
Towards Energy Consumption Verification via Static
Analysis

P. Lopez-Garcia
∗ †

pedro.lopez@imdea.org

R. Haemmerlé
†

remy.haemmerle@imdea.org

M. Klemen †
maximiliano.klemen@imdea.org

U. Liqat †
umer.liqat@imdea.org

M. Hermenegildo † ‡

manuel.hermenegildo@imdea.org

ABSTRACT
In this paper we leverage an existing general framework
for resource usage verification and specialize it for verifying
energy consumption specifications of embedded programs.
Such specifications can include both lower and upper bounds
on energy usage, and they can express intervals within which
energy usage is to be certified to be within such bounds.
The bounds of the intervals can be given in general as func-
tions on input data sizes. Our verification system can prove
whether such energy usage specifications are met or not.
It can also infer the particular conditions under which the
specifications hold. To this end, these conditions are also
expressed as intervals of functions of input data sizes, such
that a given specification can be proved for some intervals
but disproved for others. The specifications themselves can
also include preconditions expressing intervals for input data
sizes. We report on a prototype implementation of our ap-
proach within the CiaoPP system for the XC language and
XS1-L architecture, and illustrate with an example how em-
bedded software developers can use this tool, and in par-
ticular for determining values for program parameters that
ensure meeting a given energy budget while minimizing the
loss in quality of service.

Keywords: Energy consumption analysis and verification,
resource usage analysis and verification, static analysis, ver-
ification.

1. INTRODUCTION
In an increasing number of applications, particularly those

running on devices with limited resources, it is very impor-
tant and sometimes essential to ensure conformance with re-
spect to specifications expressing non-functional global prop-
erties such as energy consumption, maximum execution time,
memory usage, or user-defined resources. For example, in a
real-time application, a program completing an action later
than required is as erroneous as a program not computing
the correct answer. The same applies to an embedded ap-
plication in a battery-operated device (e.g., a portable or
implantable medical device, an autonomous space vehicle,
or even a mobile phone) if the application makes the device

∗Spanish Council for Scientific Research (CSIC).
†IMDEA Software Institute, Madrid, Spain.
‡Universidad Politécnica de Madrid (UPM).

run out of batteries earlier than required, making the whole
system useless in practice.

In general, high performance embedded systems must con-
trol, react to, and survive in a given environment, and this
in turn establishes constraints about the system’s perfor-
mance parameters including energy consumption and reac-
tion times. Therefore, a mechanism is necessary in these
systems in order to prove correctness with respect to speci-
fications about such non-functional global properties.

To address this problem we leverage an existing general
framework for resource usage analysis and verification [22,
23], and specialize it for verifying energy consumption spec-
ifications of embedded programs. As a case study, we fo-
cus on the energy verification of embedded programs writ-
ten in the XC language [37] and running on the XMOS
XS1-L architecture (XC is a high-level C-based program-
ming language that includes extensions for communication,
input/output operations, real-time behavior, and concur-
rency). However, the approach presented here can also be
applied to the analysis of other programming languages and
architectures. We will illustrate with an example how em-
bedded software developers can use this tool, and in par-
ticular for determining values for program parameters that
ensure meeting a given energy budget while minimizing the
loss in quality of service.

2. OVERVIEW OF THE ENERGY VERIFI-
CATION TOOL

In this section we give an overview of the prototype tool
for energy consumption verification of XC programs run-
ning on the XMOS XS1-L architecture, which we have im-
plemented within the CiaoPP system [13]. As in previous
work [20, 25], we differentiate between the input language,
which can be XC source, LLVM IR [17], or Instruction Set
Architecture (ISA) code, and the intermediate semantic pro-
gram representation that the CiaoPP core components (e.g.,
the analyzer) take as input. The latter is a series of con-
nected code blocks, represented by Horn Clauses, that we
will refer to as “HC IR” from now on. We perform a trans-
formation from each input language into the HC IR and
pass it to the corresponding CiaoPP component. The main
reason for choosing Horn Clauses as the intermediate rep-
resentation is that it offers a good number of features that
make it very convenient for the analysis [25]. For instance,
it supports naturally Static Single Assignment (SSA) and
recursive forms, as will be explained later. In fact, there is
a current trend favoring the use of Horn Clause programs

ar
X

iv
:1

51
2.

09
36

9v
1

 [
cs

.P
L

]
 3

1
D

ec
 2

01
5

Assertions

pragma check
pragma trust
...

XC Code

int f(int arg){
...

Energy Model

HC IR
Translator

XC
Compiler

Static
Analysis

#pragma true

Static
Comparator

#pragma check

#pragma false

#pragma checked

Inferred

Disproved

Unproved

Proved

Energy Consumption Analysis & Verification Tool

Program

Figure 1: Energy consumption verification tool using CiaoPP.
.

as intermediate representations in analysis and verification
tools [2].

Figure 1 shows an overview diagram of the architecture of
the prototype tool we have developed. Hexagons represent
different tool components and arrows indicate the commu-
nication paths among them.

The tool takes as input an XC source program (left part of
Figure 1) that can optionally contain assertions in a C-style
syntax. As we will see later, such assertions are translated
into Ciao assertions, the internal representation used in the
Ciao/CiaoPP system.

The energy specifications that the tool will try to prove
or disprove are expressed by means of assertions with check

status. These specifications can include both lower and up-
per bounds on energy usage, and they can express intervals
within which energy usage is to be certified to be within such
bounds. The bounds of the intervals can be given in general
as functions on input data sizes. Our tool can prove whether
such energy usage specifications are met or not. It can also
infer the particular conditions under which the specifications
hold. To this end, these conditions are also expressed as in-
tervals of functions of input data sizes, such that a given
specification can be proved for some intervals but disproved
for others.

In addition, assertions can also express trusted informa-
tion such as the energy usage of procedures that are not de-
veloped yet, or useful hints and information to the tool. In
general, assertions with status trust can be used to provide
information about the program and its constituent parts
(e.g., individual instructions or whole procedures or func-
tions) to be trusted by the analysis system, i.e., they pro-
vide base information assumed to be true by the inference
mechanism of the analysis in order to propagate it through-
out the program and obtain information for the rest of its
constituent parts.

In our tool the user can choose between performing the
analysis at the ISA or LLVM IR levels (or both). We refer
the reader to [19] for an experimental study that sheds light
on the trade-offs implied by performing the analysis at each
of these two levels, which can help the user to choose the
level that fits the problem best.

