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Abstract
Self-adjusting computation is an evaluation model in which pro-
grams can respond efficiently to small changes to their input data by
using a change-propagation mechanism that updates computation
by re-building only the parts affected by changes. Previous work
has proposed language techniques for self-adjusting computation
and showed the approach to be effective in a number of application
areas. However, due to the complex semantics of change propaga-
tion and the indirect nature of previously proposed language tech-
niques, it remains difficult to reason about the efficiency of self-
adjusting programs and change propagation.

In this paper, we propose a cost semantics for self-adjusting
computation that enables reasoning about its effectiveness. As our
source language, we consider a direct-style λ-calculus with first-
class mutable references and develop a notion of trace distance
for source programs. To facilitate asymptotic analysis, we propose
techniques for composing and generalizing concrete distances via
trace contexts (traces with holes). We then show how to translate
the source language into a self-adjusting target language such that
the translation (1) preserves the extensional semantics of the source
programs and the cost of from-scratch runs, and (2) ensures that
change propagation between two evaluations takes time bounded
by their relative distance. We consider several examples and ana-
lyze their effectiveness by considering upper and lower bounds.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Languages.

Keywords Self-adjusting computation, cost semantics.

1. Introduction
In many applications it can be important or even necessary to effi-
ciently update the output of a computation as the input undergoes
small changes over time. This problem, broadly known as incre-
mental computation, has been studied extensively in both the algo-
rithms and programming languages communities.
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In the algorithms community, researchers devised algorithms
that are optimized to take advantage of specific small input changes.
Over the course of hundreds of papers (see Chiang and Tamassia
1992; Eppstein et al. 1999; Agarwal et al. 2002 for surveys), impor-
tant advances have been made. Those results show that it is often
possible to update computations asymptotically faster (often by a
linear factor) than re-computing from scratch. However, incremen-
tal algorithms can be difficult to design and analyze, especially for
sophisticated problems (e.g., 3D motion simulation (Guibas 1998)).
These algorithms can also be difficult to implement and use, be-
cause of inherent complexity and non-compositionality.

Over the same period of time, the programming languages com-
munity has made significant progress on run-time and compile-time
approaches to incremental computation (e.g., Demers et al. 1981;
Pugh and Teitelbaum 1989; see Ramalingam and Reps 1993 for a
survey). The goal of this line of work is to derive incremental pro-
grams from static programs automatically or semi-automatically.
The idea is to maintain certain information during an execution
that can be used to efficiently update the output after changes to
the input. Recent work on self-adjusting computation (e.g., Acar
et al. 2006b,a; Ley-Wild et al. 2008b) proposed a general-purpose
change-propagation mechanism that can closely match asymptotic
performance bounds achieved by algorithmic techniques. Self-
adjusting computation has been shown to be effective in various
applications (e.g., Acar et al. 2004, 2006a,c, 2008c,b). For exam-
ple, recent work (Acar et al. 2008b) proposed a solution to simulat-
ing moving convex hulls in 3D, a problem that has resisted ad hoc
approaches for a decade (Guibas 1998).

Reasoning about the effectiveness of self-adjusting programs,
however, remains difficult. In particular, there is no cost model for
self-adjusting computation. Previous applications of the approach
often give only experimental results to illustrate performance gains
(e.g., Acar et al. 2006a,c, 2008b). Giving asymptotic bounds re-
quires integrating change propagation into the algorithm by consid-
ering a low-level machine model akin to the RAM model (e.g., Acar
et al. 2004). As a result, the bounds derived do not directly apply
to the code as written. More importantly, the approach does not
provide a source-level reasoning mechanism. The main difficulty
in reasoning about a self-adjusting program is understanding how
the program responds to changes to its data. One reason for this is
the complexity of the update mechanism; another is the nature of
previously proposed linguistic techniques.

To see the first difficulty, consider executing a program with
some input and later changing the input. In self-adjusting compu-
tation, as the program executes, information about the execution
(such as data and control dependencies) is recorded. After the input
is changed, the output is updated by performing change propaga-
tion to find the parts of the computation affected by the change, us-
ing the recorded dependence information and updating stale com-
putation by re-executing code. When re-executing code, change
propagation may reuse previous computations with a form of com-
putation memoization. Since change-propagation re-executes parts
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Figure 1. The left diagram illustrates the correspondence between
the source and target from-scratch runs and the consistency of
change propagation in the target. The right diagram illustrates the
correspondence between distance in the source and target, and the
time for change propagation in the target.

of the program code and reuses other parts of the execution, it is
hard to reason about its complexity. In particular, the user may need
to reason about the contexts in which sub-expressions are evaluated
to distinguish changed and unchanged data, which can be difficult
even with limited forms of computation reuse techniques such as
lazy evaluation (e.g., Wadler and Hughes 1987; Sands 1990a,b).

Other difficulties arise from the nature of the previously pro-
posed linguistic facilities. These approaches require the program-
mer to mark all data that change over time and identify their depen-
dencies, delimit the static scope of the operation that reads change-
able data (essentially identifying control dependencies), and apply
memoization by carefully considering whether the data dependen-
cies are local or non-local (Acar et al. 2006a). Depending on the
choice of the scope for the primitives and the use of memoization,
the programmer may observe drastically different performance.

In this paper, we propose a cost semantics for self-adjusting
computation. We consider a natural source language, give a cost
semantics for the language, and develop techniques for reasoning
about the similarity of executions. We then show techniques for
compiling source programs into a self-adjusting target language
that preserves both the extensional (meaning) and the intensional
(cost) semantics of the source programs. By offering a natural,
high-level source language, we eliminate the burden of restructur-
ing a program for self-adjusting computation. By offering a cost se-
mantics and a translation mechanism, we provide realistic source-
level reasoning techniques that guarantee performance.

Figure 1 illustrates our approach. Our source language is a λ-
calculus with first-class references. Its cost semantics evaluates ex-
pressions (es) in the context of stores (σs) in the usual way, and pro-
duces a trace of the evaluation (T s) and a step count (cs). We quan-
tify the similarity between evaluations of source programs with a
trace distance (T s

1 	s T s
2 = ds states that the distance between

the traces T s
1 and T s

2 is ds). Intuitively, the trace distance measures
the “edit distance” between evaluations. To give an effective dis-
tance, we show that it suffices to record function calls and store
operations in the trace. We don’t record complete stores or evalu-
ation contexts.1 Since our language is stateful, recording complete
stores would lead to a distance measure that overestimates distance
significantly; requiring evaluation contexts would make reasoning
cumbersome. To enable proving asymptotic bounds on distance, in
addition to just concrete evaluations, we develop a notion of trace
contexts, which are traces with holes that can be filled with other
traces. We prove that, under certain conditions, distance is additive
under substitution: the distance between traces obtained via substi-

1 For some time, we thought that evaluation contexts, which describe how
results are used, were necessary. We use evaluation contexts to prove our
meta-theoretic results, but they are not necessary for source-level reasoning.

tution into two contexts is the same the distance between the sub-
stituted traces themselves plus the distance between the contexts.

We compile the source language into a self-adjusting target
language. The target language has mutable modifiable references
and is in continuation-passing style; its syntax combines ideas from
recent work on imperative self-adjusting computation (Acar et al.
2008a) and on compiling self-adjusting programs (Ley-Wild et al.
2008b). Evaluation of a target expression (et) takes place in the
context of a store (σt) and yields a value (vt) and a trace (T t).
The semantics includes a change-propagation mechanism (yt) that
can replay a trace from a previous run (e.g., T t

0) in a store (σt) to
produce a value and a trace that are consistent with a from-scratch
execution, while reusing the work from the initial trace (T t

0). We
give a cost semantics for the target language that counts steps of
evaluation (but not steps of change propagation). As in the source,
we define a distance for traces (	t) and bound the time for change
propagation by the distance between the computation traces before
and after propagation.

We connect the source and target languages by providing a
compilation mechanism that translates source programs into target
programs. The adaptive cps (ACPS) translation extends recent
work (Ley-Wild et al. 2008b) to support imperative references and
yields provably efficient self-adjusting programs. In particular, we
prove the following properties of the translation (cf., Figure 1).

• Extensional semantics: The translation preserves the evalua-
tion of source programs (top left square).

• Intensional semantics: The translation preserves the asymp-
totic cost of from-scratch runs (top left square).

• Consistency of change propagation. Change propagation (in
the target) preserves the extensional semantics of from-scratch
runs (bottom left square).

• Trace distances. Translated programs have asymptotically the
same trace distance as their source (top right square).

• Change propagation time. Time for change propagation (in
the target) coincides with source trace distance (right diagram).

To prove the first two properties, we generalize a folklore theo-
rem about cps to show that an ACPS-compiled program preserves
the evaluation and asymptotic complexity of a source program. The
ACPS translation is more complicated than the standard translation
because it threads continuations through the store. We give a sim-
ple, structural proof of the consistency of change propagation by
casting it as a full replay mechanism. This simplification is made
possible by the translation itself—earlier work had to use step-
indexed logical relations for capturing the correspondence between
stateful programs (Acar et al. 2008a). We prove the fourth prop-
erty by establishing a relation between the traces of the source and
the target programs. This property also bounds the time for change
propagation (the last property) by showing that change propagation
in the target takes time proportional to the target distance.

There are several properties of trace distance that we would like
to note. First, trace distance is a relation. By defining it relationally,
we allow the approach to apply to any concrete implementation
technique consistent with the semantics: our main theorems state
that our translation can match any source distance computed re-
lationally. Second, trace distance is sensitive to the choice of loca-
tions. This is because trace distance compares concrete evaluations.
Previous implementations of self-adjusting computations can often
choose locations to minimize the trace distance. Since our theorems
can match any distance computed, they apply to existing implemen-
tations. The problem of whether an implementation can efficiently
achieve the minimum possible distance is not well understood: this
is undecidable in general but these impossibility results typically
involve programs that don’t arise in practice.
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G`n→nil Pnil↑`
′
n

mapA (`n) ⇓ `′n Pc::`′n↑`3

mapA (`3) ⇓ `c Pa::`c↑`a

mapA (`1) ⇓ `a
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mapA (`3) ⇓ `c Pb::`c↑`b

mapA (`2) ⇓ `b Pa::`b↑`a

mapA (`1) ⇓ `a

Figure 2. The abstract derivations for executions of mapA with inputs [1,3] (left) and [1,2,3] (right).

