
Pattern-based Verification of
Concurrent Programs

Tomáš Poch, Pierre Ganty

IMDEA internship talk
Jan 20, 2011

Pattern takes the form w1
* w2

* … wn
*

 wi is a word, symbols represent data in SM

From SM programs to grammars

Shared memory program consist of
– Set of procedures accessing local and global variables

(bounded data)

– Set of threads having initial points

Shared
Memory
Program

Message
Passing

Program
Grammar

Message passing program consist of

– Set of threads and procedures accessing local
variables (bounded data), sending/receiving messages

Message passing example

 void main()

0 int x = 5;

1 while (x>0) {

2 b();

3 x--;

4 }

5}

 void b(){

 int y;

6 reicv(ch1,y);

7 send(ch2,y);

7}

• The example copies 5 items from
the channel ch1 to ch2

• Semantics
– receive(ch1,var)

• Block until someone calls
send(ch1,data) and all the others call
receive(ch1,var2)

• assign var=data

– send(ch1,data)
• Block until all other threads call

receive(ch1,var)

Shared memory as message passing

• Modify SM program:
– All variables are local

– At each program location simulate context switch
• Send the content of ‘global’ data

• Switch to the inactive state

• Wait until someone else sends the content of memory

• Two messages for each context switch
– yield(gmem) – go to inactive state

– go(TID) – go back to the active state

Context switching as msg passing

…

t1 is active
Stack changes

No messages produced

t1 computation

Context switching as msg passing

…

t1 is active
Stack changes

No messages produced

t1 computation

Context switching as msg passing

…

t1 is active
Stack changes

No messages produced

…

t1 inactive
Other threads can go,

 and write whatever value

t1 computation

Context switching as msg passing

t1 computation

…

t1 is active
Stack changes

No messages produced

…

t1 inactive
Other threads can go,

 and write whatever value

t1 is active again

…

Context switching as msg passing

…

t1 is active
Stack changes

No terminals produced

…

t1 inactive
Other threads can go,

 and write whatever value

t1 is active again

…

<go,TID>,<yield(g1)>
Per context switch

t1 computation

Context switching as msg passing

…

t1 is active
Stack changes

No terminals produced

…

t1 inactive
Other threads can go,

 and write whatever value

t1 is active again

…

t2 is active

… …

t2 inactive

… …

t2 inactive

t2 computation

t1 computation

Modification of SM program

0 bit=F;

1 if bit==T

2 goto 4;

3 return;

4 print “busted”

bit=F bit=T

Inactive states, communication
TID=0

Inactive states, communication

bit=F bit=T Inactive

bit=F

TID=0

Inactive

bit=T

Inactive states, communication

bit=F bit=T Inactive

bit=F

send(yield,bit=F)

TID=0

Inactive

bit=T

Nondet-choice

reicv(go,1)>

Inactive states, communication

bit=F bit=T Inactive

bit=F

send(yield,bit=F)

TID=0

Inactive

bit=T

reicv(go,1)>

Inactive states, communication

bit=F bit=T Inactive

bit=F

send(yield,bit=F)

TID=0

reicv(yield,bit=T)

Inactive

bit=T

reicv(go,1)>

Inactive states, communication

bit=F bit=T Inactive

bit=F

send(yield,bit=F)

TID=0

reicv(yield,bit=T)

Inactive

bit=T

send(go,0)

reicv(go,1)>

Inactive states, communication

bit=F bit=T Inactive

bit=F

send(yield,bit=F)

send(go,0)

TID=0

reicv(yield,bit=T)

Inactive

bit=T

send(go,0)

reicv(yield,bit=F)

reicv(go,1) send(yield,bit=T)

Modification of SM program

TID = 0

0 bit=F;

1 if bit==T

2 goto 4;

3 return;

4 print “busted”

bit=F bit=T Inactive

bit=F

Inactive

bit=T

go,TID=…

yield,bit=…

Modification of SM program

TID = 0

0 bit=F;

1 if bit==T

2 goto 4;

3 return;

4 print “busted”

bit=F bit=T Inactive

bit=F

Inactive

bit=T

go,TID=…

yield,bit=…

Msg passing prg. as ctx-free grammar

• ti represented by context-free grammar Gi

– Non-terminals encode program positions and variables
– Grammar rules simulate program transition