The associated ISA and/or LLVM IR representations of
the XC program are generated using the xcc compiler. Such
representations include useful metadata. The HC IR trans-
lator component (described in Section 4) produces the inter-
nal representation used by the tool, HC IR, which includes
the program and possibly specifications and/or trusted in-
formation (expressed in the Ciao assertion language [32,
15]).

The tool performs several tasks:

1. Transforming the ISA and/or LLVM IR into HC IR.
Such transformation preserves the resource consump-
tion semantics, in the sense that the resource usage
information inferred by the tool is applicable to the
original XC program.

2. Transforming specifications (and trusted information)
written as C-like assertions into the Ciao assertion lan-
guage.

3. Transforming the energy model at the ISA level [16],
expressed in JSON format, into the Ciao assertion lan-
guage. Such assertions express the energy consumed
by individual ISA instruction representations, infor-
mation which is required by the analyzer in order to
propagate it during the static analysis of a program
through code segments, conditionals, loops, recursions,
etc., in order to infer analysis information (energy con-
sumption functions) for higher-level entities such as
procedures, functions, or loops in the program.

4. In the case that the analysis is performed at the LLVM
IR level, the HC IR translator component produces a
set of Ciao assertions expressing the energy consump-
tion corresponding to LLVM IR block representations
in HC IR. Such information is produced from a map-
ping of LLVM IR instructions with sequences of ISA
instructions and the ISA-level energy model. The map-
ping information is produced by the mapping tool that
was first outlined in [3] (Section 2 and Attachments
D3.2.4 and D3.2.5) and is described in detail in [11].

Then, following the approach described in [20], the CiaoPP
parametric static resource usage analyzer [30, 28, 34] takes

the HC IR, together with the assertions which express the
energy consumed by LLVM IR blocks and/or individual ISA
instructions, and possibly some additional (trusted) infor-
mation, and processes them, producing the analysis results,
which are expressed also using Ciao assertions. Such re-
sults include energy usage functions (which depend on input
data sizes) for each block in the HC IR (i.e., for the whole
program and for all the procedures and functions in it.).
The analysis can infer different types of energy functions
(e.g., polynomial, exponential, or logarithmic). The proce-
dural interpretation of the HC IR programs, coupled with
the resource-related information contained in the (Ciao) as-
sertions, together allow the resource analysis to infer static
bounds on the energy consumption of the HC IR programs
that are applicable to the original LLVM IR and, hence, to
their corresponding XC programs. Analysis results are given
using the assertion language, to ensure interoperability and
make them understandable by the programmer.

The verification of energy specifications is performed by
a specialized component which compares the energy speci-
fications with the (safe) approximated information inferred
by the static resource analysis. Such component is based on
our previous work on general resource usage verification pre-
sented in [22, 23], where we extended the criteria of correct-
ness as the conformance of a program to a specification ex-
pressing non-functional global properties, such as upper and
lower bounds on execution time, memory, energy, or user de-
fined resources, given as functions on input data sizes. We
also defined an abstract semantics for resource usage proper-
ties and operations to compare the (approximated) intended
semantics of a program (i.e., the specification) with approx-
imated semantics inferred by static analysis. These opera-
tions include the comparison of arithmetic functions (e.g.,
polynomial, exponential, or logarithmic functions) that may
come from the specifications or from the analysis results. As
a possible result of the comparison in the output of the tool,
either:

1. The original (specification) assertion (i.e., with status
check) is included with status checked (resp. false),
meaning that the assertion is correct (resp. incorrect)
for all input data meeting the precondition of the as-
sertion,

2. the assertion is “split” into two or three assertions with
different status (checked, false, or check) whose pre-
conditions include a conjunct expressing that the size
of the input data belongs to the interval(s) for which
the assertion is correct (status checked), incorrect (sta-
tus false), or the tool is not able to determine whether
the assertion is correct or incorrect (status check), or

3. in the worst case, the assertion is included with status
check, meaning that the tool is not able to prove nor
to disprove (any part of) it.

If all assertions are checked then the program is verified.
Otherwise, for assertions (or parts of them) that get false

status, a compile-time error is reported. Even if a program
contains no assertions, it can be checked against the asser-
tions contained in the libraries used by the program, po-
tentially catching bugs at compile time. Finally, and most
importantly, for assertion (or parts of them) left with status
check, the tool can optionally produce a verification warn-

ing (also referred to as an “alarm”). In addition, optional
run-time checks can also be generated.

3. THE ASSERTION LANGUAGE
Two aspects of the assertion language are described here:

the front-end language in which assertions are written and
included in the XC programs to be verified, and the internal
language in which such assertions are translated into and
passed, together with the HC IR program representation, to
the core analysis and verification tools, the Ciao assertion
language.

3.1 The Ciao Assertion Language
We describe here the subset of the Ciao assertion lan-

guage which allows expressing global “computational” prop-
erties and, in particular, resource usage. We refer the reader
to [32, 13, 15] and their references for a full description of
this assertion language.

For brevity, we only introduce here the class of pred as-
sertions, which describes a particular predicate and, in gen-
eral, follows the schema:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-Props].

where Pred is a predicate symbol applied to distinct free
variables while Precond and Postcond are logic formulae
about execution states. An execution state is defined by
variable/value bindings in a given execution step. The as-
sertion indicates that in any call to Pred, if Precond holds in
the calling state and the computation of the call succeeds,
then Postcond also holds in the success state. Finally, the
Comp-Props field is used to describe properties of the whole
computation for calls to predicate Pred that meet Precond.
In our application Comp-Props are precisely the resource
usage properties.

For example, the following assertion for a typical append/3
predicate:

:- pred append(A,B,C)
: (list(A,num),list(B,num),var(C))

=> (list(C,num),
rsize(A,list(ALb ,AUb ,num(ANl ,ANu))),
rsize(B,list(BLb ,BUb ,num(BNl ,BNu))),
rsize(C,
list(ALb+BLb ,AUb+BUb ,

num(min(ANl ,BNl),max(ANu ,BNu)))))
+ resource(steps ,ALb+1, AUb+1).

states that for any call to predicate append/3 with the first
and second arguments bound to lists of numbers, and the
third one unbound, if the call succeeds, then the third argu-
ment will also be bound to a list of numbers. It also states
that an upper bound on the number of resolution steps re-
quired to execute any of such calls is AUb + 1, a function
on the length of list A. The rsize terms are the sized types
derived from the regular types, containing variables that rep-
resent explicitly lower and upper bounds on the size of terms
and subterms appearing in arguments. See Section 5 for an
overview of the general resource analysis framework and how
sized types are used.