Due to space restrictions, we refer the reader to the companion
technical report (Ley-Wild et al. 2008a) for the details of the proofs
and Twelf code.

2. An Overview of Derivation Distances
We give a high-level overview of derivation distance and contexts.
As a simple example, we consider a map function.

Our source language is a λ-calculus with references. This lan-
guage is general-purpose (Turing-complete) and expressive: it
allows writing both structured programs (e.g., iterative divide-
and-conquer list algorithms) as well as unstructured programs
(e.g., graph algorithms). In this language, we can define linked
lists and implement a map function for them as follows.

datatype ’a cell = nil | :: of ’a * ’a list
withtype ’a list = ’a cell ref

fun map (f : ’a -> ’b) (l : ’a list) : ’b list =
case !l of

nil => ref nil
| h::t => let mt = map f t in ref ((f h)::mt) end

This essentially-standard implementation of map with pointer-
based lists is actually self-adjusting: using the techniques described
in this paper (Section 6), we can compile it to a self-adjusting pro-
gram. The resulting self-adjusting program can be run with some
input list. Afterwards, any of the contents of the references can be
changed and the output can be updated via change propagation. For
example, consider a specialization mapA of map that maps integers
to letters of the alphabet. Consider running mapA with input [1,3]
to obtain [a,c] and then changing the input to [1,2,3] by writing
a new cons cell into the first tail pointer. After this change, we can
run change change propagation to update the output to [a,b,c].

How fast would we expect change propagation be after inserting
an element into the input? Intuitively, we only need to translate the
new integer into a letter, which requires constant time, but we also
need to find the right place to insert the element in the output—it is
not clear how much time that would take.

Derivation Distance. We develop techniques for reasoning about
the effectiveness of change propagation by using derivation dis-
tance.2 The idea is to compare the evaluation derivations of a pro-
gram with two different, typically similar, inputs and compute the
“edit distance” between these derivations. But what should the dis-
tance between evaluations be? Comparing evaluation derivations
directly yields coarse distances. To see this, consider comparing
the derivation for the evaluation of mapA with inputs [1,3] and
[1,2,3]. Since these inputs are represented in the store and since
the store is threaded through the derivation, all of derivation steps
will be different—stores won’t match. Thus the distance between
the derivations would be linear in the size of the input—far larger
than the constant that we expect.

To realize the similarity between the derivations, we exclude
the store from the derivations and include the store operations in-
stead. (P stands for put (allocation); G stands for get (derefer-

2 In Section 3, we represent derivations with traces and formally define trace
distance. Here, we use derivations because they are more intuitive.

ence).) Figure 2 shows the derivations of mapA with inputs [1,3]
and [1,2,3]. The differences between the derivations are high-
lighted: the two derivations differ only at steps that operate on the
element 2, which is what differs between the two runs. Note that
the difference remains the same even if we add more elements to
these lists (e.g., [. . .,0,1,3,4,. . .] and [. . .,0,1,2,3,4,. . .]).

Of course, it is possible to make the “distance” between deriva-
tions arbitrarily small when we suppress arbitrary parts of the
derivation. We prove that this distance is in fact realistic by de-
scribing how source programs may be compiled (Section 6) to a
target language (Section 5) with provable efficiency.

Derivation Contexts. To reason about the asymptotic complexity
bounds for distance, we need to compute distance for all (appropri-
ately changed) inputs. This is difficult with the distance described
above, which requires two concrete executions. To facilitate asymp-
totic analysis, we use derivation contexts (Section 3). A derivation

context is a derivation with one or more holes in it. We write
`e⇓v

for a hole that expects an evaluation of e ⇓ v. We can obtain a
derivation from a derivation context by substituting a derivation for
a hole. As an example, consider the derivation, shown below, of
mapA applied to the list [α1, . . . , αm]@2 where 2 represents an
unspecified list. In the derivation `i (resp. oi) denotes the reference
to the cons cell containing input αi (resp. output for βi), and βi

denotes the character to which αi is mapped. Given this deriva-
tion context, we can substitute the list [1,3] for 2 and obtain the
derivation for that input by substituting the derivation of [1,3]
(shown in Figure 2) in place of the hole.3

G`1→α1::`2

G`m→αm::`2

mapA(`2)⇓o2h
Pβm::o2↑om

...
mapA (`2) ⇓ o2 Pβ1::o2↑o1

mapA (`1) ⇓ o1

Let D1[2] and D2[2] be derivation contexts and let D′1 and
D′2 be derivations. We prove that the distance between D1[D

′
1]

and D2[D
′
2] is the sum of the distances between D1[2] and D2[2]

and between D′1 and D′2, for suitably-shaped contexts. This result
enables generalizing concrete distances to arbitrary inputs. For
example, the above two analyses can be generalized and combined
to show that the distance between derivations of mapA with inputs
that differ by one element is constant. This allows us to also derive
asymptotic complexity bounds, which is generally difficult with
concrete cost semantics (Section 4).

3. The Source Language (Src)
The Src language is a simply-typed, call-by-value λ-calculus with
recursive functions and ML-style references. The language also in-
cludes natural numbers for didactic purposes and can easily be ex-
tended with products, sums, recursive types, etc., but we omit them

3 Note that not all substitutions yield well-formed derivations. In particular,
the choice of locations needs to be consistent.



; σ; v ⇓ σ; v; ε; 0

E; σ; ez ⇓ σ′; v′; T ; c

E; σ; caseNzero ez (x .es) ⇓ σ′; v′; T ; c

E; σ; {vn / x} es ⇓ σ′; v′; T ; c

E; σ; caseN (succ vn) ez (x .es) ⇓ σ′; v′; T ; c

E[2 ex]; σ; ef ⇓ σf ; fun f .x .e; Tf ; cf
E[(fun f .x .e′) 2]; σf ; ex ⇓ σx; vx; Tx; cx
E; σx; {vx / x} {fun f .x .e / f } e ⇓ σ′; v′; T ; c

E; σ; ef ex ⇓ σ′; v′; Tf ·Tx·(M(fun f .x .e) vx⇓v′

E (T )·ε); cf + cx + 1 + c

` /∈ dom(σ) σ′ = σ ] {` 7→ v}
E; σ;put v ⇓ σ′; `; Pv↑`

E ·ε; 1

` ∈ dom(σ) σ(`) = v

E; σ;get ` ⇓ σ; v; G`→v
E ·ε; 1

` ∈ dom(σ) σ′ = σ[` 7→ v]

E; σ; set ` v ⇓ σ′; zero; S`←v
E ·ε; 1

Figure 3. Src evaluation E ; σ; e ⇓ σ′; v′; T ′; c.

as they provide no additional insight. Although Src has no oper-
ational support for self-adjusting computation (i.e., a mechanism
for updating a computation under input changes), its dynamic se-
mantics produces an execution trace that can be used to quantify
similarities between runs as a distance. Src programs can be com-
piled into Tgt programs (see Sections 5 and 6), whose semantics
include a change propagation judgement that realizes updates and
asymptotically matches Src distances.

The syntax of Src is given below, which defines types τ , expres-
sions e, and values v, using metavariables f and x for identifiers
and ` for locations.

τ ::= nat | τx → τ | τ ref
e ::= v | caseN vn ez (x.es) | ef ex | put v | get v` | set v` v
v ::= x | zero | succ v | fun f.x.e | `

The dynamic semantics of memoizing functions fun f.x.e is in-
strumented to identify opportunities for computation reuse. The
reference primitives and scrutinee of caseN are restricted to value
forms for technical simplicity. This restriction can be avoided with
syntactic sugar, for example the unrestricted dereference form
get e` can be defined as (fun f.x.getx) e`.

3.1 Static, Dynamic, and Cost Semantics
The (standard, hence omitted) typing judgement Σ; Γ ` e : τ as-
cribes the type τ to the expression e in the store and variable typing
contexts Σ and Γ. Figure 3 gives the dynamic and cost semantics
of Src. The large-step evaluation relation E ; σ; e ⇓ σ′; v′; T ; c re-
duces expression e in store σ to value v′ in updated store σ′ and
yields an execution trace T and a cost c. The trace internalizes the
shape of an evaluation derivation and will be used to identify the
similar computations. The cost internalizes the size of a trace and
will be used to relate the constant slowdown due to compiling Src
programs to Tgt programs. For the present time, we suggest that
the reader ignore the highlighted evaluation context E component;
it is crucial for relating Src and Tgt distances (see Section 6), but
is not necessary for reasoning about Src distance.

We distinguish active computation as work that may be used to
identify similarities and differences in computation. Evaluation of
reference primitives and application of memoizing functions yield
active computation. Case-analysis and (in the presence of sums,
products, etc.) other forms of β-reduction are considered passive

computation. An evaluation derivation internalizes its size in a cost
c as a natural number that quantifies active work. We do not ex-
plicitly quantify passive work because it is always bounded by a
constant multiple of active work. Intuitively, since a Src program
can only perform a bounded amount of computation between func-
tion calls, memoizing function actions suffice to account for all pas-
sive work; including actions for passive work (e.g., case-analysis)
would give a more accurate measure but isn’t necessary for calcu-
lating asymptotic time complexity or distance. This property is for-
malized in the companion technical report (Ley-Wild et al. 2008a).

A trace T is an interleaving of actions that internalizes the
shape of an evaluation derivation:

As ::= P
v↑`
E | G`→v

E | S`←v
E

A ::= As | M
vf vx⇓v

E (T )
T ::= ε | A·T

Actions A serve as markers for active work and consist of store
actions and memoizing function actions. Store actions As include
allocation (P), dereference (G), and update (S), which are labeled
with the location ` and value v involved in each operation. A
memoizing function action M

vf vx⇓v

E (T ) is labeled with a function
vf , argument vx, and result v; the delimited trace T identifies
the body of the function application for reuse; as in the dynamic
semantics, the highlighted evaluation context E can be ignored.