• Context-free grammar needed to support function calls

– Terminals encode communication

• wL(Gi) – sequence of ti communications
• w L(G1) L(G2) – history allowed by both threads

Emptiness of L(G1) L(G2) is undecidable

Msg passing as grammar

 void main()

0 int x = 5;

1 while (x>0) {

2 b();

3 x--;

4 }

5}

 void b(){

6 reicv(ch);

7}

Msg passing as grammar

 void main()

0 int x = 5;

1 while (x>0) {

2 b();

3 x--;

4 }

5}

 void b(){

6 reicv(ch);

7}

Init -> [x’=5,pc=1]

[x>0,pc=1] -> [x’=x,pc=2]

[x=0,pc=1] -> [x’=0,pc=5]

[x,pc=2] -> [pc=6][x’=x,pc=3]

[x,pc=3] -> [x’=x-1,pc=1]

[x,pc=5] -> 

[pc=6] -> <ch>

Msg passing as grammar

 void main()

0 int x = 5;

1 while (x>0) {

2 b();

3 x--;

4 }

5}

 void b(){

6 reicv(ch);

7}

Init -> [x’=5,pc=1]

[x>0,pc=1] -> [x’=x,pc=2]

[x=0,pc=1] -> [x’=0,pc=5]

[x,pc=2] -> [pc=6][x’=x,pc=3]

[x,pc=3] -> [x’=x-1,pc=1]

[x,pc=5] -> 

[pc=6] -> <ch>

Fcn call

Msg passing as grammar

 void main()

0 int x = 5;

1 while (x>0) {

2 b();

3 x--;

4 }

5}

 void b(){

6 reicv(ch);

7}

Init -> [x’=5,pc=1]

[x>0,pc=1] -> [x’=x,pc=2]

[x=0,pc=1] -> [x’=0,pc=5]

[x,pc=2] -> [pc=6][x’=x,pc=3]

[x,pc=3] -> [x’=x-1,pc=1]

[x,pc=5] -> 

[pc=6] -> <ch>

Init * <msg><msg><msg><msg><msg>

The process will reach its final position (5) only if the
cooperating thread can produce 5 messages as well

Decision procedure

• Reachability in concurrent program as a language problem
– Intersection of context-free languages

• Emptiness of L(G1) L(G2) undecidable

• Context bounded verification
[Shaz Qadeer, Jakob Rehof. Context-Bounded Model Checking of Concurrent Software in Tacas ’05+

– At most k context switches
• Emptiness of L(G1) L(G2) {go(TID),yield(gmem)}2k

• Pattern based verification
[Pierre Ganty, Rupak Majumdar, Benjamin Monmege. Bounded Underapproximations in CAV’10]

– Context switches follow the pattern
• Emptiness of L(G1)  w1

*…wn
* L(G2)

• wi  {go(TID),yield(gmem)}*
• Example – at most k ctx sw : (go(0)* go(1)* yield(true)* yield(false)*)K

Decision Procedure

L(G1)  w1
*…wn

*L(G2) = 

Decision procedure

• Counting of w matters
w1

i w2
j … wn

kL(G)  w1
*…wn

*

• Modify G to G’
– Accept only words from pattern

• CFL are closed to intersection w/ regular languages

– Produce single terminal ap instead of the word wp

• w1
i … wn

kL(G)  w1
*…wn

*  a1
i … an

kL(G’)

Parikh image

• Fixed linear order over alphabet
– ={a1, a2 … ap}

• Parikh image of w  * is a p-dimensions vector
– i-th part is the number of occurrences of i-th symbol in w
– (w) =<i1, i2, …, ip>, (a1a1a1a2) =<3,1,0,…,0>

• Parikh image of language L  *
– set of Parikh images of words from L
– (L)={, w L (w)= }

• Parikh image omits the order of symbols

Decision procedure

• w1
i … wn

kL(G)  w1
*…wn

*  a1
i … an

kL(G’)
– ap are distinct, fit on their position by construction of G’
–   (G’)  a1

(1) … an
 (k) L(G’)

• Parikh image of a context free language can be
characterized by an existential Presburger formula
– G’() = True    (G’)