The global non-functional property resource/3 (appear-
ing in the “+” field), is used for expressing resource usages
and follows the schema:
resource(Res Name, Low Arith Expr, Upp Arith Expr)

where Res Name is a user-provided identifier for the resource
the assertion refers to, Low Arith Expr and Upp Arith Expr
are arithmetic functions that map input data sizes to re-

source usage, representing respectively lower and upper bounds
on the resource consumption.

Each assertion can be in a particular status, marked with
the following prefixes, placed just before the pred keyword:
check (indicating the assertion needs to be checked), checked
(it has been checked and proved correct by the system),
false (it has been checked and proved incorrect by the sys-
tem; a compile-time error is reported in this case), trust

(it provides information coming from the programmer and
needs to be trusted), or true (it is the result of static analy-
sis and thus correct, i.e., safely approximated). The default
status (i.e., if no status appears before pred) is check.

3.2 The XC Assertion Language
The assertions within XC files use instead a different syn-

tax that is closer to standard C notation and friendlier for
C developers. These assertions are transparently translated
into Ciao assertions when XC files are loaded into the tool.
The Ciao assertions output by the analysis are also trans-
lated back into XC assertions and added inline to a copy of
the original XC file.

More concretely, the syntax of the XC assertions accepted
by our tool is given by the following grammar, where the
non-terminal 〈identifier〉 stands for a standard C identifier,
〈integer〉 stands for a standard C integer, and the non-
terminal 〈ground-expr〉 for a ground expression, i.e., an ex-
pression of type 〈expr〉 that does not contain any C iden-
tifiers that appear in the assertion scope (the non-terminal
〈scope〉).

〈assertion〉 ::= ‘#pragma’ 〈status〉 〈scope〉 ‘:’ 〈body〉

〈status〉 ::= ‘check’ | ‘trust’ | ‘true’ | ‘checked’ | ‘false’

〈scope〉 ::= 〈identifier〉 ‘(’ ‘)’
| 〈identifier〉 ‘(’ 〈arguments〉 ‘)’

〈arguments〉 ::= 〈identifier〉 | 〈arguments〉 ‘,’ 〈identifier〉

〈body〉 ::= 〈precond〉 ‘==>’ 〈cost-bounds〉 | 〈cost-bounds〉

〈precond〉 ::= 〈upper-cond〉 | 〈lower-cond〉
| 〈lower-cond〉 ‘&&’ 〈upper-cond〉

〈lower-cond〉 ::= 〈ground-expr〉 ‘<=’ 〈identifier〉

〈upper-cond〉 ::= 〈identifier〉 ‘<=’ 〈ground-expr〉

〈cost-bounds〉 ::= 〈lower-bound〉 | 〈upper-bound〉
| 〈lower-bound〉 ‘&&’ 〈upper-bound〉

〈lower-bound〉 := 〈expr〉 ‘<=’ ‘energy’

〈upper-bound〉 := ‘energy’ ‘<=’ 〈expr〉

〈expr〉 := 〈expr〉 ‘+’ 〈mult-expr〉
| 〈expr〉 ‘-’ 〈mult-expr〉

〈mult-expr〉 := 〈mult-expr〉 ‘*’ 〈unary-expr〉
| 〈mult-expr〉 ‘/’ 〈unary-expr〉

〈unary-expr〉 := 〈identifier〉
| 〈integer〉
| ‘sum’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘prod’ ‘(’ 〈identifier〉 ‘,’ 〈expr〉 ‘,’ 〈expr〉‘,’ 〈expr〉 ‘)’
| ‘power’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘log’ ‘(’ 〈expr〉 ‘,’ 〈expr〉 ‘)’
| ‘(’ 〈expr〉 ‘)’
| ‘+’ 〈unary-expr〉
| ‘-’ 〈unary-expr〉
| ‘min’ ‘(’ 〈identifier〉 ‘)’
| ‘max’ ‘(’ 〈identifier〉 ‘)’

XC assertions are directives starting with the token #pragma

followed by the assertion status, the assertion scope, and the
assertion body. The assertion status can take several values,
including check, checked, false, trust or true, with the
same meaning as in the Ciao assertions. Again, the default
status is check.

The assertion scope identifies the function the assertion is
referring to, and provides the local names for the arguments
of the function to be used in the body of the assertion. For
instance, the scope biquadCascade(state, xn, N) refers to
the function biquadCascade and binds the arguments within
the body of the assertion to the respective identifiers state,
xn, N. While the arguments do not need to be named in a
consistent way w.r.t. the function definition, it is highly rec-
ommended for the sake of clarity. The body of the assertion
expresses bounds on the energy consumed by the function
and optionally contains preconditions (the left hand side of
the ==> arrow) that constrain the argument sizes.

Within the body, expressions of type 〈expr〉 are built from
standard integer arithmetic functions (i.e., +, -, *, /) plus
the following extra functions:

• power(base, exp) is the exponentiation of base by
exp;
• log(base, expr) is the logarithm of expr in base base;
• sum(id, lower, upper, expr) is the summation of

the sequence of the values of expr for id ranging from
lower to upper;
• prod(id, lower, upper, expr) is the product of the

sequence of the values of expr for id ranging from
lower to upper;
• min(arr) is the minimal value of the array arr;
• max(arr) is the maximal value of the array arr.

Note that the argument of min and max must be an identifier
appearing in the assertion scope that corresponds to an array
of integers (of arbitrary dimension).

4. ISA/LLVM IR TO HC IR TRANSFORMA-
TION

In this section we describe briefly the HC IR representa-
tion and the transformations into it that we developed in
order to achieve the verification tool presented in Section 2
and depicted in Figure 1. The transformation of ISA code
into HC IR was described in [21]. We provide herein an
overview of the LLVM IR to HC IR transformation.

The HC IR representation consists of a sequence of blocks
where each block is represented as a Horn clause:

< block id > (< params >) :− S1, . . . , Sn.
Each block has an entry point, that we call the head of
the block (to the left of the :− symbol), with a number

of parameters < params >, and a sequence of steps (the
body, to the right of the :− symbol). Each of these Si
steps (or literals) is either (the representation of) an LLVM
IR instruction, or a call to another (or the same) block.
The analyzer deals with the HC IR always in the same way,
independent of its origin.