Traces facilitate identifying the similarities and differences be-
tween different runs of a program. More specifically, since store
mutation is the only kind of observable side effect in Src, refer-
ence primitives uniquely determine the control flow of a closed pro-
gram. Thus, by recording them in the trace, we can identify where
program runs differ. Since memoizing functions identify explicitly
similar computations by matching arguments to function calls, they
can be used to identify where program runs perform similar com-
putations. Therefore actions in traces are necessary and sufficient
to isolate the similarities and differences between program runs.

Returning to the dynamic semantics (Figure 3), evaluation ex-
tends the trace and increments the cost counter according to the
kind of reduction. Cost grows in lock-step with the trace and could
be defined as the “size” of the trace, but we keep it explicit to
relate the intensional semantics of the Src and Tgt languages. A
value reduces to itself, produces an empty trace, and has no cost.
A case-analysis reduces according to the branch prescribed by the
scrutinee; the trace and cost are unchanged, since, as noted above,
case-analysis incurs only passive work.

A function application reduces the function ef and argument ex

to values and then evaluates the redex. An application concatenates
the function, argument, and redex traces to represent the sequenc-
ing of work; the redex trace is delimited by the memoizing function
action to identify the scope of the function call; the cost of the traces
are added and incremented by a unit of work for the β-reduction.

A reference allocation extends the store with a fresh location
that is initialized with the specified value and returns the location.
A dereference returns the location’s value. An update changes the
location’s contents and returns zero. In each case, the trace is the
singleton action corresponding to the primitive, and the work is 1.

3.2 Trace Distance
Consider running a single program under two different stores: in-
tuitively, the executions will be identical up to the first differing
store primitive (viz. the run of mapA on the prefix . . .,0,1 from
Section 2), after which the traces may correspond to different sub-
programs (e.g., because an allocation produced different locations
or a read found different values). In terms of traces, they will have a
common prefix up to the first differing store action. Conservatively,
the only similarity between two runs would be the common prefix.
Memoizing functions, however, enable recognizing similar compu-
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synch/store
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T1 	 T2 = d
synch/search

T1 	 T2 = d T ′1 	 T ′2 = d′

M
vf vx⇓v
E (T1)·T ′1 	 M

vf vx⇓v
E (T2)·T ′2 = d + d′

synch/memo

Figure 4. Src search distance T1 � T2 = d (top) and synchronization distance T1 	 T2 = d (bottom).

tations that occur after two runs have diverged (viz. the run of mapA
on the postfix 3,4,. . .) because they identify the trace of the same
function applied to the same argument. Nevertheless, even if two
computations result from the same function application, they may
also have different traces and return different results due to inter-
actions with the store. More generally, comparing two traces alter-
nates between searching for a point where traces align (i.e., memo-
izing function application) and synchronizing the two similar traces
until they again differ (i.e., store actions).

Distance is formally captured by the search distance T1 � T2 =
d and synchronization distance T1 	 T2 = d judgements (given
in Figure 4), defined by structural induction on the two traces. The
search mode can switch to synchronization if it encounters simi-
lar program fragments (as identified by memoizing application ac-
tions), and the synchronization mode must switch to search mode if
the trace actions differ at some point. Intuitively, the trace distance
measures the symmetric difference between two traces (i.e., the size
of trace segments that don’t occur in both traces). Concretely, we
quantify distance d = 〈c1, c2〉 between traces T1 and T2 as a pair
of costs, where c1 is the amount of work in T1 that isn’t shared with
T2 and c2 is the amount of work in T2 that isn’t shared with T1. We
let d + d′ denote pointwise addition for distance.

Since traces approximate the shape of an evaluation deriva-
tion, trace distance approximates a (higher-order) distance judge-
ment on evaluation derivations that quantifies the dis/similarities
between two runs (modulo the stores). The dynamic semantics of
Tgt has nondeterministic allocation and memoization in order to
avoid committing to an implementation; consequently, the defini-
tion of Src trace distance is a relation, but we will show that any dis-
tance derivable for Src programs is preserved in Tgt (Theorem 7).

The search distance T1 � T2 = d accounts for traces that
don’t match, but switches to synchronization mode if it can align
memoization actions. The search distance between empty traces
is zero. Upon simultaneously encountering memoization actions
M

vf vx⇓v1
E1 (T1)·T ′1 and M

vf vx⇓v2
E2 (T2)·T ′2 of the same function vf

and argument vx (search/synch rule), the search distance can
switch to synchronizing the bodies T1 and T2, while separately
searching for further synchronization of the tails T ′1 and T ′2. The
cost of the synchronization and search are added to the cost of 1
for the memoization match in each trace.

Finally, skipping an action in search mode incurs a cost of 1 in
addition to the distance between the tail of the trace (search/memo
rules and search/store rules).

Turning to the synchronization distance, the T1 	 T2 = d
judgement attempts to structurally match the two traces. Identical
work in both traces incurs no cost, but synchronization returns to
search mode either nondeterministically or when work cannot be

reused because traces don’t match. Synchronization mode is only
meant to be used on traces generated by the evaluation of the same
expression under (possibly) different stores.

The synchronization distance between empty traces is zero. En-
countering identical store actions allows distance to remain in syn-
chronization mode without cost (synch/store rule). Synchronizing
a memoization action (synch/memo rule) requires the function call
(function vf and argument vx) and return (result v) to match; this
allows the bodies as well as the tails to be synchronized separately
and their distance compounded. Note that even if the bodies don’t
match completely and return to search mode, memoizing functions
provide a degree of isolation because tails can be matched indepen-
dently. Synchronization falls back to search mode (synch/search
rule) nondeterministically or necessarily when the actions are dis-
tinct (e.g., because store or memo actions don’t match).

Observe that the definition of synchronization distance is quasi-
symmetric: T1	T2 = 〈c1, c2〉 iff T2	T1 = 〈c2, c1〉; similarly for
search distance. Furthermore, note that distance of Src programs
is defined by induction on the two traces: both judgements tra-
verse traces left-to-right either matching work or accounting for
skipping it. This means that common work consists of a subse-
quence of actions that appears in both traces, which precludes re-
ordering work. For example, comparing runs Mf x⇓a( )·Mg y⇓b( )·
and Mg y⇓b( )·Mf x⇓a( )· can only synchronize one of the calls,
the other call must be skipped. This restriction avoids having to
search for permutations for matching computations and simplifies
the implementation requirements of Tgt; however, this limitation
obviously hinders the efficiency of self-adjusting computation for
certain classes of computations.

3.3 Trace Contexts
In order to reason compositionally about distance, we define a trace
context T to be a trace with a hole; the formalization to multi-holed
contexts is straightforward and omitted for reasons of space.

T ::= 2 | As·T | Mvf vx⇓v

E (T )·T | Mvf vx⇓v

E (T )·T
Trace context distances T1 � T2 = d and T1 	 T2 = d are
obtained by lifting distance on traces to trace contexts, extended
with the following rules for holes (in the multi-hole analogue, holes
are uniquely labeled and labels must also coincide):

2 � 2 = 〈0, 0〉 2 	 2 = 〈0, 0〉
By requiring holes to coincide when comparing trace contexts,

we can reason separately about context and trace distance, and
then combine the results. Intuitively, the identity theorem for traces
means a common suffix subcomputation incurs no cost. The iden-
tity theorem for trace contexts and the substitution theorem show



that a common prefix computation does not affect distance either:
provided the hole in both trace contexts is immediately bounded by
a memoization action of the same function and argument, context
and trace distance can be combined additively. The identity theo-
rems are proved by induction on the subject trace T or trace context
T .

Theorem 1 (Identity for Traces)
For any trace T , T 	 T = 〈0, 0〉.

Theorem 2 (Identity for Trace Contexts)
For any trace context T ,
T [M

vf vx⇓v

E (2)·T ] 	 T [M
vf vx⇓v

E (2)·T ] = 〈0, 0〉.

Theorem 3 (Substitution)
If T1[M

vf vx⇓v1
E1 (2)·T1] � T2[M

vf vx⇓v2
E2 (2)·T2] = d

and T ′1 	 T ′2 = d′,
then T1[M

vf vx⇓v1
E1 (T ′1)·T1] � T2[M

vf vx⇓v2
E2 (T ′2)·T2] = d + d′.

If T1[M
vf vx⇓v1
E1 (2)·T1] 	 T2[M

vf vx⇓v2
E2 (2)·T2] = d

and T ′1 	 T ′2 = d′,
then T1[M

vf vx⇓v1
E1 (T ′1)·T1] 	 T2[M

vf vx⇓v2
E2 (T ′2)·T2] = d + d′.

Proof: By simultaneous induction on the first derivations. �

3.4 Trace Distance, Revisited
The rules of Figure 4 are useful for high level reasoning, but aren’t
rich enough to demonstrate a correspondence with Tgt trace dis-
tance. We present an alternate rule system that subsumes the above
system and serves as an intermediary for proving the preservation
of distance under compilation.

Failure Actions. The search/synch rule separately synchronizes
the bodies and searches the tails when it encounters matching mem-
oizing actions. While this rule is useful, it precludes memoization
between one body and another tail; for example, it doesn’t allow
splitting T1 as T11·T12 and synchronizing T11 with a prefix of T2

and searching T12 against the rest of T2. The naı̈ve rule
T1·T ′1 	 T2·T ′2 = d

M
vf vx⇓v1
E1 (T1)·T ′1 � M

vf vx⇓v2
E2 (T2)·T ′2 = 〈1, 1〉 + d

would allow splitting both traces, but it is unsound because it may
fully synchronize T1·T ′1 with T2·T ′2, even though the trace concate-
nation may not have been generated the same expression, violating
the well-formedness of synchronization distance. We remedy this
by introducing the failure action F

⇓v
E to explicitly force synchro-

nization mode to switch back to search mode; it is labeled by an
evaluation context E and result v, which are needed for technical
reasons but can be ignored when reasoning about Src distance:

A ::= · · · | F⇓v
E

The revised system is obtained by removing the search/synch
and search/memo rules from Figure 4 and adding the rules in
Figure 5.

