 

• Petri net is communication-free 

– Each transition has one input place 

– Context-free grammar (one NT on left-hand side) 

• Set of admissible configurations of CF-PN can 
be characterized by Presburger formula 



Formula 

• Formula based on  
– Kirchhoff-like rules 

• For each place “# of tokens” = “# of input transition applications” - “# 
of output transition applications” 

– Reachability rules  
• Each applied transition is reachable from the initial place 

• Variables 
– For each place A, xA is number of tokens in the place, zA distance 

from initial place 
– For each transition yi is the number of applications 

 y1 y2 

y3 y4 

xA 

xA=y1+y3-y2-y4 

Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005 
Javier Esparza: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes, 97 



Implementation 

• Input 

– Control-flow for each thread 

– Definition of global and local variables 

– Pattern 

• Goal 

– Transform grammars into formula, run solver 

 



Transformation chain for thread 

Pattern 
Pattern 

grammar 

Intersect. 

Homomorph Word wp  symbol ap 

Petri-net 
transformation 

Formula 

Instantiation 
Symbolic 
grammar 

Instantiated 
grammar 

Abstract ph. 

Thread 
Symbolic 
Grammar 



Transformation chain for thread 

Pattern 
Pattern 

grammar 

Intersect. 

Homomorph Word wp  symbol ap 

Petri-net 
transformation 

Formula 

Instantiation 
Symbolic 
grammar 

Instantiated 
grammar 

Abstract ph. 

Tedious to write 
manually 

Thread 
Symbolic 
Grammar 



Transformation chain for thread 

Data 
definition 

Ctrlflow 
grammar 

Data 
grammar 

Intersect.  Ctx Sw Restrict 

Pattern 
Pattern 

grammar 

Intersect. 

Homomorph 

Keep only yield/go 

Word wp  symbol ap 

Petri-net 
transformation 

Formula 

Instantiation 
Symbolic 
grammar 

Instantiated 
grammar 

Abstract ph. 
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• In form of context-free grammar 

– Non-terminals – program locations 

– Terminals – data access 
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Input – Ctrlflow 

• In form of context-free grammar 

– Non-terminals – program locations 

– Terminals – data test/operations 

 
L0  bit=F; 

 

L1  if bit==T 

 

L2    goto 4; 

 

L3  return; 

 

L4  print “busted” 

L0 -> <bit=F> L1 

 

L1 -> <bit==T> L2 

L1 -> <bit==F> L3 

L2 -> L4 

 

L3 ->  

 

L4  print “busted” 



Input – data definition 

• Used to generate data grammar 
 

• Data grammar 
– Non-terminals – data value 
– Terminals – data access 

• The same terminals are in control flow grammar 

– Regular rules, symbolic  
 [x=C,y=D] -> <x==C>[x=C,y=D] 

 
• Generated language  valid memory behavior 

– <x=4> can be followed by <x==4> but not <x==5> 
– Intersected with the control flow grammar to provide 

semantics 



Input - pattern 

 

• Pattern expression 

– List of words (yield/go) 

– Transformed into regular grammar 



Transformation chain for thread 

Mem 
definition 

Ctrlflow 
grammar 

Data 
grammar 

Intersect.  Ctx Sw Restrict 

Pattern 
Pattern 

grammar 

Intersect. 

Homomorph 

Keep only yield/go 

Word wp  symbol ap 

Petri-net 
transformation 

Formula 

Instantiation 
Symbolic 
grammar 

Instantiated 
grammar 

Abstract ph. 



Instantiation 

• Non-terminals in symbolic rules use variables 
– One symbolic rule stands for number of ‘ground’ rules 

 
 
 
 
 
 

 
• Petri-net transformation can not process symbolic rules 

– Formula needs to have fixed number of variables 
(nonterminals,rules) 
 

[pc=1,x=?] -> *pc=2,x’=x+1+ 

[pc=1,x=0] -> [pc=2,x’=1+ 

[pc=1,x=1] -> [pc=2,x’=2+ 

…
 

[pc=1,x=254] -> [pc=2,x’=255+ 



Instantiation 

• Goal – Provide the set of grounded rules used by the grammar 
– Omit unreachable combinations of program positions and variables 

• Algorithm 
– Find all non-terms reachable (from initial non-terminal) and 

generating (can be rewriten to sequence of terminals) 
– Transitive closure  
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Instantiation 

A-Generating 

• Experience: Number of non-terminals in the first phase tends to be large, 
intersection is relatively small 
 

• Abstraction phase 
– Omit the local variables 
– Run the instantiation to get legal combinations of global variables and 

program locations A. 
– Run the instantiation on the original grammar, use A as superset of the result 
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A-Reachable A-Generating 



Instantiation 

A 

• Experience: Number of non-terminals in the first phase tends to be large, 
intersection is relatively small 
 

• Abstraction phase 
– Omit the local variables 
– Run the instantiation to get legal combinations of global variables and 

program locations A. 
– Run the instantiation on the original grammar, use A as superset of the result 



Instantiation 

A 

• Experience: Number of non-terminals in the first phase tends to be large, 
intersection is relatively small 
 

• Abstraction phase 
– Omit the local variables 
– Run the instantiation to get legal combinations of global variables and 

program locations A. 
– Run the instantiation on the original grammar, use A as superset of the result 



Instantiation 

A 

• Experience: Number of non-terminals in the first phase tends to be large, 
intersection is relatively small 
 

• Abstraction phase 
– Omit the local variables 
– Run the instantiation to get legal combinations of global variables and 

program locations A. 
– Run the instantiation on the original grammar, use A as superset of the result 



Transformation chain 

Data 
definition 

T1Ctrlflow 

Pattern 

Chain T1 formula 

T2 Ctrlflow Chain T2formula 

Tn Ctrlflow Chain Tn formula 

 Formula 

Solver 

Satisfiable  point is reachable 
                Trace given by solution 



Validation 

• Windows NT bluetooth driver example 
– Several variants, race conditions reported in 

Suwimonteerabuth, Esparza, Schwoon: Symbolic Context-Bounded 
Analysis of Multithreaded Java Programs, SPIN '08 

– We can detect them all, given the proper pattern 

• Still toy example 
– Input simplified to preserve essence of the bug 

 
Task Formula clauses Transform Time[s] Yices Time[s] 

bt1 1074 62 1 

bt2 6664 1003 1 

bt2 2924 816 1 

cavpp 5840 12 236 

The size of data bothers the transformation, length of trace bothers yices 



Abstraction phase helps 

Thread A-Gener 
[abst. NT] 

A 
[abst. NT] 

Gener 
[NT] 

Reach 
[NT] 

Total Time 
[s] 

bt1/add skip skip 465822 326 438 

bt1/add 46005 251 2394 326 26 

bt3/add 150022 922 7445 787 280 

bt3/stop 294773 520 3557 48 257 

• Two variants of BT example runs out of 
memory if the abstraction phase is off 



Conclusion 

• Theory works 
– Bluetooth example is small, but real 

 

• Tool runs 
– Lots of technical details solved 
– Provides result for all toy examples we have 
 

• Future directions 
– More, larger, examples 
– Instantiation phase  

• Skip it – push  the instantiation phase into formula 
• Smarter approximation (e.g. abstract interpretation) 

 



Thank you 