LLVM IR programs are expressed using typed assembly-
like instructions. Each function is in SSA form, represented
as a sequence of basic blocks. Each basic block is a sequence
of LLVM IR instructions that are guaranteed to be executed
in the same order. Each block ends in either a branching or
a return instruction. In order to represent each of the basic
blocks of the LLVM IR in the HC IR, we follow a similar
approach as in the ISA-level transformation [21]. However,
the LLVM IR includes an additional type transformation as
well as better memory modelling. It is explained in detail
in Appendix 5 of [3]. The main aspects of this process, are
the following:

1. Infer input/output parameters to each block.

2. Transform LLVM IR types into HC IR types.

3. Represent each LLVM IR block as an HC IR block and
each instruction in the LLVM IR block as a literal (Si).

4. Resolve branching to multiple blocks by creating clauses
with the same signature (i.e., the same name and ar-
guments in the head), where each clause denotes one
of the blocks the branch may jump to.

The translator component is also in charge of translating
the XC assertions to Ciao assertions and back. Assuming
the Ciao type of the input and output of the function is
known, the translation of assertions from Ciao to XC (and
back) is relatively straightforward. The Pred field of the
Ciao assertion is obtained from the scope of the XC asser-
tion to which an extra argument is added representing the
output of the function. The Precond fields are produced di-
rectly from the type of the input arguments: to each input
variable, its regular type and its regular type size are added
to the precondition, while the added output argument is de-
clared as a free variable. Finally the Comp-Props field is set
to the usage of the resource energy, i.e., a literal of the form
resource(energy, Lower, Upper) where Lower and Upper

are the lower and upper bounds from the energy consump-
tion specification.

5. ENERGY CONSUMPTION ANALYSIS
As already mentioned in Section 2, we use an existing

static analysis to infer the energy consumption of XC pro-
grams [21]. It is a specialization of the generic resource anal-
ysis presented in [35] that uses the instruction-level models
described in [16]. Such generic resource analysis is fully
based on abstract interpretation [9], defining the resource
analysis itself as an abstract domain that is integrated into
the PLAI abstract interpretation framework [27, 33] of CiaoPP,
obtaining features such as multivariance, efficient fixpoints,
and assertion-based verification and user interaction.

In the rest of this section we give an overview of the gen-
eral resource analysis, using the following append/3 predi-
cate as a running example:

append ([], S, S).
append ([E|R], S, [E|T]) :- append(R,S,T).

The first step consists of obtaining the regular type of the
arguments for each predicate. To this end, we use one of
the type analyses present in the CiaoPP system [36]. In our
example, the system infers that for any call to the predicate
append(X, Y, Z) with X and Y bound to lists of numbers
and Z a free variable, if the call succeeds, then Z also gets
bound to a list of numbers. The regular type for representing
“list of numbers” is defined as follows:

listnum := [] | [num | listnum].

From this type definition, sized type schemas are derived,
which incorporate variables representing explicitly lower and
upper bounds on the size of terms and subterms. For exam-
ple, in the following sized type schema (named listnum-s):

listnum-s→ listnum(α,β)(num(γ,δ))

α and β represent lower and upper bounds on the length
of the list, respectively, while γ and δ represent lower and
upper bounds of the numbers in the list, respectively.

In a subsequent phase, these sized type schemas are put
into relation, producing a system of recurrence equations
where output argument sizes are expressed as functions of
input argument sizes.

The resource analysis is in fact an extension of the sized
type analysis that adds recurrence equations for each re-
source. As the HC IR representation is a logic program,
it is necessary to consider that a predicate can fail or have
more than one solution, so we need an auxiliary cardinality
analysis to get more precise results.

We develop the append example for the simple case of the
resource being the number of resolution steps performed by
a call to append/3 and we will only focus on upper bounds,
rU . For the first clause, we know that only one resolution
step is needed, so:

rU

(
ln(0,0)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ 1

The second clause performs one resolution step plus all the
resolution steps performed by all possible backtrackings over
the call in the body of the clause. This number can be
bounded as a function of the number of solutions. After
setting up and solving these equations we infer that an upper
bound on the number of resolution steps is the (upper bound
on) the length of the input list X plus one. This is expressed
as:

rU

(
ln(αX ,βX)(n(γX ,δX)), ln(αY ,βY)(n(γY ,δY))

)
≤ βX + 1

We refer the reader to [35] for a full description of this
analysis and tool.

6. THE GENERAL RESOURCE USAGE VER-
IFICATION FRAMEWORK

In this section we describe the general framework for (static)
resource usage verification [22, 24] that we have specialized
in this paper for verifying energy consumption specifications
of XC programs.

The framework, that we introduced in [22], extends the
criteria of correctness as the conformance of a program to
a specification expressing non-functional global properties,
such as upper and lower bounds on execution time, memory,
energy, or user defined resources, given as functions on input
data sizes.

Both program verification and debugging compare the ac-
tual semantics [[P]] of a program P with an intended seman-
tics for the same program, which we will denote by I. This
intended semantics embodies the user’s requirements, i.e.,
it is an expression of the user’s expectations. In the frame-
work, both semantics are given in the form of (safe) approx-
imations. The abstract (safe) approximation [[P]]α of the
concrete semantics [[P]] of the program is actually computed
by (abstract interpretation-based) static analyses, and com-
pared directly to the (also approximate) specification, which
is safely assumed to be also given as an abstract value Iα.
Such approximated specification is expressed by assertions
in the program. Program verification is then performed by
comparing Iα and [[P]]α.

In this paper, we assume that the program P is in HC
IR form (i.e., a logic program), which is the result of the
transformation of the ISA or LLVM IR code corresponding
to an XC program. As already said, such transformation
preserves the resource consumption semantics, in the sense
that the resource usage information inferred by the static
analysis (and hence the result of the verification process) is
applicable to the original XC program.

Resource usage semantics.
Given a program p, let Cp be the set of all calls to p.

The concrete resource usage semantics of a program p, for a
particular resource of interest, [[P]], is a set of pairs (p(t̄), r)
such that t̄ is a tuple of data (either simple data such as
numbers, or compound data structures), p(t̄) ∈ Cp is a call
to procedure1 p with actual parameters t̄, and r is a number
expressing the amount of resource usage of the computation
of the call p(t̄). The concrete resource usage semantics can
be defined as a function [[P]] : Cp 7→ R where R is the set of
real numbers (note that depending on the type of resource
we can take other set of numbers, e.g., the set of natural
numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v̄) : c(v̄),Φ, inputp, sizep)

where p(v̄) : c(v̄) is an abstraction of a set of calls. v̄ is a
tuple of variables and c(v̄) is an abstraction representing a
set of tuples of data which are instances of v̄. c(v̄) is an
element of some abstract domain expressing instantiation
states. Φ is an abstraction of the resource usage of the calls
represented by p(v̄) : c(v̄). We refer to it as a resource usage
interval function for p, defined as follows:

• A resource usage bound function for p is a monotonic
arithmetic function, Ψ : S 7→ R∞, for a given subset
S ⊆ Rk, where R is the set of real numbers, k is
the number of input arguments to procedure p and
R∞ is the set of real numbers augmented with the
special symbols ∞ and −∞. We use such functions to
express lower and upper bounds on the resource usage
of procedure p depending on input data sizes.