The new search/memo’ rules insert an explicit failure action
between the body and tail of a memoization action, and still incur a
cost of 1 for failing to match. The search/fail rules allow search to
skip a failure action without cost. Observe that, in Figure 4, a trace
is subjected to synchronization if it is delimited by a memoization
action and failure actions never occur in the scope of a memoization
action, so failure actions never appear in synchronization mode.
Therefore the search/memo’ and search/fail rules subsume the
(replaced) search/memo rules: any distance derivable from the
failure-free deductive system is also derivable from the system with
explicit failure.

T1·F⇓v
E ·T ′1 � T2 = d

M
vf vx⇓v
E (T1)·T ′1 � T2 = 〈1, 0〉 + d

search/memo’/L

T1 � T2·F⇓v
E ·T ′2 = d

T1 � M
vf vx⇓v
E (T2)·T ′2 = 〈0, 1〉 + d

search/memo’/R

T1 � T2 = d

F
⇓v
E ·T1 � T2 = d

search/fail/L
T1 � T2 = d

T1 � F
⇓v
E ·T2 = d

search/fail/R

T1·F⇓v1
E1 ·T ′1 	 T2·F⇓v2

E2 ·T ′2 = d

M
vf vx⇓v1
E1 (T1)·T ′1 � M

vf vx⇓v2
E2 (T2)·T ′2 = 〈1, 1〉 + d

search/synch’

Figure 5. Additional rules for Src distance with explicit failure.

The search/synch’ rule identifies matching function applica-
tions and switches to synchronizing the concatenation of the body,
failure action, and tail. Since there are no new synchronization
distance rules, leading failure actions force synchronization to
switch to search (only the synch/search rule applies). Therefore
the search/synch’ rule enables synchronizing part of T1 with T2

and then searching the remainder of T1 against T ′2 (after encounter-
ing the failure action between T2 and T ′2). The search/synch’ rule
subsumes the (replaced) search/sync rule.

Evaluation Contexts. The evaluation contexts E in Src evalua-
tion and traces are necessary for relating Src and Tgt traces in Sec-
tion 6, but can be ignored when reasoning about Src evaluation and
distance (in the deductive systems with and without failure). An
evaluation context is built up throughout evaluation (Figure 3) to
capture the shape of the surrounding evaluation derivation, up to
the nearest memoizing function application:

E ::= 2 | E ex | vf E
The language restriction on the occurrence of expressions avoids
explicit forms for case-analysis or reference manipulation. The
evaluation of a memoizing function application extends the context
for evaluating the function and argument expressions, but resets the
context for evaluating the redex; passive β-reduction (e.g., case-
analysis) passes the context unchanged. The accumulated context
is used to label the actions with the current context and is used by
the ACPS trace translation to reify the continuation.

Intuitively, contexts help identify if computation after a mem-
oizing function application can be reused. The search/synch rule
ignores the contexts of each trace, the search/memo rules pass
the context and result to the failure action. The synch/store and
synch/memo rules formally require the contexts to be identical.
Since synchronization begins at memoizing actions M

vf vx⇓v1
E1 (T1)

and M
vf vx⇓v2
E2 (T2) (cf., search/synch), the bodies T1 and T2 re-

sult from the evaluation of the same expression in the same reset
context (cf., application evaluation) but under (possibly) different
stores. Synchronization distance inductively preserves the property
that the two traces being compared result from the same expression
in the same context. In particular, the evaluation contexts and re-
sults match in the synch/memo rule, so the property holds for the
tails justifying why they can be synchronized independently of the
bodies. Therefore, contexts in synchronization mode are necessar-
ily equal, and can be ignored when reasoning about Src distance.

4. Examples
We consider several examples to show how trace distance can be
used to analyze the sensitivity of programs to small changes in their
input. We say that a program is O(f(n))-sensitive or O(f(n))-
stable for an input change if the distance between the traces of that



T0 	 T0 = 0 Pb::`c↑`b ·Pa::`b↑`a � Pa::`b↑`a = 〈2, 1〉
M `3⇓`c (T0)·Pb::`c↑`b ·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈3, 2〉

G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b ·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈5, 2〉
M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b )·Pa::`b↑`a � M `3⇓`c (T0)·Pa::`c↑`a = 〈7, 3〉

G`1→1::`2 ·A1⇓a·M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b )·Pa::`b↑`a 	 G`1→1::`3 ·A1⇓a·M `3⇓`c (T0)·Pa::`c↑`a = 〈8, 4〉
M `1⇓`a (G`1→1::`2 ·A1⇓a·M `2⇓`b (G`2→2::`3 ·A2⇓b·M `3⇓`c (T0)·Pb::`c↑`b )·Pa::`b↑`a ) � M `1⇓`a (G`1→1::`3 ·A1⇓a·M `3⇓`c (T0)·Pa::`c↑`a ) = 〈9, 5〉

Figure 6. Trace distance between mapA [1,2,3] and mapA [1,3].

program is O(f(n)) for inputs related by that change. In our anal-
ysis, we consider two kinds of changes: insertions/deletions that
relate lists that differ by the existence of an element (e.g., [1,3]
and [1,2,3]) and replacements that relate inputs that differ by the
value of one element (e.g., [1,2,3] and [1,7,3]). We start with
the map example that we considered informally (Section 2) and
analyze its sensitivity to an insertion into/deletion from the input
by comparing its traces. When convenient, we visualize traces as
derivations and analyze their relative distance under a replacement.

In our analysis, we consider two kinds of bounds: upper bounds
and lower bounds. Our upper bounds state that the distance between
the traces of a program with inputs related by some change can
be asymptotically bounded by some function of the input size un-
der the assumption that locations allocated in the computation (or
mentioned in the trace) can be chosen to match nicely. Without
the ability to match locations, it is not possible to prove interesting
upper bounds, because two runs of the program can differ by as
much as the size of the traces if their locations are chosen from dis-
joint sets. As we discuss in Section 7, an implementation can often
match locations, sometimes with programmer guidance. Our lower
bounds state that the distance between traces of a program with
inputs related by some change cannot be asymptotically smaller
than a function of input size regardless of how we choose loca-

fun reduce f id l =
let fun red r l =

case !l of
nil => ref r

| h::t => red (f(h,r)) t
in red id l end

fun reducePair f id l =
let fun comp l =

case !l of
nil => ref nil

| a::t => case !t of
nil => ref (a::ref nil)

| b::u => ref (f(a,b)::(comp u))

fun rec l =
if !(lenLT (l,2)) then case !l of

nil => id
| h:: => h

else rec (comp l)

in rec l end

fun msort l =
if !(lenLT (l,2)) then l
else let (a,b) = partition l

sa = msort a
sb = msort b

in merge (sa,sb) end

fun filter f l =
case !l of

nil => ref nil
| h::t => if (f h) then h::(filter f t)

else filter f t

Figure 7. Code for the examples.

tions. Such lower bounds suggest but do not prove a lower bound
on the running time for change propagation (Section 7).

Our analyses fit into one of the following patterns. Sometimes,
we start with two concrete inputs and show a bound on the distance
between traces with these inputs. We then generalize this bound to
arbitrary inputs using the identity and substitution theorems (The-
orems 1 and 3). Other times, using the identity and the substitution
theorems, we write a recursive formula for the distance between
the traces of the program with inputs related by some change, and
solve this formula to establish the bound. When analyzing our ex-
amples and using the identity and the substitution theorems, we
ignore contexts, because, as noted in Section 3, they are not needed
for analysis. We use the distance and the composition theorems in
the informal style of traditional algorithmic analysis, because we
have no meta-logical framework for reasoning about asymptotic
properties of self-adjusting programs (Section 7).

Figure 7 shows the code for list-reduction and merge-sort (see
Section 2 for the code of map). The list-reduce and merge-sort
implementations use several functions, whose code we omit for
brevity. The lenLT(l,i) function returns (in a reference) true
iff the length of the list l is less than the integer i. The partition
function evenly splits a list into two and merge combines two
sorted lists. All of these functions are O(1)-sensitive to replace-
ments on average (for merge, we need to average over all permuta-
tions of the input to obtain this bound). To focus on the main ideas,
we omit the analysis of these utility functions here, which are sim-
ilar to that of the map function discussed below.

4.1 Map
Recall the mapA function from Section 2. We analyze the sensi-
tivity of mapA to an insertion/deletion more precisely by using
trace distance. Figure 6 shows the derivation of the trace distance
for mapA with inputs L = [1,2,3] and L’ = [1,3]. We con-
sider derivations where the input locations are `1, `2, `3, `4 and
the output locations are `a, `b, `c, `n. In the derivations we use
the notation M `⇓`′(T ) as a shorthand for the memoization ac-
tion MmapA `⇓`′(T ). Similarly we write Ax⇓y as a shorthand for
the memoization action Mf x⇓y( ) of the function f mapping in-
teger x to letter y, whose subtrace (body) we leave unspecified
and assume to be of length constant (it contributes one to the dis-
tance). We define the tail trace T0 common to both executions as
G`3→3::`4 ·A3⇓c·M `4⇓`n(G`4→nil·Pnil↑`n)·Pc::`d↑`c . When de-
riving the distance, we combine consecutive applications of the
same rule and use the fact that the synchronization distance be-
tween a trace and itself is 〈0, 0〉.

Having derived a constant bound for this example, we can
generalize the result to obtain an asymptotic bound for a change
in one element in the middle of an arbitrary list. Consider the traces
T1 and T2 for mapA(L1) and mapA(L2) where L1 = [x] and L2

= nil. The distance between them is trivially constant for any x.
We will now use the substitution theorem to generalize this result
to arbitrary lists by showing how to extend the inputs lists with
identical prefixes and suffixes without affecting the constant bound.