• Satisfiability of existential formula is NP-complete
[Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005]

Existential Presburger formula 
t:== 0|1|x|t1 + t2|t1 - t2
:== t1 = t2|t1 > t2| 1  2 | 1  2 |x 1

From Language to Formula

L(GT1)  w1
* w2

* … wn
*  L(GT2) = 



L(GT1’)  L(GT2’) = 



(GT1’)  (GT2’) = 



T1’ & T2’ is unsatisfiable

Construction of formula

• Petri-net intuition
– net is simulating the grammar but disregards the ordering

of terminals

• Structure
– Place for each terminal and non-terminal
– Transition for each rule
– One token to the initial non-terminal

X -> aXb

X

a b

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

PN example

X -> aXb

X -> 

X

a b 

L(X) = aibi
(X) = <i,i>

Configurations corresponding wL(X)
 all tokens in terminal places

PN examples

X -> aXb

X -> 
X

a b 

(X) = <i,i>

X -> abX

X -> 

X -> Xba

X -> 

Configurations corresponding wL(X)
 all tokens in terminal places

Formula

• Petri net is communication-free

– Each transition has one input place

– Context-free grammar (one NT on left-hand side)

• Set of admissible configurations of CF-PN can
be characterized by Presburger formula

Formula

• Formula based on
– Kirchhoff-like rules

• For each place “# of tokens” = “# of input transition applications” - “#
of output transition applications”

– Reachability rules
• Each applied transition is reachable from the initial place

• Variables
– For each place A, xA is number of tokens in the place, zA distance

from initial place
– For each transition yi is the number of applications

 y1 y2

y3 y4

xA

xA=y1+y3-y2-y4

Verma, Seidl, Schwentick: On the Complexity of Equational Horn Clauses, 2005
Javier Esparza: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel Processes, 97

Implementation

• Input

– Control-flow for each thread

– Definition of global and local variables

– Pattern

• Goal

– Transform grammars into formula, run solver

Transformation chain for thread

Pattern
Pattern

grammar

Intersect.

Homomorph Word wp  symbol ap

Petri-net
transformation

Formula

Instantiation
Symbolic
grammar

Instantiated
grammar

Abstract ph.

Thread
Symbolic
Grammar

Transformation chain for thread

Pattern
Pattern

grammar

Intersect.

Homomorph Word wp  symbol ap

Petri-net
transformation

Formula

Instantiation
Symbolic
grammar

Instantiated
grammar

Abstract ph.

Tedious to write
manually

Thread
Symbolic
Grammar

Transformation chain for thread

Data
definition

Ctrlflow
grammar

Data
grammar

Intersect. Ctx Sw Restrict

Pattern
Pattern

grammar

Intersect.

Homomorph

Keep only yield/go

Word wp  symbol ap

Petri-net
transformation

Formula

Instantiation
Symbolic
grammar

Instantiated
grammar

Abstract ph.

Input – Ctrlflow

• In form of context-free grammar

– Non-terminals – program locations

– Terminals – data access

Input – Ctrlflow

• In form of context-free grammar

– Non-terminals – program locations

– Terminals – data test/operations

L0 bit=F;

L1 if bit==T

L2 goto 4;

L3 return;

L4 print “busted”

Input – Ctrlflow

• In form of context-free grammar

– Non-terminals – program locations

– Terminals – data test/operations

L0 bit=F;

L1 if bit==T

L2 goto 4;

L3 return;

L4 print “busted”

L0 -> <bit=F> L1

L1 -> <bit==T> L2

L1 -> <bit==F> L3

L2 -> L4

L3 -> 

L4 print “busted”

Input – data definition

• Used to generate data grammar

• Data grammar
– Non-terminals – data value
– Terminals – data access

• The same terminals are in control flow grammar

– Regular rules, symbolic
 [x=C,y=D] -> <x==C>[x=C,y=D]

• Generated language  valid memory behavior

– <x=4> can be followed by <x==4> but not <x==5>
– Intersected with the control flow grammar to provide

semantics

Input - pattern

• Pattern expression

– List of words (yield/go)

– Transformed into regular grammar

Transformation chain for thread

Mem
definition

Ctrlflow
grammar

Data
grammar

Intersect. Ctx Sw Restrict

Pattern
Pattern

grammar

Intersect.