• A resource usage interval function for p is an arith-
metic function, Φ : S 7→ RI, where S is defined as
before and RI is the set of intervals of real numbers,
such that Φ(n̄) = [Φl(n̄),Φu(n̄)] for all n̄ ∈ S, where
Φl(n̄) and Φu(n̄) are resource usage bound functions

1Also called predicate in the HC IR.

that denote the lower and upper endpoints of the inter-
val Φ(n̄) respectively for the tuple of input data sizes
n̄. Although n̄ is typically a tuple of natural numbers,
we do not want to restrict our framework. We require
that Φ be well defined so that ∀n̄ (Φl(n̄) ≤ Φu(n̄)).

inputp is a function that takes a tuple of data t̄ and returns
a tuple with the input arguments to p. This function can be
inferred by using the existing mode analysis or be given by
the user by means of assertions. sizep(t̄) is a function that
takes a tuple of terms t̄ and returns a tuple with the sizes of
those data under the size metric described in Section 5.

In order to make the presentation simpler, we will omit
the inputp and sizep functions in abstract tuples, with the
understanding that they are present in all such tuples.

Intended meaning.
The intended approximated meaning Iα of a program is

an abstract semantic object with the same kind of tuples:
(p(v̄) : c(v̄),Φ, inputp, sizep), which is represented by using
Ciao assertions (which are part of the HC IR) of the form:

:- check Pred [: Precond] + ResUsage.

where p(v̄) : c(v̄) is defined by Pred and Precond, and Φ is de-
fined by ResUsage. The information about inputp and sizep
is implicit in Precond and ResUsage. The concretization of
Iα, γ(Iα), is the set of all pairs (p(t̄), r) such that t̄ is a tuple
of terms and p(t̄) is an instance of Pred that meets precon-
dition Precond, and r is a number that meets the condition
expressed by ResUsage (i.e., r lies in the interval defined by
ResUsage) for some assertion.

Example 6.1. Consider the following HC IR program that
computes the factorial of an integer.

fact(N,Fact) :- N=<0, Fact =1.
fact(N,Fact) :- N>0, N1 is N-1,

fact(N1,Fact1), Fact is N*Fact1.

One could use the assertion:

:- check pred fact(N,F)
: (num(N), var(F))

=> (num(N), num(F),
rs ize (N, num(Nmin , Nmax)),
rs ize (F, num(Fmin , Fmax)))

+ resource(steps , Nmin+1, Nmax +1).

to express that for any call to fact(N,F) with the first argu-
ment bound to a number and the second one a free variable,
the number of resolution (execution) steps performed by the
computation is always between Nmin+1 and Nmax+1, where
Nmin and Nmax respectively stand for a lower and an upper
bound of N. In this concrete example, the lower and upper
bounds are the same, i.e., the number of resolution steps is
exactly N + 1, but note that they could be different. 2

Example 6.2. The assertion in Example 6.1 captures the
following concrete semantic tuples:

(fact(0, Y), 1) (fact(8, Y), 9)

but it does not capture the following ones:

(fact(N, Y), 1) (fact(1, Y), 35)

the left one in the first line above because it is outside
the scope of the assertion (i.e., N being a variable, it does

not meet the precondition Precond), and the right one be-
cause it violates the assertion (i.e., it meets the precondi-
tion Precond, but does not meet the condition expressed by
ResUsage). 2

Partial correctness: comparing to the abstract se-
mantics.

Given a program p and an intended resource usage seman-
tics I, where I : Cp 7→ R, we say that p is partially correct
w.r.t. I if for all p(t̄) ∈ Cp we have that (p(t̄), r) ∈ I, where
r is precisely the amount of resource usage of the computa-
tion of the call p(t̄). We say that p is partially correct with
respect to a tuple of the form (p(v̄) : cI(v̄),ΦI) if for all
p(t̄) ∈ Cp such that r is the amount of resource usage of the
computation of the call p(t̄), it holds that: if p(t̄) ∈ γ(p(v̄) :
cI(v̄)) then r ∈ ΦI(s̄), where s̄ = sizep(inputp(t̄)). Finally,
we say that p is partially correct with respect to Iα if:

• For all p(t̄) ∈ Cp, there is a tuple (p(v̄) : cI(v̄),ΦI) in
Iα such that p(t̄) ∈ γ(p(v̄) : cI(v̄)), and

• p is partially correct with respect to every tuple in Iα.

Let (p(v̄) : c(v̄),Φ) and (p(v̄) : cI(v̄),ΦI) be tuples ex-
pressing an abstract semantics [[P]]α inferred by analysis
and an intended abstract semantics Iα, respectively, such
that cI(v̄) v c(v̄),2 and for all n̄ ∈ S (S ⊆ Rk), Φ(n̄) =
[Φl(n̄),Φu(n̄)] and ΦI(n̄) = [ΦlI(n̄),ΦuI (n̄)]. We have that:

(1) If for all n̄ ∈ S, ΦlI(n̄) ≤ Φl(n̄) and Φu(n̄) ≤ ΦuI (n̄),
then p is partially correct with respect to (p(v̄) : cI(v̄),ΦI).

(2) If for all n̄ ∈ S Φu(n̄) < ΦlI(n̄) or ΦuI (n̄) < Φl(n̄), then
p is incorrect with respect to (p(v̄) : cI(v̄),ΦI).

Checking the two conditions above requires the compari-
son of resource usage bound functions.

Resource Usage Bound Function Comparison.
Since the resource analysis we use is able to infer different

types of functions (e.g., polynomial, exponential, and log-
arithmic), it is also desirable to be able to compare all of
these functions.

For simplicity of exposition, consider first the case where
resource usage bound functions depend on one argument.
Given two resource usage bound functions (one of them
inferred by the static analysis and the other one given in
an assertion/specification present in the program), Ψ1(n)
and Ψ2(n), n ∈ R the objective of the comparison op-
eration is to determine intervals for n in which Ψ1(n) >
Ψ2(n), Ψ1(n) = Ψ2(n), or Ψ1(n) < Ψ2(n). For this, we
define f(n) = Ψ1(n)−Ψ2(n) and find the roots of the equa-
tion f(n) = 0. Assume that the equation has m roots,
n1, . . . , nm. These roots are intersection points of Ψ1(n) and
Ψ2(n). We consider the intervals S1 = [0, n1), S2 = (n1, n2),
Sm = . . . (nm−1, nm), Sm+1 = (nm,∞). For each interval
Si, 1 ≤ i ≤ m, we select a value vi in the interval. If
f(vi) > 0 (respectively f(vi) < 0), then Ψ1(n) > Ψ2(n)
(respectively Ψ1(n) < Ψ2(n)) for all n ∈ Si.