We consider extending the input with the same suffix. We start
by replacing each of the sub-traces of the form M ⇓ ( ) for the
rightmost call to mapA in T1 and T2 with a hole to obtain the trace
contexts T1 and T2. Let L3 be any list and let T3 be the trace for
mapA(L3). Note that the traces T1[T3] and T2[T3] are the traces
for mapA(L1@L3) and mapA(L2@L3). By the identity theorem,
the distance between T3 and itself is 〈0, 0〉. Since T3 starts with
memoization action of the form M `i⇓`α(. . .), we can apply the
substitution theorem, so the distance between T1[T3] and T2[T3] is
equal to the distance between T1[M

`i⇓`α(2)] and T3[M
`i⇓`α(2)],

which is constant. Thus, we are able to append any suffix to L1 and
L2 without increasing their distance.

Symmetrically, we can extend these lists with the same prefix.
To see this, let L0 be a list and consider its trace T0 with mapA. Now
define the trace context T0 as the context obtained by replacing the
rightmost sub-trace in T0 of the form M ⇓ ( ) with a hole. Now, sub-
stitute into this trace the traces T1[T3] and T2[T3] (i.e., T0[T1[T3]]
and T0[T2[T3]]). By the identity and the substitution theorems, the
distance is equal to distance between of T1[T3] and T2[T3], which
is constant.

Thus, we can generalize concrete examples to other lists by
prepending and appending arbitrary lists, essentially obtaining any
two lists related by an insertion/deletion. We conclude that mapA is
constant sensitive for an insertion into/deletion from its input.

4.2 Reduce
The list-reduce function reduces a list to a value by applying a
given binary operator with a specified identity element to the el-
ements of the list. The standard accumulator-based implementa-
tion, reduce: (’a * ’a -> ’a) -> ’a -> ’a list -> ’a
ref shown in Figure 7, is not amenable to self-adjusting compu-
tation, because the distance can be as large as linear. To see this
note that all intermediate updates of the accumulator depend on
the previously-seen elements. Thus replacing the first element will
prevent all derivation steps from matching, causing the distance to
be linear in the size of the input (in the worst case).

Figure 7 shows another implementation for list-reduce, called
reducePair. This implementation applies the function comp re-
peatedly until the list is reduced to contain at most one element.
Function comp pairs the elements of the input list from left to right
and applies f to each pair reducing the size of the input list by
half. Thus, comp is called a logarithmic number of times. Using
the shorthand chk(`) ⇓ v for derivations of the form lenLT(`) ⇓
b Gb→v , the derivations for reducePair can be represented with
the following derivation context.

chk(`) ⇓ F

comp(`)⇓`1h rec(`1)⇓r1h

rec(`) ⇓ r1

reducePair (f, id, `) ⇓ r1

To analyze the sensitivity of reducePair for a replacement
operation, consider evaluating reducePair with two lists related
by a replacement. The recursive case for the derivations both fit
the derivation context given above. Note that the derivations for
comp are related by a replacement. Since a replacement in the
input causes the output of comp to change by a replacement as
well, the recursive calls to rec are related by a replacement as
well. Furthermore, since the derivation for comp and rec both start
with memoized functions, we can apply the substitution theorem
assuming that the comp returns its output in the same location. More
precisely, we can write the sensitivity of rec to a replacement for
an input size of n as

∆rec(n) =


∆rec(n/2) + ∆comp(n/2) if n > 1

1 otherwise

Since comp uses one element of the input to produce one element
of the output, it is relatively easy to show that is is O(1) sensitive
to replacement when f is O(1) (i.e., ∆comp(m) ∈ O(1) for any
m). By straightforward arithmetic, we conclude that ∆rec(n) ∈
O(log n). Since reducePair simply calls rec this implies that
reducePair has logarithmic sensitivity to a replacement.

4.3 Merge sort
We analyze the sensitivity of the merge-sort algorithm to replace-
ment operations. The recursive case for the derivations of msort
with inputs that differ in one element, fit the following derivation
context (function names are abbreviated).

len(`)⇓bh
Gb→F

part(`)⇓(`a,`b)h ms(`a)⇓`ch ms(`b)⇓`dh mg(`c,`d)⇓`′h

ms (`) ⇓ `′

The derivation starts with a check for the length of the list being
greater than one. In the recursive case, the list has more than one el-
ement so the lenLT function returns false. Thus, we partition
the input lists into two lists `a and `b of half the length, sort them
to obtain `c and `d, and merge the sorted lists. Since both evalu-
ations can be derived from this context, the distance between the
derivations is the distance between the derivations substituted for
the holes in the context.

Consider the derivations substituted for each hole. Since lenLT
and part are called with the input, the derivations for lenLT(`1)
(and part(`1)) are related by replacement. As a result, one of `a or
`b are also related by replacement. Thus only one of the derivations
ms(`a) or ms(`b) are related by replacement and the other pair
is identical. Consequently mg(`c, `d) derivations are related by
replacement. Since all contexts belong to memoized function calls,
we can apply the substitution theorem by assuming that all related
and identical functions calls in both evaluations return their results
in the same locations. Thus, we can write the sensitivity of msort as
∆msort(n) = 2∆msort(n/2)+∆partition(n)+∆merge(n).
It is easy to show that partition and lenLT functions are O(1)
sensitive to replacements. Similarly, we can show that merge is
O(1) sensitive to replacements on average, if we take the average
over all permutations of the input list. Thus, we obtain

∆msort(n) =


∆msort(n/2) + 1 if n > 1
1 otherwise

This recurrence trivially is bounded by 1+4c log n, so we conclude
that msort is O(log n)-sensitive to replacement operations.

4.4 Filter
As an example of another program that is not naturally stable we
consider a standard list filter function filter, whose code is shown
in Figure 7, for which we prove that there are inputs whose traces
are separated by a linear distance in the size of the inputs regardless
of the choice of locations. In other words, we will prove a lower
bound for the sensitivity of filter. The reason for which filter
is not stable is similar to that of the conventional implementation
of reduce (Section 4.2), but more subtle because it is primarily
determined by the choice of locations rather than the computation
being performed.

To see why filter can be highly sensitive, it suffices to con-
sider a specialization, which we call filter0, that only keeps the
nonzero elements. For example, with input lists L = [0,0,0] and
L′ = [0,0,1], filter0 returns nil and [1], respectively. Since
we are interested in proving a lower bound only, we can summa-
rize traces by including function calls and put operations only—the
omitted parts of the trace will affect the bound by a constant factor
assuming that the filtering functions takes constant time. In par-



ticular, using the shorthand M `⇓`′(T ) for the memoization action
Mfilter0 `⇓`′(T ), the traces for filter with L and L′ are respectively:

M
`1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M
`1⇓`a(M `2⇓`a(M `3⇓`a(M `4⇓`n(Pnil↑`n)·P1::`n↑`a))).

Note that the distance between these two traces is greater than 3—
the length of the input—because in the second trace three memo-
ization actions return the location `a holding [1], whereas in the
first trace `n is returned. Since these locations are different, the
memoization actions do not match and contribute to the distance.
This example does not lead to a lower bound, however, because we
can give two traces for the considered inputs for which the distance
is one, e.g.,:

M
`1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M
`1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`′n(Pnil↑`

′
n)·P1::`′n↑`n))).

The idea is to choose the locations in such a way that the traces
overlap maximally. It is not difficult to generalize this example for
arbitrary lists of the form [0,. . .,0,0] and [0,. . .,0,1].

We obtain the worst-case inputs by modifying this example
to prevent location choices from reducing the distance arbitrarily.
Consider parameterized lists of the form L1(n) = [(0)n,0,(0)n]
and L2(n) = [(0)n,1,(0)n], where 0n denotes n repeated 0’s.
We will show that the distance between traces for any two such
inputs is at least n + 1 and thus linear in the size of the input,
2n + 1. For example, the traces for L1(1)= [0,0,0] and L2(1) =
[0,1,0] have the form:

M
`1⇓`n(M `2⇓`n(M `3⇓`n(M `4⇓`n(Pnil↑`n)))), and

M
`1⇓`a(M `2⇓`a(M `3⇓`n(M `4⇓`n(Pnil↑`n))·P1::`n↑`a)).

These traces have distance greater than 2. Regardless of how
we change the locations this distance will not decrease because
the return locations of n memoization actions before and after
the occurrence of 1 will have to differ. Thus, regardless of which
location the other trace chooses to store the empty list, at least
half the calls will have a differing location. We can generalize this
example with n = 3 to arbitrary lists by using our identity and
substitution theorems as we did for the map example. Since the
approach is essentially the same as with map, we leave it out here.
Thus, we conclude that filter is Ω(n)-sensitive to a replacement.

This example implies that a self-adjusting computation can do
poorly with this implementation of filter. As with reduce, how-
ever, we can give a stable implementation of filter by using a
compress function similar to comp of reducePair that applies the
filter function to half of the remaining unfiltered elements. We can
show that this implementation of filter is O(log n) sensitive un-
der suitable choice of locations.

5. The Target Language (Tgt)
The Tgt language is a simply-typed, call-by-value λ-calculus
with natural numbers and recursive functions, extended with mod-
ifiable references and a memoization primitive. The language
is self-adjusting: its semantics includes evaluation and change-
propagation judgements that can be used to reduce expressions to
values and adapt computations to input changes. Tgt extends the
read-only modifiables of (Ley-Wild et al. 2008b) with imperative
update, a cost semantics for evaluation and change propagation,
and a notion of trace distance.

The syntax of Tgt is given below, which defines types τ , expres-
sions e, values v, and adaptive commands κ, using metavariables f

Σ; Γ ` v : τ
Σ; Γ ` vk : τ mod → res

Σ; Γ ` putk v vk : res

Σ; Γ ` vl : τ mod
Σ; Γ ` vk : τ → res

Σ; Γ ` getk vl vk : res

Σ; Γ ` vl : τ mod
Σ; Γ ` v : τ
Σ; Γ ` vk : nat → res

Σ; Γ ` setk vl v vk : res

Σ; Γ ` e : res

Σ; Γ ` memo e : res

Σ; Γ ` v : τ

Σ; Γ ` halt v : res

Figure 8. Tgt typing Σ; Γ ` e : τ (fragment).

and x for identifiers and ` for locations.
τ ::= nat | τx → τ | τ mod | res
e ::= v | caseN vn ez (x.es) | ef vx

v ::= x | κ | zero | succ v | fun f.x.e | `
κ ::= putk v vk | getk v` vk | setk v` v vk | memo e | halt v

λ x.e
def
= fun f.x.e with f /∈ FV(e)

Tgt enforces a continuation-passing style (cps) discipline to help
identify opportunities for reuse and computations for re-execution.
Adaptive store commands have an explicit continuation vk iden-
tifying the computation that follows the command. The cps dis-
cipline also restricts a function application ef vx to have a value
argument. Modifiables τ mod are mutable references with adap-
tive store commands putk, getk, and setk for allocation, deref-
erence, and update. The type res is an opaque answer type, while
halt is a continuation that injects a final value into the res type.