Homomorph

Keep only yield/go

Word wp  symbol ap

Petri-net
transformation

Formula

Instantiation
Symbolic
grammar

Instantiated
grammar

Abstract ph.

Instantiation

• Non-terminals in symbolic rules use variables
– One symbolic rule stands for number of ‘ground’ rules

• Petri-net transformation can not process symbolic rules

– Formula needs to have fixed number of variables
(nonterminals,rules)

[pc=1,x=?] -> *pc=2,x’=x+1+

[pc=1,x=0] -> [pc=2,x’=1+

[pc=1,x=1] -> [pc=2,x’=2+

…

[pc=1,x=254] -> [pc=2,x’=255+

Instantiation

• Goal – Provide the set of grounded rules used by the grammar
– Omit unreachable combinations of program positions and variables

• Algorithm
– Find all non-terms reachable (from initial non-terminal) and

generating (can be rewriten to sequence of terminals)
– Transitive closure

Instantiation

• Goal – Provide the set of grounded rules used by the grammar
– Omit unreachable combinations of program positions and variables

• Algorithm
– Find all non-terms reachable (from initial non-terminal) and

generating (can be rewriten to sequence of terminals)
– Transitive closure

Instantiation

• Goal – Provide the set of grounded rules used by the grammar
– Omit unreachable combinations of program positions and variables

• Algorithm
– Find all non-terms reachable (from initial non-terminal) and

generating (can be rewriten to sequence of terminals)
– Transitive closure

Instantiation

A-Generating

• Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

• Abstraction phase
– Omit the local variables
– Run the instantiation to get legal combinations of global variables and

program locations A.
– Run the instantiation on the original grammar, use A as superset of the result

Instantiation

• Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

• Abstraction phase
– Omit the local variables
– Run the instantiation to get legal combinations of global variables and

program locations A.
– Run the instantiation on the original grammar, use A as superset of the result

A-Reachable A-Generating

Instantiation

A

• Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

• Abstraction phase
– Omit the local variables
– Run the instantiation to get legal combinations of global variables and

program locations A.
– Run the instantiation on the original grammar, use A as superset of the result

Instantiation

A

• Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

• Abstraction phase
– Omit the local variables
– Run the instantiation to get legal combinations of global variables and

program locations A.
– Run the instantiation on the original grammar, use A as superset of the result

Instantiation

A

• Experience: Number of non-terminals in the first phase tends to be large,
intersection is relatively small

• Abstraction phase
– Omit the local variables
– Run the instantiation to get legal combinations of global variables and

program locations A.
– Run the instantiation on the original grammar, use A as superset of the result

Transformation chain

Data
definition

T1Ctrlflow

Pattern

Chain T1 formula

T2 Ctrlflow Chain T2formula

Tn Ctrlflow Chain Tn formula

 Formula

Solver

Satisfiable  point is reachable
 Trace given by solution

Validation

• Windows NT bluetooth driver example
– Several variants, race conditions reported in

Suwimonteerabuth, Esparza, Schwoon: Symbolic Context-Bounded
Analysis of Multithreaded Java Programs, SPIN '08

– We can detect them all, given the proper pattern

• Still toy example
– Input simplified to preserve essence of the bug

Task Formula clauses Transform Time[s] Yices Time[s]

bt1 1074 62 1

bt2 6664 1003 1

bt2 2924 816 1

cavpp 5840 12 236

The size of data bothers the transformation, length of trace bothers yices

Abstraction phase helps

Thread A-Gener
[abst. NT]

A
[abst. NT]

Gener
[NT]

Reach
[NT]

Total Time
[s]

bt1/add skip skip 465822 326 438

bt1/add 46005 251 2394 326 26

bt3/add 150022 922 7445 787 280

bt3/stop 294773 520 3557 48 257

• Two variants of BT example runs out of
memory if the abstraction phase is off

Conclusion

• Theory works
– Bluetooth example is small, but real

• Tool runs
– Lots of technical details solved
– Provides result for all toy examples we have

• Future directions
– More, larger, examples
– Instantiation phase

• Skip it – push the instantiation phase into formula
• Smarter approximation (e.g. abstract interpretation)

Thank you