There exist powerful algorithms for obtaining roots of
polynomial functions. In our implementation we have used

2Note that the condition cI(v̄) v c(v̄) can be checked using
the CiaoPP capabilities for comparing program state prop-
erties such as types.

the GNU Scientific Library [10], which offers a specific poly-
nomial function library that uses analytical methods for
finding roots of polynomials up to order four, and uses nu-
merical methods for higher order polynomials.

We approximate exponential and logarithmic resource us-
age functions using Taylor series. In particular, for expo-
nential functions we use the following formulae:

ex ≈ Σ∞n=0
xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ . . . for all x

ax = ex ln a ≈ 1 + x ln a+
(x ln a)2

2!
+

(x ln a)3

3!
+ . . .

In our implementation these series are limited up to order 8.
This decision has been taken based on experiments we have
carried out that show that higher orders do not bring a sig-
nificant difference in practice. Also, in our implementation,
the computation of the factorials is done separately and the
results are kept in a table in order to reuse them.

Dealing with logarithmic functions is more complex, as
Taylor series for such functions can only be defined for the
interval (−1, 1).

For resource usage functions depending on more than one
variable, the comparison is performed using constraint solv-
ing techniques.

Safety of the Approximations.
When the roots obtained for function comparison are ap-

proximations of the actual roots, we must guarantee that
their values are safe, i.e., that they can be used for verifi-
cation purposes, in particular, for safely checking the condi-
tions presented above. In other words, we should guarantee
that the error falls on the safe side when comparing the cor-
responding resource usage bound functions. For this pur-
pose we developed an algorithm for detecting whether the
approximated root falls on the safe side or not, and in the
case it does not fall on the safe side, performing an iterative
process to increment (or decrement) it by a small value until
the approximated root falls on the safe side.

7. USING THE TOOL: EXAMPLE
As an illustrative example of a scenario where the em-

bedded software developer has to decide values for program
parameters that meet an energy budget, we consider the
development of an equaliser (XC) program using a biquad
filter. In Figure 2 we can see what the graphical user inter-
face of our prototype looks like, with the code of this biquad
example ready to be verified. The purpose of an equaliser
is to take a signal, and to attenuate / amplify different fre-
quency bands. For example, in the case of an audio signal,
this can be used to correct for a speaker or microphone fre-
quency response. The energy consumed by such a program
directly depends on several parameters, such as the sample
rate of the signal, and the number of banks (typically be-
tween 3 and 30 for an audio equaliser). A higher number of
banks enables the designer to create more precise frequency
response curves.

Assume that the developer has to decide how many banks
to use in order to meet an energy budget while maximizing
the precision of frequency response curves at the same time.
In this example, the developer writes an XC program where
the number of banks is a variable, say N. Assume also that
the energy constraint to be met is that an application of the

Figure 2: Graphical User Interface of the prototype with the XC biquad program.

biquad program should consume less than 125 millijoules
(i.e., 125000000 nanojoules). This constraint is expressed
by the following check assertion (specification):

#pragma check biquadCascade(state,xn,N) :

(1 <= N) ==> (energy <= 125000000)

where the precondition 1 <= N in the assertion (left hand
side of ==>) expresses that the number of banks should be
at least 1.

Then, the developer makes use of the tool, by selecting the
following menu options, as shown in the right hand side of
Figure 2: check_assertions, for Action Group, res_plai,
for Resource Analysis, mathematica, for Solver, llvm, for
Analysis Level (which will tell the analysis to take the
LLVM IR option by compiling the source code into LLVM IR
and transform into HC IR for analysis) and finally source,
for Output Language (the language in which the analysis /
verification results are shown). After clicking on the Apply

button below the menu options, the analysis is performed,
which infers a lower and an upper bound function for the
consumption of the program. Concretely those bounds are
represented by the following assertion, which is included in
the output of the tool:

#pragma true biquadCascade(state,xn,N) :

(16502087*N + 5445103 <= energy &&

energy <= 16502087*N + 5445103)

In this particular case, both bounds are identical. In other
words, the energy consumed by the program is exactly char-
acterized by the following function, depending on N only:

Ebiquad(N) = 16502087× N + 5445103 nJ

Then, the verification of the specification (check asser-
tion) is performed by comparing the energy bound functions

above with the upper bound expressed in the specification,
i.e., 125000000, a constant value in this case. As a result,
the two following assertions are produced (and included in
the output file of the tool):

#pragma checked biquadCascade(state,xn,N) :

(1 <= N && N <= 7)

==> (energy <= 125000000)

#pragma false biquadCascade(state,xn,N) :

(8 <= N)

==> (energy <= 125000000)

The first one expresses that the original assertion holds
subject to a precondition on the parameter N, i.e., in or-
der to meet the energy budget of 125 millijoules, the num-
ber of banks N should be a natural number in the interval
[1, 7] (precondition 1 <= N && N <= 7). The second one
expresses that the original specification is not met (status
false) if the number of banks is greater or equal to 8.

Since the goal is to maximize the precision of frequency
response curves and to meet the energy budget at the same
time, the number of banks should be set to 7. The developer
could also be interested in meeting an energy budget but this
time ensuring a lower bound on the precision of frequency
response curves. For example by ensuring that N ≥ 3, the
acceptable values for N would be in the range [3, 7].

In the more general case where the energy function in-
ferred by the tool depends on more than one parameter, the
determination of the values for such parameters is reduced
to a constraint solving problem. The advantage of this ap-
proach is that the parameters can be determined analytically
at the program development phase, without the need of de-
termining them experimentally by measuring the energy of
expensive program runs with different input parameters.

8. RELATED WORK
As mentioned before, this work adds verification capabili-

ties to our previous work on energy consumption analysis for
XC/XS1-L [21], which builds on of our general framework
for resource usage analysis [31, 28, 35, 14, 26] and its sup-
port for resource verification [22, 24], and the energy models
of [16].