5.1 Static, Dynamic, and Cost Semantics
Figure 8 gives a fragment of the static semantics of Tgt. The typing
judgement Σ; Γ ` e : τ ascribes the type τ to the expression e in
the store and variable typing contexts Σ and Γ; the omitted rules
are standard.

Figure 9 gives the dynamic semantics. Evaluation uses and
produces a trace T as a sequence of adaptive (store and memo)
actions A, ending in a halt action:

As ::= P
v↑`
vk

| G`→v
vk

| S`←v
vk

A ::= As | Me

T ::= Hv | A·T
Ṫ ::= ◦ | T

The large-step evaluation relation Ṫ ; σ; e ⇓E T ′; σ′; v′; d′

(resp. Ṫ ; σ; k ⇓K T ′; σ′; v′; d′) reduces the expression e (resp.
the adaptive command κ) under the store σ, yielding the value v′

and the updated store σ′; evaluation also takes an (optional) reuse
trace Ṫ from a previous run, and produces an execution trace T ′ for
the current run and a pair of costs d′ = 〈c, c′〉 for work c discarded
from the reuse trace and new work c′ performed for the current run.
The auxiliary evaluation relation e ⇓ v′ reduces an expression e to
a value v′, independent of the store.

The halt v command yields a computation’s final value, with a
cost of 1 for the current run and a cost c = |Ṫ | for work discarded
from the reuse trace Ṫ , where the cost of an optional trace is:

| ◦ | = 0 |Hv | = 1 |A·T | = 1 + |T |
An adaptive store command uses the store (putk, getk, and

setk rules) and delivers the result to the continuation; the trace
is extended with the corresponding store action labeled by the
location, value, and continuation involved, and incurs a cost of
1 for the current run. A memoized expression memo e in Tgt
has no special behavior when evaluated from scratch (memo/miss
rule): it evaluates the body e and extends the trace with a memo
action Me, incurring a cost of 1 for the current run. The memo/hit
rule exploits the reuse trace and switches to change propagation.



v ⇓ v

ez ⇓ v

caseNzero ez (x .es) ⇓ v

{vn / x} es ⇓ v

caseN (succ vn) ez (x .es) ⇓ v

ef ⇓ fun f .x .e
{vx / x} {fun f .x .e / f } e ⇓ v

ef vx ⇓ v

e ⇓ κ

Ṫ ; σ; κ ⇓K T ′; σ′; v′; d′

Ṫ ; σ; e ⇓E T ′; σ′; v′; d′
|Ṫ | = c

Ṫ ; σ;halt v ⇓K Hv ; σ; v; 〈c, 1〉

` /∈ dom(σ) σl = σ ] {` 7→ v}
Ṫ ; σl; vk ` ⇓E T ′; σ′; v′; d′

Ṫ ; σ;putk v vk ⇓K P
v↑`
vk ·T ′; σ′; v′; 〈0, 1〉 + d′

` ∈ dom(σ) σ(`) = v

Ṫ ; σ; vk v ⇓E T ′; σ′; v′; d′

Ṫ ; σ;getk ` vk ⇓K G`→v
vk

·T ′; σ′; v′; 〈0, 1〉 + d′

` ∈ dom(σ) σl = σ[` 7→ v]

Ṫ ; σl; vk zero ⇓E T ′; σ′; v′; d′

Ṫ ; σ; setk ` v vk ⇓K S`←v
vk

·T ′; σ′; v′; 〈0, 1〉 + d′

Ṫ ; σ; e ⇓E T ′; σ′; v′; d′

Ṫ ; σ;memo e ⇓K Me·T ′; σ′; v′; 〈0, 1〉 + d′
memo/miss

T ; e
m
; Te; c Te; σ y T ′; σ′; v′; d′

T ; σ;memo e ⇓K Me·T ′; σ′; v′; 〈c, 1〉 + d′
memo/hit

Figure 9. Tgt reduction e ⇓ v and evaluation Ṫ ; σ; κ ⇓K T ′; σ′; v′; d′ and Ṫ ; σ; κ ⇓E T ′; σ′; v′; d′.

` /∈ dom(σ) σl = σ ] {` 7→ v}
T ; σl y T ′; σ′; v′; d′

P
v↑`
vk ·T ; σ y P

v↑`
vk ·T ′; σ′; v′; d′

put/reuse

` ∈ dom(σ) σ(`) = v
T ; σ y T ′; σ′; v′; d′

G`→v
vk

·T ; σ y G`→v
vk

·T ′; σ′; v′; d′
get/reuse

` ∈ dom(σ) σl = σ[` 7→ v]
T ; σl y T ′; σ′; v′; d′

S`←v
vk

·T ; σ y S`←v
vk

·T ′; σ′; v′; d′
set/reuse

T ; σ y T ′; σ′; v′; d′

Me·T ; σ y Me·T ′; σ′; v′; d′
memo/reuse

Hv ; σ y Hv ; σ; v; 〈0, 0〉
dT e = κ T ; σ; κ ⇓K T ′; σ′; v′; d′

T ; σ y T ′; σ′; v′; d′
change

Figure 10. Tgt change propagation Ṫ ; σ y σ′; v′; T ; d′.

The memoization judgement T ; e
m
; Te; c finds a trace Te that

corresponds to a previous run of e (under a (possibly) different
store), incurring a cost c for discarding the prefix of T up to Te:

Me·T ; e
m
; T ; 1

T ; e
m
; Te; c

A·T ; e
m
; Te; 1 + c

The change propagation relation T ; σ y T ′; σ′; v′; d′ (given
in Figure 10) replays the execution trace T under the store σ,
yielding the value v′ and the updated store σ′, with an updated
execution trace T ′ and a pair of costs d′ = 〈c, c′〉 for work c
discarded from T and new work c′ performed for T ′. A halt action
can be replayed without cost to obtain the (unchanged) final value.
An adaptive action can be replayed without cost if the action is
consistent with the current store (reuse rules), the tail of the trace
can be recursively change propagated and then extended with the
same action. However, if a store action is inconsistent with the
store (e.g., a specific location can’t be allocated), then change
propagation must switch back to evaluation. Since adaptive actions
capture their continuation, a trace T can be reified back into an
adaptive command dT e that represents the rest of the computation:

dPv↑`
vk

·T e = putk v vk dMe·T e = memo e
dG`→v

vk
·T e = getk ` vk dHve = halt v

dS`←v
vk

·T e = setk ` v vk

Thus, change propagation can reify and re-evaluate an inconsistent
trace T (change rule), while keeping the trace T for possible reuse
later. Note that the reified putk (resp. getk) forgets the (stale) lo-
cation (resp. value). The change rule does not, however, require the
action to be inconsistent; this nondeterminism intentionally avoids
committing to particular allocation and memoization policies.

5.2 Consistency of Change Propagation
Suppose we have a Tgt program e such that Σ; · ` e : res and an
initial store σ1 such that ` σ1 : Σ ] Σ1. We can evaluate e under
the store σ1 and no reuse trace, yielding the initial result v′1 and
a trace T ′1: ◦; σ1; e ⇓E T ′1; σ

′
1; v
′
1; d
′
1. After this initial evaluation,

we can consider another store σ2 such that ` σ2 : Σ ] Σ2 and
update the output of the evaluation with respect to this store by

applying change propagation to T ′1 under the store σ2: T ′1; σ2 y
T ′2; σ

′
2; v
′
2; d
′
2. The consistency of change propagation asserts that

the result and trace obtained by change propagation are identical
to those obtained by evaluation (recall the bottom left square of
Figure 1). We prove this consistency property for Tgt by giving a
simple structural proof.

Theorem 4 (Consistency of Change propagation)
If ◦; σ1; e ⇓E T ′1; σ

′
1; v
′
1; and T ′1; σ2 y T ′2; σ

′
2; v
′
2; ,

then ◦; σ2; e ⇓E T ′2; σ
′
2; v
′
2; .

If ◦; ; ⇓E T ′1; ; ; and T ′1; σ2; e ⇓E T ′2; σ
′
2; v
′
2; ,

then ◦; σ2; e ⇓E T ′2; σ
′
2; v
′
2; .

Proof: The theorem must be strengthened with analogous state-
ments for the ⇓K relation. By simultaneous induction on the second
derivation of each statement. Proved in Twelf. �

Recent work gave a similar consistency theorem, but with a dif-
ferent language (Acar et al. 2008a). Compared to that work, our
proof is dramatically simpler. We achieve this by casting change
propagation as a full replay mechanism that can re-allocate loca-
tions. In previous work, it was not possible to express change prop-
agation as a full replay mechanism—change propagation could not
re-allocate locations allocated in a previous run. This required argu-
ing that the results obtained by change propagation and evaluation
are isomorphic by using step-indexed logical relations.

5.3 Trace Distance
Reasoning about computation reuse achieved by change propaga-
tion is difficult. In this section, we introduce a notion of trace dis-
tance and show that the cost of change propagation may be bounded
by the distance between the input and the result traces. The defini-
tion of distance is similar to the source at a high level. Indeed, in
Section 6 we show that they are asymptotically the same.

As in Src, we define a search distance T1�T2 = d that accounts
for differences between traces until it finds matching memoization
actions, at which point it can use the synchronization distance
T1	T2 = d that accounts for reuse between traces until they differ,



Hv1 � Hv2 = 〈1, 1〉
T1 	 T2 = d

Me·T1 � Me·T2 = 〈1, 1〉 + d

T1 � T2 = d

A·T1 � T2 = 〈1, 0〉 + d

T1 � T2 = d

T1 � A·T2 = 〈0, 1〉 + d

Hv 	 Hv = 〈0, 0〉
T1 	 T2 = d

A·T1 	 A·T2 = d

T1 � T2 = d

T1 	 T2 = d

Figure 11. Tgt trace search distance T1 � T2 = d and synchronization distance T1 	 T2 = d.

at which point it must return to the search distance. The distance
d = 〈c1, c2〉 quantifies the cost c1 of work in T1 that isn’t shared
with T2 and the cost c2 of work in T2 that isn’t shared with T1.