Regarding the support for verification of properties ex-
pressed as functions, the closest related work we are aware
of presents a method for comparison of cost functions in-
ferred by the COSTA system for Java bytecode [1]. The
method proves whether a cost function is smaller than an-
other one for all the values of a given initial set of input
data sizes. The result of this comparison is a Boolean value.
However, as mentioned before, in our approach [22, 24] the
result is in general a set of subsets (intervals) in which the
initial set of input data sizes is partitioned, so that the re-
sult of the comparison is different for each subset. Also,
[1] differs in that comparison is syntactic, using a method
similar to what was already being done in the CiaoPP sys-
tem: performing a function normalization and then using
some syntactic comparison rules. Our technique goes be-
yond these syntactic comparison rules. Moreover, [1] only
covers (generic) cost function comparisons while we have ad-
dressed the whole process for the case of energy consumption
verification. Note also that, although we have presented our
work applied to XC programs, the CiaoPP system can also
deal with other high- and low-level languages, including, e.g.,
Java bytecode [29, 26].

In a more general context, using abstract interpretation in
debugging and/or verification tasks has now become well es-
tablished. To cite some early work, abstractions were used
in the context of algorithmic debugging in [18]. Abstract
interpretation has been applied by Bourdoncle [4] to debug-
ging of imperative programs and by Comini et al. to the
algorithmic debugging of logic programs [7] (making use of
partial specifications in [6]), and by P. Cousot [8] to veri-
fication, among others. The CiaoPP framework [5, 12, 14]
was pioneering in many aspects, offering an integrated ap-
proach combining abstraction-based verification, debugging,
and run-time checking with an assertion language.

9. CONCLUSIONS
We have specialized an existing general framework for re-

source usage verification for verifying energy consumption
specifications of embedded programs. These specifications
can include both lower and upper bounds on energy us-
age, expressed as intervals within which the energy usage
is supposed to be included, the bounds (end points of the
intervals) being expressed as functions on input data sizes.
Our tool can deal with different types of energy functions
(e.g., polynomial, exponential or logarithmic functions), in
the sense that the analysis can infer them, and the specifi-
cations can involve them. We have shown through an ex-
ample, and using the prototype implementation of our ap-
proach within the Ciao/CiaoPP system and for the XC lan-
guage and XS1-L architecture, how our verification system
can prove whether such energy usage specifications are met
or not, or infer particular conditions under which the speci-
fications hold. These conditions are expressed as intervals of
input data sizes such that a given specification can be proved
for some intervals but disproved for others. The specifica-

tions themselves can also include preconditions expressing
intervals for input data sizes. We have illustrated through
this example how embedded software developers can use this
tool, and in particular for determining values for program
parameters that ensure meeting a given energy budget while
minimizing the loss in quality of service.

10. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union 7th Framework Programme under
grant agreement 318337, ENTRA - Whole-Systems Energy
Transparency, Spanish MINECO TIN’12-39391 StrongSoft
and TIN’08-05624 DOVES projects, and Madrid TIC-1465
PROMETIDOS-CM project. We also thank all the partic-
ipants of the ENTRA project team, and in particular John
P. Gallagher, Henk Muller, Kyriakos Georgiou, Steve Ker-
rison, and Kerstin Eder for useful and fruitful discussions.
Henk Muller (XMOS Ltd.) also provided benchmarks (e.g.,
the biquad program) that we used to test our tool.

11. ADDITIONAL AUTHORS
Additional authors: John Smith (The Thørväld Group,

email: jsmith@affiliation.org) and Julius P. Kumquat
(The Kumquat Consortium, email: jpkumquat@consortium.net).

12. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, I. Herraiz, and

G. Puebla. Comparing cost functions in resource
analysis. In 1st International Workshop on
Foundational and Practical Aspects of Resource
Analysis (FOPARA’09), volume 6234 of Lecture Notes
in Computer Science, pages 1–17. Springer, 2010.

[2] N. Bjørner, F. Fioravanti, A. Rybalchenko, and
V. Senni, editors. Workshop on Horn Clauses for
Verification and Synthesis, July 2014. To appear in
Electronic Proceedings in Theoretical Computer
Science.

[3] N. Bohr, K. Eder, J. P. Gallagher, K. Georgiou,
R. Haemmerlé, M. V. Hermenegildo, B. Kafle,
S. Kerrison, M. Kirkeby, X. Li, U. Liqat,
P. Lopez-Garcia, H. Muller, M. Rhiger, and
M. Rosendahl. Initial Energy Consumption Analysis.
Technical report, FET 318337 ENTRA Project, April
2014. Deliverable 3.2, http://entraproject.eu.

[4] F. Bourdoncle. Abstract debugging of higher-order
imperative languages. In Programming Languages
Design and Implementation’93, pages 46–55, 1993.

[5] F. Bueno, P. Deransart, W. Drabent, G. Ferrand,
M. Hermenegildo, J. Maluszynski, and G. Puebla. On
the Role of Semantic Approximations in Validation
and Diagnosis of Constraint Logic Programs. In Proc.
of the 3rd. Int’l Workshop on Automated
Debugging–AADEBUG’97, pages 155–170, Linköping,
Sweden, May 1997. U. of Linköping Press.

[6] M. Comini, G. Levi, M. C. Meo, and G. Vitiello.
Abstract diagnosis. Journal of Logic Programming,
39(1–3):43–93, 1999.

[7] M. Comini, G. Levi, and G. Vitiello. Declarative
diagnosis revisited. In 1995 International Logic
Programming Symposium, pages 275–287, Portland,
Oregon, December 1995. MIT Press, Cambridge, MA.

http://entraproject.eu

[8] P. Cousot. Automatic Verification by Abstract
Interpretation, Invited Tutorial. In Fourth
International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI),
number 2575 in LNCS, pages 20–24. Springer, January
2003.

[9] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
ACM Symposium on Principles of Programming
Languages (POPL’77). ACM Press, 1977.

[10] M. Galassi, J. Davies, J. Theiler, B. Gough,
G. Jungman, P. Alken, M. Booth, and F. Rossi. GNU
Scientific Library Reference Manual. Network Theory
Ltd, 2009. Available at
http://www.gnu.org/software/gsl/.

[11] K. Georgiou, S. Kerrison, and K. Eder. A Multi-level
Worst Case Energy Consumption Static Analysis for
Single and Multi-threaded Embedded Programs.
Technical Report CSTR-14-003, University of Bristol,
December 2014.

[12] M. Hermenegildo, G. Puebla, and F. Bueno. Using
Global Analysis, Partial Specifications, and an
Extensible Assertion Language for Program
Validation and Debugging. In K. R. Apt, V. Marek,
M. Truszczynski, and D. S. Warren, editors, The Logic
Programming Paradigm: a 25–Year Perspective, pages
161–192. Springer-Verlag, July 1999.

[13] M. Hermenegildo, G. Puebla, F. Bueno, and P. L.
Garćıa. Integrated Program Debugging, Verification,
and Optimization Using Abstract Interpretation (and
The Ciao System Preprocessor). Science of Computer
Programming, 58(1–2), 2005.

[14] M. Hermenegildo, G. Puebla, F. Bueno, and
P. Lopez-Garcia. Integrated Program Debugging,
Verification, and Optimization Using Abstract
Interpretation (and The Ciao System Preprocessor).
Science of Computer Programming, 58(1–2):115–140,
October 2005.

[15] M. V. Hermenegildo, F. Bueno, M. Carro, P. López,
E. Mera, J. Morales, and G. Puebla. An Overview of
Ciao and its Design Philosophy. TPLP,
12(1–2):219–252, 2012.
http://arxiv.org/abs/1102.5497.

[16] S. Kerrison and K. Eder. Energy modelling of software
for a hardware multi-threaded embedded
microprocessor. ACM Transactions on Embedded
Computing Systems (TECS), 2015. To appear.

[17] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis and
transformation. In Proc. of the 2004 International
Symposium on Code Generation and Optimization
(CGO), pages 75–88. IEEE Computer Society, March
2004.

[18] Y. Lichtenstein and E. Y. Shapiro. Abstract
algorithmic debugging. In R. A. Kowalski and K. A.
Bowen, editors, Fifth International Conference and
Symposium on Logic Programming, pages 512–531,
Seattle, Washington, August 1988. MIT.

[19] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia,
M. V. Hermenegildo, J. P. Gallagher, and K. Eder.
Inferring Energy Consumption at Different Software

Levels: ISA vs. LLVM IR. Technical report, ENTRA
Project, April 2014. Appendix D3.2.4 of Deliverable
D3.2. Available at http://entraproject.eu.

[20] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and
K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In Proceedings of
LOPSTR’13, 2014.

[21] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou,
P. Lopez-Garcia, N. Grech, M. Hermenegildo, and
K. Eder. Energy Consumption Analysis of Programs
based on XMOS ISA-level Models. In Proceedings of
the 23rd International Symposium on Logic-Based
Program Synthesis and Transformation (LOPSTR’13),
2014.

[22] P. López-Garćıa, L. Darmawan, and F. Bueno. A
Framework for Verification and Debugging of
Resource Usage Properties. In Technical
Communications of ICLP, volume 7 of LIPIcs, pages
104–113. Schloss Dagstuhl, July 2010.

[23] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P.
na, M. Eekelen, and O. Shkaravska, editors,
Foundational and Practical Aspects of Resource
Analysis, volume 7177 of LNCS, pages 54–71.
Springer-Verlag, 2012.

[24] P. Lopez-Garcia, L. Darmawan, F. Bueno, and
M. Hermenegildo. Interval-Based Resource Usage
Verification: Formalization and Prototype. In R. P.
na, M. Eekelen, and O. Shkaravska, editors,
Foundational and Practical Aspects of Resource
Analysis. Second Iternational Workshop FOPARA
2011, Revised Selected Papers, volume 7177 of Lecture
Notes in Computer Science, pages 54–71.
Springer-Verlag, 2012.

[25] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In LOPSTR 2007, number
4915 in LNCS, pages 154–168. Springer-Verlag,
August 2007.

[26] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A
Flexible (C)LP-Based Approach to the Analysis of
Object-Oriented Programs. In 17th International
Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR 2007), number 4915 in
LNCS, pages 154–168. Springer-Verlag, August 2007.

[27] K. Muthukumar and M. Hermenegildo. Compile-time
Derivation of Variable Dependency Using Abstract
Interpretation. Journal of Logic Programming,
13(2/3):315–347, July 1992.

[28] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe
Upper-bounds Inference of Energy Consumption for
Java Bytecode Applications. In The Sixth NASA
Langley Formal Methods Workshop (LFM 08), April
2008. Extended Abstract.

[29] J. Navas, M. Méndez-Lojo, and M. Hermenegildo.
User-Definable Resource Usage Bounds Analysis for
Java Bytecode. In BYTECODE’09, volume 253 of
ENTCS, pages 6–86. Elsevier, March 2009.

[30] J. Navas, E. Mera, P. López-Garćıa, and
M. Hermenegildo. User-Definable Resource Bounds

http://www.gnu.org/software/gsl/
http://arxiv.org/abs/1102.5497
http://entraproject.eu

Analysis for Logic Programs. In Proc. of ICLP’07,
volume 4670 of LNCS, pages 348–363. Springer, 2007.

[31] J. Navas, E. Mera, P. López-Garćıa, and
M. Hermenegildo. User-Definable Resource Bounds
Analysis for Logic Programs. In 23rd International
Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science. Springer,
2007.

[32] G. Puebla, F. Bueno, and M. Hermenegildo. An
Assertion Language for Constraint Logic Programs. In
Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, pages 23–61.
Springer-Verlag, 2000.

[33] G. Puebla and M. Hermenegildo. Optimized
Algorithms for the Incremental Analysis of Logic
Programs. In International Static Analysis Symposium
(SAS 1996), number 1145 in LNCS, pages 270–284.
Springer-Verlag, September 1996.

[34] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via
Abstract Interpretation Using Sized Types. TPLP,
ICLP’14 Special Issue, 14(4-5):739–754, 2014.

[35] A. Serrano, P. Lopez-Garcia, and M. Hermenegildo.
Resource Usage Analysis of Logic Programs via
Abstract Interpretation Using Sized Types. Theory
and Practice of Logic Programming, 30th Int’l.
Conference on Logic Programming (ICLP’14) Special
Issue, 14(4-5):739–754, 2014.

[36] C. Vaucheret and F. Bueno. More Precise yet Efficient
Type Inference for Logic Programs. In International
Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102–116.
Springer-Verlag, September 2002.

[37] D. Watt. Programming XC on XMOS Devices. XMOS
Limited, 2009.

	1 Introduction
	2 Overview of the Energy Verification Tool
	3 The Assertion Language
	3.1 The Ciao Assertion Language
	3.2 The XC Assertion Language

	4 ISA/LLVM IR to HC IR Transformation
	5 Energy Consumption Analysis
	6 The General Resource Usage Verification Framework
	7 Using the Tool: Example
	8 Related Work
	9 Conclusions
	10 Acknowledgements
	11 Additional Authors
	12 References