The search distance (given in Figure 11) between halt actions is
1 for each action, irrespective of the value returned. Two identical
memo actions incur a cost of 1 each, but afford the possibility of
switching from search to synchronization mode. Skipping an action
incurs a cost of 1 for the corresponding trace and forces distance to
remain in search mode. Note that these last two rules allow memo
actions to remain in search mode; identical memo actions are never
forced to synchronize.

Synchronization distance, as in Src, is only meant to be used
on traces generated by the evaluation of the same expression under
(possibly) different stores (though, there exists a synchronization
distance between any two traces). The synchronization distance
between halt actions is 〈0, 0〉, and assumes both actions return
the same value. Identical adaptive actions match without cost and
allow distance to continue synchronizing the tail. Synchronization
may return to search mode, either nondeterministically or because
adaptive actions don’t match. Just as Src distance, Tgt distance
judgements are quasi-symmetric and induce a ternary relation due
to the nondeterminism of memo matching.

In light of the dynamic semantics, trace distance can be given an
asymmetrical operational interpretation: the distance is the amount
of work that must be discarded from one run and executed to
produce the other run. (Intuitively, the asymmetry arises from the
fact that discarding work, while not free, is cheaper than performing
work.) In particular, search distance has an operational analogue
realized by evaluation, while synchronization distance is realized
by change propagation. A distance 〈c1, c2〉 between traces T1 and
T2 intuitively means there is cost c1 for discarding unusable work
from the reuse trace T1 and cost c2 for performing new work
for T2, but any common work that can be reused is free. This
relation between distance and the dynamic semantics is formally
captured by the following theorem (recall the bottom right diagram
of Figure 1).

Theorem 5 (Dynamic semantics coincides with distance)
If ◦; σ1; e1 ⇓E T ′1; σ

′
1; v
′
1; and ◦; σ2; e2 ⇓E T ′2; σ

′
2; v
′
2; ,

then T ′1 � T ′2 = d iff T ′1; σ2; e2 ⇓E T ′2; σ
′
2; v
′
2; d.

If ◦; σ1; e ⇓E T ′1; σ
′
1; v
′
1; and ◦; σ2; e ⇓E T ′2; σ

′
2; v
′
2; ,

then T ′1 	 T ′2 = d iff T ′1; σ2 y T ′2; σ
′
2; v
′
2; d.

Proof: The theorem must be strengthened with analogous state-
ments for the ⇓K judgement. By simultaneous induction on the
second derivation of each statement. Proved in Twelf. �

6. Translation
Program Translation. The adaptive primitives of Src programs
are used to guide an adaptive continuation-passing style (ACPS)
transformation into equivalent Tgt programs (given in Figure 12).
The type translation Jτ sK = τ t preserves the nat type, converts
the function type to take a continuation argument, and converts
the reference type to a modifiable type. The expression and value
translations JesK vt

k = et and JvsK = vt (the former using the Tgt
value vt

k as an explicit continuation) are standard cps conversions

JnatK = nat
Jτx → τK = JτxK → (JτK → res) → res

Jτ refK = JτK mod

JvK vk = vk JvK
JcaseN vn ez (x .es)K vk = caseN JvnK (JezK vk) (x . JesK vk)

Jef exK vk = JefK (λ yf . JexK (λ yx.(yf yx) vk))
Jput vK vk = putk JvK vk

Jget vlK vk = getk JvlK vk

Jset vl vK vk = setk JvlK JvK vk

JxK = x
JzeroK = zero

Jsucc vK = succ JvK
J`K = `

Jfun f .x .eK =
fun f .x .λ yk.

putk (λ yr.memo (yk yr))
(λ yl.memo (JeK (λ yr.getk yl (λ yk.yk yr))))

Figure 12. Type translation Jτ sK = τ t (top) and term translations
JesK vt

k = et and JvsK = vt (bottom).

for natural numbers, while reference primitives are translated into
Tgt adaptive store commands with an explicit continuation vk. The
value translations (except for functions) are straightforward. The
halt expression is not in the image of the translation, but it can
be used as an initial identity continuation id = λ x.haltx for
evaluating a cps-converted program. The metavariable y is used
to distinguish identifiers introduced by the translation. The type
translation is extended pointwise to Src store and variable typing
contexts Σ and Γ; the value translation is extended pointwise to
Src stores σ.

The cps discipline in Tgt facilitates identifying the scope of
an adaptive store action as the rest of the computation, so change
propagating an inconsistent store action will re-execute the tail of
the trace. Memoizing a function, however, in the presence of (pos-
sibly different) continuations and store mutation is subtle and cru-
cially relies on two ideas: threading continuations through the store,
and using explicit memo operations before and after the func-
tion body. First, the translation treats the continuation as change-
able data by threading it through the store during the function call
(viz. putk in the function body and getk in the continuation).
This effectively shifts the continuation to the store, so the function
call can memo match on its argument even if its continuation dif-
fers (provided the same location is used to store the continuation as
in the previous run). After the function body is change propagated
without cost, the (new) continuation will be resumed by reading
it from the store and passing it the memoized result. Second, the
translation inserts memo commands at the function call and return
points in an attempt to isolate reuse of the function body separately
from reuse of the rest of the computation. Thus the continuation
can memo match if the result is the same, even if the function body
had to re-execute due to an inconsistent store interaction.

The correctness and efficiency of the translation is captured
by the fact that well-typed Src programs are compiled into (stat-
ically and dynamically) equivalent well-typed Tgt programs with
the same asymptotic complexity for initial runs (i.e., Tgt evalua-
tion with an empty reuse trace). Type preservation is standard and



elided for reasons of space. More importantly, the evaluation and
asymptotic cost of from-scratch runs of Src programs is preserved
by compilation (recall the top right diagram of Figure 1).

Theorem 6 (Translation preserves extensional/intensional)
If E ; σ0; e0 ⇓ σ1; v1; T ; c0,
and ◦; Jσ1K ] σk; vk Jv1K ⇓E σ2; v2; Tk; 〈 , c1〉,
then ◦; Jσ0K ] σk; Je0K vk ⇓E σ2 ] σe; v2; T

′; 〈 , c2〉
and c0 + c1 ≤ c2 ≤ 4c0 + c1 whence c2 ∈ Θ(c0 + c1).
Proof: By induction on the first derivation. �

The store σk accounts for locations free in the continuation
vk, while the store σe accounts for locations allocated for (the
continuations of) memoizing functions. Instantiating this theorem
with the identity continuation vk = id, we have that evaluation of
a Src program coincides with (from-scratch) Tgt evaluation of its
ACPS-translation. Furthermore, the adaptive work c2 ∈ Θ(c0) in
Tgt is proportional to the active work c0 in Src, because the work of
the identity continuation is constant. This means that the translation
preserves the asymptotic complexity of from-scratch runs.

Trace Translation. The Tgt trace of an ACPS-compiled Src pro-
gram is richer than its Src counterpart because Tgt traces have ex-
plicit continuations and the ACPS translation introduces adminis-
trative redices, threads continuations through the store, and inserts
memoization at function call and return points. The Src dynamic
semantics and distance, however, are sufficiently instrumented to
translate Src traces into equivalent Tgt traces. An explicit Src
evaluation context E is sufficient to reify the current continuation
JEK vk relative to an initial Tgt continuation vk:

J2K vk = vk

JE exK vk = JEK (λ yf . JexK (λ yx.(yf yx) vk))
Jvf EK vk = JEK (λ yx.(JvfK yx) vk)

Moreover, since active Src actions are instrumented with their local
evaluation context, we can give a trace translation JT sK vt

k T t
k of

Src trace T s using the vt
k as an initial continuation (to extend the

local context E of actions) and suffix T t
k. The translation of the

empty trace and store actions is straightforward:
JεK vk Tk = Tkr

P
v↑`
E ·T

z
vk Tk = P

JvK↑`
JEK vk

·(JT K vk Tk)
q
G`→v
E ·T

y
vk Tk = G

`→JvK
JEK vk

·(JT K vk Tk)
q
S`←v
E ·T

y
vk Tk = S

`←JvK
JEK vk

·(JT K vk Tk)

Since a failure action is inserted at a function’s return point, it is
translated to the trace that follows the evaluation of a function body
(cf., ACPS function translation):r

F
⇓v
E ·T ′

z
vk Tk = G

`→kw
ka

·M((JEK vk) JvK)·(JT ′K vk Tk)

where kw = λ yr.memo ((JEK vk) yr)
ka = λ yk.yk JvK

Note that kw is the memoizing version of the original continuation
that was written to the store before the evaluation of the body
and ka is the continuation of the getk command that fetches the
memoizing version of original continuation.

The translation of a memoizing function action must account
for writing the memoizing version of the original continuation to
the store before memoizing on the evaluation of the body:r

M
(fun f .x .e) vx⇓v
E (T )·T ′

z
vk Tk = P

kw↑`
km

·M(Je′K kr)·(JT K kr Tr)

where kw = λ yr.memo ((JEK vk) yr)
km = λ yl.memo (Je′K (λ yr.getk yl (λ yk.yk yr)))
e′ = {fun f .x .e / f } {vx / x} e
kr = λ yr.getk ` (λ yk.yk yr)

Tr =
r
F
⇓v
E ·T ′

z
vk Tk

Note that kr is the continuation that fetches and invokes the mem-
oizing version of the original continuation; this is the continuation

that is passed to the body. The body of the memoizing function ac-
tion is translated with respect to kr and Tr, which is the translation
of a failure action. Trace translation is syntax-directed, except for
the choice of locations for continuations of memoizing functions;
below we specify how these locations are chosen.

Given the trace translation, Theorem 6 can be strengthened to
show that the if the continuation vk is of the form JEK v′k, then the
Tgt evaluation trace T ′ is JT K vk Tk. Finally, Src distance may be
related to Tgt distance by trace translation (recall top right diagram
of Figure 1).

Theorem 7 (Src/Tgt distance soundness)
Assume T t

k1 	 T t
k2 = 〈 , c′1〉, T t

k1 � T t
k2 = 〈 , c′2〉.

If T1 � T2 = 〈 , c〉,
then (JT1K vt

k T t
k1) � (JT2K vt

k T t
k2) = 〈 , c′′〉

and c ≤ c′′ ≤ 4c + max{c′1, c′2}.
If T1 	 T2 = 〈 , c〉,
then (JT1K vt

k1 T t
k1) 	 (JT2K vt

k2 T t
k2) = 〈 , c′′〉

and c ≤ c′′ ≤ 4c + max{c′1, c′2}.
Proof (sketch): We define a variant of Src’s distance relation
with precise accounting for memoization at function call and re-
turn points. We show that the original Src distance bounds the
precise Src distance by a constant factor (the original version uses
amortization to avoid precise accounting and to simplify reason-
ing). Next, we preprocess the precise Src distance derivation by
assigning matching fresh locations to memoization actions that
synchronize, these are used by the trace translation for continua-
tions (this is always possible because stores and traces are finite).
Finally, we proceed by induction on the (instrumented) precise Src
distance derivation, using the trace translation to build an equiva-
lent Tgt distance derivation. �

Corollary 8 (Src/Tgt distance soundness)
Let T t

idi be the identity continuation trace for Ti (i ∈ {1, 2}).
If T1 � T2 = 〈 , c〉,
then (JT1K idT t

id1) � (JT2K idT t
id2) = 〈 , c′′〉 and c′′ ∈ Θ(c).

If T1 	 T2 = 〈 , c〉,
then (JT1K idT t

id1) 	 (JT2K idT t
id2) = 〈 , c′′〉 and c′′ ∈ Θ(c).

Proof: The search distance T t
id1 � T t

id2 and synchronization dis-
tance T t

id1 	 T t
id2 between the identity continuation traces are

constant, therefore the asymptotic bound c′′ ∈ Θ(c) follows by
Theorem 7. �

Note that since Src and Tgt distance are quasi-symmetric, an
analogous theorem and corollary hold of the left component of dis-
tance. This means that change propagation has the same asymptotic
time-complexity as trace distance. The converse of the theorem
does not hold: a distance may be derivable of Tgt traces which does
not correspond to any derivable Src distance. This incompleteness
is to be expected because memoization of a function call and re-
turn in Tgt need not match in lock-step, whereas the synch/memo
(resp. synch/search) Src rule requires both (resp. neither) to match
in lock-step.

7. Discussion
We briefly remark on some limitations of our approach.

Incompleteness. Soundness of the translation guarantees that any
distance derivable in Src is also (up to a constant factor) derivable
in Tgt. However, the Tgt proof system exhibits more possible dis-
tances: in Src, memoization requires matching both the function
call and return points, while the ACPS translation into Tgt distin-
guishes memoization at the call and the return. Therefore, there are



more opportunities for switching between search and synchroniza-
tion in Tgt and there may be more distance values derivable in Tgt
than in Src. For example, in Tgt a function call memoization can
miss (i.e., remain in search mode) while the return can match (i.e.,
switch from search to synchronization mode), which is not possi-
ble in Src. Consequently, any upper bound found using Src distance
is preserved by compilation, but lower bound arguments on a Src
program are not necessarily lower bounds on the Tgt distance.

Nondeterminism. The dynamic semantics and distance of Src
and Tgt programs are nondeterministic due to the freedom in
choosing locations as well as deciding when memoization matches.
This avoids having to commit to a particular implementation, but
also means that any upper bound derived using the nondeterminis-
tic semantics may not be realized by a particular implementation. In
order for an implementation to realize an upper bound on distance,
the allocation and memoization policies used in deriving the dis-
tance must coincide with those of the implementation. In previous
work (Ley-Wild et al. 2008b), we proposed both user-specified and
compiler-generated mechanisms for defining allocation and mem-
oization policies, which suffice for realizing the bounds derived in
our examples. Ultimately, it would be useful to develop compilation
and run-time techniques to automatically minimize the distance be-
tween the computations by considering all possible policies.

Meta-logic. The proof system for distance applies to concrete
traces, while in our examples we use it to reason schematically over
classes of contexts and input changes. To fully formalize the exam-
ples, we would need a meta-logic that permits quantification over
contexts and classes of input changes, and can express asymptotic
bounds. Such a meta-logic could be extended with theorem-proving
capabilities which could automate finding bounds on distance.

8. Related Work
We briefly review previous work on incremental computation and
cost semantics.

Incremental and Self-Adjusting Computation Incremental com-
putation has been studied extensively since the early 80’s. We
briefly mention a few approaches here and refer the reader to the
survey by Ramalingam and Reps (1993) and some recent papers
(e.g., Ley-Wild et al. 2008b) for a more detailed set of references.
Effective early approaches to incremental computation either use
dependence graphs (Demers et al. 1981; Reps 1982; Yellin and
Strom 1991) or memoization (e.g., Pugh and Teitelbaum 1989;
Abadi et al. 1996; Heydon et al. 2000). Self-adjusting computa-
tion generalized dependence graphs techniques by introducing dy-
namic dependence graphs (Acar et al. 2006b), which enables a
change propagation algorithm update the structure of the computa-
tion based on data modifications, and combining them with memo-
ization (Acar et al. 2006a). Recent work showed that the approach
can be generalized to support imperative updates (side effects to
memory) (Acar et al. 2008a). Ley-Wild et al 2008b described how
to incorporate a version of the compilation technique used in this
paper for a pure source language into an existing compiler (ML-
ton). That paper did not consider mutable references and provided
no cost semantics or effectiveness guarantees.

Researchers proposed several implementations of self-adjusting
computation. Carlsson (2002) present a Haskell implementation
of the initial proposal to self-adjusting computation (Acar et al.
2006b). Shankar and Bodik 2007 use a variant of self-adjusting
computation techniques for the purpose of incremental invari-
ant checking. Cooper and Krishnamurthi (Cooper and Krishna-
murthi 2006) adapt the initial proposal for self-adjusting com-
putation (Acar et al. 2006b) to support Functional Reactive Pro-
gramming (Elliott and Hudak 1997). Both approaches are sim-

ilar to an alternative formulation of self-adjusting computation
based on tracking dependences at the granularity of function calls
and memory locations that is described in the first authors the-
sis (Acar 2005). Shankar and Bodik’s approach is further special-
ized for incremental invariant checking and is unsound in the gen-
eral case: change propagation does not preserve the intensional
(performance) and extensional (input-output behavior) semantics
with respect to from-scratch runs. These implementations all as-
sume purely functional programming (except for the mutator) and
often require support from a higher-order language (e.g., ML,
Haskell, Scheme). Recent work made some progress on giving
an implementation of self-adjusting computation in lower-level
languages, C in particular (Hammer and Acar 2008).

Self-adjusting computation has been applied, in several incar-
nations, to a number of problems from a reasonably broad set of
application domains such as motion simulation (Acar et al. 2006c,
2008b), machine learning (Acar et al. 2007), and other algorithmic
problems (Acar et al. 2004, 2005, 2006a). It is possible to ana-
lyze the performance of change propagation for a particular prob-
lem by using algorithmic analysis techniques. For example, ear-
lier work (Acar et al. 2004) analyzed the performance of change
propagation for tree contraction problem. Most applications of self-
adjusting computation, however, evaluated the effectiveness of the
approach experimentally (e.g., Acar et al. 2006a). The examples
that we consider in this paper confirm these experimental findings.

Cost Semantics This work builds on previous work on profil-
ing or cost semantics for reasoning about resource requirements of
programs. The idea of instrumenting evaluations to generate cost
information goes back to the early 90s (Sands 1990a; Rosendahl
1989). The approach has been shown to be particularly important
in high-level languages such as lazy (e.g., Sands 1990a,b; Sansom
and Jones 1995) and parallel languages (e.g., Blelloch and Greiner
1995, 1996; Spoonhower et al. 2008) where it is particularly diffi-
cult to relate execution time to the source code. The idea of having
a cost semantics construct a trace resembles the techniques used for
evaluation of parallel programs (Blelloch and Greiner 1996; Spoon-
hower et al. 2008). The structure and use of our traces, however, dif-
fers significantly from those used in parallel languages: we record
store actions and compute distances, whereas they work in a pure
setting and use traces to reason about parallelism. In the context
of incremental computation, we know of no other work that offers
a source-level cost semantics for reasoning about effectiveness of
incremental update mechanisms.

9. Conclusion
Due to its complex semantics and the nature of previously pro-
posed linguistic facilities, reasoning about the effectiveness of self-
adjusting programs has been difficult, forcing previous work to re-
sort to experimental validation.

This paper gives a high-level cost semantics for self-adjusting
computation. The approach enables programming in a familiar set-
ting, λ-calculus with first-class references, and compiling such pro-
grams into self-adjusting programs. The user can determine the re-
sponsiveness of compiled self-adjusting programs by computing a
kind of “edit distance” between traces of source programs. These
traces consists of function calls and individual store operations.
The user need not reason about evaluation contexts or global state.
These results are made possible by (1) a compilation mechanism
that can translate ordinary code into self-adjusting code while pre-
serving its efficiency, and (2) by techniques for matching evalua-
tion contexts appropriately without exposing them to the user for
source-level reasoning.

A common limitation of cost semantics-based approaches to
performance analysis is that they often apply only to concrete



evaluations. We show that this need not be the case by providing
techniques for generalizing trace distances of concrete evaluations
to arbitrary inputs, composing trace distances, and by reasoning
with trace contexts. For illustrative purposes, we derive asymp-
totic bounds for several examples. We expect these results to lead
to a more formal and precise reasoning of effectiveness of self-
adjusting programs as well as profiling tools that can infer concrete
and perhaps asymptotic complexity bounds.
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